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ABSTRACT 

 
Human Immunodeficiency Virus type 1 (HIV-1) is a retrovirus and the causative 

agent of Acquired Immunodeficiency Syndrome (AIDS). HIV-1 can spread through 
multiple modes of transmission including cell-to-cell transmission between CD4+ T cells 
at a transient junction known as the virological synapse (VS). The VS forms upon HIV-1 
Envelope (Env) on the surface of an infected (producer) cell binding CD4 on an uninfected 
(target) cell. While the VS typically resolves with complete cell separation and transfer of 
virus particles, Env can occasionally facilitate cell-cell fusion at this site, forming a 
multinucleated infected cell (syncytium). Excessive syncytium formation is prevented by 
viral and host factors, though this subpopulation of infected cells can still comprise ~20% 
of all infected cells in vivo. T cell-based syncytia detected in vivo are unique from 
mononucleated infected cells as they contain 2-4 nuclei, can have an elongated 
morphology, and appear highly motile. Despite such significant presence of syncytia, little 
is known about how these multinucleated infected entities contribute to HIV-1 spread and 
pathogenesis. 

 
During cell-to-cell transmission at the VS, viral and host factors are enriched at this 

site to support virus spread (reviewed in Chapter 2). This thesis focused on fusion 
inhibitory factors HIV-1 Gag and several host proteins, including tetraspanins, ezrin, and 
EWI-2. We determined that EWI-2 is recruited specifically to the producer cell side of the 
VS (the presynapse) where it inhibits HIV-1-induced cell-cell fusion in a dose-dependent 
manner (Chapter 3). Although both EWI-2 and tetraspanins are typically downregulated 
upon infection, both tetraspanin CD81 and EWI-2 surface levels are partially restored on 
HIV-1-induced CD4+ primary T cell-based syncytia compared to mononucleated infected 
cells. 

 
We sought to determine whether target cells influence the surface profile upon 

fusion and whether the altered protein levels are maintained for the lifetime of a syncytium 
(Chapter 4). We demonstrated that EWI-2 surface levels on syncytia correlate with levels 
of the target cell population, suggesting that EWI-2 brought along by target cells at least 
partially restores surface expression in syncytia. Further, we determined that newly formed, 
“young” syncytia, have higher levels of EWI-2 than older ones, suggesting that 
downregulation of EWI-2 continues in syncytia. We expect that higher levels of EWI-2 on 
young syncytia will render them less susceptible to continued cell-cell fusion than 
mononucleated infected cells and may also reduce virus particle infectivity. This will be 
tested by analysis of a purified syncytia population to measure fusogenicity and particle 
infectivity relative to fusogenicity and particle infectivity of mononucleated infected cells. 
Those data will be included in a future manuscript. 

 
Collectively, the work presented in this dissertation has furthered our understanding 

of HIV-1-induced cell-cell fusion regulation and allowed us to characterize distinct 
differences in protein expression between syncytia and mononucleated infected cells. 
These findings open the door to future investigations aimed at understanding how syncytia 
contribute to virus transmission and pathogenesis.  
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CHAPTER 1 : INTRODUCTION 

 

1.1. Abstract 

 Human immunodeficiency virus type 1 (HIV-1) has infected millions of individuals 

around the world and is the causative agent of acquired immunodeficiency syndrome 

(AIDS). Given that we don’t yet have a cure for this virus, HIV-1 infection is a lifelong 

condition for an individual. Continued investigation into how this virus replicates and 

spreads may uncover novel therapeutic targets to help manage or even eliminate the virus. 

HIV-1 can spread through multiple modes of transmission, including cell-to-cell 

transmission at the virological synapse (VS). The work presented in this dissertation 

focuses on fusion regulation at the VS during cell-to-cell transmission of HIV-1. Further, 

our data indicate that multinucleated infected cells (syncytia), which form upon HIV-1-

induced cell-cell fusion, have unique characteristics compared to mononucleated infected 

cells. Should future investigations find that syncytia differentially contribute to virus 

spread, these infected entities could be an intriguing target for novel therapeutic 

development. 

 

1.2. HIV-1 Origins & Disease Progression 

Human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) are primate 

lentiviruses and the causative agents of acquired immunodeficiency syndrome (AIDS).  

HIV-1 strains comprise the majority of infections around the world, with group M 

being  responsible for the HIV-1 pandemic and the focus of this dissertation. HIV-1 M 
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(hereafter referred to only as “HIV-1”) originated as a result of zoonotic transmission of a 

strain of chimpanzee (cpz) Simian Immunodeficiency Virus (SIVcpz) carried by the 

chimpanzee subspecies Pan troglodytes troglodytes (SIVPTT) [1,2] (and reviewed in [3]). 

While some primate lentiviruses, such as natural SIV infections in sooty mangabeys and 

African green monkeys (SIVsmm and SIVagm, respectively) are non-pathogenic in their 

natural hosts, SIVcpz and HIV-1 can be pathogenic in humans and chimpanzees and can 

lead to the development of AIDS [4-7]. 

HIV-1 primarily infects CD4+ T cells and can be transmitted to a new host upon 

mucosal or percutaneous exposure to virus-containing bodily fluids. During virus 

transmission to a new host, an individual is exposed to numerous virus variants from the 

infected donor (reviewed in [8-10]). Shortly after exposure, there is a bottleneck where one 

virus variant emerges as the predominant virus present in the new host known as the 

Transmitted/Founder (T/F) virus [8-10]. During the early phase of infection, the virus 

replicates exponentially (until reaching peak viraemia ~3-4 weeks after infection) , spreads 

systemically, and establishes a reservoir of latently infected cells (reviewed in [11-14]). 

During this period, the host generates an immune response against the virus that helps 

control viraemia, though modulation of the infected cell by viral accessory proteins and 

rapid virus evolution can help infected cells and free virus particles evade immune 

detection [11,15]. Chronic infection is associated with a period of clinical latency where 

the infected individual appears asymptomatic but is still producing virus [13]. Over the 

course of disease progression, in untreated individuals, HIV-1 infection leads to chronic 

immune activation and exhaustion as well as severe depletion of CD4+ T cells, thus 
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impairing the host’s ability to counteract secondary infections and eventually leading to 

the development of AIDS [16,17]. 

 Since the beginning of the HIV-1 pandemic, an enormous amount of work has been 

done to investigate how this virus replicates and spreads as well as to understand the host 

response to infection. Not only do we now have a better understanding of viral replication 

and transmission, but this work has also led to the development of therapeutics and shed 

light on potential strategies to eliminate infection within a host. Continued investigation 

into the biology of HIV-1, modes of virus transmission, and the heterogeneity of the 

infected cell population could allow for the development of novel therapeutics and/or 

treatment strategies to manage, and perhaps even eliminate, virus within a host. 

 

1.3. HIV-1 Replication Cycle 

A mature virus particle is composed of a host-derived lipid bilayer/envelope that is 

decorated by the viral Envelope (Env) glycoprotein (a trimer of non-covalently associated 

Env surface and transmembrane subunit, gp120/gp41, heterodimers [18]) (reviewed in 

[19]) and contains Matrix (MA) protein associated with the inner leaflet of the lipid bilayer 

(for a review and schematic representation of structural protein distribution in viral 

particles, see [20] Figure 3). Within the particle is a cone-shaped core made up of viral 

Capsid (CA) protein lattice that surrounds 2 copies of the positive-sense, single strand RNA 

genome bound by the viral Nucleocapsid (NC) protein [20]. Virus-encoded proteins also 

present in the core include Reverse transcriptase (RT), Integrase (IN), Vif, and Vpr [21-

25]. 
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When a free mature virus particle that encounters an uninfected target cell it can initiate 

a new round of infection upon Env-mediated fusion with the target cell. The Env surface 

subunit gp120 contains the receptor (CD4) and co-receptor (either chemokine receptor 

CCR5 or CXCR4) binding domains [26]. Sequential gp120 binding to CD4 and then the 

coreceptor induces conformational changes in Env necessary for exposure of the Env 

fusion peptide (reviewed in [27]). Each gp41 subunit within the Env trimer contains a 

hydrophobic fusion peptide and two alpha-helical heptad repeat regions (HR1 and HR2) 

[26] which together help facilitate fusion. Specifically, the exposed gp41 fusion peptides 

are inserted into the plasma membrane (PM) of the target cell followed by folding of the 

HR1 and HR2 subunits into a hairpin structure which brings the viral envelope and PM in 

close proximity to promote fusion between the two lipid bilayers (reviewed in [28]). 

Viral envelope and target cell PM fusion allows the viral core to be released into the 

cytoplasm of the cell. While the viral core is being transported to the nucleus along 

microtubules [29], RT is reverse transcribing the viral RNA genome to double-stranded 

DNA. The RT is extremely error prone (comparison of RT error rates in recent review 

[30]), thus contributing to the relatively high mutation rate of HIV-1 that can help this virus 

overcome selective pressures and promote overall viral heterogeneity [31]. Prior to reliable 

and efficient intracellular labeling/visualization of CA, it was thought that uncoating of the 

viral core and reverse transcription were likely completed prior to nuclear entry and that 

the core did not enter the nucleus [32]. However, recent studies have shown that uncoating 

of the viral core and completion of reverse transcription occur after nuclear entry [33-35] 

and that intact cores can even enter the nucleus [36,37] (see [38] for a recent commentary)! 
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Upon entry into the nucleus, host factors help target IN and viral DNA to sites of active 

transcription away from the nuclear periphery [39-41]. IN directs exposed 3’ OH groups 

in the long terminal repeat sequences (LTR) flanking either end of the viral DNA to the 

host DNA to facilitate integration by strand transfer [40,42]. Initial transcription from the 

integrated provirus is dependent on host transcription factors, allowing for the production 

of “early” viral proteins (Tat, Rev, and Nef). Tat and Rev can then drive viral gene 

expression (by Tat) and export positive-sense viral mRNA encoding “late” viral proteins 

(Gag/GagPol, Vif, Vpr, Vpu, and Env) and transport the full-length RNA genome to the 

cytoplasm (by Rev) [43,44]. Viral accessory proteins Nef, Vpu, Vpr, and Vif help establish 

an environment in the infected cell to support production of new infectious virus particles 

and continued virus spread [15,45-49]. 

Both Env and Gag are produced as precursors and require maturation by proteolytic 

cleavage for production of infectious virus particles. Newly synthesized Env precursor 

(gp160) is cleaved in the Golgi by a host protease into gp120 and gp41 (which associate 

by noncovalent interactions to form a gp120-gp41 heterodimer [18]), generating mature 

Env [26]. Once trafficked to the PM, Env is recycled into endosomes before being 

trafficked back to the PM – a process that is predicted to prevent excessive Env-induced 

cell-cell fusion by reducing Env at the PM and is implicated in supporting Env 

incorporation into virus particles [50,51]. The Gag precursor polyprotein contains MA, 

CA, NC, and p6 domains (and 2 spacer peptides). The GagPol precursor protein is 

generated as a result of a programmed ribosomal frameshift in the Gag transcript [52]. 

GagPol polyproteins contains MA, CA, NC, and p6 (like the Gag precursor) as well as RT, 
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IN, and Protease (PR) (encoded by Pol) [53]. Gag precursors rely on the MA domain for 

localization to the inner leaflet of the PM (reviewed in [53-55]) in preparation for particle 

assembly. 

 Assembly of new virus particles occurs at the PM and is driven by the immature 

Gag precursor polyprotein. The MA domain of the precursor promotes incorporation of 

Env into viral particles through MA interactions with Env-CT and also traps Env in a non-

fusogenic state [56-64]. Further, the NC domain binds the viral RNA genome to ensure 

incorporation into new particles (reviewed in [65,66]). Gag accumulation at the PM drives 

viral budding and the p6 domain is required for viral release [67,68] as it binds host 

Endosomal Sorting Complex Required for Transport (ESCRT) machinery [69-71] which 

are recruited to complete the budding process, thus allowing particles to be released into 

the extracellular milieu (reviewed in [72,73]). Dimerization of PR monomers upon particle 

budding and/or release forms the active protease which mediates PR release from the 

GagPol precursor by autocatalysis [74], at which point PR can cleave the Gag and GagPol 

polyprotein precursors into the individual proteins to form a mature virus particle 

(reviewed in [75]). Additionally, cleavage of the Gag precursor releases Env from its 

trapped state allowing for increased diffusion within the lipid envelope and Env can now 

facilitate fusion upon CD4 binding to initiate a new round of infection [76,77]. 

 

1.4. HIV-1-induced cell-cell fusion 

HIV-1 can induce the formation of multinucleated infected cells (syncytia). HIV-

1-induced syncytia include both large, macrophage-based syncytia [78,79] and small (2-4 
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nuclei), T cell-based syncytia [80-83], and HIV-1 is likely also responsible for the giant, 

multinucleated infected cells detected in the brains of AIDS patients [84]. Small T cell-

based syncytia (hereafter referred to only as “syncytia”) present in vivo, while anecdotally 

reported in infected individuals [85], have only been recognized recently [80,82,83], as 

they had previously been thought to only be in vitro cell culture artifacts [86]. Whether 

these syncytia contribute to virus spread remains unknown.  

HIV-1-induced syncytia formation is facilitated by the viral fusogen Env at the 

virological synapse (VS). The VS is a transient cellular junction between and infected cell 

and an uninfected cell that allows for HIV-1 cell-to-cell transmission. The VS forms when 

Env on the surface of an infected cell binds CD4 on the surface of an uninfected T cell 

[87,88] (and reviewed in greater detail in Chapter 2). As Env is fusogenic at neutral pH, 

VS formation could result in fusion of the producer and infected cell membranes, forming 

a syncytium. However, HIV-1-induced cell-cell fusion is largely prevented by both viral 

(Gag) and host (ezrin, tetraspanins, and recently identified EWI-2) fusion inhibitory factors 

[61,89-91] (as will be discussed further in Chapter 2). Despite these fusion inhibitory 

mechanisms, T cell-based syncytia have still been detected in vivo and can comprise ~20% 

of infected cells in the lymph nodes of humanized mice [80,82,83,85].  

T cell-based syncytia detected in humanized mice during early infection can have 

an elongated, multilobed morphology and remain small as they have only been shown to 

contain up to 4 nuclei, with most syncytia only containing 2 nuclei [80,81]. Intriguingly, 

syncytia have also been shown to be capable of releasing “clouds” of virus particles and 

can transfer virus particles to uninfected cells upon cell-cell contact [81]. Collectively, 
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these studies suggest that syncytia likely play a yet-to-be determined role in viral spread 

within a host, including the potential to contribute to transmission at a VS. T cell-based 

syncytia have even been shown to have increased levels of fusion inhibitory host proteins 

EWI-2 and CD81 compared to mononucleated infected cells [91], indicating that syncytia 

may be less likely to undergo cell-cell fusion than other infected cells. We propose that the 

same fusion inhibitory machinery already implicated in fusion inhibition at the HIV-1 VS 

helps to maintain the relatively small size of T cell-based syncytia seen during early 

infection [81], therefore preventing indefinite growth (i.e. additional cell-cell fusion) of 

these infected entities. 

 

1.5. EWI family protein EWI-2 (IGSF8) 

EWI proteins are a subfamily of the immunoglobulin super family (IGSF) 

comprised of 4 members, EWI-F (CD9P-1/FPRP/PTGFRN), EWI-2 (IGSF8/PGRL), EWI-

3 (IGSF3), and EWI-101 (CD101/IGSF2). EWI proteins have an extracellular Gln-Trp-Ile 

(E-W-I) motif and share 23-35% amino acid similarity [92]. Members of the EWI 

subfamily, EWI-F and EWI-2 are both interacting partners of tetraspanins CD9 

(TSPAN29/MIC3) and CD81 (TSPAN28) [92,93], and EWI-3 was also recently shown to 

interact with tetraspanin CD231 (TSPAN7/TM4SF2) [94]. Tetraspanins are a family of 4-

pass transmembrane proteins and are involved in numerous membrane processes. 

Tetraspanins can organize membrane microdomains (TEMs) or tetraspanin “webs” that 

can be comprised of a diverse network of proteins, including EWI-F and EWI-2 (reviewed 

in [95-97]). The interactions of EWI family members EWI-F and EWI-2 with tetraspanins 
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CD9 and CD81 have been robustly characterized and the functions of these EWI family 

proteins are frequently linked to those of tetraspanins [92,98-103]. Like tetraspanins, EWI-

F and EWI-2 are implicated in a variety of processes at the PM including cell migration, 

signaling, synapse formation, cell-cell fusion, and regulating the lifecycle of several 

pathogens [91,99-101,104-110].  

EWI-2 is a 70-kDa protein composed of 4 extracellular Ig domains and a short (10 

AA), highly basic cytoplasmic tail. EWI-2 contains 3 sites of N-glycosylation in its 

extracellular domain [99] and EWI-2 is also subject to palmitoylation of two membrane-

proximal cysteine residues (Cys604 and Cys605) [99,111]. Palmitoylation of the EWI-2 

cytoplasmic tail influences EWI-2 interactions with phosphatidylinositol phosphates (PIPs) 

and is necessary for efficient interactions with both CD9 and CD81 [99,111]. EWI-2 can 

be cleaved by a yet-to-be determined protease to yield a 55 kDa product that lacks the N-

terminal Ig domain (ie. EWI-2 “without its N-terminus” or EWI-2wint) which is also an 

interacting partner of CD9 and CD81 [109]. EWI-2 and/or EWI-2wint can influence TEM 

composition in the PM which is shown to impact a diverse array of cellular processes 

including cancer cell metastasis [105,107,112] and hepatitis C virus entry 

[99,100,109,110,113-116]. Further, EWI-2 has been shown to regulate HIV-1 induced cell-

cell fusion alongside previously described fusion inhibitory tetraspanins interacting 

partners [91,117], suggesting that EWI-2 may also influence TEM 

composition/distribution in HIV-1-infected cells. 
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1.6. Dissertation Overview 

 The work presented in this dissertation has added a new perspective on the 

field of HIV-1 cell-to-cell transmission (Chapter 2, review in preparation), increased our 

understanding of fusion inhibition at the VS (Chapter 3), and described mechanisms of 

protein modulation for HIV-1-induced syncytia (Chapter 4). By discussing recent 

advancements in the field of HIV-1 cell-to-cell transmission at the VS and highlighting 

still unanswered questions (Chapter 2), we hope our review will serve as a resource for 

understanding the dynamic nature of the VS and provide direction for future investigations. 

Our work enhanced the field’s understanding of factors which promote efficient cell-to-

cell transmission by identifying EWI-2 as a novel inhibitor of HIV-1-induced cell-cell 

fusion which is recruited exclusively to the producer cell side of the synapse (the 

presynapse; Chapter 3). Intriguingly, our single cell analysis of infected cells by 

quantitative microscopy revealed that HIV-1-induced syncytia have higher levels of fusion 

inhibitory EWI-2 and CD81 than mononucleated infected cells (Chapter 3). This unique 

feature of multinucleated infected cells was further investigated and allowed us to 

determine that EWI-2 levels on syncytia depend on the levels of previously unfused target 

cells and can be modulated over time after fusion (Chapter 4, to be included in a future 

manuscript). We are excited as this work advances the field of cell-to-cell transmission 

through our investigations of HIV-1-induced cell-cell fusion regulation, including how 

multinucleated infected cells differ from mononucleated infected cells. Further, this work 

has provided the foundation for continued investigations aimed at understanding the 
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mechanisms of EWI-2-mediated fusion inhibition and the role of HIV-1-induced syncytia 

in virus spread (as proposed in Chapter 5).
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2.1. Abstract 

Cell-to-cell transmission is an efficient mode of HIV-1 spread that is unique from 

cell-free transmission as it relies on the formation of a transient junction between HIV-1-

infected cells and uninfected target cells known as a virological synapse (VS). Extensive 

remodeling in both cells engaged at the contact results in polarization of viral and host 

factors to the VS. Upon formation of the VS, virus particles can be transferred to the 

uninfected target cell to facilitate a new round of infection, and ultimately the VS typically 

resolves with complete cell separation. Therefore, protein organization at the VS is tightly 

regulated to ensure transfer of virus particles to target cells and complete cell separation. 

This review will focus on cell-to-cell transmission between T cells and aims to summarize 

advancements in our understanding of VS structure, emphasize the contribution of fusion 

regulation to ensuring continued spread, signaling events, and temporal dynamics at the 

synapse. 

 
2.2. Defining HIV-1 Cell-to-Cell Transmission 

With this review, we will discuss recent developments in the field of human 

immunodeficiency virus type 1 (HIV-1) cell-to-cell transmission between CD4+ T cells at 

the virological synapse (VS; named for its similarity to the immunological synapse/IS 

[1,2]). We will not include a figure depicting a schematic representation of transmission at 

the VS in this review as this could give the impression that the VS is a singular, fixed 

junction and would be in contrast with our increased understanding that the VS is actually 

a multiform, dynamic cellular junction. This review will complement recent reviews of 

HIV-1 transmission upon cell-cell contact and lentiviral cell-to-cell spread [3-7], while 
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adding a resource for HIV-1 transmission at the VS which is focused on features that 

support efficient transmission including T cell VS structure, fusion regulation (our group’s 

area of expertise), signaling, and temporal events supporting efficient cell-to-cell spread. 

Human immunodeficiency virus type 1 (HIV-1) can spread through multiple modes of 

transmission, including cell-free and cell-to-cell transmission which both ultimately 

require the release of free virus particles. What distinguishes cell-to-cell from cell-free 

transmission is that cell-to-cell transmission is dependent on transfer of virus particles at a 

transient cellular junction between an infected T (producer) cell and an uninfected CD4+ T 

(target) cell known as the virological synapse (VS) [8] (as also defined previously [3]). The 

VS forms upon HIV-1 Envelope (Env) on the surface of a producer cell binding its receptor 

CD4 on the surface of a target cell [8], leading to rapid polarization of viral and host factors 

to the contact site. While the producer-target cells are engaged at the VS, newly produced 

virus particles can bud from the surface of the producer cell in a polarized manner near the 

target cell. The released virus particles can then enter the target cell engaged at the VS to 

initiate a new round of infection [9]. 

 

2.3. VS Structure, Composition, and Organization 

Since the HIV-1 VS was first described [8], a substantial number of studies 

conducted in vitro have enhanced our understanding of the structure and composition of 

the VS. The VS is a cellular structure formed upon Env-CD4-mediated contact between 

opposing producer and target cell membranes where both viral and host factors are 

typically rapidly polarized to support efficient cell-to-cell transmission. Although factors 

which have been shown to support cell-to-cell transmission are typically present at the VS, 
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it is also clear that the VS is a dynamic structure for which a single version likely does not 

exist, but rather multiple, dynamic variations of this junction could support virus 

transmission. 

Studies from multiple groups demonstrated that contact between the producer and 

target cell at the VS does not appear to be a continuous contact between the two cell 

membranes, but rather multiple points of membrane contact across the synapse [8,10]. 

Early studies using transmission electron microscopy and three-dimensional (3D) electron 

tomography documented that the VS is comprised of multiple CD4-positive membrane 

contacts across the synapse [8] and has a remarkably porous structure, composed of open, 

cell-free zones between the distinct membrane contact sites [10]. Further, free virus 

particles were frequently seen within the open zones between cell contact points [10]. A 

more recent investigation of the structure of the VS utilized homotypic producer:target cell 

co-cultures of either Jurkat or primary CD4+ T cells to visualize the VS by focused ion 

beam scanning electron microscopy (FIB-SEM), which allowed for 3D reconstruction of 

the synapse of whole embedded samples imaged in sequential <50 nm slices, revealed 

important distinctions between cell line (Jurkat) and primary T cell-based VS structures 

[11]. While both Jurkat and primary T cell-based synapses had distinguishable membrane 

protrusions, primary T cells appeared to form closer contacts than those between Jurkat 

cells, and virus budded from the synapse periphery of primary T cells rather than near the 

synapse center as was shown for Jurkat cells [11]. Such close membrane contacts between 

cells at primary T cell-based synapses were also documented by another group [12]. 

Correlative fluorescence and electron microscopy further documented that cell-to-cell 

transmission mediated by both Jurkat and primary T cell producer cells can result in the 



 27 

transfer of virus particles which appeared to be present at both the target cell surface and 

within endosomes [12]. Overall, these studies demonstrate that close membrane contacts 

at the VS support transfer of virus upon release of free particles in close proximity to target 

cells. 

A frequently observed feature of the VS is robust polarization of host and viral 

factors to both the producer and target cell sides of the contact interface (the pre- and 

postsynapse, respectively) upon Env-CD4-mediated cell-cell contact [13,14]. 

Redistribution of viral and host factors upon Env-CD4 contact to form the VS requires 

dynamic cytoskeletal rearrangements [8,15]. A prominent pattern of VS organization is 

that the Env receptor CD4 and coreceptors are recruited exclusively to the postsynapse [8] 

while the hallmark distinguishing the presynapse is, unsurprisingly, prominent enrichment 

of viral proteins including structural proteins Env and Gag, which are likely accompanied 

by a high concentration of copies of the viral genome for assembly of new virus particles 

(as suggested in [16] and reviewed in [7]). Cellular organelles, namely the microtubule 

organizing complex (MTOC) and mitochondria, are also found to polarize to the 

presynapse [14,15]. Additionally, it was recently demonstrated that the host factor EWI-2 

(IGSF8), which supports cell-to-cell transmission by inhibiting excessive Env-mediated 

cell-cell fusion that could impede efficient virus spread (as will be discussed in more detail 

below), is also enriched exclusively at the presynapse [17]. Host factors found to be 

enriched at both sides of the synapse include adhesion molecule LFA-1 [8] and ICAM 

binding partners (ICAM-1 and -3, specifically) [18]. LFA-1 contributes to the formation of 

a stable VS as depletion from either target or producer cells impairs synapse formation 

[18,19]. Interestingly, engagement of LFA-1 on producer cells also induced signaling 
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events in HIV-1-infected cells that support polarization of both viral (Gag and Env) and 

cellular factors to the presynapse [19]. Together, this work establishes that there is 

polarization and distinct organization of host and viral factors at the producer-target cell 

sides of the VS. 

 Collectively, these studies establish that VS formation can lead to robust, organized 

polarization of host and viral factors to the contact interface to support cellular contacts 

which allow virus to be released in close proximity to a target cell [8,10,11] thus ultimately 

allowing for transfer of particles [12]. 

 

2.4. Fusion Inhibition at the VS 

Historically, virus transfer at Env-mediated infected-uninfected cell contacts that 

can occur without cell-cell fusion has long been speculated to contribute to overall virus 

transmission [20] thus identifying fusion inhibition at such cellular junctions as an 

important regulatory system for promoting continued virus spread. Specifically, 

mechanisms that efficiently inhibit fusion are necessary as Env, which is fusogenic at 

neutral pH, could trigger fusion of the producer and target cell membranes upon Env-CD4 

binding at the VS which would form a multinucleated HIV-1 infected cell (or syncytium; 

plural syncytia). Uncontrolled cell-cell fusion resulting in the formation of large, 

multinucleated infected entities would likely be detrimental to virus spread as it would 

reduce the number of producer cells available to independently contribute to spread (i.e. 

because they would have fused with the target cell rather than becoming a new and 

independent infected entity), and potentially causing increased cytopathic effects (as seen 

in vitro [21]). Cultures containing many large syncytia have even been shown to produce 
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less infectious particles than cultures with few or no large syncytia, owing to insufficient 

packaging of GagPol into particles [22]. Therefore, fusion regulation at the VS is necessary 

to ensure efficient transmission and continued virus spread. 

Relatively recent studies have determined that cell-cell fusion at the VS can be 

prevented by both viral (Gag) and host (ezrin, EWI-2, and tetraspanin family members) 

fusion inhibitory factors which are enriched at the VS. However, HIV-1-induced T cell-

based syncytia can still form, including shortly after infection in vivo (documented in 

infected humanized mice [23-25]). HIV-1-induced syncytia observed in vivo remain small 

(2-4 nuclei) [26], indicating that multinucleated HIV-1 infected T cells are also themselves 

subject to mechanisms that inhibit cell-cell fusion. The presence of small syncytia suggests 

that the recruitment and organization of these fusion inhibitory factors at the VS is likely 

variable as these proteins are not always able to prevent HIV-1-induced cell-cell fusion. 

Preventing excessive HIV-1-induced cell-cell fusion, including after a small syncytium has 

already formed, likely promotes virus spread by supporting an exponential increase in the 

number of infected entities via cell-to-cell transmission at the VS rather than the formation 

of one, large (many nuclei) infected entity. 

Cytoplasmic Gag polyprotein (p55) is largely considered the primary inhibitor of 

HIV-1-induced cell-cell fusion at the VS. Gag inhibits syncytium formation by trapping 

Env in a non-fusogenic state at the infected cell surface [27]. Gag traps Env through an 

association with the Env cytoplasmic tail (EnvCT), as demonstrated by CT-truncated Env 

having strikingly smaller Gag-associated clusters at the plasma membrane (PM), which 

correlated with increased Env-mediated cell-cell fusion [27]. In agreement with this model, 

truncation of the EnvCT results in reduced Gag recruitment to the VS [28]. Trapping of 
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Env by Gag is relieved upon maturation by protease-mediated cleavage of the Gag 

precursor into the viral structural components matrix (MA/p17), capsid (CA/p24), 

nucleocapsid (NC/p7) and p6 (for a review of Gag maturation, see [29]) in newly 

assembled and released virions, thus allowing Env to facilitate fusion/entry of the particle 

into the target cell [30-33]. In addition to Gag-mediated fusion inhibition, rapid Env 

recycling from the PM by endocytosis is required for efficient Env incorporation into virus 

particles [34,35] and likely also prevents excessive cell-cell fusion with neighboring target 

cells by keeping Env expression at the producer cell surface relatively low [36]. Together, 

Gag-mediated Env trapping and Env recycling contribute to potent inhibition of HIV-1-

induced cell-cell fusion.  

