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ABSTRACT 

Tweets are usually the outcome of peoples’ feelings on various topics.  Twitter allows users 

to post casual and emotional thoughts to share in real-time. Around 20% of U.S. adults use Twitter. 

Using the word-frequency and singular value decomposition methods, we identified the behavior 

of individuals through their tweets. We graded depressive and anti-depressive keywords using the 

tweet time-series, time-window, and time-stamp methods. We have collected around four million 

tweets since 2018. A parameter (Depressive Index) is computed using the F1 score and Mathews 

correlation coefficient (MCC) to indicate the depressive level. A framework showing the 

Depressive Index and the Happiness Index is prepared with the time, location, and keywords and 

delivers F1 Score, MCC, and CI values.  

COVID-19 changed the routines of most peoples' lives and affected mental health. We 

studied the tweets and compared them with the COVID-19 growth.  The Happiness Index from 

our work and World Happiness Report for Georgia, New York, and Sri Lanka is compared.  An 

interactive framework is prepared to analyze the tweets, depict the happiness index, and compare 

it.  Bad words in tweets are analyzed, and a map showing the Happiness Index is computed for all 

the US states and was compared with WalletHub data. We add tweets continuously and a 

framework delivering an atlas of maps based on the Happiness Index and make these maps 

available for further study. 

We forecasted tweets with real-time data.  Our results of tweets and COVID-19 reports 

(WHO) are in a similar pattern. A new moving average method was presented; this unique process 

gave perfect results at peaks of the function and improved the error percentage.  



 

 

An interactive GUI portal computes the Happiness Index, depression index, feel-good-

factors, prediction of the keywords, and prepares a Happiness Index map. We plan to create a 

public web portal to facilitate users to get these results. Upon completing the proposed GUI 

application, the users can get the Happiness Index, Depression Index values, Happiness map, and 

prediction of keywords of the desired dates and geographical locations instantaneously.  
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PREFACE 

This work is the outcome after understanding that “Mental illness is reported as one of the 

leading diseases in coming years to be addressed by the stakeholders.”  To understand, identify a 

mental illness person, we need to follow their activities.  Social networks have the power to attract 

human feelings, emotions, and expressions. In our words, social network posts are the remanences 

and direct consequence of ones’ mind on the situation, time, and location.  

Tweets from Twitter are believed to be the output of human feelings, and we considered 

them as input for our study. More than 2.3 million tweets related to depression are taken from 

Kessler’s works, and anti-depression words are taken as base data. Using the word-frequency 

method, time-series, time-window, time-stamping methods, these tweets were analyzed.  

Depressive Index, a new parameter, is exhumed that identifies the levels of depression in 

comparison with other areas with time. Clustering of these words showed an interrelationship 

among these tweet keywords.  The impact of tweets on Mental health is calculated with an example 

of Space tourism tweets. Hedonometrics, a study of happiness, is relooked with the tweets, as we 

hypothesize that people's posts are the outcome of the human mind's behavior. The happiness index 

is computed using the tweets. Revisiting the simple moving average method, we could get better 

accuracies in forecasting.   

In truth, I could not have achieved the current level of success without solid support: my 

parents, uncle, and brother, who supported me with love and understanding. And secondly, my 

committee members, each of whom has provided patient advice and guidance throughout the 

research process. Thank you all for your unwavering support.
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1.    INTRODUCTION  

1.1 Problem Statement 

Mental illness is observed through the actions/behavior of an individual, emotions, and 

expressions towards a situation.  American Psychiatric Association indicates that 19% of people 

experience some form of mental illness. Nearly 4.1% of people are seriously affected by mental 

Illness. [1].  In 2001 the WHO reported that 450 million people suffer from mental disorders. With 

the technological growth, and affordable internet access, Social Media usage and impact increased 

in society.   

Social media facilitated people to express their feelings in the public domain.  Participating 

in and sharing information on social media became a daily routine for many people.  Around 42% 

of people participate in Twitter postings at least once a day. Such participation created large 

volumes of data. This data has geographical location, timestamp and leaves markers of the 

individual who generated the content.  Individuals are also habituated to mark the social media site 

addresses in all their communications to invite others to follow, view, and comment.  Such 

intensified growth allowed people to know about others, communicate, and offer suggestions. In 

view of many people who are directly and indirectly suffering from mental illness, it is essential 

to study the methods that help in the identification of mental illness, track and predict the emerging 

mental illness strategies.  

1.2 The early history of depression 

United States mental illness history illustrates how psychiatry and cultural understanding 

of mental illness influence national policy and attitudes towards mental health. During the stone 

age, people used to drill holes into the skull to get rid of evil spirits, which was believed to cause 

mental illness. Around 400 B.C., Hippocrates treated the mentally suffered people, assuming 
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mental illness was an issue to the human body rather than a God’s punishment. Bethlem Hospital 

opened in 1377 in London for mental illness people. During 1600, imprisonment was levied as a 

control mechanism for the mentally ill. Asylums started in 1850, and an experimental psychology 

lab was set up at the University of Leipzig in Germany in 1879. Around 1920, modern treatment 

was introduced for stress disorders. In 1938 Electro-shock therapy for schizophrenia and 

depression was a method to treat mental illness people. Thorazine was discovered in 1952 for 

psychosis. Behavior therapy was started in 1950, and new generation drugs were found in the 

1980s.  

In 1840 Dorothea Dix tried to extend better living conditions for mentally depressed 

people, and during the late 18th century, the USA built 32 psychiatric hospitals. Later, people were 

treated out-patient method.  During 1950 there were 560,000 patients reported, whereas this 

number was reduced to 130,000 by 1980 [2].  Clifford founded Mental Health America in 1909.  

National Mental Act was passed in 1946 and allocated funds towards research in this direction. 

Support for education, advocacy was started, and government programs with welfare events have 

improved mental health care. There were 339 beds for 100,000 in 1955 for treating mental illness 

people, whereas this number reduced to 22 in the year 2000.   

Depression is a common mental illness, and the visible symptoms are staying in a sad 

mood, losing interest in daily activities that are pleasurable. People also noticed weight gain or 

loss, fatigue, struggle in concentrating, and feelings of self-destruction.  Depression causes 

problems at the workplace and in relationships. Depression has also been correlated positively with 

adverse health behaviors, including smoking, alcohol abuse, physical inactivity, and sleep 

disturbances.  People also opined that poor nutrition, stressful events, poverty, and war could be a 

few factors for depressive behavior in general.  
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1.3 Motivation 

Around 40-45% of people use Social Networks and spend a lot of time. This tendency of 

use of Social Networks is increasing day by day in human life. It has now come to a stage that an 

instance, function, event, or feeling is not finished until its details are posted on social networks.  

There is a lot of swings in people’s behavior in these areas. It is found that there are several adverse 

effects of using social media. The increase of depression, anxiety, cyberbullying, Fear Of Missing 

Out (FOMO), unrealistic expectations, unhealthy sleep patterns, increased negative emotions, and 

general addition is severe impacts of social media use. But at the same time, it is wrong to conclude 

that social media is a bad idea because it has benefits to add to our lives.  

Social Media is a new phenomenon that allows social interaction between people 

known/unknown using Internet-based applications. The recent increase in suicides and the 

Internet's role, mainly social media, draws attention to many researchers.  It is not established how 

much social media contributes to an increase in suicidal behavior in human beings. Still, there is 

certainly a positive correlation between suicides and social media.  The internet also provided ways 

to know the suicide descriptions and lethal means to kill themselves. Social networking sites can 

also facilitate ways to avoid such depressive thoughts by providing connections among peers of 

similar experiences and getting help from society. More research is needed to understand the role 

of social network influence in suicidal attempts.   

Identifying a depressive individual is easy if we associate for a longer time and follow the 

actions.  But in today’s world, people are busy with their works.  We have thus chosen the tweets 

of an individual, which is one of the feeling outcomes of a person, can be easily tracked in social 

networks and analyzed for its characteristics. Any attempt to develop means and methods that help 

or reduce suicides is a positive contribution to humanity. We have thus chosen this area of research 



                                                                                                                        4 

to contribute a few new techniques and algorithms. Using the word-frequency method, singular 

value decomposition method, time series, time window, and time stamp methods, we analyzed the 

depressive and anti-depressive tweets. An attempt is made to categorize the tweet keywords with 

these tweets.  

We also scaled the depression levels, clustered the depressive keywords, and studied the 

impact on mental health. We extended our studies to find the Happiness Index of a geographical 

area, a crucial parameter in Hedonometrics. Also, we attempted to analyze the tweets at a location, 

country and delineate the degree of depressive Index of the people on that day.  In the end, we 

implemented a new moving average method to forecast the depressive and anti-depressive tweets.  

The present growth of mental illness among the children, students, youth, families, and 

older citizens motivated to contribute a few new methods for detecting mental illness in society, 

adding the computing parameters of Hedonometrics, and expanding new tools for better living. 

The support from governments towards this cause by instituting many units and national suicide 

prevention helplines (1-800-273-8255), crisis text line (74174), Trevor lifeline (1-866-488-7386), 

Trans lifeline (1-877-565-8860), and many more [3] motivated my thoughts to focus in this 

direction.  

1.4 Outline  

The ream of the dissertation is structured as follows.  Section 2 presents the past related 

works along with a review of literature for the relevant area. Section 2 reports several methods 

applied in our study. Section 3, the data collection and cleaning methods are described.  

In section 4, the analysis of tweets is described. Section 4.3.1 describes how analyzing 

Tweets using word frequency could identify the Twitter user’s mental health status.  This section 

4.3.2 presents the results using the Singular Value Decomposition (SVD) method and the chances 
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of individuals tweeting at least three of the other keywords if they are mentally depressed.  Time 

Series, Time window, and Time stamp studies were described in sections 4.3.3 to 4.3.5.  

Classification of the tweet keywords is done and stated in section 4.3.6.  It is also witnessed that 

the tweeting pattern of ‘tired’, ‘restless’ exhibited a different pattern to other depressive keywords. 

The anti-depressive tweets followed the pattern of ‘failure’, ‘hopeless’, ‘nervous’, and ‘worthless’ 

depressive tweets.  Section 4.3.4 describes the results that are obtained within the depressive and 

anti-depressive tweet keywords within ten minutes of interval and beyond.  

In Section 5, a new parameter with F1-Score and Matthew’s Correlation Coefficient is 

formed, and the outcomes are illustrated. Section 6 describes the clustering method results with 

the tweets obtained during the Sri Lanka Bomb blasts. Section 7 describes the impact of depressive 

and anti-depressive tweets on mental health. Space tourism tweets for a month were collected are 

analyzed to delineate the results.  

Hedonometrics, a branch of the study of happiness, was discussed in section 8, where we 

revisited a new parameter, ‘happiness index,’ using tweets. Section 8.4 deals with the study of the 

happiness index and depressive index using bad words in tweets.  

Section 9 describes the simple moving average methods, weighed moving averages, and 

exponential smoothing.  We came out with a new process of moving averages, which gave better 

results than existing methods. These results are applied using the ARIMA model on the COVID-

19 epidemic data set for forecasting the tweets.  Section 10 describes the conclusions. Whereas 

Section 11 illustrates the future works.   



                                                                                                                        6 

2 BACKGROUND WORK 

2.1 Background Work 

It is estimated that by the year 2020, depression will become the second leading cause of 

disease burden, and depression and schizophrenia are the main reasons for most suicides due to 

psychiatric disorders [4], [5], [6]. 

De Choudhury et al. [7] Park, M et al., [8], Nadeem, M. et al. [9], and many other 

computational social scientists worked in this area to predict the levels and identify depression 

using Twitter postings.  Gwynn, R. C. et al. estimated that more than 45% of major depression 

cases are undiagnosed [10].  Jianhong Luo et al. [11] suggested that suicidal prevention can be 

achieved through a systematic assessment of the behavior from Twitter posts. Suicide prevention 

to mental disorder individuals can thus be of benefiting society at large. The complex problem is 

to identify the individual with mental illness. People habited to share information using social 

media, and this became a communication platform.  People discuss many issues in social media 

like politics [12], disasters [13].  Of late, people are sharing health tips, success stories, and help 

peers [14].  Scanfeld et al. [15] mentioned that social media sites offer a means of health 

information sharing. Seeman [16] mentioned that web surveys reveal mental illness and the size 

of the problem.  Mental disorders impact the global economy and are estimated at the cost of US 

$ 2.5 trillion in 2010 and are estimated to be the US $6 trillion by 2030 [17].  Given these 

complicated issues, any attempt the study and address mental health illness will help the human at 

large. 

Identification and research leading development for better health among the people is the 

need of the hour as one in five experience mental illness. New events are detected from tweet 

streams [18]. Dou et al. [19] worked on event detection, event tracking, and event association in 
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streaming data.  Zhu and Laptev [20] studied deep and confident predictions for time series data 

and presented an end-to-end neural network architecture for uncertainty estimation.  Sato, Junbo 

Wang, and Zixue Cheng [21] used extended Hybrid TF-IDF and Remarkable Word Detecting 

Methods to quantify the importance of words accurately and evaluate the quantified values 

dynamically.  Radoslaw Michalski, Kazienko, and Dawid [22] [23] applied machine learning 

techniques to determine social network prediction's suitability using the time series forecasting 

and classification approaches. 

Doulamis, Anastasios, Kokkinos, and Varvarigos Doulamis used a multi-assignment graph 

partitioning algorithm for event detection in Twitter Micro-blogging [24].  Several scientists also 

worked in semantic reasoning and event classification [25], and average group clustering methods 

[26] for event detection. Ishikawa, Y. Arakawa, S. Tagashira, and A. Fukuda used burst detection 

in the data for event detection [27].  Prediction of future events using the social media data was 

also attempted [28] [29]. Researchers also endeavored to use social media to identify and predict 

mental issues [30].  Resnik, A. Garron, and R. Resnik used topic modeling to improve the 

prediction in depression [31]. Choudhury, Gamon, Counts, and Horvitz [32], Tushara, and Zhang 

[33] attempted to discover Twitter users’ mental health status by word-frequency method.  

Social media is a cheap and economical way to share information with present-day 

technology.  People communicate using social media about wellbeing suggestions, success tales, 

and assist colleagues [34].   With the technological growth and affordable Internet access, Social 

Media usage and its impact on daily life increased.  Park [35]  Sho et al. [36], and many other 

computational social scientists worked in this area to predict the levels and identify depression 

using Twitter postings. 
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Many researchers [37] [38] [39] have reported a direct link between Social Media usage 

and Mental Health issues.  Tushara and Zhang [40] [41] identified individuals' depressive Twitter 

and behavior through the tweets and the relation between Illness and tweets. Spending more time 

on social media is likely to be depressed more than non-users  [42].  Studies revealed that Internet 

usage directly impacted happiness and observed that heavy internet users are twice as unhappy as 

others [43]. The depressed people recognized a higher ratio of negative to neutral words. Earlier 

works reported that depressed participants took longer than controls to remember neutral words 

but did not differ in response times to negative words [44].  Suicide prediction tools are beneficial 

to relatives and friends of an individual, so that intervention of a Mental Health Specialist will be 

placed to address the issue on time.  Hence the Social Media data is a high value for machine 

learning and data mining research.  Evaluation Performance is one of the critical parameters in any 

model, and Data Mining is not exceptional. Many researchers are using this value as one of the 

parameters for the assessment of data.  Classification Accuracy, logarithmic loss, confusion 

matrix, Area under Curve, Precision, Recall, F-1 Score, and Matthews Correlation Coefficient 

(MCC) are a few indicators that researchers are working on depicting and interpreting the data 

[45].  In case there are more tweets related to ‘fire,’ we can assume that there could be a fire 

accident.  If people tweet with words related to happiness, fun, joy, excitement, hope, and delight, 

etc., we can conclude that people are happy in that area/time.  More people tweet with depression, 

failure, hopelessness, and tired or similar words; we can imagine that there is unhappiness around.  

Many researchers worked on the ‘Happiness Index.’ Lane et al. [46] Rabbi, Ali, Choudhury, and 

Berke [47] mentioned that mental health is one of the criteria for happiness inhuman.  Marcelo et 

al. [48] study Twitter users’ response methods and behavior during an earthquake.  Forest fire 

incidents were discovered through tweets [49].  Hossny and Mitchell [50] works detected the 
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events with word counts.  Liu et al. [51] worked with Twitter tweets and found a method to 

discover the smaller-scale local events.  Florian and Antal [52] have found indications to recognize 

events using the relative frequency of tweets.  Yasuyuki et al. [53] found depression in humans 

after the Nagasaki bombing. Yasmin and Maria [54] studied the level of anxiety, depression, and 

stress after the bombing.  Depressed and Anti-depressed tweets were analyzed to cluster based on 

Twitter events reported during Sri Lanka Bomb Blasts [55]. These studies indicate that Twitter 

users post information related to current events.  Stephen and Paris [56] analyzed the tweets during 

Syndey Siege (December 201. They mentioned that these emotional tweets expressed on social 

media help understand the reactions and why the emotional reactions occur as they do. Sykora et 

al. [57] studied several datasets and their relationship with different events. 

