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ABSTRACT

ESSAYS ON ENVIRONMENTAL AND HEALTH ECONOMICS

By

GOLNOUSH RAHIMZADEH

MAY 2021

Committee Chair: Dr. Henry Spencer Banzhaf

Major Department: Economics

In this dissertation, I study two questions in environmental and health economics with

a focus on the role of urban configuration. The first essay investigates the impact of urban

sprawl on the temperature in the United States. Sprawl contributes to the heat island effect

by eliminating vegetation, expanding dark surfaces, and increasing daily travel distance.

This study quantifies this effect by constructing and linking the required measures and

exploiting variations in the data using different identification strategies. I construct an

index of residential compactness in US metropolitan areas using satellite remote sensing

information to analyze landscape changes from 1974–2012 and link them to the Global

Surface Summary of the Day data. To address the reverse causality issue, I utilize the planned

interstate highways emanating from the central cities as an instrument for sub-urbanization

in the United States. I also examine the Impact of Sprawl on UHI by introducing a control

group for each metropolitan statistical area (MSA) in the sample. The results suggest

a positive and causal relationship between the temperature of the MSA center and urban

sprawl. Thus, horizontal development of the city imposes an extra burden on the temperature

of the city center.

The second essay, which is joint work with Dr. Firouzi Naeim, studies the role of labor

unions in response to the pandemic. Labor unions are among the largest institutions in

the United States, and their role in regulating employee-employer relations is hard to ignore.

Costly efforts to control the spread of COVID-19, combined with the monopoly and collective

voice faces of unions, emphasize the role unions can play in shaping the response of the



workforce in coping with COVID-19. We analyze the effect of union size by utilizing state-

level data in the United States and by employing a dynamic nonlinear probability model.

The results suggest new evidence of positive externalities for union employees compared

with nonunion employees. We find that increasing union size by 1,000 new members in the

United States would lead to 110 fewer COVID-19 cases 11 months after the onset of the

virus, controlling for hours of work and differences in union members’ characteristics.
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Chapter I

The Impact of Urban Sprawl on Temperature in the

United States

1.1 Introduction

Growing population and increasing temperature are two trends that have had a profound

impact on communities. In addition, geographical distribution of the population is changing

in favor of urbanization. In the United States, the urban population almost doubled from

126 million in 1960 to 249 million in 2010. During the same period, the rural population grew

from 54 million to 59 million, barely a 10 % increase (Figure 1.1). The need for new urban

areas means policymakers must choose between horizontal versus vertical development of

cities. One of the areas of concern is the effect of each of the alternatives on the environment

and, in particular, the temperature of cities; metropolitan areas are significantly warmer

than their surrounding rural areas, which produces a phenomenon known as the urban heat

island (UHI). The UHI affects ”summertime peak energy demand, air conditioning costs,

air pollution and greenhouse gas emissions, heat-related illness and mortality, and water

pollution”.1. Over the past five decades, the average temperature in the United States has

increased and is expected to continue to rise.2

While a rise in temperature can be comforting in cities with a cold climate or in cold sea-

sons, in a relatively warmer climate and in warmer months of the year, a rise in temperature

1 United States Environmental Protection Agency
2 The annual average temperature of the contiguous United States has risen since the start of the 20th

century. In general, the temperature increased until about 1940, decreased until about 1970, and increased
rapidly through to 2016. In particular, annual average temperature over the contiguous United States has
increased by 1.2◦F (0.7◦C) for the period 1986–2016 relative to 1901–1960. There is general consistency
between surface and satellite data in their depiction of the rapid warming of the past few decades. The
annual average temperature of the contiguous United States is projected to rise throughout the present
century. Increases for the period 2021–2050 relative to 1976–2005 are projected to be between 2.5◦F and
2.9◦F (Zhongming et al. (2017))
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has an undesirable and harmful effect on human health, economic productivity, and energy

consumption. Urban climate features, such as temperature, are affected by urban structure.

A positive relationship between soil sealing and land surface temperature has been detected

in many studies (Weng et al. (2007), Schueler (1994)). This relationship suggests that urban

sprawl can elevate the UHI effect both in geographic extent and intensity (Bhatta (2010)).

Extending low-density suburbs changes the environment physically by eliminating vegeta-

tion (tree-cutting) and by increasing dark surfaces like roads.

Figure 1.1: Population growth and geographic distribution in the United States
Source: U.S. Census Bureau

The association between urban sprawl and climate has been discussed in the economic,

urban planning, and environmental science literatures. However, existing studies have at

least one of the following shortcomings. First, and probably the most important, is the lack

of a causal study that shows the causal effect of sprawl on climate variables. Not considering

the causal relationship limits a study’s usefulness for policymaking. The second shortcoming

is related to the definition of the two main variables of such studies, namely, sprawl and

temperature. Most of the studies in this literature use an overly generous definition of

sprawl that prevents one from making a clear statement on the relationship of interest, or
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their temperature-related variables are limited. and as a result, they do not examine the

various aspects of the phenomenon. In Oke (1973) the relationship between population

and the intensity of the UHI effect in Montreal is explored and it is found that areas with

higher density are correlated with a grade of the UHI effect. This is not a surprising result,

as many of the factors that cause the UHI are stronger in more densely developed areas

of a city. From a public policy point of view, the important question is whether to build

vertically or horizontally. The answer in the literature depends on how the question is asked

because of the interdisciplinary nature of the question and how UHI is measured. Similarly,

(Coutts et al. (2007)) using data from multiple sites across Melbourne and (Martilli (2014))

using simulation data, find a contradictory result that compact planning leads to less UHI

formation. That is because, in both studies, compact sites contrast with low residential sites

instead of comparing compact growth plans versus sprawling growth patterns. In Stone and

Rodgers (2001), the contribution of residential development patterns to the development of a

surface-heat island in the metropolitan region of Atlanta, Georgia, was explored. Their result

suggests that lower density residential patterns lead to a higher grade of UHI formation. In

Stone et al. (2010), the correlation between the mean annual change in the number of extreme

heat days between 1956 and 2005 and the sprawl index of each region in 2000 is measured,

where sprawl is measured as in Ewing et al. (2003). This study suggests that occurrence of

extreme heath events has been increased over last fifty years, and the rate of this growth in

most sprawling MSAs is around double the rate in most compact MSAs.

To construct a measure of sprawl, I use US conterminous Wall-to-Wall Anthropogenic

Land Use Trends (NWALT), created in 2015 by the US Geological Survey (USGS). NWALT

is a consistent and long-period independent time-series dataset that depicts land use and

covers the United States over five waves between 1974 and 2012. Utilizing NWALT and

following Burchfield et al. (2006), I construct panel data of residential compactness, which

is the dimension of sprawl that I am interested in. This provides, for the first time, panel

data of sprawl that are based on the actual expansion of 350 metropolitan areas.

3



Climate and, in particular, temperature is one of the factors that affect households’

location choice. To address endogeneity concerns, I utilize the number of interstate highways

in the national plan, emanating from the central city, as an instrument for sprawl. My finding

suggests that, for the middle-sized metropolitan statistic areas (MSAs), a 10 percentage-point

decrease in residential compactness leads to about a 1.1 degree Fahrenheit increase in the

MSA center’s annual mean temperature.

The rest of the paper is organized as follows. Section 2 describes the construction of urban

sprawl. In Section 3, I discuss the estimation methods. Section 4 discusses the construction

of two different data sources (weather data and residential compactness). Section 5 presents

the results. Section 6 introduces a new method for targeting the proper control group and,

finally, Section 7 concludes the paper.

1.2 Measuring Urban Sprawl

Urban sprawl refers to a particular form of urbanization that is associated with certain

characteristics. Studies’ definitions of sprawl differ based on the aspect of the sprawl con-

sidered, and limitations in data and methods. However, the following characteristics have

been widely associated with urban sprawl. First, low population density and a high level of

urbanized land per person, which indicates inefficient land use. When in a given area, the

rate of urbanization is much greater than the rate of population growth, we face a sprawling

phenomenon (Black (1996); Freeman (2001); Galster et al. (2001), Harvey and Clark (1965),

Glaeser and Kahn (2004), Baum-Snow (2007), Ewing et al. (2003)). Second, leapfrogging or

scattered development, which refers to the building of new residences, either separately or

in a subdivision, at some distance from existing built-up areas, especially in the transition

zone between urban and rural areas (Clawson (1962), Mills (1981), Gordon and Richardson

(1997), Yeh (2001), Burchfield et al. (2006), Ewing et al. (2003)). Third, separate land use,

which is when employment and retail services are a significant distance from residential areas,

which increases driving (Brown et al. (1998), Duany et al. (2001), Ewing et al. (1994), Ewing
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(1997), Ewing et al. (2003)),Ewing and Hamidi (2014), Galster et al. (2001)). Fourth, lack

of street accessibility and connectivity, or unplanned urban growth in the suburbs, which

leads to inefficient street systems (Duany et al. (2001), Allen and Benfield (2003), Ewing

1994, 1997, 2003, 2014).

Although the presence of sprawl is obvious, it is difficult to define and quantify. In

fact, even though the sprawling city has been a hot topic since the early 1950s, it has not

been properly quantified until recently Malpezzi et al. (1999)). In Galster et al. (2001)

eight different measures of residential development are reviewed to grasp different dimen-

sions of sprawl, including density centrality, proximity of land use, etc. The study ranks

13 large US cities based on six of these measures. In Ewing et al. (2003), sprawl indices

for 83 US metropolitan areas for change between 1990 and 2000 are estimated using 22

variables representing various aspects of development patterns. They focus on four differ-

ent dimensions of sprawl—residential density, land use mix, degree of centering, and street

accessibility—arguing that one factor alone cannot capture the complexity of sprawl. And

while some cities like Atlanta sprawl in all dimensions and others like New York are compact

in all factors, other cities are not consistent in all factors. To construct a sprawl index for

each dimension they combine up to seven variables via principal component analysis into one

factor representing the degree of sprawl in each dimension. In Ewing and Hamidi (2014), this

result is updated for 221 metropolitan areas in 2010. Unfortunately, most of the variables

they use are not available before 1990. Thus, their index cannot be used to capture sprawl

trends over time. Moreover, reducing many dimensions to one index involves some degree of

information loss. To study the effect of sprawl it is important to have a clear idea of which

factor plays a role.

A variety of measures are used in Glaeser and Kahn (2004) to capture sprawl focusing

mostly on population density and separation of use. Their measures include percentage of

population density and job density (within Inner 3 and 5 Mile Ring and MSA) and median

person’s distance in miles from the central business district (CBD). They also report that
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the correlation between different measures can be very low. In Angel et al. (2005), classi-

fying satellite images of cities in 1990 and 2000 directly examines the expansion forms of

cities. The study uses population density as the main variable of interest, but the index

of population density has a strong point compared to previous studies. Instead of adminis-

trative boundaries, they measure the actual built-up area of the city. Using administrative

boundaries does not allow a reliable comparison between cities. So, the resulting population

density is sensitive to the definition of boundaries which varies even within the United States.

Another weakness in using average population density is that it neglects the distributional

aspect of the metropolitan population.

Burchfield et al. (2006) focus on capturing the extent to which residential development

in urban areas is scattered. Like Angel et al. (2005) their methodology is based on ana-

lyzing landscape change with satellite remote sensing and a geographic information system

(GIS). They use land cover and land use data from Landsat 5 Thematic Mapper satellite

imagery and high-altitude aerial photographs. Their data contain square cells of 30 x 30

meters situated on a regular grid. Each grid cell is assigned to one specific land use code,

such as residential development, water, forest, etc. To measure the extent of sprawl, for each

30-meter cell of residential development, they calculate the percentage of open space in the

immediate square kilometer. They compute the sprawl index as a change in the average

undeveloped land across all residential development in each metropolitan area. They also

introduce the level of development for two periods by calculating the percentage of land not

developed in the square kilometer surrounding residential areas for 1976 and 1992. They

discuss the correlation of their measure with other measures such as median lot size, miles

driven per person, and share of employment over 3 miles from the CBD and conclude that

while scatteredness is a key factor of sprawl, it does not grasp all of its dimensions. Specifi-

cally, they find a low correlation between their measure and centralization of employment.

Following Burchfield et al. (2006), this study utilizes data obtained from remote sensing

to construct a measure for urban sprawl. The benefits of using remote sensing data are
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twofold. First, they are consistent over great areas and over time, which enables the con-

struction of panel data with vast geographical coverage. Second, it is possible to measure

the expansion of the built-up area of cities directly. I measure residential patterns using

land use data and, by taking the average value across all residential cells within a metro

region, to construct an index for residential compactness. The first two characteristics of

sprawl, namely low population density and scattered development, are often found not to be

correlated with the second two characteristics, that is, separate land use and lack of street

accessibility. To distinguish the effects of these characteristics, instead of measuring the

ratio of open space in each cell’s neighborhood, I measure residential area and commercial

area separately. I also extend Burchfield et al. (2006) in both geographical and temporal

coverage and construct a panel dataset of 363 metropolitan areas for 1974, 1982, 1992, 2002,

and 2012. In the following, I explain the construction of residential compactness.

1.2.1 Residential Compactness

I use US conterminous NWALT, which gives a national 60-meter, 19-class mapping of

anthropogenic land use for five time periods. NWALT is compiled using existing data sources

including NLCD 1992, 2006, and 2011, the USDA Census of Agriculture, 1974–2012, and

Spatial Analysis for Conservation and Sustainability 1970–2000. Sprawl measure, which was

introduced by Burchfield et al. (2006), is the ratio of undeveloped cells in a neighboring

square of 1 square kilometer, centered at a residential cell, averaged over all the residential

cells across the MSA. In this study, I use the following procedure that involves assigning the

percentage of residential area around each residential cell (with a radius of 560 meter) and

then averaging over all the assigned percentages in MSA:

1. For every residential cell i ∈ Ik where Ik is the set of all the residential cells in MSAk,
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count all the residential cells in a circle with a radius of 1 kilometer around i:

Counti =
∑
j∈J

1[j = residential] ∀i ∈ Ik

where Counti is the total number of residential cells around residential cell i; 1[.] is an

indicator function that equals one if cell j in the neighborhood of residential cell i is

residential and zero otherwise; and J is the set of all cells in a circle (neighborhood)

with a radius of 1 km around residential cell i.

2. Divide Counti by the total number of cells in the neighborhood around cell i:

rci =
Counti
|J |

∀i ∈ Ik

where rci is the residential compactness ratio calculated for cell i, and |J | is the norm

of the set J .

3. Averaging all the rci’s in MSAk results in the residential compactness index for the

MSAk. To calculate the relevant measures of residential compactness as described, I

use ArcGIS software. Construction of the RCk for the Atlanta metro area is shown in

Figure 1.2a through 1.2c.

RCk =

∑
i∈Ik rci

|Ik|

The residential compactness RCk, is zero if there is an MSA in which for every residential

cell Ik, Counti is zero. In other words, there is no other residential cell in a neighborhood

of 1 kilometer radius. In contrast, if there is a MSA completely developed for residential

use, rci is one for every i ∈ Ik and by construct, RCk = 1. This reflects the highest level of

residential compactness.
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1.2.2 MSA Center

To identify an urban area, I need to define the center of each MSA, assuming there exists

only one and unique center around which the city is developed. This follows on from the

traditional monocentric urban model first introduced by Alonso (1964) and developed by

Wheaton (2006), among others. I set the center of the city as the CBD. Using the same

procedure as residential compactness, I introduce the Commercial Accessibility measurement.

This measurement calculates the percentage of the commercial area around each residential

cell (with a radius of 5 km) and then takes the average over all the residential cells for each

MSA. This Measure captures the separate land use or employment accessibility that Both

Galster et al. (2001) and Burchfield et al. (2006) find nearly uncorrelated with the residential

distribution indexes which are designed to measure the sprawl. The procedure follows:

1. For every residential cell i ∈ Ik where Ik is the set of all the residential cells in MSAk,

count all the residential cells in a circle with a radius of 5 kilometer around i:

Counti =
∑
j∈J

1[j = commercial] ∀i ∈ Ik

where Counti is the total number of residential cells around residential cell i; 1[.] is an

indicator function that equals one if cell j in the neighborhood of residential cell i is

residential and zero otherwise; and J is the set of all cells in a circle (neighborhood)

with a radius of 5 km around residential cell i.

2. Divide Counti by the total number of cells in the neighborhood around cell i(radius of

5 km):

cai =
Counti
|J |

∀i ∈ Ik

where, cai is the commercial accessibility ratio calculated for cell i, and |J | is the norm

of the set J .
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3. Averaging all the rci’s in MSAk constructs the commercial accessibility measure for

the MSAk.

CAk =

∑
i∈Ik rci

|Ik|

To calculate the relevant measures of commercial accessibility as described, I use Ar-

cGIS software. Construction of the CAk for Atlanta Metro area is shown visually in

Figure 1.2d

I define CBD as a point with the highest commercial accessibility (CAk) ratio in each MSAk.

The position of the MSA center plays an important role in my analysis because it determines

which weather stations belong to the inner city area and which weather stations can be

considered outer city. Figure 1.3a and 1.3b show how construction of inner city and outer

city regions takes place.

1.3 Estimation

1.3.1 Identification Strategy

To identify the effect of horizontal urban development on inner city temperature, one has

to take into account the reverse causality problem that emerges when temperature change

in the inner city or suburb affects an individual’s decision to relocate in or out of the city

center. To detect the causal effect instead of the correlation structure I use the development of

highways in the United States as an exogenous intervention or policy change. In their land use

model, Alonso (1964) suggest households consider a combination of rent and transportation

costs as the price of housing. Hence the development of highways should shape new suburbs

as households decide to relocate and optimize their utility. However, the development of

highways can be used as an intervention that affects residential compactness, only if it is

exogenous. Following Baum-Snow (2007) and Duranton et al. (2014), it can be argued that

since the development of new highways was based on national defense and trade needs,
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(a) NWALT Data ( 60m × 60m cells) (b) Metro Area

(c) Residential density pattern (d) Commercial density pattern

Figure 1.2: Construction of Residential Compactness and Commercial Accessibility ratios
for Atlanta metro area
Source: Author’s Calculation using NWALT Data and ArcGIS

National 60-meter, 19-class mapping of anthropogenic land uses, with each 60m × 60m cell have a value

that corresponds to a certain classification. In particular it allows to identify residential and commercial

land use. Shown in each figure is an enlarged section of the raster data. More information on classes and

subclasses can be find in Falcone (2015). (a) For each residential cell flagged by the land use data (black cell

in center of circle in figure), I divide number of residential cells in the neighborhood within 560 m radius

by the total number of cells in the neighborhood to get the percentage of residential cells. This ratio then

is assigned to each residential cell. (b) This Figure shows Atlanta Metropolitan area featuring 19 class land

use. Metropolitan Statistical Area (MSA) lines are depicted for the MSA by merging MSA vector data

and NWALT. (c) This figure shows the residential ratio in neighborhoods of each residential cell. Lighter

areas show more compact residential neighborhood relative to darker ones. (d) This figure shows spatial

distribution of the commercial accessibility in Atlanta MSA. For each residential cell flagged by the land use

data, I have count number of commercial cells in the neighborhood with 5 km radius, and divide it by the

total number of cells in the neighborhood to get the percentage of commercial cells in neighborhood. This

ratio then is assigned to the each residential cell. The Lighter areas show higher commercial accessibility

relative to darker ones.
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(a) Central business district (b) City bound

(c) Locating the weather stations on the map

Figure 1.3: Finding Central Business District (CBD) and setting the city bound
Source: Author’s Calculation using NWALT Data and ArcGIS

(a) I define CBD as the center of the most concentrated circle with 5 km radius in each MSA (residential

cell with highest commercial accessibility). This provides me with a monocentric city within each MSA. (b)

This figure shows a ring around each CBD as the inner city. (c) Combining the map of the inner city bounds

with the weather station coordinates, and utilizing the data from the vector MSA, NWALT and GSOD, I

can locate the stations, in the neighborhood of each MSA center.
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requiring the shortest possible distance to connect MSA centers, its map is not based on

household preferences.

