
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Physics and Astronomy Dissertations Department of Physics and Astronomy 

12-13-2021 

Effects of video game playing on sensorimotor decision-making Effects of video game playing on sensorimotor decision-making 

abilities and brain network dynamics abilities and brain network dynamics 

Timothy Jordan 

Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss 

Recommended Citation Recommended Citation 
Jordan, Timothy, "Effects of video game playing on sensorimotor decision-making abilities and brain 
network dynamics." Dissertation, Georgia State University, 2021. 
https://scholarworks.gsu.edu/phy_astr_diss/137 

This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy 
Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, 
please contact scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/phy_astr_diss
https://scholarworks.gsu.edu/phy_astr
https://scholarworks.gsu.edu/phy_astr_diss?utm_source=scholarworks.gsu.edu%2Fphy_astr_diss%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


Effects of video game playing on sensorimotor decision-making abilities and

brain network dynamics

by

Timothy Jason Jordan

Under the Direction of Mukesh Dhamala, PhD

ABSTRACT

Video game playing is a popular activity that provides a cognitively engaging, sensory

rich, competitive environment. Sensorimotor decision-making is a dynamic brain process

involving multiple steps that build to make and execute a choice. This dissertation exam-

ines the differences in brain mechanisms for decision-making between those who play video

games extensively and those who do not for two studies. These studies of video gamers

and non-gamers investigated the differences between commonly activated brain regions from

both groups and the differences in brain network interactions. We used a modified moving

dot left-right discrimination task to examine each group’s decision-making performance and

functional magnetic resonance imaging (fMRI) to record the underlying brain activity asso-



ciated with task completion. Participants had to make decisions about the direction (left or

right) of motion of a specific set of color dots. Video game players (VGP) were found to be

faster than non-video game players (NVGP) by approximately 190 milliseconds and overall

approximately 2% more accurate. In the commonly activated regions study, we extracted the

percent signal change above baseline due to task-induced activity. VGP showed higher levels

of percent signal change than NVGP for primary and secondary visual areas and premotor

and motor regions. Functional Connectivity (FC) analysis allowed us to examine if the ac-

tivity from one correlates with the other. Examining FC for commonly activated regions,

we found six undirected and four directed increased connections across those regions. We

found that VGP displayed increased connections from DLPFC. These findings suggest that

VGP perform better on decision-making tasks because of enhanced attention control and vi-

suomotor coordination. For between network interactions, we examined previously studied

decision-making related networks, CEN-SN-DMN, and attention switching networks, DAN-

DMN-SN. VGP displayed decreased connectivity from SN to DAN, DMN, and CEN but

showed increased connectivity to SN. These findings imply that VGP increases their perfor-

mance by controlling the SN instead of SN controlling network interactions. These results

provide an improved understanding of how cognitively engaging tasks, like video game play-

ing, enhance our abilities to perform sensorimotor tasks even outside of video game playing.
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CHAPTER 1

INTRODUCTION

1.1 Research Overview

Training our brains to enhance cognitive skills is a common desire in today’s society.

This opens the questions about the topic of how to cognitively train for specific increased

capabilities. What activity provides the proper environment for training for significant in-

creases in skills? How does it affect the brain to achieve increased cognitive abilities? This

knowledge is important for understanding whether specific activities could benefit a popu-

lation of untrained individuals.

Video games have evolved significantly since their public debut in the early 1970s. Far

from the simplicity of the earliest video games, video games today are much more complex in

the environment that players are immersed in and in the tasks demanded of them to progress

or achieve victory. These graphically rich virtual environments and fast-paced challenges

demand players to be quick and accurate in order to complete their goals adequately.

Players are required to discern targets from small objects off in the distance and with

mass amounts of interference complicating their visual fields. Like athletic competitions,

the difference between winning and losing could be a fraction of a second or a fraction of

a degree of contact. Similarly, video game players (VGP) train to react more quickly and

more accurately so that they do not miss their target and lose. However, unlike athletic

sports, these contests are not physically demanding. Instead, they rely much more heavily

on cognitive capabilities. The press of a key does not take much physical strength, but the
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timing and speed of the press take a trained amount of cognitive specificity to achieve the

player’s goal. These types of environments have within them the potential to alter cognitive

functions by their innate requirements.

Within the span of one game, players must make hundreds of choices in the moment,

weighing the pros and cons of each choice and how the answer will help them achieve victory.

The sensorimotor decision-making process itself is highly complex, involving the integra-

tion of information across multiple sub-processes including sensation, perception, and action

(Siegel et al. (2011), Siegel et al. (2015)). To make the correct choice, information must be

sorted and filtered correctly so that only relevant rich information influences the outcome.

The complexity and allowed time of a decision can make it difficult for a person to arrive

at the correct answer. Thus, the desire to increase our ability to make quick decisions while

maintaining accuracy pushes us to find ways of training our decision-making skills.

The study of a cognitive benefit from playing video games is of great debate. While people

see the potential video games possess in training cognitive skills, precise results demonstrat-

ing that underlying neural mechanisms correlate with these changes have yet to be shown.

This dissertation examines the brain activity and connectivity due to video game playing

by studying the roles of specified regions to come together as a network in decision-making

tasks. This study is important not only to provide a potential method of training cognitive

skills oriented to decision making but also to illuminate the underlying neural mechanisms

that are changed by this type of training.

Brain imaging techniques, such as functional MRI, offer a way to study exactly where

cognitive activities are being carried out in the brain, such as decision-making, utilizing the
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Blood-Oxygen Level Dependent (BOLD) signal measurement. The BOLD signal measures

the amount of deoxygenated blood present in the blood vessels in the brain, which indirectly

correlates to brain activity (Glover (2011)). For this study, we used functional Magnetic

Resonance Imaging (MRI) to record these brain activities as participants completed decision-

making tasks to see how the video game player brain works. In the chapters that follow,

I discuss the behavior and brain differences for decision-making between those who play

video games and those who do not, especially (i) how video game playing changes decision

time and (ii) modulates network interactions for decision making, and (iii) how video game

playing alters attention control networks for task-focused activities.

1.2 Background & Significance

Since their public release in the 1970s, the effect of video games on a person has been

debated, with many people early on and some today believing that they cause negative

effects. These perceived effects range from shortening attention spans to increasing violent

behaviors. Even today, where we have professional gaming leagues, public perception is

mixed on the topic, and the science is still building to change that perception. Over the past

two decades, research projects have tried to study the effects of video games on behavior

and cognitive skills to see what differences there may be between gaming and non-gaming

populations.

The majority of the studies on video games have been task performance assessments

that implicate certain cognitive functions. These studies showed that VGP have multiple

benefits for cognitive skills when compared to non-video game players (NVGP). VGPs showed
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increased working memory (Anguera et al. (2013), Basak et al. (2008)), better attention

control (Anguera et al. (2013), Green & Bavelier (2007), Green & Bavelier (2015), Wu &

Spence (2013)), greater spatial resolution (Green & Bavelier (2007), Li et al. (2009)), more

efficient task switching (Basak et al. (2008), Oei & Patterson (2014)), and improved decision

making (Reynaldo et al. (2021)). These results were not exclusive to those who had played

for years, but also seen in those trained for a certain number of hours in a time span (Anguera

et al. (2013), Lynch et al. (2010), Rosser (2007), Wu & Spence (2013)).

While these studies give insight into the large-scale cognitive benefits of video games,

the neural underpinnings of the benefits have yet to be determined. Brain imaging studies

on VGP are much more limited in what they have examined. Around half the studies

have looked solely at how video game playing correlates to violence, and the other half

have primarily been resting-state studies of VGP in video game environments via presented

pictures or are examining addictive effects of gaming (Palaus et al. (2017)). These studies

have primary looked at brain activations (Granek et al. (2010), Richlan et al. (2017)), resting-

state functional connectivity (Momi et al. (2020)) and voxel-based morphometry (Tanaka

et al. (2013)). These studies examine neural differences between VGP and NVGP, but they

still leave out the active task performance neural connections involved. Thus, this study

aimed to examine how the task-focused neural activations and connections differed for VGP

and NVGP.

In this study, we wanted to examine different ways video games affected brain mecha-

nisms controlling cognitive skills. We chose for our study to image participants while they

completed a decision-making behavioral task to engage previously studied cognitive skills
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as stated above. We aimed first to show performance differences similar to previous stud-

ies and then examine those behavior differences from the perspective of neural mechanism

differences. Specifically, we want to examine these five questions:

1. What regional activity differences are present between VGP and NVGP for decision-

making tasks?