There were no studies earlier reported to categorize the emotional keywords in association 

with the event. We attempted to analyze the tweets data collected during the Srilanka bombing 

attacks on 21st April 2019. There were a few hundred human deaths reported during these bomb 

attacks, and hence certainly, there will be considerable emotions in people around the geographical 

areas. Studies by Haewoon et al. [58] revealed that more than 85% of tweets are related to current 

news. We attempted to study the tweets during a selected period to correlate depression/anti-

depression tweets with bombing tweets. We categorized these tweet keywords concerning the 

event.  In recent months, the COVID-19 spread has negatively affected so many people’s mental 

health.  According to a recent KFF poll, 45% of adults’ mental health is impacted due to stress 

over COVID-19 in the United States [59]. The longer COVID-19 exists and people are isolated at 

home, the more likely they have mental problems due to anxiety, depression, fear, pressure, etc. 

Quantitative studies about understanding the depression changes were carried out on quarantined 

people [60]. Similar studies revealed that health professionals during the SARS outbreak had 
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depression, anxiety, fear, and frustration [61]. Socioeconomic distress is also a reason for 

psychological disorders and anxiety [62]. Social media sites offer a means of sharing health 

information [15]. Since the World Health Organization (WHO) determined the outbreak of novel 

coronavirus disease, COVID-19, to be a “public health emergency of international concern,” the 

stress levels everywhere have continued to mount [63].  We developed a method to predict people's 

future mental health status during the spread of COVID-19 and then provide an early warning with 

psychological problems and other people with anxiety, depression, fear, and pressure. In addition 

to tweets, the COVID-19 data, such as daily confirmed COVID-19 cases and daily mortality rates 

[64], are also used to build the machine learning-based time series prediction system.  

Stigma [65], lack of education [66] , limited availability of Mental health professionals,  

limited affordability [67],  and policy limitations [68] are regarded as a barrier to mental illness 

identification and care. World Health Organization (WHO) recommended effectively developing 

methods to invest in mental care, add more workforce, and adopt best practices and human rights 

protection to overcome mental disorders [69].  

Mental illness is a leading cause of disability worldwide. It is estimated that nearly 300 

million people suffer from depression (World Health Organization, 2001). Reports on lifetime 

prevalence show high variance, with 3% reported in Japan to 17% in the US. In North America, 

the probability of having a major depressive episode within one year is 3–5% for males and 8–

10% for females. However, major governments allocate funds towards the Mental Health 

improvement programs, more than 28% of governments [70].  Nearly one in six children and 

teenagers admitted to psychiatric hospitals has an intake diagnosis of depressive illness [71]. 

The depression rates among children and adolescents are rising [72].  
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3 DATA COLLECTION AND PROCESSING 

 

3.1 Introduction 

We are motivated to study the mental health status of humans and address the challenges 

using their social network posts. Twitter launched on 15-June-2006, and it is an excellent social 

microblogging platform that caters few million individuals. Twitter is one social network site 

chosen for our study and a perfect example of a micro blogging social network site. Twitter 

connects millions of users with tweets. Users can write about any topic in text format within the 

280 characters limit and follow other users on Twitter to get an update.   We used the R 

programming language to get the tweets from the Twitter API. Twitter takes authentication from 

the user and accessURL, api_key, apisecret, authURL, consumerkey, consumentsecret, my_oauth, 

requestURL, token, token_secret keys are generated.  

Twitter delivers a maximum of 10,000 tweets online at any time of our API request.  

Twitter API often returns less than the requested number of tweets due to a fixed spanned time 

frame of twitter policies.  The # (hash) tag is the prefix of each keyword that a particular group of 

people tweets.  We represent the data collection diagrammatically as follows: 

 

Figure 3.1 Data collection from Twitter using API (Keyword) 
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Figure 3.2 Data collection from Twitter using API (Keyword. Location, and distance 

around the location 

3.2 R-Studio  

Ross Ihaka and Robert Gentleman in 1990, developed a statistical programming language 

called ‘R’ reflecting the creating first names of the creators. RStudio is an open-source integrated 

development environment (IDE) for data manipulation, calculation, and graphical display. It 

includes an R console, a code editor, file browser, help files, and graphical display. We used R-

Studio for our data collection version 1.2.5001. R-studio was downloaded from https://cran.r-

project.org/bin/windows/base/ and installed in the system.   

NLP, plyr, ggplot2, wordcloud, wordcloud2, ROAuth, stringR, tm are the libraires that are 

to be installed before use. In the next section, the code is mentioned to collect for one keyword.  

3.3 Methods 

The following is the code in R that collects the tweets from twitter.com  

library(twitteR) 

library(ROAuth) 

#R interface with OAuth and needs the following keys 
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# consumerKey: The consumer key provided by your application  

#consumerSecret: The consumer secret provided by your application  

#needsVerifier: Whether this OAuth needs the verification step. Defaults to TRUE 

 #handshakeComplete: Whether the handshaking was successfully completed 

 #requestURL: The URL provided for retrieving request tokens  

#authURL: The URL provided for authorization/verification purposes  

#accessURL: The URL provided for retrieving access tokens  

#oauthKey: For internal use  

#oauthSecret: For internal use verifier: For internal use  

#signMethod: For internal use 

# Declare Twitter API Credentials from dev.twitter.com 

api_key <- "1kHELrmPmtHcfPNPnYW43Xdbz" 

apisecret <- "qjF7FSXVfqpCXrlePCINSXeN8J5br5LcIezWgc9xmio7Duf9fG" 

token <- "874554929982472961-rQJDJHovgLgZtYfApewO0hCc67UbYTN" 

token_secret <- "Ph3K6hUke9XBi5MYM3AE5TzATzsav1QDlLROdBOBfvtvs" 

#Create Twitter Connection 

setup_twitter_oauth(api_key, apisecret, token, token_secret) 

library(NLP) 

library(plyr) 

library(ggplot2) 

library(wordcloud) 

library(wordcloud2) 

library(ROAuth) 
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library(stringr) 

library(tm) 

tweets <- searchTwitter("#depress",n=9999, geocode="7.8742,80.6511,500km",lang = 

"en") 

tweets.df <- twListToDF(tweets) 

tweets.df 

#tweets will be copied to a file in CSV format.  

write.csv(tweets.df,file = "D:/Tushara/depress_27_09_2021.csv") 

# In the above example, ‘depress’ tweets are collected and stored in local system.  

 

3.4 Study and data areas 

We have been collecting tweets since 2018 for depressive, anti-depressive, and event 

tweets related to Kessler’s depressive keywords, their antonyms, and few events.  Corona-related 

tweets have been collected since March 2020 daily. In 2019, the Sri Lanka Bombing tweets were 

collected 500 Kms around the ‘Dambulla” central location. This helped us to understand the 

depressive symptoms of Srilanka people during and after the ‘Bombing”. Results are discussed in 

the following chapters. In 2020, in the Burevi cyclone that affected Srilanka, we collected the 

tweets related to “Burevi” 500Kms around ‘Dambulla” to cover the entire Srilanka. Similarly, we 

collected tweets around Mumbai for the study of the “Tautkae’ cyclone.  Tweets related to ‘Space 

tourism’ also collected from 06-July-2021 to 06-August-2021 for the keywords ‘unity 22’, ‘blue 

origin’, ‘new Shepard’.  
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Table 3.1 Distribution of tweets during April 2020 to March 2021 (Sample) 

S. No Keyword No. of Tweets 
1 Depress 915 
2 Failure 122486 
3 Hopeless 12649 
4 Nervous 3602 
5 Restless 3602 
6 Tired 76596 
7 Worthless 13262 
8 Active 84697 
9 Calm 202773 
10 Comfort 92358 
11 Delight 43351 
12 Excite 1689 
13 Hopeful 40488 
14 Peaceful 141490 

 

In addition, we collected tweets on the location basis related to ‘Atlanta’ and ‘New York’ 

for the location-based studies. Similarly, tweets are collected in the years 2019, 2020, and 2021 

also.   We collected tweets from 6-July-2021 to 6-August-2021 for the keywords Unity22, Blue 

Origin, New Shepard.   

3.5 The framework using Data Mining and Machine Learning for Predicting Mental 

Health States 

Our work is to collect the tweets daily for the keywords ‘depress’, ‘failure’, ‘hopeless’, 

‘nervous’, ‘restless’, ‘tired’, ‘worthless’, ‘active’, ‘calm’, ‘comfort’, ‘delight’, ‘excite’, ‘hopeful’, 

‘peaceful’, and ‘corona’ using the Twitter API methods. Depending on the use and requirement, 

we add to collect the tweets related to a few additional keywords.  We are collecting tweets related 

to ‘Space tourism’, ‘cyclone’, and ‘corona’ at present and are used for our works. This framework 

will use the following functions:   
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Figure 3.3 Framework diagram of our works 

Figure 3.3 shows the framework of our work. The schematic flow charts for the collection 

of tweets from Twitter are shown in Figure 3.4. Flow charts for cleaning tweets and search of 

tweets are shown in Figures 3.5 and 3.6, respectively.  

 

Figure 3.4 Schematic flow chart – Collection of tweets from Twitter 
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Figure 3.5 Flow chart – Cleaning of tweets 

3.5.1 Collect function:  Collect() 

A function ‘Collect’ is prepared to collect the tweets as follows: 

Input:  Date of requirement, Keywords, Time duration (optional) to be collected. 

Output: This function interacts with our database and collects the tweets belonging to the 

keywords and date.  In the event time duration is chosen, the tweets will be limited to the required 

duration of the day. 

3.5.2 Clean function: Clean() 

This function, if applied, will remove all the URLs, remove numbers, non-English 

characteristics, and white spaces in the tweet text. 

Input: Tweet data set 

Output: Cleaned tweet data set 
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3.5.3 Search function: Search() 

This function, if applied, will collect the number of times the keyword appeared in the in 

the tweet text. 

Input: Tweet data set, Keyword 

Output: Number that shows the keyword appears in the tweet data. 

This function is used to find the True Positives, True Negatives, False Positives, and 

False Negatives in preparation for the Confusion Matrix 

 

Figure 3.6 Flow chart – Search of tweet keywords 

3.5.4 Happiness Index function: computeHI() 

Input: Depressive and anti-depressive tweet data set of a day 

Output: Happiness Index Number 

This function computes the Happiness Index as described in section 8.3 

3.5.5 Depression Index function: computeDI() 

Input:  Depressive and anti-depressive tweet data set of a day 
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Output: Depressive Index Number as described in section 8.4.1 

3.5.6 Feel-Good-Factor function: feel_good() 

Input:  Depressive and anti-depressive tweet data set of a day 

Output: Keywords in the rank order of the contribution on that day as described in section 

8.4.2  

3.5.7 Happiness Map function: create_map() 

Input:  Depressive and anti-depressive tweet data set of a day, Bad words set, date, and 

WalletHub data. 

Output: A map showing the Happiness Index map along with the WalletHub Happiness 

Index 

3.5.8 Prediction of keywords: predict() 

Input:  Depressive and anti-depressive tweet data set of our database.  At present, it is from 

01-April-2020 onwards. A keyword that is to be predicted. Date to be predicted 

Output: A plot showing the forecast data. The predicted value of the required day and 

previous days error percentage  

3.6 Graphic User Interface 

An interactive GUI portal to calculate mental health states which processes the collect(), 

clean(), search(), computeHI(), computeDI(), feel_good(), creatMap(), predict() functions. We 

plan to create a public portal to facilitate users to interact and get the results. Upon completing the 

proposed GUI application, the users can get the Happiness Index values, Depression Index values, 

Happiness map, and prediction of keywords of the desired dates of geographical locations 

instantaneously. 
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4 ANALYSING TWEETS 

 

4.1 Introduction 

Analyzing tweets is an established research area, where several researchers implemented 

the known algorithms to deduce the results.  Research is ongoing to verify the results to real-world 

issues.  Six hundred tweets are added every second in diverse matters. Topic combinations and 

subjects demand numerous solutions for these applications.  Some of the works are mentioned in 

the chapter - 2 of this dissertation. The tweets are analyzed to find the basis of the popularity of a 

person and reasons to support [73], emotions [74], disaster management with Support Vector 

Machine (SVM) detect the impact [75], Opinion mining [76], level of frustration [77], detecting 

events [78], and many more applications.  

The technological growth, ease of availability of the internet networking devices such as 

mobile phones, and GUIs of social network sites improved people’s behavior to interact with 

known and unknown people through posting text and pictures about the emotions, events, and 

valuable tips. Researchers analyzed the social network data to reveal mental health disorders, 

suicidal and depressive behavior [79]. Twitter is one of the most popular social network sites that 

facilitates many people building relationships with experts in many disciplines, promoting 

research, product, and feedback. The tweet is a composition of 280 characters, with a maximum 

of four photos up to 5MB on mobile and 15MB using the web interface restricted to GIF, JPEG, 

and PNG formats.  Twitter also provides APIs that allow the collection of tweets data much simpler 

than other social network platforms. 

Different formats of tweets are posted to gain the attention of more users in advertising 

products [80]. Social networks inflicted the weekly pattern and rhythm in our activities, where 
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cultures are deeply experienced [81] and adjust social behavior [82]. In social networks, Twitter 

has gained popularity in reaching the masses with its features. Twitter supports 300 million active 

users with more than 500 million tweets daily and will likely reach 340 million users by 2024 [83].  

Using tweets, researchers studied the real-time events [84], behavior in health changes [85], 

smoking habits, advertising formats [80], depression studies [32] [55] [23], behavior activation 

during morningness-eveningness depression [86], engagement of users [87] and misinformation 

using social networks [88].  Juntunen et al. studied to integrate B2B advertising with social media 

[89], and these marketers are inclined to utilize more emotional than functional requests in their 

tweets [90]. B2C research showed the positive effect of Twitter activity on information irregularity 

[91].  We analyzed the time series data, depressive, and anti-depressive tweets to identify and 

categorize the keywords.  

4.2 Data collection and Cleaning 

We identified seven keywords from the Kessler [92] ten-point questionnaire, the most used 

method to find the individual Psychological Distress scale.  We obtained the keyword-related 

tweets from twitter.com using API from April to July 2018. These tweets using #depress, #failure, 

#hopeless, #nervous, #restless, #tired, #worthless were collected.  We cleaned the data as 

mentioned in our previous chapters. Using ‘tm’ package in R, the numbers, special characters, 

symbols, white spaces, stop words, and ‘http’ links were removed from tweets. 

4.3 Methods 

4.3.1 Word Frequency Method 

A Term Document matrix is obtained, and a word frequency table is prepared.  We chose 

the top 24 high-frequency words from each keyword (#hash tag).  The same process was repeated 

to all the keywords separately.  A set of tweets shows 202 different words in the collection of word 
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sets of all the keyword lists.  Table 4.1 shows the top-24 words and the number of times that 

appeared in the combined tweet set of the keywords.  

The significance of the word within the words and keyword within the keywords is 

computed using the formula WS (Word Significance) = 𝐴(𝑖)/𝛴𝐴(𝑖), where A (i = all the 

keywords) is the frequency from Table 4.1.  KS (Keyword Significance) = 𝐵(𝑖)/𝛴𝐵(𝑖), where B 

(i = all the frequent words) is the frequency from Table 4.1.  Each of these values (WS and KS) 

will be within 0 to 1, and we then computed the SV i,j (Significance Value) = WS i,j * KS i,j, and 

shown in Fig 4.1. Each SVi,j value iterated again to compute WS and KS. Thus we obtained SV i,j 

and shown in Fig. 4.2 

Word Frequency Algorithm 

Step 1: Identify the keywords (i=1,7; i1=depress, i2=failure, i3=hopeless, i4=nervous, i5= 

restless, i6= tired, i7=worthless) from Kessler work [92] . 

Step 2: Ti = Set of tweets of for each keyword (i = 1 to 7) // Collection of tweets using each 

#hash tag (Ti = Tweet text) 

Step 3: //For all the keywords Depress, Failure, Hopeless, Nervous, Restless, Tired and 

 Worthless// 

For i=1 to 7  

 Do  

 {  

 Ti = {Ti – Stopwords} // Remove the stop words from all the set of tweets 

 WFj = (Wj, Fj) //Wi is the word from all the tweets Ti and Fi is the frequency of the 

 word in the tweet set 

 // Sort (Wj, Fj) with Fj as a sorting parameter.  
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 Select ((Wj, Fj) such that Fj>Fj+1 for j= 1,24 // Selection of top 25 cited keywords in the 

 tweet text.  

 }  

Step 4: {Wi, j; Fi, j} = Union of WFj; j = 1,7 //Top 25 ordered keywords in the combined 

tweet set 

Step 5: Select (Wi, j; Fi, j) such that Fi,j > Fi,j+1 for j=1,24 //Selection of top 24 keywords 

from the combined set.  

Step 6: Ai,j = Fi,j for all i,j  

Step 7: WS (Word Significance) = 𝐴(𝑖, 𝑗)/𝛴𝐴(𝑖, 𝑗) 

 //, where A (i = all the keywords) is the frequency, is computed, j is the keyword 

Step 8: KS (Keyword Significance) = 𝐵(𝑖, 𝑗)/𝛴𝐵(𝑖, 𝑗) 

 // where B (i = all the frequent words) is computed, j is the keyword 

Step 9: SV i,j (Significance Value) = WS i,j * KS i,j  (Fig 2.1) 

Step 10: Ai,j = SV i,j  for all i,j. 