In addition to viral factor-mediated fusion inhibition, excessive fusion at the VS is 

also prevented by several host fusion inhibitory factors. Specifically, a previously defined 

complex of interacting partners (ezrin, EWI-2, and tetraspanins [37-40]) were all shown to 

be enriched at the VS and inhibit HIV-1-induced syncytium formation [17,41,42]. Ezrin 

likely inhibits excessive syncytium formation through actin bundling when in its 

active/phosphorylated form (p-ezrin) [41]. Indeed, actin remodeling is known to restrict 

expansion of fusion pores once membrane fusion has been initiated by several viral 

fusogens [43,44]. Further, dynamic actin remodeling is in fact required for HIV-1 Env-

induced fusion [45]. Intriguingly, ezrin knockdown reduced overall cellular F-actin levels 

and also resulted in decreased enrichment of tetraspanin CD81 to the VS [41], suggesting 

that this network of fusion inhibitory proteins is highly connected and at least partially 

dependent on interaction(s) with other host fusion inhibitory partner proteins. EWI-2 

inhibits HIV-1-induced cell-cell fusion at the producer cell side of the VS (the presynapse) 



 31 

in a dose-dependent manner [17], similar to tetraspanins [42]. Though it is not yet known 

how EWI-2 inhibits cell-cell fusion, it is interesting to speculate that EWI-2, which contains 

4 extracellular immunoglobulin domains [40], might prevent fusion by steric hinderance 

(i.e. keeping the two membranes apart) or by influencing the composition and organization 

of fusion inhibitory tetraspanin clusters/microdomains at the presynapse (as has been 

demonstrated in other cellular contexts [46-48]). Tetraspanins inhibit HIV-1-induced cell-

cell fusion at a post-hemifusion stage [49], indicating that this family of host proteins may 

inhibit fusion as a “back up” to Gag-mediated restriction of Env-induced membrane fusion 

and therefore may only be necessary once Env has already initiated the fusion process. 

Further, it was recently demonstrated that the fusion inhibitory tetraspanin CD63 interacts 

directly with Env via the CD63 large extracellular loop (LEL) region [50]. It is intriguing 

to speculate that the LEL region of CD63 (and possibly other tetraspanins as well) might 

be a molecular determinant for tetraspanin-mediated inhibition of Env-induced cell-cell 

fusion, however this has not yet been tested. In addition to tetraspanins inhibiting cell-cell 

fusion at the VS, it is well-documented that tetraspanin incorporation into virus particles 

reduces particle infectivity [51-53]. Presumably, virus particles budding from the VS where 

tetraspanins are enriched could have increased incorporation of these host proteins, which 

would therefore be expected to decrease particle infectivity. This suggests a compromise 

where preventing cell-cell fusion at the VS is more critical for optimal virus spread than 

releasing highly infectious particles in this context, specifically because particles released 

at the VS are in very close proximity to the target cell and are released in high 

concentrations – potentially increasing the likelihood of establishing a new, productive 

infection. 
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Enrichment of both viral and host fusion inhibitory factors to the VS promotes 

efficient cell-to-cell transmission by restricting excessive HIV-1-induced syncytium 

formation, thus supporting exponential virus spread. It should be noted that efficacy of cell-

cell fusion inhibition by these factors at the VS is variable, indicating that fusion inhibitory 

factor enrichment and/or overall organization at the VS is likely also variable. Additional 

data highlighting the importance of fusion regulation in viral spread is demonstrated in 

recent studies which identified decreased Env fusogenicity as a viral-evasion strategy when 

subjected to pressure from host restriction factors (APOBEC3G) [22], antiviral drugs or 

mutations to other viral proteins (p6 and Integrase) which typically impair particle 

infectivity [54]. These studies, combined with the identification of several fusion inhibitory 

factors, support the idea that robust fusion inhibition at this site may even enhance virus 

spread overall by extending the “window” for which virus can be transferred to the target 

cell without cell-cell fusion occurring. 

 

2.5. T Cell Receptor Signaling 

It has long been understood that infected-uninfected cell contact induces signaling 

necessary for cellular reorganization to form the VS and support efficient cell-to-cell 

transmission. Intriguingly, much of the reorganization and polarization at the 

infected:uninfected cell contact site upon VS formation parallels what has also been 

observed upon TCR-stimulation at the IS, including translocation of mitochondria and 

localized calcium flux [14,55,56]. A recent report enhanced our understanding of signaling 

events taking place at the VS by documenting that non-canonical and antigen-independent 

T cell receptor (TCR) signaling occurs upon infected-uninfected cell contact during HIV-
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1 cell-to-cell transmission [57]. This finding supports previous reports indicating that TCR-

like signaling events might be taking place during cell-to-cell transmission by 

demonstrating that host proteins known to be involved in T cell signaling during IS 

formation (LFA-1, ZAP-70) are also implicated in cell signaling upon Env-CD4-mediated 

cell-cell contact [19,58,59] and can positively contribute to efficient cell-to-cell 

transmission of HIV-1. However, ZAP-70 appears to also contribute to the viral replication 

cycle in a CD3-independent manner [3]. Additionally, lipid bilayers containing only gp120 

and ICAM-1 (used as a minimal “producer cell” membrane) appeared to induce TCR-

mediated signaling events in the target cell as well [59]. In further support of TCR-

mediated signaling promoting efficient cell-to-cell transmission, CD3 knockdown in HIV-

1-infected producer cells decreased cell-to-cell virus spread [57].  

Intriguingly, it has been suggested that TCR-CD3-mediated signaling during HIV-

1 cell-to-cell transmission may contribute to the virulence of this virus. Specifically, there 

is differential modulation of CD3 surface expression by the viral accessory protein Nef 

encoded by pathogenic (i.e. viruses which induce robust CD4+ T cell depletion) and non-

pathogenic primate lentiviruses [60]. For example, the Nef encoded by pathogenic 

lentiviruses such as the chimpanzee Simian Immunodeficiency Virus (SIVCPZ) and HIV-1 

typically do not downregulate CD3 upon infection, whereas Nef encoded by several non-

pathogenic (in their respective natural hosts) strains of SIV, including SIVSMM, can 

downregulate CD3 [60]. It is hypothesized that a lack of Nef-mediated CD3 

downregulation enhances viral pathogenicity by inducing T cell activation [60], and 

possibly also by enhancing cell-to-cell transmission, as has indeed been demonstrated in 

vitro by targeted mutagenesis of HIV-1 Nef which impaired or restored CD3 modulation 



 34 

[61]. Infected cells expressing a CD3-downregulating Nef variant produced less infectious 

particles than those from infected cells where Nef did not downregulate CD3 [61] which 

is somewhat in contrast with the previous findings that CD3 knockdown in infected 

producer cells did not affect particle infectivity [57]. Collectively, these studies indicate 

that Nef-mediated downregulation (or lack thereof) of CD3 influences the pathogenicity of 

primate lentivirus infection. 

Overall, these studies support the idea that the presence of CD3 on infected cells 

allows for antigen-independent TCR-mediated signaling events at the VS, which may 

support polarization of viral and host factors to this contact site and also appear to promote 

efficient cell-to-cell transmission and increased viral pathogenicity (as previously 

described [61]). 

 

2.6. Temporal Dynamics of Cell-to-Cell Transmission 

For efficient cell-to-cell transmission, viral and host factors rapidly polarize to an 

Env-mediated producer-target cell contact site (the VS) to support assembly and release of 

virus particles, ultimately followed by complete cell-separation. Advancements in labeling 

HIV-1-infected cells by engineering virus strains to encode a fluorescent reporter or viral 

protein(s) bearing a fluorescent tag(s), facilitated investigating cell-to-cell transmission by 

live-cell imaging both in vitro and in vivo. Notably, the introduction of stable fluorescent 

tags to Gag and (more recently) Env in full-length virus strains allowed for clear 

microscopic visualization of VS formation, transfer of virus particles, and establishment of 

a new infection as a result of cell-to-cell transmission [9,62], as well as monitoring by flow 

cytometry [63,64]. Live-cell imaging studies, paired with analysis of the kinetics of viral 
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and host factor polarization to the VS in fixed cells, have greatly enhanced our 

understanding of the molecular determinants and temporal regulation which support VS 

formation and efficient cell-to-cell transmission. 

Live-cell imaging of cells infected with a virus strain encoding both fluorescent 

protein-tagged Gag and Env revealed increased complexity of protein polarization to the 

VS [62], specifically that Env is transiently enriched at the synapse, and that recruitment 

of Env and Gag to the synapse occurs sequentially [62]. Briefly, Env was shown to be 

increasingly enriched at the presynapse over time beginning shortly after producer-target 

cell contact, but preceding Gag enrichment, and Env enrichment at the contact site 

eventually decreased while Gag remained [62]. The finding that there is dynamic and 

sequential recruitment of Env and Gag to the synapse complements the earlier finding that 

Gag polarization to the VS depends on the presence of both the EnvCT and the MA domain 

of Gag, regions which were subsequently shown to directly interact [65]. These studies 

collectively suggest that direct Gag-Env interactions upon initial Env enrichment at the VS 

might trigger further Gag recruitment to this site. Further, temporally organized protein 

enrichment to the VS likely extends to proteins recruited to Gag-enriched microdomains 

and to the VS, such as tetraspanins [66], which we predict are likely also enriched 

downstream of the formation of Env puncta at the VS as was seen for Gag [62]. 

Collectively, these studies suggest that, upon initial Env-CD4-mediated cell-cell contact, 

outside-in EnvCT-mediated signaling triggers subsequent polarization of Gag (and 

possibly additional proteins) to the VS. 

However, the EnvCT is not required for polarization of all factors known to be 

enriched at the VS, such as the microtubule organizing center (MTOC), which is recruited 
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upon LFA-1 engagement in a manner that is independent of the EnvCT [19]. Further, LFA-

1-induced signaling is predicted to contribute to re-localization of intracellular Env to the 

presynapse [19]. Taken together, we propose that during early VS formation there is likely 

(brief) temporal separation between factors recruited to the contact site that parallels the 

temporal dynamics seen for Env and Gag. Briefly, we predict that the temporal enrichment 

pattern of factors which are recruited in an EnvCT-independent manner would more 

closely reflect that of Env, while factors that depend on both the EnvCT and Gag would 

more closely reflect Gag enrichment patterns. However, we would like to note that this 

proposed system for temporal regulation of protein polarization to the VS is likely an 

additional element contributing to organized and robust polarization at the synapse, rather 

than an oversimplified model for all recruitment to the VS. We do not expect that this 

pattern could sufficiently describe the temporal enrichment patterns of all viral and cellular 

factors, for which it has been previously suggested that polarization to the HIV-1 VS 

depends on a combination of several different recruitment mechanisms [13].  

Given that the VS is a transient junction between producer and target cells, efforts 

to characterize the duration of these dynamic contacts can advance our understanding of 

the conditions necessary for efficient cell-to-cell transmission. HIV-1 encoding GFP-

labeled Gag (GagiGFP)[9] has been extremely valuable for delineating events taking place 

during cell-to-cell transmission using 2D culture systems and could be useful to apply in a 

3D environment that is more similar to what infected cells would be expected to experience 

in tissue. One study that embedded GagiGFP infected cells in a 3D extracellular matrix 

demonstrated that this culture system allows for visualization of virus transfer upon cell-

cell contact and recapitulates infected cell morphologies documented by in situ imaging of 
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infected humanized mice [23] including that of small (2-4 nuclei) T cell-based syncytia 

[26], thus offering an alternative system for studying in vitro cell-to-cell spread by live-

cell imaging. Indeed, cultures of primary T cells embedded in 3D collagen matrices were 

recently used to quantify the duration of infected-uninfected cell contacts, presumably at 

Env-dependent synapses, though this study did not use a fluorescently-labeled Gag or Env 

strain [67]. This investigation demonstrated that relatively short (25 min) contacts were 

sufficient to support continued virus spread under the particular environmental/3D culture 

conditions tested [67]. This finding implies that a 3D environment potentially alters the 

total duration of these transient contacts compared to a 2D environment where more robust, 

longer-lived synapses have been documented (separate reports documenting polarization 

at the synapse lasting 38-44 min [14] and cell-cell contacts with an average duration of 82 

min [9]). Further, if the short-lived contacts observed between cells embedded in a 3D 

extracellular matrix are indeed VSs, the relatively short contact time between infected and 

uninfected T cells is seemingly analogous to previously described short-term IS-like events 

of actively migrating T cells termed “immunological kinapses” [68-71]. However, 

determining whether short-lived cell conjugates are indeed VS mediated contacts that can 

support cell-to-cell transmission will need to be further investigated using markers to 

confidently identify the VS. This 3D culture system for monitoring virus spread and which 

can be used to investigate VS dynamics may reveal potential new phenomena, such as 

short-lived contacts that appear to contribute to viral spread and which had not previously 

been recorded for HIV-1 infected cells by live-cell imaging of 2D cultures which typically 

captured robust, relatively longer-lasting synapses.  
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Together, these studies demonstrate that protein organization at the VS is 

dynamically and temporally regulated while also helping to capture the potential breadth 

of VS duration through visualization of both short and long-lived contacts that likely 

collectively contribute to efficient cell-to-cell spread in vivo depending on the 

environmental context.  

 

2.7. Perspectives 

HIV-1 cell-to-cell transmission has been an active area of investigation over the 

last few decades and has historically been suggested to be a high priority for continued 

HIV-1 research, even before the VS was first described [20]. However, we have observed 

that there is often a lack of clarity surrounding how cell-to-cell transmission differs from 

cell-free transmission. As such, we provided our current working definition of cell-to-cell 

transmission – productive infection that relies on virus transfer at the VS upon Env-CD4-

mediated cell-cell contact – as a means to ground this review and potentially future 

conversations regarding this distinct mode of transmission.  

We would like to expand on our definition of cell-to-cell transmission outlined 

above to help dispel lingering confusions regarding scenarios that might be mistaken for 

cell-to-cell transmission events. The key distinction between cell-free and cell-to-cell 

transmission lies in the spatiotemporal relationship between producer and target cell. 

During cell-free transmission, producer and target cell may be quite distant from each 

other, and the time elapsed between particle release and uptake could be relatively long. In 

contrast, during cell-to-cell transmission, the producer and target cell are kept directly 

apposed as a result of VS formation, and the virus transfer event which leads to productive 
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infection of the target cell occurs while the cells are still engaged in the VS. A particular 

case should be considered: a producer and target cell may be physically in contact, but Env-

CD4 ligation may not have occurred and thus no VS is established, yet particles released 

by that producer cell may still be taken up by that target cell, resulting in successful 

infection. For the sake of simplicity, we would consider that to be a cell-free transmission 

event. In other words, we assume that cell-to-cell transmission also implies VS formation. 

Another instance of virus spread to consider is that of virus transfer at a dendritic cell (DC)-

mediated cell-cell contact known as the infectious synapse. A DC can capture cell-free 

virus particles, without becoming productively infected, and release these captured 

particles in close proximity to a target cell upon DC-target cell contact. Although the 

infectious synapse and the VS share similar features as have been previously documented 

at the IS [1,2,72], DCs themselves are not infected nor does the infectious synapse 

formation between DC and target CD4+ T cells require Env-CD4 ligation [73], unlike the 

VS. Thus, while we do consider transfer at the infectious synapse to be a system that 

contributes to efficient virus spread, it is not cell-to-cell transmission. Further it should also 

be clearly stated here that we do not consider cell-cell fusion to be a form cell-to-cell 

transmission, nor a transmission event at all. By definition, virus transmission is the 

infection of a susceptible target cell by a virus. In contrast, cell-cell fusion merely involves 

the virus-dependent “absorption” of a target cell into the already-infected cell and is thus a 

process that both begins with and results in a single infected entity. A possible case where 

cell-cell fusion could be seen as a transmission event is if the resulting syncytium could 

then “divide” (presumably not by mitosis, but by simple fission) and if both “daughter 

cells” are then independently capable of onward virus transmission. However, this has not 
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been observed in the case of retroviruses, nor for any virus-induced cell-cell fusion process, 

to our knowledge. Together, we hope that this description has helped clarify the definition 

of HIV-1 cell-to-cell transmission (based on our current knowledge) and can thus be used 

for continued productive discussions and investigations regarding this mode of 

transmission including our perspectives on the direction(s) we would be eager to see the 

field move toward in the future. 

Collectively, efforts by several groups have greatly enhanced our understanding of 

cell-to-cell transmission at the VS. While in vitro studies have been crucial for building a 

deeper appreciation of the necessary regulatory factors and events for cell-to-cell 

transmission under the conditions tested, relatively little is known regarding the 

significance of cell-to-cell transmission in vivo and will likely be a prominent focus for 

future investigations. Recent studies documenting the presence of HIV-1-induced syncytia 

in vivo by live-cell imaging of infected humanized mice [23,24] strongly suggest that cell-

to-cell transmission likely occurs in vivo, given that syncytia form as a result of Env-

induced cell-cell fusion at the VS, though productive infection following cell-to-cell 

transmission has yet to be demonstrated in vivo. Some efforts have been made to try to 

systematically analyze the relative efficiency and contribution of cell-to-cell transmission 

using in vitro [7,10,74-76] and in silico approaches [67,77,78]. These studies, combined 

with data demonstrating that migratory infected cells are the primary drivers of systemic 

virus spread including during the acute phase of infection [23,79,80] are often used to claim 

that cell-to-cell transmission is more efficient than cell-free and the dominant mode of 

spread in vivo. However, we would like to acknowledge that it is now clear that in vitro 

systems may not recapitulate the nuances of transmission in vivo (e.g. the identification of 
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cell-free virus particle “clouds” released from producer cells [26,81,82] as well as the high 

density of target cells present in tissue) that would be necessary to compare cell-to-cell to 

cell-free transmission. These potential limitations of in vitro analyses further complicate in 

silico modeling (based on conclusions from in vitro data) aiming to demonstrate how virus 

transmission may occur in vivo. Therefore, it is challenging to make claims regarding 

potential differences in efficiency and/or relative contributions to spread between cell-free 

and cell-to-cell transmission. As such, we hope that the conversation might shift toward 

one that is more inclusive by acknowledging how both modes likely play a significant role 

in overall virus spread in vivo. Here, we would like to also offer a perspective on how 

apparent distinctions between cell-to-cell and cell-free transmission might allow these two 

modes to differentially contribute to spread and suggest what still needs to be done to 

conclusively demonstrate whether cell-to-cell transmission does indeed play a role in vivo. 

Although at this time it is difficult to compare the efficiency and contribution of 

cell-to-cell versus cell-free transmission, we can investigate whether host proteins, viral 

mutations, or alterations to environmental conditions differentially impact free virus 

particles (i.e. infectivity and release) and cell-to-cell transmission. For example, the host 

protein BST-2/tetherin is frequently described as a “restriction factor” as it inhibits efficient 

release of free virus particles [83,84]. However, the role of BST-2 in cell-to-cell 

transmission remains more controversial as BST-2 has actually been shown to promote 

efficient transmission at the VS [85] thus potentially demonstrating how host proteins 

might differentially influence stages of the viral replication cycle/modes of virus spread, 

though this phenomenon may be restricted to certain conditions (reviewed in [86]). Another 

prominent example of host proteins with differential influence on virus spread are members 
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of the tetraspanin family. Our group and others have demonstrated that increased 

incorporation of tetraspanins into virus particles reduces particle infectivity [51-53]. At the 

same time, tetraspanins do not strictly impair virus spread as these transmembrane proteins 

also promote efficient cell-to-cell transmission by inhibiting excessive HIV-1-induced cell-

cell fusion at the VS [42,52]. We propose that additional factors which may have been 

exclusively studied for their influence on particle infectivity and release should be 

investigated for their role in cell-to-cell spread, such as recently described restriction 

factors PSGL-1 and CD43 (as suggested previously [87]). Such differential influence on 

free virus particles and cell-to-cell transmission at the VS are particularly intriguing as they 

support the idea that multiple modes of transmission collectively promote optimal virus 

spread by allowing efficient transmission in a variety of environmental contexts. 

 

2.8. Conclusions 

An extensive amount of work over the years has enhanced our understanding of 

cell-to-cell transmission at the VS. These efforts have characterized the VS structure and 

composition, as well as revealed the dynamic, multiform nature of this junction – including 

even the ability of infected cells to form multiple synapses with target cells at once 

(polysynapses) [88]! Further, it has also been demonstrated that cell-to-cell transmission 

can contribute to the infection of resting primary T cells and facilitate multicopy infection, 

indicating potential roles for cell-to-cell transmission in establishing a cellular reservoir  

and promoting viral heterogeneity and evolution [24,89-92] (and for a recent review of 

cell-to-cell transmission in latent infection see [6]). These advancements will fuel 

continued investigations into how cell-to-cell transmission could contribute to virus spread. 
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Future studies aimed at establishing that VSs form in vivo, which should be possible using 

our currently available resources, will greatly increase confidence that cell-to-cell 

transmission contributes to virus spread alongside cell-free infection in vivo. Although not 

currently feasible using animal models nor in natural human infection, we encourage that 

continued efforts are made to document the occurrence of cell-to-cell transmission in vivo 

using yet-to-be developed technologies that could increase the duration of live-cell imaging 

to effectively track the fate of a target cell upon virus transfer at a VS, or a labeling system 

that could allow for distinction between cells infected by cell-free and cell-to-cell 

transmission. Overall, cell-to-cell transmission at the VS is a unique mode of virus 

transmission that contributes to virus spread alongside other modes of transmission. 

  



 44 

2.9. References 

1. Jolly, C.; Sattentau, Q.J. Retroviral spread by induction of virological synapses. 
Traffic 2004, 5, 643-650, doi:10.1111/j.1600-0854.2004.00209.x. 

2. Bangham, C.R.M. The immune control and cell-to-cell spread of human T-
lymphotropic virus type 1. J Gen Virol 2003, 84, 3177-3189, 
doi:10.1099/vir.0.19334-0. 

3. Alvarez, R.A.; Barría, M.I.; Chen, B.K. Unique features of HIV-1 spread through 
T cell virological synapses. PLoS Pathog 2014, 10, e1004513, 
doi:10.1371/journal.ppat.1004513. 

4. Law, K.M.; Satija, N.; Esposito, A.M.; Chen, B.K. Cell-to-Cell Spread of HIV and 
Viral Pathogenesis. Adv Virus Res 2016, 95, 43-85, 
doi:10.1016/bs.aivir.2016.03.001. 

5. Bracq, L.; Xie, M.; Benichou, S.; Bouchet, J. Mechanisms for Cell-to-Cell 
Transmission of HIV-1. Front Immunol 2018, 9, 260, 
doi:10.3389/fimmu.2018.00260. 

6. Pedro, K.D.; Henderson, A.J.; Agosto, L.M. Mechanisms of HIV-1 cell-to-cell 
transmission and the establishment of the latent reservoir. Virus Res 2019, 265, 
115-121, doi:10.1016/j.virusres.2019.03.014. 

7. Zhong, P.; Agosto, L.M.; Munro, J.B.; Mothes, W. Cell-to-cell transmission of 
viruses. Curr Opin Virol 2013, 3, 44-50, doi:10.1016/j.coviro.2012.11.004. 

8. Jolly, C.; Kashefi, K.; Hollinshead, M.; Sattentau, Q.J. HIV-1 cell to cell transfer 
across an Env-induced, actin-dependent synapse. J Exp Med 2004, 199, 283-293, 
doi:10.1084/jem.20030648. 

9. Hübner, W.; McNerney, G.P.; Chen, P.; Dale, B.M.; Gordon, R.E.; Chuang, F.Y.; 
Li, X.D.; Asmuth, D.M.; Huser, T.; Chen, B.K. Quantitative 3D video microscopy 
of HIV transfer across T cell virological synapses. Science 2009, 323, 1743-1747, 
doi:10.1126/science.1167525. 

10. Martin, N.; Welsch, S.; Jolly, C.; Briggs, J.A.; Vaux, D.; Sattentau, Q.J. Virological 
synapse-mediated spread of human immunodeficiency virus type 1 between T cells 
is sensitive to entry inhibition. Journal of virology 2010, 84, 3516-3527, 
doi:10.1128/jvi.02651-09. 

11. Do, T.; Murphy, G.; Earl, L.A.; Del Prete, G.Q.; Grandinetti, G.; Li, G.H.; Estes, 
J.D.; Rao, P.; Trubey, C.M.; Thomas, J., et al. Three-dimensional imaging of HIV-
1 virological synapses reveals membrane architectures involved in virus 



 45 

transmission. Journal of virology 2014, 88, 10327-10339, doi:10.1128/jvi.00788-
14. 

12. Wang, L.; Eng, E.T.; Law, K.; Gordon, R.E.; Rice, W.J.; Chen, B.K. Visualization 
of HIV T Cell Virological Synapses and Virus-Containing Compartments by 
Three-Dimensional Correlative Light and Electron Microscopy. Journal of 
virology 2017, 91, doi:10.1128/jvi.01605-16. 

13. Jolly, C. T cell polarization at the virological synapse. Viruses 2010, 2, 1261-1278, 
doi:10.3390/v2061261. 

14. Groppelli, E.; Starling, S.; Jolly, C. Contact-induced mitochondrial polarization 
supports HIV-1 virological synapse formation. Journal of virology 2015, 89, 14-
24, doi:10.1128/jvi.02425-14. 

15. Jolly, C.; Welsch, S.; Michor, S.; Sattentau, Q.J. The regulated secretory pathway 
in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell 
spread at the virological synapse. PLoS Pathog 2011, 7, e1002226, 
doi:10.1371/journal.ppat.1002226. 

16. Zhong, P.; Agosto, L.M.; Ilinskaya, A.; Dorjbal, B.; Truong, R.; Derse, D.; Uchil, 
P.D.; Heidecker, G.; Mothes, W. Cell-to-cell transmission can overcome multiple 
donor and target cell barriers imposed on cell-free HIV. PLoS One 2013, 8, e53138, 
doi:10.1371/journal.pone.0053138. 

17. Whitaker, E.E.; Matheson, N.J.; Perlee, S.; Munson, P.B.; Symeonides, M.; Thali, 
M. EWI-2 Inhibits Cell-Cell Fusion at the HIV-1 Virological Presynapse. Viruses 
2019, 11, doi:10.3390/v11121082. 

18. Jolly, C.; Mitar, I.; Sattentau, Q.J. Adhesion molecule interactions facilitate human 
immunodeficiency virus type 1-induced virological synapse formation between T 
cells. Journal of virology 2007, 81, 13916-13921, doi:10.1128/jvi.01585-07. 

19. Starling, S.; Jolly, C. LFA-1 Engagement Triggers T Cell Polarization at the HIV-
1 Virological Synapse. Journal of virology 2016, 90, 9841-9854, 
doi:10.1128/jvi.01152-16. 

20. Phillips, D.M. The role of cell-to-cell transmission in HIV infection. Aids 1994, 8, 
719-731, doi:10.1097/00002030-199406000-00001. 

21. Montefiori, D.C.; Mitchell, W.M. Persistent coinfection of T lymphocytes with 
HTLV-II and HIV and the role of syncytium formation in HIV-induced cytopathic 
effect. Virology 1987, 160, 372-378, doi:10.1016/0042-6822(87)90008-0. 

22. Ikeda, T.; Symeonides, M.; Albin, J.S.; Li, M.; Thali, M.; Harris, R.S. HIV-1 
adaptation studies reveal a novel Env-mediated homeostasis mechanism for 



 46 

evading lethal hypermutation by APOBEC3G. PLoS Pathog 2018, 14, e1007010, 
doi:10.1371/journal.ppat.1007010. 

23. Murooka, T.T.; Deruaz, M.; Marangoni, F.; Vrbanac, V.D.; Seung, E.; von 
Andrian, U.H.; Tager, A.M.; Luster, A.D.; Mempel, T.R. HIV-infected T cells are 
migratory vehicles for viral dissemination. Nature 2012, 490, 283-287, 
doi:10.1038/nature11398. 

24. Law, K.M.; Komarova, N.L.; Yewdall, A.W.; Lee, R.K.; Herrera, O.L.; Wodarz, 
D.; Chen, B.K. In Vivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy 
Micro-compartmentalized Infection. Cell Rep 2016, 15, 2771-2783, 
doi:10.1016/j.celrep.2016.05.059. 

25. Ventura, J.D.; Beloor, J.; Allen, E.; Zhang, T.; Haugh, K.A.; Uchil, P.D.; 
Ochsenbauer, C.; Kieffer, C.; Kumar, P.; Hope, T.J., et al. Longitudinal 
bioluminescent imaging of HIV-1 infection during antiretroviral therapy and 
treatment interruption in humanized mice. PLoS Pathog 2019, 15, e1008161, 
doi:10.1371/journal.ppat.1008161. 

26. Symeonides, M.; Murooka, T.T.; Bellfy, L.N.; Roy, N.H.; Mempel, T.R.; Thali, M. 
HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells 
through Transient Contacts. Viruses 2015, 7, 6590-6603, doi:10.3390/v7122959. 

27. Roy, N.H.; Chan, J.; Lambelé, M.; Thali, M. Clustering and mobility of HIV-1 Env 
at viral assembly sites predict its propensity to induce cell-cell fusion. Journal of 
virology 2013, 87, 7516-7525, doi:10.1128/jvi.00790-13. 

28. Gardiner, J.C.; Mauer, E.J.; Sherer, N.M. HIV-1 Gag, Envelope, and Extracellular 
Determinants Cooperate To Regulate the Stability and Turnover of Virological 
Synapses. Journal of virology 2016, 90, 6583-6597, doi:10.1128/jvi.00600-16. 

29. Freed, E.O. HIV-1 assembly, release and maturation. Nat Rev Microbiol 2015, 13, 
484-496, doi:10.1038/nrmicro3490. 

30. Murakami, T.; Ablan, S.; Freed, E.O.; Tanaka, Y. Regulation of human 
immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease 
activity. Journal of virology 2004, 78, 1026-1031, doi:10.1128/jvi.78.2.1026-
1031.2004. 

31. Wyma, D.J.; Jiang, J.; Shi, J.; Zhou, J.; Lineberger, J.E.; Miller, M.D.; Aiken, C. 
Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a 
novel role of the gp41 cytoplasmic tail. Journal of virology 2004, 78, 3429-3435, 
doi:10.1128/jvi.78.7.3429-3435.2004. 

32. Jiang, J.; Aiken, C. Maturation-dependent human immunodeficiency virus type 1 
particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. 
Journal of virology 2007, 81, 9999-10008, doi:10.1128/jvi.00592-07. 



 47 

33. Chojnacki, J.; Staudt, T.; Glass, B.; Bingen, P.; Engelhardt, J.; Anders, M.; 
Schneider, J.; Müller, B.; Hell, S.W.; Kräusslich, H.G. Maturation-dependent HIV-
1 surface protein redistribution revealed by fluorescence nanoscopy. Science 2012, 
338, 524-528, doi:10.1126/science.1226359. 

34. Rowell, J.F.; Stanhope, P.E.; Siliciano, R.F. Endocytosis of endogenously 
synthesized HIV-1 envelope protein. Mechanism and role in processing for 
association with class II MHC. J Immunol 1995, 155, 473-488. 

35. Kirschman, J.; Qi, M.; Ding, L.; Hammonds, J.; Dienger-Stambaugh, K.; Wang, 
J.J.; Lapierre, L.A.; Goldenring, J.R.; Spearman, P. HIV-1 Envelope Glycoprotein 
Trafficking through the Endosomal Recycling Compartment Is Required for 
Particle Incorporation. Journal of virology 2018, 92, doi:10.1128/jvi.01893-17. 