2. How are region to region functional connections, non-directional and directional, dif-

ferent for VGP?

3. What are the brain structural differences between VGP and NVGP?

4. How does video game playing change network interactions for decision-making?

5. How does video game playing change network interactions switching from resting state

to task-active state?

1.3 Hypotheses

For this study, we hypothesized that:

1. VGP would display improved task performance, both accuracy and response time

2. VGP will display elevated activations and connectivity between visuomotor regions.

This is based on previous research showing increased attention control and visual pro-

cessing (Green & Bavelier (2003), Green & Bavelier (2007), Wu & Spence (2013)).

3. VGP will increased grey matter volume in task-related regions similar to findings in

previous studies (Han et al. (2012), Tanaka et al. (2013)).
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4. VGP will show increased connectivity and control from the Salience Network (SN)

in consistency with previous findings that (i) SN drives rest to task switching and

decision-making performance (Chand & Dhamala (2016), Zhou et al. (2017)) and (ii)

resting state network activity between SN and CEN is increased for VGP (Gong et al.

(2016)).

1.4 Structure of Dissertation

Chapter 2 has a description of study materials, methods, and analyses used. Chapter

3 contains the results for the task-related behavioral response, brain node, and network

activities. Chapter 3 Section 4 is divided into three subsections to show the results from the

task-related regional activity, decision-making networks, and attention switching network.

Chapter 4 Section 1 is divided into subsections task-related regional activity, decision-making

networks, and attention switching networks to discuss the findings of each result. This

dissertation is based on the following two articles:

• T. Jordan and M. Dhamala, “Effects of video game playing on sensorimotor decision-

making abilities and brain network dynamics”. (In Preparation for Submission)

• T. Jordan and M. Dhamala, “Video game playing modulates salience network connec-

tivity to improve sensorimotor decision-making task performance”. (In Preparation

for Submission)
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CHAPTER 2

MATERIALS & METHODS

2.1 Materials

2.1.1 Participants

In this neuroimaging study, 47 people in total (28 VGP and 19 NVGP) participated.

Table 2.1 shows the demographics of the participants. Each participant filled out a question-

naire about their video game playing to determine which group a person would be placed

in. Participants who indicated playing over 5 hours per week in one of four types of video

game genres for the last two years were considered to be video game players. The four types

of VGPs we recruited were those playing one of the following: First Person Shooter (FPS),

Real-Time Strategy (RTS), Multiplayer Online Battle Arena (MOBA), and Battle Royale

(BR). NVGP were on average less than 30 minutes of playtime per week. All participants

were required to pass the full Ishihara’s Test for Color Deficiency. Participants provided

signed written consent forms and health screenings prior to their scheduled scan session.

Participants were compensated for their participation in the experiment. The Institutional

Review Boards of Georgia State University and Georgia Institute of Technology, Atlanta,

Georgia, approved this study.
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Table 2.1 Participant Demographics

Video Game Non-Video Game

Players Players

Number of Participants 28 19

Average Age (years) 20.64 ± 2.45 19.94 ± 2.62

Males 24 7

Females 4 12

Right-Handed 26 17

Left-Handed 2 2

2.1.2 Experiment Task, Stimuli and Design

Before their scheduled MRI scan session, participants were shown a demonstration of the

task they would be completing, and all questions pertaining to the task were answered. The

decision-making task for this experiment was a moving dots (MD) left-right discrimination

task modified from the previous version (Chand & Dhamala (2016)). Participants would be

cued for a color to attend to on the next screen. The cue was a text prompt that spelled

out the color, and the font color was the same color to avoid confusion. On the next screen,

participants would see two different sets of overlapping dots (each set consisting of 600 dots)

going in opposite directions. Participants would then respond whether they thought the dots

of the cued color were going left or right using a controller inside the fMRI. Participants were

told to respond as quickly and accurately as possible for which direction they thought the

colored set of dots they had been cued for were going. Participants were informed of the

total time of the scan session, safety protocols, and given an emergency button to reduce

anxiety inside the fMRI. Participants were asked to lay still and not to move during the scan
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periods. All motion movements were monitored during scan sessions, and participants were

notified if they began to move too much.

The direction of the cued set was randomized between each MD task, and the colors of

the two sets were randomly picked from a list of preset groupings as shown in Figure 2.2.

These difficulty pairings were based on the color wheel; easy difficulty level was between two

primary colors, medium was between primary and secondary colors, hard was a primary or

secondary color versus a tertiary color. The speed setting went from 0 (No-Motion) to 4,

the fastest setting. These settings were determined from finding the max speed of the dots

before illusory motion reversal became possible and using points every quarter of the max

speed for lower speed settings.

For each task period, the difficulty and speed setting of the task was randomly chosen

for that period. Within each task period, participants would respond to a total of 3 MD

tasks totaling 15 seconds. To respond, participants would indicate if the dots were moving

left, right, or not at all by pressing the left or right buttons with their thumbs or no button

press at all if no-motion. After the task period, there was a rest period of 15 seconds before

the next task period began with a new difficulty and speed setting. Figure 1 shows the

experiment design and timescale. Each combination of speed and difficulty setting appeared

four times for each participant’s scan session for a total of 60 task periods. All scan sessions

followed this same design. The task sequence was designed in and displayed by the PsychoPy

stimulus software (Peirce et al. (2019)).
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Figure 2.1 Task started with a cue for which color to attend to on the next screen. After 2
seconds, the MD would appear in the same location and participants would have 3 seconds
to respond. After the 3 second response window, the next cue would appear and begin the
stimulus period of 5 seconds total. The task appeared a total of 3 times per task block for
a total of 15 seconds of task and then immediately followed by a 15 second rest.

2.2 Data Collection

2.2.1 Behavioral Data

Behavioral data was collected by the stimulus software, PsychoPy (Peirce et al. (2019)),

and the computer running the software. Participant’s decisions via button presses and re-

sponse times were recorded for each MD task. Participant’s left/right decisions were trans-

lated into participant accuracy scores. Participants had to respond correctly to the MD



11

Figure 2.2 All possible pairs of color combinations divided into difficulty rank based on
contrast as defined by color wheel.

within the stimulus period to be considered correct answers. Responses after the stimulus

ended, incorrect responses, and no response at all for any condition other than no-motion

were considered incorrect answers. The correct responses would then be divided by the total

number of tasks and multiplied by 100 to give each participant a percentage score, which
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was their task accuracy score. Response times were taken as the time from the MD onset

after the text cue. Participants had to respond within 3 seconds of the MD onset.

2.2.2 Structural and Functional MRI Brain Data

Whole-brain structural and functional MR imaging was conducted on a 3 Tesla Siemens

Magnetom Prisma MRI scanner at the joint Georgia State University and Georgia Institute

of Technology Center for Advanced Brain Imaging, Atlanta, Georgia. First, high-resolution

anatomical images were acquired for voxel-based morphometry and anatomical reference

using a T1-MEMPRAGE scan sequence (TR = 2530 ms, TE1-4: 1.69-7.27 ms, TI = 1260

ms, Flip Angle = 7 deg, Voxel size 1 mm x 1 mm x 1 mm). Following, four functional scans

were acquired using a T2*-weighted gradient echo-planar imaging sequence while participants

completed the behavioral task (TR = 535 ms, TE = 30 ms, Flip Angle = 46 degrees, Field of

View = 240 mm, Voxel Size = 3.8 mm x 3.8 mm x 4 mm, Number of slices = 32 collected in

an interleaved order, Slice thickness = 4 mm). Each scan run was 7 minutes and 30 seconds

long, for a total functional scan time of 30 minutes, translating into 3,440 brain images.

2.3 Data Analysis

2.3.1 Data Preprocessing

All fMRI data was preprocessed using the Statistical Parametric Mapping Matlab soft-

ware suite (SPM12, Friston (2010)). Data was first imported from DICOM format into

NIFTI, then slice time corrected, realigned for motion correction, and realigned for field dis-

tortion using fieldmap corrections. Each participant’s data was then co-registered to their
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anatomical image and normalized to a Montreal Neurological Institute (MNI) template. The

anatomical image was then segmented. Lastly, the normalized data was spatially smoothed

with an 8 mm isotropic Gaussian kernel.

