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Abstract

Differential privacy (Dwork, 2006; Dwork et al., 2006a) has achieved prominence
over the past decade as a rigorous formal foundation upon which diverse tools
and mechanisms for performing private data analysis can be built.

The guarantee of differential privacy is that it protects privacy at the in-
dividual level: if the result of a differentially private query or operation on a
dataset is publicly released, any individual present in that dataset can claim
plausible deniability. This means that any participating individual can deny the
presence of their information in the dataset based on the query result, because
differentially private queries introduce enough random noise/bias to make the
result indistinguishable from that of the same query run on a dataset which
actually does not contain the individual’s information. Additionally, differential
privacy guarantees are resilient against any form of linking attack in the presence
of auxiliary information about individuals.

Both static and dynamic tools have been developed to help non-experts write
differentially private programs: static analysis tools construct a proof without
needing to run the program; dynamic analysis tools construct a proof while
running the program, using a dynamic monitor executed by the unmodified
runtime system. The resulting proof may apply only to that execution of the
program.

Many of the static tools take the form of statically-typed programming
languages, where correct privacy analysis is built into the soundness of the
type system. Meanwhile dynamic systems typically take either a prescriptive or
descriptive approach to analysis when running the program.

This dissertation proposes new techniques for language-based analysis of
differential privacy of programs in a variety of contexts spanning static and
dynamic analysis. Our approach towards differential privacy analysis makes use
of ideas from linear type systems and static/dynamic taint analysis. While several
prior approaches towards differential privacy analysis exist, this dissertation
proposes techniques which are designed to, in several regards, be more flexible
and usable than prior work.
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Chapter 1

Significance & Contributions

Differential privacy has achieved prominence over the past decade as a rigorous

formal foundation upon which diverse tools and mechanisms for performing

private data analysis can be built. The guarantee of differential privacy is that

it protects privacy at the individual level: if the result of a differentially private

query or operation on a dataset is publicly released, any individual present in

that dataset can claim plausible deniability. This means that any participating

individual can deny the presence of their information in the dataset based on

the query result, because differentially private queries introduce enough random

noise/bias to make the result indistinguishable from that of the same query

run on a dataset which actually does not contain the individual’s information.

Additionally, differential privacy guarantees are resilient against any form of

linking attack in the presence of auxiliary information about individuals.

High profile tech companies such as Google have shown a commitment to

differential privacy by developing projects such as RAPPOR (Erlingsson et al.,

2014) as well as several open-source privacy-preserving technologies (Guevara,

2019; Guevara et al., 2020; Wilson et al., 2019). Facebook recently released
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an unprecedented social dataset, protected by differential privacy guarantees,

which contains information regarding people who publicly shared and engaged

with about 38 million unique URLs, as an effort to help researchers study social

media’s impact on democracy and the 2020 United States presidential election

(Nayak, 2020; Kifer et al., 2020; King and Persily, 2020; Evans and King, 2021;

Evans et al., 2021). The US Census Bureau has also adopted differential privacy

to safeguard the 2020 census results (Abowd, 2018).

Both static and dynamic tools have been developed to help non-experts write

differentially private programs: static analysis tools construct a proof without

needing to run the program; dynamic analysis tools construct a proof while

running the program, using a dynamic monitor executed by the unmodified

runtime system. The resulting proof may apply only to that execution of the

program.

Many of the static tools take the form of statically-typed programming

languages, where correct privacy analysis is built into the soundness of the type

system.

Meanwhile dynamic systems typically take either a prescriptive or descriptive

approach to analysis when running the program. Intuitively, the prescriptive

approach represents the scenario in which the analyst wishes to enforce an upper

bound on the privacy leakage and that bound is known a priori. The descriptive

approach represents the scenario in which the analyst only wishes to record the

privacy leakage incurred, and no previously determined bound on privacy leakage

is enforced during program execution.

The contributions of this dissertation cover both static and dynamic analysis.

3



1.1 Significance

Differential privacy has become the standard for protecting the privacy of

individuals with formal guarantees of plausible deniability. In this dissertation

we propose new techniques for language-based analysis of differential privacy of

programs in a variety of contexts spanning static and dynamic analysis. Our

approach towards differential privacy analysis makes use of ideas from linear

type systems and static/dynamic taint analysis.