36. Berlioz-Torrent, C.; Shacklett, B.L.; Erdtmann, L.; Delamarre, L.; Bouchaert, I.; 
Sonigo, P.; Dokhelar, M.C.; Benarous, R. Interactions of the cytoplasmic domains 
of human and simian retroviral transmembrane proteins with components of the 
clathrin adaptor complexes modulate intracellular and cell surface expression of 
envelope glycoproteins. Journal of virology 1999, 73, 1350-1361, 
doi:10.1128/jvi.73.2.1350-1361.1999. 

37. Sala-Valdés, M.; Ursa, A.; Charrin, S.; Rubinstein, E.; Hemler, M.E.; Sánchez-
Madrid, F.; Yáñez-Mó, M. EWI-2 and EWI-F link the tetraspanin web to the actin 
cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J 
Biol Chem 2006, 281, 19665-19675, doi:10.1074/jbc.M602116200. 

38. Charrin, S.; Le Naour, F.; Labas, V.; Billard, M.; Le Caer, J.P.; Emile, J.F.; Petit, 
M.A.; Boucheix, C.; Rubinstein, E. EWI-2 is a new component of the tetraspanin 
web in hepatocytes and lymphoid cells. Biochem J 2003, 373, 409-421, 
doi:10.1042/bj20030343. 

39. Montpellier, C.; Tews, B.A.; Poitrimole, J.; Rocha-Perugini, V.; D'Arienzo, V.; 
Potel, J.; Zhang, X.A.; Rubinstein, E.; Dubuisson, J.; Cocquerel, L. Interacting 
regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on 
hepatitis C virus infection. J Biol Chem 2011, 286, 13954-13965, 
doi:10.1074/jbc.M111.220103. 

40. Stipp, C.S.; Kolesnikova, T.V.; Hemler, M.E. EWI-2 is a major CD9 and CD81 
partner and member of a novel Ig protein subfamily. J Biol Chem 2001, 276, 40545-
40554, doi:10.1074/jbc.M107338200. 

41. Roy, N.H.; Lambelé, M.; Chan, J.; Symeonides, M.; Thali, M. Ezrin is a component 
of the HIV-1 virological presynapse and contributes to the inhibition of cell-cell 
fusion. Journal of virology 2014, 88, 7645-7658, doi:10.1128/jvi.00550-14. 

42. Weng, J.; Krementsov, D.N.; Khurana, S.; Roy, N.H.; Thali, M. Formation of 
syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-



 48 

producing cells. Journal of virology 2009, 83, 7467-7474, doi:10.1128/jvi.00163-
09. 

43. Chen, A.; Leikina, E.; Melikov, K.; Podbilewicz, B.; Kozlov, M.M.; 
Chernomordik, L.V. Fusion-pore expansion during syncytium formation is 
restricted by an actin network. J Cell Sci 2008, 121, 3619-3628, 
doi:10.1242/jcs.032169. 

44. Wurth, M.A.; Schowalter, R.M.; Smith, E.C.; Moncman, C.L.; Dutch, R.E.; 
McCann, R.O. The actin cytoskeleton inhibits pore expansion during PIV5 fusion 
protein-promoted cell-cell fusion. Virology 2010, 404, 117-126, 
doi:10.1016/j.virol.2010.04.024. 

45. Pontow, S.E.; Heyden, N.V.; Wei, S.; Ratner, L. Actin cytoskeletal reorganizations 
and coreceptor-mediated activation of rac during human immunodeficiency virus-
induced cell fusion. Journal of virology 2004, 78, 7138-7147, 
doi:10.1128/jvi.78.13.7138-7147.2004. 

46. Kolesnikova, T.V.; Kazarov, A.R.; Lemieux, M.E.; Lafleur, M.A.; Kesari, S.; 
Kung, A.L.; Hemler, M.E. Glioblastoma inhibition by cell surface immunoglobulin 
protein EWI-2, in vitro and in vivo. Neoplasia 2009, 11, 77-86, 74p following 86, 
doi:10.1593/neo.81180. 

47. Wang, H.X.; Hemler, M.E. Novel impact of EWI-2, CD9, and CD81 on TGF-β 
signaling in melanoma. Mol Cell Oncol 2015, 2, 
doi:10.1080/23723556.2015.1030536. 

48. Wang, H.X.; Sharma, C.; Knoblich, K.; Granter, S.R.; Hemler, M.E. EWI-2 
negatively regulates TGF-β signaling leading to altered melanoma growth and 
metastasis. Cell Res 2015, 25, 370-385, doi:10.1038/cr.2015.17. 

49. Symeonides, M.; Lambele, M.; Roy, N.H.; Thali, M. Evidence showing that 
tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage. 
Viruses 2014, 6, 1078-1090, doi:10.3390/v6031078. 

50. Ivanusic, D.; Madela, K.; Bannert, N.; Denner, J. The large extracellular loop of 
CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological 
synapse. Sci Rep 2021, 11, 10011, doi:10.1038/s41598-021-89523-7. 

51. Sato, K.; Aoki, J.; Misawa, N.; Daikoku, E.; Sano, K.; Tanaka, Y.; Koyanagi, Y. 
Modulation of human immunodeficiency virus type 1 infectivity through 
incorporation of tetraspanin proteins. Journal of virology 2008, 82, 1021-1033, 
doi:10.1128/jvi.01044-07. 

52. Krementsov, D.N.; Weng, J.; Lambele, M.; Roy, N.H.; Thali, M. Tetraspanins 
regulate cell-to-cell transmission of HIV-1. Retrovirology 2009, 6, 64, 
doi:10.1186/1742-4690-6-64. 



 49 

53. Lambelé, M.; Koppensteiner, H.; Symeonides, M.; Roy, N.H.; Chan, J.; Schindler, 
M.; Thali, M. Vpu is the main determinant for tetraspanin downregulation in HIV-
1-infected cells. Journal of virology 2015, 89, 3247-3255, doi:10.1128/jvi.03719-
14. 

54. Van Duyne, R.; Kuo, L.S.; Pham, P.; Fujii, K.; Freed, E.O. Mutations in the HIV-
1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus 
replication cycle. Proc Natl Acad Sci U S A 2019, 116, 9040-9049, 
doi:10.1073/pnas.1820333116. 

55. Quintana, A.; Schwindling, C.; Wenning, A.S.; Becherer, U.; Rettig, J.; Schwarz, 
E.C.; Hoth, M. T cell activation requires mitochondrial translocation to the 
immunological synapse. Proc Natl Acad Sci U S A 2007, 104, 14418-14423, 
doi:10.1073/pnas.0703126104. 

56. Trebak, M.; Kinet, J.P. Calcium signalling in T cells. Nat Rev Immunol 2019, 19, 
154-169, doi:10.1038/s41577-018-0110-7. 

57. Len, A.C.L.; Starling, S.; Shivkumar, M.; Jolly, C. HIV-1 Activates T Cell 
Signaling Independently of Antigen to Drive Viral Spread. Cell Rep 2017, 18, 
1062-1074, doi:10.1016/j.celrep.2016.12.057. 

58. Sol-Foulon, N.; Sourisseau, M.; Porrot, F.; Thoulouze, M.I.; Trouillet, C.; Nobile, 
C.; Blanchet, F.; di Bartolo, V.; Noraz, N.; Taylor, N., et al. ZAP-70 kinase 
regulates HIV cell-to-cell spread and virological synapse formation. Embo j 2007, 
26, 516-526, doi:10.1038/sj.emboj.7601509. 

59. Vasiliver-Shamis, G.; Cho, M.W.; Hioe, C.E.; Dustin, M.L. Human 
immunodeficiency virus type 1 envelope gp120-induced partial T-cell receptor 
signaling creates an F-actin-depleted zone in the virological synapse. Journal of 
virology 2009, 83, 11341-11355, doi:10.1128/jvi.01440-09. 

60. Schindler, M.; Münch, J.; Kutsch, O.; Li, H.; Santiago, M.L.; Bibollet-Ruche, F.; 
Müller-Trutwin, M.C.; Novembre, F.J.; Peeters, M.; Courgnaud, V., et al. Nef-
mediated suppression of T cell activation was lost in a lentiviral lineage that gave 
rise to HIV-1. Cell 2006, 125, 1055-1067, doi:10.1016/j.cell.2006.04.033. 

61. Mesner, D.; Hotter, D.; Kirchhoff, F.; Jolly, C. Loss of Nef-mediated CD3 down-
regulation in the HIV-1 lineage increases viral infectivity and spread. Proc Natl 
Acad Sci U S A 2020, 117, 7382-7391, doi:10.1073/pnas.1921135117. 

62. Wang, L.; Izadmehr, S.; Kamau, E.; Kong, X.P.; Chen, B.K. Sequential trafficking 
of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. 
Retrovirology 2019, 16, 2, doi:10.1186/s12977-019-0464-3. 



 50 

63. Dale, B.M.; McNerney, G.P.; Hübner, W.; Huser, T.R.; Chen, B.K. Tracking and 
quantitation of fluorescent HIV during cell-to-cell transmission. Methods 2011, 53, 
20-26, doi:10.1016/j.ymeth.2010.06.018. 

64. Durham, N.D.; Chen, B.K. Measuring T Cell-to-T Cell HIV-1 Transfer, Viral 
Fusion, and Infection Using Flow Cytometry. Methods Mol Biol 2016, 1354, 21-
38, doi:10.1007/978-1-4939-3046-3_2. 

65. Alfadhli, A.; Staubus, A.O.; Tedbury, P.R.; Novikova, M.; Freed, E.O.; Barklis, E. 
Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. Journal of 
virology 2019, 93, doi:10.1128/jvi.01079-19. 

66. Krementsov, D.N.; Rassam, P.; Margeat, E.; Roy, N.H.; Schneider-Schaulies, J.; 
Milhiet, P.E.; Thali, M. HIV-1 assembly differentially alters dynamics and 
partitioning of tetraspanins and raft components. Traffic 2010, 11, 1401-1414, 
doi:10.1111/j.1600-0854.2010.01111.x. 

67. Imle, A.; Kumberger, P.; Schnellbächer, N.D.; Fehr, J.; Carrillo-Bustamante, P.; 
Ales, J.; Schmidt, P.; Ritter, C.; Godinez, W.J.; Müller, B., et al. Experimental and 
computational analyses reveal that environmental restrictions shape HIV-1 spread 
in 3D cultures. Nat Commun 2019, 10, 2144, doi:10.1038/s41467-019-09879-3. 

68. Dustin, M.L. Cell adhesion molecules and actin cytoskeleton at immune synapses 
and kinapses. Curr Opin Cell Biol 2007, 19, 529-533, 
doi:10.1016/j.ceb.2007.08.003. 

69. Dustin, M.L. T-cell activation through immunological synapses and kinapses. 
Immunol Rev 2008, 221, 77-89, doi:10.1111/j.1600-065X.2008.00589.x. 

70. Friedman, R.S.; Beemiller, P.; Sorensen, C.M.; Jacobelli, J.; Krummel, M.F. Real-
time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility 
in synapse and signaling dynamics. J Exp Med 2010, 207, 2733-2749, 
doi:10.1084/jem.20091201. 

71. Mayya, V.; Judokusumo, E.; Abu Shah, E.; Peel, C.G.; Neiswanger, W.; Depoil, 
D.; Blair, D.A.; Wiggins, C.H.; Kam, L.C.; Dustin, M.L. Durable Interactions of T 
Cells with T Cell Receptor Stimuli in the Absence of a Stable Immunological 
Synapse. Cell Rep 2018, 22, 340-349, doi:10.1016/j.celrep.2017.12.052. 

72. McDonald, D.; Wu, L.; Bohks, S.M.; KewalRamani, V.N.; Unutmaz, D.; Hope, 
T.J. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 
2003, 300, 1295-1297, doi:10.1126/science.1084238. 

73. Rodriguez-Plata, M.T.; Puigdomènech, I.; Izquierdo-Useros, N.; Puertas, M.C.; 
Carrillo, J.; Erkizia, I.; Clotet, B.; Blanco, J.; Martinez-Picado, J. The infectious 
synapse formed between mature dendritic cells and CD4(+) T cells is independent 



 51 

of the presence of the HIV-1 envelope glycoprotein. Retrovirology 2013, 10, 42, 
doi:10.1186/1742-4690-10-42. 

74. Dimitrov, D.S.; Willey, R.L.; Sato, H.; Chang, L.J.; Blumenthal, R.; Martin, M.A. 
Quantitation of human immunodeficiency virus type 1 infection kinetics. Journal 
of virology 1993, 67, 2182-2190, doi:10.1128/jvi.67.4.2182-2190.1993. 

75. Chen, P.; Hübner, W.; Spinelli, M.A.; Chen, B.K. Predominant mode of human 
immunodeficiency virus transfer between T cells is mediated by sustained Env-
dependent neutralization-resistant virological synapses. Journal of virology 2007, 
81, 12582-12595, doi:10.1128/jvi.00381-07. 

76. Sourisseau, M.; Sol-Foulon, N.; Porrot, F.; Blanchet, F.; Schwartz, O. Inefficient 
human immunodeficiency virus replication in mobile lymphocytes. Journal of 
virology 2007, 81, 1000-1012, doi:10.1128/jvi.01629-06. 

77. Komarova, N.L.; Anghelina, D.; Voznesensky, I.; Trinité, B.; Levy, D.N.; Wodarz, 
D. Relative contribution of free-virus and synaptic transmission to the spread of 
HIV-1 through target cell populations. Biol Lett 2013, 9, 20121049, 
doi:10.1098/rsbl.2012.1049. 

78. Zhang, C.; Zhou, S.; Groppelli, E.; Pellegrino, P.; Williams, I.; Borrow, P.; Chain, 
B.M.; Jolly, C. Hybrid spreading mechanisms and T cell activation shape the 
dynamics of HIV-1 infection. PLoS Comput Biol 2015, 11, e1004179, 
doi:10.1371/journal.pcbi.1004179. 

79. Deruaz, M.; Murooka, T.T.; Ji, S.; Gavin, M.A.; Vrbanac, V.D.; Lieberman, J.; 
Tager, A.M.; Mempel, T.R.; Luster, A.D. Chemoattractant-mediated leukocyte 
trafficking enables HIV dissemination from the genital mucosa. JCI Insight 2017, 
2, e88533, doi:10.1172/jci.insight.88533. 

80. Usmani, S.M.; Murooka, T.T.; Deruaz, M.; Koh, W.H.; Sharaf, R.R.; Di Pilato, M.; 
Power, K.A.; Lopez, P.; Hnatiuk, R.; Vrbanac, V.D., et al. HIV-1 Balances the 
Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early 
after Mucosal Transmission. Cell Host Microbe 2019, 25, 73-86.e75, 
doi:10.1016/j.chom.2018.12.008. 

81. Ladinsky, M.S.; Kieffer, C.; Olson, G.; Deruaz, M.; Vrbanac, V.; Tager, A.M.; 
Kwon, D.S.; Bjorkman, P.J. Electron tomography of HIV-1 infection in gut-
associated lymphoid tissue. PLoS Pathog 2014, 10, e1003899, 
doi:10.1371/journal.ppat.1003899. 

82. Kieffer, C.; Ladinsky, M.S.; Ninh, A.; Galimidi, R.P.; Bjorkman, P.J. Longitudinal 
imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence 
and electron tomography. Elife 2017, 6, doi:10.7554/eLife.23282. 



 52 

83. Neil, S.J.; Zang, T.; Bieniasz, P.D. Tetherin inhibits retrovirus release and is 
antagonized by HIV-1 Vpu. Nature 2008, 451, 425-430, doi:10.1038/nature06553. 

84. Van Damme, N.; Goff, D.; Katsura, C.; Jorgenson, R.L.; Mitchell, R.; Johnson, 
M.C.; Stephens, E.B.; Guatelli, J. The interferon-induced protein BST-2 restricts 
HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. 
Cell Host Microbe 2008, 3, 245-252, doi:10.1016/j.chom.2008.03.001. 

85. Jolly, C.; Booth, N.J.; Neil, S.J. Cell-cell spread of human immunodeficiency virus 
type 1 overcomes tetherin/BST-2-mediated restriction in T cells. Journal of 
virology 2010, 84, 12185-12199, doi:10.1128/jvi.01447-10. 

86. Dale, B.M.; Alvarez, R.A.; Chen, B.K. Mechanisms of enhanced HIV spread 
through T-cell virological synapses. Immunol Rev 2013, 251, 113-124, 
doi:10.1111/imr.12022. 

87. Murakami, T.; Carmona, N.; Ono, A. Virion-incorporated PSGL-1 and CD43 
inhibit both cell-free infection and transinfection of HIV-1 by preventing virus-cell 
binding. Proc Natl Acad Sci U S A 2020, 117, 8055-8063, 
doi:10.1073/pnas.1916055117. 

88. Rudnicka, D.; Feldmann, J.; Porrot, F.; Wietgrefe, S.; Guadagnini, S.; Prévost, 
M.C.; Estaquier, J.; Haase, A.T.; Sol-Foulon, N.; Schwartz, O. Simultaneous cell-
to-cell transmission of human immunodeficiency virus to multiple targets through 
polysynapses. Journal of virology 2009, 83, 6234-6246, doi:10.1128/jvi.00282-09. 

89. Del Portillo, A.; Tripodi, J.; Najfeld, V.; Wodarz, D.; Levy, D.N.; Chen, B.K. 
Multiploid inheritance of HIV-1 during cell-to-cell infection. Journal of virology 
2011, 85, 7169-7176, doi:10.1128/jvi.00231-11. 

90. Agosto, L.M.; Herring, M.B.; Mothes, W.; Henderson, A.J. HIV-1-Infected CD4+ 
T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell 
Contact. Cell Rep 2018, 24, 2088-2100, doi:10.1016/j.celrep.2018.07.079. 

91. Kreger, J.; Komarova, N.L.; Wodarz, D. Effect of synaptic cell-to-cell transmission 
and recombination on the evolution of double mutants in HIV. J R Soc Interface 
2020, 17, 20190832, doi:10.1098/rsif.2019.0832. 

92. Kreger, J.; Garcia, J.; Zhang, H.; Komarova, N.L.; Wodarz, D.; Levy, D.N. 
Quantifying the dynamics of viral recombination during free virus and cell-to-cell 
transmission in HIV-1 infection. Virus Evol 2021, 7, veab026, 
doi:10.1093/ve/veab026. 

 

 
 



 53 

 
CHAPTER 3 : EWI-2 INHIBITS CELL-CELL FUSION AT THE HIV-1 

VIROLOGICAL PRESYNAPSE 

 
Emily E. Whitaker 1,2, Nicholas J. Matheson 3,4, Sarah Perlee 1,† , Phillip B. Munson 2,5,‡, 
Menelaos Symeonides 1,2,§ and Markus Thali 1,2,§ 
 

1 Department of Microbiology and Molecular Genetics, University of Vermont, 

Burlington, VT 05405, USA 

2 Graduate Program in Cellular, Molecular, and Biomedical Sciences, University of 

Vermont, Burlington, VT 05405, USA  

3 Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK  

4 Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), 

University of Cambridge, Cambridge CB2 0AW, UK 

5 Department of Pathology and Laboratory Medicine, University of Vermont, 

Burlington,VT 05405, USA 

† Current affiliation: Memorial Sloan Kettering Cancer Center, Louis V. Gerstner, Jr. 

Graduate School of Biomedical Sciences, New York, NY 10065, USA. 

‡ Current affiliation: Massachusetts General Hospital, Cutaneous 

Biology Research Center, Charlestown, MA 02129, USA. 

§ Co-senior authors. 



 54 

3.1 Abstract 

Cell-to-cell transfer of virus particles at the Env-dependent virological synapse 

(VS) is a highly efficient mode of HIV-1 transmission. While cell–cell fusion could be 

triggered at the VS, leading to the formation of syncytia and preventing exponential growth 

of the infected cell population, this is strongly inhibited by both viral (Gag) and host (ezrin 

and tetraspanins) proteins. Here, we identify EWI-2, a protein that was previously shown 

to associate with ezrin and tetraspanins, as a host factor that contributes to the inhibition of 

Env-mediated cell–cell fusion. Using quantitative fluorescence microscopy, shRNA 

knockdowns, and cell–cell fusion assays, we show that EWI-2 accumulates at the 

presynaptic terminal (i.e., the producer cell side of the VS), where it contributes to the 

fusion-preventing activities of the other viral and cellular components. We also find that 

EWI-2, like tetraspanins, is downregulated upon HIV-1 infection, most likely by Vpu. 

Despite the strong inhibition of fusion at the VS, T cell-based syncytia do form in vivo and 

in physiologically relevant culture systems, but they remain small. In regard to that, we 

demonstrate that EWI-2 and CD81 levels are restored on the surface of syncytia, where 

they (presumably) continue to act as fusion inhibitors. This study documents a new role for 

EWI-2 as an inhibitor of HIV-1-induced cell–cell fusion and provides novel insight into 

how syncytia are prevented from fusing indefinitely. 

 
3.2 Introduction 

HIV-1 spreads between T cells primarily through two modes of transmission: the 

release of cell-free virus particles followed by their uptake by (more or less distantly 

located) cells expressing the viral receptor/co-receptor, and the cell-to-cell transmission of 
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particles to an adjacent cell via the virological synapse (VS), i.e., when infected and 

uninfected cells transiently align. The formation of the HIV-1 VS is initiated by the viral 

envelope glycoprotein (Env) on the surface of productively infected cells binding to its 

receptor, CD4, on target T cells [1] and is followed by the polarization of Gag at the cell–

cell contact site [1,2]. Virus particles are then released in high concentrations towards the 

target cell [3], facilitating efficient infection while also possibly shielding virus particles 

from some neutralizing antibodies ([4] and recently reviewed in [5]). Indeed, as 

demonstrated in a recent study using physiologically relevant cell culture systems [6], it is 

possible that virus that is not released in close proximity to a target cell is rapidly 

inactivated, emphasizing the importance of VS-mediated transmission. However, given 

that Env is fusogenic at neutral pH, it would seem likely at first that VS-mediated contacts 

should frequently result in cell–cell fusion, thus forming a multinucleated infected cell 

(syncytium). While we now know that small, T cell-based syncytia arise early in HIV-1 

infection and can spread the virus by cell–cell contact [7–12], the majority of infected T 

cells observed in lymphoid tissue are mononucleated, documenting that most HIV-1 VSs 

ultimately result in complete cell separation and the generation of a new, productively 

infected cell. This is likely due to tight regulation at the VS that acts to prevent excessive 

syncytium formation (reviewed in [13,14]). 

Multiple independent studies have identified viral and host functions which, 

together, prevent excessive HIV-1-induced cell–cell fusion at the VS. Firstly, Env is 

rapidly downregulated from the surface of infected cells in the absence of Gag [15,16]. 

Secondly, upon Gag multimerization at the plasma membrane, Env is trapped by immature 

Gag through Env’s cytoplasmic tail and maintained in a poorly fusogenic state [17]. This 
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trapping by Gag ends only after Env’s incorporation into virus particles when Gag 

precursor gets cleaved, i.e., upon maturation [18–21]. The residual fusion activity of Gag-

trapped Env on infected cells has been shown to be inhibited by several host membrane 

proteins that accumulate at the producer cell side of the VS, including tetraspanins and 

phosphorylated ezrin (p-ezrin) [22–24]. Tetraspanins inhibit HIV-1-induced cell–cell 

fusion at a post-hemifusion stage [23], while ezrin is implicated in F-actin organization and 

the recruitment of the tetraspanin CD81 to the VS [24]. It remains unclear how and whether 

these protein functions are coordinated, though based on other cell–cell fusion regulation 

paradigms (discussed below), additional host proteins are likely required to mediate the 

efficient inhibition of HIV-1-induced fusion by tetraspanins and ezrin. 

EWI-F (CD9P-1/FPRP) is an immunoglobulin superfamily (IgSF) member and 

partner of tetraspanins CD9 and CD81 [25]. EWI-F was shown to be a potent inhibitor of 

cell–cell fusion in myoblasts, where EWI-F knockout resulted in more frequent fusion than 

CD9/CD81 double knockout [26]. However, EWI-F is poorly expressed in T cells [27], the 

primary host cell type for HIV-1. A related protein, EWI-2 (IGSF8/PGRL) [28,29], which 

also associates with tetraspanins and is expressed in T cells [25,27], has been documented 

to play a role in hepatitis C virus (HCV) entry [30,31] and T cell immunological synapse 

(IS) formation [32]. The latter study also suggested that EWI-2 has a yet undetermined 

involvement in HIV-1 particle production [32]. Furthermore, both EWI-F and EWI-2 

interact with ezrin to organize the cytoskeleton in concert with tetraspanins [27]. EWI-2 

thus lies at the nexus of tetraspanins, ezrin, and the actin cytoskeleton (which can also 

inhibit cell–cell fusion) [33]. 
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3.3 Materials and Methods 

3.3.1. Cell Lines and Cell Culture 

The following cells were obtained through the NIH AIDS Reagent Program 

(Germantown, MD, USA), Division of AIDS, NIAID, NIH: HeLa cells from Dr. Richard 

Axel [34], TZM-bl cells from Dr. John C. Kappes, Dr. Xiaoyun Wu, and Tranzyme Inc. 

[35–39], CEM.NKR CCR5+Luc+ (CEM-luc) cells from Dr. John Moore and Dr. Catherine 

Spenlehauer [40,41], CEM-T4 cells from Dr. J.P. Jacobs [42], and CEM-SS cells from Dr. 

Peter L. Nara [34,43,44]. 

HEK 293T, HeLa, and TZM-bl cells were maintained in Dulbecco’s Modification 

of Eagle’s Medium (DMEM) (Corning, Corning, NY, USA, Cat. #10-017-CV) containing 

10% fetal bovine serum (FBS; Corning, Corning, NY, USA, Cat. #35-010-CV) and 

antibiotics (100 units/mL penicillin and 100 µg/mL streptomycin; Invitrogen, Carlsbad, 

CA, USA). CEM-luc cells were maintained in RPMI 1640 medium (Corning, Corning, 

NY, USA, Cat. #10-104-CV) supplemented with 10% FBS and 0.8 mg/mL geneticin 

sulfate (G418). CEM2n, a kind gift from R. Harris [45], and CEM-SS cells were 

maintained in RPMI medium supplemented with 10% FBS and antibiotics. 

Human primary blood mononuclear cells (PBMCs) were isolated as buffy coats 

from the whole blood of healthy donors by Ficoll density centrifugation. CD4+ T cells were 

enriched from PBMCs by negative selection using the MACS CD4+ T Cell Isolation Kit 

(Miltenyi Biotec, Auburn, CA, USA, Cat. #130-096-533) or the EasySep Human CD4+ T 

Cell Isolation Kit (STEMCELL Technologies, Vancouver, BC, Canada, Cat. #17952) 

according to manufacturer’s instructions. Primary CD4+ T cells were activated in RPMI 

containing 10% FBS, 50 units/mL IL-2, antibiotics, and 5 µg/mL phytohemagglutinin. 
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After 48 h of activation, cells were washed and subsequently maintained and expanded in 

the same medium but without phytohemagglutinin. Cells were used for infections at 4–7 

days post isolation. 

 

3.3.2. Antibodies 

Mouse monoclonal antibody (mAb) to EWI-2 (8A12) was a kind gift from Dr. Eric 

Rubinstein [25]. Mouse mAb to HIV-1 p24 (AG3.0) was obtained through the NIH AIDS 

Reagent Program (Germantown, MD, USA), Division of AIDS, NIAID, NIH, from Dr. 

Jonathan Allan [46]. Rabbit antiserum to HIV-1 p6 was a kind gift from David E. Ott. 

Rabbit polyclonal antibody (pAb) to HIV-1 p24 was obtained from Advanced 

Biotechnologies (Eldersburg, MD, USA, Cat. #13-203-000). Secondary antibodies were 

as follows: Alexa Fluor 488-conjugated donkey pAb to mouse IgG (#A21202), Alexa 

Fluor 488-conjugated donkey pAb to rabbit IgG (Cat. #A21206), Alexa Fluor 594-

conjugated donkey pAb to mouse IgG (Cat. #R37115), Alexa Fluor 594-conjugated 

donkey pAb to rabbit IgG (Cat. #A21207), Alexa Fluor 647-conjugated donkey pAb to 

mouse IgG (Cat. #A31571), and Alexa Fluor 647-conjugated goat pAb to mouse IgG (Cat. 

#A21235), all from Invitrogen (Carlsbad, CA, USA). Zenon labeling of primary antibodies 

with either Alexa Fluor 488 or Alexa Fluor 594 was carried out using Zenon Labeling Kits 

according to the manufacturer’s instructions (Molecular Probes, Eugene, OR, USA, Cat. 

#Z25002 and #Z25007). 
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3.3.3. Plasmids and Virus Strains 

Respectively, pcDNA3, pCDNA3.1, and pCMV SPORT6 (Invitrogen, Carlsbad, 

CA, USA) were vectors for EWI-2, CD81, and L6 overexpression (EWI-2 was a kind gift 

from Dr. Eric Rubinstein; Université Paris-Sud, Villejuif, France). Proviral plasmids 

pNL4-3 and pNL4-3 ∆Env (KFS) were kind gifts from Dr. Eric Freed (National Cancer 

Institute, Frederick, MD, USA) [47]. NL4-3-derived fluorescent protein-tagged proviral 

plasmids pNL-sfGI, pNL-sfGI ∆Env, pNL-CI, and pNL-CI ∆Env [10] were kind gifts 

from Dr. Benjamin Chen (Mount Sinai School of Medicine, New York, NY, USA). 

Vesicular stomatitis virus glycoprotein (VSV-G) was used to pseudotype viral stocks 

produced in HEK 293T cells. The lentiviral vector FG12 [48], previously modified to 

include a puromycin resistance cassette [24], was further modified to remove the GFP 

reporter cassette by digestion with AfeI and PshAI and subsequent blunt-end relegation. 

 

3.3.4. Virus Stocks and Infections 

VSV-G-pseudotyped virus stocks of NL4-3, NL4-3 ∆Env, NL-sfGI, NL-CI, and 

NL-CI ∆Env were produced in HEK 293T cells transfected with the proviral plasmid and 

pVSV-G (at 17:3 ratio) using calcium phosphate precipitation. For shRNA encoding 

lentiviruses, shEWI-2 and shScramble, stocks were produced in HEK 293T cells 

transfected with FG12-shRNA vector, ∆R8.2 packaging vector, and pVSV-G (at a ratio of 

3:7:1. Supernatants were harvested 2 days after transfection, cleared by centrifugation at 

2000 rcf for 10 min, filtered, and stored at −80 ◦C. 
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To infect CEM2n cells by spinoculation, two million cells were incubated with 

RPMI/10% FBS containing 90 µL of virus stock (resulting in ~3% of the cells being 

infected) or medium alone (for uninfected controls), for 20 min at 37 ◦C, followed by 

centrifugation at 1200 rcf for 2 h at 37 ◦C. 