1.3.1.1 Trend Analysis

The first step to evaluate the temperature change in urban and non-urban area is to

establish if there is a trend. One approach is DiD, which is developed from the randomized

controlled trial (RCT) literature. The first interstate highway plan was completed in 1974

and the last in 1992. The remote sensing data go back to as early as 1972 (wave 1) and

temperature data are sparse for the years before 1970. Hence, I use 1970 as the first period.

Since development of highways continuously changes, I do not need to use pre/post periods.

In fact, one can compare any two points in time as different levels of development of highways

provide continuous DiD 3. I use Wave 4 (years 2000 to 2004) as the final period using

this approach. This allows households to relocate after completion of highways in Wave

3 (1990–1994). I compare outcomes in each city center to a region close enough to MSA

center so that it reflects the MSA’s characteristics but is not affected by the development of

highways and urban development. consequently, I estimate the following regression model:

Yit = β0 + β1Postit + β2Centerit + β3PostitCenterit +Xitβ4 + εit (1.1)

where Yit is the outcome for MSA i at period t (1972-1976, and 2000 - 2006), Postit refers to

a dummy indicating one if it is post-intervention and zero otherwise; Centerit, determines if

the observation belongs to MSA center or the control group (MSA surrounding area). The

DiD coefficient is β3 which compares trends in the city center relative to outskirts. I control

for other characteristics by Xit which is a vector of time-varying, MSA-specific variables.

Lastly, εit is a gaussian error that enables the utilization of simple OLS for this regression.

3 This approach has been utilized by Acemoglu et al. (2004) among others.
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1.3.1.2 Instrumental Variable

As discussed in the previous section, highways are likely to affect sprawl as a consequence

of decreased transportation costs. This insight is based on the theory, developed by Alonso

(1964), for land use. If transportation costs decrease, then demand for space in the sub-

urbs relative to central cities increases. In Baum-Snow (2007) the hypothesis that highways

contribute to growth in the suburbs as opposed to the central city is empirically tested. As

noted by Baum-Snow (2007), in testing such a hypothesis, one might be concerned about

reverse causation if urban patterns affect the location of highways. To address this concern,

Baum-Snow (2007) and Duranton et al. (2014) use the national plan of highway routes pro-

posed in 1947 as an instrument for highway rays. Since the planned portion of the interstate

highways was required to serve national defense and trade goals, the number of rays in the

1947 national plan is a valid source of exogenous variation in highways. According to a press

release issued by the Public Roads Administration in 1947, the interstate plan was designed

to connect principal metropolitan areas, cities, and industrial centers by routes as direct as

practicable to serve the national defense and to connect suitable border points. The authors

of Baum-Snow (2007) used the highway plan as an instrument for highways and found a

causal connection between highways and sprawl. Continuing along this line of reasoning, as

the planned portion of highways affects sprawl and the scatteredness of residential distribu-

tion, and residential distribution affects temperature, I test the null hypothesis of no causal

effect of sprawl on the temperature of the MSA’s center by instrumenting for residential

distribution. Hence, cutting out the middle step, I use the planned portion of highways as

an instrument for sprawl in causal analysis of the effect of sprawl on UHI. I calculate the

time series of rays by multiplying the number of rays in the 1947 plan and the fraction of

federally funded highway mileage in the 1956 Federal Aid Highway Act completed at each

point in time. For the first stage in my two-stage IV, I have:

RCit = α + βP lannedHWit + θZit + di + εit, (1.2)
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where RCit is residential compactness; Zi is the vector of control variables; di is MSA-

specific fixed effects that point out the utilization of panel data; and PlannedHWit is the

planned portion of interstate highways. Note that I use planned portion of highways instead

of completed portion following Baum-Snow (2007), to control for reverse causality between

completed highways and residential distribution through MSA as it may affect completion

speed and allocation of funds. After the first stage, I use predicted values of the measure of

residential compactness in the second stage:

Yit = δ + θ ˆRCit + λZit + eit, (1.3)

where Yit represents an environmental variable (temperature for the main analysis) such as

the annual mean temperature of the MSA center.

1.3.1.3 UHI Model

There has been much emphasis on observing the level and change in the magnitude of

UHI and factors that contributed to this phenomenon trough time. In the previous section,

I discussed the Impact of Urban sprawl on urban and rural areas separately. To examine

the Impact of Sprawl on UHI directly, I integrate the IV and DiD strategies. I assume that

the temperature of the surrounding areas of the MSA center is a control for the temperature

of the inner city for each MSA. Since the distance between the inner and surrounding areas

is relatively short, the control group can reflect the same unobserved heterogeneities of the

inner city area. For the second difference, I exploit the exogenous variations by my IV,

planned highway’s ray. Assuming that the planned portion of highways exogenously affects

residential compactness, I have a policy change (exogenous variation) for each MSA-year

and hence can employ the continuous DiD identification strategy for every wave in my panel

(instead of only two waves in continuous DiD). The combination of IV and continuous DiD

adds to the identification power by the factor of the number of MSAs, multiplied by the

number of waves. This is due to the fact that each MSA receives different doze of treatment,
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which increases the verifiable domain of the treatment (instead of only binary limits of no

treatment and full treatment). However, to make sure the two identification strategies (IV

and continuous DiD) work in accordance with each other, exogenous variation from IV should

not affect my control groups (temperature of surrounding areas). The combination of IV and

DiD also allows me to exploit the panel data features to control for individual fixed effects.

The MSA fixed effect can provide some degree of identification power due to the fact that

it reduces the chance of unobserved heterogeneity bias. In other words, if there is a fixed

characteristic associated with an observation (e.g., elevation), I do not need to control for it

since it is reflected in MSA fixed effect. Other characteristics that are variable through time

can be controlled by the continuous DiD setup, where I have a control observation for each

inner-city point in time. The first stage of the two-stage panel IV is the same as the first

stage of the two-stage IV, which was explained previously:

RCit = α + βP lannedHWit + θZi + di + εit, (1.4)

where the definitions of the variables are the same as they are in equation (2). In the second

stage, instead of using the temperature of the inner city or the MSA’s center, I use the

difference between the temperature of the MSA’s center and its surrounding area, or the

treated and control group. The definition of these groups is the same as that explained in

the continuous DiD section. Thus, the second stage of the two-stage IV is:

∆(Yit) = δ + θ ˆRCit + λZi + eit, (1.5)

Here, ∆ refers to the difference between interested outcome in and out of the MSA’s

center. Since the main focus of this study is to address the UHI effect, I continue using

temperature as the outcome Y . The setup here allows for the panel regression techniques

such as first difference and fixed-effect, where both of them help to control for individual

unobserved heterogeneities.
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1.4 Data

1.4.1 Temperature Data

I use Global Summary of the Day (GSOD) data for years 1972–1976, 1980–1984, 1990–1994,

2000–2004, and 2010–2014 (25 years) to calculate the desired statistics such as annual and

seasonal average temperature. GSOD data provide 18 surface meteorological elements which

are driven using hourly observations from USAF DATSAV3 surface data and federal climate

complex Integrated Surface Data (ISD). Historical data are available from 1929, but the

quality of the data are better after 1973, in terms of the number of stations and the aver-

age number of reported days per station. To make a daily observation, a minimum of four

observations are needed for the day. Thus, for station-days with less than four observations,

GSOD reports are missing. Other causes of missing observation are data restrictions or

communication problems. For this study, I use only one year (1972) from the earlier part

of the GSOD with less quality. For the year 1972, I only observe 53 stations, in contrast to

an average of 394 stations per year in later years. The total number of weather observatory

stations I observe is not constant through time because a station can stop working for some

years. I include a station-year in my data if it occurs inside a MSA boundary for that par-

ticular year. The number of stations included in the data and their changes are summarized

in Table 1.1. For years after 2010, the number of stations increases from 394 to 900 on

average. Also, for every station-year that is available, weather information for 340 days is

reported on average. I use all the available data, which total 4,228,407 station-days. Then

for each station, I compute statistics such as annual and seasonal mean, standard error, and

maximum and minimum temperature.

1.4.2 Assigning Temperature to MSA Center

As mentioned before, temperature data are station-year specific, and I need a method

to assign the acquired temperature from a station to a particular MSA center. Taking the
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Table 1.1: Availability of the weather stations in GSOD data

Year Total Stations Total Station-Days Average Days per Station

1972 53 19,063 359.68
1973 380 131,430 345.87
1974 381 132,380 347.45
1975 406 135,461 333.65
1976 417 141,561 339.47
1980 448 148,988 332.56
1981 448 147,603 329.47
1982 445 145,624 327.24
1983 452 147,706 326.78
1984 453 149,142 329.23
1990 464 152,433 328.52
1991 448 148,905 332.38
1992 448 147,864 330.05
1993 444 148,687 334.88
1994 434 146,490 337.53
2000 322 113,680 353.04
2001 330 114,075 345.68
2002 339 116,707 344.27
2003 341 118,020 346.1
2004 417 142,249 341.12
2010 942 325,056 345.07
2011 911 320,713 352.05
2012 904 320,319 354.34
2013 881 307,766 349.34
2014 863 306,485 355.14

Number of weather stations, available in the data and their changes through the study
period.

MSA center’s geographic coordinates (latitude and longitude) by the construction explained

in Section 2, and coordinates of the stations from GSOD data, I can calculate the distance

between every station/center pair. For this purpose, I use a planar approximation and

limit the distances to less than 250 kilometers. Two deficiencies of planar approximation

are where approximation is not exact. This occurs first when the distance between two

points is very long and, second, when one or both points are close to the geographic pole.

I do not have the second problem since the northernmost latitude in the contiguous United
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States is 49.38407◦N. Also, limiting the search area to a circle of 250 kilometers solves the

first problem. I project the latitude and longitude coordinates onto a plane assuming the

spherical earth, using the following formula:

Dijt =

√
((cos

π

180
yit)× 111.321×∆xijt)2 + (∆yijt)2 (1.6)

where xi t and xj t are the longitude of MSA center i, station center j, in period t, in

degrees, and yi t and yjt are latitudes in degrees. Then, the distance between MSA center i

and station j is calculated in kilometers (Dijt). Also, the formula corrects for the variation

in distance between meridians (longitudes) with latitude. This problem occurs when the

distance between two points on two different longitudes and on the same latitude shrinks as

we get closer to one of the poles and further from the equator. This formula also helps us

to avoid the computational burden caused by assuming a non-spherical earth in the other

formulae. With the distance in kilometers between the MSA center and all stations in a

radius of 250 kilometers, I calculate the average temperature of stations that are in a circle

with a particular radius r, centered at the MSA center:

¯IBTit|r =

∑
j∈Ji|r cjt

|Ji|r|
(1.7)

where ¯IBTit|r is the average temperature assigned to the MSA center i in period t, using

radius r, and is called inner bound temperature (IBT); cjt is the seasonal or annual statistics

related to temperature (mean, max, min) in station j and time t; Jir is the set of all stations

in the radius r of MSA center i and |Jir| is the norm of the set Jir.

To analyze the UHI effect, I need to assign another temperature to the area around the

MSA center that represents the suburb of the center. I call this second temperature the

outer bound temperature (OBT). I calculate the OBT using:

¯OBTit|rR =

∑
j∈Ji|rR cjt

|Ji|rR|
(1.8)
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where ¯OBTit|rR is the mean temperature of the stations in the surrounding areas of MSA

center i,at time t, using an inner radius of r and outer radius R; Ji|rR is the set of all stations

located in distance between r and R to the MSA center; cjt is the temperature of center j

at time t and |Ji|rR| is the norm of the set Ji,rR. Figure 1.3c shows the location of weather

station relative to metropolitan area for the data sample.

1.4.3 Setting Bounds

The MSA is a geographic area with high population concentrated at its core and sur-

rounding areas with economic ties to the core. A MSA requires a Census Bureau urbanized

area of at least 50,000 population. This definition can result in an enormous heterogeneity

among MSAs. Furthermore, one particular MSA might grow or diminish in size through

time. As a result, using only one fixed inner radius r and outer radius R for all MSAs

might be problematic due to the urbanized area differences between small and big MSAs

and through time for one specific MSA. I approach this problem by introducing flexible

bounds that involve assigning the radius rit and Rit to different MSAs in different periods.

I define both radii rit and Rit as a function of the total number of residential land cells

(TRLCit) in each MSA i at time t:

rit =

√
TRLCit

π√
TRLCF

π

rF

, Rit =

√
TRLCit

π√
TRLCF

π

RF

(1.9)

The formula considers the fact that since TRLC is the area of residential land, the radius

can be calculated from TRLC using the formula for the circle area (Area = π × r2). Then

this radius, which represents the numerator of both formulae above, is adjusted by the scaling

parameter in the denominator:

√
TRLCF

π

rF
,

√
TRLCF

π

RF

(1.10)

20



Both are calibrated from the average of the LCit , rit and Rit of the MSAs with distinctive

inner and outer radiuses. I calibrate them using the numbers, as shown in Table 1.2. While

the numerator of the functions allows for variations in bound between MSAs with varied

sizes, the denominator scales the bound to an agreeable size.

For the fixed bound scheme, I use the radius suggested by the flexible scheme formula

Table 1.2: Calibrated values to being used in flexible bound scheme

TRLCF rF RF

800000 50 150

for the first period that MSA is observed and then keep the radius constant through time.

This allows me to reduce the heterogeneity between MSAs, but changes through time are

not reflected by this fixed measure.

1.5 Estimation Results

In this section, I discuss the results for both schemes: fixed and flexible bounds. I follow

each with a sensitivity analysis.

1.5.1 Fixed and Flexible Bounds

The first step to examine the change in temperature or any other attributes of the urban

areas and the role of sprawl in it is to define the Urban area and the rural surroundings

carefully. As explained in section 1.4.3, this study employs bounds to distinguish between

urban areas (in-bound) and surrounding rural areas (out-bound). Each bound’s radius is a

function of the MSA’s residential counts. In a fixed bound scheme, this residential count is

fixed at the level when the MSA is observed for the first time in the data (1972). Whereas,

the flexible bounds are updated by residential count of MSAs in each wave.

Fixed bounds provide more intuitive interpretation of the results as geographical boundries

of each MSA are fixed through time. On the other hand, flexible bounds are more responsive
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to the changes in urban structure and hence, better reflect the concept of the urban areas

and cities. That is, when residential areas spread from the edges of cities, previously rural

(surrounding) areas become part of the urban area. In the flexible bound scheme, we ad-

dress this issue by adjusting the city boundaries. However, while the flexible bound scheme

provides a more stable and reliable distinction between rural area and it’s surroundings,

interpretation of the results produced using this scheme is more difficult. Note that in the

flexible bound scheme, urban area is not attached to a specific geographical area, and both

in-bound and out-bound regions may expand or shrink in time to reflect the city boundries.

In Figures 1.4a and 1.4b distribution of distance from MSA center to the centroid of

the weather stations are shown for fixed and flexible schemes respectively. Comparing two

schemes, the distribution of in-bound and out-bound intersect in flexible scheme, while they

are relatively separated in fixed scheme. This is due to the growth in some of the MSAs

that increases their in-bound radius in the flexible scheme. This stretch in distribution is

more apparent when comparing Figures 1.4c and 1.4d. Figure 1.4e and Figure 1.4f show

that even though a flexible scheme allows for stretching of the bounds, the overall shape

of the distribution of the distance between in bound and out bound is preserved, except

for the far right tail of the distribution. Finally, to achieve a better grasp of the changes

through time, Figure 1.5a provides growth of the inner-bound radius for a selected group of

major cities/MSAs. While they all grow over time, New York grows the slowest and Atlanta

grows the fastest. This is partially due to the fact that New York was already developed

both horizontally and vertically and, hence, there is not much extra space for horizontal

development.

Since we are interested in determining the effect of residential compactness on the UHI

effect, it is vital to our analysis that there are enough stations in both, that is, in and outside

the bound. The number of MSAs with available data temperature outside the bound is 7842,

and those with available data for temperature inside the bound is up to 7234 observations

in 25 years. The number of MSAs with both inside and outside available temperature data
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(c) In/Out correlation (fixed bound)
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(d) In/Out correlation (flexible bound)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Fr
eq

ue
nc

y

50 60 70 80 90 100 110 120 130
Radius Distance between Outbound and Inbound

(e) In/Out distance (fixed bound)
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(f) In/Out distance (flexible bound)

Figure 1.4: Average distance from MSA center to inner city and outer city weather station
Source: author’s calculation using NWALT data and GSOD

(a-b) Distribution of the average distance from MSA center to the inner city and outer city stations, for all

the MSA-years. Dashed line shows the distribution of the average distance from MSA center to the weather

stations located inside the city bound and solid line is the distribution for the stations located in outer city

bound. (a) Fixed bound. (b) Flexible bound

(c-d) The scatter plot of all the MSA-yeras, where horizontal axis measures the distance from MSA center

to the outer city stations and vertical axis shows the distance from MSA to inner city stations (c) Using

fixed bound, positive correlation pattern appears as expected. It is due to (d) Flexible bound incorporates

more stations and MSA-years into analysis.

(e-f) Distribution of the average difference between the inner city and outer city weather station. (e) Fixed

scheme. (f) Flexible Scheme.
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sums to 6715, and over 25 years, it is approximately 268 MSAs per year. This number will

then be reduced when we incorporate the IV since IV is not available for all the MSAs.

Table 1.3 provides the average distance between existing stations outside and inside the 50

kilometer bound and CBD for all years.