1.1.1 Challenges of Implementing Differential Privacy

• Differential privacy is a definition of privacy which is proven to be resilient

against linking attacks. While this is an attractive prospect theoretically,

in practice differential privacy can be difficult to analyze and implement.

This dissertation proposes several techniques for automatic analysis and

implementation of differential privacy.

• Violations of differential privacy are silent, and in most cases are impossible

to catch by human observation, even by experts. This makes differential

privacy an especially important field in which to apply verification tech-

niques. The nature of privacy bugs necessitates an approach to privacy

analysis which can be pervasive in all of the tools and software that can

access and manipulate sensitive data (i.e. language-based techniques).

This dissertation discusses approaches to privacy analysis which make this

possible and convenient in practice.

• The techniques needed for validating DP depend on the implementation

language.
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1.1.2 Practical Impact of this Dissertation

This dissertation proposes several techniques which make it possible for regular

programmers (who are not experts in differential privacy) to safely create and

modify statically and dynamically typed programs which satisfy differential

privacy, with little or no domain knowledge required.

1.1.3 Technical Contributions of this Dissertation

We will show a series of works that, in short, demonstrate the following key

ideas:

• A pure linear typing discipline is sufficient to perform accurate analysis

of differential privacy, even for its advanced variants. This is relevant for

performing static privacy analysis of differential privacy alongside other

important security properties in modern type systems. Linear type systems

have gained popularity in mainstream languages such as Rust and Haskell

for tracking/analysis of various security properties (II).

• Prescriptive and descriptive dynamic analysis of differential privacy is

possible with low overhead for general-purpose programming languages.

This is important because it demonstrates that privacy analysis can be

embedded as a library in some of the most popular languages for data

analysis and scripting in modern times, such as Python and JavaScript

(III).

• Mainstream statically typed languages can be made to perform differential

privacy analysis as part of their standard typechecking process, without

any runtime execution or information. This is important because it shows

that static differential privacy analysis can be convenient and accurate

with full data-independence even in the absence of linear types (IV).
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Figure 1.1: Static vs. Dynamic Privacy Analysis

• Language-based analysis of differential privacy can be practical and conve-

nient in any given scenario.

It is our hope that the usability and strong guarantees of the works contained

in this dissertation will inspire data analysts, technology corporations, researchers,

and students in computer science to continue to build a community and culture

of verifiable data privacy.

The following 3 sections briefly outline the high-level motivation and contri-

butions for the major works which make up this dissertation.
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1.2 Duet: An Expressive Higher-Order Language

and Type System for Differential Privacy

Goal: Linear types based analysis for advanced differential privacy variants.

1.2.1 Motivation

Linear Type Systems Type-system-based solutions to proving that a program

adheres to differential privacy began with Reed and Pierce’s Fuzz language (Reed

and Pierce, 2010), which is based on linear typing. Fuzz, as well as subsequent

work based on linear types aided by SMT solvers (Gaboardi et al., 2013a),

supports type inference of privacy bounds with type-level dependency and

higher-order composition of programs. However, these systems only support the

original and most basic variant of differential privacy called ε-differential privacy.

More recent variants, like (ε, δ)-differential privacy (Dwork et al., 2014a) and

others (Mironov, 2017a; Bun and Steinke, 2016; Bun et al., 2018), improve on

ε-differential privacy by providing vastly more accurate answers for the same

amount of privacy “cost” (at the expense of introducing a negligible chance of

failure).

1.2.2 Contribution

The strengths of Duet w.r.t. prior work are summarized as follows: (1) Duet

supports sensitivity analysis in combination with higher order programming,

program composition, and compound datatypes, building on ideas from Fuzz

(SA+HO); (2) Duet supports type-level dependency on values, which enables

differentially private algorithms to be verified w.r.t. symbolic privacy parameters,

building on ideas from DFuzz (DT); (3) Duet supports calculation of independent

privacy costs for multiple program arguments via a novel approach (MA); and (4)

7



Duet supports (ε, δ)-differential privacy—in addition to other recent powerful

variants, such as Rényi, zero-concentrated and truncated concentrated differential

privacy—via a novel approach ((ε, δ)-DP, Rényi/ZC/TC)). Duet is able to

achieve all of these features while maintaining a pure linear typing discipline.