Cell pellets were allowed to recover at 37 ◦C for 15 min, centrifuged at 300 rcf for 

2 min, and resuspended in fresh RPMI/10% FBS. Cells were incubated at 37 ◦C, the 

medium was refreshed 2 days post infection, and the cells were used 1 day later for all 

subsequent experiments. 

To infect primary CD4+ T cells, 1 or 2 million cells were incubated in RPMI/10% 

FBS/IL-2 containing 200 or 400 µL of virus, respectively, and spinoculated as described 

above. Cells were resuspended in fresh RPMI/10% FBS/PS/IL-2 and incubated at 37 

◦C/5% CO2. Cells were used 2-3 days post infection for all subsequent experiments. 

To infect CEM-SS cells by shaking, one or two million cells suspended in CO2-

independent medium (Gibco, Grand Island, NY, USA, Cat #18045088) supplemented with 

10% FBS were mixed with VSV-G-pseudotyped virus stocks and shaken at 220 rpm for 2 

h at 37 ◦C. Cells were then washed and plated in fresh RPMI/10% FBS, and used for 

experiments as described. For CEM-SS infection by spinoculation, the procedure was 

performed as described above with some modifications; one or two million cells were 

incubated in RPMI/10% FBS containing 40–50 µL (analyzing surface expression and 

post-synapse enrichment, respectively) of virus stock or medium alone (for uninfected 

controls). Following spinoculation, cells were incubated at 37 ◦C for 2 days before being 

used for subsequent experiments. 
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3.3.5. Imaging and Quantification of EWI-2 Accumulation at the VS 

CEM-SS and primary CD4+ T cells were infected by shaking or spinoculation, 

respectively, with VSV-G-pseudotyped WT or ∆Env virus then treated as follows: For 

CEM-SS cells, two days post infection, uninfected CEM-SS target cells were labeled with 

CMAC (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions, mixed 

with infected cells at a 1:1 or 1:2 ratio (infected:target), seeded onto the microwell of a 35 

mm glass-bottom dish (MatTek Corporation, Ashland, MA, USA, Cat. #P35G-1.5-14-C) 

coated with poly-L-Lysine (Trevigen, Gaithersburg, MD, USA), and incubated at 37◦ C 

for 3 to 4.5 h. Cells were then chilled on ice and surface-labeled with 1:200 mouse anti-

EWI-2 mAb in RPMI/10% FBS for 45 min at 4 ◦C. Surface-labeled cells were fixed with 

4% PFA in PBS at 4 ◦C for 10 min, and blocked and permeabilized overnight with 1% 

BSA and 0.2% Triton X-100 in PBS (block/perm buffer). All CEM-SS conditions were 

labeled with Alexa Fluor 647-conjugated anti-mouse secondary pAb in block/perm buffer 

at 1:500 dilution. Cells were subsequently stained with Alexa Fluor 594 Zenon-labeled 

anti-p24 AG3.0 mouse mAb and fixed again with 4% PFA in PBS. Cells were kept in PBS 

for imaging. 

For primary cells, uninfected cells were mixed with infected cells at a 1:1 ratio 

(infected:target), seeded onto 8-well glass-bottom plates (CellVis, Mountain View, CA, 

USA, Cat. #C8-1.5H-N) coated with 1:10 poly-L-Lysine in double-distilled water 

(ddH2O), and incubated for 2 to 2.5 h at 37 ◦C. Cells were surface-labeled for EWI-2 and 

fixed as above, then blocked and permeabilized with block/perm buffer for 10 min. Cells 

were then labeled with a mixture of rabbit anti-p24 and anti-p6 antibodies, each at 1:1000 
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dilution, in PBS with 1% BSA (block) for 45 min. Subsequently, cells were labeled with 

Alexa Fluor-conjugated secondary pAbs as indicated. Cells were kept in PBS for imaging. 

To visualize the only producer cell-associated EWI-2 at the VS, 10,000 target 

TZM-bl cells (which have nearly-undetectable levels of EWI-2) were seeded onto 8-well 

glass-bottom plates coated with 1:10 poly-L-Lysine in ddH2O. The next day, those TZM-

bl cells were labeled with CMAC at 1:250 dilution in serum-free DMEM, and then co-

cultured with 150,000 CEM-SS cells (either uninfected or infected with NL-CI or NL-CI 

∆Env 2 days prior as described above) per well for 2.5 h at 37 ◦C in RPMI/10% FBS. The 

cells were then surface-labeled with 1:200 mouse anti-EWI-2 mAb in RPMI/10% FBS on 

ice for 45 min. Cells were subsequently fixed with 4% PFA in PBS and permeabilized 

with block/perm for 10 min. After permeabilization, the cells were labeled using a mixture 

of rabbit anti-p24 and anti-p6 antibodies, each at 1:1000 dilution, in block for 45 min. 

Cells were subsequently labeled using Alexa Fluor-conjugated secondary pAbs (anti-

mouse-Alexa Fluor 647 and anti-rabbit-Alexa Fluor 488) each at 1:500 in block for 45 

min. Cells were kept in PBS for imaging. 

To visualize only target cell-associated EWI-2 at the VS, HeLa producer cells 

(which have nearly-undetectable levels of EWI-2) were plated (10,000 cells per well) in 

8-well glass-bottom plates coated with 1:10 poly-L-Lysine in ddH2O. Twenty-four hours 

later, cells were transfected with NL-sfGI, NL-sfGI ∆Env, or empty vector, using 

FuGENE6 transfection reagent at a ratio of 3:1 (FuGENE6:DNA) according to 

manufacturer’s instructions (Promega, Madison, WI, USA, Cat. #E2691). Twenty-four 

hours post-transfection, 100,000–150,000 uninfected CEM-SS cells (labeled with CMAC 

at a 1:250 dilution in serum-free RPMI) were added to form VSs with provirus-transfected 
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HeLa cells. After 2-2.5 h of coculture, cells were surface-labeled with 1:200 mouse anti-

EWI-2 mAb in RPMI/10% FBS for 45 min at 4 ◦C. Surface-labeled cells were fixed with 

4% PFA in PBS at 4 ◦C for 10 min, and then incubated with block/perm for 10 min, before 

labeling with a mixture of rabbit anti-p24 and anti-p6 antibodies, each at 1:1000 dilution, 

in block for 45 min. Subsequently, cells were labeled with secondary pAbs (anti-mouse-

Alexa Fluor 647 and anti-rabbit-Alexa Fluor 594), each at 1:500 in block. Cells were kept 

in PBS for imaging. 

Images were acquired on a DeltaVision epifluorescence microscope (GE/Applied 

Precision, Issaquah, WA, USA) with an Olympus IX-70 base using an Olympus 60× 

PlanApo 1.42 NA objective and equipped with a CoolSNAP HQ CCD camera 

(Photometrics, Tucson, AZ, USA). Images were imported into Fiji Version 2.0.0-rc-

69/1.52p [49] for analysis following deconvolution and cropping using Softworx software 

(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA). The VS was identified using the Gag 

channel and the level of EWI-2 accumulation was determined by measuring its signal 

intensity at the VS. For ∆Env controls, cell–cell contacts were identified using the 

differential interference contrast (DIC) channel and treated analogous to a VS. The EWI-

2-associated signal intensity at non-contact sites was determined by manually outlining 

the surface of the cell, excluding any regions that were in contact with an adjacent cell, 

and calculating the mean EWI-2 intensity within the selected area. To determine the level 

of enrichment at the VS (or cell–cell contact for ∆Env controls), an “unbiased” approach 

was applied to account for the EWI-2 signal contributed by both the target and producer 

cell at each VS/contact. Enrichment was calculated as the EWI-2 signal intensity at the 
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VS/contact divided by the sum of the EWI-2 signal at non-contact sites of the producer 

and target cell in that particular VS/contact. 

 

3.3.6. Proteomic Analysis of EWI-2 Levels in HIV-1 Infected Cells 

To identify HIV-1-dependent changes in the abundance of total EWI-2, we re-

analysed data from two previous studies [50,51]. In brief, primary human CD4+ T cells 

were infected with pNL4-3-∆Env-Nef-P2A-SBP-∆LNGFR (HIV-AFMACS) at MOI≤0.5, 

enriched by antibody-free magnetic cell sorting (AFMACS) [52] and analysed 48 h after 

infection [51]. CEM-T4 T cells were infected with pNL4-3-∆Env-EGFP at MOI=1.5 and 

analysed 48 h after infection [50]. TMT-labeled tryptic peptides from whole cell lysates 

were subjected to off-line high pH reversed-phase (HpRP)-HPLC fractionation and 

analysed using an Orbitrap Fusion Tribrid mass spectrometer (ThermoFisher Scientific, 

Waltham, MA, USA) coupled to a Dionex UltiMate 3000 UHPLC (Thermo Scientific, 

Waltham, MA, USA). Details of sample processing and data analysis have been previously 

described [50,51] and proteomic data from primary human CD4+ T cells are available from 

the ProteomeX-change Consortium using dataset identifier PXD012263 

(http://proteomecentral.proteomexchange.org). 

To characterise HIV-1-dependent changes in the abundance of plasma membrane 

EWI-2, we re-analysed data from a previous study [53]. In brief, for the TMT-based time 

course experiment, CEM-T4 T cells were infected with pNL4-3-∆Env-EGFP at MOI=10 

and analysed at the indicated time points after infection. For the SILAC-based single time 

point experiments, cells were pre-labeled with light, medium or heavy lysine and arginine 

and either infected with WT or Vpu-/Nef-deficient pNL4-3-∆Env-EGFP at MOI=10 and 

http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/


 65 

analysed 72 h after infection, or transduced with GFP or Vpu/Nef and selected with 

puromycin. Sialylated cell surface glycoproteins were enriched by selective aminooxy-

biotinylation followed by immunoaffinity purification using streptavidin-conjugated 

beads (plasma membrane profiling). Tryptic peptides were labeled with TMT reagents 

(time course experiment only), subjected to off-line High pH Reversed-Phase (HpRP)-

HPLC fractionation and analysed using an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific, Waltham, MA, USA) coupled to a Dionex UltiMate 3000 UHPLC 

(Thermo Scientific, Waltham, MA, USA). Details of sample processing and data analysis 

have been previously described [53] and time course proteomic data are available from 

the ProteomeX-change Consortium using dataset identifier PXD002934 

(http://proteomecentral.proteomexchange.org). 

 

3.2.7. Determining Surface Levels of EWI-2 by Microscopy 

To compare EWI-2 surface expression between infected and uninfected cells, 

CEM-SS, CEM2n cells, and primary CD4+ T cells were infected with VSV-G-

pseudotyped NL-sfGI as described above. Two to three days post infection, 3 × 105 

infected cells were plated onto each well of 8-well glass-bottom plates coated with 1:10 

poly-L-Lysine in ddH2O. Two additional wells were used for uninfected controls. After 2 

h of incubation at 37 ◦C, the medium was replaced with ice cold RPMI/10% FBS 

containing mouse anti-EWI-2 mAb at 1:200 dilution for surface labeling, and incubated 

for 45 min at 4 ◦C. Following the primary antibody incubation, cells were washed with 

RPMI/10% FBS and fixed with 4% PFA in PBS for 10 min at 4 ◦C, blocked and 

permeabilized with PBS containing 1% BSA and 100 µg/mL digitonin for 10 min, and 

http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
http://proteomecentral.proteomexchange.org/
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incubated with the indicated secondary antibody in block for 45 min at room temperature. 

Cells were washed with block and imaged in PBS. At least 50 fields containing infected 

cells were selected for each biological replicate and imaged, deconvolved, and cropped 

using the DeltaVision microscope and Softworx software described above. After 

deconvolution, Fiji was used to manually select the cell surface at the midline of each cell 

and the mean intensity of EWI-2-associated signal was quantified and subsequently 

subtracted by the mean intensity of an area that did not contain cells. Cell–cell contact 

sites were excluded from the quantification. Background subtracted intensity values of all 

cells were normalized to the average surface associated intensity of the entire uninfected 

cell population, internal controls contained in the same wells as infected cells, contained 

within respective biological replicates. This normalization allowed for the direct 

comparison of surface expression trends between biological replicates that accounts for 

potential variation in protein labeling efficiency between replicates. The virus-associated 

fluorescent reporter channel was used to segregate measurements into uninfected and 

infected. The data shown in Figure 3B are pooled from 2–3 independent biological 

replicates, each consisting of two technical replicates, all of which were sampled randomly 

until a minimum of 50 infected cells were quantified. 

To compare EWI-2 surface expression levels between mononucleated infected cells 

and HIV-1-induced syncytia, primary CD4+ T cells were infected with VSV-G-

pseudotyped virus as described above. Three days post infection, 3 × 105 infected cells 

were plated onto each well of 8-well glass-bottom plates coated with 1:10 poly-L-Lysine 

in ddH2O alongside two wells of uninfected cells as controls. Cells were incubated at 37 

◦C for 2 h and surface labeled as described above using either mouse anti-EWI-2 or mouse 



 67 

anti-CD81 mAb at 1:200 or 1:100, respectively. Samples were fixed, permeabilized, and 

labeled with appropriate AlexaFluor conjugated antibodies and DAPI as described above. 

Cells were imaged in PBS and at least 50 fields containing 10–20 cells each and containing 

at least some infected cells with multinucleated appearance (determined by DAPI and GFP 

signal) were selected for each biological replicate and imaged, deconvolved, and cropped 

as described above. Fiji was then used to analyze the surface expression of each protein of 

interest as described above. The virus-associated fluorescent reporter channel (GFP) was 

used to segregate measurements into infected and uninfected populations, and nuclear 

staining (DAPI) was used to further segregate infected cells into mononucleated and 

multinucleated infected cells. The EWI-2/CD81 channel was not viewed at all during 

imaging and field selection, or throughout image processing. The data shown in Figure 6 

are pooled from 2–3 biological replicates, with two technical replicates each, all of which 

were sampled randomly until a minimum of 15 syncytia per biological replicate were 

quantified. 

 

3.3.8. Determining Surface EWI-2 Signal on Infected Cells by Flow Cytometry 

 CEM2n cells infected as described above were harvested after three days and 

incubated in cold PBS with 5 mM EDTA for 15 min (3.0 × 105 cells/tube). Cells were 

pelleted at 400 rcf for 7 min at 4 ◦C and resuspended in cold RMPI/10% FBS containing 

mouse anti-EWI-2 mAb at 1:200 dilution. After a 45 min incubation at 4 ◦C, cells were 

washed with cold RPMI/10% FBS and resuspended in ice cold PBS with 5 mM EDTA. To 

fix, an equal volume of PBS with 8% PFA was added and samples were incubated on ice 

for 10 min. Cells were washed and stained with Alexa Fluor 594-conjugated secondary 
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antibody at 1:500 in block for 45 min at room temperature, before being washed, 

resuspended in PBS, and analyzed using a BD LSRII flow cytometer. Data were analyzed 

using FlowJo V10 (Becton, Dickinson & Company, Franklin Lakes, NJ, USA). Samples 

were gated for infected and uninfected populations by GFP expression. EWI-2high and EWI-

2low gates were set based in part on controls lacking primary antibody, and in part by 

adjusting the gates to reflect the number of uninfected EWI-2high cells as measured by 

microscopy. The data shown are the collection of three independent biological replicates, 

each consisting of two technical replicates. 

 

3.3.9. HeLa-based HIV-1-Induced Cell-Cell Fusion Assay 

First, 50,000 HeLa cells were plated in each well of a 24-well plate and, the next 

day, transfected (using FuGENE6; see Section 2.5) in duplicate with 100 ng of either pNL-

sfGI or pNL-sfGI ∆Env along with 500 ng total expression vector carrying CD81 or EWI-

2. L6, a tetraspanin-like protein that does not inhibit cell–cell fusion, was co-transfected 

instead of CD81 or EWI-2 as a positive control for maximum fusion activity, For dose 

response assays, 125, 250, or 500 ng of either EWI-2 or CD81 plasmid was ”stuffed” with 

L6 expression plasmid to maintain 500 ng of total protein expression plasmid in each 

condition. No cytotoxicity was observed upon transfection for any of the experimental 

conditions. Then, 24 h post-transfection, producer HeLa cells were co-cultured with 106 

TZM-bl target cells (which, upon producer-target cell fusion, express firefly luciferase 

under control of the HIV-1 LTR) per well for 3 h before unattached target cells were 

washed off and the medium was refreshed. 14-18 h later, cells were lysed for at least 30 

min on ice using 1% Triton X-100, 2 mM EDTA, 50 mM Tris-HCl, 200 mM NaCl, with 
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1% protease inhibitor cocktail. Lysates were precleared by centrifugation at 20,000 rcf for 

5 min at 4 ◦C and stored at –80 ◦C until use for luciferase activity assays. Note that the 

timepoints used here ensure that there is not enough time for the development of any 

luciferase signal resulting from productive infection of target TZM-bl cells through virus 

transmission and that only cell–cell fusion contributes to the luciferase activity measured. 

Each lysate was incubated with an equal volume of firefly luciferase reagent 

(Promega, Madison, WI, USA, Cat. #E1500) for 1 min in a 96-well white-walled plate 

(ThermoFisher Scientific, Waltham, MA, USA, Cat. #7571) before collecting 

luminescence signal intensity on a microplate reader (BioTek Synergy 2, BioTek, 

Winooski, VT, USA). Background luminescence was determined using a lysis buffer 

blank and subtracted from all experimental samples. Luminescence intensity was used as 

a quantitative measurement of relative HeLa-TZM syncytium formation against the non-

fusogenic (therefore incapable of forming syncytia) ∆Env control by dividing each value 

by the ∆env value (which effectively corresponds to any leaky expression of luciferase in 

TZM-bl cells as no cell–cell fusion occurs at all in this condition). To then determine 

relative fusion activity of cells transfected with EWI-2 and CD81, those values were 

normalized to the L6 condition. Normalized fusion is therefore the fold difference of cell–

cell fusion activity taking place when cells were co-transfected with the indicated amount 

of either CD81 or EWI-2 plasmid, compared to the activity taking place when cells were 

co-transfected with L6. The data shown are the collection of four independent biological 

replicates. 
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3.3.10. Establishment of EWI-2 Knockdown CEM-SS Cells 

 The shRNA-encoding sequences targeting either EWI-2 (modified from previously 

described EWI-2-targeting siRNA [27] or a scrambled control, were introduced to the 

lentiviral vector FG12 (as described in 2.3) using oligos containing shRNA sequences, a 

loop sequence, and an AgeI site, flanked by BbsI and XhoI restriction site overhangs, as 

previously described [24], (EWI-2 sense, 5’-ACCGGGGCTTCGAAAACGGTG 

ATCTTCAAGAGAGATCACCGTTTTCGAAGCCCTTTTTTACCGGTC-3’, and anti-

sense, 5’-TCGAGACCGGTAAAAAAGGGCTTCGAAAACGGTGATCTCTCTTGAA 

GATCACCGTTTTCGAAGCCC-3’; scramble sense, 5’-ACCGGGCAGATGCGTCCA 

GTTAGATTCAAGAGATCTAACTGGACGCATCT GCCTTTT TTACCGGTC-3’, and 

anti-sense, 5’-TCGAGACCGGTAAAAAAGGCAGATGCGTCCAGTTAGATCTCTT 

GAATCTAACTGGACGCATCTGCC-3’). A PolII promoter was first obtained by 

ligating the oligo with PBS-hU6 digested with BbsI and XhoI restriction endonucleases 

(New England BioLabs, Ipswich, MA, USA). The PolII-shRNA constructs were obtained 

by digesting the resulting PBS-hU6 vector with XbaI and XhoI, and the insert was 

subsequently ligated into the FG12 vector digested with the same enzymes. 

VSV-G pseudotyped FG12-shRNA lentiviruses were used to transduce CEM-SS 

cells by spinoculating one million cells with 500 µL of lentiviral supernatant (either 

shEWI-2 or shScramble). Cells were incubated at 37 ◦C for 2 days in RPMI/10% FBS and 

positively transduced cells were then selected for puromycin resistance by supplementing 

the media with 0.5 µg/mL of puromycin for 8 days. Subsequently, shEWI-2 and 

shScramble CEM-SS cells were maintained in RPMI/10% FBS/0.25 µg/mL puromycin. 
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EWI-2 knockdown was analyzed by flow cytometry and microscopy. For flow 

cytometry analysis, 3.0 × 10 5 shScramble and shEWI-2 cells, alongside parental CEM-SS 

controls, were pelleted at 400 rcf for 7 min, resuspended in 1:1000 Live/Dead Fixable 

Near-IR stain (Invitrogen, Carlsbad, CA, USA, Cat. #L10119) in PBS for 30–45 min, 

washed with RPMI/10% FBS and fixed for 10 min in 4% PFA in PBS by resuspending 

the cells in PBS and then adding an equal volume of 8% PFA in PBS. Fixed samples were 

washed with 1 mL of PBS, blocked and permeabilized in 100 µL of block/perm buffer for 

10 min, and washed with PBS containing 1% BSA. EWI-2 was labeled using mAb 8A12 

diluted 1:200 in block for 45 min, washed with block, and stained with Alexa Fluor 488-

conjugated secondary antibody in block for 45 min. Cells were then washed and 

resuspended in PBS for flow cytometry analysis using a BD LSRII flow cytometer. Data 

were analyzed using FlowJo V10. Samples were gated for live cells, and EWI-2 expression 

was measured by the mean fluorescence intensity of EWI-2 signal in the live cell 

population and normalized to the parental control expression within each biological 

replicate. The data are the result of three independent biological replicates with two 

technical replicates each. For microscopy, 2.5 × 105 shScramble and shEWI-2 cells, 

alongside parental CEM-SS controls, were plated on 8-well glass bottom plates coated 

with 1:10 poly-L-lysine in ddH2O. After 2 h at 37 ◦C, cells were fixed for 10 min using 

4% PFA in PBS, washed, and incubated with block/perm for 10 min. Cells were washed 

with block and incubated with 1:200 mAb 8A12 for 45 min, washed, and stained with 

1:500 Alexa Fluor 647-conjugated secondary antibody and 1:2500 DAPI in block for 45 

min. Cells were washed with block and imaged in PBS using a 60× objective as described 
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above. Images were deconvolved and cropped by DeltaVision microscope and Softworx 

software described above and imported into Fiji for analysis. 

 

3.3.11. CEM-luc-based HIV-1-Induced Cell-Cell Fusion Assay 

Two million shScramble or shEWI-2 cells were spinoculated as described above 

with 1.7 or 2 µL of VSV-G pseudotyped NL4-3, alongside parental CEM-SS cells 

spinoculated with 25 µL of VSV-G pseudotyped NL4-3 ∆Env to achieve an infection rate 

of ~30% for each condition. Cells were incubated at 37 ◦C for 2 days and then co-cultured 

with uninfected CEM-luc cells in RPMI/10% FBS containing the following drug 

treatments; 1:1000 DMSO for vehicle control, 1 µM Efavirenz (EFV) (NIH AIDS Reagent 

Program, Cat. #4624) to inhibit transmission, or 1 µM EFV with 0.5 µM HIV-1 IIIB C34 

peptide (C34) (NIH AIDS Reagent Program, Cat. #9824) to inhibit both transmission and 

cell–cell fusion. After 24 h, the co-culture medium was refreshed, and all conditions were 

incubated at 37 ◦C in RPMI/10% FBS containing 1 µM EFV and 0.5 µM C34. 24 h later, 

cells were pelleted at 1000 rcf for 5 min at 4 ◦C and resuspended in luciferase reporter lysis 

buffer (Promega, Cat. #E4530) with 1% protease inhibitor cocktail (Millipore Sigma, 

Darmstadt, Germany, Cat. #P8340) to lyse on ice for 15 min. Lysates were cleared by 

centrifugation at 20,000 rcf for 5 min at 4 ◦C and stored at –80 ◦C until use for luciferase 

activity assays. 

In parallel, infected cells were prepared for flow cytometry analysis alongside 

uninfected controls, to determine the infection rate across each condition at the start of the 

co culture with uninfected CEM-luc cells. Cells were pelleted and resuspended in 1:1000 

Live/Dead Fixable Near-IR stain in PBS as described above, washed and resuspended in 
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PBS. An equal volume of 8% PFA in PBS was added to fix the cells in a final concentration 

of 4% PFA in PBS for 10 min. Cells were washed and resuspended in block/perm, 

incubated for 10 min, washed with block, and resuspended for an overnight incubation in 

1:100 AG3.0 in block. Cells were washed and stained with 1:500 Alexa Fluor 488-

conjugated secondary antibody for 45 min followed by a wash with block. Cells were 

resuspended in PBS and analyzed by flow cytometry using a BD LSRII flow cytometer. 

Data was analyzed using FlowJo V10. Live cells were gated using the Live/Dead signal, 

and the percentage of infected cells in the live population was determined by gating on the 

AG3.0 associated signal. 

Each lysate was incubated with an equal volume of firefly luciferase reagent for 1 

min in a 96-well white-walled plate before collecting luminescence signal intensity on a 

microplate reader as described above (2.9). Background luminescence was determined 

using a lysis buffer blank and subtracted from all experimental samples. Relative 

luminescence units (RLUs) were normalized based on the infection level of each cell type 

determined by flow cytometry analysis, and the average RLU value from the ∆Env 

infected, DMSO treated condition was subtracted from all conditions. All samples treated 

with both EFV and C34 had RLU values below that of the ∆Env DMSO condition (data 

not shown), validating the efficacy of the inhibitors for complete inhibition of transmission 

to target CEM-luc cells. To determine the proportion of luciferase expression due to cell–

cell fusion, the average RLU value from the EFV-treated condition (syncytium formation-

dependent signal) was divided by that of the DMSO-treated (signal from both transmission 

and syncytium formation) and multiplied by 100. Data represent the percentage of 

luciferase signal due to syncytium formation between infected shScramble or shEWI-2 
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cells and uninfected CEM-luc cells from three independent biological replicates each 

consisting of 1–2 technical replicates. 

 

3.3.12. Statistical Analysis 

All statistical analyses were carried out in GraphPad Prism 8 (GraphPad Software, 

San Diego, CA) as indicated in Figure legends. 

 

3.4 Results 

3.4.1. EWI-2 Accumulates at the Virological Presynapse in HIV-1-Infected Cells 

Because EWI-2 is known to associate with ezrin and CD81 [25,27], two cellular 

factors that accumulate at the producer cell side of the virological synapse (VS) [24,54], 

we first sought to determine whether this protein also localizes to the VS. CEM-SS cells 

were infected with (VSV-G-pseudotyped) NL4-3 WT or NL4-3 ∆Env (virus that does not 

express Env) and mixed with target CEM-SS cells (labeled with a cytoplasmic dye). Upon 

imaging with a 60× objective, the VS was identified and defined by region selection as 

clusters of immunolabeled Gag present at producer-target cell contact sites. DIC was used 

to identify and region-select cell–cell contacts between ∆Env producers and uninfected 

target cells as Gag will not accumulate at these contacts in the absence of Env [1]. The 

EWI-2 channel was not viewed during the process of defining VS/contact regions to 

eliminate possible bias. To calculate the enrichment at the VS/contact, we divided the 

EWI-2 signal intensity within the defined VS/contact site by the sum of the EWI-2 surface 

intensity at non-contact sites on the producer and target cell at each VS/contact. This 
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unbiased approach prevents potential inflation of the enrichment value that could occur if 

we assumed that EWI-2 was solely contributed by either the target or producer cell. 

Similarly to p-ezrin and CD81 [24,54], EWI-2 was observed to co-accumulate with Gag 

at the VS in an Env-dependent manner (Figure 3.1A). EWI-2 signal intensity was ~4-fold 

enriched at the VS in CEM-SS cells infected with NL4-3 WT, while no EWI-2 enrichment 

was seen at cell–cell contacts in cells expressing NL4-3 ∆Env (Figure 3.1A). EWI-2 signal 

intensity was also enriched ~1.6-fold at the VS in infected primary CD4+ T cells at Env-

dependent VSs and was again not enriched at non-VS contact sites (∆Env) (Figure 3.1B). 

To determine whether EWI-2 enrichment at the VS takes place within the infected 

cell, i.e., at the presynaptic terminal (rather than the apposed uninfected target cell), HIV-

1-infected CEM-SS cells were co-cultured with uninfected target TZM-bl cells (which 

have nearly-undetectable levels of EWI-2 on their surface) and imaged as described above. 

Significant EWI-2 enrichment (~5.3-fold) was observed at the VS as before (Figure 3.2A), 

demonstrating that the observed EWI-2 accumulation in CEM-SS-CEM-SS co-cultures 

takes place at least partially within the producer cell. To evaluate the relative contribution 

of any postsynaptic (i.e., target cell-side) accumulation of EWI-2, HIV-1-producing HeLa 

cells (which, like TZM-bl cells, also exhibit nearly undetectable levels of EWI-2 on their 

surface) were cocultured with uninfected target CEM-SS cells. In this case, minimal EWI-

2 accumulation was detected at synapses (~1.1-fold; Figure 3.2B), showing that EWI-2 

enrichment seen at T cell-T cell VSs takes place (almost) exclusively at the presynaptic 

terminal of the VS, i.e., in the producer cell. Together, these results conclusively document 

that EWI-2 is recruited to the virological presynapse during HIV-1 cell-to-cell 

transmission. 
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3.4.2 Overall Surface Levels of EWI-2 Are Decreased upon HIV-1 Infection 

Despite its enrichment at the virological presynapse, the EWI-2 partner protein 

CD81 (as well as other tetraspanins) is overall downregulated in HIV-1-infected cells 

[54,56,57]. We previously used Tandem Mass Tag (TMT)-based quantitative proteomics 

to map global changes in whole cell protein abundances in HIV-infected T cells [50,51]. 

Like CD81, EWI-2 was decreased in abundance in both CEM-T4 T cells and primary 

human CD4+ T cells (Figure 3.3A). To confirm these data using an orthogonal approach, 

we tested whether surface levels of EWI-2 are decreased in lymphocytes infected with 

HIV-1 NL-sfGI, a strain in which superfolder GFP (sfGFP) replaces the Nef gene and Nef 

expression is restored using an IRES [10]. We chose to utilize this GFP reporter virus, 

rather than immunolabeling Gag after fixation, because Gag-negative (or undetectable) 

cells still in the early phase of infection may exhibit host protein downregulation due to 

early Nef expression (reviewed in [58]). 