Step 11: Repeat steps 7 to 10 to get second degree SV i,j (Significance Values) (Fig 4.2) 

 

 

Figure 4.1 Significance Factor obtained at algorithm step 9 
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Figure 4.2 Significance Factor obtained after one iteration step 11  

Table 4.1 Distribution of tweets from April 2020 to March 2021 

 Depress Failure Hopeless Nervous Restless Tired Worthless 
Hope 9 0 220 134 0 0 0 

Know 0 0 143 0 0 0 258 
Realdonald 

trump 0 920 0 0 0 0 305 

Night 0 0 0 0 72 1823 0 
Today 0 0 0 1280 0 1984 0 
Work 0 529 0 0 0 4042 160 
One 0 0 159 85 0 504 161 

Depress 246 0 253 0 0 0 0 
Never 11 3338 0 0 119 0 85 

Succeed 0 1686 0 0 0 0 0 
Sleep 0 0 0 0 246 4602 18 
Fail 0 4648 0 0 0 0 0 
Will 15 1594 169 576 0 0 256 
Go 0 0 133 1745 0 2292 365 

Like 0 0 179 1445 29 1619 393 
Don’t 14 1320 222 0 21 828 284 
Day 16 473 139 1274 17 4687 4 
Now 0 0 126 3012 1949 1775 237 
Time 0 2814 81 589 2022 1998 376 
Can 12 1888 753 231 44 944 188 
Im 10 0 343 1261 43 4461 148 

Feel 0 0 374 209 110 2511 255 
Just 27 781 324 554 129 2852 329 
Get 0 2505 322 2372 95 3069 442 
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 Out of the seven keywords considered for observation, three peak patterns are found in our 

study. It is noticed that people who tweet with one depressed keyword is automatically using the 

other three depressed keywords [33].  

4.3.2 Singular Value Decomposition Method 

Singular Value Decomposition (SVD) is an important tool in the area of Information 

Retrieval. Similar techniques are used to address problems in an approximation of the keyword-

document matrix using its SVD [93]. Correlation coefficients were found to these keywords from 

the frequency lists. We applied the Singular Value Decomposition method [94] to identify the 

number of parameters contributing to this process. Understanding data and extraction of features 

using SVD method delivered good results [94], and this method is also used for data dimension 

reduction [95]. In SVD method, the given matrix A (nxm) is decomposed into A= Unxn, V mxm, 

and Γ nxm matrices with matrix have elements in the diagonal. The elements Γ i,j, where i=j are 

called the singular values of the matrix. We can also note that Γi,j values are always in descending 

order. Feature extraction was also carried out using the SVD method [96]. The singular values 

extracted in the SVD process capture the essential features in the data. We have applied the SVD 

method and found that the first three matrix elements comprise more than 63% of this 

decomposition. Singular values from SVD Method resulted as 1.862, 1.370, 1.216, 0.910, 0.775, 

0.488 and 0.379 from these data [33] 

4.3.3 Time Series Method 

We also attempted to analyze the tweets collected at their time of posting.  Table. 4.2 shows 

the time of the tweet and the number of tweets in our corpus. It is observed that a minimum number 

of tweets (12499) were posted during the 8-10 hrs time, and the highest number of tweets were 

posted during the 16-18 hrs time.  People tweeted more during the afternoon to midnight than 
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midnight to the afternoon. Tweets related to ‘Failure’ appeared 64013 times, and a minimum of 

382 tweets appeared with the ‘depress’ hashtag in our corpus.  (In Table 4.2: 0-1 indicates 00:00 

to 1:59 hrs). We computed the average percentage of each #hash (keyword) and its contribution to 

the corpus.  The tweet data consist of 0.2 million used as a resource base for our further analysis.   

Table 4.2 Distribution of tweets from April 2020 to March 2021 

Keyword/ 
Time 

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 Total 

Depress 22 17 48 22 26 24 40 49 49 26 33 26 382 
Failure 5250 4584 3894 4125 3642 4516 6011 7192 7284 6251 5925 5339 64013 

Hopeless 1114 1062 982 1158 1085 1272 1375 1528 1921 1569 1670 1432 16168 
Nervous 3516 3225 1975 2121 2127 2330 3069 2930 3273 3511 3088 3447 34612 
Restless 738 730 637 615 523 659 892 827 800 646 697 585 8349 

Tired 5018 5391 5529 5023 3661 4404 5628 5942 5912 5826 6173 5595 64102 
Worthless 1439 1251 1291 1444 1435 1689 1919 1749 1953 1853 1925 1482 19430 
TOTAL 17097 16260 14356 14508 12499 14894 18934 20217 21192 19682 19511 17906 207056 

 

Kessler's [92] works are one of the acceptable methods to uncover personal Psychological 

Distress levels. Seven keywords are identified from Kessler’s questionnaire, and we collected 

tweets with these seven #hash (keywords) on 25-October-2018 to identify any abnormality on that 

day. Fig 4.3 indicates the depression keywords and their anomaly with the corpus data.  We found 

the difference between the average corpus data to the present day of observation.  

While comparing the day data (25-October-2018), we found an anomaly at 10-12 hrs in 

Depress, 6-8 hrs at Restless, and 10-12 in worthless tweets. The difference between the average 

corpus value in today's observation varied between 8.61 to -14.41. We took the absolute values and 

categorized them into four different categories. ‘A’ is very high, ‘B’ is High, ‘C’ is given to 

abnormal, and ‘D’ is for the normal category.  While ‘A’ needs urgent attention, ‘B’ needs caution, 

‘C’ category needs to be monitored, while ‘D’ is normal. 
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Figure 4.3 Significance Factor obtained after one iteration step 11  

Table 4.3 Distribution of tweets during April 2020 to March 2021 

Keyword/ 
Time 

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 

Depress C C C D D A C C C D B D 
Failure D D D D D D D D D D D D 

Hopeless D D D D D D D D D D D D 
Nervous D D D D D D D D D D D D 
Restless D D D D D D D D D D D D 

Tired D D D D D D D D D D D D 
Worthless D C D C C D D D D D D D 

 

 It is observed that depression at 10-11 hrs was abnormal, and between 20-21 hrs too found 

different. Such charts are made for several days for our study. A combination of such grade charts 

indicates the different grade timings. [40]. 

4.3.4  Time Window Method 

We have collected more than 200,000 tweets for all these keywords (#hash tag) for this 

work.   We removed the URLs and their links in the tweets. We removed the numbers, punctuation 

characters, and white spaces.  We used the stemming method and removed all the stop-words. In 

tweets, URLs, links, numbers, punctuations, and other stop-words (unnecessary words) are 

removed in the tweet datasets.  We found each word frequency in each day's tweets, and then we 

chose the 25 high-frequency words from each keyword (#hash tag) related tweets.  The 
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identification of frequently used words was repeated to all the keywords for all the days separately.   

We found that there are 202 different words in common in our data corpus. The workflow is as 

follows:   

Algorithm 

Step 1: N = number of depression keywords taken from Kessler work 

Step 2: M= number of days work 

Step 3: i=0; j= 0 //initialization  

Step 4: Collect #hashtag tweets using twitter API  

Add to a corpus  

i = i+1   

if i ≤ M go to Step 4   

j= j+1 

 If j ≤ N go to step 4   

 Else  

Stop  

//Data Preparation Phase 

// ti,j is the tweet collected on the i th day for the j th keyword//  

Step 5: ∀j= 1 to N,  

Do 

{  

∀ ti,j Remove numbers, URLs, punctuations, blank spaces, stop-words. 

Apply stemming  

Create a table of word frequency  
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Sort the table  

Collect 25 top frequently used words from this table 

}  

Step 6: ∀j= 1 to M 

Do 

{ 

Create a combined corpus of all frequently used keywords 

} 

Step 7: Find top 25 (keywords) from this combined  list. 

//data processing stage// 

//rti,j  is the time of the tweet ti,j tweeted. 

Step 8: p=0; q=0; k=0 // initialization 

{  

Search #keyword in the ti,j  

If #keyword exists in the text of ti,j  

{ 

find rti,j  

K=K+1 

if k ≤ 25 go to step 8 

 } 

 Else 

 } 

//Separation of tweets that are within 10 minutes duration and above// 
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Step 9:  

// di,j is the time difference between successive usage of the keyword in the tweets// 

∀ k = 1 to 25 

Do 

{ 

di,j = rti+1,j+1  - rti,j  

if di,j ≤ 10 p=p+1 

else q=q+1; 

} 

We also collected tweets related to ‘anti-depressant’ and many other drugs used for 

reducing depression.  We repeated the same process, computed the frequency of the top-25 words 

available in the sets, and analyzed further for our study.   Using MATLAB, we calculated the 

accuracies of people who tweeted with the anti-depressant medicine #hashtags with the other 

identified keyword tweets.  The results from the top 25 frequently used words were discussed from 

the set of 202 words.   

The similarity values of the frequently used words that are posted in a ten-minute interval 

and beyond in depression and anti-depressant tweets are computed.  They are shown in Figures 

4.4 and 4.5.  We have established the trend of the words in a graphical pattern in Figures 4.4 and 

4.5. Fig 4.4 shows the depression and anti-depressant trend lines for the frequent words used in 

the tweets that are posted within 10 minutes. Fig 4.5 shows the depression and anti-depressant 

trend lines for the frequent words used in the tweets that are posted beyond 10 minutes. The dotted 

line in blue indicates the anti-depressant tweets frequency in the selected set of tweets. Other lines 
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show the trend lines of ‘failure,’ ‘hopeless,’ ‘nervous,’ ’restless,’ ’tired,’ and ‘worthless.  Most of 

these words followed a similar trend except at one point of observation.    

 

 

Figure 4.4 Trend of Anti-depressant (blue) and other Kessler depression words (<10 

minutes)  

 

Figure 4.5 Trend of Anti-depressant (blue) and other Kessler depression words (>10 

minutes)  
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 More similarity is seen in the pattern with the frequent words of the tweets that are collected 

beyond 10 minutes. The X-axis indicated the top frequently appeared word set from the dataset. 

Some of the tweet sets do not represent these words, and hence we eliminated them for our 

analysis. We analyzed the data using the Fine-Tree algorithm [97], SVM [98], and KNN methods 

[99] and found 20-40, 16-40, and 8-40 accuracies. The similarity values within ten minutes and 

above ten minutes revealed similarity in some depressive and anti-depressive keyword hashtag 

tweets. The study of the tweeting pattern of depressive and anti-depressive tweets showed a similar 

trend in some of the tweet keywords. The tweet pattern of ‘tired’ and ‘restless’ exhibited a similar 

pattern, and others showed a different pattern. The anti-depressive tweets followed the pattern of 

‘failure,’ ‘hopeless,’ ‘nervous,’ and ‘worthless’ tweets. Fig 4.4 and Fig 4.5 show that there is a 

similarity in the tweet keywords. 

4.3.5 Time Stamp Method 

Analyzing the tweets' timestamps, the researchers attempted to comprehend user 

percentage compared to other time slots and focused on timing when the tweet impact was high 

[100] [101]. Modeling of time-of-day and day-of-week behavior that influences a customer was 

studied [102], and daily patterns of such tweets were analyzed [103]. Studies show that the best 

times to post tweets on Twitter were, in general, 8-10 am and 6-9 pm. It is also reported that the 

best times for B2C companies were 8-10 am, 12 pm, and 7-9 pm, and to get more retweets, it was 

5-6 pm. The best days for B2C are weekends, and for B2B, they are weekdays [104]. 

The best times for tweets posting of various sectors were studied and observed that key 

days for media companies to post were Thursday and Friday. It is reported that it is beneficial to 

post tweets around 5-6 pm on Saturdays for the education sector. It is suggested to post tweets for 

non-profit and charity organizations around 7 am on Wednesdays, tech companies on Tuesdays 
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and Wednesdays, health care companies between 8 am and 2 pm on weekdays, and finance 

companies between 1 am and 5 am on Tuesday. At 2 pm on Sunday and during Fridays are 

suggested for the recreation industry [105]. A similar study [106] exhibited a peak volume of 

tweets from different geographical areas globally: retweets, replies, and feedback times discussed 

in this work.  

So far, not much work has been done using the mental health-oriented tweet data. We 

analyzed the multi-domain tweets related to depressive, anti-depressive, and COVID-19 to 

discover tweeting patterns, timings, and days of tweets by using the date and timestamp 

information. We also compare newly discovered results with the COVID-19 confirmed cases 

published by World Health Organization (WHO) to verify our discovery.  

 Kessler’s Psychological Distress scale [92] is one of the methods to understand an 

individual’s mental health status. We used Twitter API and collected the tweets data with seven 

keywords from Kessler’s questionnaire. The seven keywords chosen from Kessler's works are 

depress, failure, hopeless, nervous, restless, tired, and worthless. We also used active, calm, 

comfort, delight, excitement, hopeful and peaceful, the antonyms of these seven keywords, to 

collect the tweets. In addition, we collected tweets with the keyword ‘corona.’  

 The tweet data used for our study belong from 01-April-2020 to 01-April-2021 (366 days). 

2.3 million tweets are used. The number of tweets in a keyword set during a particular hour is 

computed using the date and timestamps of each tweet. This process is repeated for all the 

depressive, anti-depressive, and corona keywords.  

 WHO documented the corona confirmed cases data that were available in the public 

domain [107]. Random weekly data of corona confirmed cases were obtained during July 4-10, 

2021 (WHO-1), June 6-12, 2021(WHO-2), and May 2-8, 2021 (WHO-3).   
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Figure 4.6 Depressive, Anti-depressive, and Corona tweets and with timestamp 

 

 

Figure 4.7 Depressive keywords and Corona tweets and with timestamp 

 

Fig. 4.6 shows the depressive, anti-depressive tweets, and corona tweets along with their 

timestamps. Fig. 4.7 shows each depressive keyword (depress, failure, hopeless, nervous, restless, 

tired, and worthless) and corona keyword along with relevant timestamp information.  
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Figure 4.8 Anti-depressive keywords and Corona tweets and with timestamp 

 

Figure 4.9 Depressive, Anti-depressive keywords, and their days of posting 

Similarly, Fig. 4.8 shows the anti-depressive keywords (active, calm, comfort, delight, 

excite, hopeful and peaceful) along with relevant timestamp information. Depressive, Anti-

depressive, and corona keyword tweets collected from 01-April-2020 to 01-April-2021 (366 days) 

are analyzed. Fig. 4.9 shows normalized average values of the depressive, anti-depressive, and 

corona tweets data along with the WHO data. Fig. 4.10 shows the rate of change of the number of 
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tweets from the previous hour. Figures 4.11 to 4.15 show the depress, nervous, worthless, active, 

and calm tweets patterns in a day, respectively 

 

Figure 4.10 Rage of Depressive, Anti-depressive keywords, corona tweets from the 

previous hour 

4.3.6 Classification of Tweet Key words 

The tweets collected from 01-April-2020 to 01-April-2021 are organized in an hour-wise 

and noticed pattern appeared in a waveform.  

 

Figure 4.11 Depress keyword tweet pattern in a day 
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Figure 4.12 Nervous keyword tweet pattern in a day 

 

Figure 4.13 Worthless keyword tweet pattern in a day 

 

Figure 4.14 ‘Active’ keyword tweet pattern in a day 

 

Figure 4.15 ‘Calm’ keyword tweet pattern in a day 
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Figure 4.16 Tweet keyword map pattern in a day 

 The gradient of tweets is computed and shown dark if the rise is positive and white if it is 

negative in Fig. 4.16.  The frequencies and amplitude of each keyword are also studied. 

Table 4.4 Classification of Keywords 

Sl. No Tweet 
Keyword 

Frequency 
Type Amplitude Type Polynomial 

degree 
1 Active Low High 3 
2 Calm Low High 3 
3 Comfort High Med 3 
4 Delight High Low 2 
5 Excite Med Low 2 
6 Hopeful Med Low 3 
7 Peaceful High High 3 
8 Depress Med Low 2 
9 Failure High High 3 
10 Hopeless Low Low 3 
11 Nervous Low Low 2 
12 Restless Low Low 1 
13 Tired Low High 3 
14 Worthless Low Low 3 
15 Covid High High 4 

 

We classified the tweet keywords into three categories with their frequencies as Low (2.4-

3.2), Medium (3.2-4.0), and High frequency (4.0-4.8).  Similarly, the wave pattern was studied for 
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its amplitude and classified into three categories as Low (0-40), Medium (40-75), and High (75-

110). Table 4.4 shows these details.  

Polynomial trend lines for the keyword curve patterns are obtained, and their degrees are 

shown in Table 4.4. The value of the function, first and its second derivative values, are shown in 

Figures 4.17, 4.18, and 4.19 for the function values 1, 14, and 15 hours.  

 2.3 million tweets collected from 01-April-2020 to 01-April-2021 (366 days) were 

analyzed with hour-wise data, resulting in significant discovery. In depressive tweets, it is noticed 

that the larger number of tweets posted during 12-1 pm and 2-3 pm, thus partially coincides with 

the previously reported results [103]. More anti-depressive tweets are posted during 2-5 pm. 

Similarly, we observed that corona-related tweets are posted more during 2-4 pm. The rate of 

change of tweets related to corona tweets is varied primarily during 0-6 am and 3-8 pm, whereas 

depressive tweets have 6-9 am. Anti-depressive tweets have similar changes during 8-10 pm, 

agreeing with the results [103].  

It is observed that more depressive tweets are posted on Thursday, followed by Tuesday 

and Wednesday. On Monday, Saturday, and Sunday, the depressive tweets are posted less than the 

average tweets in the depressive category. More anti-depressive tweets are posted Thursday, 

followed by Wednesday and Friday. On Monday, Tuesday, Saturday, and Sunday, the anti-

depressive tweets are less than the average tweets posted during the week. Corona tweets are 

posted more on Wednesdays and followed by Thursday and Tuesday.  On Monday, Saturday, and 

Sunday, the corona-related tweets are posted less than the average number of week tweets. 