2.3.2 Task-Related Brain Activation

Task-related activations were computed by using the two-level random-effects analysis

approach (Friston (2010)). For the first-level analysis, data was analyzed using a mass

univariate approach based on general linear models (GLMs). The GLM was defined as

y = βX + ε, where y is the observed data, β is a matrix of regression parameters, X is the

design matrix constructed from the stimulus and task sequence and participant’s movements,

and ε is the residual error. The GLM design matrix was specified for each participant based

on when a specific task condition would have appeared for them over four runs. The specified

task conditions were: Easy Speed 0 (E0), Easy Speed 1 (E1), Easy Speed 2-3 (E23), Easy

Speed 4 (E4), Medium Speed 0 (M0), Medium Speed 1 (M1), Medium Speed 2-3 (M23),

Medium Speed 4 (M4), Hard Speed 0 (H0), Hard Speed 1 (H1), Hard Speed 2-3 (H23),

Hard Speed 4 (H4) and four motion regressors. Contrast images for Task - Rest and Motion

- No-Motion were created for each participant. The contrast images of t-maps were put

in a second-level analysis for a two-sample t-test to assess overall group effects and group

differences. The results were thresholded using family-wise error rate at corrected p < 0.05

and cluster size k > 20 voxels to compute brain activation maps for both contrasts.
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2.3.3 Brain Regions of Interest (ROI) selection

Three sets of Regions of Interest (ROI) were used. The first set was based on our group

(VG and NVG) activation maps. The second and third sets were based on previous works in

decision-making network interactions and network interactions in young adults, respectively.

2.3.3.1 Task Related Regional Activity

ROI were defined using 2nd-level analysis activation results for all participants. Acti-

vation clusters were identified for family-wise error (FWE) corrected p < 0.01 and cluster

extent k > 20. Coordinates for peak cluster activations were recorded and used in the Pick-

Atlas (Maldjian et al. (2003)) to determine the regions they correlated with. Table 2.2 shows

all ROI selected and for task condition. Regional average percent signal change for each con-

dition specified in the 1st-Level per run was extracted from each ROI using MarsBaR (Brett

et al. (2002)) for each condition in the GLM design. ROI were resampled to Talairach space

using AFNI’s 3dresample, and then voxel-wise BOLD time-series was extracted using AFNI’s

3dmaskdump (Cox (1996), Cox & Hyde (1997)).

2.3.3.2 Decision Making Related Network

In Chand & Dhamala (2016), three networks, Central Executive Network (CEN), SN,

and Default Mode Network (DMN), were examined, using coordinates from Sridharan et al.

(2008), to see how they interacted for perceptual decision making tasks. We created 6 mm

spherical masks around the coordinates given in Sridharan et al. (2008). Using the same

method as above, we extracted time-series data for each ROI. Table 2.3 shows the coordinates
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for each ROI center point.

2.3.3.3 Attention Switching Interactions

In Zhou et al. (2017), three networks, Dorsal Attention Network (DAN), DMN, and SN,

were examined to see how they interacted for young adults switching between resting and

task. We created 6mm spherical masks around the coordinates given in Zhou et al. (2017).

Using the same method as above, we extracted time-series data for each ROI. Table 2.3

shows the coordinates for each ROI center point.

2.3.4 ROI specific Percent Signal Change

Regional Percent Signal Change data was averaged for each participant across all 4 task

runs to obtain participant averages per ROI per task condition. For each participant, the

average percent signal change for each difficulty level and speed setting was calculated. A

two-sample t-test was used to determine the statistical significance of group percent signal

change differences for each difficulty setting and speed setting for p < 0.05.

2.3.5 Functional Connectivity

Time-series data was normalized for each participant per ROI by taking out the tem-

poral means and dividing by the standard deviation. The normalized time-series for each

participant were averaged across all voxels to calculate the average time-series per participant

per ROI. The time-series were segmented based on each task condition occurrence for each

participant. Segmented time-series data were corrected for any linear trends. Pearson corre-

lation coefficients were calculated for all pairs of ROI for each group of participants creating a
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functional connectivity (FC) matrix. Correlation coefficients, r, were transformed to z-score

using the Fisher Transformation, z = arctanh(r). A two-sample t-test was used on the group

z-scores to determine significant functional connections at p < 0.05, for group differences.

Z-scores were transformed back using the inverse Fisher Transformation, r = tanh(z). The

significance of the correlation was estimated using the student’s t cumulative distribution

function for each connection.

2.3.6 Directed Functional Connectivity

2.3.6.1 Granger Causality

Time-series data for Granger causality (GC) calculations were normalized, voxel aver-

aged, segmented, and detrended the same as FC time-series data. All participants’ data were

combined along the second dimension as trials to calculate the proper model order in para-

metric modeling for GC calculations. Once the model order was determined, GC matrices

were computed for each participant using the conditional Granger causality (CGC)(Dhamala

et al. (2008),Wen et al. (2013)). Conditional Granger causality calculates the direct causal

influences from region X to region Y using the equation:

IY→X|Z(f) = ln
Ωxx

Qxx(f)ΣxxQ∗xx(f)
(2.1)

where Σxx is the covariance of the trivariate autoregressive model and,

Q(f) =

Qxx(f) Qxy(f) Qxz(f)
Qyx(f) Qyy(f) Qyz(f)
Qzx(f) Qzy(f) Qzz(f)

 = G(f)−1 ·H(f) (2.2)

where the quantities G(f) is the transfer function matrix for the joint autoregressive
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model for Xt and Zt and H(f) is the transfer function matrix for the trivariate autoregressive

model for Xt, Yt and Zt.

If fY→X|Z(f) > 0 then Y is said to have a direct causal effect on X. If fY→X|Z(f) = 0

then the causal effect of Y on X is said to be mediated entirely by a third region or not

present at all. The equivalent time-doman CGC is:

FY→X|Z =
2

fs

∫ fs

0

IY→X|Z(f)df (2.3)

where fs is the sampling frequency. This can be interpreted as taking the joint flow from

Y Z and subtracting the flow from Z:

FY→X|Z = FY Z→X − FZ→X (2.4)

See Appendix C for some more details on the method. CGC noise threshold was calcu-

lated using a random permutation technique as described in Brovelli et al. (2004) for 1000

permutations. Significant group GC differences were calculated using the Mann-Whitney

U-test. Thresholding the group GC matrices by both the noise threshold and significant

GC connections as determined by Mann-Whitney U-test removed all non-significant GC for

both groups.
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2.3.6.2 Net Information Flow

Using group GC matrices, net information flow was calculated for each mth ROI. First,

all connections from ROIX to all other ROI were summed up to obtain ROIX ’s outflow.

outF (m) =
1

N − 1

N∑
i=1

Fm→i (2.5)

Next, all connections from all other ROI to ROIX were summed and then the negative

of the summation to obtain ROIX ’s inflow.

inF (m) =
1

N − 1

N∑
i=1

Fi→m (2.6)

The inflow and outflow of ROIX were then summed together to determine if that region

acted more as a “source”, outflow greater than inflow, or as a “sink”, inflow greater than

outflow, for each group. Inflow, Outflow, and Netflow were compared between groups using

Mann-Whitney U-test.

2.3.6.3 Brain Behavior Relation: Granger Causality vs Response Time

Granger Causality values for each participant per connection were plotted against par-

ticipant response time (RT) to look for correlations between performance and connectivity

strength. A linear fit, thresholded at p < 0.05, was used to calculate correlation coefficients

between GC and RT.
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2.3.7 Voxel-Based Morphometry

Structural data was analyzed with FMRIB Software Library Voxel-Based Morphometry

(FSL-VBM) (Douaud et al. (2007), http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM),

an optimized VBM protocol (Good et al. (2001)) carried out with FSL tools (Smith et al.