Table 1.3: Number of MSA’s and average distance between center and In- and out-bound
stations

Number of MSAs Average distance

Inside the bound 7,234 24.98
Outside the bound 7,842 106.15

1.5.2 OLS Estimates

I use OLS estimator to identify the direction of the reverse causality later when I introduce

unbiased estimators. Table 2.16 shows that the increase in residential compactness from zero

to one (full-range jump in the RC ratio) reduces the annual temperature of the MSA center

by about 10 degrees Fahrenheit annually. This decrease in temperature is more severe during

winter and autumn. Residential compactness is moving against residential scatteredness or

sprawl and hence, the negative correlation is in accordance with the UHI hypothesis. OLS

is a biased estimator, suffering from different types of endogeneities. Reverse causality bias

channels the effects from the temperature of the MSA center to residential compactness by

affecting household preferences and hence, their decision to relocate to the suburbs or the

city center. While factors such as gasoline price may discourage households from moving

away from business centers (MSA center), other factors such as avoiding crowded places and

possible lower utility prices may encourage them to relocate to the suburbs.
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Figure 1.5: MSA size and Residential Compactness
Source: author’s calculation using NWALT data and ArcGIS

(a) Time series of the inner radius, associated with the selected big cities in U.S. from 1972 to 2014, using

flexible bound. Atlanta shows highest increase in the inner radius, reflecting the fast rate of transformation

in the type of land use, to residential use, and growth in the city limits. (b) Changes in the measure of

residential compactness for sample of MSAs for the big cities in the U.S. Atlanta experiences the most radical

drop in the residential compactness. Meaning that sprawl/scatteredness rate has been increased in Atlanta

MSA.
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Figure 1.6: Movements of the temperature in time (Fixed bounds)
Source: author’s calculation using NWALT data and ArcGIS

Seasonal average of the daily mean temperature is shown for inner and outer city bounds. Temperature of

the inner city bounds are on average higher than outer city bounds. The irregularities are due to the fixed

bound scheme that does not allow for change in bounds and hence, MSAs which are developing horizontally

add to the outer bound temperature and make the inner city and outer city temperatures more similar.
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Figure 1.7: Movements of the temperature in time (Flexible bounds)
Source: author’s aalculation using NWALT data and ArcGIS

Seasonal average of the daily mean temperature is shown for inner and outer city bounds. Temperature of

the inner city bounds are on average higher than outer city bounds. Since, flexible scheme is used, the results

are more consistent with the expectation and temperatures in and out of the city bounds are consistently

different.
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Table 1.4: OLS results of the effects on mean Temperature

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -9.771∗∗∗ -10.749∗∗∗ -9.526∗∗∗ -9.306∗∗∗ -11.134∗∗∗

(1.36) (1.92) (1.21) (1.07) (1.50)

Wind Speed -0.055∗∗∗ -0.088∗∗∗ -0.041∗∗ -0.030∗∗ -0.067∗∗∗

(0.02) (0.03) (0.02) (0.01) (0.02)

Population 0.478∗∗ 1.327∗∗∗ -0.375∗ -0.466∗∗ 0.984∗∗∗

(0.24) (0.33) (0.21) (0.18) (0.26)

N 3,063 3,100 3,100 3,099 3,097

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -9.064∗∗∗ -11.398∗∗∗ -8.554∗∗∗ -8.727∗∗∗ -11.465∗∗∗

(1.36) (1.89) (1.19) (1.06) (1.47)

Wind Speed -0.034∗ -0.087∗∗∗ -0.003 -0.002 -0.056∗∗∗

(0.02) (0.03) (0.02) (0.02) (0.02)

Population -0.108 0.165 -0.643∗∗∗ -0.577∗∗∗ 0.177
(0.23) (0.31) (0.19) (0.17) (0.24)

N 2,921 2,994 2,994 2,993 2,992

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

1.5.3 Correction for Unobserved Fixed Heterogeneity

One important source of endogeneity is unobserved heterogeneity. This problem can be

reduced considerably by employing panel data and estimation techniques that drop fixed

individual heterogeneity in the process of estimation and reduce unobserved heterogeneity

bias to the individual, time-varying factors that are not orthogonal to the error term. I utilize

the fixed-effects panel estimation method that assumes Gaussian error structure and cancels

out individual fixed effects. Table 1.5a shows the same results as in the previous section and

instead of simple OLS coefficients, it reports fixed-effects coefficients. The overall annual
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effect is less negative compared to the OLS estimation. This suggests that MSA-specific

features such as elevation could explain a considerable portion of the observed correlation

between residential compactness and the temperature of the MSA center, and controlling for

them increases the effects, in particular, seasonal coefficients.

Table 1.5: FE OLS results of the effects on mean Temperature

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -4.705∗∗∗ 6.331∗∗∗ -13.388∗∗∗ -6.805∗∗∗ -3.059∗

(1.24) (1.72) (1.09) (1.47) (1.57)

Wind Speed 0.030∗∗∗ 0.012 0.032∗∗∗ 0.023∗∗ 0.021∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.215 -0.285 -0.257 -0.313 -0.057
(0.19) (0.25) (0.16) (0.21) (0.23)

N 3,063 3,100 3,100 3,099 3,097

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -3.495∗∗∗ 6.176∗∗∗ -11.765∗∗∗ -5.512∗∗∗ -2.770∗

(1.23) (1.67) (1.06) (1.44) (1.56)

Wind Speed 0.019∗∗∗ 0.005 0.019∗∗∗ 0.019∗∗ 0.009
(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.191 -0.376 -0.310∗ -0.322 -0.072
(0.20) (0.26) (0.17) (0.23) (0.24)

N 2,921 2,994 2,994 2,993 2,992

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

1.5.4 Trend Analysis Results

Focusing on the reverse causality bias, the DiD estimator is appealing. However, it does

not account for unobserved heterogeneity and requires further investigation. Table 1.6a

shows the DiD estimates for the fixed bound scheme. At first glance, it is noticable that the
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DiD coefficients are all positive (unlike the previous RC coefficients). This is due to the def-

inition of DiD and what it encapsulates. DiD setup here compares in-bound and out-bound

averages for the pre- and post-intervention periods while taking into account some observed

heterogeneities. Intervention here is a development of US federal highways, which stimulate

sprawling. Since sprawl and residential compactness move in opposite directions, a positive

DiD coefficient is consistent with the previous results. Also, note that the coefficients for

winter and autumn are closer to zero but not negative. The annual MSA temperature is

positively and statistically significantly affected by the growth in sprawl or the reduction in

residential compactness. Comparing DiD with fixed-effects estimates, it is likely that differ-

ent biases are not completely opposing each other, and their combination may exacerbate

the effects. Unconditional average effects are shown for the interaction of the control/treated

and the pre/post groups in Figures 1.8a and 1.8b, which respectively show the results for

fixed and flexible schemes. As is apparent, while the average of the treated distribution

moves to the right after intervention, for the control group this movement is slightly to the

left and hence the overall DiD is positive. Also noticeable is the bi-modal distribution of each

group that suggests non-linearity in the effects and possible improvement in DiD precision if

two different DiDs are calculated for warmer and colder MSAs. The flexible bound scheme

increases the unconditional DiD effect but is very close in shape to the distributions in fixed

bound scheme.

1.5.5 The Impact of Sprawl on Surrounding Urban Area Using Instrumental

Variable

With panel data, the IV method can in theory address both reverse causality and unob-

served heterogeneity concerns. Borrowing the predicted values of highways from Baum-Snow

(2007), and using them as an instrument for the constructed RC (changes in the opposite

direction of sprawl), I address the reverse causality problem. Furthermore, having longitu-

dinal data, I control for the MSAs’ fixed effects and address the endogeneity issue due to
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Table 1.6: Diff-in-Diff effects on mean Temperature

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

DiD 0.421∗ 0.142 0.284 0.498∗∗ 0.211
(0.24) (0.36) (0.22) (0.22) (0.33)

Treatment 0.039 0.107 0.051 -0.183 0.076
(0.17) (0.26) (0.16) (0.16) (0.24)

Post 0.144 -0.777∗∗∗ 0.794∗∗∗ 0.283∗ 0.523∗∗

(0.17) (0.26) (0.16) (0.16) (0.24)

Latitude -1.448∗∗∗ -2.018∗∗∗ -1.329∗∗∗ -0.943∗∗∗ -1.547∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.02)

Wind Speed -0.055∗∗∗ -0.168∗∗∗ 0.004 0.063∗∗∗ -0.093∗∗∗

(0.02) (0.03) (0.02) (0.02) (0.03)

N 2,767 2,763 2,765 2,766 2,766

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

DiD 0.294 -0.075 0.239 0.403∗ 0.010
(0.25) (0.37) (0.23) (0.23) (0.33)

Treatment 0.054 0.128 0.052 -0.174 0.117
(0.18) (0.27) (0.16) (0.17) (0.24)

Post 0.213 -0.647∗∗ 0.806∗∗∗ 0.356∗∗ 0.679∗∗∗

(0.18) (0.27) (0.17) (0.17) (0.24)

Latitude -1.444∗∗∗ -2.016∗∗∗ -1.323∗∗∗ -0.943∗∗∗ -1.546∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.02)

Wind Speed -0.057∗∗∗ -0.167∗∗∗ 0.008 0.071∗∗∗ -0.097∗∗∗

(0.02) (0.03) (0.02) (0.02) (0.03)

N 2,735 2,732 2,731 2,731 2,733

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

Effect of change in residential distribution and urban development on the Temperature of MSA’s center.
Difference in Difference method is based on Wave 1 (1972-1976) as pre-intervetion period and Wave 4 (2000-
2004) as post-intervention. DiD coefficient reflects the causal effect and is statistically significant for Annual
temperature, showing due to changes in sprawl patterns (horizontal development of cities) temperature of
MSA’s center is raised by 0.625 degree Farenheit. It also shows most of the effect is through the changes in
temperature during Spring and Summer time. Validity of DiD results are based on strong assumptions of no
unobserved heterogeneity bias and single treatment in long period of time (a) Control group is constructed
to be the surrounding areas of the MSA center, fixed in time. (b) Robustness check of the results shown in
Table 1.6a, using flexible bound scheme. Control group is constructed to be the surrounding area that varies
depending on changes in residential distribution to reflect changes in city boundaries (flexible scheme).
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(b) Flexible bounds

Figure 1.8: Distributional effect of Treatment and Time in DiD
Source: Author’s Calculation using Difference in Difference method

(a-b) Unconditional distributions of Treatment and Time dimensions are presented. . (a) Using the fixed

bound scheme, it shows the average of the treatment group increases (moves to the right), while the average

temperature of the control group decreases (moves to the left). (b) Like fixed bounds, the effect of treatment

is exacerbated by time in flexible bound scheme.
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the fixed and unobserved heterogeneities. As a result, this analysis is less likely to suffer

from various sources of endogeneities, and the estimation results are more likely to reflect the

causal effects of sprawl on the UHI effect. However, if the utilized instrument affects outcome

directly, or in the presence of a weak instrument with low correlation with the endogenous

variable (residential compactness), the results are not reliable and may suffer from grasping

spurious relationships and reflecting overall data trends as causal relationships.

Table 1.7: F-stat of First stage of IV

(1) (2) (3) (4)
Fixed Bound Flexible Bound Fixed Bound(FE) Flexible Bound(FE)

Coefficient -0.072 -0.070 -0.038 -056

SE 0.002 0.002 0.004 0.007

F 715.223 596.550 124.903 117.947

First-stage F-statistics is conducted to show the validity of the second requirement for IV.

Table 1.8a shows the effect of residential compactness on the temperature of the urban

area using the IV of planned highways, and MSA fixed effects using fixed bounds. The

estimation includes all the observations for all four waves and 20 years (1972–2004). The IV

estimates should be compared with both the fixed-effects estimates and DiD, as IV incor-

porates advantages of both methods. The IV effects are much larger than those calculated

using fixed-effects estimation.

Since, compared with the fixed-effects method, IV is expected to reduce the reverse

causality problem, an increase in effects suggests that two endogeneities (reverse causality

and unobserved heterogeneity) are complementary and working in the same direction. That

is, since after controlling for endogeneity the effects are increasing, the nature of reverse

causality and unobserved heterogeneity is to reduce the observed effects and hence correla-

tions do not show the severity of the effect. Table 1.8b shows the same result for the flexible
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Table 1.8: IV effects on mean Temperature of urban area

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -30.996∗∗∗ 8.791 -41.833∗∗∗ -48.758∗∗∗ -37.801∗∗∗

(8.83) (11.19) (7.87) (10.89) (11.08)

Wind Speed 0.018∗ 0.014 0.019∗∗ 0.004 0.005
(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.730∗∗∗ -0.240 -0.774∗∗∗ -1.076∗∗∗ -0.688∗∗

(0.26) (0.32) (0.22) (0.31) (0.32)

N 3,063 3,100 3,100 3,099 3,097

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -23.788∗∗∗ 10.873 -39.478∗∗∗ -38.398∗∗∗ -33.640∗∗∗

(6.35) (8.18) (5.75) (7.69) (8.13)

Wind Speed 0.009 0.007 0.006 0.003 -0.006
(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.617∗∗ -0.286 -0.845∗∗∗ -0.957∗∗∗ -0.668∗∗

(0.25) (0.30) (0.21) (0.29) (0.30)

N 2,921 2,994 2,994 2,993 2,992

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

IV estimation on the Heat Island Effects for Waves 1 through 4 (1972-2002). RC (residential compactness)
coefficient shows the statistically significant causal relationship. Employed instrument is the planned
portion of highways. As development of highways motivates individuals to relocate to the new suburbs and
surrounding areas of the MSA center, scatteredness increases and residential compactness decreases. Hence,
negative coefficient of RC is in accordance with the Urban Heat Island effect hypothesis which predicts,
developing horizontal constructions increases the temperature of the central parts in cities. As residential
compactness decreases, temperature of the MSA center increases. IV estimates of the causal relationships
are significant for all seasons of year. However, for winter this relationship is positive and for autumn it is
less significant than spring and summer. Thus, IV estimates reflect what was produced by DiD estimates
and further, shows more extreme weather should be expected for the MSA centers during winter and
summer, as cities develop horizontally. (a) Results using the fixed Bound Scheme. (b) Results using flexible
bound scheme. These IV estimates of the causal relationships are significant for most of the seasons. They
are closer to DiD effects comparing with the IV estimates with fixed bounds. Like fixed bound scheme,
they show positive coefficient for winter but statistically insignificant. The effects are generally smaller than
those produced using same method and fixed bound scheme (Table 1.8a).
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Table 1.9: IV effect on mean Temperature of rural area (Control group)

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -7.183 21.802∗∗∗ -14.305∗∗∗ -14.401∗∗∗ -11.093∗

(5.24) (7.81) (5.48) (5.27) (6.44)

Wind Speed -0.007 -0.001 -0.010 -0.018∗∗ -0.015
(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.091 0.445 0.215 -0.036 0.099
(0.18) (0.27) (0.19) (0.18) (0.22)

N 3,672 3,670 3,671 3,671 3,667

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -7.510∗ 20.417∗∗∗ -17.490∗∗∗ -12.787∗∗∗ -14.456∗∗∗

(4.13) (6.10) (4.11) (4.12) (5.18)

Wind Speed -0.013∗ -0.006 -0.006 -0.015∗∗ -0.024∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.058 0.363 -0.005 -0.020 0.018
(0.18) (0.26) (0.18) (0.18) (0.22)

N 3,471 3,469 3,468 3,468 3,466

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

IV estimation on the temperature of the outer city areas for Waves 1 through 4 (1972-2002). It is expected
that sprawl has a less remarkable impact on the sounding area. RC (residential compactness) coefficients
show a statistically significant causal relationship within the warmer seasons. However, the overall effect is
insignificant. The employed instrument is the planned portion of highways. (a) Sensitivity analysis using
fixed bound scheme. (b) Sensitivity analysis using fixed bound scheme.
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bound scheme. The results in this scheme closely follow the results from the fixed scheme,

meaning flexible bounds do not deviate much from fixed bounds. The result confirm that

sprawl has a significant role in tempreture. The result confirms that sprawl has a significant

role in the rise of the temperature of urban areas.

1.5.6 The Impact of Sprawl on UHI

In the previous section, we discussed the impact of sprawl on the temperature around

MSA centers. However, sprawl may affect rural areas as well. Developing highways, even

in places where they do not stimulate residential relocation, may increase the temperature

by conducting traffic and industrial activities through surrounding MSA areas and, conse-

quently, affect the temperature of not only the MSA center, but the surrounding areas as

well. To examine this effect, I estimate IV coefficients for the temperature of the out-bound

areas.

The results for the fixed scheme are shown in Table 1.9a and those for the flexible scheme

are shown in Table 1.9b. These IV estimates indicate that the control groups (out-bound

areas) are affected by the exogenous changes in residential compactness in both schemes.