HIV-1-infected cells adhered to glass-bottom dishes were surface-labeled with 

EWI-2 primary antibody on ice and fixed before incubation with fluorescent secondary 

antibody. Uninfected and HIV-1-infected cells were imaged with a 60× objective and the 

resulting images were deconvolved. The mean fluorescence intensity (MFI) of EWI-2 on 

the surface of each cell was determined by measuring the EWI-2-associated signal 

intensity of manually-selected regions of the cell surface (representative images shown in 

Figure 3.3B) and normalizing the raw MFI of each cell to the average EWI-2 signal from 

uninfected cells within the same imaging set. After measuring surface MFI, on average 

across three independent biological replicates, infected (GFP-expressing) cells had 
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significantly lower (~2-fold) EWI-2-associated signal than uninfected (GFP-negative) 

cells, after subtracting background signal (Figure 3.3B). This phenomenon was consistent 

across CEM-SS, CEM2n, and primary CD4+ T cells. 

We also sought to quantify EWI-2 surface expression by flow cytometry as a means 

of high-throughput analysis. HIV-1 NL-sfGI-infected CEM2n cells, surface-labeled for 

EWI-2 and analyzed by flow cytometry, were gated for high or low levels of EWI-2 using 

appropriate controls (representative histogram plots shown in Figure 3.3D). These data 

showed that a much lower proportion of infected cells (identified as GFP+) had high levels 

of EWI-2 surface expression than of uninfected cells (identified as GFP-) in the same 

culture (Figure 3.3E). Additionally, the mean fluorescence intensity of EWI-2-associated 

signal was lower within the total population of infected cells compared to that of the 

uninfected cells (Figure 3.3F). 

Like other cell surface proteins downregulated by HIV-1, depletion of CD81 (as 

well as other tetraspanins) is mediated by the accessory proteins Vpu (predominantly) and 

Nef [56,57]. We have previously shown that substrates of different HIV-1 accessory 

proteins may be distinguished by their characteristic patterns of temporal regulation in 

HIV-1-infected T cells [50,51,53]. Accordingly, the temporal expression profile of plasma 

membrane EWI-2 was strikingly similar to that of BST2 (Tetherin), a canonical Vpu target 

(Figure 3.4A). 

Furthermore, like BST2, depletion of cell surface EWI-2 by HIV-1 infection was 

abrogated in the presence of reverse transcriptase inhibitors, and when cells were infected 

with Vpu-deficient HIV-1 (Figure 3.4B). Taken together, our proteomic data therefore 

strongly suggest that Vpu is primarily responsible for HIV-1-dependent EWI-2 
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downregulation. As with the tetraspanins however, the incomplete rescue in the presence 

of Vpu-deficient virus, and relatively modest depletion when Vpu was expressed as a 

single gene (Figure 3.4B), suggest that Nef may also contribute to the depletion of cell 

surface EWI-2 in the context of HIV-1 infection. 

 

3.4.3. EWI-2 Inhibits HIV-1-Induced Syncytium Formation 

Likely through their accumulation at the producer cell side of the VS, the EWI-2 

partner proteins CD81 and ezrin repress the fusion of infected and uninfected cells, i.e., 

syncytium formation [22–24]. Given that EWI-2 also accumulates at the VS (Figure 3.1), 

we sought to test whether it also contributes to the inhibition of HIV-1-induced syncytium 

formation by both overexpressing EWI-2 and reducing its expression using RNA 

interference. 

As we have done previously to examine the fusion-inhibitory capacity of 

tetraspanins [22,23], we tested whether EWI-2 inhibits HIV-1-induced syncytium 

formation in a dose-dependent manner by overexpressing EWI-2 in HeLa cells (which 

have nearly-undetectable endogenous levels of EWI-2). NL-sfGI-producing HeLa cells 

overexpressing either EWI-2, CD81, or L6 (a tetraspanin-like surface protein that does not 

repress HIV-1-induced cell–cell fusion; [23,59]) were co-cultured with uninfected target 

TZM-bl cells. As a negative control for HIV-1-induced cell–cell fusion, Env-deleted 

(∆Env) NL-sfGI-expressing HeLa cells were also co-cultured with target TZM-bl cells. 

HIV-1-induced HeLa-TZM-bl syncytia express firefly luciferase under control of the HIV-

1 LTR [22]. After 3 h of co-culture (and another 14–18 h to allow for reporter expression), 

cells were lysed, the lysates were incubated with luciferase substrate, and luminescence 
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was measured using a microplate reader. Overall, the overexpression of increasing 

amounts of either CD81 or EWI-2 (125, 250, or 500 ng of plasmid) in NL-sfGI-producing 

cells resulted in a dose-dependent decrease of cell–cell fusion (Figure 3.5A). 

In parallel, we established an EWI-2 knockdown CEM-SS cell line by lentiviral 

transduction using a targeting vector (FG12) that directs expression of a short hairpin RNA 

(shRNA) targeting EWI-2 (shEWI-2), using the same targeting sequence as in a previous 

report [32]. As a control, this targeting sequence was scrambled several times, all resulting 

sequences were tested against the human genome by BLASTn, and the sequence with the 

least homology to any human transcript was selected (shScramble, or shScr). This 

modified FG12 vector also carries a puromycin resistance cassette, while the GFP reporter 

cassette (as used in [24]) was removed to allow use of GFP reporter viruses. The 

puromycin-resistant shEWI-2 CEM-SS cells were analyzed by microscopy (Figure 3.5B) 

and by flow cytometry (Figure 3.5C–D) and were found to have ~3-fold reduced EWI-2 

surface levels, compared to both the shScramble control and the parental non-transduced 

CEM-SS cells. 

Subsequently, shEWI-2 and shScramble cells were assayed for their ability to 

support HIV-1-induced cell–cell fusion with CEM-luc cells as target cells, using a 

previously reported assay that discriminates between the luciferase signal derived from 

active virus transmission and signal from cell–cell fusion [24,60]. Across three 

independent biological replicates, HIV-1-infected shEWI-2 cells were found to 

consistently form syncytia more frequently (between 1.5 and 2.3-fold) than HIV-1-

infected shScramble cells (Figure 3.5E). 
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Taken together, the accumulation of EWI-2 at the presynaptic terminal of the HIV-

1 VS (Figures 3.1 and 3.2), the concomitant overall downregulation of EWI-2 in infected 

T cells (Figure 3.3), and the requirement for high EWI-2 expression for efficient control 

of Env-induced cell–cell fusion (Figure 3.5) establish EWI-2 as a host fusion-inhibitory 

protein harnessed by HIV-1 during cell-to-cell virus transmission. 

 

3.4.4. EWI-2 and CD81 Surface Expression is Restored on HIV-1-Induced Syncytia 

HIV-1-infected cells have been well documented to have altered surface expression 

profiles compared to uninfected cells (reviewed in [61]). However, previous analyses 

(including ours) were performed using bulk populations of HIV-1 infected cells, and thus 

could not or did not discriminate between mono- and multinucleated HIV-1-infected cells. 

HIV-1-induced syncytia likely have altered surface expression compared to 

mononucleated infected cells, as the process of syncytium formation (infected-uninfected 

cell fusion) provides a sudden influx of yet-to-be downregulated host proteins contributed 

by the uninfected target cell upon membrane merger and cytoplasm mixing. Therefore, we 

chose to use microscopy to analyze the surface expression of EWI-2 and CD81 on HIV-

1-infected cells in order to, for the first time, confidently discriminate between 

mononucleated infected cells and multinucleated HIV-1-induced syncytia. 

HIV-1-infected primary CD4+ T cells were cultured for three days post infection to 

allow time for syncytium formation. Infected cells were plated, surface-labeled for EWI-2 

or CD81 on ice and fixed prior to incubation with secondary antibody and imaging as 

before. The surface expression of each cell was quantified, normalized to internal 

uninfected controls, and data were segregated into populations of uninfected cells, 
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mononucleated infected cells, and multinucleated infected cells (syncytia, identified as 

multinucleated by DAPI nuclear staining and positive for the viral reporter (GFP), as 

shown in representative images; Figure 3.6A). Strikingly, we found that syncytia had 

restored the surface expression of both EWI-2 and CD81 to nearly the same level as 

uninfected T cells found within the same wells (Figure 3.6B). 

 

3.5 Discussion 

The transient alignment of infected (producer) and uninfected (target) cells allows 

for efficient transmission of virus particles. However, because of the presence of viral Env 

and CD4/co-receptor at the surface of producer and target cell, respectively, rather than 

separating after particle transfer, these cells could also easily fuse with each other, thus 

forming a syncytium. This study now identifies EWI-2 as a host protein that contributes 

to the maintenance of viral homeostasis through fusion inhibition. 

Our investigations were partially prompted by two recent reports. In one of those 

studies, Rubinstein and colleagues documented a role for EWI-F, a close relative of EWI-

2, in myoblast fusion regulation [26]. EWI-F was shown to act as fusion repressor in 

cooperation with the tetraspanins CD9 and CD81. With the other study, Yáñez-Mó and 

colleagues [32] showed the presence of EWI-2 at sites of contact between uninfected T 

cells and T cells stably expressing HIV-1 Env. In separate experiments, HIV-1-infected 

EWI-2 knockdown cells were also shown to have somewhat increased virus production 

and the authors mentioned (as data not shown) that this was accompanied by augmented 

syncytium formation, indicating that EWI-2 could be involved in the regulation of HIV-

1-induced membrane fusion. Importantly, however, the study did not address the question 
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of whether the reported increase in syncytium formation was (potentially) caused by the 

action of EWI-2 in producer or target cells, nor did it provide a dissection of where EWI-

2 accumulates (producer and/or target cells). The authors did speculate that EWI-2, 

together with α-actinin, might be active in target cells, there possibly contributing to α-

actinin’s actin bundling activity, thus ultimately inhibiting virus entry/fusion. They also 

explicitly stated, however, that even if their speculation about where α-actinin acts during 

virus replication should eventually be confirmed (with subsequent studies), they cannot 

exclude an involvement of the partner protein EWI-2 in the “subsequent steps of the viral 

life cycle”. Our study now reveals that EWI-2 indeed acts during the late phase of the HIV-

1 replication cycle: It accumulates on the producer cell side of the VS (Figures 3.1 and 

3.2). Surprisingly, unlike tetraspanins, which have fusion-inhibitory roles at both sides of 

the VS (and thus are present at both the viral pre- and post-synapse [22,62]), EWI-2 

accumulates (and inhibits fusion) only at the presynaptic terminal of the VS. This leads us 

to speculate whether EWI-2 accumulation at the presynaptic terminal might contribute to 

unique intracellular signaling events in HIV-1-infected cells [32,63], such as tuning T cell 

receptor function. 

Paralleling what we previously documented for tetraspanins [22], we found that 

fusion with uninfected target cells was inhibited by EWI-2, and we established that it does 

so in a dose-dependent manner (Figure 3.5). Also analogous to our findings about 

tetraspanins [54,56], we demonstrate that while EWI-2 accumulates at the virological 

presynapse, overall this protein is downregulated in infected cells (Figure 3.3). Our 

proteomic analysis (Figure 3.4) now shows that EWI-2 depletion from the infected cell 

surface, as is also the case for tetraspanins [56,57], is primarily mediated by Vpu (Figure 
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3.4). Since EWI-2 is a known interactor of tetraspanins CD81 and CD9, it is possible that 

EWI-2 downregulation by Vpu (with or without Nef) is “direct” (e.g., the canonical Vpu 

“targets” BST2 and CD4, as well as SNAT1 [53]) or “indirect,” possibly through its 

association with tetraspanins. Note, this is also true of CD81/other tetraspanins, which 

may likewise be “direct” or “indirect” targets (e.g., by their association with EWI-2). Our 

data do not distinguish these possibilities, and further mechanistic studies would be 

required to delineate the detailed mechanism of Vpu-mediated depletion. It should also be 

noted that in Table S1 of [64], EWI-2 depletion in CEM-T4 cells is (somewhat) dependent 

on the expression of Vpr. The effect size is modest and likely “indirect,” and does not 

contradict the Vpu and Nef data shown here. It does, however, suggest that the mechanism 

of EWI-2 depletion in HIV-1 infected T cells may be complex. 

Overall, the combination of these two features (enrichment during assembly and 

transmission at the VS, and regulation by HIV-1 accessory proteins in infected cells), 

together with the fusion-preventing functions, strongly suggests that a particular host 

factor plays an important role in virus replication. 

We expect that EWI-2 also inhibits the fusion of virus particles to target cells, as 

tetraspanins do [54,56,59], and we are currently testing that hypothesis (within the context 

of an extensive follow-up analysis aimed at dissecting the molecular determinants 

responsible for EWI-2’s fusion-inhibitory functions). It seems likely that tetraspanins and 

EWI-2 are not only tolerated but indeed enriched at virus budding sites because the benefit 

of cell–cell fusion inhibition at the VS is balanced against any negative effect of a 

reduction in virus infectivity. This is demonstrated by the fact that, in a native 

(unmanipulated) context, it is simultaneously true that (A) HIV-1-infected T cells 



 84 

routinely exhibit enrichment of these fusion inhibitors at virus release sites, (B) that cell–

cell fusion is relatively infrequent, and (C) that HIV-1 spreads efficiently in those cell 

cultures. 

As mentioned, while fusion inhibition operates at many levels and is orchestrated 

by HIV-1 proteins during infection, syncytia do nevertheless form, including in vivo [7–

9] and when using a transmitted/founder (T/F) R5-tropic Env or even full-length 

replication-competent T/F virus [10,12]. However, these syncytia seem to remain small, 

at 4 or fewer nuclei and the vast majority having only two nuclei [9]. Very large syncytia 

(dozens to thousands of nuclei) are only induced by HIV-1 infection of certain T cell lines, 

especially Sup-T1 cells [65], or in vivo but only with the involvement of macrophage or 

dendritic cells [66–68]. It is therefore possible that T cell–T cell fusion is inhibited not 

only when a mononucleated infected cell encounters a target cell, but also when a 

syncytium encounters a target cell. An alternative explanation is that syncytia may be less 

viable as they grow larger, though some evidence contradicts that [69]. Here, we present 

evidence that host fusion-inhibitory proteins EWI-2 and CD81 are present at higher levels 

on the surface of small T cell syncytia when compared to mononucleated infected cells in 

the same culture. Because we find that the fusion-inhibitory capacity of EWI-2 and CD81 

is also dose-dependent, it would therefore be expected that a higher “dose” of EWI-2 

and/or CD81 in syncytia would make them less likely to undergo cell–cell fusion a second 

(or third) time. We are currently formally testing this hypothesis, and also investigating 

the surface levels on syncytia of other host proteins normally downregulated upon HIV-1 

infection. Without implicating any particular fusion-inhibitory protein, we have in the past 

found evidence that indeed fusion-inhibitory factors may also be acting at syncytium-
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target cell VSs [9]: in Movie S7 of that report, we showed an example of a small syncytium 

containing two nuclei undergoing cell–cell fusion and acquiring a third nucleus. 

Subsequently, that syncytium encountered uninfected target cells and transferred virus 

particles to them through close contact but did not undergo further cell–cell fusion and 

instead fully separated from them despite exhibiting the ability to fuse only hours earlier. 

We can now speculate that, as a result of the cell–cell fusion event we captured at the 

beginning of that sequence, this syncytium likely acquired a dose of EWI-2 and/or CD81, 

which subsequently allowed the syncytium to mediate cell-to-cell virus transfer at the VS 

without further cell–cell fusion. 

Finally, repressing HIV-1 Env-induced cell–cell fusion not only allows for a 

continued increase in the number of infected cells (as that number doubles each time 

producer and target cells separate after virus transmission), but keeping Env’s fusion 

activity at bay may also be beneficial for the virus for other reasons. For instance, we and 

others have recently shown that lowering Env’s fusion activity also allows HIV-1 to 

overcome a restriction factor (APOBEC3G; [60]), and even antiviral drugs [70]. Further, 

large syncytia, that could form if Env-induced cell–cell fusion is uncontrolled, are likely 

prone to be attacked by innate immune cells. It is therefore critical that HIV-1 recruits 

fusion-inhibitory host factors such as EWI-2 to the VS to prevent excess cell–cell fusion 

and keep T cell syncytia small when they do form. 
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3.10 Figure Legends 

Figure 3.1. EWI-2 co-accumulates with Gag at the HIV-1 VS in T cells. (A) CEM-
SS cells infected with HIV-1 NL4-3 WT or ∆Env were co cultured with uninfected 
CEM-SS target cells for 5 h, and subsequently stained for surface EWI-2 (magenta) 
and Gag (yellow). The EWI-2-associated fluorescence intensity at cell–cell contacts 
either enriched with Gag (WT) or not Gag-enriched but identified by DIC (∆Env) was 
measured. This value was then divided by the sum of the EWI-2-associated 
fluorescence intensity on non-contact sites on the producer and target cell in each 
VS/contact to yield EWI-2 enrichment (i.e., the values shown here). The data 
quantified are from one biological replicate consisting of two technical replicates. 
Similar trends were observed in a second dataset; not shown. (B) Primary CD4+ T 
cells infected with NL-sfGI WT or NL-CI ∆Env were co-cultured with uninfected 
target primary cells for 2 h and stained for EWI-2 (magenta) and Gag (yellow), 
followed by secondary pAbs (Alexa Fluor 647-conjugated for EWI-2, and either 
Alexa Fluor 594 or Alexa Fluor 488-conjugated for Gag in the case of WT and ∆Env, 
respectively). Because different secondary antibodies were used for Gag in either 
condition, the scaling shown for that channel is not the same across the two conditions 
and was based on corresponding primary and uninfected controls done alongside each 
dataset. Enrichment of EWI-2 at Env-dependent (WT) or Env-independent (∆Env) 
infected-uninfected cell contacts was quantified as described in (A). The data 
quantified are pooled from two independent biological replicates, each consisting of 
two technical replicates. Scale bars = 10 µm. In both data plots, each data point 
represents one cell–cell contact site (as opposed to one cell). The dotted horizontal 
line indicates a theoretical fold enrichment value of 1, which indicates no enrichment. 
Error bars = standard deviation of the mean (SD). p-values are the result of two-tailed 
non-parametric Mann-Whitney U tests. 
 
Figure 3.2. EWI-2 accumulation takes place on the producer cell side of the VS. (A) 
To evaluate presynaptic accumulation of EWI-2, CEM-SS cells infected with HIV-1 
NL-CI WT or ∆Env were co cultured with CMAC (cyan) labeled TZM-bl target cells 
(which have nearly-undetectable EWI-2 surface levels compared to CEM-SS cells) 
for 2.5 h, and subsequently stained for surface EWI-2 (magenta) and Gag (yellow). 
EWI-2 enrichment was quantified as described in Figure 1. Quantification is the result 
of pooled VS/contacts from two independent biological replicates. (B) To evaluate 
postsynaptic accumulation of EWI-2, HeLa cells (which, like TZM-bl cells, also have 
nearly-undetectable EWI-2 surface levels) were transfected with HIV-1 NL-sfGI or 
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NL-sfGI ∆Env and cocultured with uninfected CEM-SS target cells (cyan) for 2–2.5 
h. Cells were stained for surface EWI-2 (magenta) and Gag (yellow). Note that Gag 
expression in the ∆Env condition was quite low, since Gag expression in this virus is 
already expected to be considerably reduced [55]. EWI-2 enrichment was calculated 
as described in Figure 1. Quantification is the result of pooled VSs/contacts from two 
independent biological replicates. Scale bars = 10 µm. In both data plots, each dot 
represents the EWI-2 enrichment value of one VS/contact. The dotted horizontal line 
indicates a theoretical fold enrichment of 1, which indicates no enrichment. Error bars 
= standard deviation of the mean (SD). p-values are the result of two-tailed non-
parametric Mann-Whitney U tests. 
 
Figure 3.3. EWI-2 is downregulated from the surface of infected cells. (A) Abundance 
of EWI-2 in mock-infected (grey) versus WT HIV-infected (yellow) CEM-T4 T cells 
or primary human CD4+ T cells. Experiments were conducted in triplicate and whole 
cell lysates subjected to Tandem Mass Tag (TMT)-based quantitative proteomics 48 
h after infection (reanalysis of data from [50,51]). Seven (CEM-T4 T cells) or six 
(primary human CD4+ T cells) unique peptides were used for EWI-2 quantitation. 
Mean relative abundances (fraction of maximum TMT reporter ion intensity) shown. 
(B) Cells were infected with NL-sfGI and surface-labeled for EWI-2, fixed, stained 
with DAPI (shown in cyan) and Alexa Fluor 594-conjugated secondary antibody, and 
imaged. GFP signal (yellow) was used to identify infected cells, and EWI-2-associated 
signal is shown pseudocolored in magenta. Representative cells are shown. Scale bars 
= 10 µm. (C) Cells were prepared as in (B) and EWI-2 levels at the plasma membrane 
in infected (Inf) and uninfected (Uninf) cells were measured by manually selecting the 
plasma membrane at the midline of each cell and quantifying the mean EWI-2-
associated fluorescence intensity. Fluorescence intensity of each cell was normalized 
to the average intensity value of uninfected cells within the same imaging set. Data 
shown are pooled from two to three biological replicates, each consisting of two 
technical replicates. Only non-contact sites were quantified. Error bars = SD. p-values 
are the result of a two-tailed non-parametric Mann-Whitney U test. (C-E) CEM2n 
cells were infected with NL-sfGI and surface-labeled for EWI-2, fixed, and stained 
with Alexa Fluor 647-conjugated secondary antibody, and analyzed by flow 
cytometry. (D) Representative histogram normalized to mode of the EWI-2 signal 
intensity at the cell surface for unstained controls (black outline), infected cells 
(yellow), and uninfected cells (cyan). The gates defining EWI-2high and EWI-2low cells 
are shown. (E) Data represent the percentage of uninfected and infected cells that fell 
into the EWI-2high gate shown in (d) from 3 independent biological replicates, 



 92 

averaged across two technical replicates within each. (F) EWI-2 surface expression 
was measured by mean fluorescence intensity (MFI) of EWI-2-associated signal. In 
both panels, lines connect paired data points, i.e., infected cells and uninfected cells 
(within an infected tube) from the same biological replicate. 
 
Figure 3.4. Plasma membrane EWI-2 is downregulated by Vpu. (A) Temporal 
expression profiles of cell surface EWI-2 (red, upper panel) or indicated control 
proteins (blue/green/gold, lower panels) in WT HIV-1-infected CEM-T4 T cells 
(reanalysis of data from [53]). Plasma membrane proteins were subjected to TMT-
based quantitative proteomics 0 (uninfected), 6, 24, 48, and 72 h after infection, or 72 
h after infection in the presence of reverse transcriptase inhibitors (RTi). Twelve 
unique peptides were used for EWI-2 quantitation. Relative abundances (fraction of 
maximum TMT reporter ion intensity) are shown. (B) Abundance of EWI-2 (red, 
upper panel) or indicated control proteins (blue/green/gold, lower panels) in control 
CEM-T4 T cells or CEM-T4 T cells infected with WT HIV-1 in the presence/absence 
of RTi, infected with Vpu- or Nef-deficient HIV-1, or transduced with Vpu or Nef as 
single genes (reanalysis of data from [53]). Plasma membrane proteins were subjected 
to Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based 
quantitative proteomics 72 h after infection (3 × 3-way comparisons). Twelve (WT 
HIV-1 +/− RTi), nine (∆Vpu/∆Nef HIV-1) or 14 (Vpu/Nef) unique peptides were used 
for EWI-2 quantitation. Ratios of abundances to mock-infected CEM-T4 T cells (WT 
HIV-1 +/- RTi and ∆Vpu/∆Nef HIV-1) or GFP-transduced CEM-T4 T cells (Vpu/Nef) 
are shown. Note that (A) and (B) show data from two different quantitative proteomic 
methods, as described above and in Materials and Methods. 
 
Figure 3.5. EWI-2 inhibits infected-uninfected cell fusion. (A) HeLa-TZM-bl fusion 
assays were performed using producer HeLa cells that were co-transfected with either 
pNL-sfGI ∆Env (∆Env) or pNL-sfGI (WT) in combination with overexpression 
plasmid totaling 500 ng (using the indicated amount of CD81 or EWI-2 supplemented 
with L6). Luminescence readings (across 4 independent biological replicates, each 
with two technical replicates) were divided by the ∆Env condition to obtain the fold 
increase in fusion, and then normalized to the WT co-transfected with only L6 (i.e., 0 
ng of CD81 or EWI-2) condition, making it have a value of 1. Deviation from the 
dashed line at 1 thus indicates an effect on fusion. Values from the same biological 
replicate are linked by a grey line. (B–D) EWI-2 expression in shScramble (shScr) 
and shEWI-2 CEM-SS cells was analyzed by microscopy (B) and flow cytometry (C–
D). (B) For microscopy, cells were plated onto poly-L-lysine-coated glass, fixed, 
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permeabilized, labeled for EWI-2, and stained using fluorescent secondary antibody 
(magenta) and DAPI (cyan). Scale bars = 10 µm. (C–D) For flow cytometry analysis, 
cells were labeled with Live/Dead Fixable Near-IR, fixed, permeabilized, labeled for 
EWI-2, and stained with fluorescent secondary antibody. (C) Representative 
histogram of the EWI-2 signal intensity normalized to mode in live cells for unstained 
controls (black line), shEWI-2 (blue), and shScr (red) cells. (D) EWI-2 MFI in live 
shScr (red) and shEWI-2 (blue) cells from three independent biological replicates, 
normalized to EWI-2-labeled parental CEM-SS cells (represented at a value of 1 with 
a dashed line). (E) CEM-luc fusion assays were performed using shScr or shEWI-2 
producer cells infected with NL4-3, which were co-cultured with CEM-luc target cells 
in the presence of DMSO (vehicle control, luciferase signal from transmission and 
cell–cell fusion) or EFV (luciferase signal resulting exclusively from cell–cell fusion). 
Luminescence readings (across three independent biological replicates) from the 
EFV-treated condition were divided by the DMSO reading from the same producer 
cell type and multiplied by 100 to determine the percentage of luciferase expression 
dependent on cell–cell fusion (syncytium formation) between either shScr or shEWI-
2 producer and CEM-luc target cells. Values from the same biological replicate are 
linked by a black line. 
 
Figure 3.6. Syncytia have higher surface expression of EWI-2 and CD81 than 
mononucleated infected cells. (A) Primary CD4+ T cells were infected with NL-sfGI, 
surface-labeled for either EWI-2 or CD81 (both shown in magenta), fixed, stained 
with DAPI (cyan) and AlexaFluor 647-conjugated secondary antibody, and imaged. 
Infected cells were identified by GFP (yellow) and discriminated as mono- or 
multinucleated infected cells by DAPI. Representative cells are shown. Scale bars = 5 
µm. (B) Cells were prepared as described in (A) and analyzed for EWI-2 or CD81 
surface expression on uninfected cells, mononucleated infected cells (Mono) and 
syncytia (Syn) by manually selecting the plasma membrane at the midline of each cell 
and quantifying the mean EWI-2 or CD81-associated fluorescence intensity. Raw 
fluorescence intensity values were background-subtracted using the fluorescence 
intensity of a cell-free area within the same image and subsequently normalized to the 
average intensity value of uninfected cells within the same imaging set. Data shown 
are the pooled normalized intensity values of two independent biological replicates, 
each with two technical replicates. Each data point represents the normalized surface 
MFI of an individual cell. Error bars = SD. p-values are the result of Kruskal-Wallis 
tests. 
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3.11 Figures 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.1. EWI-2 co-accumulates with Gag at the HIV-1 VS in 
T cells. 
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Figure 3.2. EWI-2 accumulation takes place on the producer cell 
side of the VS. 
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Figure 3.3. EWI-2 is downregulated from the surface of 
infected cells. 
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Figure 3.4. Plasma membrane EWI-2 is downregulated by Vpu. 
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Figure 3.5. EWI-2 inhibits infected-uninfected cell fusion. 
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Figure 3.6. Syncytia have higher surface expression of EWI-2 and CD81 than 
mononucleated infected cells. 
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CHAPTER 4 : CD4+ T CELLS TRANSIENTLY INFLUENCE EWI-2 SURFACE 
LEVELS ON HIV-1 INFECTED CELLS UPON HIV-1-INDUCED CELL-CELL 

FUSION 

 

4.1. Abstract 

HIV-1 cell-to-cell transmission occurs at the virological synapse (VS) which is 

formed upon Env at the surface an infected cell binding CD4 on an uninfected cell. While 

the VS typically resolves with complete separation of the two cells, Env can also facilitate 

fusion of the infected and uninfected cell membranes, leading to the formation of a 

multinucleated HIV-1 infected cell (syncytium). T cell-based syncytia can be detected 

during early infection in humanized mice and can transfer virus to uninfected cells, which 

overall suggests that these infected entities likely play a role in viral spread. A feature of T 

cell-based syncytia present during early infection is that they are limited in size (2-4 nuclei) 

suggesting that they are likely restricted from fusing indefinitely, possibly by previously 

defined viral and host fusion inhibitory proteins. 

We recently demonstrated that syncytia have partially restored levels of fusion 

inhibitory host proteins CD81 and EWI-2. However, the factors influencing the syncytia 

surface profile remained unknown. To better understand how the infected cell surface 

profile is altered upon cell-cell fusion, we used quantitative imaging to investigate the role 

of uninfected target cells in influencing the EWI-2 levels upon HIV-1-induced syncytium 

formation and to determine whether the EWI-2 levels on syncytia are fixed or, just as in 

mononucleated infected cells, downregulated over time over time. 
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4.2. Introduction 

Human immunodeficiency virus type 1 (HIV-1), the causative agent for acquired 

immunodeficiency syndrome (AIDS), can spread through multiple modes of transmission 

including cell-free and cell-to-cell transmission (reviewed in [1]). Cell-free infection relies 

on free virus particles encountering an uninfected CD4+ T (target) cell, at which point the 

viral fusogen (Envelope/Env) can bind its receptor (CD4) and facilitate fusion between the 

phospholipid bilayer surrounding the viral particle and the plasma membrane of the target 

cell. Cell-to-cell transmission relies on the formation of a transient infected (producer) to 

target cell junction known as the virological synapse (VS) [2,3]. The VS forms upon Env 

present on the surface of a producer cell binding CD4 on target cell [2]. Cell-to-cell 

transmission at the VS is highly efficient as this junction allows for viral particles to bud 

from the producer cell in close proximity to the target cell. Although the VS often resolves 

with transfer of virus particles to the target cell and complete cell separation, formation of 

a VS can also result in Env-mediated fusion between the producer and target cell 

membranes to form a multinucleated HIV-1 infected cell (syncytium). 