On Thursdays, the depressive, anti-depressive tweets, and corona confirmed cases data 

obtained from WHO show an increase from Wednesday. A similar trend is followed on Friday, 

Saturday, and Sunday too.  Our new study supports the previous works [105] [106]. 
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We observed that the tweets related to Hopeless, Nervous, Restless, and Worthless are low 

in frequency and amplitude. The tweets with keywords Failure, peaceful and covid showed a high 

frequency and amplitude. Other keywords have shown a different nature. The trend line equations 

to fit curves and their polynomial degrees are obtained (Table 4.4) 

 

Figure 4.17 Function value (=1), first and second derivatives  

 

Figure 4.18 Function value (=14) first and second derivatives 
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Figure 4.19 Function value (=15), first and second derivatives 

4.4 Discussion 

We observed that there are three peaks from the significance values from Figures 4.1 and 

4.2. Out of the seven keywords considered for observation, three peak patterns are found in our 

study.  It is noticed that people who tweet with one depressed keyword are automatically using the 

other three depressed keywords. The frequency of words usage depicted the word usage pattern 

with keywords and resulted in an individual in a depressed stage may soon fall into another 

depressed phase. The results obtained from the Singular Value Decomposition (SVD) method 

resulted in a similar result showing a complement of 63% contribution to the first three pivotal 

values. The SVD method also supported our results, and we observe that there is always a chance 

of individual tweeting at least three of these keywords if he/she is mentally depressed. Everitt and 

Dunn [108] proposed an alternative approach based on comparing the component contribution of 

these diagonal elements as almost 64%, which is in line with our results. In all these cases, an 

individual with a symptom is automatically going into the other three situations. The results will 

be an indicator to identify and suggest developing a mechanism for social websites to help mental 

health illness people. Continuous monitoring of tweets of an individual who tweeted with one 
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keyword will identify whether he/she tweets with other depressive keywords so that we can 

conclude that the individual is prone to Mental health Illness soon. 

It is observed that depression at 10-11 hrs. was abnormal, and between 20-21 hrs. too found 

different.  A combination of such grade charts indicates the different grade timings.  Such 

categorization of tweet time will help predict the time-series data, where an abnormality is 

observed.  Identification of tweets of a duration to be abnormal with other timings will help to 

isolate for any event during that time.  Studying individual tweets from this abnormal part of tweets 

will result in user-level identification. Once the user is identified for such abnormality, diagnosis 

can be demonstrated with the help of a Mental health Specialist.  

The values of second derivatives of these curves remained positive in many cases except 

peaceful and restless, which showed negative throughout. During the 3-5 hours, the second 

derivative changed its slope to negative, indicating a local maximum. The second derivative of the 

corona-related polynomial also turned negative between 4-5 hours. Our study gives a detailed 

timestamp analysis to understand the depressive, anti-depressive, and corona tweets postings. 

Tweeting patterns are depicted, and abnormalities are identified. People post tweets more on 

Thursdays compared with the other days. The tweeting pattern falls until Sundays and picks up 

from Monday. During the day, there is a significant rise in tweets during 2-6 am and 10 am to 2 

pm. The number of tweets is retarded from 2 pm onwards till the day ends. Most of the depressive 

tweets follow the same tweet diurnal pattern. Anti-depressive tweets follow a similar trend with 

intermediate aberrations. Classification of these tweet keywords resulted in that Hopeless, 

Nervous, Restless, and Worthless fall under one category. Active, calm, comfort, delight, excite, 

hopeful, depress, and tired are under the second category.  Failure, peaceful and covid fall under 

the third category. The classification will allow the researchers to group them in future mental 
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health studies. The first and second derivative data of the function of all these keywords at 14 and 

15 hours show a similar pattern and supports our classification of these keywords and supports 

earlier results [103]. The second derivative of seven keywords remained positive, two were 

negative, and five changed their sign during the day cycle, supporting our study.  

The word frequency method resulted in the word usage pattern that an individual in a 

depressed stage may soon fall into another depressed phase. The singular Value Decomposition 

(SVD) method resulted in a compliment of 63% contribution to the first three pivotal values. The 

SVD method also supported our results, and we observe that there is always a chance of individuals 

tweeting at least three of these keywords if they are mentally depressed. Everitt and Dunn [108] 

proposed an alternative approach based on comparing the component contribution of these 

diagonal elements to almost 64%, which is in line with our results.  We could identify the need for 

urgent attention, caution and monitor it with the Time series method. Such categorization of the 

tweet time will improve prediction for the time-series data, where the abnormality is observed. 

Our accuracy in the Time window method resulted in 20-40, 16-40, and 8-40 in Fine-tree 

algorithm, SVM methods, and KNN methods.  In our Time stamp methods, the tweets followed a 

similar trend (Fig 4.9). Our study of Classification of tweets resulted in the depressive, anti-

depressive tweets, and corona confirmed cases (WHO data) showing an increase from Wednesday, 

which supported previous researchers' works.  
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5 SCALING DEPRESSION USING TWEETS 

 

5.1 Introduction 

 Mental Health Illness will become the second leading cause of disease burden to the 

stakeholders and the government in coming years. Studies to understand and gauge depression 

levels will help in addressing the mental illness. Cramer and Becky [109] have reported a direct 

link between Social Media usage and Mental health issues. They reported a 70% increase in 

anxiety and depression in young people with the use of social media. Lin et al. [38] reported a 

significant relation between Social Media usage and increased depression. Passos et al. [39] have 

mentioned that there is a high prevalence between suicide and depressive symptoms. We [33] [41] 

[45] identified the depressive Twitter and behavior of individuals through the tweets and the 

relationship between illness and tweets. Suicide prediction tools are beneficial to relatives and 

friends of an individual, so that intervention of a Mental health Specialist will be placed to address 

the issue on time. Hence the Social Media data is a high value for machine learning and data 

mining research. Facebook and Twitter are top-ranked social media websites in today's world.  

Several researchers attempted to estimate the levels of depression, and Kessler’s method 

[92] is most popular among them a questionnaire, and these keywords were used in our study.   

5.2 Data Collection 

Tweets related to Kessler’s questionnaire keywords are being collected every day and 

11,953 tweets on a single instance are used for this study.  The most popular antonyms for these 

seven keywords are too identified, and a set of 6,132 tweets related to these were collected using 

the Twitter API.  Depressive and anti-depressive tweets data for the days of 20-March-2019, 27-
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March-2019, and 4-April-2019.  Tweets are cleaned as mentioned in Chapter -3 and these tweets 

are employed in this analysis.  

5.3 Methods 

5.3.1 Confusion Matrix 

The confusion matrix is a table used to describe a classification on a set of test data for 

which the true values are known. The confusion matrix itself is relatively simple to understand.  

There are four terms to understand. True positives (TP) are the set of data that are predicted true 

and actually true.  True negatives (TN) are the set of data that we predicted negative and actually 

negative too.  False positives (FP) are the set that we predicted positive, but they are negative. 

False negatives (FN) are the set that we predicted negative, actually positive.  

We identified Predicted Positive tweets to Kessler’s words (Predicted positive and actual 

positive - TP) and identified the antonym Kessler’s keyword tweets (Predicted Negative and actual 

Negative – TN).  We computed the number of antonym tweets present in the predicted Kessler 

keyword tweets (predicted positive but negative - FN) from the Kessler keyword tweets. Similarly, 

we also calculated Kessler keyword-related tweets in antonym Kessler tweets (predicted negative 

but actual positive – FP).  Table – 5.1 gives the actual number of tweets in each category.  

Table 5.1 Confusion Matric (March 20, 2019) 

 ACTUAL 

PREDICTED 
11731(TP)  134 (FN) 
218 (FP) 6002 (TN) 

 

Table 5.2 Confusion Matrix (March 27, 2019)  

 ACTUAL 

PREDICTED 8516 (TP)  24 (FN) 
147 (FP) 9706 (TN) 
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Table 5.3 Confusion Matrix (April 4,2019)  

  ACTUAL 

PREDICTED 8016 (TP)  145 (FN) 
211 (FP) 21580 (TN) 

 

Table 5.4 Statistical Parameters  

Sl. No ITEM March  
20, 2019 

March 
27,2019 

April 4, 
2019 

1 Accuracy = TP / (TP + FN) 98.05 99.07 98.80 
2 Sensitivity 0.9818 0.9830 0.9819 
3 Specificity = TN / (FP + TN) 0.9782 0.9975 0.9902 
4 Precision = TP / (TP + FP) 0.9887 0.9972 0.9739 
5 Negative Predictive Rate = TN / (TN + 

FN) 
0.0182 0.9851 0.9933 

6 False Positive Rate (FPR) = FP / (FP + 
TN) 

0.0218 0.0025 0.0098 

7 False Discovery Rate = FP / (FP + TP) 0.0113 0.0028 0.0261 
8 F-1 Score = 2TP / (2TP + FP + FN) 0.9852 0.9901 0.9779 
9 Matthews Correlation Coefficient (MCC) 

= TP*TN-FP*FN/sqrt((TP+FP) 
*(TP+FN) *(TN+FP) * (TN+FN)) 

0.9568 0.9814 0.9696 

10 No. of Tweets  18085 18393 29596 
 

Similar data was collected on March 27, 2019, and again on April 4, 2019, to compare the 

days’ tweet data. We found the values and showed them in Tables: 5.2 and 5.3.  

5.3.2 F-1 Score and Matthews Correlation Coefficient 

We computed accuracy, sensitivity, specificity, precision, negative predictive rate, false-

positive rate, false discovery rate, F-1 score, and Matthews Correlation Coefficient from these data 

using standard formulae (Table 5.4). F1 score is the harmonic average of precision and recall and 

attains 1 (if perfect precision and recall) and will be zero, in the worst cases. MCC have values 

ranging between [-1,1].  High accuracy does not necessarily characterize a good classifier.  F1-

score does not consider TNs and hence does not depend on the full confusion matrix. Matthew's 
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correlation coefficient (MCC) depends on the full confusion matrix, and the value ranges from –1 

(when the classification is always wrong) to 0 (when it is no better than random) to 1 (when it is 

always correct) [110] (Fig 5.1) 

 

 

Figure 5.1 F-Score and MCC Value   

5.3.3 Classification Index (CI)  

A new metric (Classification Index, CI) computed using the formula CI = !"
("$%&&)

. 

We consider F1 as the numerator, close to 1 if there is perfect precision and recall in the 

data. We find the gap between ‘always correct’ to ‘practical value’ i., e. (1-MCC), which will be 

a smaller value if the data is close to correctness.  This value represents the distance between the 

MCC value to 100% correctness.  The new parameter formulated as (CI)= !"
("$%&&)

 which is a 

quotient of the harmonic average of precision and recall with the slit between the perfect precision.    

The values of CI  are presented in Table 5.5 in extreme conditions of F1 and MCC.  F1 

value becomes zero if the TP value is close to zero, and FP and FN values are very high.  In such 

cases, the accuracy and precision values will be low. A good trade-off must exist for better 
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classification, or else our data results in false alarms or will fall under one category.   The CI is 

observed in the range of 0.5 to ∞ but varies with the accuracy and precision. We also identified 

the CI value as a comparative classification index between the time series data collected over the 

period.  The CI value is suitable to compare data sets and for classification. 

Table 5.5 F1-Score, MCC and CI Value (Extreme Conditions)  

F1 MCC CI 
0 -1 0 
0 0 0 
0 1 ∞ 
1 -1 0.5 
1 0 1 
1 1 ∞ 

 

The statistical results like accuracy, sensitivity, specificity, precision is in a better range for 

classification performance in this case.  MCC is the one that correctly considers the ratio of the 

confusion matrix size. Especially on imbalanced datasets, MCC can appraise the prediction 

evaluation is going well or not, while accuracy or F1 Score would not.   MCC is used in machine 

learning as a measure of the quality of binary classifications.  It considers true and false positives 

and negatives and is generally regarded as an equal measure. MCC can be called a correlation 

coefficient between the observed and predicted classifications. MCC also returns a value that 

indicates perfect prediction/random prediction or disagreement between forecast and observation.  

While F-1 scores in these two days’ data are similar, the MCC values show a considerable change 

(Table 2.8). Zhu et al. [111] mentioned that feature selection improved using MCC values 

optimization methods. MCC is one stable method and yields the best results [112]. Researchers 

[113] studied and showed that F-Score and MCC gave better feature selection in their works.  
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Table 5.6 The Values of the new parameter CI   

Date F1 MCC 𝐹1
(1 −𝑀𝐶𝐶)	

20-Mar-2019 0.9852 0.9568 22.80 
27-Mar-2019 0.9901 0.9814 53.23 
4-Apr-2016 0.9779 0.9696 32.16 

 

The study demonstrated a significant impact on the value of CI value.   Table 5.6 shows the 

CI values computed using the depression and anti-depression keywords.  This analysis suggests 

that the new parameter ‘CI value’ has an association with the tweeted data.  F1 and MCC features 

are discussed above, and the parameter CI is a combination of F1 and MCC; thus, it takes F1 and 

MCC properties.  We considered the positive for depressed tweets and the negative for the anti-

depressed tweets in the confusion matrix and computed the CI value. Hence, the higher the CI 

value, is higher the depression on the tweets’ day [45].  A software framework is set up to compute 

the classification index for given dates.  To accomplish this process, we created a database with 

the tweets data on day-wise and keyword-wise.  An interactive framework is prepared to take input 

date, collect the data from our database.  This will exhibit the F1, MCC, and CI values of the 

desired date.  

5.4 Discussion 

We conclude that the higher the ‘CI value’ value relates to the greater the depressing day. 

We thus also conclude that people are more depressed on 27-March-2019 than 20-March-2019.  

People on 4-April-2019 are less depressed than 27th March and more depressed while compared 

with 20th March. (Table 5.7) 

Table 5.7 The Values of the new parameter CI   

Depression Index Levels (Comparison) 
20-Mar-2019 < 04-Apr-2019 < 27-Mar-2019 

 



                                                                                                                        50 

The collection of tweets from a geographical area and comparing it with other areas is 

conceivable in case the tweet locations are too considered and analyzed.  These studies will help 

identify the people's psychological effects while in natural calamities like fire, earthquakes, and 

floods. Using the framework, we can find the CI value of each day and compare to the other days.  

We can compare and thus determine the degree of distress among the people during that 

period, which helps to study psychotherapy (afterburn) and ‘agitated depression.’  Interpretation 

of these results could give economists and visionaries insight to plan and execute the societal 

programs in those geographical areas.   
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6 CLUSTERING OF TWEETS 

 

6.1 Introduction 

 Clustering is a data analysis technique for discovering exciting patterns by dividing the 

data points into a few groups. Data points in the same groups are more like other data points in the 

same group and dissimilar to those in other groups. This allows classifying the data into structures 

that are more easily recognized and used. Topical clustering of tweets was attempted by Kevin et 

al. [114], Clusters are characterized through the most representative words, and association rules 

are used to highlight correlations among these words [115], hashtags have been used to cluster the 

tweets [116], Labelled the unlabeled tweets using clustering methods [117], and many other 

researchers worked in clustering the tweets and deduced the results.  

6.2 Data Collection 

We collected tweets from ‘Dambulla,’ a central place of Srilanka, and its 500 Kms radius 

using Twitter API. This will suffice that all the tweets from Srilanka are collected. We identified 

seven keywords from Kessler [92], which were used in several Psychological Distress Surveys. 

Kessler, in his questionnaire, used the words depress, failure, hopeless, nervous, restless, tired, and 

worthless in the survey from the user and thereby measures depression levels. We also collected 

tweets related to seven antonyms for these keywords. 33,366 tweets were collected during April 

14-30, 2019, with the hashtags #depress, #failure, #hopeless, #nervous, #restless, #tired, 

#worthless, #active, #calm, #comfort, #delight, #excite, #hopeful, #peaceful and #bomb. We have 

also collected Anti-depression tweets and bombing-related tweets from April 14-30, 2019. We 

compared our results with 18,096 tweets from a normal period (May 14-25, 2019), related to all 

the same keywords. 
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6.3 Methods 

6.3.1 Gradient-Based Method  

The contributing ratio of a depressive tweet with ‘bomb’ tweets are calculated using the 

formula for each keyword i, Ci = (()/+())
((,/+(,)

, where ni is the number of tweets in that day,  𝛴𝑛𝑖 is the 

total number of tweets of the keyword for all days, nb is the number of tweets related to ‘bomb’ 

on that day, and 𝛴𝑛𝑏 is the total number of tweets of  ‘bomb´ keywords for all days. Fig. 6.1 shows 

these ratios of each day. On the ‘Bombing days,’ i.e., 21st and 23rd April 2019, all the keywords 

merge at one point.   

 

Figure 6.1 Ratio of depressive tweets with bombing tweets    

 

 

Figure 6.2 Ratio of depressive and Bombing tweets with total tweets    

 



                                                                                                                        53 

 

Figure 6.3 Antidepression and Bombing tweet rations to the total tweets 

The ratio of tweets related to the depressing category and bombing category is shown in 

Fig. 6.2. Similarly, the ratio of tweets associated with the anti-depressant category and bombing 

category is shown in Fig. 6.3.  Pearson Correlation coefficient (PCC) was computed between the 

two sets of tweets with ‘bomb’ tweets collected during April 14-30, 2019, and May 14-24, 2019. 