(2004)). First, structural images were brain-extracted and grey matter-segmented before

being registered to the MNI 152 standard space using non-linear registration (Andersson &

Smith (2007)). The resulting images were averaged and flipped along the x-axis to create

a left-right symmetric, study-specific grey matter template. Second, all native grey mat-

ter images and ROI masks were non-linearly registered to this study-specific template and

”modulated” to correct for local expansion (or contraction) due to the non-linear component

of the spatial transformation. The modulated grey matter images were then smoothed with

an isotropic Gaussian kernel with a sigma of 3 mm. Finally, voxelwise GLM was applied

using permutation-based non-parametric testing and atlas-based ROI mask, correcting for

multiple comparisons across space. For this analysis, we chose to use Harvard-Oxford cor-

tical and subcortical structural atlas (Desikan et al. (2006)) based ROI to get whole region

grey matter calculations instead of reducing it down to the 6mm spheres used in previous

analyses.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
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Table 2.2 Regions of Interest for Brain Activations

Contrast Region of Interest MNI Coordinates T

x(mm) y(mm) z(mm)

Task - Rest Left Calcarine -6 -93 -10 18.27

Right Middle Cingulate 6 17 42 14.67

Right Inferior Frontal Orbital 25 29 -6 14.53

Right Inferior Frontal Triangularis 44 17 26 14.26

Right Hippocampus 25 -28 -2 14.43

Left Insula -28 21 2 14.54

Right Insula 36 21 2 16.13

Right Lingual 21 -82 -14 19.74

Left Midbrain -6 -28 -6 13.59

Right Midbrain 6 -28 -6 14.21

Right Superior Occipital 17 -93 6 18.2

Left Inferior Parietal -44 -40 42 14.94

Left Inferior Parietal 2 -28 -51 46 14.9

Right Inferior Parietal 32 -51 46 13.16

Right Precentral 48 10 34 12.96

Right Putamen 17 13 -2 13.45

Left Supplementary Motor Area 2 10 50 14.77

Left Thalamus -13 -6 -2 12.94

Motion - No-Motion Right Calcarine 13 -89 -2 9.07

Left Middle Occipital -25 -89 14 7.49

Right Middle Occipital 40 -66 6 5.97

Left Superior Occipital -21 -89 22 7.04

Left PostCentral -47 -25 46 5.93

Right Supplementary Motor Area 10 6 50 6.63

Left SupraMarginal -47 -25 34 5.34

Vermis 9 2 -59 -38 7.55

Brain Activation ROI for Task - Rest and Motion - No-Motion contrasts corrected for multiple com-
parisons. All regions are under statistical significance of FWE corrected for multiple comparisons
at p < 0.01 and cluster extent k < 20.
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Table 2.3 Regions of Interest for Network Interactions

Network Interaction Region of Interest MNI Coordinates Network

x(mm) y(mm) z(mm)

CEN-DMN-SN DLPFC 45 16 45 CEN

lPPC -38 -53 45 CEN

rPPC 54 -50 50 CEN

PCC -7 -43 33 DMN

VMPFC -2 36 -10 DMN

ACC 4 30 30 SN

lAI -32 24 -6 SN

rAI 37 25 -4 SN

DAN-DMN-SN aMPFC 3 54 18 cDN

lAG -48 -69 33 cDN

PCC -3 -57 21 cDN

rAG 51 -63 27 cDN

lFEF -24 -9 57 DAN

lIFG -51 9 27 DAN

lIPS -42 -36 45 DAN

rFEF 27 -3 54 DAN

rIFG 54 12 30 DAN

rIPS 39 -42 51 DAN

dACC -3 15 42 SN

lAI -36 15 6 SN

laPFC -27 45 30 SN

rAI 33 18 6 SN

raPFC 30 42 30 SN

All ROI spheres were based on previous studies (Chand & Dhamala (2016), Sridharan
et al. (2008), Zhou et al. (2017)).
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CHAPTER 3

RESULTS

3.1 Behavioral Performance

Both groups showed increased response time for hard difficulty level and low speed,

speed setting 1. For all conditions and overall performance, VGP had faster response times

and higher accuracy than NVGP. VGP were significantly more accurate than NVGP for

overall task performance (2.24± 6.87%), easy condition tasks (7.12± 5.38%) , and speed 2

condition tasks (4.13±14.14%). All response times regardless of condition were significantly

lower in VGP than NVGP with an average difference of 190 milliseconds (ms) (VGP =

926.75 ± 424.71, NVGP = 1115.93 ± 483.89). Figure 3.1 & Table 3.1 show all results for

behavioral task performance. For all bar graphs, dark green and dark orange correspond to

VGP and NVGP, respectively.

3.2 ROI Signal Changes

The contrasts used were Task vs. Rest and Motion, all tasks with speed 1 or greater, vs.

No Motion, all tasks with speed 0 for all participants together. This gave an activation map

with all regions that both groups utilized for task performance. From this activation map,

6 mm spheres were placed around the local maxima peak voxel coordinates and extracted

percent signal change from baseline using MarsBaR (Brett et al. (2002)). We compared

group percent signal change from these regions and found ten regions where VGP and NVGP

significantly differed. Of these regions, only one showed higher activation in NVGP compared
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1 Behavioral task performance results. Sub-figures 3.1a & 3.1b are for overall task
performance. Sub-figures 3.1c & 3.1d are for task performance by difficulty level setting.
Sub-figures 3.1e & 3.1f are for task performance by speed setting

to VGP, and all other ROI favored VGP. Figure 3.2 shows all regions found to be significantly

different.

Figure 3.3 and 3.4 shows all regions found to be significantly different based on difficulty



24

Table 3.1 Behavioral MD Performance Results

Condition VGP NVGP p

General 95.26± 3.93 93.016± 5.63 0.0008

925.61± 432.18 1117.23± 494.78 2.05e−70

Hard 89.29± 7.98 86.25± 12.45 0.16

1123.07± 505.45 1296.59± 539.06 2.14e−16

Medium 98.29± 2.58 97.12± 4.56 0.13

866.34± 375.77 1043.51± 447.21 4.65e−27

Easy 98.45± 2.98 91.33± 4.48 1.68e−14

794.68± 329.14 1004.24± 418.41 1.68e−43

Speed 1 93.7± 9.7 91.2± 10.53 0.22

959.10± 456.53 1171.82± 492.91 1.35e−21

Speed 2 93.89± 9.03 89.76± 10.88 0.04

922.33± 426.98 1107.68± 479.04 1.28e−18

Speed 3 93.19± 8.75 92.72± 7.31 0.77

918.43± 441.24 1093.07± 491.55 9.56e−16

Speed 4 93.26± 8.07 92.44± 8.77 0.63

904.48± 407.16 1093.29± 499.5 1.77e−19

Group task performance averages for all difficulty level and speed set-
tings.

and speed, respectively. These regions are left and right Supplementary Motor Area (SMA),

left and right Midbrain (MB), right Putamen (PUT), right Lingual Gyrus (LING), left

Inferior Parietal Lobe (IPL), left Middle Occipital Gyrus (MOG), right Inferior Frontal pars

triangularis (IFT), Vermis 9 (V9), left Thalamus (THA), right Hippocampus (HPC).
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Figure 3.2 Activation map for all participants at corrected significance p < 0.05 (FWE), the
ROI named and circled here were shown to have significantly percent signal change between
VGP and NVGP.

3.3 Undirected and Directed Functional Connectivity

3.3.1 Task Related Regional Brain Activity

Undirected FC analysis was performed for all nodes, and we found that only six con-

nections were significantly different between groups. These connections are non-directional

and only show an overall correlation between the two regions. For all connections, VGP had

higher correlations, and therefore higher connectivity, than NVGP. For 3 of the connections,

NVGP showed no connectivity between these regions. Figure 3.5 shows the significant func-

tional connections for VGP (top left panel) and NVGP (top right panel), and a comparison

of the connectivity coefficients (bottom panel).

CGC analysis was used to assess directional connectivity between two regions, two in-
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Figure 3.3 Histogram of all regions found to have significantly different percent signal change
between groups based on difficulty setting.

dividual path interactions between these regions, one going from ROIX to ROIY and vice

versa for the other. This analysis was done for all conditions together as we were looking

for differences between groups overall and not for specific conditions. The CGC connections

were thresholded for noise, compared between groups to find significant connection differ-

ences, and then focused on connections where VGP were significantly higher, p < 0.01, and

any significant connections, p < 0.05, from dorsolateral Prefrontal Cortex (DLPFC). A total

of 4 connections were found to be higher in VGP. Figure 3.6 shows the connections that

were significantly higher for VGP. Figure 3.7 shows the connections for DLPFC that were



27

Figure 3.4 Histogram of all regions found to have significantly different percent signal change
between groups based on speed setting.

significantly higher for VGP. The node that the arrow points toward is the node receiving

causal influence from the other node. All other connections were found to have no significant

differences between groups.

3.3.2 Central Executive - Default Mode - Salience Networks

FC analysis was conducted on eight nodes to observe if VGP had modulated connections

between specific regions corresponding to specific networks as shown in Table 2.3. For these

network interactions, only two connections were found to have significant differences, but

only one was present in NVGP. Similar to the activation-based ROI, both connections had
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Figure 3.5 Significant Functional Connections. Line thickness indicates strength of connec-
tion, thicker line = higher connectivity and vice versa. A: Significant connections for VGP.
B: Significant connections for NVGP. C: Comparison between significant connections in both
groups, dark green for VGP and dark orange for NVGP
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Figure 3.6 Significant functional connections that were higher in VGP. Corresponding GC
values are displayed along the line. Color of the nodes corresponds to source or sink behavior
of the region. Blue corresponds to sink behavior for both groups. Red corresponds to source
behavior for both groups. Light blue corresponds to regions that were sink for VGP and
source for NVGP. Pink corresponds to regions that were source for VGP and sink for NVGP.

higher values for VGP. Figure 3.9 shows the connections found to be significantly different

between groups. Functional connectivity results for VGP and NVGP are shown in the top

left and right panels, respectively. A comparison bar graph of these connectivity results is

in the bottom panel.