Recently, HIV-1-induced T-cell-based syncytia have been documented in vivo in 

humanized mice by multiple independent groups [4-6]. Syncytia have been detected in 

humanized mouse models as early as 48 hours post infection [4] and can be induced by 

virus bearing a transmitted-founder (T/F) virus envelope [5] as well as full-length T/F virus 

[6], collectively suggesting that HIV-1-induced syncytia may be important for early virus 

spread. T cell based syncytia seen in vivo are migratory and frequently displayed an 

elongated/multilobed morphology [4,5]. Intriguingly, these syncytia appear limited in size 

as the majority detected in vivo had 2 nuclei while even the largest syncytia contained only 
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4 nuclei [7]. These small (2-4 nuclei) T cell-based syncytia detected in vivo during early 

infection [7] were clearly distinct from previously described macrophage based 

multinucleated giant cells (MGCs) in HIV-1 infected patients [8,9] as well as cytopathic 

syncytia that can grow to be >10 cell volumes in size (therefore likely containing >10 

nuclei) observed in vitro using highly fusogenic cell lines (ie. SUP-T1 cells, [10])(also 

discussed in [11]). The distinct phenotype of small T cell-based HIV-1-induced syncytia 

first documented in vivo can be recapitulated in vitro by embedding infected T cells in 3D 

matrices such as those comprised of Collagen or Matrigel [7]. Live-cell imaging of infected 

cells embedded in a 3D matrix documented an HIV-1-induced syncytium undergoing cell-

cell fusion shortly followed by the same syncytium contacting an uninfected target cell, 

transferring viral particles to the target cell, and ultimately followed by complete separation 

of the syncytium and target cell [7]. This observation provided additional support for the 

idea that syncytia may contribute to virus spread. Further, that syncytia are limited in size 

(2-4 nuclei) and can contact uninfected target cells without inducing cell-cell fusion [7] 

indicates that syncytia may utilize known viral and host fusion inhibitory proteins to 

prevent indefinite cell-cell fusion.  

Given that Env is fusogenic at neutral pH, both viral (Gag) and host (tetraspanins, 

Ezrin, and EWI-2) fusion inhibitory proteins are necessary for preventing excessive cell-

cell fusion upon Env-CD4 binding at the VS [12-15]. HIV-1-induced cell-cell fusion at the 

VS is largely prevented by the Gag precursor polyprotein which traps Env at the VS in a 

non-fusogenic state [12]. Additionally, several host proteins have been shown to co-

accumulate with Gag at the VS where they contribute to preventing excessive cell-cell 

fusion [13-17]. Multiple members of the tetraspanin family (including CD9, CD63, and 
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CD81) are known to prevent excessive Env-induced cell-cell fusion, and act at a post-

hemifusion stage of HIV-1-induced membrane fusion [13,18,19]. Cytoskeletal linker protein 

Ezrin has also been identified as a fusion inhibitory host protein, likely supporting fusion 

inhibition at the VS through interactions with the actin cytoskeleton when Ezrin is in an 

active, phosphorylated (p-ezrin) state [14]. EWI-2 (IGSF8) is an interacting partner of both 

Ezrin [20] and tetraspanins (CD9 and CD81) [21] and has recently been identified as an 

inhibitor of HIV-1-induced cell-cell fusion that is enriched specifically on the producer cell 

side of the VS (the presynapse) [15]. Both tetraspanins and EWI-2 inhibit HIV-1-induced 

syncytia formation in a dose-dependent manner and, despite being enriched at the VS, are 

overall downregulated from the surface of HIV-1-infected cells [13,15,17,22-24]. 

Downregulation of these fusion inhibitory proteins is likely necessary to support optimal 

viral particle infectivity, as increased incorporation of fusion inhibitory tetraspanins into 

viral particles is correlated with a decrease in particle infectivity due to tetraspanins 

inhibiting particle-cell fusion/entry [17,25,26]. Overall, the subcellular localization of fusion 

inhibitory host proteins is modulated upon infection to balance virus particle infectivity 

with preventing excessive syncytia formation.  

Despite fusion inhibitory tetraspanins and EWI-2 being downregulated from the 

surface of HIV-1 infected cells, primarily by viral accessory protein Vpu [15,26], it was 

recently demonstrated that T cell-based syncytia have partially restored surface levels of 

both EWI-2 and tetraspanin CD81 [15]. Restoration of EWI-2 and CD81 on syncytia 

challenges not only what is known about regulation of fusion inhibitory host proteins in 

infected cells, but has potentially broader implications for overall modulation of the surface 

profile by viral accessory proteins upon infection (reviewed in [27]). As part of our efforts 
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to better understand the role of HIV-1-induced T cell based syncytia in virus spread and 

how the surface profile of syncytia is altered compared to mononucleated infected cells, 

we sought to determine how EWI-2 levels are changed upon cell-cell fusion and whether 

this altered phenotype is transient or maintained over time. 

 
4.3. Materials and Methods 

4.3.1. Cell Lines and Cell Culture 

The following reagent was obtained through the NIH HIV Reagent Program, 

Division of AIDS, NIAID, NIH: CEM-SS Cells, ARP-776, contributed by Dr. Peter L. 

Nara [28-30]. CEM-SS cells were maintained in RPMI 1640 medium (Corning, Corning, 

NY, Cat. #10-104-CV) supplemented with 10% fetal bovine serum (FBS; Corning, Cat. 

#35-010-CV) and antibiotics penicillin/streptomycin (P/S; 100 units/mL penicillin and 100 

μg/mL streptomycin; Invitrogen) and incubated at 37 ˚C/5% CO2.  

CEM-SS cells which were stably transduced with lentiviruses encoding either 

shRNA targeting EWI-2 (shEWI-2; sequence designed modified from EWI-2 targeting 

siRNA described previously [20]) or a scrambled control shRNA sequence (shScr) 

(lentiviral constructs, transduction, and generation of these cell lines described previously 

[15]) were maintained in RPMI supplemented with 10% FBS and 0.25 µg/ml puromycin to 

maintain positive selective pressure for transduced cells and incubated at 37 ˚C/5% CO2. 

HEK 293 T cells were maintained in Dulbecco’s Modification of Eagle’s Medium 

(DMEM) (Corning, Cat. #10-017-CV) supplemented with 10% FBS and P/S and incubated 

at 37 ˚C/5% CO2. 
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4.3.2. Antibodies and Fluorescent Dyes 

Mouse monoclonal antibody (mAb) to human EWI-2 (8A12) [31] was a kind gift 

from Dr. Eric Rubinstein (Sorbonne Université, Paris, France) and was used at 1:200 for 

all experiments. Secondary antibody, Alexa Fluor 647-conjugated donkey polyclonal 

antibody (pAb) to mouse IgG (Invitrogen, Carlsbad, CA, Cat. #A-31571), was used at 

1:500 for all experiments. 4’. 6-diamidino-2-phenylindole (DAPI; Roche, Basel, 

Switzerland, Cat. # 10236276001) prepared in stocks of 5 mg/mL in ddH2O, was used at 2 

µg/mL (1:2500) to label double-stranded DNA. CellTrackerTM Blue CMAC (CMAC; 

Invitrogen, Cat. #C2110) prepared in 10 mM stocks in DMSO, was used at 20 µM (1:500) 

in serum-free RPMI to dye the cytoplasm of uninfected cells as indicated. 

 
4.3.3. Virus Strains and Virus Stock Preparation 

  Proviral plasmid pNL-sfGI was a kind gift from Dr. Benjamin Chen [5] (Mount 

Sinai School of Medicine, New York, NY) is an NL4-3-derived strain encoding superfolder 

(sf) green fluorescent protein (GFP) in place of Nef with Nef being reintroduced 

downstream of an internal ribosome entry site (IRES). VZV-G-pseudotyped NL-sfGI virus 

stocks were produced in HEK 293 T cells transfected with pVZV-G and pNL-sfGI (at a 

ratio of 3:17) by calcium phosphate precipitation. Growth medium was refreshed 1 day 

post transfection. Virus-containing supernatants were harvested 36-48 hr after refreshing 

the media, centrifuged at 2000 rcf for 10 min and then filtered to remove any cells or cell 

debris, and stored at -80 ˚C. 
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4.3.4. Infections 

To determine the contribution of surface protein on syncytia from target cells upon 

fusion, 2 million CEM-SS cells were infected by spinoculation with 10 µL of NL-sfGI 

virus stock. Cells were incubated for 20 min at 37 ˚C/5% CO2 in 500 µL of RPMI/10% 

FBS containing virus. After the incubation period, cells were centrifuged at 1200 rcf at 37 

˚C for 99 min, followed by a 15 min recovery period at 37 ˚C, followed by an additional 

centrifugation at 300 rcf for 2 min to pellet the cells. Cells were resuspended in 8 mL of 

fresh, pre-warmed RPMI/10% FBS and incubated at 37 ˚C/5% CO2 in a 6 well plate. 

To determine whether EWI-2 levels on syncytia change over time, 1 million CEM-

SS cells were infected by spinoculation using 2 of NL-sfGI virus stock, as described above. 

 
4.3.5. HIV-1-induced syncytium formation with shRNA expressing target cells 

To determine whether the levels of EWI-2 on previously unfused target cells 

influence the EWI-2 surface levels on the resulting syncytium, NL-sfGI infected CEM-SS 

(producer) cells were co-cultured with CMAC-labeled shEWI-2 or shScr CEM-SS (target) 

cells. To label target cells prior to co-culture, cells were incubated at 2 million cells/mL in 

pre-warmed, serum-free RPMI containing CMAC (1:500) for 30 minutes at 37 ̊ C/5% CO2, 

washed with 5 mL RPMI/10% FBS, resuspended in 8 mL fresh RPMI/10% FBS, and 

incubated overnight. 1 day post infection, CMAC-labeled target cells were co-cultured with 

producer cells (at a ratio of 2:1, 1 × 106 : 5 ×105, targets:producers) in 4 mL RPMI/10% 

FBS with 1 µM Efavirenz (EFV) (NIH AIDS Reagent Program, Cat. #4624), and incubated 

for 17-18 hr at 37 ˚C/5% CO2. Following the co-culture, 2.5-3 × 105 cells from each co-

culture condition alongside wells containing uninfected (control) cells for each cell type 

(CEM-SS, shEWI-2, and shScr) and a primary antibody control (CEM-SS) were plated on 
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8-well glass-bottom plates (Cellvis, Mountain View, CA, Cat. #C8-1.5H-N) coated with 

1:10 poly-L-lysine (Newcomer Supply, Middleton, WI, Cat. #3438-100-01) and incubated 

at 37 ̊ C for 2 hr. Plated cells were labeled with 100 µL RPMI/10% FBS with 8A12 (1:200) 

or RPMI/10% FBS only (primary antibody control) for 45 min at 4 ˚C, followed by two 

300 µL washes with RPMI/10% FBS. All samples were fixed with 500 µL phosphate 

buffered saline (PBS) containing 4% paraformaldehyde for 10 minutes and washed with 

500 µL PBS. Fixed samples were permeabilized with 100 µL PBS containing 1% bovine 

serum albumin (BSA) and 0.1% Triton®X-100 (MilliporeSigma, Burlington, MA, Cat. 

#TX1568-1) and washed with 300 µL PBS/1% BSA. Fixed and permeabilized samples 

were labeled with Alexa Fluor 647-conjugated secondary antibody (1:500) in PBS/1% 

BSA for 45 min, followed by two 300 µL washes with PBS/1% BSA, and kept in 300 µL 

of PBS for imaging.  

 
4.3.6. Quantifying EWI-2 surface levels on syncytia over time 

To determine whether EWI-2 is maintained at the syncytium cell surface after HIV-

1-induced cell-cell fusion, CEM-SS were infected with NL-sfGI for 3 days to allow for 

syncytium formation. 3 days post infection, a sample of infected cells prepared for 

microscopy (0 hr time point). The remaining cells were resuspended in fresh medium 

containing 1 µM EFV and 0.5 µM HIV-1 IIIB C34 peptide (C34) (NIH AIDS Reagent 

Program, Cat. #9824) to inhibit continued transmission and HIV-1-induced cell-cell fusion. 

6 and 24 hr after the addition of the inhibitors samples of cells were prepared for 

microscopy (6 and 24 hr time points). The inhibitor containing medium was refreshed and 

the cells were incubated for an additional 24 hr before cells were harvested and prepared 

for a 48 hr time point. Upon imaging, there were too few syncytia remaining for analysis 
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and a striking amount of dying cells were observed (data not shown), thus these samples 

were not used for analysis. 

For each time point, 2.5-3 × 105 cells in 300 µL RPMI/10% FBS (with IL-2 for 

primary cells) were plated onto glass-bottom plates coated in poly-L-Lysine (as described 

above, 3.3.5) and incubated for 1 hr at 37 ˚C. Uninfected and primary antibody controls 

were prepared alongside infected samples for each time point. Plated cells were labeled in 

100 µL RPMI/10% FBS with mAb 8A12 (1:200) for 45 min at 4 ˚C or medium only for 

uninfected primary antibody controls, washed with 2 × 300 µL of RPMI/10% FBS, fixed 

and permeabilized (as described above). Fixed and permeabilized samples were labeled 

with 647-conjugated secondary antibody (1:500) and DAPI (1:2500) in 100 µL PBS/1% 

BSA for 45 min, washed with 2 × 300 µL of PBS/1% BSA, and kept in 300 µL PBS for 

imaging. 

 

4.3.7. Image Acquisition 

Imaging was completed using a DeltaVision epifluorescence microscope 

(GE/Applied Precision, Issaquah, WA, USA) with an Olympus IX-70 base using an 

Olympus 60× PlanApo 1.42 NA objective and equipped with a CoolSNAP HQ CCD 

camera (Photometrics, Tucson, AZ). Images were processed by deconvolution and 

cropping (to remove edge artifacts of deconvolution) and imported into Fiji Version 

2.1.0/1.53c for analysis.  

 
4.3.8. Quantifying EWI-2 Surface Density 

Prior to quantifying the relative EWI-2-associated signal at the cell surface, all 

images were copied and the copies were relabeled with unique 10 digit IDs (“deidentified” 
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images). Deidentified images were used to measure the 647-associated fluorescence 

intensity at the cell surface, as described previously [15]. Briefly, the cell surface was 

manually outlined to generate a region of interest (ROI), and the mean 647-associated 

fluorescence intensity (MFI) contained within each ROI was calculated. Only areas that 

were in focus at the midline of each cell, and not in contact with another cell, were included 

to calculate the 647 MFI for each cell. All individual MFI values were background 

subtracted by subtracting both the signal contained in a cell-free area of each cell’s 

associated image frame and the average MFI of the unlabeled/no primary control 

uninfected CEM-SS cells for the associated biological replicate. 

To compare syncytia that formed upon fusion with an shScr compared to an shEWI-

2 target cell (3.3.5), CMAC-positive (CMAC+) infected (GFP+) cells were identified as 

syncytia that formed upon HIV-1-induced fusion with an shRNA expressing target cell. 

Uninfected CEM-SS cells were identified as CMAC/GFP-negative cells, while uninfected 

shRNA expressing cells were identified as CMAC+/GFP-negative. After acquiring 647 

MFIs and assigning identities (syncytium, uninfected CEM-SS, or uninfected shRNA 

expressing) to each cell the unique IDs were matched to their associated biological replicate 

and experimental condition (unlabeled control, uninfected control, infected co-culture with 

shScr or shEWI-2 target cells). Background subtracted MFIs were then normalized to the 

average MFI of associated uninfected, non-shRNA expressing CEM-SS cells prepared in 

parallel for each biological replicate. Background subtracted, normalized 647-MFI from 

an ROI was interpreted as the relative EWI-2 surface density of the associated cell. 

To compare the EWI-2 surface density between syncytia from the 0, 6, and 24 hr 

time points (3.3.6) the 647-associated fluorescence at the cell surface was measured as 
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described above. Syncytia were identified as infected (GFP+) cells with 2 or more nuclei 

(as seen by DAPI). After acquiring 647 MFIs and assigning identities (syncytium, 

mononucleated infected, or uninfected) to each cell, the unique IDs were matched to their 

associated biological replicate, time point (0, 6, or 24 hr), and experimental condition 

(unlabeled control, uninfected control, or infected). Each MFI value was background 

subtracted as described above, and normalized to the associated uninfected CEM-SS cells 

present within the infected samples (GFP-negative) for each biological replicate and time 

point. 

All data (background subtracted, normalized 647-associated fluorescence intensity 

values) were analyzed using GraphPad Prism Version 8.4.3. 

 
 

4.4. Results 

4.4.1. Uninfected target cells contribute to EWI-2 surface density on syncytia upon HIV-
1-induced cell-cell fusion. 

Given that HIV-1-induced syncytia have increased levels of EWI-2 and CD81 

compared to mononucleated infected cells, such that both proteins are partially restored to 

the levels of uninfected T cells [15], we sought to determine whether the previously unfused 

target cell contributes to the altered surface profile of the resulting syncytium upon cell-

cell fusion. To analyze the contribution of target cells to the syncytia surface profile, we 

co-cultured infected cells with either relatively high or low EWI-2 expressing target cells, 

and analyzed the EWI-2 surface levels on the resulting HIV-1-induced syncytium (Figure 

4.1A). Specifically, CEM-SS cells infected with NL-sfGI were co-cultured with CMAC-

labeled target cells that were either EWI-2 knockdown (by shRNA, shEWI-2) or control 
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(shScr) CEM-SS cells (stable shEWI-2 and shScr cells were generated previously [15]) for 

17-18 hr to allow for syncytium formation. Co-cultures were completed in the presence of 

the reverse transcriptase inhibitor Efavirenz (EFV) to prevent infection of CMAC-labeled 

target cells without inhibiting cell-cell fusion (Figure 4.1A), thus allowing for identification 

of syncytia that formed upon fusion with an shEWI-2 or shScr-expressing cell as 

CMAC+/GFP+ cells (Figure 4.1B). After the incubation period, cells from the co-cultures 

were prepared for microscopy alongside uninfected controls by surface-labeling EWI-2, 

fixed and permeabilized, then stained with 647-conjugated secondary pAb and imaged 

using a 60× objective. Relative surface densities of EWI-2 were determined by manually 

outlining the surface associated 647 signal and quantifying the mean fluorescence intensity 

(MFI) contained within each outline (as described previously [15]). To compare relative 

EWI-2 levels between syncytia that formed upon fusion with shEWI-2 and those that fused 

with shScr targets across biological replicates, MFI values of individual cells were 

normalized to the average uninfected CEM-SS (not expressing shRNA) EWI-2-associated 

647 MFI from the respective biological replicate. Additionally, EWI-2 knockdown in 

shEWI-2 shRNA expressing target cells compared to shScr was also validated by 

microscopy (Supplementary Figure 4.1).  

Syncytia that formed as a result of fusion with EWI-2 knockdown (shEWI-2 

expressing) target cells had a 35% reduction in surface levels of EWI-2 compared to those 

that formed upon fusion with scrambled control (shScr expressing) target cells (Figure 

4.1C-D). The corresponding difference in EWI-2 surface levels on syncytia that form as a 

result of fusion with EWI-2 WT or low expressing target cells demonstrates that the surface 
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levels of EWI-2 on the surface of syncytia are dependent on the EWI-2 levels of the 

previously uninfected target cell population.  

 
 
4.4.2. EWI-2 is downregulated from the surface of syncytia over time 

Previous analysis of HIV-1 infected cells by mass spectrometry demonstrated that 

EWI-2 levels decreased for the infected population over time, consistent with the pattern 

of modulation for other surface proteins that are downregulated upon infection [32], and 

that EWI-2 downregulation is primarily mediated by the viral accessory protein Vpu [15]. 

However, these analyses could not differentiate between mononucleated infected cells and 

HIV-1-induced syncytia. As syncytia have increased surface levels of EWI-2 [15], we 

therefore sought to determine whether EWI-2 surface levels on syncytia are maintained or 

modulated over time following cell-cell fusion. To monitor the EWI-2 surface density on 

populations of recently formed syncytia compared to populations of syncytia where more 

time had passed following HIV-1-induced cell-cell fusion, we compared EWI-2 levels 

across populations of syncytia that had been cultured in the presence of fusion inhibitors 

for varied amounts of time (0, 6 or 24 hours).  

CEM-SS cells were infected with NL-sfGI and cultured for 3 days to allow for 

robust syncytia formation. At 3 days post infection, a sample of infected cells was 

harvested and prepared for microscopy (Time Point 0 hr) while the remaining cells were 

cultured in the presence of reverse transcriptase inhibitor EFV and fusion inhibiting peptide 

C34 to prevent subsequent infection of target cells and HIV-1-induced cell-cell fusion 

(Figure 4.2A). Additional samples of infected cells were collected and prepared for 

microscopy at 6 and 24 hours (Time Points 6 and 24 hr, respectively) after the addition of 
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the inhibitors. For microscopy preparation, all infected samples were prepared in parallel 

with uninfected CEM-SS controls, surface-labeled for EWI-2, fixed and permeabilized, 

stained with 647-conjugated secondary pAb and DAPI, and imaged using a 60× objective. 

HIV-1-induced syncytia from each time point were identified as infected (GFP positive) 

cells with at least 2 nuclei (Figure 4.2B). Relative surface density of EWI-2 on syncytia 

collected at each time point were determined by measuring the surface EWI-2-associated 

MFI for each cell, which was then normalized to respective uninfected CEM-SS cells 

present within the infected culture for each biological replicate and time point (see 

Supplementary Figure 4.2 for EWI-2 surface density of syncytia and controls). Further, we 

attempted to analyze syncytia cultured in the presence of EFV and C34 for 48 hours. 

However, syncytia were nearly absent from the samples harvested for the 48 hr time point 

and therefore could not be included in this analysis.  

Comparison of syncytia surface EWI-2 levels over time demonstrates that EWI-2 

levels on syncytia were highest on the samples collected at the 0 hr time point, and 

continually decreased for the 6 and 24 hr time points (Figure 4.2 C-D). These data 

demonstrate that EWI-2 is downregulated from the surface of syncytia after HIV-1-induced 

cell-cell fusion. 

 

4.5. Discussion 

HIV-1-induced syncytia are present in vivo, as demonstrated both in analysis of 

patient tissue samples [33] and several independent studies of infected humanized mice [4-

6]. T cell-based syncytia remain small (2-4 nuclei) [7] and recent studies demonstrate that 

syncytia have restored levels of fusion inhibitory host proteins CD81 and EWI-2 [15]. The 
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unique phenotype of these infected entities prompted us to investigate how cell-cell fusion 

influences the syncytia surface profile. We now demonstrate that EWI-2 levels on syncytia 

depend on an influx of protein from the previously uninfected target cell upon HIV-1-

induced cell-cell fusion which is then downregulated over time. 

The finding that CD4+ T cell based HIV-1-induced syncytia have partially restored 

surface levels of CD81 and EWI-2 [15], which are typically downregulated by viral 

accessory proteins [15,17,22,26], is likely the result of impaired viral accessory protein-

mediated modulation of the infected cell surface profile upon cell-cell fusion. As the viral 

accessory proteins responsible for modulating EWI-2 and CD81 surface levels have many 

host protein targets, it is reasonable to speculate that cell-cell fusion-induced alterations to 

the infected cell surface profile may extend beyond fusion inhibitory host proteins to other 

targets of viral accessory protein mediated regulation. Modulating the surface profile upon 

infection has numerous functional effects for the infected cell including the ability to evade 

detection by immune cells and enhanced particle infectivity (reviewed in [27]). To better 

understand how syncytia formation might disrupt well-characterized viral accessory 

protein-mediated modulation of host proteins, these studies aimed to determine how 

syncytia develop an altered surface profile compared to mononucleated infected cells upon 

cell-cell fusion and whether this phenotype is transient or maintained for the lifetime of a 

syncytium.  

We hypothesized that increased levels host surface proteins on syncytia were the 

result of an influx of protein contributed by protein from target cell upon fusion that would 

then be modulated by viral accessory proteins over time. Our data overall support our 

hypothesis as we demonstrate that reducing the surface levels of EWI-2 on target cells 
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results in a decrease in EWI-2 on syncytia that form upon fusion with these low EWI-2 

expressing cells compared to those that fused with cells expressing higher levels of EWI-

2 (Figure 4.1). Further, by inhibiting continued HIV-1-induced cell-cell fusion, we were 

able to compare the EWI-2 surface density of relatively “young” (Time Point 0 hr) syncytia 

populations to that of “old” (Time Points 6 and 24 hr) syncytia populations (Figure 4.2). 

However, it should be noted that we did not see the expected increase in overall surface 

density of EWI-2 on CEM-SS-based syncytia compared to mononucleated infected CEM-

SS cells (Supplementary Figure 4.2). This finding suggests that CEM-SS-based syncytia 

might not fully recapitulate the partially restored EWI-2 phenotype of primary T cell-based 

syncytia [15]. We suspect that CEM-SS based syncytia may not have as pronounced 

restoration of EWI-2 as primary T cell-based syncytia [15], but still have overall higher 

levels of EWI-2 than mononucleated infected cells that our data cannot reflect due to 

current technical limitations. Specifically, we predict that the nearly equivalent density 

between syncytia and mononucleated infected cells (Supplementary Figure 4.2, Time Point 

0 hr) supports the idea that syncytia have higher total amounts of EWI-2 at the surface as 

an equivalent density of protein (syncytia versus mononucleated) multiplied over a greater 

area of plasma membrane (syncytia) would yield more total protein on the cell surface. 

Future analysis using purified populations of syncytia compared to purified populations of 

mononucleated infected cells will allow us to complete more high throughput analysis, 

such as western blot and flow cytometry analysis, where the total amount of EWI-2 per 

cell can be determined. Given this potential limitation with CEM-SS cells, our data are 

interpreted in the context of comparing populations of syncytia to each other, and not to 

mononucleated infected cells. We demonstrate syncytia populations have progressively 
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decreasing surface levels of EWI-2 from 0-24 hr after the addition of EFV and C34 (Figure 

4.2). Overall, these data support the hypothesis that syncytia downregulate EWI-2 over 

time, likely as a result of Vpu-mediated downregulation of the surface protein contributed 

by the previously uninfected target cell. 

CD81 and EWI-2 are both primarily downregulated by Vpu [15,26]. In addition to 

these fusion inhibitors, Vpu has numerous host protein targets for modulation in HIV-1 

infected cells including BST-2/tetherin, NTB-A, and CCR-7 [34-36]. Data demonstrating 

that syncytia EWI-2 surface levels depend on the levels of the previously unfused target 

cell (Figure 4.1) and is downregulated over time (Figure 4.2), indicates that the altered 

surface levels of EWI-2 on syncytia are not a result of non-functional Vpu in syncytia, but 

rather that newly formed syncytia have an influx of yet-to-be downregulated EWI-2 that 

Vpu can subsequently target for downregulation after fusion. We expect that other Vpu-

targeted host proteins are also differentially expressed on the surface of “young” HIV-1-

induced syncytia, and that this phenomenon extends to host protein modulation mediated 

by viral accessory protein Nef as well. Further, it is intriguing to speculate that HIV-1-

induced cell-cell fusion events might trigger reprogramming in the resulting syncytium that 

is not dependent on viral accessory protein activity as it was recently demonstrated that 

plasma membrane modulation upon VSV-G-mediated cell-cell fusion induced 

transcriptional reprogramming in fused cells [37]. Unbiased analyses of the HIV-1-induced 

syncytia surface profile compared to mononucleated infected cells using high throughput 

analysis such as mass spectrometry and flow cytometry are necessary to thoroughly 

understand how syncytia differ from mononucleated infected cells and to begin 
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investigating the functional implications for an altered surface profile on these 

multinucleated HIV-1 infected cells. 

Although viral Gag is largely responsible for efficiently inhibiting excessive 

syncytia formation [12], host proteins including tetraspanins and EWI-2 also support fusion 

inhibition at the virological synapse (VS) [13,15]. Indeed, overexpression of tetraspanin 

CD81 and EWI-2 in HIV-1 producer cells demonstrated that both host proteins inhibit 

HIV-1-induced cell-cell fusion at the virological synapse (VS) in a dose-dependent manner 

[13,15]. Given that CD81 and EWI-2 inhibit fusion in a dose-dependent manner, transiently 

increased levels of these fusion inhibitors in recently formed HIV-1-induced syncytia may 

result in these entities being less fusogenic than mononucleated infected cells as more of 

these fusion inhibitory host proteins are available for recruitment to the presynapse (Figure 

4.3) (as also suggested previously [15]). It has already been shown that syncytia are capable 

of transferring virus to uninfected target cells upon contact without undergoing subsequent 

cell-cell fusion and are limited in size (2-4 nuclei) [7], which indicates that syncytia likely 

utilize similar fusion inhibitory mechanisms previously demonstrated to prevent fusion at 

the VS for mononucleated infected cells. Further, we observed striking depletion of 

syncytia from the infected cultures 48 hr after the addition of EFV and C34 (data not 

shown), which suggest that syncytia have limited lifespan, consistent with what has been 

previously reported for infected cells [38]. The altered levels of fusion inhibitory proteins 

and a limited cell lifespan may collectively prevent syncytia from fusing indefinitely, 

therefore allowing them to remain small (2-4 nuclei) rather than becoming large, cytopathic 

infected entities [39]. 
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Altered levels of fusion inhibitory proteins on the surface of HIV-1-induced 

syncytia compared to mononucleated infected cells may allow these entities have a unique 

contribution to viral spread. Increased levels of fusion inhibitory host proteins on relatively 

“young” syncytia may support syncytia contributing to cell-to-cell spread by transferring 

viral particles to target cells at the VS while efficiently preventing continued cell-cell 

fusion (Figure 4.3 and suggested in [15]). Simultaneously, increased levels of fusion 

inhibitory proteins might have a detrimental effect on syncytia contribution cell-free viral 

spread by reducing particle infectivity. Previous studies documented that increased 

expression of tetraspanins in HIV-1 producing cells resulted in greater incorporation of 

fusion inhibitory tetraspanins into viral particles which correlated with a decrease in 

particle infectivity [17,25,26], thus an increase in fusion inhibitory proteins on syncytia may 

decrease the infectivity of the particles produced from these cells (Figure 4.3). However, it 

is not currently known whether EWI-2 influences HIV-1 particle infectivity. Thus, syncytia 

may have enhanced abilities to contribute to cell-to-cell spread at the VS, but an impaired 

ability to contribute to cell-free transmission (Figure 4.3).  