 

Figure 6.4 Probability of Depressed tweets, Anti-depressed and Bombing tweets 

PCC = [i*∑ 𝑘(
)-" *bi-∑ 𝑘(

)-" *∑ 𝑘(
)-"  bi]/√(i*∑ 𝑘(

)-" 𝑖	2-(∑ 𝑘(
)-" )2*(i*∑ 𝑏𝑖(

)-"
2*(∑ 𝑏𝑖(

)-" )2 for 

each ith day, K the keyword, and B is the Bomb keyword.  We calculated the probability of a tweet 

to be considered as ’depressed,’, ’anti-depressed,’ and ’bombing’ category. The results are shown 

in Fig. 6.4.  We considered, if ((PCCk)d1) and (PCCk)d2) both positive or negative, then k ∈ Anew 

or else K ∈ Bnew, where k is the keyword, and d1 and d2 are two periods of tweet collection.  We 

found a positive correlation of tweets of some keywords with bomb tweets, and others showed a 

negative correlation. We noticed that Failure, Nervous, Comfort, Delight, and Peaceful are in the 
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similarity group (Anew), and Depress, Hopeless, Restless, Tired, Worthless, Active, Calm, Excite, 

and Hopeful are in the dissimilarity group (Bnew). We attempted to support our clustering by using 

the Learning Quotient method, Keyword Contribution factor, Text mining Methods (Term 

Document Matrix), Confusion Matrix, Accuracies, and Association factor.  

6.3.2 Learning Quotient Method [Q] 

We computed a Learning Quotient value [Qi] for each day, for similarity category (Si) and 

dissimilarity category (DSi) as below. Qi = Pi * ln (Pi); where Pi = Si / ( ∑ (𝑆))(
)-" +	9 (𝐷𝑆)))

(
)-" . 

The learning quotient of the two categories is shown in Figures 6.5 and 6.6.   

 

Figure 6.5 Bomb tweets Vs. Qi in Similarity keyword set 

 

Figure 6.6 Bomb tweets Vs. Qi in Dissimilarity keyword set 

The similarity tweet keyword group resulted in a good correlation pattern (Fig. 6.5), 

whereas the dissimilarity set of tweet keyword groups did not show any pattern with ‘bomb’ tweets 
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(Fig. 6.6).  We noticed that Failure, Nervous, Comfort, Delight, and Peaceful are in the similarity 

group and Depress, Hopeless, Restless, Tired, Worthless, Active, Calm, Excite, and Hopeful fall 

in the dissimilarity group. 

6.3.3 Keyword Contribution Factor (KCF)  

We considered two input sets A with keywords {depress, failure, hopeless, nervous, 

restless, tired, worthless} and set B with keywords {active, calm, comfort, delight, excite, hopeful, 

peaceful}. Using the following formula, we computed the keyword contribution factor (KCF) of 

the set A and B. KCF of A = Ai * ∑ 𝐴(
)-" i / (∑ 𝐴(

)-" i + ∑ 𝐵(
)-" i) for each ith day.   KCF values of the 

sets A, B, Anew, Bnew are 0.38, 0.62, 0.52, 0.48 respectively.  

6.3.4 Text Mining Methods  

Tweets representing #depress, #failure, #hopeless, #nervous, #restless, #tired, #worthless, 

#active, #calm, #comfort, #delight, #excite, #hopeful, #peaceful and #bomb during April 14-30, 

2019, and May 14-25, 2019, from Twitter API were collected.  Tweets originated from ‘Dambulla’ 

were also collected for the same keywords.  We also collected ‘bomb’ related tweets too during 

April 14-30, 2019.  These five sets of tweets for each keyword were analyzed using NLP methods. 

We created a corpus for each of these selections and removed the ‘punctuations’, ‘blank spaces’, 

‘converted to lowercase’, ‘stop-words’ removed, and word-stemming is applied using the ‘tm’ R- 

package.  A Term-Document-Matrix (TDM) was obtained for each set of tweet data. 

 

Figure 6.7 Bomb tweets Vs. Qi Keyword set 
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We grouped the TDM data of similar and dissimilar sets separately and ranked with their 

word frequency.  We considered the 300 frequently used words from these sets and compared them 

with the bombing tweet word set.  Fig. 6.7 shows the pattern of similarity group, dissimilarity 

group, and bomb tweets.  We computed a Confusion Matrix for this data and presented it in Table 

6.1.  

Table 6.1 Confusion Matrix from TDM data   

 Actual 

Predicted TP=27 FP=273 
FN=118 TN=7262 

 

We calculated accuracy from the confusion matrix using the formula Accuracy AC = 

(./0.1)
(./0!10!/0.1)

 and observed that the accuracy is 94%.  

6.4 Association Factor (AF) 

We computed a factor AF = (A*B)/(A^2+b^2-A*B) between a Similar set and Bomb Set 

and Dissimilar set with a bomb set, and the results are presented in Fig. 6.8. 

 

Figure 6.8 Association factor between Similarity/dissimilarity and Bombing set tweets 
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6.5 Discussion 

The merger of ratios in Fig. 6.1 reflects the contribution of the keyword on Bombing Day. 

There is a visible indication that the proportions of depressing tweets and bombing tweets on 21st 

April 2019 (Bombing Day) are merging. Since the bomb-related Tweets are many, the keywords 

combine near low values compared to the other keywords on the bombing day. We conclude that 

more depressive keywords have a similar phenomenon. There is also a significant change in the 

ratio of Depress-related tweets to Total tweets collected during the bombing days (Figures 6.2 and 

6.3). Probability of Depressed Tweets, Anti-depressed Tweets, and bombing Tweets are shown in 

Fig. 6.4. There is a similarity in the tweets in depressed and anti-depressed tweets in all the days. 

However, it is noticed a change in bombing tweets on the day of the bombings. Ratios of depressive 

tweets with Bomb related tweets are shown in Fig. 6.1, Depressive and Bombing tweets with the 

total number of tweets ratio computation in Fig. 6.2, Anti-depression and Bombing tweets with 

the total number of tweets ratio computations in Fig. 6.3, and Probability of Depressive and Anti-

depressive tweets with bombing tweets in Fig. 6.4.  All these supported that these keywords are in 

good correlation with Bombing hashtag tweets in our observation. We noticed that the hashtags 

with the keywords Failure, Nervous, Comfort, Delight, Peaceful, Depress, Hopeless, Restless, 

Tired, Worthless, Active, Calm, Excite, and Hopeful are associated with the ‘Bomb’ hashtag 

keyword. Pearson Correlation coefficient was calculated within the keywords with the ‘Bomb’ 

keyword, and we grouped them into two clusters. 

Learning Quotient with ‘bomb’ tweets with the similarity keyword set and dissimilarity 

keyword set during April 14-30, 2019 (Bombing Day is 21st April 2019) is shown in Figures 6.5 

and 6.6, respectively. Failure, Nervous, comfort, delight, and peaceful showed similarities, and 

depress, hopeless, restless, tired, worthless, active, calm, excite, hopeful showed dissimilarities in 
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correlation in the two spells of our observation. Our assumption of grouping, Failure, Nervous, 

Comfort, Delight, and Peaceful into one category and Depress, Hopeless, Restless, Tired, 

Worthless, Active, Calm, Excite, and Hopeful into another group was supported with our results 

shown in Figures 6.5 and 6.6. The similarity tweet set followed the bombing assimilation tweet 

pattern in almost all the days of observation, while the dissimilarity tweet set did not follow the 

same pattern. The keyword Contribution Factor (KCF) values of sets A, B, Anew, and Bnew are 0.38, 

0.62, 0.52, and 0.48, respectively. In our clustering method, the KCF value of A moved to 0.38 to 

Anew 0.52; B value from 0.62 to Bnew to 0.48. Also, the change of KCF value in A and B resulted 

in the balancing of the sets. Such balanced clustering of sets helps to yield the highest-level 

accuracy (the average of True Positive Rate and True Negative Rate) [118]. Term document matrix 

data is analyzed to study the pattern of the tweets in these two groups.  A good pattern match is 

noticed in the frequently used word pattern in the similarity group, dissimilarity group, and 

bombing tweets (Fig 6.7).  The accuracy obtained from the clustering from the confusion matrix 

is 94%.  The results obtained from the association factor value are computed and presented in Fig. 

6.2 indicated an excellent pattern match between the similarity and the dissimilarity groups.  The 

above results support the study of the clustering of tweet keywords into two groups (similarity and 

dissimilarity). 

The correlation values of ’Keywords’ with ’Bombing’ tweets resulted in clustering among 

the keywords into similarity and dissimilarity groups. We could identify that the five keywords 

(failure, nervous, comfort, delight, and peaceful) are in a similar set, and nine keywords (depress, 

hopeless, restless, tired, worthless, active, calm, excite, hopeful) are dissimilar set. People tweeted 

more with depressive tweets than non-depressive tweets during bombing days. The results 

obtained and presented in Figures 6.5 to 6.8 show an excellent match to our clustering of keywords 
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from the combined depressed and anti-depressed keywords. We conclude that most people who 

tweeted with the hashtag ‘bomb’ coincides with a set of similar tweets. Our work considered two 

sets of keywords belonging to depression and anti-depression and clustered into two balanced sets 

as similar and dissimilar in association with the ’event.’ 

Monitoring and real-time interfacing similarity set users' tweet data help in extending 

psychological assistance. Micro-blogging sites need to develop a framework to capture tweets that 

are going abnormally and counteract them with socio-medical aids. The clustering algorithms and 

studies can be extended to understand the relations within the keywords. Studies can also be taken 

with ubiquitous sets for clustering to improve partition-based models' applications. We clustered 

on the PCC values and depending on the requirement. We can cluster them on many output sets 

by defining different ranges between -1 to +1. 
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7 IMPACT OF TWEETS ON MENTAL HEALTH 

 

7.1 Introduction 

Social network usage has increased in recent years because there is support from all ages 

and groups worldwide.  Several social networking sites provide numerous GUI applications to the 

users. Twitter supports 300 million users with more than 500 million tweets in a day. Messages 

posted as tweets on Twitter have many lifestyles, emotions, business, political, health tips, 

festivals, and events. Users post messages to express their views, and these social networking sites 

become a platform for expression. Mental illness disability is one significant cause worldwide in 

the future [4], [119], [120]. Several researchers [121] [122] [123] [38] [124] showed an association 

between social media use and depressive symptoms, and tweets from Twitter are sources to study 

and analyze insight about mental health [125] [124] [126].  Researchers studied the behavior of 

individuals through tweets, and the relationship between illness and tweets was studied [33]. 

Depressive and anti-depressive keywords are categorized using learning and correlation 

coefficients of the tweet in an event [55] [127]. Tweets are used to find real-time events [84] during 

earthquakes. Many researchers used event detection techniques and addressed using n-gram 

analysis [128] [129], Latent Dirichlet Allocation methods [130] [131], and bag-of-words methods 

[132], [133]. 

We chose the Sri Lanka bomb blasts in 2019, Burevi Cyclone in 2020, and Tauktae cyclone 

in 2021 as events for our study. All these events have significantly traumatized the families both 

financially and emotionally in Sri Lanka.   Srilanka witnessed bomb blasts in April 2019, and 

nearly 300 people died, and many were injured. Tourism in Sri Lanka lost $1.5 billion due to this 

event [134] [135] . The Burevi cyclone has a wind speed of 60 miles per hour and gusts up to 70 
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miles [136]. Tauktae is reported to be the fifth strongest storm observed in the Arabian sea since 

1998 by the U.S. Joint Typhoon Warning Center, with sustained winds of 125 miles per hour and 

gusts up to 145 miles  [137].  Classification of events using tweets was carried out by several 

researchers in the past [138] [139] [140].   

7.2 Data collection and cleaning 

Kessler’s psychological distress scale [92] is one of the most used methods to understand 

individuals' mental health status. We considered seven keywords from Kessler’s questionnaire and 

collected the tweets related to keywords using #hash tag with a specified set of keys/tokens of 

Twitter.  Depress, failure, hopeless, nervous, restless, tired, and worthless are the keywords chosen 

from Kessler’s works.  We identified the antonyms of these seven keywords (active, calm, comfort, 

delight, excite, hopeful and peaceful) and the event keyword. 90,649 tweets are collected for this 

study from 500 Kms around Dambulla, thus covering the entire Sri Lanka geographical area. 

34,555 tweets during Srilanka bombing time, 17,384 during Burevi, and 38,710 during Tauktae 

time. We cleaned the tweets by removing the blank tweets and having html links. 

7.3 Methods 

We grouped the tweets of depress, failure, hopeless, nervous, restless, tired, and worthless 

as ‘depressive set’ and active, calm, comfort, delight, excite, hopeful and peaceful as ‘anti-

depressive set’ and ‘event’ as separate sets. The gradients of the tweets data are shown in Figures 

7.1 to 7.3 for Sri Lanka Bomb blasts, Burevi cyclone, and Tauktae cyclone. We normalized these 

data set values between 0 and 1.  Normalized depressive and anti-depressive tweet values during 

the Srilanka bombing, Burevi cyclone, and Tauktae cyclone are shown in Figures 7.4 to 7.6. The 

linear equation of these data sets is retrieved. The Area Under the Curve (AUC) is computed and 
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shown in Fig. 7.7. We computed the correlation coefficient between the normalized depressive 

and anti-depressive tweet data with the event data (Table 7.1). 

Table 7.1 Correlation coefficient of Sri Lanka Bomb blasts, Burevi cyclone and Tauktae 

cyclone with the event   

 Depressive 
Tweets 

Anti-Depressive 
Tweets 

Srilanka Bomb Blasts 0.7294 0.4125 
Burevi Cyclone 0.8362 0.3106 
Tauktae Cyclone 0.8322 0.6012 

 

The tweets data shown in Figures 7.1 to 7.3 for Sri Lanka Bomb blasts, Burevi cyclone, 

and Tauktae cyclone indicate a remarkable change in depressive tweets and anti-depressive tweets 

patterns. An online live data plot analysis can predict such a change and may lead to identifying 

an event. Normalized tweet data of depressive, anti-depressive, and event tweets along with date 

wise (Figures 7.4, to 7.6) are considered for computation of AUC with ‘Total Period’ which is 

under regular conditions, ‘before the event,’ ‘during the event’ and ‘after the event.’ The change 

in the AUC of Event vs. depressive and anti-depressive tweets in the four different states is 

computed (Fig. 7.7), revealing the event's effect at normal conditions, before, during, and after the 

event.  
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Figure 7.1 Gradient values of Depressive and Anti-depressive tweets during Sri Lanka 

Bomb blasts  

 

Figure 7.2 Gradient values of Depressive and Anti-depressive tweets during Burevi 

cyclone 
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Figure 7.3 Gradient values of Depressive and Anti-depressive tweets during Tauktae 

cyclone 

 

Figure 7.4 Depressive and Anti-depressive tweet curves during Sri Lanka Bombing 
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Figure 7.5 Depressive and Anti-depressive tweet curves during Burevi cyclone 

 

Figure 7.6 Depressive and Anti-depressive tweet curves during Tauktae cyclone 

The rate of change from ‘before the event’ to ‘during the event’ is shown in Table 7.2. It 

indicates the event's effect on the depressive tweets and the people affected by the event.  Similarly, 

the rate of change from ‘during the event’ to ‘after the event’ in Table 7.2 affects tweets to show 

the people’s recovery rate.   
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Figure 7.7 Impact of the event during Sri Lanka bomb blasts, Burevi and Tauktae 

cyclones 

Table 7.2 Effect of Sri Lanka Bomb blasts, Burevi cyclone and Tauktae cyclone from our 

study and other resources   

 Our Study Other Sources Effect  Recovery 
Srilanka Bomb 
Blasts 24% 37% GDP growth reduced 28% [135]  

Burevi Cyclone 70% 74% 
Winds 60 miles per hour and gusts up to 70 miles 
[136]  
75,000 people evacuated [139] 

Tauktae Cyclone 94% 96% 

Sustained winds of 125 miles per hour and gusts up 
to 145 miles [137] 
2,00,000 people evacuated and loss of US 2.1 
billion [140] 

 

7.4 Space Tourism Tweets 

The space tourism aircraft, Unity 22, of Virgin Galactic, made its space travel mission on 

11-July-2021.  Blue Origin has its maiden tourist launch with New Shepard on 20-July-2021. 

Depressive tweets and Anti-depressive tweets are collected using Twitter API from 6-July-2021 
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to 6-August-2021.  Tweets with ‘Corona’, ‘unit22’, ‘Blue Origin’, ‘New Shepard’ were also 

collected.  Covid-19 confirmed cases are obtained from WHO website [141]. The tweets belonging 

to a combination of depress, failure, hopeless, nervous, restless, tired, and worthless are shown as 

‘depressive’ (blue line) and active, calm, comfort, delight, excite, hopeful, and peaceful as ‘anti-

depressive (red line) in Fig 7.8.  

 

Figure 7.8 Tweets during 6-July-2021 to 6-August-2021 

Depressive and anti-depressive tweets are considered a tool to understand people’s mindset 

about Unit 22, Blue Origin, and New Shepard. 

Table 7.3 Correlation coefficient of depressive and anti-depressive tweets with the space 

tourism 

 Unit 22 Blue Origin New Shepard Corona WHO data 
Depress 0.38 0.20 0.35 0.22 -0.34 

Anti-depress 0.21 0.58 0.61 0.26 -0.41 
   

Unit 22 is the first space craft deployed, and people are more tensed about the success and 

hence shown a high correlation with ‘depress’ tweets and low correlation with anti-depressive 
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tweets.  The higher correlation coefficient between the anti-depressive (happiness) and ‘blue 

origin/New Shepard’ shows that people are confident in predicting a success story (Table 7.3).  