In striking this balance, Duet comes with known limitations: (1) Duet

is not easy to extend with new relational properties (Rel-ext); and (2) Duet

is not suitable for verifying implementations of low-level mechanisms, such

as the implementation of advanced composition, gradient operations, and the

sparse-vector technique (SVT-imp).

1.3 DDuo: General-Purpose Dynamic Analysis

for Differential Privacy

Goal: dynamic analysis of differential privacy as a library.

1.3.1 Motivation

Both static and dynamic tools have been developed to help non-experts write

differentially private programs. Many of the static tools take the form of statically-

typed programming languages, where correct privacy analysis is built into the

soundness of the type system. However, existing language-oriented tools for

compositional verification of differential privacy impose significant burden on the

programmer (in the form of additional type annotations) (Reed and Pierce, 2010;

Gaboardi et al., 2013b; Near et al., 2019b; de Amorim et al., 2019; Zhang et al.,

2019a; Winograd-Cort et al., 2017; Barthe et al., 2019, 2012, 2013, 2016b; Sato

et al., 2019; Albarghouthi and Hsu, 2018; Zhang and Kifer, 2017; Wang et al.,

2019; Bichsel et al., 2018; Ding et al., 2018; Wang et al., 2020) (see Chapter 25

for a longer discussion).
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The best-known dynamic tool is PINQ (McSherry, 2009), a dynamic anal-

ysis for sensitivity and privacy. It features an extensible system which allows

non-experts in differential privacy to execute SQL-like queries against relational

databases. However, PINQ comes with several restrictions that limit its ap-

plicability. For example, PINQ’s expressiveness is limited to a subset of the

SQL language for relational databases. Methods in PINQ are assumed to be

side-effect free, which is necessary to preserve their privacy guarantee.

1.3.2 Contribution

We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo

is usable by non-experts: its analysis is automatic and it requires no additional

type annotations. DDuo can be implemented as a library for existing program-

ming languages; we present a reference implementation in Python. Our goal in

this work is to answer the following four questions, based on the limitations of

PINQ:

• Can a PINQ-style dynamic analysis extend to base types in the programming

language, to allow its use pervasively?

• Is the analysis sound in the presence of side effects?

• Can we use this style of analysis for complex algorithms like differentially

private gradient descent?

• Can we extend the privacy analysis beyond pure ε-differential privacy?

We answer all four questions in the affirmative, building on PINQ in the following

ways:

• DDuo provides a dynamic analysis for base types in a general purpose

language (Python). DDuo supports general language operations, such as

9



mapping arbitrary functions over lists, and tracks the sensitivity (stability)

and privacy throughout.

• Methods in DDuo are not required to be side-effect free and allow pro-

grammers to mutate references inside functions which manipulate sensitive

values.

• DDuo supports various notions of sensitivity and arbitrary distance metrics

(including L1 and L2 distance).

• DDuo is capable of leveraging advanced privacy variants such as (ε, δ) and

Rényi differential privacy.

1.4 Solo: A Lightweight Static Analysis for Dif-

ferential Privacy

Goal: static analysis of differential privacy as a library.

1.4.1 Motivation

All current approaches for statically enforcing differential privacy in higher

order languages make use of either linear or relational refinement types. A

barrier to adoption for these approaches is the lack of support for expressing

these “fancy types” in mainstream programming languages. For example, no

mainstream language supports relational refinement types, and although Rust

and modern versions of Haskell both employ some linear typing techniques, they

are inadequate for embedding enforcement of differential privacy, which requires

“full” linear types a la Girard. Recent work has made significant progress towards

techniques for static verification of differentially private programs (Reed and

Pierce, 2010; Near et al., 2019b; Barthe et al., 2015; Gaboardi et al., 2013b).
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However, the specialized features they rely on do not exist in mainstream

programming languages.