Following the FC analysis, CGC analysis was then performed on the same nodes as

established above. After thresholding for noise and significance, we found that only one

connection, Posterior Cingulate Cortex (PCC) to left anterior Insula (aI), was significantly

different between the groups. Figure 3.10 show this connection with the arrow pointing
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Figure 3.7 Significant functional connections higher in VG players that involved DLPFC.
Corresponding GC values are displayed along the line.

towards the node receiving causal influence. All other connections we found to have no

significant differences.

The GC values from each region in one network to each region in another specific network

were averaged to find the average GC from one network to another, i.e., CEN to SN. We

found that five of six connections between these networks were significantly different between

groups. Figure 3.12 shows the between network connections that were significantly higher

for VGP and NVGP, respectively.
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3.3.3 Dorsal Attention-Default Mode-Salience Networks

FC analysis was conducted on 15 nodes as shown in Table 2.3. The connections from

regions in one network to another were taken for both groups and compared using a t-

test. We then averaged those connections to obtain the average connectivity between the

two networks, i.e., SN and DMN. We found that there was a significant difference between

groups for connectivity between DMN and DAN. Figure 3.14 shows the connection found to

be significantly different between groups.

Following the FC analysis, CGC analysis was then performed on the same nodes as estab-

lished above. After thresholding for noise and significance, we found that eleven connections

were significantly different between the groups. Of these eleven, only five we significantly

higher for VGP; the remaining significant connections were higher in NVGP. Figures 3.16

& 3.15 show these connections with the arrow pointing towards the node receiving causal

influence. Figure 3.16 shows the connections found to be higher for VGP. Figure 3.15 shows

the connections found to be higher for NVGP. All other connections we found to have no

significant differences.

Similar to the FC analysis, we compared the connections from regions in one network

to regions in another using MWU. It was found that five of six connections between these

networks were significantly different between groups. Figure 3.17 shows the between network

connections that were significantly higher for VGP and NVGP, respectively.
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3.4 Brain Network Source & Sink Activities

3.4.1 Task Related Regional Brain Activity

Information flow analysis was performed for all ROI. We found that six regions had

significantly different informational flows. For net flow, three regions were found to have sig-

nificant differences between groups: right Middle Cingulate (MCC), right Precentral Gyrus

(PreCG), and left Superior Occipital Gyrus (SOG). Figure 3.20 displays the net flow from

each ROI; the ROIs with significant differences are in bold and have dark green and dark

orange bars on the plot.

3.4.2 Central Executive - Default Mode - Salience Networks

Information flow analysis was performed on each node. We compared differences for

inflow and outflow from each ROI between groups. We found that only one region had a

significant difference. The outflow from the Posterior Parietal Cortex (PPC) was greater in

NVGP than in VGP. Figure 3.21 shows the inflow and outflow from each ROI; the significant

ROI is in bold and has dark green and dark orange bars.

3.5 Brain Behavior Relation: Granger Causality vs Response Time

Lastly, significant GC values were correlated to RT to see how the neural differences

related to behavioral performance. This was only done for connections that were found to

have a significant GC difference between groups.
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3.5.1 Task Related Regional Brain Activity

For region-to-region connectivity, we found that two connections had moderate correla-

tions between GC and RT, left Postcentral Gyrus (PoCG) to left IPL (r = -0.356, p = 0.03)

and right PreCentral Gyrus (PreCG) to left SMA (r = -0.4, p = 0.01). We saw a positive

and negative relation for left PoCG to left IPL and right PreCG to left SMA, respectively.

Figure 3.8 shows the correlation scatter plots for these connections.

3.5.2 Central Executive - Default Mode - Salience Networks

In the CEN-DMN-SN network interactions, we looked at both individual region-to-

region significant connections and significant connections between networks. We found that

for the one connection, PCC to left aI, response time decreased as the connectivity strength

increased. Next, we looked to examined this correlation between network interactions that

saw were significantly different. We found that two connections had moderate correlations

between GC and RT both coming from SN, SN to CEN (r = 0.398, p = 0.006) and SN

to DMN (r = 0.352, p - 0.01). Both connections showed that as GC increased, so did RT.

Figure 3.11 shows the correlation scatter plot for the PCC to left aI connection. Figure 3.13

shows the correlation scatter plots for the network-to-network connections connections.

3.5.3 Dorsal Attention-Default Mode-Salience Networks

Lastly, for DAN-DMN-SN network interactions, we examined both region-to-region sig-

nificant connections and between network connections. We found that one ROI-to-ROI con-

nection and one between network connection correlated with RT. The connections that had
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moderate correlations between GC and RT were anterior Medial Prefrontal Cortex (aMPFC)

to dorsal anterior Cingulate Cortex (dACC) (r = -0.34, p = 0.01) and DAN to SN (r = -0.34,

p = 0.02). Both correlations showed that as GC increased, RT decreased. Figure 3.19 shows

the correlation scatter plot for the aMPFC to dACC connection. Figure 3.19 shows the

correlation scatter plot for the between network connection.

3.6 Brain structural changes with Voxel-Based Morphometry

Results for VBM analysis results were thresholded at significance p < 0.05. Five regions

were found to have significantly different Grey Matter Volumes (GMV) for the activation-

based ROI and one region for DAN-DMN-SN Network: left/right Insula, right Occipital

Lobe, right PUT, right SMA, and left Angular Gyrus (AG). Table 3.2 shows relevant statis-

tics, coordinates for peak difference voxel, and which group had higher GMV. Figure (3.22

shows the ROI masks used and where they were located.

Region of Interest p MNI Coordinates Z Higher Group
x(mm) y(mm) z(mm)

Left Insula 0.022 -38 -10 -10 3.91 VG
Right Insula 0.006 38 -4 -8 4.62 VG

Right Occipital 0.038 14 -100 6 4.51 NVG
Right Putamen 0.007 34 -4 -10 4.47 VG

Right SMA 0.043 8 -10 56 3.5 VG
Left Angular 0.035 -48 -62 -16 3.6 VG

Table 3.2 ROI Voxel-Based Morphometry Results.
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(a)

(b)

Figure 3.8 Scatter Plot for GC vs Response times to correlation neural mechanisms to be-
havioral performance. Figure 3.8a and 3.8b both were found to have moderate correlations
that were significant p < 0.05.
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Figure 3.9 Significant Functional Connections. Line thickness indicates strength of connec-
tion, thicker line = higher connectivity and vice versa. A: Significant connections for VGP.
B: Significant connections for NVGP. C: Comparison between significant connections in both
groups, dark green for VGP and dark orange for NVGP
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Figure 3.10 Significant directed Functional connectivity higher in VGP for CEN-DMN-SN
network interactions. The corresponding GC value is displayed along the line.
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(a)

Figure 3.11 Scatter plot for PCC to left aI GC vs response times to correlation neural mech-
anisms to behavioral performance. Figure 3.11a was found to have moderate correlations
that were significant p < 0.05.
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(a) (b)

Figure 3.12 Significant functional connections higher in VGP and NVGP for CEN-DMN-SN
network interactions. Figure 3.12a and 3.12b correspond to VGP and NVGP, respectively.
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(a)

(b)

Figure 3.13 Scatter plot for GC vs response times to correlation neural mechanisms to be-
havioral performance. Figure 3.13a shows SN to CEN and 3.13b shows SN to DMN and
both were found to have moderate correlations that were significant p < 0.05.
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(a) (b)

Figure 3.14 Significant functional connections higher in NVGP for DAN-DMN-SN network
interactions. Figure 3.14a and 3.14b correspond to VGP and NVGP, respectively.
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Figure 3.15 Significant directed functional connections higher in NVGP for DAN-DMN-SN
network interactions. The corresponding GC value is displayed along the line.
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Figure 3.16 Significant directed functional connections higher in VGP for DAN-DMN-SN
network interactions. The corresponding GC value is displayed along the line.
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(a) (b)

Figure 3.17 Significant functional connections higher in VGP and NVGP for DAN-DMN-SN
network interactions. Figure 3.17a and 3.17b correspond to VGP and NVGP, respectively.
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Figure 3.18 Scatter plot for aMPFC to dACC GC vs response times to correlation neural
mechanisms to behavioral performance.
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Figure 3.19 Scatter plot for DAN to SN GC vs response times to correlation neural mecha-
nisms to behavioral performance.
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Figure 3.20 Netflow is shown by positive and negative Y bars for sink and source behavior,
respectively. ROI labels in bold are the regions with significant group differences at p < 0.05.
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Figure 3.21 Inflow and Outflow are shown by positive and negative Y bars, respectively. ROI
labels in bold are the regions with significant group differences at p < 0.05.