During these times, corona and Covid confirmed cases do not affect depression and anti-depressive 

tweets.  

7.5 Discussion 

It is observed that the Tauktae cyclone created more havoc than the Burevi cyclone [142] 

[143].   Our results also correlate with the effect of events reported by other sources [136] [137] 

[142] [143].  The Pearson correlation confirms that there is a perfect correlation between 

depressive tweets and events. Collection of tweets online and computation of the impact will help 

governmental, non-governmental bodies plan and support the disaster preparedness and 

emergency team management in rescue operations during cyclones, forest fires of a particular 

geographical area, 

Our study shows that the Tauktae cyclone impacted more than the Burevi cyclone, and the 

Burevi cyclone affected more than Srilanka bomb blasts incident in peoples’ mental health (Table 

7.2).  Similar results are noticed from Fig.7.7 about these three events. The impacts ‘before,’ 

‘during’ and ‘after’ the events are higher in the Tauktae cyclone than in the Burevi cyclone and 

Bomb Blasts incidents. The works are done by other researchers [135] [136] [137] [139] [140] 

also support our findings. Our findings help scale the impact of an event using mental health-

related tweets.  

Space tourism is a classic example to delineate people’s behavior.  During Unit 22 space 

travel, many people showed a tense mood and were more depressed than the timings of Blue 

origin/New Shepard.  
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8 HEDONOMETRICS 

 

8.1 Introduction 

The ease of availability of the internet networking devices and their affordability increased 

the interaction with the social network sites considerably in the daily life of human beings. People 

take pleasure in posting text and pictures about their emotions, events, and valuable tips. 

Researchers analyzed the social network data to reveal mental health disorders, suicidal and 

depressive behavior [40] [41] [79]. Twitter is one of the most popular social network sites that 

facilitates people building relationships with experts in many disciplines, promoting research, 

product, and feedback. The Twitter tweet consists of a maximum of 280 characters. Twitter also 

provides APIs that allow the collection of tweets data to be much more straightforward than other 

social network platforms. 

The study of wellbeing (happiness) has a long history in human evolution. Aristippus, a 

Greek philosopher, thought that the goal of life is to understand and feel happiness. Quantitative 

determination of Euphoria, a state of happiness [144], was attempted in 1935 itself. Life 

Satisfaction Index [145], Rosenberg Self Esteem Measure [146], Geriatric center Morale scale 

[147]  are earlier scales that are considered to measure the happiness or wellbeing of humans. 

Happiness is defined as the outcome of the pursuit of pleasure over pain [148]. Shin and 

Johnson [149] categorized resources to scale happiness into three types: (a) data belonging to age, 

sex, and race, (b) data related to income and education, and (c) social relations (family and friends). 

With time and technological growth, the parameters that are considered to measure happiness are 

restructured. Substantial progress in measuring happiness using self-reports and finding how 

wellbeing is affected by various life factors is reported earlier [150]. Social Media use has increased 
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multifold in recent years as various smart mobile devices connect the Internet, and such services 

are affordable.  In 2005 social media adoption was just 5% of American adults, increased to 50% 

by 2011, and today 72% of the public participate in social media activities [151]. The extensive 

use of social media is aggravating mental health problems [152]. Sharing opinions, expressing 

feelings, getting in touch with family and friends, and participating in social media for business 

and other recent issues drove a person to spend more time with social media sites. Social media 

became a vital communication tool to reach people, in touch and lost in the past with its 

technological fuse in Internet-based applications.  Mental health and Social Media use are 

interrelated. It observed that more time spent with social media is prone to psychological distress, 

and extreme usage may lead to suicidal ideation [152]. 

Many social media posts are related to emotional issues, feelings, and individual reactions 

to recent topics. Thus, Happiness and Unhappiness are two such parameters that take a significant 

role that an individual tends to post. Happiness appears to be abstract from several centuries of 

human life.  The issues, circumstances, and events in the recent past reflect Happiness in one’s 

life.  Gross National Happiness (GNH) evaluates the quality of a country with different values and 

considers that the development takes place with material and spiritual growth [153]. 

Depression is one of the psychological behaviors that human being represents in their 

actions and relates to Happiness.  Several researchers [92] [154], [155], [156] [157] [158] worked 

in scaling the depression levels, and out of these, Kessler's works [92] are the most used methods 

in mental health depression measurements [159]. Davitz suggested in his report [160] that 

Happiness was most often associated with 'pleasant mood-states.' Bradburn [161] reported that 

Happiness influenced mental health both positively and negatively. Irwin [162] mentioned that 

Happiness was measurable by asking people how happy they were.  Kammann [163] and 
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Underwood [164] identified multi-parameter scales, and Oswald and Wu [165]  revealed the 

positive correlation between objective life satisfaction measurement in one’s life. Mental disorder 

is the leading cause of unhappiness in modern society, and investment in mental health care is 

likely to add to average Happiness [166].  Galati et al. [167] studied to identify the subjective 

components of Happiness and analyze their degree of attainment in two countries, Italy and Cuba.  

Income, education, occupational prestige, social ranking, appreciation within society, 

ethical values, children, physical and mental health, and living conditions are few parameters 

responsible for the Happiness of a human being [153].  Socio-economic circumstances also impact 

the likelihood and causes of developing a mental disorder. Lower socio-economic status has a 

more prevalence of mental disorders, depression, and anxiety [168]. We need to measure the 

positive and negative emotions separately to appreciate people’s Happiness [169]. Dodds et al. 

[170] analyzed the tweets from Twitter and explained the variations in Happiness and information 

levels. People's Happiness depends on the others with whom they are associated [171].  Kircanski 

et al. [172] and Barrett [173] explored the implications of language’s role in emotion concept 

acquisition and use for emotional experiences and perceptions. Wright et al. [174] and Rose et al. 

[175] used labels to study mental disorders. Data mining techniques are applied, and the keywords 

are categorized into different groups with the tweets from Twitter data [55]. People use bad words 

when they are depressed and sensitive to contextual emotions [176]. Such tweets contain few bad 

words as text, and we studied these tweets with bad words as a contributing factor for the feelings. 

There are many happiness indexes scales in which the Subjective Happiness Scale [177]  

and Steen happiness index [178] became popular.  Subjective Happiness Scale (SHS) measures 

an individual’s happiness through self-evaluation [177]. SHS considers a four-item with a seven-

point scale. Steen Happiness Index follows the principle of the Beck model [179] in computing 
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the changes in happiness. SHI takes twenty survey items and considers the pleasant, engaged, and 

meaningful life to measure depression [178]. Many North Americans think about happiness at least 

once each day [180].  

Cantril's self-anchoring scale [181] takes eleven steps of understanding of best and worst 

experiences, Affect Balance Scale [182] considers five positive effects and five negative effects to 

compute the well-being of people. Gurin uses the perceived problems [183], and the Memorial 

University of Newfoundland Scale of Happiness (MUNSH) index utilizes more new items to 

measure happiness in people. Wellbeing is often investigated as the outcome or dependent variable 

in these studies but rarely studied as a forecaster. 

All the above works depend on a survey and/or answering a questionnaire or interaction 

with people. The number of questions varies, and the content framework varies in different 

Happiness Index Scales.  The accuracy of the Happiness Index depends on the input values of the 

user interactively. Subjective Happiness Index uses four items in 0-7 scale [177], Steen Happiness 

Index scales twenty items in 0-5 scale [178], Cantril self-anchoring scales combination of three 

groups (thriving, struggling, and suffering) with different scales [181]. Affect Balance scale [182] 

considers ten items with negative and positive values for measurement. Such varied scaled 

parameter measurements will impact the Happiness Index with a slight change in input data. 

Online surveys have advantages like the ease of data gathering, minimal costs, input data 

automation, the flexibility of parameters, remotely administrated, and many respondents. Still, a 

few disadvantages exist like the non-suitability for open-ended questions, absence of interviewer, 

inability to interact in challenging stage, a respondent may not provide an accurate and honest 

answer, and survey frauds.  In addition, there could be technology-originated frauds like robot 

answering, non-compatibility with the IoT devices and network issues, etc. Accuracies of web 
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survey limitations were discussed [184], and researchers found that online surveys may mislead if 

the sample is contaminated population [185]. Advantages of online surveys are discussed [186] in 

normal conditions, but authors agree that different benchmarks, different scaling factors will 

impact the result undependable [187]. 

Face-to-Face survey data collection allows more in-depth comprehensive data collection, 

accurate screening of the respondent, and can capture verbal and non-verbal emotions and behavior 

information. However, there are disadvantages like more time-consuming, biased responses, 

expensive and limits to sample size. Pitfalls and oversights in survey data collection can be avoided 

using good practices [188]. The methods and the survey patterns mentioned above are ‘input’ mode 

estimates. Happiness is an outcome over pain [148], and results will be more appropriate if we 

compute the Happiness Index from ‘output’ parameters. Outcome measurements will impact the 

best match in clinical trials [189], and it is critical in underlying happiness [190]. 

So far, no work has been reported earlier to scale Happiness Index using the mental health-

oriented tweet data. Depression is considered as unhappiness, and Kessler [92] discovered a 

method to scale the depression levels with a questionnaire with depress, failure, hopeless, nervous, 

restless, tired, and worthless keywords. 

We analyze the tweets related to depressive and anti-depressive to discover tweeting 

patterns and their impact on happiness.  We also compare this new Happiness Index parameter to 

‘Sri Lanka,’ ‘New York’, and ‘Georgia’ state geographical areas for two different periods, and the 

results are in good correlation. 
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8.2 Data 

The tweet data used for our study consists of 2.3 million tweets belong to the period from 

01-April-2020 to 01-April-2021 (366 days). Our hedonometric study considers two weeks of data 

for the period of 4-July-2021 to 10-July-2021 (HI-1) and 25-July-2021 to 31-July-2021 (HI-2). In 

addition to these data, Depressive and Anti-depressive Tweets belonging to the graphical areas of 

Srilanka, New York, and Georgia states are collected using the Twitter API. A 500 Km radius 

from ‘Dambulla,’ a central place, is chosen (Latitude 19.0760N, Longitude 72.8777E) for the 

collection of Sri Lanka tweets, Tweets from 600Kms area from 40.785091N,73.968285W, and 

500 km area from 33.771629N, 84.418553W are considered as tweets of New York and Georgia, 

respectively. The radius is chosen to cover the entire geographical area in that state. Tweets are 

cleaned, and duplicate tweets are removed.   We also collected depressive and anti-depressive data 

for one day for all the 50 states of the USA separately to prepare a Happiness Map.  

8.3 Methods 

8.3.1 Happiness Index 

Kessler’s Psychological Distress scale [92] is one of the methods to understand an 

individual’s mental health status. We used Twitter API and collected the tweets data with seven 

keywords from Kessler’s questionnaire. The seven keywords chosen from Kessler's works are 

depress, failure, hopeless, nervous, restless, tired, and worthless characterized as depressive. The 

active, calm, comfort, delight, excitement, hopeful and peaceful antonyms of these seven keywords 

as the Anti-depressive category. If more depressive tweets are posted, it shows that people of that 

part of the geographical area are depressed. Similarly, if there are more posts with the happiness 

(anti-depressive) category are posted, we can assume that the people are happy in that area.  
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Figure 8.1 Happiness Index of Sri Lanka, New York, and Georgia along with the average 

lines 

Happiness Index (HI) is defined by the ratio of anti-depressive tweets to the sum of the 

depressive tweets of the same duration.	𝐻𝐼	 = [9 �̅�(
2
(-" /9 A𝑑( + �̅�(B

3
(-" ] for 0 ≤ 𝐻𝐼 ≤ 1, 

where p is the total number of depressive keywords, q is the total number of anti-depressive 

keywords. 𝑑( and �̅�( represent the depressive and anti-depressive keywords, respectively. In our 

case, p and q are equal to seven.  

Fig. 8.1 shows the Happiness Index of Sri Lanka, New York, Georgia, and the World 

Happiness Report data [191]. The happiness index computed from the 366 days tweets data (01-

April-2020 to 01-April-2021) is the horizontal black line. Figures 8.2 and 8.3 show the depressive 

and anti-depressive tweets data and seven days average values of the same period, and 366 days 

data to exhibit the change in each tweet keyword.  
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Figure 8.2 Happiness Index of Sri Lanka, New York, and Georgia along with the average 

lines 

 

Figure 8.3 Happiness Index of Sri Lanka, New York, and Georgia along with the average 

lines 

Our computations are based on ‘outcome’ with a hypothesis that happier people will tweet 

with happy keywords and unhappy people will tweet with depressive keywords. World Happiness 

Report (WHR-2020) is a significant scale of happiness ranking of 156 countries [191].  Gallup 

World Poll happiness scores are used in ranking happiness.  Table 8.1 shows the Happiness Index 
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computed by our method in the two weeks and the Gallup score used in the WHR-2020 report 

[192].  We observed a decrease in Gallup data of WHR-2020 in Georgia to New York and Sri 

Lanka. Our results in HI-1 and HI-2 show a similar decline (Table 1). Analyzing the 2.3 million 

tweets collected over 01-April-2020 to 01-April-2021 (366 days) resulted in an average value of 

impact on the Happiness Index of each tweet keyword. 

Table 8.1 Happiness values and Gallup data 

 Georgia New York Sri Lanka 
HI-1 0.808 0.737 0.454 
HI-2 0.896 0.689 0.414 
Gallup Score WHR-2020 7031 6964 4381 

 

Researchers [191] classified the HI in five levels (a) unhappy (<20), (b) Less happy (20 ≤ 

HI < 40), (c) Quite happy (40 ≤ HI < 60), (d) Happy (60 ≤ HI < 80) and (e) Very happy (80 ≤ HI 

< 100) and our data resulted in the Happiness Index computed from the 366 days tweets data is 

0.4039.  The happiness Index for the week 4-10 July is 0.44, and for the week 25-31 July, it is 

0.45.  These values coincide with the scales classified by previous researchers [193]. 

It is observed that during these two weeks of observations (HI-1 and HI-2), Sri Lanka has 

less than the yearly average happiness reported by WHR-2020. New York showed balanced 

happiness during 4-10 July, but more happiness during 25-31 July. Georgia recorded a better happy 

situation in both weeks of observation while compared with the WHR-2020 report. Our two-week 

data HI-1 and HI-2 delivered the keywords that impacted the Happiness Index. The results from 

our observations indicate that Happiness Index in New York state has more impact from failure, 

hopeless, nervous, tired and comfort in both weeks. Georgia State’s Happiness Index has more 

influence from nervous and peaceful in the HI-1 week and Hopeless, nervous, tired, and peaceful 
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in the HI-2 week. Sri Lanka Happiness Index did not show any specific impact (Figures 8.2 and 

8.3). 

During these two weeks of observation, People in Georgia are happier in the HI-2 

observation period.  People in New York are happier in both weeks. However, they are happier in 

the HI-1. Contrary to these observations, the Sri Lanka residents are more unhappy than average 

in both weeks of observation. Nervous, Hopeless, and Tired are the depressive states, and comfort 

and peaceful are the anti-depressive states that contributed substantially to HI computations [194].. 

Our database consists of tweet data date wise and keyword wise.  In addition, we are collecting 

tweets with geographical locations.  An interactive framework was developed that takes 

geographical location data and duration as input, collects the tweets from our database.  Our system 

will collect the tweets related to the respective geographical area, and desired duration of study.  It 

will process to compute the happiness index of that duration and delivers.   

8.4 Mental Health Happiness and Feel-Good-Factors with Bad words 

8.4.1 Methods 

We identified seven keywords from Kessler’s works [92] and obtained keyword related 

tweets from twitter.com using API on daily basis for the hashtags #active, #calm, #comfort, 

#delight, #excite, #failure, #hopeful, #hopeless, #nervous, #peaceful, #restless, #tired, #worthless, 

#depress and #corona.  These keywords include the antonym of the seven Kessler words and 

‘Corona.’ We have been collecting tweets with these keywords for the past few years.  2.3 million 

tweets data and tweets, in particular, belonging to May and June 2020 were used in this study. 

Special characters, hypertext links, numbers, non-English characters, punctuation marks, and stop 

words were removed.  We selected 450 bad words that are used in our data set [195], and the 
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frequency was computed in each of the keyword tweets each day. Bad-word frequency ratios are 

calculated using the formulae:  

BWi = 𝑏)/∑ (𝑏))"4
(-" ;  TWi = 	𝑏)/∑ (𝑡))"4

(-"  ,  

where bi is the frequency of bad words in the keyword and ti is the total number of words 

in each keyword tweet. This ratio gives the impact of the keyword within the tweet set concerning 

bad words and total words. We categorized #failure, #hopeless, #nervous, #restless, #tired, 

#worthless, #depress as one set that represents depressive tweet keyword set and #active, #calm, 

#comfort, #delight, #excite, #hopeful, #peaceful as another set represent anti-depressive keyword 

set.  For each day (j), the depressive keyword weights are computed using the formulae. DWj = 

BWi/BWk (i=1 to 7 depressive set; k = 1 to 7 anti-depressive set) and EWj = TWi/TWk (i=1 to 7 

depressive set; k = 1 to 7 anti-depressive set).  

The ratio of the number of bad words in the keyword tweet to the total number of bad words 

in all the depressive keywords is found, and a similar ratio is computed for anti-depressive 

keywords. DW shows these two values' ratios, representing the impact of bad words in depressive 

keywords and anti-depressive keywords (DW).  Similarly, we calculated the impact for the bad 

words in respect to total words in the depressive and anti-depressive keywords (EW) and shown in 

Figures 8.4 and 8.5.  