1.4.2 Contribution

We propose a new type system that enforces differential privacy, avoids the

use of linear and relational refinement types, and can be easily embedded in

mainstream richly typed programming languages such as Scala, OCaml and

Haskell.

We introduce Solo, a novel type system for static verification of differential

privacy, with a reference implementation as a Haskell library. Solo is similar

to Fuzz (Reed and Pierce, 2010) and its descendants in expressive power, but

Solo does not rely on linear types and can be implemented entirely in Haskell

with no additional language extensions. In particular, Solo’s sensitivity and

privacy tracking mechanisms are compatible with higher-order functions, and

leverage Haskell’s type inference system to minimize the need for additional type

annotations.

1.5 Personal Contributions

I personally contributed to the works in this dissertation in the following ways:

• I worked on the development of the interpreter and typechecker for Duet,

helped iterate on the design and metatheory behind the language, and

made major contributions to the research paper describing Duet.

• I lead the design and implementation of the DDuo system, and wrote the

research paper describing DDuo.

• I lead the conceptualization, design and implementation of the Solo

system, and wrote the research paper describing Solo.
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1.6 Future Work

Below we briefly outline potential future work regarding this dissertation:

• A limitation of DDuo and similar software is the inability to automati-

cally discover the sensitivity of arbitrary functions, particularly functions

imported from third party software libraries. Property-based testing could

potentially be used to fully automate sensitivity analysis for large software

libraries.

• Gradual Differential Privacy could be used to bridge the gap between

statically and dynamically typed approaches towards privacy analysis.
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Chapter 2

Background

2.1 Differential Privacy.

Differential privacy is a formal notion of privacy; certain algorithms (called

mechanisms) can be said to satisfy differential privacy. Intuitively, the idea

behind a differential privacy mechanism is that: given inputs which differ

in the data of a single individual, the mechanism should return statistically

indistinguishable answers. This means that the data of any one individual should

not have any significant effect on the outcome of the mechanism, effectively

protecting privacy on the individual level. Formally, differential privacy is

parameterized by the privacy parameters ε, δ which control the strength of the

guarantee.

We say that two inputs x and x′ are neighbors when dA(x, x′) = 1. To provide

meaningful privacy protection, two neighboring inputs are normally considered

to differ in the data of a single individual. Thus, the definition of differential

privacy ensures that the probably distribution over K’s outputs will be roughly

the same, whether or not the data of a single individual is included in the input.
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The strength of the guarantee is parameterized by the privacy parameters ε and

δ. The case when δ = 0 is often called pure ε-differential privacy; the case when

δ > 0 is often called approximate or (ε, δ)-differential privacy. When δ > 0, the

δ parameter can be thought of as a failure probability : with probability 1− δ,

the mechanism achieves pure ε-differential privacy, but with probability δ, the

mechanism makes no guarantee at all (and may violate privacy arbitrarily). The

δ parameter is therefore set very small—values on the order of 10−5 are often

used. Typical values for ε are in the range of 0.1 to 1.

2.2 Sensitivity.

The core mechanisms for differential privacy (described below) rely on the notion

of sensitivity (Dwork et al., 2006b) to determine how much noise is needed to

achieve differential privacy. Intuitively, function sensitivity describes the rate of

change of a function’s output relative to its inputs, and is a scalar value that

bounds this rate, in terms of some notion of distance. Formally:

Definition 2.2.1 (Global Sensitivity). Given distance metrics dA and dB, a

function f ∈ A→ B is said to be s-sensitive if ∀s′ ∈ R, (x, y) ∈ A. dA(x, y) ≤

s′ =⇒ dB(f(x), f(y)) ≤ s′·s.

For example, the function λx. x+ x is 2-sensitive, because its output is twice

its input. Determining tight bounds on sensitivity is often the key challenge in

ensuring differential privacy for complex algorithms.

2.3 Core Mechanisms.

The core mechanisms that are often utilized to achieve differential privacy are the

Laplace mechanism (Dwork et al., 2014b) and the Gaussian mechanism (Dwork

et al., 2014b). Both mechanisms are defined for scalar values as well as vectors;
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the Laplace mechanism requires the use of the L1 distance metric and satisfies

ε-differential privacy, while the Gaussian mechanism requires the use of the L2

distance metric (which is often much smaller than L1 distance) and satisfies

(ε, δ)-differential privacy (with δ > 0).