Figure 3.22 VBM regions found to have significant differences between groups. ROI masks
taken from Harvard-Oxford cortical and subcortical structural atlases (Desikan et al. (2006))
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CHAPTER 4

DISCUSSION & CONCLUSION

4.1 Discussion

This neuroimaging study investigated the change in decision-making abilities due to

video game playing and the underlying brain mechanisms for these changes. These mecha-

nisms involved the integration of information across multiple sub-processes including sensa-

tion, perception, and action (Siegel et al. (2011), Siegel et al. (2015)) as illustrated in figure

4.1. We compared VGP and NVGP for their behavioral and brain responses. VGP had

increased decision accuracy and decision time in overall performance for MD left-right dis-

crimination task. There were significant differences in both brain activity and connectivity.

These results were consistent with both our predictions and previous studies (Basak et al.

(2008), Green & Bavelier (2007), Green & Bavelier (2015), Li et al. (2009), Oei & Patterson

(2014), Wu & Spence (2013)).

4.1.1 Task Related Regional Brain Activity

First, looking at the brain activations, we found that VGP had significantly higher

percent signal change from baseline activations, specifically in left MOG, SMA, V9, right

LING, left IPL, MB, and right PUT. These regions are known for visual processing (Binkofski

et al. (2016), Galetta (2014), Lueck et al. (1989), Renier et al. (2010), Ramanoel et al. (2018),

Zeki et al. (1991)), motor planning (Cunnington et al. (1996), Lanciego et al. (2012), Makoshi

et al. (2011)), and visuomotor coordination (Caminero & Cascella (2020), Glickstein et al.

(1994)). This could indicate that VGP utilize those regions more to be able to visually
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Figure 4.1 Sensorimotor Decision-Making Tasks and Subprocesses. Sensorimotor decision-
making requires the processing and integration of information through multiple subprocesses
A. Stimulus and Task sequence B. A breakdown of the decision-making process into its
subprocesses.

process and react to the stimulus faster. Interestingly, NVGP showed higher percent signal

change than VGP in the left IFT for higher speed tasks. This region has been shown to

inhibit motor responses while still processing information (Molnar-Szakacs et al. (2004)).

This could mean that NVGP have a higher inhibition to their motor areas, causing slower

responses.

Likewise, examining net activity flow from each ROI, we found that there were significant

group differences in motor, right MCC and right PreCG, and a visual region, left SOG.

Although MCC acts as a sink region for both groups, VGP showed an increased inflow from
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all other regions. Differences in the amount of information flow and behavior were seen for

PreCG and SOG. For VGP, PreCG and SOG acted as a source region, while for NVGP,

they acted as a sink and neutral region, respectively. An increase in outflow from SOG

shows that VGP transmit more information after visual processing. MCC has been shown

to correspond to selective attention and response timing for timed decisions (Vogt (2016)).

Here, an increase in information inflow for VGP could indicate that VGP utilize more task-

relevant information in motor response timing. PreCG is responsible for motor execution, so

it would be expected to act primarily as a sink; however, VGP utilized it more as a source.

This may indicate some feedback from the PreCG that VGP utilize more than NVGP.

Next, we wanted to see how video game playing had modulated brain connectivity for

decision-making tasks. Six connections were elevated in VGP compared to NVGP; out of

the six, only three were seen in NVGP. VGP showed higher correlations for all connections.

Of the three connections that both groups had, right SOG - left Calcarine (CAL), left MOG-

left CAL, and left SOG-right IPL correspond to connections between visual processing ROI

(Binkofski et al. (2016), Galetta (2014), Russo et al. (2001), Macaluso et al. (2003)). The

remaining connections, V9-right IPL, left MOG-left THA, and left THA-right SOG, were

only present in VGP. Both V9 and right IPL have been shown to play roles in visuomotor

coordination (Binkofski et al. (2016), Guell & Schmahmann (2019), Ramanoel et al. (2018)).

A higher connection between these two could suggest being able to coordinate responses

faster and more accurately from processing the visual stimulus.

Characterizing directed functional connectivity with CGC, we found four elevated connec-

tions in VGP. Two of these connections, right IPL to left MOG and right PUT to left CAL,
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could be benefiting the subprocess of mapping to action for sensorimotor decision-making.

Right IPL plays a role in spatial coding (Binkofski et al. (2016)), and left MOG which plays

a role spatial (Renier et al. (2010)), color and motion processing (Galetta (2014)). Increased

connectivity between these two regions indicates increased spatial resolution of the task ded-

icated space. We also see increased influence of the right LING to right MCC. The Lingual

Gyrus has been indicated as being the Human V4, which plays a role in color perception

(Lueck et al. (1989), Zeki et al. (1991), Zeki & Bartels (1999)), while MCC plays a part

in motor planning (Vogt (2016)). Increases in this connection could help motor planning

responses to the cued color dots. Lastly, we saw higher connectivity from right PreCG to

left THA. PreCG is the primary motor area responsible for motor execution, and THA is

a sensory hub that relays signals between cortices. This connection could potentially be a

feedback loop after decision execution.

The second set of connections we examined were those including DLPFC. DLPFC has

been shown to play a role in the decision-making processes (Donahue & Lee (2015), Heekeren

et al. (2006), Philiastides et al. (2011)) and as well as having increased activity in VGP

(Granek et al. (2010)), so we wanted to look closer at how video game playing modulated

its connections. We see that it increases the DLPFC’s influence on visual areas right MOG

and right CAL as well as right Inferior Frontal pars orbitalis (IFO), which plays a role in

the semantic processing of words (Belyk et al. (2017)). Increases in these connections show

top-down attention control, which agrees with observations made by Green & Bavelier (2015)

and Wu & Spence (2013). The increased connectivity with IFO could indicate better cue

processing to keep track of the prompted color.
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4.1.2 Central Executive - Default Mode - Salience Networks

After looking at the regions with brain activations, we focused on network-to-network

connectivity (considering each Network as a node) to examine interactions. The first set of

networks were CEN, DMN, and SN. Chand & Dhamala (2016) showed that the SN exerts

a causal control over DMN and CEN in decision-making. In our results, we see that this

behavior gets increased in NVGP compared to VGP. In contrast, we found that in VGP,

causal control of SN was lower, and instead, DMN and CEN had increased causal influence

over SN. This could potentially mean that control of SN instead of SN control is vital for

increased decision-making performance.

Node-to-node connectivity among all nodes of all networks from undirected and directed

FC analyses showed increased influence from PCC to left aI and PCC to PPC. PCC is part

of the DMN and plays a role in improving behavioral performance by controlling attention

focus (Leech & Sharp (2013)). The anterior Insula is part of SN and is responsible for

engaging attention and awareness of salient stimuli (Menon & Uddin (2010)). Therefore,

increased influence of PCC on left aI could mean increased attention control towards task-

relevant stimuli. Comparing this connection to RT, we see as this connection becomes

stronger performance increase, via response time decrease, supporting this claim. These

results correlate with (Wu & Spence (2013)) that showed VGP had increased attention

control with increased performance.

Lastly, from undirected FC and information flow, VGP showed increased FC and infor-

mation outflow from PPC. PPC is responsible for proper object-oriented actions (Jeannerod
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(2001)) and spatial attention (Groh & Werner-reiss (2002)). This is consistent with results

for goal-directed actions.

4.1.3 Dorsal Attention-Default Mode-Salience Networks

Zhou et al. (2017) examined attention switching from rest to task-active state in young

adults, looking at the network interactions between DAN, DMN, and SN, showing that SN

exerts causal influence over DAN and DMN. We examined these network interactions in our

participants who were in the same age range. NVGP exhibited this neural activity with

increased causal influence over the DMN, but VGP showed increased influence over SN from

DAN and DMN. Our correlation results from GC vs. RT showed that RT increased with GC

from DAN to SN decreasing. Although SN may coordinate the switch from rest to executive

control, influence to SN may be required for more effective switching when in a task-based

environment. We see in VGP an increase in DAN’s causal influence to both SN and DMN,

indicated visual attention-driven mode switching from rest to task-active state. This could

allow for the increased response time for VGP if they are able to become task-focused more

quickly.