The Happiness Index is computed as the ratio of the above and by rationalizing. 

HIj = DWj / EWj for each day j.   

We computed the True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) values from the contributions of these depressive and anti-depressive keywords.  

The confusing matrix and depression index are shown in Table 8.2 
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Figure 8.4  The ratios of depressive and anti-depressive tweet sets (May 2020) 

 

 

Figure 8.5  The ratios of depressive and anti-depressive tweet sets (June 2020) 

F-1Score is computed using the formula:  

F-1 = 2TP / (2TP + FP + FN). 

Mathews Correlation Co-efficient (MCC) is computed as   

(MCC) = (TP*TN - FP*FN) /Sqrt((TP+FP) *(TP+FN) *(TN+FP) * (TN+FN)). 

Depression Index [DI] is computed using the formula: 

DI = F1/(1-MCC) [31].   

World Health Organization (WHO) publishes the number of COVID confirmed cases 

online, and we have collected the information for May and June 2020 [196]. The Happiness Index, 
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Depression Index [45], and the conformed covid instances are shown in Figures 8.6 and 8.7 for 

May 2020 and June 2020. The number of depressive and anti-depressive keywords contributed to 

compute the Happiness Index are shown in Figures 8.8 and 8.9 for May and June 2020.  

8.4.2 Feel-Good-Factors 

We computed the bad-words contribution to the Happiness Index.  The average 

contribution of each depressive and anti-depressive keyword is processed for the months of May 

and June 2020.  The keyword contribution is counted as ‘1’ if it is more than the average and ‘0’ 

otherwise.    

Table 8.2 Confusion Matrix and Depression Index (May and June 2020) 

May 2020 
DATE TP FN FP TN DI 

5/1/2020 11753 1703 2458 16287 1.88 
5/2/2020 2984 18740 8595 3421 0.09 
5/3/2020 2170 16762 10813 2466 0.06 
5/4/2020 7064 1575 2462 18932 1.56 
5/5/2020 7518 1733 2256 18921 1.63 
5/6/2020 7826 2065 2337 19240 1.58 
5/7/2020 8818 4982 2920 25912 1.22 
5/8/2020 8988 2973 2429 20072 1.52 
5/9/2020 8998 3957 4222 13301 1.08 
5/10/2020 7968 19363 2030 12467 0.53 
5/11/2020 10848 2115 2764 21803 1.74 
5/12/2020 5503 3090 2431 30277 1.17 
5/13/2020 4312 1831 2497 8590 1.05 
5/14/2020 8748 1573 2276 17162 1.75 
5/15/2020 3542 1751 2221 7851 0.98 
5/16/2020 1826 1564 2241 3921 0.57 
5/17/2020 2864 5594 2896 36897 0.53 
5/18/2020 13863 2045 2963 21757 1.89 
5/19/2020 8561 66341 62020 18922 0.06 
5/20/2020 12609 3038 6642 17659 1.20 
5/21/2020 8083 2071 3450 8499 1.24 
5/22/2020 7876 1814 3758 10354 1.26 
5/23/2020 11379 1883 4818 18644 1.45 



                                                                                                                        82 

5/24/2020 9016 1977 3207 18175 1.52 
5/25/2020 9980 2195 3933 18022 1.44 
5/26/2020 8650 2054 5639 17958 1.15 
5/27/2020 5423 42313 62338 28118 0.06 
5/28/2020 12220 1673 3190 21602 1.81 
5/29/2020 10323 1824 4286 20689 1.49 
5/30/2020 8997 1620 1751 16329 1.89 
5/31/2020 5002 1461 4599 19854 0.99 

June 2020 
DATE TP FN FP TN DI 

6/1/2020 11753 1703 2458 16287 1.88 
6/2/2020 2984 18740 8595 3421 0.09 
6/3/2020 2170 16762 10813 2466 0.06 
6/4/2020 7064 1575 2462 18932 1.56 
6/5/2020 7518 1733 2256 18921 1.63 
6/6/2020 7826 2065 2337 19240 1.58 
6/7/2020 8818 4982 2920 25912 1.22 
6/8/2020 8988 2973 2429 20072 1.52 
6/9/2020 8998 3957 4222 13301 1.08 
6/10/2020 7968 19363 2030 12467 0.53 
6/11/2020 10848 2115 2764 21803 1.74 
6/12/2020 5503 3090 2431 30277 1.17 
6/13/2020 4312 1831 2497 8590 1.05 
6/14/2020 8748 1573 2276 17162 1.75 
6/15/2020 3542 1751 2221 7851 0.98 
6/16/2020 1826 1564 2241 3921 0.57 
6/17/2020 2864 5594 2896 36897 0.53 
6/18/2020 13863 2045 2963 21757 1.89 
6/19/2020 8561 66341 62020 18922 0.06 
6/20/2020 12609 3038 6642 17659 1.20 
6/21/2020 8083 2071 3450 8499 1.24 
6/22/2020 7876 1814 3758 10354 1.26 
6/23/2020 11379 1883 4818 18644 1.45 
6/24/2020 9016 1977 3207 18175 1.52 
6/25/2020 9980 2195 3933 18022 1.44 
6/26/2020 8650 2054 5639 17958 1.15 
6/27/2020 5423 42313 62338 28118 0.06 
6/28/2020 12220 1673 3190 21602 1.81 
6/29/2020 10323 1824 4286 20689 1.49 
6/30/2020 8997 1620 1751 16329 1.89 
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8.4.3 Happiness and Depressive Index 

The moving average method was applied to find the mean square error in Happiness Index 

and shown in Table 8.3. Depression Index (Figures 8.10 and 8.11) and Happiness Index (Figures 

8.12 and 8.13) show the actual and forecasted DI and HI for May and June 2020. 

ARIMA model forecasting is carried out for the Depressive Index and Happiness Index, 

and the ACF, PACF plots are shown in Figures 8.14 to 8.17. Table 8.4 shows the number of days 

that each keyword is contributed beyond it norm.  

Depressive and Anti-depressive tweet keyword data sets are used to compute the accuracies 

using the Latent Dirichlet Allocation method [197], [198] for both May and June 2020 data sets, 

and the results are shown in Table 8.5. 

Table 8.3 Mean Square Error 

 
May 2020 June 2020 

Happiness 
Index 

Depressive  
Index 

Happiness 
Index 

Depressive 
Index 

MSE 0.502 0.418 0.716 0.614 
 

Table 8.4 Keyword factors and number of days of contribution 

Depressive Anti-depressive 

Keyword 
Contribution 

Keyword 
Contribution 

May 
2020 

June 
2020 

May 
2020 

June 
2020 

Failure 19 15 Active 20 15 
Nervous 6 5 Calm 12 10 
Restless 11 12 Comfort 14 10 
Tired 18 13 Delight 5 4 
Worthless 11 5 Excite 3 4 
Depress 4 13 Hopeful 14 8 
Hopeless 9 11 Peaceful 17 18 
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Figure 8.6  Happiness Index, Depression Index, and Covid confirmed cases [30] (May 

2020) 

 

Figure 8.7  Happiness Index, Depression Index, and Covid confirmed cases [30] (June 

2020) 
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Figure 8.8  No of Depression and anti-depressive keywords contributed to HI (May 2020) 

Table 8.5 Latent Dirichlet Allocation Results 

Accuracy May 2020 June 2020 
HI DI HI DI 

Depressive set 89 78 88 75 
Anti- 

Depressive 83 76 85 81 

 

Table 8.6 Feel-Good-Factors contribution in Rank order 

Rank May 2020 June 2020 
Dep Anti-Dep Dep Anti-Dep 

1 Failure Active Failure Peaceful 
2 Tired Peaceful Tired Active 
3 Restless Comfort Depress Comfort 
4 Worthless Hopeful Restless Calm 
5 Hopeless Calm Hopeless Hopeful 
6 Nervous Delight Nervous Delight 
7 Depress Excite Worthless Excite 
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Figure 8.9  No of Depression and anti-depressive keywords contributed to HI (June 

2020) 

 

 

Figure 8.10  Happiness Index May 2020 

 

 

Figure 8.11  Happiness Index June 2020 
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Figure 8.12  Depress Index May 2020 

 

Figure 8.13  Depress Index June 2020 

 

Figure 8.14  ACF plot in Happiness Index 
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Figure 8.15  PACF plot in Happiness Index 

 

Figure 8.16  ACF plot in Depression Index 

 

Figure 8.17  PACF plot in Depression Index 
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8.5 Happiness Index Map 

WalletHub [199] studied three key dimensions (a) emotional and physical well-being, (b) 

Work environment, and (c) Community and the environment with 31 relevant metrics.  The 

happiness index scaled to 0-1, with 1 being the happiest state, and 0 has the minimum happiness 

index.  The value in blue indicates for the year 2021 (Fig. 8.18).  

 

Figure 8.18  Happiness Index (2021) WalletHub data (blue), our method (red)  

Depressive and anti-depressive tweets from each state are analyzed, and a happiness index 

map is prepared for one day (5 September 2021) using our method mentioned at 8.3.1. These 

values are shown in red in Fig 8.18.  The tweets will be added to the database daily with the 

depressive and anti-depressive tweets data belonging to all the fifty states of the USA.  This 

amounts to seven hundred files representing the seven depressive and seven anti-depressive 

keyword data of fifty states each day. We have developed a framework that collects this data and 

saves it.  Our system takes input dates from the user interactively and generates an interactive map 

to show the happiness index from the WalletHub and our database for the desired dates.  
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8.6 Discussion 

Ratios of depressive keyword and anti-depressive keyword to the depressive keyword set 

and anti-depressive keyword set and the total words in the tweet keyword for each day are 

presented in Fig. 8.4. Happiness Index, Depression Index, and Covid confirmed cases are shown 

in Figures 8.6 and 8.7. There exists a greater possibility that a covid confirmed individuals post 

depressive/anti-depressive tweets during this anxiety. The Happiness Index, Depression Index, and 

Covid confirmed cases reported by World Health Organization revealed a similar pattern (Figures 

8.6 and 8.7).  

Feel-Good-Factors offer an understanding of the depressive and anti-depressive keywords. 

In the set of depressive keywords, ‘failure’ showed the highest contribution followed by ‘tired,’ 

‘restless,’ ‘worthless,’ ‘hopeless,’ ‘nervous,’ and ‘depress.’ Similar computations are made with 

anti-depressive keywords and observed that the keyword ‘active’ has contributed the maximum, 

followed by ‘peaceful,’ ‘comfort,’ ‘hopeful,’ ‘calm,’ ‘delight,’ and ‘excite’ (Table 8.6). 

It is observed that there is no substantial contribution in seven days by depressive tweets 

and twelve days by the anti-depressive keywords during May 2020 (Fig. 9.8). Similar calculations 

are made for June 2020 and observed that there are two days with less contribution with a good 

match in the order in their contribution. The impact of depressive and anti-depressive keywords 

on Feel-Good-Factors was computed using the Keyword Contributions' average influence and 

daily values.  Mean Square Error (MSE) in Happiness Index and Depressive Index resulted in low 

error rates.  

The Happiness Index quantifies and compares with other days of observation. It thus 

facilitates understanding the hedonometric conditions.  Collecting the tweets from different 

geographical regions, the Happiness Index can be correlated. ‘Failure’ and ‘Tired’ affect 47% in 
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May and 37% in June 2020 the depressive set and ‘Active’, ‘Peaceful’ and ‘Comfort’ affect 60% 

in May and 62% in June 2020, anti-depressive status. Feel-Good-Factors provided an insight into 

the mental status of the people. During May 2020, depressive keywords contributed 54%, and anti-

depressive keywords 61% for the Feel-Good-Factors. In June 2020, we observed 43% influence 

from the depressive set and 40% from anti-depressive keywords. The bad words set is utilized in 

computing the Depressive Index and Happiness Index. These indices are forecasted with the 

moving average method and notice lesser Mean Square Errors. Accuracies obtained using the 

Latent Dirichlet Allocation (LDA) method are above 75% in all these cases. ACF and PACF plots 

from ARIMA signify, our model considered is appropriate [200].  

The happiness index evaluations provide a broader measure of well-being inequalities.  We 

have prepared a happiness map of all the states of the USA. It showed a better similarity. The 

happiness index will be helpful as an input to the Governmental, Non-Governmental agencies, and 

stakeholders in development. It can reinforce the mental health policies and Return On Investment 

(ROI) to scale up the prioritized sectors with effective interventions.  
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9 FORECASTING METHODS 

 

9.1 Introduction 

Forecasting is one of the useful statistical concepts that help to predict the future with the 

earlier data. Such methods help find the results of elections, website traffic, movie ratings, pricing 

of goods, and many more applications.  The main issue in such a forecast is the accuracy of the 

prediction. The accuracy depends on many factors. These forecasting methods are classified as 

Qualitative and ‘Quantitative methods. The qualitative methods are further split as (a) Executive 

opinion, where a group of intellectuals will collectively develop a forecast, (b) market survey in 

which surveys decide the forecast, (c) Salesforce, where an individual will submit the data 

belonging to his area and collectively a general forecast is estimated and (d) Consensus agreement 

is reached among a group of experts. Quantitative methods can further decompose as ‘time-series 

methods’ and ‘associative models.  

Computational models to predict the rise of depression and forecasting the mental illness 

with Twitter data was reported by several researchers [201] [8] [9] [32].  Prediction of Time Series 

data is carried out to comprehend the forecast and be ready with the demand/requirement for an 

activity, event, or an occurrence [202].  In the qualitative methods, we derive opinions, emotions, 

and personal experiences, which are subjective and do not depend on mathematical computations. 

In contrast, in quantitative methods, forecasting depends on mathematical models with 

calculations. The quantitative methodologies are further classified into time-series models and 

associative models.  Time-series models assume that the past will repeat, whereas the associative 

models depend on the relationship between the response variables.  [203] [204].  Moving average 

methods [205] were used in many applications. 
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In the time series model forecast, Naïve, Simple mean, simple moving average, weighted 

moving average, exponential smoothing, trend projecting, and seasonal indexes are few models 

that many researchers will apply to their data for the forecast.  

9.2 Moving Average Models 

9.2.1 Simple moving average model 

 The next value(s) in a time series is based on the previous values' average fixed finite 
number m. Thus, for all i > m 

  

9.2.2 Weighed moving average model 

 In this model, we assign m weights w1, …, wm, where w1 + …. + wm = 1, and define the 
forecasted values as follows 

 

 In the simple moving average method, all the weights are equal to 1/m. 

Tweets from the Twitter website are the source of data for our study. Media has become a 

source to share opinions with known and unknown people at large.  The cost, technology, and 

speed at which the posts/tweets are generated have taken a lead role compared to other media, 

sources, and communication methods. Though some sections of social media serve a particular 

section, most social media slowly diverges to cater to all sections' needs. Another hypothesis is 

that the data available in social media is collective wisdom and certainly will have a vision in 

predicting the real-world outcomes.  
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9.2.3 Our moving average model 

Tweet data related to failure, hopeless, active, tired, restless, worthless, calm, comfort, 

delight, hopeful, and corona collected from 01-April-2020 to 01-April-2021 (366 days) was used 

for this forecast.  

We made an updated moving average model described below  

If the y is a series with y1, y2, y3,…yn for n consecutive observations,  the prediction for 

one day is computed as  

yi = ai+bi+ci, where  

ai = (yi-4+ yi-3+ yi-2+ yi-1)/4, bi = (yi-1 - yi-4)/4 and ci = (bi-4+ bi-3+ bi-2+ bi-1)/4 

The prediction values for two days are computed with  

yi = ai+bi+ci, where  

ai = (yi-5+ yi-4+ yi-3+ yi-2)/4, bi = (yi-2 - yi-5)/4 and ci = (bi-5+ bi-4+ bi-3+ bi-2)/4 

Similarly for two days the prediction values are computed with  

yi = ai+bi+ci, where  

ai = (yi-6+ yi-5+ yi-4+ yi-3)/4, bi = (yi-3 - yi-6)/4 and ci = (bi-6+ bi-5+ bi-4+ bi-3)/4 

One day, two days, and five days forecast values are plotted and shown in Figures 9.1 to 

9.3 for ‘failure,’ 9.4 to 9.6 for ‘hopeless,’ and Figures 9.7 to 9.9 for ‘corona’ keywords. Table 9.1 

shows the error percentage in the predicted values using our method for the keywords failure, 

hopeless, active, tired, restless, worthless, calm, comfort, delight, hopeful, and corona.  
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Figure 9.1  'Failure' tweet data from 01-April-2020 to 01-April-2021 (One-day 

prediction) 

 

Figure 9.2  'Failure' tweet data from 01-April-2020 to 01-April-2021 (Two-day 

prediction) 
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Figure 9.3  'Failure' tweet data from 01-April-2020 to 01-April-2021 (Five-day 

prediction) 

 

Figure 9.4  'Hopeless' tweet data from 01-April-2020 to 01-April-2021 (One-day 

prediction) 
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Figure 9.5  'Hopeless' tweet data from 01-April-2020 to 01-April-2021 (Two-day 

prediction) 

 

Figure 9.6  'Hopeless' tweet data from 01-April-2020 to 01-April-2021 (Five-day 

prediction) 
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Figure 9.7  'Corona' tweet data from 01-April-2020 to 01-April-2021 (One-day 

prediction) 

 

Figure 9.8  'Corona' tweet data from 01-April-2020 to 01-April-2021 (Two-day 

prediction) 
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Figure 9.9  'Corona' tweet data from 01-April-2020 to 01-April-2021 (Five-day 

prediction) 

Table 9.1 Percentage of error in predicting the depressive states in one, two and five days  

S Keyword 
Error percentage in  

predicting with our model 
Simple Moving 
Average Model 

One day Two days Five days  One day 
1 Failure 18 29 36 25 
2 Hopeless 23 41 44 35 
3 Active 22 34 35 27 
4 Tired 15 25 26 21 
5 Restless 50 86 96 75 
6 Worthless 28 45 49 39 
7 Calm 20 31 37 26 
8 Comfort 23 35 38 29 
9 Delight 37 58 73 50 
10 Hopeful 25 40 49 33 
11 Corona 12 20 23 21 

 

9.3 ARIMA Model using COVID-19 epidemic dataset  

9.3.1 ARIMA Model 

ARIMA models provide another approach to time series forecasting. Exponential 

smoothing and ARIMA models are the two most widely used approaches to time series 
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forecasting. While exponential smoothing models are based on a description of the trend and 

seasonality in the data, ARIMA models aim to describe the autocorrelations in the data [206]. 