Definition 2.3.1 (Laplace Mechanism). Given a function f : A→ Rd which is

s-sensitive under the L1 distance metric dR(x, x′) =‖ x− x′ ‖1 on the function’s

output, the Laplace mechanism releases f(x) + Y1, . . . , Yd, where each of the

values Y1, . . . , Yd is drawn iid from the Laplace distribution centered at 0 with

scale s
ε ; it satisfies ε-differential privacy.

Definition 2.3.2 (Gaussian Mechanism). Given a function f : A→ Rd which is

s-sensitive under the L2 distance metric dR(x, x′) =‖ x− x′ ‖2 on the function’s

output, the Gaussian mechanism releases f(x) + Y1, . . . , Yd, where each of the

values Y1, . . . , Yd is drawn iid from the Gaussian distribution centered at 0 with

variance σ2 = 2s2 ln(1.25/δ)
ε2 ; it satisfies (ε, δ)-differential privacy for δ > 0.

Definition 2.3.3 (Differential privacy). Given a distance metric dA ∈ A ×

A → R, a randomized algorithm (or mechanism) M ∈ A → B satisfies (ε, δ)-

differential privacy if for all x, x′ ∈ A such that dA(x, x′) ≤ 1 and all possible

sets S ⊆ B of outcomes, Pr[M(x) ∈ S] ≤ eεPr[M(x′) ∈ S] + δ.

Differential privacy is compositional : running two mechanismsM1 andM2

with privacy costs of (ε1, δ1) and (ε2, δ2) respectively has a total privacy cost

of (ε1 + ε2, δ1 + δ2). Advanced composition (Dwork et al., 2014b) improves on

this composition bound for iterative algorithms; several variants of differential

privacy (e.g. Rényi differential privacy (Mironov, 2017b) and zero-concentrated

differential privacy (Bun and Steinke, 2016)) have been developed that improve

the bound even further. Importantly, sequential composition theorems for

differential privacy do not necessarily allow the privacy parameters to be chosen

adaptively, which presents a special challenge.
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Variant SequentialComposition k-Loop Basic Mechanism

ε-DP (Dworket al., 2014a) ε1 + ε2 , ε1 + ε2 kε Laplace

(ε, δ)-DP (Dworket al., 2014a) (ε1, δ1) + (ε2, δ2) , (ε1 + ε2, δ1 + δ2) (kε, kδ) Gaussian

RDP (Mironov, 2017a) (α, ε1) + (α, ε2) , (α, ε1 + ε2) (α, kε) Gaussian

zCDP (BunandSteinke, 2016) ρ1 + ρ2 , ρ1 + ρ2 kρ Gaussian

tCDP (Bunet al., 2018) (ρ1, ω1) + (ρ2, ω2) , (ρ1 + ρ2,min(ω1, ω2)) (kρ, ω) Sinh-normal

Figure 2.1: Variants of Differential Privacy

2.4 Composition.

Multiple invocations of a privacy mechanism on the same data degrade in an

additive or compositional manner. For example, the law of sequential composition

states that:

Theorem 2.4.1 (Sequential Composition).

If two mechanisms K1 and K2 with privacy costs of (ε1, δ1) and (ε2, δ2) respectively

are executed on the same data, the total privacy cost of running both mechanisms

is (ε1 + ε2, δ1 + δ2).

For iterative algorithms, advanced composition (Dwork et al., 2014b) can

yield tighter bounds on total privacy cost. Advanced variants of differential

privacy, like Rényi differential privacy (Mironov, 2017a) and zero-concentrated

differential privacy (Bun and Steinke, 2016), provide even tighter bounds on

composition.

The moments accountant was introduced by Talwar et al. (Abadi et al.,

2016) specifically for stochastic gradient descent in deep learning applications.