Whether syncytia can contribute to viral spread, and if so how efficiently compared 

to mononucleated infected cells, has yet to be determined. As syncytia are a subpopulation 

of HIV-1 infected cells they would need to be separated from mononucleated infected cells 

to determine their functional abilities and particle infectivity relative to mononucleated 

infected cells. Should syncytia have an altered ability to contribute to virus spread 

compared to mononucleated infected cells, it would be interesting to “age” syncytia as we 

have done here (Figure 4.2) to determine whether this altered phenotype may correlate with 

changes of host protein levels on “young” versus “old” syncytia.  
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Altogether, we have determined that the levels of EWI-2 on the surface of HIV-1-

induced syncytia depend on the levels present in the target cell population and can be 

downregulated over time after cell-cell fusion. Future work aimed to purify of these 

infected entities is necessary to determine whether altered levels of fusion inhibitory 

proteins has any functional consequence for HIV-1-induced syncytia and will greatly 

enhance our understanding of this subpopulation of HIV-1-infected cells.  
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4.6. Figure Legends 

Figure 4.1. EWI-2 knockdown in uninfected target cells leads to reduced EWI-2 on the 
surface of a syncytia upon HIV-1-induced cell-cell fusion. CEM-SS cells infected with 
NL-sfGI were co-cultured for 17-18 h with CMAC-labeled target cells (CEM-SS cells 
expressing either shRNA targeting EWI-2, shEWI-2, or a non-targeting shRNA control 
sequence, shScr [15]) in the presence of Efavirenz (EFV; 1 µM). Following co-culture, the 
cells were labeled for surface EWI-2, fixed and permeabilized, labeled with Alexa Fluor 
647-conjugated pAb, and imaged (60×). A) Schematic representation of the experimental 
approach. Relative levels of EWI-2 for each cell population (uninfected CEM-SS = blue; 
infected CEM-SS = red; CMAC-labeled shRNA expressing target cells = purple) are 
represented by EWI-2 icons (green) at the cell surface. It should be noted that infected cells 
still retain low levels of EWI-2 at the surface, which was represented here by the absence 
of EWI-2 icons for simplicity. Image created in BioRender.com. B) Representative images 
of EWI-2 (magenta in merge) on the surface of syncytia. Syncytia used for analysis were 
identified as infected (GFP reporter shown in yellow in merge) CMAC-positive (cyan in 
merge) cells (GFP+/CMAC+) as these syncytia formed as the result of fusion between an 
infected CEM-SS cell and a CMAC-labeled shEWI-2 or shScr expressing target cell. Scale 
bar = 10 µm. C) Cell surfaces were selected to measure relative EWI-2-associated signal 
intensity. Values were normalized to the mean signal intensity of the associated uninfected 
control population within each biological replicate. Individual GFP+/CMAC+ syncytium 
EWI-2 levels are represented by small, open data points. Cells within the same biological 
replicate share the same shape and color (magenta diamond, gray triangle, or cyan square). 
Average EWI-2 associated signal intensities for each biological replicate are represented 
by large, closed symbols (matched to individual cell data points by shape and color). D) 
The mean EWI-2 associated signal intensity values shown in C) shown with lines to 
connect means from the same biological replicate. Note that the scale of the y-axis has 
changed from the data shown in C) to better visualize the slope of each line. 
 

Figure 4.2. EWI-2 levels on HIV-1-induced syncytia decrease over time. A sample of 
CEM-SS cells 3 days post infection with NL-sfGI were labeled for surface EWI-2 (Time 
point 0 hr), fixed and permeabilized, labeled with Alexa Fluor-647 conjugated secondary 
pAb and DAPI, and imaged (60×) as described in Figure 1 while inhibitors EFV (1 µM) 
and C34 (0.5 µM) were added to the remaining culture of infected cells. Samples were 
collected 6, and 24 hr (Time points 6, and 24 hr) after adding the inhibitors and labeled for 
surface EWI-2 as described for the 0 hr sample. A) Schematic representation of the 
experimental approach; Uninfected CEM-SS cells (blue), infected mononucleated cells 
(red), HIV-1-induced syncytium (purple), and EWI-2 (green icon) present on the plasma 
membrane. Image created in BioRender.com. B) Representative images of syncytia from 
each time point (0, 6, or 24 hr) are shown; DAPI (cyan in merge), GFP (yellow in merge), 
and EWI-2 associated signal (magenta in merge). Scale bar  = 10 µM. C) Cell surfaces 
were selected to measure relative EWI-2-associated signal intensity on syncytia harvested 
at each time point. Values were normalized to the mean signal intensity of the uninfected 
control population prepared and imaged in parallel for each time point. Small, open data 
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points represent individual syncytium collected at each time point (magenta diamonds, 
gray triangles, or cyan squares). The median EWI-2 associated intensity for each biological 
replicate at each time point are represented by large, closed symbols (matched by shape 
and color to respective individual syncytium data points within each biological replicate). 
D) Median values of EWI-2 associated signal intensity on the surface of syncytia shown in 
C) are connected by a line over time for each biological replicate. Note that the y-axis scale 
has changed to better visualize the pattern between the median values over time. 
 

Figure 4.3. Model for how altered levels of fusion inhibitors may impact syncytia-
mediated virus spread. Schematic representation depicting how increased levels of EWI-2 
and CD81 on the surface of HIV-1-induced syncytia may alter the infectivity of viral 
particles produced by syncytia and fusogenicity of syncytia upon VS formation for cell-to-
cell spread. A) Increased levels of fusion inhibitors on HIV-1-induced syncytia are 
expected to decrease the infectivity of particles produced from these cells, consistent with 
previous reports documenting that increased expression of tetraspanins in virus producing 
cells correlates with increased incorporation of these fusion inhibitory proteins into viral 
particles and decreased particle infectivity [17,25]. Note that it has yet to be determined 
whether EWI-2 can be incorporated into viral particles and if so, whether increased 
incorporation of EWI-2 decreases particle infectivity. B) Increased levels of these fusion 
inhibitors on syncytia [15] likely allow for increased recruitment of CD81 and EWI-2 to the 
producer cell side of the VS (presynapse) and thus decreased fusogenicity of these infected 
entities given that both EWI-2 and CD81 inhibit HIV-1-induced cell-cell fusion in a dose-
dependent manner [13,15]. C) The effects of increased fusion inhibitors on syncytia-
produced particle infectivity and syncytia fusogenicity are expected to decrease over time 
after HIV-1-induced cell-cell fusion as EWI-2 is downregulated from the surface of 
syncytia over time. Note that it has yet to be determined whether CD81 is also 
downregulated from the surface of syncytia over time. Image created in BioRender.com.  
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4.7. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.1. EWI-2 knockdown in uninfected target cells leads to reduced EWI-2 
on the surface of syncytia upon HIV-1-induced cell-cell fusion. 
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Figure 4.2. EWI-2 levels on HIV-1-induced syncytia decrease over time. 
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Figure 4.3. Model for how altered levels of fusion inhibitors may impact syncytia-mediated virus 
spread. 
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4.8. Supplementary Figure Legends 

Supplementary Figure 4.1. shEWI-2 RNA expressing CEM-SS target cells have reduced 
EWI-2 at the plasma membrane. CEM-SS cells stably expressing shRNA targeting EWI-2 
(shEWI-2, interfering RNA sequence based on previously described EWI-2-targeting 
siRNA [20]) or a scrambled, non-targeting shRNA sequence (shScr) described previously 
[15] were labeled with cytoplasmic dye CMAC and used as target cells for HIV-1-induced 
cell-cell fusion. To validate that the shEWI-2 expressing target cells had reduced levels of 
EWI-2 compared to shScr expressing and non-shRNA expressing (parental) CEM-SS 
control cells, EWI-2 surface levels on shRNA expressing target cells were quantified in 
parallel with the resulting HIV-1-induced syncytia (Figure 4.1). A) shRNA expressing 
uninfected target cells present within the infected population were identified as CMAC-
positive/GFP-negative cells. The EWI-2 surface density on CMAC-labeled target cells was 
quantified by manually outlining the surface of each cell and calculating the mean EWI-2-
associated 647 signal intensity (MFI) contained within each outline. All EWI-2-associated 
MFI values were normalized to the average MFI of uninfected, parental CEM-SS controls. 
Small, open data points represent normalized MFI values of individual shRNA expressing 
target cells (shScr or shEWI-2) and data from the same biological replicate (3 total) are 
distinguished by shape and color (blue square, gray triangle, or magenta diamond). Large, 
filled data points represent the mean of the individual data points for each biological 
replicate and are matched to the individual data points from the same replicate by shape 
and color. B) Black lines connect mean values from A) for the two target cell types from 
the same biological replicate. Note that the scale for the y-axis has changed from A) to 
clearly represent the slope of each line. 
 

Supplementary Figure 4.2. CEM-SS based HIV-1-induced syncytia do not have 
increased EWI-2 surface density compared to mononucleated infected cells. CEM-SS cells 
infected with GFP reporter virus NL-sfGI were prepared as described in Figure 4.2. 
Uninfected and mononucleated infected cells were prepared and analyzed in parallel with 
syncytia for each biological replicate at each time point (0, 6 and 24 hr). Each data point 
represents the density of EWI-2-associated signal on the surface of individual cells (MFI). 
All data points were normalized to the mean MFI of the uninfected cells from within the 
infected culture for respective biological replicates and time points. Small open data points 
represent the normalized EWI-2 associated signal for an individual cell and large, filled 
data points represent the median for each biological replicate. Data from the same 
biological replicate are indicated by data points sharing the same shape and color (blue 
square, gray triangle, or magenta diamond) and include data points representing syncytia 
for each replicate (data also shown in Figure 4.2). Shown are data for uninfected CEM-SS 
cells that had never been exposed to infected cells nor the EFV and C34 inhibitor treatment 
(Uninfected control; UC), uninfected cells (identified as GFP negative) from the same 
culture as the infected cells (U), mononucleated infected cells (M), and syncytia (S). 
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4.9. Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4.1. shEWI-2 RNA expressing CEM-SS target cells have reduced 
EWI-2 at the plasma membrane. 
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Supplementary Figure 4.2. CEM-SS based HIV-1-induced syncytia do not have increased EWI-2 surface 
density compared to mononucleated infected cells. 
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CHAPTER 5 : DISCUSSION & FUTURE DIRECTIONS 

Cell-to-cell transmission of HIV-1 is a highly efficient mode of virus spread as it 

allows virus particles to be released in close proximity to an uninfected CD4+ T (target) 

cell at a cellular junction called the virological synapse (VS). Given that the VS forms upon 

binding of the viral fusogen (Env) on the surface of an infected cell (producer) to its 

receptor CD4 on a target cell, there is a need for fusion inhibitory factors to prevent Env-

induced cell-cell fusion (syncytia formation) at this site to support continued virus spread. 

Over the last decade, our lab has begun identifying viral and host factors involved in 

preventing excessive cell-cell fusion at the HIV-1 VS and we have recently begun spatio-

temporal analyses to investigate how these factors cooperate. The work completed within 

the context of this thesis contributes to our ongoing efforts to understand mechanisms that 

ensure efficient virus transmission and spread. 

Previous work by our group had identified tetraspanins and ezrin as host factors 

that contribute to the inhibition of HIV-1-induced cell-cell fusion at the VS alongside viral 

Gag [1-3], though we suspected that additional host proteins likely also contributed to cell-

cell fusion inhibition. We have now identified EWI-2 (IGSF8), an interacting partner of 

both ezrin and tetraspanins CD9 (TSPAN29/MIC3) and CD81 (TSPAN28) [4-6], as a host 

protein that inhibits HIV-1-induced syncytia formation upon recruitment to the producer 

cell side of the VS (the presynapse) (Chapter 3, [7]). Despite these studies demonstrating 

that viral and host factors collectively contribute to efficient fusion inhibition at the VS, it 

has becoming increasingly apparent that HIV-1-induced cell-cell fusion still occurs as 

small (2-4 nuclei) HIV-1-induced T-cell based syncytia can be readily detected in vitro and 
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have even been documented in vivo [8-11]. While these multinucleated infected entities are 

present in vivo, it remained unclear whether syncytia had any unique properties from 

mononucleated infected cells and how syncytia were prevented from fusing indefinitely. 

We have now demonstrated that primary T cell-based syncytia have increased levels of 

fusion inhibitory host proteins EWI-2 and CD81 compared to mononucleated infected cells 

[7] where they are typically downregulated upon infection [12-14], thus distinguishing the 

syncytia surface profile from that of mononucleated infected cells. Further, we also 

demonstrated that the EWI-2 levels on syncytia are dependent on the expression levels of 

the previously unfused target cell and that EWI-2 is downregulated from the surface of 

syncytia over time following cell-cell fusion (Chapter 4).  

We have begun investigating how EWI-2 contributes to fusion inhibition at the VS 

and plan to determine whether the altered syncytia surface profile has any functional impact 

on these infected entities compared to mononucleated infected cells. Specifically, we 

propose that increased levels of CD81 and EWI-2 on the syncytia surface prevent syncytia 

from fusing indefinitely, as has been demonstrated previously using bulk populations of 

infected cells [1,7] (ie. both mononucleated and syncytia) and that syncytia may have 

unique properties that impact their ability to contribute to virus spread. 

 

5.1. EWI-2 at the presynapse: predicted molecular determinants for fusion 
inhibition and contributions to protein organization. 

 
 We identified EWI-2 as a host protein that inhibits HIV-1-induced cell-cell fusion 

at the virological presynapse in a dose-dependent manner [7] alongside fusion inhibitory 

tetraspanins [1] which include EWI-2 interacting partners CD9 and CD81 [4]. However, 
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mechanism and molecular determinants necessary for EWI-2-mediated fusion inhibition 

remain unknown. An earlier study which documented that EWI-2 is involved in the HIV-

1 replication cycle, which we now know is at least partially due to EWI-2 fusion inhibition 

at the VS [7], further demonstrated a yet-do-be determined role for the short (10 AA) EWI-

2 cytoplasmic tail (CT) [15]. Therefore, we hypothesize that the EWI-2-CT is necessary 

for EWI-2-mediated fusion inhibition at the VS. Given that the EWI-2 CT contains 

palmitoylation sites required for interactions with CD9 and CD81 and that related EWI 

family member (EWI-F) has already been implicated to interact with tetraspanins to 

efficiently prevent excessive myoblast cell-cell fusion during myotube formation [16], we 

predict that EWI-2-mediated fusion inhibition at the HIV-1 VS is likely at least partially 

dependent on EWI-2-tetraspanin interactions.  

We also demonstrated that EWI-2 is downregulated from the surface of HIV-1-

infected cells [7]. Further we showed that viral accessory protein Vpu is primarily 

responsible for EWI-2 modulation upon infection [7] similar to what has been previously 

reported for tetraspanins [13,14]. Intriguingly, it has been suggested that targeted 

regulation of tetraspanins by viral proteins during infection might lead to indirect targeting 

of tetraspanin interacting partners (such as EWI-2), or alternatively that direct targeting of 

tetraspanin interacting partners might lead to indirect regulation of tetraspanins [7,17]. As 

both tetraspanins and EWI-2 share a distinct subcellular localization pattern upon HIV-1 

infection, we suspect that interactions between these fusion inhibitory factors may 

influence their localization within an infected cell including recruitment to the VS and 

downregulation from the plasma membrane.  
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We have already determined that EWI-2 knockdown did not alter tetraspanin CD81 

recruitment to the presynapse (Figure 5.1), unlike what was previously demonstrated for 

ezrin where ezrin knockdown did lead to reduced CD81 enrichment to the presynapse [2]. 

Therefore, we have concluded that tetraspanins are not recruited indirectly to the 

presynapse as a result of targeted EWI-2 recruitment, nor signaling dependent on the 

presence of EWI-2. However, we have yet to determine whether EWI-2 recruitment to the 

presynapse is dependent on tetraspanins. Investigations aimed to address possible 

tetraspanin-dependent EWI-2 downregulation and/or recruitment to the presynapse EWI-

2-CD81 interactions at this site are currently underway (project is supported by an MMG 

Distinguished Undergraduate Summer Research Award to Elise A. Courtney in 2021). 

Additionally, we’re also interested in investigating whether EWI-2 might influence 

tetraspanin organization at the HIV-1 presynapse, even if EWI-2 is not involved in 

tetraspanin recruitment to this site. 

 

5.1.1. Follow-up Studies. 

For EWI-2 enrichment to the presynapse, we propose that EWI-2 recruitment is 

dependent on protein-protein interactions with tetraspanins CD9 and CD81, fusion 

inhibitory host proteins also enriched at the VS [1,12,18]. We will explore this possible 

regulatory network for host fusion inhibitory proteins in HIV-1-infected cells by knocking 

down CD81 and CD9 expression in infected producer cells by small interfering RNA and 

quantifying EWI-2 recruitment to the VS compared to scrambled RNA controls. Further, 

we are also currently investigating whether palmitoylation of the EWI-2 CT is involved in 

EWI-2 recruitment to the presynapse as this posttranslational modification is not required 
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for EWI-2 localization to the plasma membrane, but is essential for EWI-2 interactions 

with CD9 and CD81 [19] and also enhances interactions with phosphatidylinositol - 4, 5 

biphosphate (PIP2) [20]. Analysis of EWI-2 palmitoylation in EWI-2 localization will be 

completed using previously described palmitoylation-deficient EWI-2 constructs [19] and 

T cells transduced to stably express EWI-2 palmitoylation-mutants from a CS-II lentiviral 

construct (cloning to generate lentiviral constructs currently being completed by E. A. 

Courtney). We expect that tetraspanin knockdown and abrogation of the two 

palmitoylation sites in the EWI-2 cytoplasmic tail will both reduce EWI-2 enrichment to 

the VS (compared to scrambled siRNA controls and palmitoylation-competent/shRNA-

resistant/FLAG-tagged EWI-2, respectively), leading us to conclude that EWI-2 

recruitment to the presynapse is dependent on interactions with tetraspanins CD81 and 

CD9. However, if EWI-2 enrichment at the VS is only reduced for the palmitoylation-

deficient mutants and not upon tetraspanin knockdown, we would be interested in 

exploring the potential impact of EWI-2 interactions with PIP2. Given that Gag depends on 

PIP2 for proper localization to the plasma membrane and that this phospholipid is enriched 

at virus budding sites [21,22], it is interesting to speculate that EWI-2-PIP2 interactions 

may also support EWI-2 co-accumulation with Gag at the HIV-1 presynapse. Finally, we 

also propose to complete kinetic analyses (allowing synapses to form for discrete periods 

of time and analyzing protein enrichment as described previously [23]) of EWI-2, ezrin, 

and tetraspanins CD9 and CD81 to the VS. Collectively, these studies will enhance our 

understanding of how these host proteins are recruited to the HIV-1 VS provide insight as 

to how they and function as a regulatory network to efficiently prevent syncytia formation. 
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EWI-2-mediated fusion inhibition is naturally tied to its recruitment to the HIV-1 

presynapse, as this is the cellular contact site where Env-induced cell-cell fusion would 

need to be prevented. Similar to what was described above, we expect that EWI-2-mediated 

fusion inhibition is dependent on tetraspanins. To distinguish between tetraspanin-

dependent recruitment to the presynapse from tetraspanin-dependent fusion inhibition, we 

propose to knockdown CD9 and CD81 while overexpressing EWI-2 in HIV-1 producer 

cells, analogous to previous experiments documenting that EWI-2 inhibits HIV-1-induced 

cell-cell fusion in a dose-dependent manner [7]. If EWI-2 contributions to fusion inhibition 

at the presynapse are dependent on tetraspanins, we would expect to observe reduced 

fusion inhibition upon EWI-2 overexpression in tetraspanin deficient producer cells 

compared to controls where tetraspanin have not been knocked down. This finding would 

be further investigated by analyzing tetraspanin distribution at the presynapse relative to 

EWI-2 (in WT or EWI-2 knockdown cells) to determine whether the presence of EWI-2 at 

the presynapse influences tetraspanin organization at this site, possibly explaining how 

EWI-2 contributes to fusion inhibition.  

Indeed, EWI-2-mediated modulation of tetraspanin clusters have been implicated 

in other membrane processes including glioblastoma migration and growth [24], melanoma 

development [25], and hepatitis C virus (HCV) entry. For example, a truncated form of 

EWI-2 (EWI-2wint) restricts HCV infection by influencing CD81 cluster organization in 

a manner that reduces the efficiency of HCV entry into host cells and appears to be 

dependent on physical interactions between EWI-2wint and CD81 [19,26,27]. To 

determine whether the presence of EWI-2 also influences tetraspanin organization at the 

HIV-1 presynapse, we propose to analyze tetraspanin distribution by super-resolution 
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microscopy using direct stochastic optical reconstruction microscopy (dSTORM), as 

super-resolution microscopy has already been shown to be a useful approach for analyzing 

TEMs within the plasma membrane [28] and tetraspanin localization during virus (or virus-

like particle) assembly/budding [29,30]. To induce formation of the HIV-1 presynapse, we 

will plate infected cells onto coverslips coated with CD4, similar to what has already been 

described for analyzing protein distribution at the postsynapse by TIRF using coverslips 

coated with minimal “producer cell” lipid bilayers containing only gp120 and ICAM-1 

[31,32]. To visualize CD81 and EWI-2 distribution at the presynapse, we will use a 3-color 

system where Gag is labeled with TexasRed-conjugated secondary antibodies to identify 

the presynapse, and this Gag-associated signal will be bleached prior to acquiring 2-color 

dSTORM data for labeled CD81 and EWI-2. We are interested in analyzing TEM cluster 

size, composition, and distribution in the absence of EWI-2 to determine whether EWI-2 

does indeed influence tetraspanin cluster organization in HIV-1-infected cells and at the 

presynapse, as has been demonstrated in other cellular contexts [24,33,34]. 

EWI-2 may also have fusion inhibitory functions that are not dependent on 

tetraspanins. We predict that EWI-2 may inhibit cell-cell fusion by steric hinderance and 

possible engagement with a yet-to-be-determined receptor in trans across the synapse. To 

investigate the contribution of the EWI-2 extracellular Ig domains to cell-cell fusion 

inhibition in HIV-1-infected cells, we can first screen EWI-2 mutants where the Ig domains 

have been sequentially deleted (for Ig1-3) [19] in the absence of fully infectious virus (and 

thus can be completed in a BSL-2 environment). We have generated HeLa and TZM-bl 

cells which stably express complementary portions of a split-nanoluciferase construct 

(completed by Danielle G. Allen and supported by a Distinguished Undergraduate 
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Research Award to DGA in 2019). The split-nanoluciferase can assemble upon Env-

mediated Hela-TZM-bl fusion, allowing us to measure relative nanoluciferase activity to 

rapidly determine relative levels of cell-cell fusion under various conditions. Truncated 

mutants that impact EWI-2-mediated fusion inhibition compared to WT EWI-2 will be 

confirmed in fusion assays using fully-infectious virus. Together, these approaches will 

help us thoroughly characterize the molecular determinants necessary for EWI-2-mediated 

fusion inhibition at the HIV-1 presynapse. 

Finally, we expect that inhibiting the direct tetraspanin-EWI-2 interactions may 

prevent EWI-2 downregulation upon HIV-1 infection. We plan to analyze the contribution 

of tetraspanins interactions to EWI-2 downregulation by abrogating EWI-2-tetraspanin 

interactions as described above, while also investigating the molecular determinants 

necessary for Vpu-mediated modulation of EWI-2 in parallel. Indeed, we have preliminary 

data demonstrating pronounced colocalization of EWI-2 and Vpu (E.A. Courtney, data not 

shown), similar to what has been previously documented for Vpu and tetraspanins [14], 

providing further support that these host interacting partners may be targeted for 

modulation upon HIV-1 infection through a similar mechanism.  

 

5.1.2 Perspectives for the roles of EWI-2 in viral spread beyond cell-cell fusion 
inhibition.  

So far, our investigations have shown that EWI-2 appears to have a very similar 

role as tetraspanins in the HIV-1 replication cycle. However, tetraspanins have also been 

shown to be influence additional stages in the virus replication cycle as excessive 

incorporation of tetraspanins into virus particles decreases infectivity [12,14,35]. 

Therefore, a still unanswered question regarding the role of EWI-2 in virus spread, is 



 147 

whether EWI-2 also impacts virus particle infectivity. We predict that EWI-2, like 

tetraspanins [12,35], is incorporated into virus particles and that incorporated EWI-2 likely 

inhibits particle-cell fusion in a similar manner to how this host protein inhibits cell-cell 

fusion at the VS. Thus, excessive incorporation of EWI-2 into viral particles (i.e by passive 

incorporation as the virus buds from the membrane or if particles are budding in EWI-2 

enriched microdomains) would be expected to decrease particle infectivity by inhibiting 

the fusion/entry step of infection. Should EWI-2 incorporation into virus particles inhibit 

particle-cell fusion, this would explain the role of HIV-1 accessory protein-mediated 

downregulation of EWI-2 from the cell surface upon infection, and would parallel what 

has already been shown for fusion inhibitory tetraspanins [14]. However, it also possible 

that EWI-2 does not impact virus particle infectivity and is perhaps only downregulated 

indirectly as a result of direct downregulation of tetraspanins by viral accessory proteins 

(as described above). 

Beyond fusion inhibition, we have also begun to speculate that EWI-2 likely has an 

additional role in supporting optimal cell-to-cell transmission. Recently, HIV-1 VS 

formation was shown to induce CD3 accumulation at the contact site and also induces 

TCR-mediated signaling in an antigen-independent manner which promotes efficient virus 

spread [36,37]. Given that EWI-2 co-accumulates with CD3 at the immunological synapse 

(IS) where it regulates T cell activation [15], it is interesting to speculate that co-

accumulation of these host proteins at the VS might also modulate the T cell response to 

CD3 signaling within HIV-1-infected cells. EWI-2 may influence CD3-mediated signaling 

events by inhibiting excessive activation or cytokine secretion (as shown in [15]) or 

through another currently unknown mechanism, and thus impact virus spread. 
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5.2. Transient “mutants”: A unique opportunity for syncytia to contribute to virus 
transmission? 

 
 Although HIV-1-induced T cell-based syncytia have a strikingly different 

morphology than mononucleated infected cells, as they have multiple nuclei and can be 

multi-lobed [9,38], little was known about whether syncytia had any other unique 

characteristics that may distinguish them from other HIV-1-infected cells. Syncytia are 

challenging to characterize as it is not currently technically feasible to separate them from 

a mixed population of HIV-1-infected cells (mononucleated and syncytia) nor distinguish 

them from cell aggregates/clumps generated during even rigorous flow cytometry 

preparations (Menelaos Symeonides, Ethan Mattice, Emily E. Whitaker, Evan T. Hoffman, 

M. Thali, unpublished/data not shown). Previous studies have therefore either included 

syncytia with mononucleated infected cells during bulk/high-throughput analyses or 

excluded syncytia entirely. However, given their distinct physical appearance, syncytia can 

be distinguished from mononucleated infected cells by microscopy. We used wide-field 

fluorescence microscopy to complete single cell analysis of the surface density of proteins 

typically downmodulated upon HIV-1 infection. This approach allowed us to compare the 

relative surface density of host proteins between mononucleated infected cells and HIV-1-

induced syncytia. 

We determined that CD4+ primary T cell-based syncytia have partially restored 

levels of both EWI-2 and CD81 compared to mononucleated infected cells (Figure 3.6) [7]. 

Preliminary data suggests that the levels of other host proteins are likely also altered on the 

surface of syncytia compared to mononucleated infected cells (Figures 5.2-5.4). Further, 
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we determined that EWI-2 levels on syncytia are dependent on the expression levels of the 

uninfected target cell population and that EWI-2 is downregulated from the surface of 

syncytia over time (Figures 4.1 and 4.2). We propose that the transiently altered surface 

levels documented for EWI-2 on syncytia is representative of a broader phenomenon for 

an altered host protein profile in infected cells upon HIV-1-induced cell-cell fusion that 

applies to additional host proteins that are typically modulated by viral accessory proteins 

(including CD81 which is also restored on the surface of syncytia [7]). Collectively, these 

data suggest that upon cell-cell fusion, the previously unfused target cell contributes an 

influx of host proteins such that the resulting HIV-1-induced syncytium has a viral mutant-

like phenotype where host protein modulation by viral accessory proteins is temporarily 

reduced without any genetic changes to the virus. A transiently altered proteome could 

temporarily equip syncytia with unique functional abilities compared to mononucleated 

infected cells. 

Given that both EWI-2 and CD81 inhibit fusion in a dose-dependent manner [1,7], 

restored levels of fusion inhibitory host proteins CD81 and EWI-2 on the surface of HIV-

1-induced syncytia suggests that these entities are less fusogenic than mononucleated 

infected cells. We hypothesize that the small size of T cell based syncytia, including those 

observed in vivo [38], is the result of transiently increased levels of fusion inhibitors on 

syncytia for a limited period after fusion with an uninfected target cell (“young” syncytia). 

However, as EWI-2 is downregulated from the surface of syncytia over time (and likely 

also CD81), syncytia which have not recently undergone cell-cell fusion with an uninfected 

target cell (“old” syncytia) might be similarly prone to HIV-1-induced cell-cell fusion as 

mononucleated infected cells (Figure 4.3). We predict that this rise and fall in the levels of 
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fusion inhibitors at the cell surface negatively correlates with susceptibility to cell-cell 

fusion, and would continue over the lifetime of a syncytium as it “grows” in size upon each 

fusion event until the cell eventually dies. We have observed severe depletion of infected 

cells, including syncytia, from infected cultures 48-72 hr after the addition of fusion 

inhibitors to prevent infection and continued cell-cell fusion (unpublished observation). 

This observation suggests that syncytia have a similar half-life as what has been previously 

reported for certain HIV-1-infected cells (~1.5 days [39]) and therefore do not live 

indefinitely. Collectively, we expect that the combination of transiently restored levels of 

fusion inhibitors CD81 and EWI-2 after cell-cell fusion combined with the limited lifespan 

of HIV-1-induced syncytia restricts the number of fusion events these cells can undergo, 

thus addressing the question of how these infected entities remain small (Figure 5.2).  