In other words, the instrument affects the outcome directly. However, comparing these

estimates with the IV estimates of the in bounds, it is obvious that the IV estimates of

the control group Tables 1.9a and 1.9b ) are much smaller than those for treated group

(Tables 1.8a and 1.8b). While an increase in residential compactness (opposite direction of

sprawl) does have a negative effect on all seasons except for winter, The overall impact is only

significant at 10 percent for the flexible scheme since the discretion of impact for winter has

a positive sign. However, In general, the magnitude of the coefficient is smaller than those

for urban areas, which means that sprawl indirectly affects the surrounding rural area but

to a lesser degree. The estimates show that growth in constructed residential compactness

has a negative and significant effect on temperature in all seasons. In other words, sprawl

significantly contributes to the rise of the temperature.
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Table 1.10: IV effects on UHI

(a) Fixed bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -30.933∗∗∗ -22.906∗∗∗ -36.559∗∗∗ -36.645∗∗∗ -27.219∗∗∗

(10.06) (7.09) (7.77) (10.37) (8.66)

Wind Speed 0.029∗∗∗ 0.015∗∗ 0.028∗∗∗ 0.013 0.014
(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.767∗∗ -0.814∗∗∗ -1.226∗∗∗ -1.118∗∗∗ -0.904∗∗∗

(0.30) (0.20) (0.22) (0.30) (0.25)

N 3,063 3,098 3,099 3,098 3,092

(b) Flexible bounds

(1) (2) (3) (4) (5)
TEMP(Annual) TEMP(Winter) TEMP(Spring) TEMP(Summer) TEMP(Autumn)

RC -21.825∗∗∗ -17.034∗∗∗ -27.156∗∗∗ -31.314∗∗∗ -17.563∗∗∗

(7.16) (5.18) (5.18) (7.44) (6.28)

Wind Speed 0.023∗∗ 0.019∗∗∗ 0.013∗∗ 0.018∗ 0.017∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Population -0.683∗∗ -0.726∗∗∗ -0.972∗∗∗ -0.984∗∗∗ -0.766∗∗∗

(0.28) (0.19) (0.19) (0.28) (0.23)

N 2,921 2,993 2,992 2,991 2,987

Standard errors in parentheses
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

Causal effect of vertical development of the urban areas on difference in temperature of innercity and
surrounding areas with MSA specific fixed-effect. This is to address UHI effect for Waves 1 through 4
(1972-2002). RC (residential compactness) coefficient shows the statistically significant causal relationship.
However, compared with IV with fixed-effect results, reported in Tables 1.9a and 1.9b, marginal effects
(RC coefficients) are smaller. Employed instrument is the planned portion of highways. As development of
highways motivates individuals to relocate to the new suburbs and surrounding areas of the MSA center,
scatteredness increases and residential compactness decreases. Hence, negative coefficient of RC is in
accordance with the Urban Heat Island effect hypothesis which predicts, developing horizontal constructions
increases the temperature of the central parts in cities. As residential compactness decreases, temperature
of the MSA center increases. (a) Results using the fixed Bound Scheme. (b) Robustness check using flexible
bound scheme.
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Table 1.10a and 1.10b reflect the effect of residential compactness on the urban heat

island effect by utilizing the difference between surrounding rural area and urban area as

outcome and following IV estimation with fixed-effects. Flexible bound scheme leads to the

smaller effects comparing to the fixed bound scheme. This can be due to the less tangible

definition of outer city in flexible bound scheme as the geographical area associated with the

control group moves in this scheme, and hence, coefficients are less substantial than those

in the fixed scheme. It also magnifies the problem of interpreting the flexible scheme results

that was discussed in Section 1.5.1. As an instance, the measure of residential compactness in

Atlanta changes from .0195 in 1972 to .0065 in 2014, which shows ∆RCAtlanta = −.013. Using

estimated coefficient of -30.933 for residential compactness in fixed bound scheme, I calculate

the UHI effect that is caused by the increase in scatteredness to be, E∆RC|1972−2014 ≈ 0.43◦F

which explains almost half of rising in the temperature during this period. The same effect

for flexible scheme is 0.28◦F .

1.6 Robustness Check: Subsample Estimation

The selection of the estimation sample is based on the rationale that MSAs that are al-

ready developed and very small MSAs do not contribute to any of the results. Figure 1.9a

shows the distribution of the residential compactness for each category of MSA size, divided

into four categories, approximately representing quartiles of MSA size distribution. It sug-

gests that relatively larger MSAs are more likely to be residentially compact, and hence it

is less likely for them to be developed.

Most of large MSAs are located by the sea and are at the intersection of major trade

routes, and hence the development of new highways is unlikely to affect them. On the

other hand, for the smallest MSA group, their residential compactness measure is relatively

smaller, suggesting that these MSAs are horizontally developed, and any development in

them is vertical. However, based on the sample, these MSAs do not reach the vertical

development level of the 50% middle MSAs by year 2014, which is the last year in the
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Figure 1.9: MSA size and Residential Compactness
Source: Author’s Calculation using NWALT data and ArcGIS

(a) Distribution of the adjusted measure of Residential Compactness is depicted for each category of MSA

area in 1950. While we might expect to observe negative relationship between area and Residential compact-

ness, positive correlation is apparent. It suggests, development of large MSAs has been happened before 1950

and by the time, large MSAs had been representing highly dense area, as is reflected in Residential compact-

ness. (b) Evolution of Residential Compactness in time for three categories of MSA sizes. Three categories

which are depicted, are associated with 25th, 50th, and 75th percentiles. Smallest category shows the fastest

increase in scatteredness (reduction in residential compactness) compared to the other two categories.
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sample. These smaller MSAs are also located near the sea, and it seems that excluding

either the MSAs near the sea or keeping the middle 50% leads to approximately the same

result. Figure 1.9b shows changes in the adjusted4 measure of residential compactness for

each of the three categories of the smallest 25%, the middle 50%, and the upper 25% MSAs.

Table 1.11 shows the result for subsample estimation.

Table 1.11: IV result of Effects on mean Annual Temperature for subsample of data

(1) (2) (3)
Inner city Outer city Difference

RC -13.153∗∗∗ -5.170 -12.183∗∗∗

(6.31) (4.26) (7.25)

N 3,063 3,672 3,063

Standard errors in parentheses
∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

1.7 Conclusion

While the rise in the temperature of cities has been triggered by global warming and

accelerated urbanization, not much is known about the causal effect of the different forms of

urban development on the environmental features of cities. In other words, questions such

as the environmental costs of vertical versus horizontal development of urban areas, or the

effect of sprawl on the UHI effect, are open empirical questions without a clear answer. To

provide clear and causal answers to these empirical questions, a range of issues needs to be

addressed, from the lack of a precise definition for sprawl to the endogeneity and difficulties

in defining the city horizon.

Accordingly, this study adopts the procedure developed by Burchfield et al. (2006) to

construct a new measure of sprawl. A comprehensive measure of sprawl in this study allows

for the incorporation of more MSAs and increases the statistical power of the tests. Also,

utilizing the stations’ information on the surface allows for detailed, daily aggregated surface

data, such as daily temperature, the dew point, and the wind speed.

4 Adjustment is to make a ratio from the count of the raster points each representing residential land and
total area in MSA.
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To address endogeneity, this study employs the IV method. It uses the planned portion

of state highways as an instrument for sprawl. This variable was first developed by Baum-

Snow (2007) as an instrument for interstate highways to study its impact on sprawl itself.

Also, to better track the problem, I construct a flexible bound scheme that can be used in

other studies where the entity under observation changes size through time, such as cities,

natural currents, and resources such as woods.

The result suggests that sprawl can be responsible for substantial rise in the UHI effect.

If we do not take into account the reverse causality, endogeneities can obscure the results

severely.

Several studies have discussed the impact of UHI on heat-related outcomes, such as energy

consumption and heath-related illnesses. However, further studies on the direct effects of

urban configuration and sprawl on such outcomes are needed. While this study’s focus is

temperature, it makes way for future studies by constructing a clear measure of sprawl and

combining it with an identification strategy that allows for multidimensional analysis of other

consequences of urban sprawl such as infrastructure costs, inequality, segregation, and public

health.

41



Chapter II

The Role of Labor Unions in Response to COVID-19

Pandemic

2.1 Introduction

This study investigates the role that labor unions, one of the largest institutions in the

United States, play in the spread of COVID-19.5 Person-to-person transmission in the work-

place is thought to play a crucial role in the spread of the virus. While a complete shutdown

of businesses is neither possible nor optimal for an extended period of time, in the absence of

a vaccine marginal alterations in work schedules and appropriate workplace safety measures

are vital to the success of efforts to control the spread of the virus. Unions play a role in

shaping and regulating employer–employee relations. The direction and significance of the

effect of unions on the spread of the virus, however, remains an empirical question. This pa-

per analyzes these effects by utilizing state-level data in the United States and by employing

a dynamic nonlinear probability model and method of moments (MM) estimation.

Freeman and Medoff (1984) distinguish between two dimensions of unions: the monopoly

face and the collective voice/institutional response face. Through their monopoly power,

unions can affect the spread of COVID-19 by imposing employees’ preferences through the

alteration of layoff patterns, compensation benefits, and work conditions. The collective

voice face, on the other hand, refers to the institutional impact of unions. Unions increase

communication between employees and employers and facilitate the preferences of each to be

revealed to the other. Preference revelation itself affects the level of economic activity and

safety regulations at the workplace. Also, since the safety provisions and working schedules

display characteristics of a public good, an adequate level may not be reached in an indi-

5 Around 11% of employees in the United States are represented by unions.
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vidual agreement between an employee and employer [Flanagan (1983)]. Noting the public

good’s aspects of the efforts to stop the spread of the virus, the collective voice face of unions

not only may impact the spread of COVID-19 through higher nonwage benefits for workers

which were supposedly shaped before the pandemic, but it can also play a role in adjusting

working conditions during the pandemic by both reflecting and enforcing the optimum level

of the costly efforts that satisfy the welfare function of union members.6

The present study utilizes lagged labor market data (to avoid simultaneity bias) and

provides new evidence of positive externalities for union employees compared with nonunion

employees. It suggests that increasing union size by 1,000 in the United States would lead

to approximately 110 fewer cases of COVID-19 11 months after the onset of the virus.7

Since we expect union members to have a more powerful voice than nonunion employees, if

there are inconsistencies between employees’ weights over consumption and health and those

of the government or firms, a comparison between unionized and nonunionized employees

reveals those inconsistencies. By utilizing this comparison, we also find evidence of better

optimization by unions rather than state or federal governments, emphasizing the role of

better information flows in smaller organizations with a powerful voice derived from collec-

tive bargaining power.

Uncovering the effect of unionization on the spread of COVID-19 contributes to the strand

of economic literature that studies the externalities of labor unions from the insider-outsider

point of view; this suggests that unions can help nonunion employees and the unemployed

by slowing the spread of the virus. Understanding the role organizations such as unions play

in efforts to prevent the spread of contagious viruses and helps to implement better policies

in response to possible future pandemics.

6 The International Union, United Automobile, Aerospace and Agricultural Implement Workers of America
(UAW) claims to monitor and assess the situation while engaging with workers to help address some of the
workplace issues that the COVID-19 crisis has presented. The statement is available at: uaw.org/coronavirus

7 The results can be translated to a 10% increase in unionization from 11% to 12.1% of the U.S. employed
wage and salary workers would lead to approximately 500,000 fewer cases of COVID-19 315 days after the
onset of the virus. The total number of cases at day 315 (end of November) is 13,534,334, which suggests
approximately a 3.7% decrease in total cases by the end of November 2020.
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The remainder of the paper is organized as follows. After describing the mechanisms

through which unions may affect the spread of the virus in section 2.2, in section 2.3 we

discuss the estimation method and the model employed. Section 2.3.2 discusses the identi-

fication strategy, and section 2.4 describes the data. Section 2.5 provides the results, and

section 2.7 concludes the paper.

2.2 Mechanisms

This section discusses the validity of the study’s question by analyzing how unions can

affect the spread of COVID-19. We investigate the possible effects of unions on the decision-

making process of individuals and firms facing the pandemic. The effects may vary depending

on the different union’s faces: monopoly face and institutional face. We further discuss how

unions can play a similar role to the government when protective measures in response to

COVID-19 reflect the public good’s characteristics. Lastly, we address different externalities

the union’s action may have.

Employees and firms (as economic agents) play an essential role in determining the trans-

mission rate of COVID-19 by making multiple work-related decisions. These decisions can be

broadly categorized into decisions about the level of safety measures and economic activity.

We expect that by reducing economic activity and increasing safety measures, the spread

of the virus will slow down. However, both measures are costly to agents. Also, at least

in the short term, there is a trade-off between the level of economic activity and occupa-

tional safety in the event of a pandemic. Hence, the level of restrictive measures should be

optimized, considering weights of consumption (employment) and health in employees’ and

firms’ utility and profit function, respectively. In the absence of unions, federal and state

governments are the only agents affecting economic agents’ decision-making processes. They

do this by setting social distancing restrictions and advising businesses on how to provide a

safe workplace. Unions as a form of collective bargaining in employer–employee relations (as

opposed to individual bargaining) can affect the rules and effectiveness of social distancing
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restrictions. The effect may vary depending on the monopoly power of unions and their

efficiency in revealing employers’ and employees’ preferences to one another.

Depending on the monopoly power they possess, unions affect the bargaining power of

their members (enforcement mechanism) and reduce information transmission costs (prefer-

ence revelation) between employers and employees [Boxall and Purcell (2011)]. They pro-

vide their members with better contracts thereby guaranteeing more job security and better

wages. Unions increase the probability of their members receiving employer-provided health

insurance [Buchmueller et al. (2002)]. Ninety-one percent of unionized workers can take

paid sick leave compared with 73% of nonunionized workers [Pizzella and Beach (2019)].

Unionized workers are slightly more likely to have paid leave, and their paid leave benefits

are significantly higher in dollar value [Mishel et al. (2012)]. Also, they are more likely to

receive employer-provided pensions and health insurance with a far larger impact on the

magnitude of benefit [Pierce (1999), Budd and Na (2000)]. Longitudinal studies also show

that a decline in union density explains approximately one-fourth of the decline in aggregate

health insurance and pension coverage [Bloom and Freeman (1992); Strombom et al. (2002)).

Since efforts to control the spread of the virus are costly for both employers and employees,

these factors may help union members to better protect themselves from contagious diseases

by shifting protection costs to firms (by utilizing medical services, decreasing work hours,

and increasing work safety measures while remaining employed).

With regard to the preference revelation mechanism, unions can affect protection levels.

Since information about an individual’s health is private, a lack of information prevents the

employer from reaching an optimal decision in terms of the level of job safety necessary for

operation. In such cases, an employer may ask its employees to attend an unsafe workplace,

or conversely, implement unnecessary regulations at work. Unions, in this case, increase

transparency by revealing employees’ health levels to the firm, and also by informing em-

ployees about their rights, their contracts, and the perspective of the whole industry. In the

absence of a union this information would be costly for employees to acquire. Thus, higher
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unionization levels can be helpful in controlling the contagious disease if unions inform em-

ployees about their rights, and this could lead to better workspace safety. In contrast, if the

union’s evaluation of the future of the industry is pessimistic, it can help union members

and employers to cooperate by attending a less safe workplace and keeping production costs

low, which leads to maintaining union members’ jobs and the firm’s profit currents. As a

result, unions can positively or negatively affect the spread of the virus from the perspective

of transparency and trust among employees and employers. Also, apart from the efficiency

of unions in revealing the employees’ preferences, unions, due to their collective voice na-

ture, can determine which employees’ preference being revealed to the employer. Freeman

(1981) suggests that unions reflect median voter preferences. While the median worker has a

higher demand for nonwage benefits, nonunionized firms provide compensation in the form

of bonuses to the marginal worker.

Considering that in the case of a contagious disease such as COVID-19, the benefits of

slowing down the spread of the virus are not limited to employees and union members, it

is plausible to consider health and better protective measures as a public good. Without

an enforcement mechanism, public goods like preventive measures would be undersupplied.

Higher levels of such public goods could yield higher social and individual welfare (which we

assume is guiding the government’s interventions). Since the safety of the work environment

is a public good, it is unlikely that it will be provided sufficiently by firms without external

pressure. As a result, some governmental intervention in the competitive solution is justifi-

able. Weil (1999) shows these type of interventions are more of a union supplement than a

substitute, and unions play a substantial role in the enforcement of the Occupational, Safety,

and Health Act (OSHA) in the manufacturing sector [Weil (1991)].

While both governments and unions optimize safety measure levels and economic activ-

ities by choosing health and employment levels, they may differ in at least two aspects: the

information set they possess and the objective function they target. Ideally, the government

optimizes the social welfare function and incorporates broad information about individual
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preferences. On the other hand, unions are expected to optimize the same aspects for their

members only, using a more narrowly defined information set, one limited to their mem-

bers. These differences in the scope of the objective functions, and the quality and volume

of information, raise the questions of how and to what extent unions are contributing to

contain the spread of the virus. Owing to the rapidly growing and unprecedented nature

of the COVID-19 pandemic, the government’s information about the weight individuals as-

sign to their health is limited, and thus the government’s objective function may not reflect

the social welfare function. Unions have more detailed information with regard to their

members’ preferences as a result of having closer contact with them. This means they are

more effective in both collecting information about preferences and imposing restrictions.

However, unions are not necessarily targeting the same level of restrictions as governments.

The characteristics of union members can affect the union’s objective function. Collective

bargaining may increase the probability of infection if the collective decision of the union is

in favor of working more (e.g., in cases where individuals believe the disease is less dangerous

for them than it is for the average individual in the community).

As discussed previously, due to the public good’s characteristic of health in case of a

contagious disease, the effect of changes in workplace safety measures and work schedules of

union members can also be transmitted to other people and hence have positive or negative

externalities. Externalities derived by union’s actions regarding COVID-19 can happen in

at least three ways. First, unions alter the probability of union members being exposed to

COVID-19, which itself affects the spread of the virus. Second, changes in work schedules of

the union members can affect the work schedules of other employees through general equi-

librium response. As an example, a change in prices due to the union members working less

may encourage other employees to work more. Combined with the level of safety measures

of nonunionized employees, this affects the probability of nonunionized being infected by the

virus. Lastly, the effect of unions on working conditions is not limited to union members or

unionized workplaces. Unions set standards for work conditions that could be adopted by

47



the labor market in general [Western and Rosenfeld (2011)]. As a related example, higher

union density rates are associated with lower levels of economic inequality [Alderson and

Nielsen (2002); Alderson et al. (2005); Atkinson (2003); Western and Rosenfeld (2011); Neal

(2013)]. Also, the collective bargaining power of unions is not limited to the firm itself.

Bargaining takes place at upper levels such as industry, state, and national levels. Hence,

unions contribute to pushing through legislation on social programs that impact society in

general, such as national social security, unemployment compensation, and minimum wage

laws [Asher (2001); Galenson (1986)].8

In summary, unions may play a role in containing or spreading a contagious disease, de-

pending on their monopoly power and preference revelation efficiency. Hence, determining

the aggregate effect of unions on the spread of a contagious disease is an empirical question

that we discuss in what follows.

2.3 Model and Estimation

2.3.1 Introduction to Model

To evaluate the effect of unions on the spread of COVID-19, we require a predictive

dynamic model that also incorporates the treatments controlling for union membership and

involvement in economic activities. Our modeling approach is based on estimating an indi-

vidual’s probability of infection in a dynamic framework, where probabilities are a function

of treatments, among other variables. It is achieved by incorporating a logistic model for

daily individual infections and aggregating the results to reach the state level’s total number

of infections.