4.2 Conclusions

In this dissertation, we have looked at the brain mechanisms for enhanced sensorimo-

tor decision-making for VGP compared to NVGP. We examined their differences at both

the brain regional and network-level for undirected and directed functional connectivity as

well as structural changes. We showed that VGP outperform NVGP on a decision-making
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task overall for accuracy but consistently demonstrated a significantly higher response time.

From our activation-based ROI analyses, we see that there were significant differences in

regions involved with both visual processing and motor movement/planning. We also saw

an increased influence from DLPFC to visual information-processing regions. At the network

level, we saw that VGP increased influence to the SN from all other networks. This also

correlated with the response time.

To summarize, video game playing alters somatosensory-parietal network dynamics of

the decision-making process, allowing them to respond more quickly and accurately. Our

evidence supports that increased influence to the SN causes increased decision-making per-

formance. We theorize that this means that VGP are able to better control what object

they deem as important and control their attention to focus more solely on that object, thus

resolving it more quickly for the response.

4.3 Outlook for Future Studies

The next step would be to examine white matter tracts between these networks to

correlate the functional connectivity results. There is much left to be examined for functional

connectivity between VGP and NVGP; whole brain and condition-specific analyses. For this

study, we differentiated the type of gamer based on the game genre they primarily played

for the required amount per week but were unable to examine the differences amongst video

game players in this study. Future studies should see if the effects seen here in this study still

stand if the VGP are divided into groups based on their respective gaming type. Functional

MRI is limited by its time resolution capabilities and indirect measure of brain activity.
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Future studies would benefit by using electroencephalography (EEG) to expand on these

results for better time resolution of decision-making sub-processes.



57

CHAPTER 4

REFERENCES

Andersson, M. J., & Smith, S. 2007, Non-linear registration, aka Spatial normalisation

Anguera, J. A. et al. 2013, Nature, 501, 97

Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. 2008, Psychology and Aging, 23, 765

Belyk, M., Brown, S., Lim, J., & Kotz, S. A. 2017, NeuroImage, 156, 240

Binkofski, F. C., Klann, J., & Caspers, S. 2016, in Neurobiology of Language, ed. G. Hickok

& S. L. Small (San Diego: Academic Press), 35–47

Brett, M., Anton, J., Valabregue, R., & Poline, J. 2002, Human Brain Mapping Conference,

16, 497

Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., & Bressler, S. L. 2004, Pro-

ceedings of the National Academy of Sciences, 101, 9849

Caminero, F., & Cascella, M. 2020, Neuroanatomy, Mesencephalon Midbrain (Treasure Is-

land (FL): StatPearls Publishing), 31855353[pmid]

Chand, G. B., & Dhamala, M. 2016, Brain Connectivity, 6, 249

Cox, R. W. 1996, Computers and Biomedical Research, 29, 162

Cox, R. W., & Hyde, J. S. 1997, NMR in Biomedicine, 10, 171

Cunnington, R., Iansek, R., Bradshaw, J., & Phillips, J. 1996, Experimental Brain Research,

111

Desikan, R. S. et al. 2006, NeuroImage, 31, 968

Dhamala, M., Rangarajan, G., & Ding, M. 2008, NeuroImage, 41, 354

Donahue, C. H., & Lee, D. 2015, Nature Neuroscience, 18, 295



58

Douaud, G. et al. 2007, Brain, 130, 2375

Friston, K. J. 2010, Statistical parametric mapping: The analysis of functional brain images

(Elsevier AP)

Galetta, S. 2014, in Encyclopedia of the Neurological Sciences (Elsevier), 626–632

Glickstein, M., Gerrits, N., Kralj-Hans, I., Mercier, B., Stein, J., & Voogd, J. 1994, The

Journal of Comparative Neurology, 349, 51

Glover, G. H. 2011, Neurosurgery Clinics of North America, 22, 133

Gong, D. et al. 2016, Neural Plasticity, 2016, 1

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak,

R. S. 2001, NeuroImage, 14, 21

Granek, J. A., Gorbet, D. J., & Sergio, L. E. 2010, Cortex, 46, 1165

Green, C., & Bavelier, D. 2007, Psychological Science, 18, 88

Green, C. S., & Bavelier, D. 2003, Nature, 423, 534

——. 2015, Current Opinion in Behavioral Sciences, 4, 103

Groh, J. M., & Werner-reiss, U. 2002, in Encyclopedia of the Human Brain (Elsevier), 739–

752

Guell, X., & Schmahmann, J. 2019, The Cerebellum, 19, 1

Han, D. H., Lyoo, I. K., & Renshaw, P. F. 2012, Journal of Psychiatric Research, 46, 507

Heekeren, H. R., Marrett, S., Ruff, D. A., Bandettini, P. A., & Ungerleider, L. G. 2006,

Proceedings of the National Academy of Sciences, 103, 10023

Jeannerod, M. 2001, in International Encyclopedia of the Social & Behavioral Sciences (El-

sevier), 16224–16228



59

Lanciego, J. L., Luquin, N., & Obeso, J. A. 2012, Cold Spring Harbor Perspectives in

Medicine, 2, a009621

Leech, R., & Sharp, D. J. 2013, Brain, 137, 12

Li, R., Polat, U., Makous, W., & Bavelier, D. 2009, Nature Neuroscience, 12, 549

Lueck, C. J. et al. 1989, Nature, 340, 386

Lynch, J., Aughwane, P., & Hammond, T. M. 2010, Journal of Surgical Education, 67, 184

Macaluso, E., Eimer, M., Frith, C. D., & Driver, J. 2003, Experimental Brain Research, 149,

62

Makoshi, Z., Kroliczak, G., & van Donkelaar, P. 2011, Journal of Motor Behavior, 43, 303

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. 2003, NeuroImage, 19, 1233

Menon, V., & Uddin, L. Q. 2010, Brain Structure and Function, 214, 655

Molnar-Szakacs, I., Iacoboni, M., Koski, L., & Mazziotta, J. C. 2004, Cerebral Cortex, 15,

986

Momi, D., Smeralda, C. L., Lorenzo, G. D., Neri, F., Rossi, S., Rossi, A., & Santarnecchi,

E. 2020, Brain Imaging and Behavior, 15, 1518

Oei, A. C., & Patterson, M. D. 2014, Computers in Human Behavior, 37, 216

Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. 2017, Frontiers in Human

Neuroscience, 11

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman,
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APPENDIX A

SUPPLEMENTARY FIGURES & PLOTS

Figure A.1 All significant functional connections that were higher in VGP. Corresponding
GC values are displayed along the line. Color of the nodes corresponds to source or sink
behavior of the region. Blue corresponds to sink behavior for both groups. Red corresponds
to source behavior for both groups. Light blue corresponds to regions that were sink for
VGP and source for NVGP. Pink corresponds to regions that were source for VGP and sink
for NVGP.
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Figure A.2 Significant direct FC in VGP at significance p < 0.01.
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APPENDIX B

SUPPLEMENTARY TABLES

Table B.1 Functional Connectivity correlation values

Connection VG NVG p

Left Calcarine - Right Superior Occipital 0.8415 0.7671 0.0386

Left Calcarine - Left Middle Occipital 0.7858 0.6961 0.0384

Right Superior Occipital - Left Thalamus 0.4008 0 0.0442

Right Inferior Parietal - Left Superior Occipital 0.7143 0.5923 0.0466

Right Inferior Parietal - Vermis 9 0.5402 0 0.0228

Left Thalamus - Left Middle Occipital 0.4427 0 0.0364

Supplementary Table for FC connections with p value for Activation
Based ROI interactions

Table B.2 Functional Connectiv-
ity correlation values for CEN-SN-
DMN Network

Connection VG NVG p

PCC - lPPC 0.5092 0 0.0214

lPPC - rPPC 0.6098 0.4715 0.0110

Supplementary Table for FC connec-
tions with p value for CEN-DMN-SN
ROI interactions
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Table B.3 Region of Interest Netflow for Activation Based ROI