It provides tight bounds on privacy loss in iterative applications of the Gaussian

mechanism, as in SGD. The Rényi differential privacy and zero-concentrated

differential privacy generalize the ideas behind the moments accountant.
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2.5 Variants of differential privacy.

In addition to ε and (ε, δ)-differential privacy, other variants of differential privacy

with significant benefits have recently been developed. Three examples are

Rényi differential privacy (RDP) (Mironov, 2017a), zero-concentrated differential

privacy (zCDP) (Bun and Steinke, 2016), and truncated concentrated differential

privacy (tCDP) (Bun et al., 2018). Each one has different privacy parameters

and a different form of sequential composition, summarized in Figure 2.1. The

basic mechanism for RDP and zCDP is the Gaussian mechanism; tCDP uses a

novel sinh-normal mechanism (Bun et al., 2018) which decays more quickly in

its tails. All three can be converted to (ε, δ)-differential privacy, allowing them

to be compared and composed with each other. These three variants provide

asymptotically tight bounds on privacy cost under composition, while at the

same time eliminating the “catastrophic” privacy failure that can occur with

probability δ under (ε, δ)-differential privacy.

2.6 Group privacy.

Differential privacy is normally used to protect the privacy of individuals, but it

turns out that protection for an individual also translates to (weaker) protection

for groups of individuals. A mechanism which provides pure ε-differential privacy

for individuals also provides kε-differential privacy for groups of size k (Dwork

et al., 2014a). Group privacy also exists for (ε, δ)-differential privacy, RDP,

zCDP, and tCDP, but the scaling of the privacy parameters is nonlinear.
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Part II

Duet: An Expressive

Higher-Order Language and

Type System for Differential

Privacy
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Chapter 3

Introduction

This section discusses Duet, an expressive higher-order language, linear type

system and tool for automatically verifying differential privacy of general-purpose

higher-order programs. In addition to general purpose programming, Duet sup-

ports encoding machine learning algorithms such as stochastic gradient descent,

as well as common auxiliary data analysis tasks such as clipping, normalization

and hyperparameter tuning–each of which are particularly challenging to encode

in a statically verified differential privacy framework.

We present a core design of the Duet language and linear type system,

and complete key proofs about privacy for well-typed programs. We then show

how to extend Duet to support realistic machine learning applications and

recent variants of differential privacy which result in improved accuracy for

many practical differentially private algorithms. Finally, we implement several

differentially private machine learning algorithms in Duet which have never

before been automatically verified by a language-based tool, and we present

experimental results which demonstrate the benefits of Duet’s language design

in terms of accuracy of trained machine learning models.
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Duet supports (1) general purpose programming features like compound

datatypes and higher-order functions, (2) library functions for matrix-based com-

putations, and (3) multiple state-of-the-art variants of differential privacy—(ε, δ)-

differential privacy (Dwork et al., 2014a), Rényi differential privacy (Mironov,

2017a), zero-concentrated differential privacy (zCDP) (Bun and Steinke, 2016),

and truncated-concentrated differential privacy (tCDP) (Bun et al., 2018)—and

can be easily extended to new ones. Duet strikes a strategic balance between

generality, practicality, extensibility, and precision of computed privacy bounds.

The design of Duet consists of two separate, mutually embedded languages,

each with its own type system. The sensitivity language uses linear types with

metric scaling (as in Fuzz (Reed and Pierce, 2010)) to bound function sensitivity.

The privacy language uses linear types without metric scaling (novel in Duet)

to compose differentially private computations. Disallowing the use of scaling in

the privacy language is essential to encode more advanced variants of differential

privacy (like (ε, δ)) in a linear type system, because these definitions do not scale

linearly, a requirement imposed by the usual scaled-metric interpretation of linear

typing. E.g., Fuzz requires that the underlying definition of privacy supports

linear scaling—which is true of the simplest variant of differential privacy (pure

ε)—and it is well known that Fuzz cannot be used with more advanced variants

of differential privacy for this reason. Restricting Fuzz to disallow scaling would

severely limit the language’s ability to reason about sensitivity.

Linear typing is a general-purpose type discipline, which can be applied to

programming paradigms that track some notion of resource.