The assumption behind aggregating the individual probabilities is independence between

the individual probabilities. To address the dependencies between individual observations

8 In the case of COVID-19, The American Federation of Labor-Congress of Industrial Organizations (AFL-
CIO) has been actively negotiating OSHA, Congress, federal agencies, and state and local governments during
the pandemic. AFL-CIO’s statement is available at: aflcio.org
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(probability of infection for one person changes as other people become infected), we in-

tegrate elements of the compartment modeling approach into our model. Compartment

modeling, which was formulated by Kermack and McKendrick (1927), is well studied in the

epidemiology literature and concerns the prediction of the spread of contagious diseases. We

borrow the elements of a simple compartment model in which there are two compartments

between which individuals are allowed to move. Individuals are either susceptible or infected

at every point in time. Using the state as the relevant geographic unit, the probability of be-

ing infected (conditional on not being infected at the time) is a function of the total number

of infected in the state in the previous week. Next, we multiply the individual probability

of being infected in each state by the total number of susceptible individuals in the state to

reach the total number of new cases. In other words, by controlling for the spread of the

virus, provided with the elements of compartment modeling, we can use a logistic probability

where we control for the dependence between individual probabilities. To improve predic-

tive power, we further control for various state-level characteristics and trends. Lastly, we

augment the predictive model with another set of variables that address the identification

of the marginal effect of interest, including the state-level characteristics of union members

versus all employees and variables to isolate the treatment variable itself. Our probability

model can be written as:

yjd = Sjd × Pr(ζjd) + εj (2.11)

where yjd is the number of new cases, Sjd is the number of susceptible individuals. and

Pr(ζjd) is an individual probability of being infected as function of characteristics (ζjd) in

state j and day d. The ideal probabilistic model should use individual-level observations

to address the characteristics. In a situation where the outcome is available at the state

level, using individual-level characteristics imposes a high level of computational expenses.

To avoid these computational complexities, we use state-level averages.9 In other words,

ζjd is a linear combination of the state j and day d average socioeconomic characteristics

9 This assumes that the state-day average reflects the individual-day characteristics and ignores the bias
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~Xjd, the set of time invariant state-level observable variables ~Γj,
10 time trends ~Dd which

intends to reflect the seasonal COVID-19 trends, ~Gjd that includes lagged total number of

cases and neighboring effects, the set of treatment variables ~Tjd, occupation shares ~Σjd, and

lastly, social distancing restrictions which are set by the government Rjd. The linear index

is defined as:

ζjd = ~̄Xjd.~βX + ~Γj.~βΓ + ~Dd.~βD + ~Gjd.~βG + ~Tjd.~βT + ~Σjd.~βΣ +Rjd.βR (2.12)

For each state-day, we use the Current Population Survey (CPS) monthly data to cal-

culate the average socioeconomic characteristics ( ~X), treatments (~T ), and occupation share

variables (~Σ). Due to the CPS limitations, all of them are state-specific, monthly variables.

That is, their value may only update once per month. Our decision to use ”day” as the unit

of time combined with employing monthly variations leads to regression dilution. In other

words, since monthly variables do not vary during the month, it is as if we have a mea-

surement error for monthly variables, which leads to attenuation bias.11 For socioeconomic

characteristics, we have:

~̄Xjd =

∑
i∈j ~xid.wid∑
i∈j wid

∀j (2.13)

where ~xid is a vector of socioeconomic characteristics for individual i in state j and day d,12

due to Jensen’s inequality that is in play in the presence of a nonlinear probability function. In other word:

Pr(E[ζjdi]) 6= E[Pr(ζjd)]

where index jdi refers to individual i in state j and day d.

10 We also use the second power of variables in ~Γ with enough variations.
11 While we are aware of this issue, we think avoiding this by aggregating over the outcome (COVID-19

cases) is even more problematic. For example, the month as the time period (instead of the day) is too long
that it prevents proper incorporation of the restriction rules and inter-state transmission. The latter one
implies a violation of observational independence. Also, simple aggregation of the COVID-19 cases ignores
the fact that the effect of a new case varies depending it happened early in a month or not. This inflates
the estimate of growth rate (lagged outcome) in compartment modeling and leads to overestimation bias at
the early stages of the pandemic by putting more weight on later days in each month.

12 Including age, education, family income, living in metro area, married, and male. Hence we have:
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and wid is sampling weight. We further augment the socioeconomic dimensions by a set of

variables which are available in state-level and set at their pre-COVID levels, ~Γj such that:

~Γj ={Local self-dependencej,Residential compactnessj,

%working from homej,Political preferencej,

Healthj}

~Dd includes seasonal time trends.13 ~Gjd consists of the total number of cases in previous

week MA(7) and a neighboring effect measure λjd that reflects the spread of the virus in

surrounding states:

λjd =
∑
k 6=j

yj(d−7)

(Lkj)
4 (2.14)

where yjd is the number of new cases in region j on day d, and Lkj is the distance between

regions j and k. The neighboring effect λ controls for the contamination between state-level

observations. As a result, an increase in the number of cases in a neighboring region affects

region j, where the same increase in a region distant from region j has a smaller impact.

~Tjd represents the treatment variables. Since we are interested in the effect of a change

in both extensive and intensive margins of the organized labor force, both unionization level

and hours of work in the previous week for unionized employees are included. To compare the

results with those of the all the employed labor force, we also include employment levels and

hours of work in the past week for all employees. We also control for the share of organized

employees and all employees in each of the six occupation categories (~Σ) 14 to reduce the risk

of contaminating the marginal effects with the possible concentration of unionized employees

~̄Xjd ={Agejd,Educationjd,Family Incomejd,

%Metrojd,%Marriedjd,%Malejd}

13 Day in each season and their second power.
14 Including Management, Professional, Nursing, Service, Sales & office, and construction. We exclude

a category related to the ”production, transportation, and material moving” occupations to avoid perfect
multicollinearity
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in the occupations with lower (higher) exposure to the COVID-19 virus. The construction

of the treatment variables is similar to the socio-economic variables as explained in Equation

3. Hence, the treatment vector ~Tjd is defined as:

~Tjdc = {%Employedjdc , hoursjdc}

where index c refers to the targeted treatment. Depending on the model specification (further

discussed in Section 2.5), c may include union members, those who are covered by unions

but not a member, and all employed labor force. While there are multiple alternatives for

incorporating social distancing restrictions into the model, we find the simple aggregation of

the number of restrictions reliable:

Rjd =
∑
ρ∈%

rρ,jd , % = {1, 2, 3, 4, 5} (2.15)

where rρ,jd is restriction ρ in day d and state j. The set % contains mass gathering restrictions,

initial business closure, educational facilities closed, non-essential services closed, and stay

at home order.

We use a MM estimator with a logistic function as the link function to estimate the set

of coefficients (~βX , ~βΓ, ~βD, ~βG, ~βT , ~βΣ, βR) . Residual ujd can be define as:

ujd = yjd −
Sjd

1 + exp
(
−ζjd

(
~βX , ~βΓ, ~βD, ~βG, ~βT , ~βΣ, βR|X̄jd,Γj, Dd, Gjd, Tjd,Σjd, Rjd

) )
(2.16)

The predicted number of new cases can be decomposed into the probability of becoming

infected by the virus for representing individuals, multiplied by the number of people prone

to the virus (susceptible) in state j and on the day d. Then, an unweighted MM estimator
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minimizes the following statement with respect to the coefficients ~β:

~̂β = argmin
~β

(
1

N

∑
j∈J

D∑
d=1

~Zjd.ujd(~β)

)′ (
1

N

∑
j∈J

D∑
d=1

~Zjd.ujd(~β)

)
(2.17)

where ~Z is the vector of all explanatory variables and N is the total number of observations.

Our modeling strategy has multiple advantages when compared to a dynamic linear prob-

ability approach. While the linear probability model is prone to the out-of-range predictions

(negative number of cases or more than total number of susceptible population in each

state), the prediction based on the non-linear probability lies in the allowed range by de-

sign. Also, due to the non-linearity provided by logistic function, marginal effects are local.

In other words, the non-linear probability model weights the different values of treatments

differently. Whereas in the linear probability model, this can be achieved only by adopting

complex specifications at the risk of misspecification. That is, our approach is less prone to

misspecification bias.

MM estimators are comparable to the Maximum Likelihood (ML) estimators with respect

to the estimators’ efficiency. Using non-linear residuals allows us to keep observations with

yjd = 0 (no new case in a particular state-day). This is in contrast with OLS estimators

of the odds ratio transformation where the observations with odd equal zero have to be

dropped.15 See section 2.6 for more details.

2.3.2 Identification

There are two main identification concerns in estimating the effect of a change in union-

ization level on the spread of the COVID-19 virus. Firstly, since union membership is a

choice, if the factors which affect the decision to become a union member also affect individ-

uals’ behavior in following the social distancing guidelines, exogenous change of unionization

level might not reflect the correct effects (selection bias). In other words, the treatment is

15 After analyzing the results using OLS estimation we conclude that assigning a small value (10−4 to
10−5) to yjd where there is no new case, the OLS results converge to MM.
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not random and hence, we cannot isolate the effect of unionization. Secondly, if the unioniza-

tion level is endogenously determined by the spread of the virus, an exogenous change in the

unionization level to calculate the marginal effects no longer provides a correct counterfactual

analysis (simultaneity bias).

The first identification problem concerns the bias due to the non-randomness in union

membership. Union membership can be thought of as a constrained choice made by employ-

ees. Duncan and Leigh (1985) model union membership choice as a function of employee’s

characteristics and benefits of union membership. We showed in Section 2.3.1 that we con-

trol for those characteristics that can affect union membership and behavior of individuals in

response to the spread of the virus. While we control for the possible sources of confounders,

there is no guarantee that the utilized set of covariates is sufficient for all the relevant state-

level determinants of the spread of epidemics that may be correlated with union membership.

To address this concern, we analyze the effect of an increase in the total number of employees

who have access to the union benefits but are not member of union. This group is called

covered nonmembers as opposed to the union members. Since the covered employees have

not made the choice to join labor union, it is plausible to assume that the distribution of

treatment (union coverage) is independent of the employees’ characteristics that potentially

determines the response of individuals to COVID-19. Hence, by comparing the results of

an increase in union membership with the same absolute increase in the number of covered

nonmember employees we can identify if the results are derived from different behavior of

employees (if the results are different) or the union coverage itself (if the results are the

same). Our comparison shows the marginal effects induced by both groups of employees are

same in direction while different from those marginal effects from all employees. This sug-

gests that the set of controls we utilize to differentiate between employed and union workers

is sufficient to a degree that marginal effects are orthogonal to the individuals’ characteris-

tics that affect union membership decision. We explore this comparison in more details in

Section 2.5.
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For the simultaneity bias problem, we utilize lagging explanatory variables following

Green et al. (2005) and Spilimbergo (2009) among others. In particular we use 2019 data

for the treatment variables (~T ), individual characteristics ( ~X), and occupational shares (~Σ).

Simultaneity bias can be less serious for the organized labor than non-organized labor since

the unionized employees are less likely to being affected by exogenous shocks such as COVID-

19. This can be explained by the rigidity in union membership and contracts that increase

employers’ layoff costs. Moreover, since union members usually have multi-year contracts,

union wages are less flexible than is otherwise determined by the market [Kaufman (2004)].

Rones (1981) claims that these multi-year agreements are restrictive to the point that they

encourage firms to use early retirement as a tool to manage workforce flow in times of

recession.

As explained previously, we also control for hours of work in the previous week to further

explore the channels through which unions contribute to the spread of the virus. This isolates

the effect of union size. As a result, the marginal effect calculated for changes in union size

better reflects the intrinsic role of unions.16 Union members can use their collective voice to

alter their work hours in response to the spread of the virus. If there is endogeneity between

intensive margin and spread of the virus, calculated marginal effects for union size (extensive

margin) may be biased.

2.4 Data

We utilize daily generated data on the number of cases and deaths due to COVID-19,

collected by The New York Times (2020a). These include the number of new and total cases

in each state-day. Figure 2.10 shows the geographical distribution of COVID-19 virus in the

middle of each month from January to November. Beginning in January from west-coast,

epidemic center has shifted to the new-england states in March and gradually has moved to

the southern states.

16 For example, the safety measures utilized in union versus nonunion establishments.
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Figure 2.10: Number of new COVID-19 cases (observed and simulated)
The observed and simulated number of new cases of COVID-19 are shown in the graph for the whole

United States and different census regions, as suggested by the U.S. Census Bureau. For each category,

we provide simulation under the current level of unionization and simulation under the counterfactual level

of unionization, where we increase the unionization level by 10%, keeping the employment level constant

(Model 5 in Table B.1).

Socioeconomic ( ~X) and work-related status (~T and ~Σ) data are based on lagged CPS data

to avoid simultaneity bias. We use monthly CPS data from January to November 2019 to

extract the monthly state-level averages of the individuals’ characteristics, family structure,

and income. Work-related status includes employment status, hours of work in previous

week, and share of each of the six occupation categories for union members, non-members

who have union coverage, and total wage and salary employees reported by CPS. We follow

Hirsch and Macpherson (2003) in calculating union status and use BLS weights, which also

are used by the U.S. Bureau of Labor Statistics.17 Table 2.12 reports the related summary

17 Our results are robust to the choice of weight we use. Using household weights only slightly affects the
results and neither changes the statistical nor economic significance of any of the main results.
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of statistics for employed, unionized, and covered nonmember workers and compares 2019

with 2020 data.

Table 2.12: Summary of statistics.
Socio-economic ( ~X) and teartment (~T ) variables

Members Covered Employed Members Covered Employed

~X Age 2019 45.00 43.80 43.40 ~Σ Management 2019 0.07 0.12 0.17

(3.28) (8.68) (1.24) (0.06) (0.19) (0.03)

2020 45.07 44.54 44.00 2020 0.07 0.14 0.18
(3.40) (8.25) (1.37) (0.07) (0.21) (0.03)

Education 2019 2.19 2.42 43.80 Professional 2019 0.30 0.31 0.17
(0.18) (0.71) (8.68) (0.13) (0.30) (0.04)

2020 2.41 2.56 44.54 2020 0.30 0.32 0.18
(0.35) (0.71) (8.25) (0.13) (0.31) (0.04)

Income 2019 97.68 91.98 92.31 Nursing 2019 0.07 0.10 0.09
(17.47) (33.51) (12.40) (0.07) (0.16) (0.02)

2020 103.09 97.23 97.78 2020 0.08 0.11 0.10
(18.40) (36.99) (13.19) (0.08) (0.18) (0.02)

Living in 2019 22.61 18.02 23.35 Service 2019 0.13 0.12 0.15
Metro (19.89) (26.86) (17.45) (0.09) (0.19) (0.02)

2020 22.13 19.81 23.54 2020 0.11 0.11 0.12
(20.02) (27.99) (17.62) (0.09) (0.18) (0.02)

Married 2019 58.92 50.07 52.62 Sales & 2019 0.13 0.15 0.21
(13.96) (34.10) (4.36) Office (0.09) (0.21) (0.02)

2020 60.62 48.61 53.86 2020 0.12 0.13 0.20
(14.54) (35.91) (4.03) (0.10) (0.21) (0.02)

Male 2019 56.22 44.00 52.68 Construction 2019 0.14 0.08 0.09
(13.05) (33.22) (1.52) (0.09) (0.15) (0.02)

2020 55.15 41.46 52.84 2020 0.13 0.08 0.09
(14.19) (35.40) (1.57) (0.09) (0.15) (0.02)

Public 2019 9.30 ~T % Total 2019 12.19 1.60 61.54

(2.31) (6.26) (1.07) (4.16)

2020 9.44 2020 11.82 1.51 57.99
(2.54) (6.22) (1.15) (4.44)

Hours 2019 41.48 39.53 38.95
(3.25) (7.14) (0.84)

2020 40.31 39.28 38.19
(3.28) (8.27) (0.92)

Standard errors are in parentheses.

Table 2.13 shows the summary of statistics for the variables which are not directly de-

rived from CPS and are fixed in time at their pre-COVID levels (~Γ). These variables include

health, political preference, working from home, and urban structure. To include state-level

variations in health we use self-reported health from the Centers for Disease Control and

Prevention (CDC)’s Behavioral Risk Factor Surveillance System (BRFSS) 2018 data. To

incorporate a measure of the political preference we utilize share of democrats from the MIT
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Election Data and Science Lab (2017).

Local self-dependence is based on the residential compactness and commercial accessibil-

ity measures which are provided in Rahimzadeh (2020). Representing the density of urban

structure and commercial accessibility in each state, these two measures are constructed

using Land use data and geographic information system (GIS). Commercial accessibility is

the average percent of the commercial area around each residential cell and captures the

employment accessibility. For constructing the local self-dependence, we use the residen-

tial compactness-defined as the average percent of residential land within a neighboring

circle-and divide it by the commercial accessibility. Hence, local self dependence is larger

if neighborhood is more compact or has a lower access to commercial centers and measures

the degree of neighborhood clusteredness in each state. Associated with urban structure,

is a working from home variable from the American Community Survey (2018). Lastly, we

use the state-level restrictions repository from Institute for Health Metrics and Evaluation

(2020). Table B.4 reports the detailed level of restrictions in each state.

Table 2.13: Summary of statistics.
Fixed in time variables (~Γ)

Residential
Compactness

Local self dependence Working from Home
Political preference

(Democrat)
Health (More is poorer

health)

0.40 6.24 4.30 0.45 2.55
(0.06) (1.18) (1.05) (0.12) (0.11)

Standard errors are in parentheses.

2.5 Results

In this section we analyze the effect of extensive and intensive margins of labor supply for

union members, covered nonmembers and all employees, on the total number of confirmed

COVID-19 cases. Marginal effects are based on the simulation of the daily spread of the virus.

In what follows we discuss the calculation of the marginal effects and provide the results.
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Lastly, we address the endogeneity concerns due to the selection in union membership and

simultaneity bias.

In a dynamic framework, such as the one we propose, we cannot calculate the marginal

effects solely by translating the MM estimates through the logistic function. This is be-

cause the number of susceptible individuals in state j, day d (Sjd,0) varies depending on the

treatment level, which affects the number of new cases and susceptible people every period

onward. To calculate the marginal effect of interest at a particular point in time (day D

since the onset of the virus), we use estimated MM parameters (shown in Tables B.2, B.1,

and B.3) to simulate the new daily number of cases in each state and then aggregate the

simulated new cases under the current and counterfactual levels of the targeted variable. As

a result, we construct each marginal effect by differentiating the simulated number of new

cases under competing scenarios. We have:

∆D =
D∑
d=1

 Sjd,0

1 + exp

(
−ζjd

(
~̂βX , ~̂βΓ, ~̂βD, ~̂βG, ~̂βT , ~̂βΣ, β̂R|X,Γ, D,GT , T,Σ, R

))


−
D∑
d=1

 Sjd,∆

1 + exp

(
−ζjd

(
~̂βX , ~̂βΓ, ~̂βD, ~̂βG, ~̂βT , ~̂βΣ, β̂R|X,Γ, D,GT+∆, T + ∆,Σ, R

))


Note that Sjd,0 is a function of lagged number of new cases under the current level of treat-

ment, and is different from its counterpart in the second term which is affected by a change

in treatment level (∆) and affects the whole trajectory of the number of new cases.