9.3.2 Data and Methods  

We collected 318,847 tweets related to depressive, anti-depressive, and corona hashtag 

keywords from Twitter during COVID-19. The tweets during COVID-19 of depressive and non-

depressive hashtag keywords with their tweet count from 6th to 31 March 2020 are shown in Fig 

9.11. 

 

Figure 9.10 No. of Tweets Vs. the Hashtag keywords 
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Figure 9.11 Epidemic curve of confirmed COVID-19 by date of the report and WHO 

region [207] 

We grouped the COVID-19 tweet pattern into four regions A, B, C, and D from the gradient 

of the curve of the tweet graph of ‘calm,’ ‘death,’ and ‘comfort,’ as shown in Fig. 10.11. WHO is 

releasing situation reports during COVID-19 daily, and we have taken the data up to 31 March 

2020 (Report-71) [208]. We marked A, B, C, and D regions on the epidemic curve of confirmed 

COVID-19 cases in Fig. 9.12 

9.4 Discussion 

9.4.1 Our Moving Average Model 

We developed a new moving average model where we have taken the simple moving 

average value as a primary part.  Two other small values are added to this to smooth the curve. 

The difference of the n-1 to n-4 value divided by four is an additional factor in our moving average 

model.  The average of the last four such values is considered and explained in 9.2.3 above to 

minimize the error factor.  
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The results obtained from our model gave better results than simple moving average model. 

The table 9.1 depicts the error percentage with our model and simple moving average model. In 

all the keywords failure, hopeless, active, tired, restless, worthless, calm, comfort, delight, hopeful 

and corona, shown an improvement.   

 

Figure 9.12 Actual, Predicted from SMAM and Our method 

9.4.2 Arima Model  

The growth rate in the number of tweets in depression and anti-depression is similar till 11 

March in all the depressive and anti-depressive tweets. The tweet ‘Calm’ is shown a similar 

gradient with all other depressive and anti-depressive tweets, and this gradient is followed by the 

number of deaths after 11 March 2020. (Fig. 9.11). The ‘Calm,’ ‘Death’ graph showed a positive 

gradient increase on 11 and 23 March, whereas a negative gradient on 28th March 2020. WHO 

announced COVID-19 as a pandemic on 11 March, the deaths doubled in the USA with an increase 

of active COVID-19 cases on 23 March 2020. The first time there was a decrease in death count 

after COVID-19 effects, even though there was an increase in the number of active COVID-19 

cases [63].  
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Table 9.2 Demarcation by our method, observations and WHO reports 

Region Our Observation COVID-19 Epidemic Curve & 
reports 

A-B 
11-March-2020 

Positive gradient noticed in 
‘Calm’ 

WHO announces COVID-19 
outbreak a pandemic [209]  

B-C 
23-March-2020 

Positive gradient noticed in 
‘Calm’ and ‘death’ 

First time change in deaths doubled. 
~30% increase in the number of 
active Corona affected cases found 
[210] 

C-D 
28-March-2020 

The graph showed a negative 
gradient in ‘Calm’ and 
‘death.’ 

Deaths decreased, while the number 
of active corona cases increased [64] 

 

COVID-19 pandemic is a worldwide outbreak that affects many people. COVID-19 

disaster crossed a significant phase around 11 March, as we observed that (a) the number of tweets 

is a similar ratio till that date. At around 11 March, there was an abnormality and (b) a high positive 

correlation with ‘Death’ tweets, as shown in Fig. 9.12. Our observations supported by WHO 

reports that COVID-19 developed into a pandemic [210] from 11 March 2020.  We classified the 

COVID-19 shifted to other stages, as shown in Fig 10.11. WHO supports this change over to this 

stage, as shown in Fig. 9.12 and Table 9.2 Depressive and Anti-depression tweet data during 

COVID-19 were used to create the ARIMA model for the period of the next five days (1-Apr-2020 

to 5-Apr-2020). The red lines in Fig. 9.13 show the predicted ranges.  The blue line is the proposed 

best fit. The values of the failure and depress hashtag tweet count obtained from twitter.com and 

shown as dash lines within our proposed range.  The number of tweets predicted using the ARIMA 

model for the next five days, and the real numbers are in the same range, as shown in Fig. 9.13. 

We found a good association with the COVID-19 pandemic pattern using the tweets and 

with the WHO reports. The time series prediction system showed promising results for the next 

few days with our model. The proposed model will be beneficial for remedial non-clinical 

applications for helping the affected people.  



                                                                                                                        104 

 

 

Figure 9.13 ARIMA forecast results for ‘failure’ (top) and ‘depress’ (bottom) hashtags 
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10 CONCLUSIONS 

Social networks became an important part of human life today.  People use one or more 

social network sites for communication and sharing information.  The tweet data consisting of 2.3 

million collected from 01-April-2019 to 01-April-2020 are the base data for our conclusions.  We 

have analyzed the tweets with the Word frequency method, Singular Value Decomposition Method 

(SVD), Time series method, Time widow method, and Time stamp method and classified the tweet 

keys words. 

The word frequency method resulted in the word usage pattern that an individual in a 

depressed stage may soon fall into another depressed stage. The singular Value Decomposition 

(SVD) method resulted in a compliment of 63% contribution to the first three pivotal values. The 

SVD method also supported our results, and we observe that there is always a chance of individual 

tweeting at least three of these keywords if he/she is mentally depressed. Everitt and Dunn [108] 

proposed an alternative approach based on comparing the component contribution of this diagonal 

element to almost 64%, which is in line with our results.  We could identify the need for urgent 

attention, caution and monitor it with the Time series method. Such categorization of the tweet 

time will improve prediction for the time-series data, where an abnormality is observed. Our 

accuracy in the Time window method resulted in 20-40, 16-40, and 8-40 in Fine-tree algorithm, 

SVM methods, and KNN methods.  We observed a similar trend by analyzing the depressive, anti-

depressive, and COVID-19 to study the tweeting patterns, timings, and days of tweets by using the 

date and timestamp information. Classification of tweets followed that the depressive, anti-

depressive tweets and corona confirmed cases (WHO data) show an increase from Wednesday. 

The results will be an indicator to identify mental illness people from social websites. Continuous 

monitoring of tweets of an individual who tweeted with one keyword will determine whether they 
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tweet with other depressive keywords to conclude that the individual is prone to Mental Health 

Illness soon.  We also found that frequently used words depression and anti-depression tweets are 

posted at an interval of more than 10 minutes. The similarity is also seen in these tweet patterns 

within 10 minutes and beyond 10 minutes.  The tweet pattern of ‘tired’ and ‘restless’ was different 

from other depressive keywords. The anti-depressive tweets followed the pattern of ‘failure,’ 

‘hopeless,’ ‘nervous,’ and ‘worthless’ depressive tweets. 

Our Studies also demonstrated a significant contribution through a new parameter that is 

computed using F1 and Matthew’s Correlation Coefficient values.  Our studies also suggest that 

this new parameter has an association with the tweeted data.  We considered the positive for 

depressed tweets and the negative for the anti-depressed tweets in the confusion matrix and 

computed the new parameter. We concluded that the larger this value is the sign of higher 

depression on the tweets’ day.  

The clustering of depressed and anti-depressed keywords based on an event (Sri Lanka 

Bomb blast) using the text mining methods was applied to a set of data.  The confusion matrix is 

computed from the Term-Document Matrix. We observed that the hashtags with the keywords 

Failure, Nervous, Comfort, Delight, Peaceful, Depress, Hopeless, Restless, Tired, Worthless, 

Active, Calm, Excite, and Hopeful are associated with the ‘Bomb’ hashtag keyword. Pearson 

Correlation coefficient was calculated within the set of keywords with the ‘Bomb’ keyword, and 

we grouped them into two clusters.  Our assumption of grouping, Failure, Nervous, Comfort, 

Delight, and Peaceful into one category and Depress, Hopeless, Restless, Tired, Worthless, Active, 

Calm, Excite, and Hopeful into another group was supported with our results. The accuracy 

obtained from the clustering from the confusion matrix is 94% indicated that there is a good pattern 

match between the Similarity groupset and the Dissimilarity groupset.  The above results support 
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the study of the clustering of tweet keywords into two groups (similarity and dissimilarity).  Our 

work considered two sets of keywords belonging to depression and anti-depression and clustered 

into two balanced sets as similar and dissimilar in association with the ’event.’ 

We have collected the tweets during COVID-19, and using the tweets, we found a good 

association with the COVID-19 pandemic pattern and with the WHO reports. The time series 

prediction system showed good results for the next few days with our model.   The proposed model 

will be beneficial for remedial non-clinical applications for helping the affected people.  

Normalized tweet data of depressive, anti-depressive, and event tweets along with date 

wise used to compute the AUC with ‘Total Period’ under regular conditions, ‘before the event,’ 

‘during the event’ and ‘after the event.’ It is noticed that the Tauktae cyclone created more 

destruction than Burevi Cyclone. These results correlate with the effect of events reported by other 

researchers. The Pearson Correlation validates that there is a decent correlation between depressive 

tweets and events. Collection of tweets online and computation of the impact will help 

governmental, non-governmental bodies plan and support the disaster preparedness and 

emergency team management in rescue operations during cyclones, forest fires of a particular 

geographical area.  

Our study shows that the Tauktae cyclone impact more than the Burevi Cyclone, and the 

Burevi cyclone affect more than Srilanka bomb blasts incident in peoples’ mental health.  Similar 

results are noticed from these three events. The impacts ‘before,’ ‘during’ and ‘after’ the events 

are higher in the Tauktae cyclone than in the Burevi cyclone and Bomb Blasts incidents. The works 

done by other researchers also support our findings.  

So far, no work has been reported earlier to scale Happiness Index using the mental health-

oriented tweet data. Our computations are based on ‘outcome’ with a hypothesis that happier 
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people will tweet with happy keywords and unhappy people will tweet with depressive keywords. 

World Happiness Report (WHR-2020) is a significant scale of happiness ranking of 156 countries.  

Gallup World Poll happiness scores are used in ranking happiness. We observed a decrease in 

Gallup data of WHR-2020 in Georgia to New York and Sri Lanka. Our results in HI-1 and HI-2 

show a similar decline.  

It is observed that during these two weeks of observations (HI-1 and HI-2), Sri Lanka has 

less than the yearly average happiness reported by WHR-2020. New York showed balanced 

happiness during 4-10 July, but more happiness during 25-31 July. Georgia recorded a better happy 

situation in both weeks of observation while compared with the WHR-2020 report. Our two-week 

data HI-1 and HI-2 delivered the keywords that impacted the Happiness Index. The results from 

our observations indicate that Happiness Index in New York state has more impact from failure, 

hopeless, nervous, tired and comfort in both weeks. Georgia State’s Happiness Index has more 

influence from nervous and peaceful in the HI-1 week and Hopeless, nervous, tired, and peaceful 

in the HI-2 week. Sri Lanka Happiness Index did not show any specific impact. We analyzed space 

tourism tweets with ‘unit22’, ‘blue origin’, and ‘new shepherd keywords, which exhibited an effect 

on the depressive and anti-depressive moods during July 2021. 

In another study, the happiness is computed during two weeks of observation and found 

that people in Georgia are happier in the HI-2 (Second week of observation) observation period.  

People in New York are happier in both weeks. However, they are happier in the HI-1 (first week 

of observation). Contrary to these observations, the Sri Lanka residents are more unhappy than 

average in both weeks of observation. Nervous, Hopeless, and Tired are the depressive states, and 

comfort and peaceful are the anti-depressive states that contributed substantially to HI 

computations.  
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A new moving average model was developed where we took major values from simple 

moving average computations. Two other small values are added to this to refine the 

approximations. Our results were better than the simple moving average model. The error 

percentages with our model and simple moving average model are compared.  Failure, hopeless, 

active, tired, restless, worthless, calm, comfort, delight, hopeful, and corona showed improvement 

in all the keywords.   

COVID-19 pandemic is a worldwide outbreak that affects many people. Our observations 

supported by WHO reports that COVID-19 developed into a pandemic from 11 March 2020. Our 

classification of COVID-19 shifted to other stages, as shown in Fig. 10.11.  Depressive and Anti-

depression tweet data during COVID-19 to predict for the next five days (1-Apr-2020 to 5-Apr-

2020).  We found a good association with the COVID-19 pandemic pattern using the tweets and 

with the WHO reports. The time series prediction system showed promising results for the next 

few days with our model. The proposed model will be beneficial for remedial non-clinical 

applications for helping the affected people. 
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11 FUTURE WORKS 

11.1 Tweets during notable events 

Our tweets data is increasing every day with depressive and anti-depressive tweets in 

general and location-specific of all the fifty states of the USA.  We also add specific event tweet 

data to study the event significance and interpret them. We compare their influence with regular 

days. Such impact analysis will be helpful for future governmental and non-governmental schemes 

for people around that area.  

11.2 World Health Organization Action Plan 

WHO has initiated an action plan for the period 2013-2030, and the objectives mentioned 

are (a) to strengthen effective leadership and governance for mental health, (b) to provide 

comprehensive, integrated, and responsive mental health and social care services in community-

based settings, (c) to implement strategies for promotion and prevention in mental health and (d) 

to strengthen the information systems, evidence, and research for mental health.  WHO opined 

options to strengthen the information systems, evidence, and research for mental health using the 

indicators within the information systems. We collect and analyze territory-wise data and develop 

a framework that delivers results that opens new collaborations in interdisciplinary research in 

national, international research centers working in mental health, aligning the vision of WHO.  

11.3 Real-time atlas of Hedonometric data 

At present, we have about four million tweets related to depressive and anti-depressive 

tweets.  In our works, we computed the Happiness Index for Sri Lanka, Georgia, and the New 

York States for a particular period. Our findings showed similar results with other similar data 

available. We propose to collect the depressive and anti-depressive tweets data state-wise of the 

USA daily and prepare an atlas of Happiness Index in real-time for a day, week, month, and year.  
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We propose this framework with automation will be available in the public domain.  An interactive 

USA map will be generated and will show the WalletHub data and our data simultaneously.  The 

change of the happiness index of a particular state will influence the societal schemes for better 

living.  

11.4 Forecasting mental health states 

Covid-19 has generated huge data, and we intend to develop a novel intelligent time series 

prediction system using both COVID-19 data and tweets to predict the future mental health status 

of people at a location. We also collect the tweets from the desired areas and forecast using time 

series prediction mental health status system and then improve it.  Our studies will quantify the 

Depression of the location at that time and date and will be helpful in the computation of 

Hedonometric parameters.  

We collected the Covid-19 data and predicted for one day using our moving average 

method.  Our results showed a good similarity with WHO data.  We propose to identify 

forthcoming events and collect specific ‘event’ data daily. We attempt to forecast the event 

parameters for a day using our moving average method for a given date and event.  Cyclones, 

Space tourism, Covid-19 are the events presently available events in our database. 

11.5 Natural Language Processing studies 

The global artificial intelligence software market would witness massive growth. 

Applications like NLP, Robotic Process Automation (RPA), and Machine Learning primarily 

amount to the AI market.   Researchers are using the data derived from web search, advertising, 

emails, customer service, language translation, virtual agents, medical reports, etc., in the efficient 

estimation of word representations and thereby deduce AI results.  We attempt to use the tweet 

texts to estimate the distributed representations of words and phrases and their compositionality.  
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11.6 Development of a Website for real-world applications 

We collect the tweets daily and add them to our database. We develop an interactive 

website for public use to get (a) Top three depressive keywords of a given date and location, (b) 

Dependable parameters of these depressive keywords of the day, which are the prominent events 

that occurred during that day, (c) Depressive keywords classification for a day and location, (d) 

Happiness Index of a day or period of a location, (e) Depressive Index of a day or a period of a 

location, (f) generate a happiness map of a period and geographical location, and (g) forecast the 

depressive keywords in a particular location such as a city, and a county.  
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APPENDICES  

Appendix A:  Tweet data collected from twitter.com 

Sample Tweet data 

 

S.No, Tweet Text, favored, favorite count,  Reply, Created date and time, Truncated or 

not, Reply_to, id, reply_to_UID, statusSource, screenname, retweet_count, Is_Retweeted, 

Longitude, and Latitude.  
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Sample tweet data collected from twitter.com on 20-July-2021 (unity22) 
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