Linear typing (Barber, 1996; Girard, 1987) is a good fit for both privacy

and sensitivity analysis because resources are tracked per-variable and combined

additively. In particular, our linear typing approach to privacy allows for

independent privacy costs for multiple function arguments, a feature shared
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by Fuzz and DFuzz (which only support pure ε-differential privacy), but not

supported by prior type systems for (ε, δ)-differential privacy. This limitation of

prior work is due to treating privacy as a computational “effect”—a property of

the output via an indexed monad—as opposed to our treatment of privacy as a

“co-effect”—a property of the context via linear typing.

Our main idea is to co-design two separate languages for privacy and sen-

sitivity, and our main insight is that a linear type system can (1) model more

powerful variants of differential privacy (like (ε, δ)) when strengthened to disallow

scaling, and (2) interact seamlessly with a sensitivity-type system which does

allow scaling. Each language embeds inside the other, and the privacy mecha-

nisms of the underlying privacy definition (e.g. the Gaussian mechanism (Dwork

et al., 2014a)) form the interface between the two languages. Both languages

use similar syntax and identical types. The two languages aid type checking, the

proof of type soundness, and our implementation of type inference; programmers

need not be intimately aware of the multi-language design.

In addition to differential-privacy primitives like the Gaussian mechanism,

we provide a core language design for matrix-based data analysis tasks, such as

aggregation, clipping and gradients. Key challenges we overcome in our design

are how these features compose in terms of function sensitivity, and how to

statically track bounds on vector norms (due to clipping, for the purposes of

privacy)—and each in a way that is general enough to support a wide range of

useful applications.

We demonstrate the usefulness of Duet by implementing and verifying

several differentially private machine learning algorithms from the literature,

including private stochastic gradient descent (Bassily et al., 2014a) and private

Frank-Wolfe (Talwar et al., 2015), among many others. We also implement a

variant of stochastic gradient descent suitable for deep learning. For each of
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these algorithms, no prior work has demonstrated an automatic verification of

differential privacy, and Duet is able to automatically infer privacy bounds

that equal and in some cases improve upon previously published manual privacy

proofs.

We have implemented a typechecker and interpreter for Duet, and we use

these to perform an empirical evaluation comparing the accuracy of models

trained using our implementations. Although the “punchline” of the empirical

results are unsurprising due to known advantages of the differential privacy

definitions used (e.g., that using recent variants like zero-concentrated differential

privacy results in improved accuracy), our results show the extent of the accuracy

improvements for specific algorithms and further reinforce the idea that choosing

the best definition consistently results in substantially better accuracy of the

trained model.
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Chapter 4

Duet’s Contributions.

In summary, Duet makes the following contributions:

• We present Duet, a language, linear type system and tool for expressing

and automatically verifying differentially private programs. Duet supports a

combination of (1) general purpose, higher order programming, (2) advanced

definitions of differential privacy, (3) independent tracking of privacy costs

for multiple function arguments, and (4) auxiliary differentially-private data

analysis tasks such as clipping, normalization, and hyperparameter tuning.

• We formalize Duet’s type system and semantics, and complete key proofs

about privacy of well-typed programs.

• We demonstrate a battery of case studies consisting of medium-sized, real-

world, differentially private machine learning algorithms which are successfully

verified with optimal (or near-optimal) privacy bounds. In some cases, Duet

infers privacy bounds which improve on the best previously published manually-

verified result.

• We conduct an experimental evaluation to demonstrate Duet’s feasibility
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SA HO DT MA Rel-ext ε-DP (ε, δ)-DP Rényi/zCDP/tCDP SVT-imp
Fuzz X X 7 X 7 X 7 7 7
DFuzz X X X X 7 X 7 7 7