In our simulation-based approach, we assume the social distancing restrictions and the

day on which the first case occurs in each state are exogenous. Next, we simulate the daily

spread of the virus under two scenarios: current and counterfactual level of treatment vari-

able. The standard errors are bootstrapped using 100 iterations, where in each iteration we

draw the parameters from the multivariate normal distribution using the mean and standard

errors provided by the MM estimation (~̂βX , ~̂βD, ~̂βG, ~̂βT , ~̂βΣ, β̂R).
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Since the current policy is also simulated, we can compare the goodness of fit—resulting

from the MM estimator—by comparing observed data of the spread of the virus and sim-

ulated current policy. Figure 2.11 depicts the continuous trajectory of total cases, for the

U.S. and the four census regions.

Figure 2.11: Total COVID-19 cases (observed and simulated)
The observed and simulated cases of COVID-19 are shown in the graph for the whole United States and

different census regions, as suggested by the U.S. Census Bureau.

As mentioned above, the next step is to show the marginal effects by aggregating over the

differences in new cases under two scenarios. Table 2.14 summarizes the simulated marginal

effects of extensive and intensive margins at the end of November for three groups: Union

members, covered nonmembers, and all employees. Extensive margins are based on raising

employees by 1,000 for each group of employees. For intensive margins, we simulate the
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counterfactual case in which we increase weekly hours of work by one hour for each group.

Table 2.14 also compares the marginal effects with other specifications that lacked some or

all the treatment controls.

The marginal effects in our model of choice (model 5) are robust to the exclusion of

different treatment controls. Model 1 does not contain any of the treatments (extensive and

intensive for three groups of employees). It is included to show the goodness of fit in the

absence of treatments. If treatment variables do not contribute to prediction and only reflect

the treatment effects, we expect the mean squares of errors (MSE) to be the same for all the

models in Table 2.14. However, as shown in the Table 2.14 models with treatments (2-5)

result in slightly smaller MSE, showing the treatments are marginally involved in the predic-

tion, with no additional predictive power as we increase the number of treatment variables

from model 2 to 5. A comparison between models with treatments shows the orthogonality

between different treatments. As it is shown in Table 2.14 exclusion of different treatments

from model 5 (our model of choice) does not affect the marginal effects significantly. By

excluding hours of work for all employed workers (model 4), the intensive margin for the

union members decreases slightly (from -211,184 to -175,099 for union members) while the

sign is robust to this exclusion.

To investigate the robustness of the extensive margin, we can compare models 2 and 3.

Again, the marginal effects are robust to the exclusion of employment level for all employees.

There is no significant difference in the marginal effects between different models; however,

there is a clear distinction between the employed and organized labor force. There is a con-

sistency between union members and covered nonmember individuals in both extensive and

intensive margins, where both have a decreasing effect on the number of COVID-19 cases.

This implies we sufficiently controlled for the characteristics governing the union member-

ship choice to such a degree that conditional on these sets of controls (such as socioeconomic

characteristics and occupation shares) those who made the choice to become member of

union and those who opted out (covered nonmembers) affect the spread of the virus almost
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similarly. In clear contrast, both margins are positive for the employed group. Hence, while

employment per se increases the spread of COVID-19, a unionized labor force can reverse

this effect.

As shown in the last column of the Table 2.14, while the effect of change in the extensive

margin is comparable in absolute value for the three groups of employees, the effects for

intensive margins (hours of work in the previous week) are highly heterogenous comparing

members, covered nonmembers, and all employed. This is mainly a by-product of the differ-

ence between the size of each group. While the intensive margin refers to one more hour of

work per week, there are significantly more employed individuals than union members and

much more than covered nonmembers. As a result, one more hour of work for all employees

affects the COVID-19 cases more severely than one more hour of work for union members,

which are much smaller in size.

Figure 2.12 depicts the daily marginal effects resulted from simulations based on model 5

and shows the dynamic change in the total number of COVID-19 cases due to each treatment.

It includes marginal effects of increasing each group’s size by 1,000 employees (top graphs)

and increasing hours of work for each group in the previous week by one hour (bottom

graphs). It shows a clear distinction in the patterns of the marginal effects between the

organized labor force (union members and covered nonmembers) and all the employees.

Figure 2.12 also documents more pronounced effects later in the year as the number of cases

has increased dramatically.

As discussed previously, include covered individuals in the model and utilize 2019 labor

force data (instead of current 2020 data) address the union membership endogeneity bias

and simultaneity bias, respectively. Table 2.15 documents the results of excluding each of

the two measures all based on model 5 of the Table 2.14. The first column in Table 2.15

excludes both measures. That is, it utilizes 2020 labor force data and does not include cov-

ered nonmember employees. As a result, it is prone to both biases. The second and third

columns add covered nonmember employees and employs 2019 labor force data, respectively.
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Table 2.14: Simulated marginal effects

Model 1 2 3 4 5

Simulated Extensive Member -136 -128 -146 -110
Marginal Margin (9) (6) (9) (8)

Effect ~T (Level) Covered -182 -288 -276 -256

(20) (21) (32) (20)

Employed 549 544 507
(17) (17) (22)

Intensive Member -175,099 -211,184
Margin (10,901) (17,171)

(Hours) Covered -44,568 -42,432
(10,515) (7,923)

Employed 1,589,455
(88,354)

MSE 667,428 574,950 560,164 557,691 560,270
MM criterion 0 0 0 0 0

# of Observations 13,944 13,944 13,944 13,944 13,944

This table compares the marginal effects for both extensive (employment level) and intensive (hours of work
during the past week) margins for five specifications differing in the number of treatment controls. As a result,
each cell in the table is individually simulated. These simulations are repeated for each cell to construct the
bootstrapped standard errors of the effects. An extensive margin is calculated by increasing the number of
employees in each group by 1,000. For example, -110 in model 5 for members means that by increasing union
members by 1,000, the accumulated effect from the beginning of the pandemic until the end of November
leads to 110 fewer cases. Intensive margin, on the other hand, is the effect of one hour more of weekly work.
Hence, while extensive margins are homogenized between three groups, intensive margins can be affected
by each group’s size. All specifications include controls for ~X, ~Γ, ~D, ~G, ~Σ, and R. Socioeconomic ( ~X) and

share (~Σ) variables include characteristics associated with each treatment group (union members, covered
non-members, and all employees) depending on the specification. For specification 1 with no treatment, we

use ~X and ~Σ for all employees. Bootstrapped standard errors are in parentheses.
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Figure 2.12: Dynamic change in total number of COVID-19 cases due to change in each
treatment.

Each graph shows the daily change in the total number of cases due to a particular treatment. Graphs in

the first row show the effect of increasing the number of employees in each group: covered nonmembers(left),

union members (middle), all employees (right). The second row includes graphs showing the effect of

increasing weekly hours of work by one hour for each group, following the same order as the graphs in

the first row.

The last column includes both of the measures and is the same as model 5 in Table 2.14.

Comparing the third and the forth column suggests that inclusion of the covered em-

ployees does not affect the marginal effects for union members significantly and reflects the

sufficient controls in our chosen specification that prevents the contamination of the marginal

effects due to the union member different characteristics and behavior. This is stressed out

again in the last column itself where the marginal effects for the union members and cov-

ered nonmembers are in the same direction with twice as large of the effect for the covered

group. Comparing second and the last column shows the simultaneity bias effect. Using

2020 labor force data in the second column flips the direction of the extensive margin effects

for both covered employees and all employed individuals. While the direction is the same

for the union members, it changes significantly in absolute value (from -168 in the second
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Table 2.15: Effect of controlling for the simultaneity and selection bias.

1 2 3 4

Simultaneity bias control (Lagging) X X

Selection Bias control (Covered) X X

Simulated Extensive Member -160 -168 -92 -110
Marginal Margin (12) (14) (5) (12)

Effect (Level) Covered 149 -256
(38) (29)

Employed -323 -296 466 507
(15) (20) (36) (21)

Intensive Member -349,745 -374,984 -171,268 -211,171
Margin (20,348) (16,901) (27,152) (15,985)

(Hours) Covered -74,766 -42,432
(8,612) (10,239)

Employed 2,843,070 2,882,600 1,232,103 1,589,448
(126,982) (178,874) (105,972) (88,004)

MSE 522,055 516,830 589,213 560,270
MM criterion 0 0 0 0

# of Observations 13,944 13,944 13,944 13,944

This table shows the effect of controlling for each endogeneity bias based on specification 5 of the table
2.14. Column 1 includes none of the two controls. That is it employs 2020 labor force data without covered
nonmembers group. Column 2 adds the covered nonmembers. The first two columns utilize 2020 labor
force data, which is prone to simultaneity bias due to the massive impact of the COVID-19 on employment.
Columns 3 and 4, on the other hand, employ 2019 labor force data to avoid the simultaneity bias, with
model 4 adding the covered nonmembers to model 3. Model in column 4 is the same as specification 5 in the
table 2.14. All models include controls for ~X, ~Γ, ~D, ~G, ~Σ, and R. Socioeconomic ( ~X) and share (~Σ) variables
include characteristics associated with each treatment group (union members, covered non-members, and all
employees) depending on the model. Bootstrapped standard errors are in parentheses.

column to -110 in the last column), showing the simultaneity bias as expected due to the

severe impact of the COVID-19 on the extensive margin. Also, consistent with the previous

studies, non-organized labor force are affected more severely than union members. On the

other hand, intensive margins do not show a significant change when we utilize lagged data

of the labor force.

Our results are robust to the changes in the regression method we employ. Estimating the

same specification as the one in column five of the Table 2.14 (our main specification) using

OLS and median regression, we find both regressions approximately converge to the same

results as MM. Specifically, all of the estimates are similar in the sign of the marginal effects.
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MM estimates are smaller in absolute values. Both OLS and median regressions rely on the

log transformation of the odd ratios, and hence, drop the observations with 0 odd ratios.

This can happen in the early stages of pandemic in each state, where it is likely to have days

with no reported new case. We can solve this issue by replacing the associated odd ratios

with a small positive value. As it is discussed in section 2.6, depending on the replacing

value, the results vary. As expected, OLS shows higher sensitivity to these changes than

median regression. On the other hand, our MM strategy relies on the nonlinear probability

model with no transformation and hence does not encounter this issue.

2.5.1 Employment Dynamics

As explained in section 2.3.2, we expect the COVID-19 labor market shock to be more

substantial for non-organized labor force than unionized employees. Figure 2.13 shows the

changes in the different labor force characteristics for all and organized employees. To better

represent the dynamics and to be able to compare changes for both groups, we normalize both

time-series by setting the value of each dimension at 100 in January. While the Employment

level for all employees has reduced dramatically in April, employment among the unionized

employees is statistically the same as in January. However, as shown by the hours of work

in the previous week, the intensive margin of labor supply is decreased for both groups, with

more substantial drop for unionized employees. Usual hours of work have increased for all

employees, whereas it is decreased for unionized workers. These trends can be justified if we

assume the probability of layoffs is higher for part-time employees for the unorganized labor

force.

On the other hand, for unionized employees, since layoff is costly for employers, they

might use early retirement to manage the workforce flow [Rones (1981)]. As a result, after

being hit by the COVID-19 pandemic shock, the organized labor force tends to be younger

and less educated than all employees. Note that changes in the organized labor force are not

statistically significant for usual hours of work and education. Lastly, income has increased
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Figure 2.13: Employment dynamics in 2020
Normalized monthly changes in employment (employment level, hours in previous week, and usual hours of

work) and individual characteristics (age, education, and income) for the union members and all employees

in 2020 are shown in the graph.
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for both groups, mostly due to the economic relief plan that took effect in April.

2.5.2 Discussion

Our results can be utilized to highlight the differences in the objective functions of gov-

ernment and individuals. In the case of an unpredicted pandemic such as COVID-19, the

weights governments assign to people’s consumption and health in the social welfare func-

tion is not necessarily correct (i.e., up to date). While federal and state governments set

restrictions to control the spread of the virus, individuals are in a better position to assess

their health, financial condition, and preferences regarding health and consumption. We can

test this hypothesis by comparing union members (whose voice is echoed) with employed

individuals not covered by a union. The results in Table 2.14 (model 5) show a negative

effect of unionization on the spread of the COVID-19 virus in both extensive and intensive

margins. Both of these effects are positive for all employees.

Both the monopoly face and the unions’ institutional response face may contribute to

these results. This study’s design does not allow us to separate the effects of each of the two

dimensions. However, we can associate the extensive margin (union size) with the monopoly

face and the intensive margin (hours of work during the previous week) with the institutional

face. Regarding the monopoly face, union members are benefited from more job safety, paid

sick leave, and employer-provided health insurance, which all can protect union members

from getting infected by COVID-19, mostly due to transferring the costs to the employer.

Institutional face, on the other hand, facilitates the preference revelation and more optimum

level of protection. Unions—due to their collective power—have more visibility and hence

can employ measures closer to the collective optimum of their coalition. Our results show

the hours of work in the past week negatively affects the spread of the virus for the union

members, indicating a safer workplace. For all employees, this effect is positive. Both signs

are consistent with the hypothesis stating there are better workplace safety measures for the

union members than all employees.
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If we assume that larger unions have more monopoly power, the extensive margin (union

size) effect can be interpreted as the effect of the monopoly power and better contracts

in unions than all employees. Lastly, likely, the gap between union members and all em-

ployees in usual hours of work, age, and education level (shown in Figure 2.13) is due to

unions’ monopoly power. Lastly, considering the Centers for Disease Control and Prevention

(CDC) estimates based on antibody test results18, unions’ positive effect can be even more

significant, suggesting our results underestimate the true effect.

2.6 Robustness Check: OLS and Median Regression Results

We can estimate the logistic models by transforming the outcome to the natural logarithm

of the odds ratios:

yjd =
Sjd

1 + exp(−~Zjd.~β ′)
→ Log(

yjd
Sjd − yjd

) = ~Zjd.~β
′

(2.18)

This transformation allows us to estimate the logistic model using the OLS estimation

method. However, if the outcome yjd = 0, the logarithm is undefined. This problem leads to

the dropping of all those observations with an outcome at zero. If deletion of the outcomes

is random, we do not expect to see severe changes in the estimation results comparing to

the non-linear model (without transformation). However, if the treatment is non-randomly

affected by these deletions, the calculated marginal effects will be biased. Our analysis shows

we have 366 observations with no new cases. That is, after observing the first COVID-19 case

in state j, there are days with no new cases recorded. The level of covered non-members

employment is higher for those states where COVID-19 spreads more slowly in the first

months after the beginning of the pandemic in the U.S. As a result, we expect the estimates

and the marginal effects for the covered non-member group to be sensitive to the deletion of

the observations with no new case.

18 Suggesting that as many as ten times more Americans may be infected with coronavirus than recognized
by the confirmed number of cases [The New York Times (2020b)].
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The results for comparing various OLS regressions (differing in the replacement value

of the zero cases) and MM based on the model 5 of the Table 2.14 are shown in Table

2.16. While dropping the outcomes with zero new cases (first column) changes the sign

of the coefficients for covered non-members in intensive and extensive margins, assigning a

small positive number retains the direction of the MM coefficients. Table 2.17 replicates the

same exercise as in Table 2.16 with median regression. While they are less sensitive to the

replacement values, they obtain larger parameters in absolute values.

Table 2.16: Sensitivity of OLS estimates to the odd ratios close to zero.

OLS OLS OLS OLS OLS MM
0 1.E-03 1.E-04 1.E-05 1.E-06 -

Extensive Member -0.077 -0.132 -0.135 -0.139 -0.143 -0.070
Margin (0.0159) (0.0237) (0.0275) (0.0318) (0.0362) (0.0173)

(Level) Covered 0.168 0.020 -0.061 -0.142 -0.223 -0.168
(0.0605) (0.0898) (0.1045) (0.1205) (0.1373) (0.0609)

Employed 0.018 0.026 0.027 0.028 0.029 0.033
(0.0036) (0.0054) (0.0062) (0.0072) (0.0082) (0.0038)

Intensive Member -0.025 -0.026 -0.026 -0.025 -0.025 -0.009
Margin (0.0022) (0.0033) (0.0038) (0.0044) (0.0050) (0.0022)

(Hours) Covered 0.000 -0.002 -0.003 -0.004 -0.004 -0.002
(0.0010) (0.0015) (0.0017) (0.0020) (0.0023) (0.0012)

Employed 0.103 0.156 0.175 0.195 0.214 0.065
(0.0108) (0.0160) (0.0186) (0.0215) (0.0244) (0.0130)

# of
Observations

13,578 13,944 13,944 13,944 13,944 13,944

Each column assigns a specific value (shown in each column header) to the outcomes with zero new cases. For
the first column, when OLS assigns zero to the outcomes (keeping them unchanged), number of observations
drops from 13,944 to 13,578. Assigning a small positive number can retain the direction of the MM estimates.
Standard errors are in parentheses.

2.7 Conclusion

Efforts to stop the spread of COVID-19 can be seen as a public good. In other words, it is

costly for agents (individuals or firms) with a particular level of effort, while other individuals

can reap the benefits. As a result, the benefits of the efforts cannot be constrained to the

agent who bears the costs. Thus, agents with the highest preferences for health, those with

poorer health, or those who are wealthier possibly bear the costs, and other agents take a
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Table 2.17: Sensitivity of median regression to the odd ratios close to zero.

q(50%) q(50%) q(50%) q(50%) q(50%) MM
0 1.E-03 1.E-04 1.E-05 1.E-06 -

Extensive Member -0.158 -0.152 -0.153 -0.156 -0.158 -0.070
Margin (0.0228) (0.0241) (0.0256) (0.0269) (0.0285) (0.0173)

(Level) Covered 0.017 -0.112 -0.141 -0.144 -0.163 -0.168
(0.0849) (0.0895) (0.0950) (0.0998) (0.1058) (0.0609)

Employed 0.017 0.025 0.024 0.024 0.024 0.033
(0.0056) (0.0059) (0.0063) (0.0066) (0.0070) (0.0038)

Intensive Member -0.040 -0.040 -0.041 -0.040 -0.041 -0.009
Margin (0.0032) (0.0034) (0.0036) (0.0038) (0.0040) (0.0022)

(Hours) Covered -0.005 -0.006 -0.006 -0.006 -0.005 -0.002
(0.0014) (0.0015) (0.0016) (0.0017) (0.0018) (0.0012)

Employed 0.143 0.164 0.168 0.168 0.170 0.065
(0.0154) (0.0162) (0.0172) (0.0181) (0.0191) (0.0130)

# of
Observations

13,578 13,944 13,944 13,944 13,944 13,944

Each column assigns a specific value (shown in each column header) to the outcomes with zero new cases. For
the first column, when median regression assigns zero to the outcomes (keeping them unchanged), number
of observations dropped from 13,944 to 13,578. Assigning a small positive number can retain the direction
of the MM estimates. Standard errors are in parentheses.

’free ride’. Like other examples of public good, efforts to prevent the spread of the virus

are under-supplied, and to achieve the optimum level of a public good, the government or

a third-party entity should intervene and provide motivation and regulations to satisfy a

certain level of public good in society. This paper investigates the role of labor unions in the

spread of a contagious virus such as COVID-19.