 

5.2.1. Future investigations to address direct contributions of syncytia to virus 
transmission. 

Whether young syncytia are indeed less fusogenic than mononucleated infected 

cells, and therefore the effect this might have on their ability to contribute to virus spread, 

has yet to be determined. It is interesting to speculate that if syncytia are indeed less 

fusogenic than mononucleated infected cells that they might contribute to cell-to-cell 

transmission more efficiently, as has been shown for virus encoding less-fusogenic Env 

variants (unpublished data, M. Symeonides). However, this should be simultaneously 

considered with the likely event that virus particles produced by HIV-1-induced syncytia 

may be less infectious than those produced by mononucleated infected cells with low 

surface levels of fusion inhibitory host proteins (Figure 4.3). 
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To address whether syncytia are less fusogenic and have altered abilities to 

contribute to virus transmission than mononucleated infected cells, we plan to prepare 

purified populations of both mononucleated infected cells and syncytia from heterogenous 

cultures (uninfected cells, mononucleated infected cells, and syncytia). Purification of 

syncytia will be achieved by engineering cell lines which that bear a syncytia-specific 

surface marker upon HIV-1-induced cell-cell fusion. Specifically, we are currently 

developing an isolation platform that utilizes split-GFP complementation combined with 

magnetic activated cell sorting (MACS) to isolate syncytia by positive selection for whole 

GFP (M. Symeonides and E.E. Whitaker). Each split-GFP portion (GFP1 and GFP2) has 

been fused to a plasma membrane-spanning protein and will be stably expressed in either 

the producer or target cell population (ex. GFP1 in producer, GFP2 in target). Upon HIV-

1-induced cell-cell fusion between GFP1 and GFP2 expressing producer and target cells, 

the split-GFP portions can associate with each other to form whole GFP. Whole GFP will 

be used as a syncytia-specific surface marker, and a monoclonal nanobody against whole 

GFP [40] will be used to label and isolate HIV-1-induced syncytia from the heterogenous 

culture. Following syncytia purification, a marker specific to the remaining HIV-1-infected 

cells will be used to isolate mononucleated infected cells from the remaining mixed 

infected and uninfected culture. Each population of cells (purified mononucleated infected 

cells or syncytia) will then be used as producer cell populations to analyze their relative 

fusogenicity and transmission efficiency (as described previously [2,7,41]), as well as 

relative particle infectivity and efficiency of particle transfer to target cells upon cell-cell 

contact [42]. 
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We will also determine whether the altered surface profile of syncytia, which we 

predict impacts host proteins typically modulated upon infection beyond CD81 and EWI-

2, has any impact on particle release by measuring ratio of total cellular Gag by labeling 

p24 to p24 present in the supernatant for syncytia compared to mononucleated infected 

cells. Additionally, we will measure the relative incorporation of tetraspanins into syncytia-

produced particles compared to those produced from mononucleated infected cells to 

determine whether differences in infectivity do indeed correlate with altered particle 

composition. Together, these in vitro analyses will provide a comprehensive understanding 

of syncytia contribution to virus transmission. These studies will rigorously investigate the 

functional consequences of restored levels of EWI-2 and CD81 on syncytia and address 

whether syncytia contribute differently to virus transmission than mononucleated infected 

cells. Data generated from these analyses will be included with the data presented in 

Chapter 4 in a future manuscript. 

 

5.3. Implications for altered protein profile/organization beyond fusion inhibitors. 

While the immediate follow up studies for our finding that cell-cell fusion 

temporarily alters the level of fusion inhibitory host proteins on the resulting syncytium 

include determining how increased levels of CD81 and EWI-2 influence the ability of 

young syncytia to directly contribute to virus spread – we are also planning to pursue 

additional ways syncytia may break the mold of what are considered typical traits of 

infected cells. Specifically, we predict that upon HIV-1-inducd cell-cell fusion, viral 

accessory protein-mediated modulation of the host cell environment is temporarily 

disrupted by the influx of host proteins from the previously unfused target cell (Figure 5.3), 
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beyond what has already been demonstrated for fusion inhibitory host proteins CD81 and 

EWI-2 [7]. Our preliminary data already suggests that targets of Nef and Vpu-mediated 

modulation - immune regulatory ligands such as BST-2 (tetherin) [43,44] and NTB-A [45] 

as well as Env receptor CD4 [46,47] - are altered on the infected cell surface upon cell-cell 

fusion. Therefore, we plan to investigate the functional consequences of differential 

modulation of these proteins on the surface of syncytia. Further, as Nef is also responsible 

for altered actin regulation in infected cells that leads to impaired motile and migratory 

abilities ([48-50] and reviewed in [51]), we are also interested in investigating whether 

Nef-mediated modulation of actin organization is altered/disrupted upon HIV-1-induced 

syncytia to temporarily restore uninfected cell-like motile and migratory abilities in these 

infected entities. 

 

5.3.1. Altered modulation of immune stimulatory ligands BST-2 and NTBA on syncytia. 

Altered levels and/or distribution of host proteins BST-2 and NTB-A on the surface 

of syncytia could influence immune cell responses to these infected entities by direct-cell 

sensing. An enhanced immune response induced by direct-cell sensing in vivo could lead 

to targeted elimination of syncytia, and potentially increase recruitment of the HIV-1 target 

cell population to sites of infection, thus acting indirectly as a catalyst for virus spread. 

Additionally, this could partially explain the prominent immune activation observed during 

early HIV-1 infection [52] despite the well-documented downregulation of immune 

stimulatory ligands from the surface of mononucleated infected cells [17]. 

BST-2 is an interferon (IFN)-inducible host protein that can tether virus particles 

to the cell surface thus preventing their release from producer cells. However, BST-2 that 
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is not tethering virus particles to the cell surface (“free” BST-2) and can engage with 

inhibitory receptor ILT-7 on the surface of plasmacytoid dendritic cells (pDCs; the primary 

driver if IFN production during HIV-1 infection [53]) to suppress pDC IFN production. 

Thus BST-2 subcellular localization is tightly regulated by viral accessory protein Vpu to 

decrease overall levels of BST-2 [43,44], yet retain some BST-2 at the cell surface 

(sequestered away from virus budding sites) to dampen pDC IFN production in response 

to infected cells [17,54]. We quantified the relative surface density of BST-2 and co-

accumulation of BST-2 with mature virus particles between syncytia and mononucleated 

infected cells (Figure 5.4). Although we did not see a difference in overall BST-2 surface 

density between syncytia and mononucleated infected cells (Figure 5.4A), syncytia do have 

a larger proportion of BST-2 co-accumulating with p17 (interpreted as BST-2 occluded by 

tethered mature virus particles) and therefore a smaller proportion of total “free” BST-2 

(Figure 5.4B). While an increased proportion of occluded BST-2 on syncytia compared to 

mononucleated infected cells might suggest that direct cell sensing of syncytia by pDCs 

could elicit a stronger immune response, enthusiasm for this difference is tempered by data 

demonstrating that the total area of “free” BST-2 on syncytia is still greater than that of 

mononucleated infected cells (Figure 5.4C). Collectively, these preliminary data suggest 

that syncytia might elicit a stronger IFN response from pDCs than mononucleated infected 

cells.  

Similarly, we have also demonstrated that syncytia have differentially modulated 

proteins that could influence sensing by natural killer (NK) cells. Specifically, our data 

show that while syncytia and mononucleated infected cells have similarly low surface 

levels of NK inhibitory HLA-1, syncytia have increased levels of NK co-activating ligand 
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NTB-A (Figure 5.5). NTB-A is typically downregulated upon HIV-1 infection by Vpu, 

inhibiting NK cell degranulation in response to infected cells and lysis of infected cells 

[45]. Overall, our preliminary data suggests that syncytia might also elicit an increased 

response from natural killer (NK) cells upon direct cell sensing compared to 

mononucleated infected cells. Further investigation will be required to determine whether 

there is any difference in the pDC or NK cell response to syncytia versus mononucleated 

infected cells. 

 

5.3.1.1. Future Directions: Analyzing the immune cell response to syncytia upon direct-
cell sensing. 
 

We are currently preparing to investigate both the pDC and NK cell response to 

syncytia versus mononucleated infected cells (2020 R21 awarded to M. Thali) using 

purified populations of syncytia and mononucleated infected cells that will be prepared as 

described in 5.2.1. To determine whether syncytia are differentially sensed by pDCs, we 

will co-culture purified populations of syncytia with pDC containing PBMCs and analyze 

IFN production as compared to co-cultures using purified mononucleated infected cells. 

Similarly, we will also complete co-cultures of syncytia or mononucleated infected cells 

with NK cells to measure the NK cell response (i.e. screening NK cells for markers of 

degranulation and monitoring cultures for infected cell depletion at the end of co-culture 

as described previously [45]) to each of these infected populations. Should we find 

differences in the pDC and/or NK cell responses to syncytia compared to mononucleated 

infected cells, we will still need to investigate whether these differences are indeed due to 

altered levels/distribution of BST-2 and NTB-A. This would be addressed by analyzing the 
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immune responses as described above upon targeted manipulation of BST-2 and NTB-A 

levels by knocking down expression of these proteins in infected producer and/or infecting 

cells with viral strains bearing Vpu mutants that can no longer downregulate BST-2 or 

NTB-A (i.e. β-Trcp binding-deficient Vpu or a scrambled transmembrane domain Vpu 

mutant to prevent BST-2 [43] or NTB-A [45] downregulation, respectively). 

Should we find that syncytia elicit a stronger response, we would conclude that these 

infected entities are more sensitive to direct cell-sensing by pDCs and/or NK cells than 

mononucleated infected cells. 

 

5.3.2. Potential restoration of HIV-1 Env receptor CD4 on syncytia. 

Preliminary data from ImageStream analysis demonstrate that syncytia have higher 

levels of surface CD4 than mononucleated infected cells (M. Symeonides, unpublished 

data), though we have yet to detect differences in CD4 levels on the surface of syncytia 

compared to mononucleated infected cells by quantitative microscopy (Figure 5.6A). 

However, we have observed VS-like structures between syncytia and mononucleated 

infected cells (Figure 5.6B). Given the robust downregulation of CD4 upon infection in 

mononucleated infected cells, this led us to speculate that there may still be some CD4 

present on the surface of syncytia (contributed by the previously uninfected target cell) 

triggering VS formation with a mononucleated infected cell.  

Intriguingly, the formation of a VS between a mononucleated infected cell and a 

syncytium with partially restored CD4 could provide a unique opportunity for potential 

viral recombination upon superinfection of the already infected syncytium “target” cell. 

Viral recombination in a syncytium could contribute to the heterogeneity and evolution of 
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the virus population within a host, as has previously been predicted to occur upon 

multicopy infection by cell-to-cell transmission [10,55-57]. Alternatively, superinfection 

could lead to death of the affected syncytium as superinfection has previously been 

correlated with increased apoptosis [58]. Further, an influx of yet-to-be downregulated 

CD4 into a productively infected cell could lead to Env-CD4 interactions in cis within the 

infected cell. Such Env-CD4 could inhibit efficient release of virus particles and/or expose 

CD4-binding-induced Env epitopes (CD4i) [17]. Further, syncytia with partially restored 

CD4 may be susceptible to CD4i antibody-mediated antibody-dependent cell cytotoxicity 

(ADCC) as has been previously shown for infected cells that do not sufficiently 

downregulate CD4 [59-61].  

We propose to further analyze the total amount of CD4 on syncytia compared to 

mononucleated infected cells by mass spectrometry and flow cytometry (described below 

in 5.4) to carefully determine whether there are indeed differences in surface expression 

that were not detectable by fluorescence microscopy. Should we find that syncytia do 

indeed have partially restored CD4, we would then aim to determine whether syncytia are 

indeed susceptible to superinfection and ADCC. Increased syncytia susceptibility to 

ADCC would be particularly intriguing as enhancing ADCC response to infected cells is 

of interest as a strategy for treating infection [62].  

 

5.3.3. Could altered Nef-modulation lead to restored migratory abilities for syncytia? 

In vivo analysis of a Nef mutant which restored normal migratory abilities for 

infected cells compared to WT Nef (initial infection completed using a combination of 

mutant:WT virus at a 1:1) revealed that although the Nef mutant initially predominated and 
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thus seemed to have an enhanced ability drive initial virus spread, WT strains emerged as 

the dominant species over time [50]. The authors propose that the virus balances a defect 

in migration, thus rapid establishment of systemic spread, with a yet to be determined 

benefit to virus spread over the course of infection [50] – possibly enhanced cell-to-cell 

transmission as the decreased speed may enable the infected cell to form more stable 

contacts with uninfected target cells (as was observed for 3D cultures of infected cells 

[63]). However, we predict that transiently altered protein modulation by viral accessory 

proteins upon cell-cell fusion (ie. EWI-2) is not restricted to surface protein targets but 

extends to additional host proteins including actin regulators targeted by Nef. In turn, we 

hypothesize that syncytia have partially restored migratory abilities after cell-cell fusion 

and analysis of HIV-1-infected cultures embedded in 3D matrices to compare the relative 

migratory abilities of syncytia to mononucleated infected cells is currently underway (M. 

Symeonides). Should we determine that syncytia do indeed have enhanced migratory 

abilities, it is interesting to speculate that syncytia present during early stages of infection 

(as shown previously [9-11]) may help drive efficient establishment of systemic infection 

(like what has been previously shown migration modulation-deficient Nef mutants [50]) 

even when mononucleated infected cell migration is impaired.  

 

5.4. Characterizing the proteome of HIV-1-induced syncytia. 

We have demonstrated that two host proteins, CD81 and EWI-2, which are 

typically downregulated from the surface of HIV-1-infected cells are partially restored on 

syncytia [7]. That syncytia have higher levels of CD81 and EWI-2 on their surface than 

mononucleated infected cells is exciting as it was the first study that documented distinct 
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differences in protein profiles between syncytia and mononucleated infected cells, 

suggesting that syncytia might contribute uniquely to virus spread. The syncytia surface 

profile was analyzed by quantitative microscopy as this approach allows for clear 

discrimination between mono and multinucleated HIV-1-infected cells. However, single 

cell analysis by quantitative microscopy is not a feasible approach for thoroughly 

characterizing the syncytia surface profile as it is completed by labeling only 1-2 surface 

proteins of interest at a time and then manually outlining each individual cell to measure 

the relative surface density of each protein at the cell surface. This approach is also limited 

to quantifying the relative surface density of proteins of interest (rather than total amounts 

of protein within the cell) and is also potentially susceptible to bias during analysis. Given 

these limitations, syncytia should be analyzed using high throughput approaches, including 

flow cytometry and mass spectrometry analysis, to thoroughly characterize the surface 

profile and increase our understanding of how syncytia compare to mononucleated infected 

cells. We plan to implement these approaches by separating syncytia from a heterogenous 

population of uninfected, mononucleated infected, and multinucleated infected cells using 

MACs as described above (5.2.1). 

Protein surface expression and the whole cell proteome of each purified cell 

population, mononucleated infected cells and syncytia, could then be directly compared by 

flow cytometry and mass spectrometry. For flow cytometry, we propose to use a BD 

lyoplate panel to screen surface proteins typically modulated upon HIV-1 infection by viral 

accessory proteins Nef and Vpu (as described previously [13]). The ability to use flow 

cytometry to analyze purified populations of HIV-1-infected cells will also provide an 

additional approach for analyzing the influence of the target cell population on the syncytia 
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surface profile beyond EWI-2 and to determine whether other surface proteins (such as 

CD81) are similarly modulated over time following cell-cell fusion. Further, we will use 

mass spectrometry to analyze both the surface profile and total proteome of HIV-1-induced 

syncytia compared to mononucleated HIV-1-infected cells (in collaboration with N.J. 

Matheson). These high throughput analysis will allow us to thoroughly characterize the 

syncytia surface profile and determine whether additional proteins are differentially 

modulated in HIV-1-infected cells upon cell-cell fusion would allow us to address our 

proposed model of broad host protein modulation upon HIV-1-induced syncytium 

formation (Figure 5.3). 

 

5.5. In vivo analysis of syncytia contribution to virus spread. 

The in vitro studies described above are necessary to determine whether syncytia 

might have any functional differences between mononucleated infected cells in terms of 

their ability to directly and/or indirectly contribute to virus spread. To assess the impact of 

syncytia on early virus spread in vivo, we propose to develop a modified approach for the 

cell-associated infection of humanized mice, previously used to compare cell-free to cell-

associated acute transmission [10].  We will work with our colleagues (T. Mempel and T. 

Murooka), who have expertise in studies using HIV-1-infected humanized mice (immune 

deficient mice where immune system has been reconstituted with human immune tissues 

and are thus susceptible to HIV-1 infection, recently reviewed in [64]), to study infected 

mice which were inoculated with either purified mononucleated infected cells or purified 

HIV-1-induced syncytia (using the purification approach described above). This acute 

transmission model was previously used to compare viremia in the blood, infection in lung 
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and spleen, as well as CD4+ T cell depletion for cell-free versus cell-associated infection 

[10] and could be useful for analyzing the same metrics to compare how syncytia and 

mononucleated infected cells each contribute to acute virus spread. As it is currently 

unknown whether/how syncytia contribute to virus spread, it could be beneficial to 

implement a recently developed Nanoluciferase/GFP dual-reporter T/F viral strain [11] for 

this acute transmission assay. Using this viral strain would allow us to monitor infection in 

live humanized mice [11], allowing for efficient optimization of experimental parameters 

(i.e. day of peak infection, tissues predominantly susceptible to syncytia-mediated virus 

spread) necessary for analyzing syncytia contribution to virus spread versus that of 

mononucleated infected cells. Developing an in vivo model for syncytia-mediated virus 

transmission would greatly enhance our understanding of the role of this subpopulation of 

infected cells in virus spread. 

 

5.6. Conclusions 

The work presented in this dissertation has contributed to the field of HIV-1 cell-

to-cell transmission by 1) identifying a new host factor (EWI-2) in the network of fusion 

regulatory proteins which collectively support continued virus transmission at the VS, 2) 

by taking the first steps toward characterizing HIV-1-induced T cell based syncytia which 

are a relatively unappreciated group of infected cells, and 3) determining how cell-cell 

fusion impacts modulation of EWI-2 in HIV-1-infected cells.   

By demonstrating that EWI-2 inhibits HIV-1-induced cell-cell fusion at the 

presynapse, we’re closer to understanding how proteins functions are coordinated at the 

presynapse to inhibit fusion. Previous studies that revealed the molecular determinants for 
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EWI-2-tetraspanin interactions and the role of EWI-2 on membrane processes (which are 

largely related to EWI-2 influence on tetraspanins) will help fuel future investigations as 

to how EWI-2 contributes to efficient fusion inhibition at the presynapse.  

Showing that HIV-1-induced syncytia have an altered surface profile compared to 

mononucleated infected cells, by documenting partially restored levels of CD81 and EWI-

2 at the syncytia surface, has cracked open many questions regarding the potential role 

syncytia may have in overall virus spread. The pressing question we hope to address in the 

near future is whether syncytia have altered abilities to contribute directly (virus 

transmission) and indirectly (inducing an immune response that recruits target cells to a 

site of infection) to virus spread.  

Indeed, it is becoming more appreciated that the mononucleated HIV-1-infected T 

cell population is quite diverse (i.e. a recent multiomics analysis of mononucleated infected 

cells from humanized mice [65]) and likely collectively contribute to virus spread. We 

believe that syncytia should be included as another infected subpopulation, and suspect 

that the syncytia have a yet-to-be determined role in promoting virus spread in vivo. As 

such, targeting syncytia formation by tuning the extent of HIV-1-induced cell-cell fusion 

could disrupt the homeostasis of the diverse group of infected cells driving spread, and thus 

may cripple infection. It would be intriguing to see whether this approach of disrupting 

fusion homeostasis to impede virus spread might be applicable in other viral infections as 

well – specifically those that produce virus-induced syncytia (such herpesviruses and 

coronaviruses) or viruses that depend on cell-to-cell transmission at a virological synapse 

such as human T-cell lymphotropic virus (HTLV) [66,67].  
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Overall, we’re optimistic that these data demonstrating that syncytia are distinct 

from mononucleated infected cells will encourage continued characterization of the 

syncytia and spark analyses aimed at understanding whether/how these entities are 

functionally distinct from other HIV-1-infected cells.  
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5.7. Figure Legends 

Figure 5.1. EWI-2 is not required for CD81 enrichment at the VS. CEM-SS cells stably 
expressing either shRNA targeting EWI-2 (shEWI-2) or a non-targeting shRNA control 
(shScr) [7] were infected with HIV-1 NL4-3 (WT) or Env-deficient NL4-3 (∆Env). 48 
hours post infection infected (producer) cells were mixed with CMAC-labeled uninfected 
(target) non-shRNA expressing CEM-SS (CEM-SS) cells and plated on poly-L-lysine 
coated 8-well plates at 250,000 cells per well (producers:target, 1:1). Producer:target 
samples were prepared in parallel with uninfected controls; shEWI-2, shScr, CEM-SS, and 
CEM-SS cells not labeled with primary antibodies (No1 controls). Plated samples were 
incubated at 37 ˚C for 2.5 hr to allow for VS formation. All samples were then surface 
labeled for either EWI-2 or CD81 (except for the No1 controls), fixed and permeabilized, 
labeled for HIV-1 Gag, and stained with AlexaFlour-conjugated (647-conjugated for EWI-
2 and CD81, 488-conjugated for Gag) secondary antibodies. Samples were imaged using 
a 60× objective, deconvolved using SoftWorx, and imported into FIJI for analysis. VSs 
were identified as areas of Gag-enrichment at a cell-cell contact between a producer and 
CMAC-labeled target cell. Fold-enrichment of either EWI-2 or CD81 at the VS was 
calculated by dividing the protein signal contained within the VS (or infected to uninfected 
cell contact for ∆Env) by the sum of the surface-associated protein signal at non-contact 
sites on the producer and target cell. EWI-2 and CD81 were considered enriched at the 
contact/VS if the fold-enrichment value was greater than 1 (represented as a dashed line).  
 
Figure 5.2. Model for HIV-1-induced syncytia contribution to cell-to-cell transmission. 
Mononucleated HIV-1 infected cells (red) can spread virus through cell-to-cell 
transmission at a transient junction between infected and uninfected (blue) cells known as 
a virological synapse (VS) [23]. Typically, the VS resolves with transfer of virus particles 
to the target cell complete cell separation, which can ultimately lead to production of a new 
infected cell. Env-mediated fusion at this site is largely prevented by viral (Gag) and host 
(tetraspanins, ezrin, and EWI-2; EWI-2 surface protein shown in green) fusion inhibitory 
factors [1-3,7]. However, Env-mediated fusion at the VS does still occur thus resulting in 
the formation of a multinucleated HIV-1 infected cell (syncytium), which have even been 
detected in vivo [8-11]. Syncytia have been shown to form VSs with uninfected target cells 
which also result in either transfer of virus particles and complete cell separation or an 
additional cell-cell fusion event [38]. We have shown that syncytia have partially restored 
levels of tetraspanin CD81 and EWI-2 (represented as 5 EWI-2 icons) compared to 
mononucleated infected cells (for simplicity of this schematic, no EWI-2 is present on the 
cell surface) [4]. Further we have demonstrated that EWI-2 levels on syncytia are the result 
of an influx of protein from the recently fused target cell (Figure 4.1) and can be 
downregulated over time (Figure 4.2). Therefore, we suggest that syncytia which have 
recently undergone a cell-cell fusion event are more likely to form synapses that resolve 
with transfer of virus particles and complete cell separation and likely production of a 
newly infected cell. In parallel, we suggest that “older” syncytia are more susceptible to 
additional cell-cell fusion events than those that recently formed upon cell-cell fusion. We 
predict that this cycle of cell-cell fusion at the VS will continue for a syncytium until it 
eventually dies, thus the combination of an influx of fusion inhibitory host proteins and 
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cell death contribute to the restricted size (2-4 nuclei) of syncytia observed in vivo [38]. 
Image created with BioRender.com. 
 
Figure 5.3. Model for fluctuating host protein modulation upon HIV-1-induced cell-cell 
fusion. HIV-1 (virus particle shown in green) infection of an uninfected (target) cell (shown 
in blue) leads to substantial modulation of the host cell environment by viral accessory 
proteins. For simplicity, host protein modulation is represented by downregulation of a host 
surface protein (represented by pink icon) from the surface of an infected mononucleated 
cell (shown in red). Upon HIV-1-induced cell-cell fusion, we expect that viral accessory 
protein-mediated modulation of the infected cell will be disrupted by an influx of proteins 
from the previously unfused target cell. Therefore the environment/protein profile of a 
recently formed HIV-1-induced syncytium (syncytium with 2 nuclei shown in purple) will 
be (at least partially) restored to reflect that of the previously unfused target cell, as shown 
previously for restored EWI-2 on syncytia [7]. We predict that viral accessory proteins will 
modulate the yet-to-be-targeted host proteins contributed by the previously unfused target 
cell over time (as discussed for EWI-2 in Chapter 4) such that the syncytium protein profile 
and cellular environment reflects what is typically observed for infected mononucleated 
cells. Should a syncytium undergo further cell-cell fusion (represented as the syncytium 
with 3 nuclei), we would expect another influx of host protein from the previously unfused 
target cell followed by viral accessory protein-mediated modulation of these host proteins. 
This cycle of HIV-1-induced syncytium formation, host protein restoration, and subsequent 
modulation by viral accessory proteins over time would continue until the eventual death 
of the syncytium. Image created with BioRender.com. 
 
Figure 5.4. BST-2 on the surface of HIV-1 syncytia co-accumulates with mature virus 
particles more frequently than on mononucleated infected cells. A. CEM-SS cells were 
infected with NL-sfGI for 3 days to allow for syncytia formation, then plated on poly-L-
lysine coated plates for microscopy preparation. Cells were surface labeled for BST-2, 
fixed, permeabilized, and stained with DAPI and AlexaFlour-conjugated secondary 
antibody. The relative BST-2 surface density between uninfected (Uninf; GFP negative), 
mononucleated infected (Mono; GFP positive, 1 nucleus), and HIV-1-induced syncytia 
(Syn; GFP positive, ≥2 nuclei) were determined by manually outlining the surface BST-2 
signal at the midline of the cell and calculating the mean fluorescence intensity (MFI) of 
the signal contained within the outline for each cell (as described previously [7]). All MFI 
values were background subtracted and normalized to the average MFI of the uninfected 
cells within their respective biological replicate. Small open data points represent the BST-
2 MFI of an individual cell while large filled data points represent the average MFI of each 
cell type. Black bars represent the mean of the average BST-2 MFI values. Data from the 
same biological replicate are indicated by shape and color (cyan circles, orange triangles, 
or magenta squares). B-C. CEM-SS cells were infected as described for (A) and prepared 
for microscopy by labeling both BST-2 and p17 (to label mature virus particles). Images 
were acquired and deconvolved as described for (A) and analyzed to determine the relative 
distribution of BST-2 and p17 for Uninf (black), Mono (gray), and Syn (purple). B) Surface 
BST-2 that was not co-accumulating with p17-associated signal is identified as “free” 
surface BST-2. Data points represent the percentage of p17-free BST-2 for individual cells 
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and n = the number of cells analyzed (left). Dashed line represents 50% of the total cell 
surface BST-2 signal. Cells p17-free BST-2 comprising less than 50% of the total surface 
BST-2 were determined to be cells when surface BST-2 is primarily occluded by mature 
virus particles. Shown are the percentage each cell population (Mono and Syn) with 
primarily occluded BST-2 (right). C) The size of the area containing p17-free BST-2 signal 
from (B) was measured to estimate the relative amount of free BST-2 on the surface of 
each cell type. Data points represent the free BST-2 area of individual cells. Black bars 
represent the mean size of the area containing free BST-2 for each cell type. All images 
(A-C) were acquired using a 60× objective, deconvolved using SoftWorx, and imported 
into FIJI for analysis. 
 
Figure 5.5. HIV-1-induced syncytia have increased surface NTBA but equal levels of 
HLA-1 compared to mononucleated infected cells. CEM-SS cells were infected with NL-
sfGI for 3 days and then prepared for microscopy. Cells were plated on poly-L-lysine 
coated plates, surface labeled for NTB-A (A) or HLA-1 (B), fixed and permeabilized, 
stained with DAPI and AlexaFluor-conjugated secondary antibodies, and imaged using a 
60× objective. Images were processed by deconvolution in SoftWorx and imported into 
FIJI for analysis. Shown are representative images of syncytia (*) and mononucleated 
infected cells (∆) labeled for NTB-A (A) and HLA-1 (B). Scale bars = 10 µm. To measure 
the relative surface density of NTB-A (A) or HLA-1 (B) on uninfected cells (GFP 
negative), mononucleated infected cells (GFP positive/1 nucleus), and syncytia (GFP 
positive ≥2 nuclei) the surface of each cell was manually outlined and used to calculate 
the mean fluorescence intensity (MFI) of the surface-associated signal (as described 
previously [7]). MFI values were background subtracted and normalized to the average 
MFI of the uninfected controls. Each data point represents the normalized MFI of an 
individual cell (uninfected; Uninf/black, mononucleated infected; mono/gray, syncytia; 
syn/magenta) and n = the number of cells analyzed. Black bars represent the mean MFI of 
each cell population.  
 
Figure 5.6. HIV-1-induced syncytia have unique properties that allow them to form Gag-
enriched synapses with other infected cells. A) CD4+ primary T cells were infected with 
NL-sfGI for 3 days and then plated on poly-L-lysine coated plates for microscopy 
preparation. Cells were surface labeled for CD4, fixed and permeabilized, labeled with 
DAPI and AlexaFluor-conjugated secondary antibody. Samples were then imaged using a 
60× objective, processed by deconvolution in SoftWorx, and imported into FIJI for 
analysis. Relative CD4 density on the surface for uninfected cells (GFP negative), 
mononucleated infected cells (GFP positive, 1 nucleus) and syncytia (GFP positive, ≥2 
nuclei) was determined by manually outlining the cell surface at the midline of each cell 
and calculating the mean fluorescence intensity (MFI) of that site (as described previously 
[7]). The MFI for each cell was background subtracted and normalized to the average MFI 
of the uninfected cell population within the biological replicate. Small open data points 
represent the normalized MFI for individual cells (uninfected; Uni, mononucleated 
infected; Mono, and syncytia; Syn) while large filled data points represent the average MFI 
of the cell population for each biological replicate. Data points within the same biological 
replicate are organized by shape and color (cyan circles, orange triangles, and magenta 
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squares). Black bars represent the mean of the average MFI for each population. B) CEM-
SS cells were infected with NL4-3 and cultured in the presence of fusion inhibitor 
AMD3100 starting 7 hours post infection. 2 days post infection, cells were plated on poly-
L-lysine coated plates and prepared for microscopy. Cells were fixed, permeabilized, 
labeled for Gag (yellow) and stained with DAPI (cyan). Images were acquired using a 60X 
objective, processed by deconvolution using SoftWorx, and imported into FIJI for analysis. 
Scale bar = 10 µm.  
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5.8. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. EWI-2 is not required for CD81 enrichment at the VS. 
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Figure 5.2. Model for HIV-1-induced syncytia contribution to cell-to-cell transmission. 
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Figure 5.3. Model for fluctuating host protein modulation upon HIV-1-induced cell-cell fusion. 
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Figure 5.4. BST-2 on the surface of HIV-1 syncytia co-accumulates with mature virus particles more 
frequently than on mononucleated infected cells. 
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Figure 5.5. HIV-1-induced syncytia have increased surface NTBA but equal levels of HLA-1 compared to 
mononucleated infected cells. 
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Figure 5.6. HIV-1-induced syncytia have unique properties that 
allow them to form Gag-enriched synapses with other infected cells. 
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