Contrast Region of Interest VG NVG

Task-Rest Left Calcarine Sink Source

Right Middle Cingulate Sink Sink

Right Inferior Frontal Orbital Sink Sink

Right Inferior Frontal Triangularis Sink Source

Right Hippocampus Source Sink

Left Insula Sink Source

Right Insula Sink Sink

Right Lingual Source Source

Left Midbrain Source Sink

Right Midbrain Sink Sink

Right Superior Occipital Sink Sink

Left Inferior Parietal Sink Sink

Left Inferior Parietal 2 Sink Sink

Right Inferior Parietal Sink Sink

Right Precentral Source Sink

Right Putamen Source Source

Left Supplementary Motor Area Sink Sink

Left Thalamus Sink Sink

Motion- No-Motion Right Calcarine Sink Sink

Left Middle Occipital Sink Sink

Right Middle Occipital Sink Sink

Left Superior Occipital Source Source

Left PostCentral Sink Sink

Right Supplementary Motor Area Sink Sink

Left SupraMarginal Sink Sink

Vermis 9 Source Source

Net behavior of regions for each group. Used for node color of GC con-
nection figures.
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Table B.4 Mann-Whitney U-test Results for Granger Causality

Connection VG NVG p Z

Left Inferior Parietal→Left Middle Occipital 0.0195 0.0143 0.0222 2.287

Left Middle Occipital→Right Calcarine 0.0288 0.0178 0.0405 2.0485

Left PostCentral→Left Inferior Parietal 2 0.023 0.0122 0.0139 2.4604

Left Thalamus→Right Inferior Frontal Triangularis 0.0179 0.0117 0.0263 2.222

Right DLPFC→Right Calcarine 0.0243 0.0151 0.0427 2.0269

Right DLPFC→Right Inferior Frontal Orbital 0.0226 0.0141 0.0327 2.1353

Right DLPFC→Right Middle Occipital 0.0253 0.0161 0.0473 1.9835

Right Hippocampus→Right Putamen 0.0184 0.0105 0.031 2.1569

Right Inferior Frontal Triangularis→Left Inferior Parietal 2 0.0261 0.0164 0.0498 1.9618

Right Inferior Frontal Triangularis-Left PostCentral 0.0193 0.0118 0.0263 2.222

Right Inferior Parietal→Left Inferior Parietal 2 0.0307 0.0156 0.0166 2.3954

Right Inferior Parietal→Left Middle Occipital 0.0226 0.0133 0.0084 2.6338

Right Inferior Parietal→Right Calcarine 0.0228 0.0167 0.0327 2.1353

Right Inferior Parietal→Right Superior Occipital 0.0241 0.0132 0.0131 2.4821

Right Lingual→Right Middle Cingulate 0.02 0.0117 0.0079 2.6555

Right Precentral→Left Supplementary Motor Area 0.0302 0.0199 0.0294 2.1786

Right Precentral→Left Thalamus 0.0189 0.0109 0.0084 2.6338

Right Precentral→Right Supplementary Motor Area 0.0237 0.0132 0.0346 2.1136

Right Putamen→Left Calcarine 0.0232 0.0125 0.0061 2.7422

Right Superior Occipital→Right Middle Cingulate 0.0233 0.0157 0.0139 2.4604

Vermis 9→Right Inferior Frontal Orbital 0.0184 0.0143 0.031 2.1569

Vermis 9→Right Superior Occipital 0.0305 0.018 0.021 2.3087

All directed connections higher in VGP for Decision-Making Tasks
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APPENDIX C

DEFINITIONS - STATISTICS AND MATHEMATICAL MEASURES USED

A Mann-Whitney U Test

The Mann-Whitney U test (also known as Wilcoxon Rank Sum Test) is a nonparametric

equivalent of the parametric t-test used to determine differences between groups. To calculate

and determine significance, all values from each group are brought together to determine the

value’s rank. The ranks go from 1−N , where N is the total number of points for both groups

combined. If the same value appears multiple times, then they are first assigned randomly

to ranks in order. For example, if 1 appears 3 times and is the lowest value, then the lowest

3 ranks (1,2, and 3) will randomly be assigned to each 1 value. After all, values have been

assigned a rank; all repeated values have their rank adjusted to give all values the same rank.

This is done by using the following equation:

radj =

∑j
i=1 rj
j

(C.1)

where rj are the initial ranks assigned to the values, j is the number of times the value is

repeated, and radj is the adjusted rank for the value. Once all values have been assigned a

rank, these ranks are summed together to get the group’s total rank R. With the total rank,

we then calculate the U statistic for each group as follows:

UG1 = nG1 · nG2 +
nG1(nG1 + 1)

2
+RG1 (C.2a)

UG2 = nG1 · nG2 +
nG2(nG2 + 1)

2
+RG2 (C.2b)
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Since one of our groups is large than 20 participants, we must use an approximate normal-

ization assumption and test for significance using a z-test. we calculated significance using

the following equation:

z =
U − µU

σU
(C.3)

where U is the larger of the two Us calculated above, µU is the mean of U , and σU is the

variance of U calculated using:

µU =
nG1 · nG2

2
(C.4a)

σU =

√
nG1nG2(nG1 − nG2 + 1)

12
(C.4b)

If z > 1.96, then the null hypothesis is rejected.

B Pearson Correlation Coefficients and Fisher Transformation

To find the Pearson Correlation between two regions, we take the time series for both and

use the equation below to calculate their correlation to one another:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2(Yi − Ȳ )2

(C.5)

where X̄ and Ȳ are the means of the times series X and Y, respectively and n is the

number of time points.

Once r was obtained for each pairing of regions for each participant, a Fisher Transforma-

tion was used to normalize the values for comparison. The Fisher Transformation formula’s
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for going to and from z are below:

z = arctanh(r) (C.6a)

r = tanh(z) (C.6b)

While all scores were in z form, they were compared using a t-test using the follow equation

t =
X̄1 − X̄2

s∆

(C.7)

where

s∆ =

√
s2

1

n1

+
s2

2

n2

(C.8)

After comparison, the average z value for each connection for each group was transformed

back using the above transformation.

C Conditional Granger Causality (Dhamala et al. (2008), Wen et al. (2013))

Consider two time series Xt and Yt represented by the bivariate autoregressive models:

Xt =
inf∑
j=1

a1jXt−j +
inf∑
j=1

b1jYt−j + ε1t

Yt =
inf∑
j=1

c1jXt−j +
inf∑
j=1

d1jYt−j + η1t

(C.9)

The pairwise Granger Causality from Y to X is defined as:

Fy→x = ln
ΣX

Σxx

(C.10)



70

where ΣX and Σxx are the error covariances in the two predictions. If Fy→x > 0 then

Y has a causal effect on X. However, if there were more than two time-series, then this

calculation would be insufficient as it would find a causal effect for indirect paths to X. If

we now consider that there are three time-series Xt, Yt, and Zt to determine if the influence

of Y on X is direct then Zt must be factored in to determine this. These three time-series

would have the joint and trivariate autoregressive models:

Xt =
inf∑
j=1

a2jXt−j +
inf∑
j=1

b2jZt−j + ε2t

Zt =
inf∑
j=1

c2jXt−j +
inf∑
i=1

d2jZg−j + ζ2t

(C.11)

and

Xt =
inf∑
j=1

a3jXt−j +
inf∑
j=1

b3jYt−j +
inf∑
j=1

c3jZt−j + ε3t

Yt =
inf∑
j=1

d3jXt−j +
inf∑
i=1

e3jYt−j +
inf∑
i=1

g3jZg−j + η3t

Zt =
inf∑
j=1

u3jXt−j +
inf∑
i=1

w3jYt−j +
inf∑
i=1

v3jZg−j + ζ3t

(C.12)

The two joint pairing give the following covariance matrices:

Σ(X,Y ) =

(
Σ1 γ1

γ1 Γ1

)
Σ(X,Z) =

(
Σ2 γ2

γ2 Γ2

)
(C.13a)

And the trivariate model produces the covariance matrix:

Σ(X,Y,Z) =

Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

 (C.14)
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Using these matrices similar to pairwise, we can calculate Yt to Xt conditional on Zt:

FY→X|Z = ln
Σ2

Σxx

(C.15)

If fY→X|Z > 0 then this indicates Yt has a direct causal influence to Xt. If fY→X|Z = 0

then the connection from Yt to Xt is entirely indirect and mediated by Zt

The frequency form of this can be calculated using the following equation:

IY→X|Z(f) = ln
Ωxx

Qxx(f)ΣxxQ∗xx(f)
(C.16)

where

Q(f) =

Qxx(f) Qxy(f) Qxz(f)
Qyx(f) Qyy(f) Qyz(f)
Qzx(f) Qzy(f) Qzz(f)

 = G(f)−1 ·H(f) (C.17)

Here, G(f) is the transfer function matrix for the joint autoregressive model for Xt and Zt

and H(f) is the transfer function matrix for the trivariate autoregressive model for Xt, Yt

and Zt
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