Unions may affect the work environment through the channels discussed in the literature,

namely, monopoly power and information transparency. Depending on the structure of the

union and the characteristics of union members, they may use their collective bargaining

power to increase safety in the work environment, leading to a decrease in the spread of the

virus. Furthermore, they may more efficiently transmit employees’ private health information

to the firm, and as a result, establish safety measures that are closer to the optimum level.

Also, unionized workers have a clearer picture of the firm’s profit perspective since they

can negotiate terms with their employers. Hence, a more efficient outcome in terms of

employment and workplace safety is expected. However, a more efficient outcome does not
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necessarily mean that the virus will spread less.

Our analysis shows that ceteris paribus, a local increase in unionization level, leads to

better control of the spread of COVID-19. This is despite the fact that union members have

not decreased their hours of work in response to the spread of the virus. In other words,

unionization has positive externalities that are reflected in a slower spread of the virus. In

this study, we utilize the confirmed COVID-19 cases to measure the spread of the virus

and conclude that increasing both extensive and intensive margins of labor supply for union

members slows the spread of the COVID-19 virus. To establish a more robust relationship,

we compare the results with those for covered non-members and all employees. We also

employ lagging variables for the labor force characteristics to avoid simultaneity bias.

This study does not address the general equilibrium aspects of the change in union size.

That is, labor supply (for both intensive and extensive margins) and a firm’s profit are

altered neither by direct changes in unionization level nor by indirect changes due to the

effect of unionization on the spread of the virus. To analyze the net and longer-term effects

of a change in unionization further studies with general equilibrium aspects that endogenize

labor market responses are required.
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Appendix A

Appendix for Chapter I

A.1 Additional tables

Below are the supplementary tables for chapter I. Tables A.1 and A.2 report OLS and

DiD results between RC and other climate-related variables for the fixed scheme. Tables A.3,

A.4, and A.5 report the IV result for the inner-city outer city and the difference between in

and out of the city for the fixed scheme, respectively. Tables A.6 to A.10 reports the same

result for the flexible scheme.

Table A.1: OLS results of the effects for multiple outcomes (Fixed Scheme)

Annual Winter Spring Summer Autumn

Dew Point -8.08 -6.18 -6.73 -6.99 -9.29
(6.56) (11.25) (5.62) (3.42) (8.42)

Sea Level Pressure -293.37 -253.91 -250.29 -262.46 -253.16
(2394.68) (2355.13) (2312.36) (2510.31) (2493.84)

Station Pressure 218.8 196.54 217.55 241.94 257.7
(6065.7) (6195.98) (6081.14) (6973.84) (6548.83)

Visibility -21.33 -5.07 -28.77 -5.71 -7.08
(451.) (404.65) (333.13) (456.35) (484.44)

Wind Speed 5.78 7.04 4.75 7.2 7.22
(1.56) (1.91) (.8) (1.98) (2.11)

Maximum Wind Speed 23.94 38.09 10.27 42.2 38.39
(183.48) (207.4) (96.18) (224.95) (231.06)

Gust 4.56 13.74 2.82 1.21 2.01
(9.41) (9.9) (13.37) (11.21) (9.92)

Percipitation -.05 -.04 -.03 -.09 -.05
(.) (.) (.) (.) (.)

Temperature -12.11 -16.36 -10.17 -8.19 -16.54
(3.64) (7.41) (2.69) (2.2) (4.51)

Number of Hot Days 4.41 2.55 . . .95
(.24) (.13) (.) (.) (.02)

Number of Very Hot Days -5.06 . -.87 -4.21 .
(2.74) (.) (.21) (1.56) (.)

Number of Average Days -68.13 -5.88 -26.5 -24.19 -13.48
(149.06) (1.22) (25.71) (28.3) (5.93)

Standard errors in parentheses
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Table A.2: Difference-in-Difference effects for multiple outcomes (Fixed Scheme)

Annual Winter Spring Summer Autumn

Dew Point -1.49 -.7 -.92 -.89 -2.01
(.65) (.67) (.59) (.54) (.76)

Sea Level Pressure 16.78 31.45 29.3 29.68 23.75
(16.17) (15.17) (15.96) (16.17) (16.16)

Station Pressure 73.94 108.06 67.13 62.62 77.31
(21.69) (21.16) (21.88) (24.73) (23.72)

Visibility -41.14 -28.37 -33.81 -37.43 -41.27
(7.91) (6.72) (7.43) (7.84) (7.91)

Wind Speed . .09 .14 .17 .05
(.) (.09) (.09) (.08) (.08)

Maximum Wind Speed 3.46 4.6 2.91 3.95 3.69
(1.54) (1.59) (1.4) (1.52) (1.49)

Gust -.31 .47 -.75 .35 .47
(.93) (1.07) (1.11) (1.06) (.98)

Percipitation -.01 -.02 -.02 -.01 -.01
(.01) (.01) (.01) (.01) (.01)

Temperature .59 .12 .52 .59 .12
(.27) (.35) (.29) (.27) (.38)

Number of Hot Days -.01 -.02 . . .02
(.16) (.12) (.) (.) (.05)

Number of Very Hot Days .72 . .24 .49 .
(.67) (.) (.19) (.49) (.)

Number of Average Days 7.57 .31 2.63 3.79 .84
(2.59) (.58) (1.02) (1.46) (.79)

Standard errors in parentheses
Causal Effect of Residential Compactness on multiple environmental dimensions for the center of middle size MSAs.
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Table A.3: IV effects for multiple outcomes in urban area (Fixed Scheme)

Annual Winter Spring Summer Autumn

Dew Point -3.47 15.22 -34.09 -13.55 -23.06
(11.35) (14.67) (10.21) (8.05) (13.3)
39.66 41.73 43.67 42.36 36.23

Sea Level Pressure -870.92 -1035.24 -849.04 -923.61 -1023.09
(276.65) (274.83) (275.36) (278.02) (280.93)

16.81 17.08 15.90 18.36 17.38

Station Pressure -1036.73 -1896.37 -1124.61 -936.87 -1042.03
(370.62) (404.4) (362.33) (391.38) (394.08)

32.15 25.69 34.93 33.91 30.13

Visibility -493.04 -442.23 -420.78 -471.35 -452.19
(142.49) (130.66) (121.23) (139.68) (143.82)

6.33 8.28 6.91 7.83 7.87

Wind Speed 2.86 5.59 6.76 -1.97 -.63
(8.29) (8.48) (5.82) (8.8) (9.07)
6.86 11.44 8.21 10.22 10.38

Maximum Wind Speed -136.8 -148.43 -93.97 -150.05 -162.33
(93.44) (91.86) (68.03) (96.12) (98.33)

4.70 8.94 4.39 8.65 8.17

Gust 215.13 159.38 284.18 261.54 132.54
(17.66) (18.92) (22.19) (19.24) (16.96)
12.45 10.95 9.86 11.79 17.88

Percipitation .61 1.39 .99 .19 .13
(.09) (.14) (.14) (.15) (.08)
9.85 7.10 6.71 4.44 11.37

Temperature -14.35 14.37 -29.6 -21.71 -24.27
(4.53) (5.83) (3.55) (5.49) (5.77)
186.73 235.62 229.69 65.90 139.54

Number of Hot Days 1.61 1.11 . . .75
(2.75) (2.16) (.) (.) (1.07)
17.57 13.22 0.00 0.00 3.81

Number of Very Hot Days -15.05 . -4.72 -10.3 .
(5.24) (.) (1.76) (4.14) (.01)
96.63 0.00 59.24 86.48 1.24

Number of Normal Days -215.51 16.18 -108.3 -90.73 -32.88
(32.06) (5.) (14.66) (18.5) (7.34)
150.60 38.01 121.42 78.20 109.83

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
Causal Effect of Residential Compactness on multiple environmental dimensions for the center of middle size MSAs.
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Table A.4: IV effects for multiple outcomes in surrounding area (Fixed Scheme)

Annual Winter Spring Summer Autumn

Dew Point -44.64 -26.48 -57.45 -37.1 -57.58
(9.27) (11.25) (8.5) (6.6) (10.68)
22.17 26.22 25.59 25.78 20.55

Sea Level Pressure -1197.23 -1044.76 -1044.99 -1077.67 -1224.74
(237.43) (233.98) (238.66) (237.69) (239.99)

14.84 15.12 14.77 15.06 14.67

Station Pressure -469.89 -597.33 -450.14 -487.45 -407.39
(223.59) (235.91) (220.84) (228.63) (233.88)

21.29 17.98 23.77 23.60 19.68

Visibility -1041.94 -920.54 -959.54 -1029.64 -1005.35
(122.87) (114.02) (119.24) (123.01) (122.02)

7.88 8.11 8.29 8.34 8.08

Wind Speed . 3.7 1.28 -4.12 -1.88
(.) (1.76) (2.15) (2.39) (2.23)

0.00 2.45 3.05 2.54 1.81

Maximum Wind Speed -100.29 -91.67 -126.12 -127.98 -122.71
(20.64) (26.37) (27.92) (32.64) (33.72)
17.35 10.43 7.74 7.75 6.75

Gust 177.79 153.72 224.64 210.65 133.08
(13.69) (14.11) (16.39) (15.11) (12.62)

9.55 7.96 9.25 10.31 12.61

Percipitation .33 .67 .46 .07 .07
(.05) (.08) (.08) (.07) (.05)
14.59 10.60 9.49 8.93 12.33

Temperature -5.84 12.77 -23.11 -12.46 -13.89
(2.58) (4.01) (3.12) (2.78) (3.45)
307.16 264.14 173.56 119.68 201.81

Number of Hot Days .54 .72 -.01 . .2
(1.74) (1.35) (.02) (.) (.72)
19.02 14.96 0.93 0.00 3.95

Number of Very Hot Days -3.66 -.18 -.19 -3.25 -.04
(3.4) (.08) (.68) (2.96) (.05)
5.22 1.84 3.65 5.23 0.96

Number of Normal Days -18.55 25.11 -43.14 -1.91 1.4
(21.02) (3.84) (9.87) (12.72) (4.52)
196.81 39.17 148.95 87.83 153.06

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
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Table A.5: Causal effect of residential compactness on difference between urban and sur-
rounding area for multiple outcomes (Fixed Scheme)

Annual Winter Spring Summer Autumn

Dew Point 48.43 47.32 40.95 31.53 48.5
(14.69) (17.72) (13.1) (10.09) (16.06)
14.11 16.07 14.11 16.07 15.79

Sea Level Pressure 473.7 104.9 285.33 295.54 411.64
(383.56) (379.37) (384.3) (386.04) (390.07)
256.00 12.80 11.25 12.58 12.25

Station Pressure -589.24 -1288.44 -684.4 -398.68 -560.89
(338.22) (352.89) (330.37) (371.72) (370.2)

24.69 21.28 23.75 23.95 23.90

Visibility 738.64 651.74 706.42 715.24 715.62
(200.98) (184.57) (179.51) (198.25) (203.57)

7.05 8.42 8.56 8.44 8.06

Wind Speed 2.86 1.39 5.8 4.03 .92
(8.29) (8.74) (6.44) (9.35) (9.54)
6.86 10.55 6.64 9.48 9.02

Maximum Wind Speed 38.72 21.19 59.07 19.35 -3.46
(95.88) (96.72) (75.11) (105.21) (106.88)

5.56 9.25 6.03 7.94 7.52

Gust -13.09 -31.16 -5.2 -18.16 -37.89
(15.72) (16.98) (19.62) (16.83) (15.61)

8.11 7.78 6.12 6.93 9.60

Percipitation .16 .49 .33 .05 .04
(.09) (.12) (.13) (.15) (.07)
5.73 2.84 3.92 3.14 7.00

Temperature -10.75 -3.93 -5.11 -8.59 -9.35
(4.81) (3.32) (3.23) (5.24) (4.52)
13.89 25.06 21.70 18.10 15.73

Number of Hot Days .77 .05 .01 . .45
(1.57) (1.34) (.03) (.) (.62)
5.55 4.80 4.11 0.00 1.15

Number of Very Hot Days -8.17 .16 -4.21 -4.3 .07
(4.29) (.09) (1.6) (3.46) (.07)
133.34 1.64 64.71 116.32 0.86

Number of Normal Days -195.29 -20.2 -50.91 -89.29 -34.79
(33.59) (3.93) (13.05) (18.7) (6.19)
16.53 7.46 15.00 17.85 20.48

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
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Table A.6: OLS results of the effects for multiple outcomes (Flexible Scheme)

Annual Winter Spring Summer Autumn

Dew Point -5.08 -1.37 -5.42 -5.8 -5.2
(7.01) (12.04) (6.17) (3.78) (8.97)

Sea Level Pressure -303.22 -270.44 -255.69 -260.38 -253.33
(2966.02) (2901.07) (2914.64) (3089.1) (3095.39)

Station Pressure 167.98 163.8 174.14 200.79 217.
(6048.96) (6146.75) (6012.92) (6895.69) (6539.84)

Visibility 6.87 26.38 3.43 29.53 26.26
(541.87) (543.35) (436.29) (599.16) (618.25)

Wind Speed 4.7 5.61 3.86 6.06 6.06
(1.74) (2.04) (.91) (2.14) (2.32)

Maximum Wind Speed 15.1 28.6 3.07 28.74 27.75
(200.1) (223.57) (104.95) (238.89) (252.51)

Gust 6.45 16.81 4.04 -.44 6.03
(9.88) (10.46) (13.94) (11.72) (10.25)

Percipitation -.05 -.05 -.04 -.07 -.06
(.) (.) (.) (.) (.)

Temperature -8.1 -11.16 -6.67 -5.69 -12.23
(3.72) (7.47) (2.72) (2.27) (4.48)

Number of Hot Days 3.97 2.18 . . .88
(.26) (.14) (.) (.) (.02)

Number of Very Hot Days -2.83 . -.34 -2.54 .
(1.84) (.) (.13) (1.07) (.)

Number of Average Days -44.75 -3.05 -18.32 -18.79 -7.38
(149.97) (.95) (25.96) (29.71) (4.99)

Standard errors in parentheses
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Table A.7: Difference-in-Difference effects for multiple outcomes(Flexible Scheme)

Annual Winter Spring Summer Autumn

Dew Point -1.49 -.7 -.92 -.89 -2.01
(.65) (.67) (.59) (.54) (.76)

Sea Level Pressure 16.78 31.45 29.3 29.68 23.75
(16.17) (15.17) (15.96) (16.17) (16.16)

Station Pressure 73.94 108.06 67.13 62.62 77.31
(21.69) (21.16) (21.88) (24.73) (23.72)

Visibility -41.14 -28.37 -33.81 -37.43 -41.27
(7.91) (6.72) (7.43) (7.84) (7.91)

Wind Speed . .09 .14 .17 .05
(.) (.09) (.09) (.08) (.08)

Maximum Wind Speed 3.46 4.6 2.91 3.95 3.69
(1.54) (1.59) (1.4) (1.52) (1.49)

Gust -.31 .47 -.75 .35 .47
(.93) (1.07) (1.11) (1.06) (.98)

Percipitation -.01 -.02 -.02 -.01 -.01
(.01) (.01) (.01) (.01) (.01)

Temperature .59 .12 .52 .59 .12
(.27) (.35) (.29) (.27) (.38)

Number of Hot Days -.01 -.02 . . .02
(.16) (.12) (.) (.) (.05)

Number of Very Hot Days .72 . .24 .49 .
(.67) (.) (.19) (.49) (.)

Number of Average Days 7.57 .31 2.63 3.79 .84
(2.59) (.58) (1.02) (1.46) (.79)

Standard errors in parentheses
Causal Effect of Residential Compactness on multiple environmental dimensions for the center of middle size MSAs.
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Table A.8: Instrumental Variable estimates for multiple outcomes (Flexible Scheme)

Annual Winter Spring Summer Autumn

Dew Point -9.1 9.03 -37.07 -14.14 -29.78
(11.17) (14.42) (10.07) (7.96) (12.94)
40.63 43.22 46.46 45.18 38.70

Sea Level Pressure -819.84 -942.01 -806.35 -853.65 -909.08
(310.57) (306.55) (307.33) (312.92) (313.79)

13.39 13.90 13.74 14.59 14.42

Station Pressure -1347.72 -2001.28 -1385.18 -1193.89 -1336.79
(352.71) (384.5) (346.1) (371.58) (373.75)

33.19 26.52 35.63 35.14 31.87

Visibility -571.28 -517.13 -497.21 -524.72 -536.08
(151.15) (143.73) (136.75) (151.55) (153.93)

5.69 8.64 5.38 8.39 8.44

Wind Speed -3.88 .39 -.82 -9.4 -7.55
(8.41) (8.51) (5.95) (8.91) (9.13)
6.92 11.04 8.19 9.76 10.65

Maximum Wind Speed -179.11 -179.93 -140.83 -198.34 -204.36
(94.) (93.45) (68.31) (97.11) (99.43)
4.72 8.03 4.63 7.85 8.07

Gust 206.11 154.12 274.66 249.61 128.38
(17.31) (18.67) (21.58) (18.73) (16.66)
12.64 11.33 10.67 12.32 17.83

Percipitation .63 1.36 1. .26 .12
(.09) (.14) (.13) (.14) (.08)
8.80 6.81 6.54 4.43 9.85

Temperature -13.34 14.72 -26.23 -22.99 -23.39
(4.54) (5.72) (3.51) (5.49) (5.77)
173.12 226.27 219.26 62.83 126.96

Number of Hot Days 1.05 .59 -.01 . .7
(2.77) (2.17) (.03) (.) (1.08)
17.51 13.56 0.91 0.00 3.81

Number of Very Hot Days -12.34 . -2.49 -9.82 -.03
(4.86) (.) (1.41) (3.91) (.01)
63.59 0.00 50.09 56.40 2.38

Number of Normal Days -184.08 17.05 -95.8 -83.07 -23.86
(31.02) (4.37) (14.18) (18.39) (6.82)
147.69 35.26 121.08 76.64 97.02

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
Causal effect of Residential Compactness on multiple environmental diemensions for the center of middle size MSAs.
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Table A.9: Analysis of the sensitivity of the rural area to the Instrument for multiple out-
comes(Flexible Scheme)

Annual Winter Spring Summer Autumn

Dew Point -47.8 -31.32 -56.91 -40.33 -62.54
(9.3) (11.53) (8.5) (6.72) (10.83)
20.03 23.09 22.73 22.19 18.39

Sea Level Pressure -876.73 -776.13 -763.01 -777.01 -903.35
(221.36) (220.6) (223.67) (223.23) (223.29)

15.57 15.43 15.37 15.58 15.42

Station Pressure -361.26 -481.67 -315.09 -364.71 -341.59
(220.82) (231.04) (220.27) (228.16) (229.63)

23.76 20.65 25.84 25.71 22.38

Visibility -973.52 -824.63 -920.88 -1001.85 -939.99
(116.94) (109.63) (116.46) (119.98) (116.5)

8.43 8.42 8.43 8.53 8.45

Wind Speed . 4.55 2.03 -3.23 -2.27
(.) (1.78) (1.73) (1.96) (2.15)

0.00 2.23 3.48 3.03 1.65

Maximum Wind Speed -73.43 -55.89 -104.1 -146.94 -110.27
(18.96) (25.13) (23.52) (39.82) (32.7)
19.26 10.94 10.84 5.37 7.38

Gust 147.53 127.15 183.42 167.11 104.29
(12.89) (13.51) (15.29) (14.04) (12.17)
10.50 8.34 9.89 10.71 13.24

Percipitation .35 .63 .5 .12 .1
(.05) (.08) (.08) (.08) (.05)
13.92 10.18 8.85 8.26 11.17

Temperature -7.99 10.51 -17.53 -7.89 -15.58
(2.5) (3.87) (2.72) (2.67) (3.43)

300.29 261.74 208.96 121.38 188.03

Number of Hot Days .57 .69 . . .21
(1.73) (1.33) (.02) (.) (.72)
18.42 14.35 0.90 0.00 3.84

Number of Very Hot Days -2.36 -.13 .14 -2.36 .
(2.87) (.07) (.51) (2.52) (.)
6.29 1.81 4.27 6.30 0.00

Number of Normal Days -22.21 18.26 -37.56 -1.26 -1.66
(20.75) (3.34) (9.46) (12.47) (4.58)
180.99 32.64 147.93 88.67 112.13

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
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Table A.10: Causal effect of residential compactness on difference between urban and sur-
rounding area for multiple outcomes

Annual Winter Spring Summer Autumn

Dew Point 48.44 49.45 38.72 36.25 49.92
(14.58) (18.04) (13.11) (10.24) (16.14)
15.01 16.72 15.80 17.22 16.99

Sea Level Pressure .49 -216.42 -107.42 -119.32 11.07
(370.35) (363.8) (366.18) (373.49) (370.66)
256.00 13.71 12.45 13.08 13.31

Station Pressure -1035.32 -1525.96 -1099.47 -822.01 -959.3
(334.12) (343.07) (319.19) (360.86) (359.62)

24.63 21.91 24.60 24.39 24.71

Visibility 568.97 457.67 595.79 643.2 553.66
(199.23) (193.42) (188.32) (204.78) (206.24)

6.68 7.65 6.93 8.19 7.91

Wind Speed -3.88 -4.82 -2.75 -4.28 -5.75
(8.41) (8.82) (6.31) (9.25) (9.43)
6.92 10.09 7.17 9.60 9.87

Maximum Wind Speed -36.59 -52.01 -17.09 6.34 -63.12
(95.81) (97.96) (72.3) (111.76) (105.91)

5.56 8.42 6.81 6.85 7.92

Gust 21.35 2.03 44.2 31.79 -1.73
(15.29) (16.38) (18.97) (16.87) (15.44)

8.92 9.45 8.37 8.25 10.47

Percipitation .15 .51 .27 .07 .
(.09) (.12) (.13) (.14) (.08)
5.75 2.94 4.26 3.41 6.64

Temperature -6.69 -.84 -9.78 -16.35 -5.81
(4.8) (3.22) (3.02) (5.3) (4.56)
12.60 25.06 29.31 19.30 14.07

Number of Hot Days .18 -.42 -.01 . .41
(1.62) (1.39) (.04) (.) (.63)
6.56 5.88 2.50 0.00 1.24

Number of Very Hot Days -7.36 .09 -2.44 -4.97 -.03
(3.52) (.07) (1.2) (2.93) (.01)
104.13 1.65 61.20 87.85 2.38

Number of Normal Days -152.3 -9.58 -44.28 -78.5 -20.45
(31.24) (3.23) (12.12) (18.25) (5.21)
18.41 11.29 15.85 21.08 23.73

Standard errors in parentheses and third row represents F-statistic for the 1st stage.
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A.2 Additional Figures

Below are the supplementary figures for chapter I. Figure A.1 demonstrate Choropleth

map for temperature for 1974 and 2012. Similarly, figures A.2 shows the change in visibility

and figures A.3 illustrates the change between 1974 to 2012 for Dew Point.

Figure A.1: GSOD data of Annual Temperature
Source: Author’s Calculation using ArcGIS and GSOD
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Figure A.2: GSOD data of Visibility
Source: Author’s Calculation using ArcGIS and GSOD
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Figure A.3: GSOD data of Dew Point
Source: Author’s Calculation using ArcGIS and GSOD
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Appendix B

Appendix for Chapter II

B.1 Additional tables

Below are the supplementary tables for chapter II. Tables B.1 to B.3 report estimated

MM coefficients. And B.4 reports applied restriction by state. All states have taken COVID-

19 actions, but restrictions vary, and the length of time the measures are in place vary.

Table B.1: Estimated MM coefficients of a logistic model.

1 2 3 4 5

~Γ Residential Compactness -0.43 0.02 0.02 0.02 0.02
(0.031) (0.003) (0.003) (0.003) (0.003)

Local self dependence -0.01 0.00 0.00 0.00 0.00
(0.002) (0.001) (0.001) (0.001) (0.001)

% Working from Home 0.02 0.00 0.00 0.00 0.00
(0.001) (0.000) (0.000) (0.000) (0.000)

Political preference (% Democrat) 0.02 0.11 0.12 0.12 0.12
(0.002) (0.007) (0.007) (0.007) (0.007)

Health (More is poorer health) 0.01 0.00 0.00 0.00 0.00
(0.001) (0.001) (0.001) (0.001) (0.001)

Union Rights 0.00 0.04 0.04 0.03 0.03
(0.005) (0.005) (0.005) (0.006) (0.005)

~G Total cases in previous week 13.72 10.08 9.50 9.24 8.93
(0.739) (0.898) (0.913) (0.922) (0.912)

Neighboring effect 0.15 0.18 0.18 0.19 0.18
(0.019) (0.021) (0.022) (0.022) (0.022)

R Restriction’s Index 0.16 0.15 0.15 0.15 0.15
(0.009) (0.009) (0.009) (0.009) (0.009)

~I (Residential Compactness)2 -19.17 -47.86 -53.67 -52.08 -48.79
(1.940) (2.665) (2.658) (2.616) (2.692)

(Local self dependence)2 -0.01 0.04 0.04 0.04 0.04
(0.007) (0.006) (0.006) (0.006) (0.006)

(% Working from Home)2 -0.04 0.01 0.02 0.02 0.02
(0.005) (0.005) (0.005) (0.005) (0.005)

(% Democrat)2 -2.86 0.92 1.86 1.58 1.05
(0.454) (0.489) (0.489) (0.491) (0.503)

(Health)2 3.18 3.52 4.46 4.36 4.62
(0.163) (0.160) (0.169) (0.171) (0.171)

Standard errors are in parentheses.
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Table B.2: Estimated MM coefficients of a logistic model.

1 2 3 4 5

~X Age Employed -0.013 -0.032 -0.018 -0.020 -0.025
(0.0057) (0.0100) (0.0098) (0.0101) (0.0103)

Member 0.001 0.000 0.000 0.001
(0.0023) (0.0023) (0.0023) (0.0023)

Covered 0.001 0.000 0.000 -0.001
(0.0008) (0.0008) (0.0008) (0.0009)

Education Employed -0.004 1.249 0.788 0.817 0.653
(0.1421) (0.1710) (0.1764) (0.1783) (0.1775)

Member -0.332 -0.267 -0.264 -0.260
(0.0297) (0.0293) (0.0300) (0.0300)

Covered 0.140 0.114 0.121 0.125
(0.0157) (0.0157) (0.0156) (0.0158)

Family Income Employed -0.011 -0.019 -0.022 -0.022 -0.023
(0.0017) (0.0020) (0.0020) (0.0020) (0.0021)

Member 0.002 0.002 0.002 0.002
(0.0006) (0.0006) (0.0006) (0.0006)

Covered -0.001 -0.001 -0.001 -0.001
(0.0003) (0.0003) (0.0003) (0.0003)

% living in Metro area Employed -0.004 -0.006 -0.006 -0.006 -0.006
(0.0011) (0.0012) (0.0012) (0.0013) (0.0013)

Member -0.003 -0.003 -0.003 -0.003
(0.0007) (0.0007) (0.0007) (0.0007)

Covered -0.001 -0.001 -0.001 -0.001
(0.0003) (0.0003) (0.0003) (0.0003)

% Married Employed -0.020 0.015 0.016 0.015 0.018
(0.0038) (0.0035) (0.0035) (0.0035) (0.0034)

Member 0.000 0.000 0.000 0.000
(0.0006) (0.0006) (0.0006) (0.0006)

Covered 0.001 0.001 0.001 0.001
(0.0002) (0.0002) (0.0002) (0.0002)

% Male Employed 0.121 0.112 0.121 0.120 0.122
(0.0154) (0.0071) (0.0072) (0.0072) (0.0072)

Member 0.001 0.001 0.002 0.002
(0.0006) (0.0006) (0.0006) (0.0006)

Covered 0.000 0.000 0.001 0.000
(0.0003) (0.0003) (0.0003) (0.0003)

% Public Sector 0.038 0.048 0.032 0.030 0.030
(0.0052) (0.0059) (0.0061) (0.0061) (0.0061)

Specification 1 does not include socioeconomic characters for union members and covered nonmember em-
ployees. This is because it is supposed to be a predictive model, where there is no need to differentiate the
treatment groups. Standard errors are in parentheses.
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Table B.3: Estimated MM coefficients of a logistic model.

1 2 3 4 5

~Σ Management Employed 0.117 0.250 0.182 0.089
(0.1154) (0.1171) (0.1198) (0.1236)

Member -0.046 -0.150 -0.154 -0.156
(0.0829) (0.0826) (0.0835) (0.0847)

Covered 0.934 0.944 0.933 0.964
(0.1460) (0.1405) (0.1370) (0.1382)

Professional Employed 0.219 0.149 0.163 0.165
(0.1061) (0.1029) (0.1059) (0.1068)

Member 0.062 -0.059 -0.069 -0.074
(0.0870) (0.0900) (0.0887) (0.0898)

Covered 0.231 0.176 0.163 0.216
(0.0969) (0.0947) (0.0946) (0.0975)

Nursing Employed 0.166 0.159 0.149 0.172
(0.0529) (0.0530) (0.0530) (0.0534)

Member -0.049 -0.014 -0.022 -0.012
(0.0506) (0.0510) (0.0498) (0.0501)

Covered 0.273 0.265 0.257 0.255
(0.0681) (0.0679) (0.0686) (0.0685)

Service Employed 0.292 0.297 0.295 0.321
(0.0494) (0.0486) (0.0480) (0.0489)

Member -0.015 -0.073 -0.093 -0.078
(0.0491) (0.0483) (0.0482) (0.0485)

Covered 0.194 0.169 0.165 0.209
(0.0583) (0.0561) (0.0562) (0.0579)

Sales & Employed -2.403 -1.150 -0.885 -0.942
Office (0.6133) (0.5889) (0.6078) (0.6121)

Member 5.118 7.657 7.716 8.659
(0.6288) (0.6815) (0.6863) (0.7213)

Covered 2.685 5.428 5.740 6.423
(0.6932) (0.7260) (0.7475) (0.7607)

~T % Total Employed 0.035 0.034 0.033
(0.0037) (0.0038) (0.0038)

Member -0.083 -0.081 -0.092 -0.070
(0.0168) (0.0166) (0.0165) (0.0173)

Covered -0.112 -0.187 -0.178 -0.168
(0.0623) (0.0626) (0.0616) (0.0609)

Hours Employed 0.065
(0.0130)

Member -0.007 -0.009
(0.0022) (0.0022)

Covered -0.002 -0.002
(0.0012) (0.0012)

Specification 1 does not include occupation shares. In specifications 2 to 5, we include occupation shares for
all employees to prevent contaminating the results due to the different exposure to the COVID-19 for union
members and/or covered nonmember employees. Standard errors are in parentheses.
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Table B.4: Applied restrictions in states and DC.

State
Mass gathering

restrictions
Initial business

closure
Educational

facilities closed
Non-essential
services closed

Stay at home
order

3/5
Restrictions

appliead

Delaware 16-Mar-20 16-Mar-20 16-Mar-20 24-Mar-20 24-Mar-20 16-Mar-20

Maryland 16-Mar-20 16-Mar-20 16-Mar-20 23-Mar-20 30-Mar-20 16-Mar-20

Michigan 13-Mar-20 16-Mar-20 16-Mar-20 23-Mar-20 24-Mar-20 16-Mar-20

New Mexico 12-Mar-20 16-Mar-20 13-Mar-20 24-Mar-20 N/I 16-Mar-20

Washington 11-Mar-20 16-Mar-20 13-Mar-20 25-Mar-20 23-Mar-20 16-Mar-20

Connecticut 12-Mar-20 16-Mar-20 17-Mar-20 23-Mar-20 N/I 17-Mar-20

DC 13-Mar-20 17-Mar-20 16-Mar-20 25-Mar-20 30-Mar-20 17-Mar-20

Louisiana 13-Mar-20 17-Mar-20 16-Mar-20 22-Mar-20 23-Mar-20 17-Mar-20

Ohio 12-Mar-20 17-Mar-20 16-Mar-20 23-Mar-20 23-Mar-20 17-Mar-20

New Jersey 16-Mar-20 16-Mar-20 18-Mar-20 21-Mar-20 21-Mar-20 18-Mar-20

New York 12-Mar-20 16-Mar-20 18-Mar-20 22-Mar-20 22-Mar-20 18-Mar-20

Wisconsin 17-Mar-20 17-Mar-20 18-Mar-20 25-Mar-20 25-Mar-20 18-Mar-20

California 11-Mar-20 19-Mar-20 19-Mar-20 19-Mar-20 19-Mar-20 19-Mar-20

Hawaii 16-Mar-20 17-Mar-20 19-Mar-20 25-Mar-20 25-Mar-20 19-Mar-20

Indiana 12-Mar-20 16-Mar-20 19-Mar-20 24-Mar-20 25-Mar-20 19-Mar-20

Utah 17-Mar-20 19-Mar-20 16-Mar-20 N/I N/I 19-Mar-20

Alabama 20-Mar-20 20-Mar-20 19-Mar-20 28-Mar-20 4-Apr-20 20-Mar-20

Kentucky 19-Mar-20 18-Mar-20 20-Mar-20 26-Mar-20 N/I 20-Mar-20

Wyoming 20-Mar-20 19-Mar-20 19-Mar-20 N/I N/I 20-Mar-20

Illinois 13-Mar-20 21-Mar-20 17-Mar-20 21-Mar-20 21-Mar-20 21-Mar-20

Nevada 19-Mar-20 21-Mar-20 16-Mar-20 21-Mar-20 31-Mar-20 21-Mar-20

Texas 21-Mar-20 21-Mar-20 19-Mar-20 N/I 2-Apr-20 21-Mar-20

Colorado 19-Mar-20 17-Mar-20 23-Mar-20 26-Mar-20 26-Mar-20 23-Mar-20

Massachusetts 13-Mar-20 23-Mar-20 17-Mar-20 24-Mar-20 N/I 23-Mar-20

Missouri 23-Mar-20 17-Mar-20 23-Mar-20 N/I 6-Apr-20 23-Mar-20

Oregon 12-Mar-20 24-Mar-20 16-Mar-20 N/I 23-Mar-20 23-Mar-20

Pennsylvania 1-Apr-20 23-Mar-20 17-Mar-20 23-Mar-20 1-Apr-20 23-Mar-20

Rhode Island 17-Mar-20 23-Mar-20 16-Mar-20 N/I 28-Mar-20 23-Mar-20

Tennessee 23-Mar-20 23-Mar-20 20-Mar-20 1-Apr-20 2-Apr-20 23-Mar-20

Vermont 13-Mar-20 23-Mar-20 18-Mar-20 25-Mar-20 24-Mar-20 23-Mar-20

Alaska 24-Mar-20 17-Mar-20 16-Mar-20 28-Mar-20 28-Mar-20 24-Mar-20

Georgia 24-Mar-20 24-Mar-20 18-Mar-20 N/I 3-Apr-20 24-Mar-20

Montana 24-Mar-20 20-Mar-20 15-Mar-20 26-Mar-20 26-Mar-20 24-Mar-20

Virginia 15-Mar-20 24-Mar-20 16-Mar-20 N/I 30-Mar-20 24-Mar-20

West Virginia 24-Mar-20 18-Mar-20 14-Mar-20 24-Mar-20 25-Mar-20 24-Mar-20

Idaho 25-Mar-20 25-Mar-20 23-Mar-20 25-Mar-20 25-Mar-20 25-Mar-20

Maine 18-Mar-20 25-Mar-20 16-Mar-20 25-Mar-20 2-Apr-20 25-Mar-20

North Carolina 14-Mar-20 25-Mar-20 14-Mar-20 30-Mar-20 30-Mar-20 25-Mar-20

Oklahoma 24-Mar-20 25-Mar-20 17-Mar-20 1-Apr-20 N/I 25-Mar-20

Arkansas 27-Mar-20 19-Mar-20 17-Mar-20 N/I N/I 27-Mar-20

Minnesota 27-Mar-20 17-Mar-20 18-Mar-20 N/I 27-Mar-20 27-Mar-20

New Hampshire 16-Mar-20 28-Mar-20 16-Mar-20 28-Mar-20 27-Mar-20 27-Mar-20

Arizona 30-Mar-20 20-Mar-20 16-Mar-20 N/I 30-Mar-20 30-Mar-20

Kansas 17-Mar-20 N/I 17-Mar-20 N/I 30-Mar-20 30-Mar-20

South Carolina 18-Mar-20 1-Apr-20 16-Mar-20 N/I 7-Apr-20 1-Apr-20

Nebraska 16-Mar-20 19-Mar-20 2-Apr-20 N/I N/I 2-Apr-20

Florida 3-Apr-20 17-Mar-20 17-Mar-20 N/I 3-Apr-20 3-Apr-20

Mississippi 24-Mar-20 3-Apr-20 19-Mar-20 3-Apr-20 3-Apr-20 3-Apr-20

Iowa 17-Mar-20 17-Mar-20 4-Apr-20 N/I N/I 4-Apr-20

North Dakota N/I 20-Mar-20 16-Mar-20 N/I N/I

South Dakota 6-Apr-20 N/I 16-Mar-20 N/I N/I

N/I is Not in Effect
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