PathC X X 71 7 X X X X2 7

HOARe2 X X X 7 X X X X2 7

LightDP 7 7 X X 7 X X X2 X

Fuzzi X 7 71 X X X X X X
Duet X X X X 7 X X X 7

Figure 4.1: Legend: SA = capable of sensitivity analysis; HO = support for higher order
programming, program composition, and compound datatypes; DT = support for dependently
typed privacy bounds; MA = support for distinct privacy bounds of multiple input arguments;
Rel-ext = supports extensions to support non-differential-privacy relations; ε-DP = supports
ε-differential-privacy; (ε, δ)-DP = supports (ε, δ)-differential-privacy; Rényi/zCDP/tCDP:
supports Rényi, zero-concentrated and truncated concentrated differential privacy; SVT-imp:
supports verified implementation of the sparse vector technique. 1: This limitation is not
fundamental and could be supported by simple extension to underlying type theory. 2: Not
described in prior work, but could be achieved through a trivial extension to existing support
for (ε, δ)-differential privacy.

in practice by training two machine learning algorithms on several non-toy

real-world datasets using Duet’s interpreter. These results demonstrate the

effect of improved privacy bounds on the accuracy of the trained models.

4.1 Our Approach

We show the strengths and limitations of Duet in relation to approaches from

prior work in Figure 4.1. In particular, strengths of Duet w.r.t. prior work

are: (1) Duet supports sensitivity analysis in combination with higher order

programming, program composition, and compound datatypes, building on ideas

from Fuzz (SA+HO); (2) Duet supports type-level dependency on values,

which enables differentially private algorithms to be verified w.r.t. symbolic

privacy parameters, building on ideas from DFuzz (DT); (3) Duet supports

calculation of independent privacy costs for multiple program arguments via

a novel approach (MA); and (4) Duet supports (ε, δ)-differential privacy—in

addition to other recent powerful variants, such as Rényi, zero-concentrated

and truncated concentrated differential privacy—via a novel approach ((ε, δ)-DP,

Rényi/ZC/TC)).

In striking this balance, Duet comes with known limitations: (1) Duet

is not easy to extend with new relational properties (Rel-ext); and (2) Duet
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is not suitable for verifying implementations of low-level mechanisms, such

as the implementation of advanced composition, gradient operations, and the

sparse-vector technique (SVT-imp).
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Chapter 5

The Duet Language

5.1 Duet: A Language for Privacy

This section describes the syntax, type system and formal properties of Duet.

Our design of Duet is the result of two key insights.

1. Linear typing, when restricted to disallow scaling, can be a powerful foun-

dation for enforcing (ε, δ)-differential privacy. Privacy bounds in (ε, δ)-

differential privacy do not scale linearly, and cannot be accurately modeled

by linear type systems which permit unrestricted scaling.

2. Sensitivity and privacy cost are distinct properties, and warrant distinct

type systems to enforce them. Our design for Duet is a co-design of two

distinct, mutually embedded languages: one for sensitivity which leverages

linear typing with scaling a la Fuzz, and one for privacy which leverages

linear typing without scaling and is novel in this work.

Before describing the syntax, semantics and types for each of Duet’s two lan-

guages, we first provide some context which motivates each design decision made.
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We do this through several small examples and type signatures drawn from state-

of-the-art type systems such as Fuzz Reed and Pierce (2010), HOARe2 Barthe

et al. (2015) and Azevedo de Amorim et al’s path construction de Amorim et al.

(2018).

5.1.1 Design Challenges

Higher-Order Programming

An important design goal of Duet is to support sensitivity analysis of higher-

order, general purpose programs. Prior work (Fuzz and HOARe2) has demon-

strated exactly this, and we build on their techniques. In Fuzz, the types for

the higher-order map function and a list of reals named xs looks like this:

map : (τ1 (s τ2)(∞ list τ1 (s list τ2

xs : list R

The type of map reads: “Take as a first argument an s-sensitive function from

τ1 to τ2 which map is allowed to use as many times as it wants. Take as second

argument a list of τ1, and return a result list of τ2 which is s-sensitive in the list

of τ1.” Two programs that use map might look like this:

map (λ x→ x+ 1) xs (1 )

map (λ x→ x+ x) xs (2 )

The Fuzz type system reports that (1) is 1-sensitive in xs, and that (2) is 2-

sensitive in xs. To arrive at this conclusion, the Fuzz type checker is essentially

counting how many times x is used in the body of the lambda, and type soundness

for Fuzz means that these counts correspond to the semantic property of function

sensitivity.
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In HOARe2 the type for map is instead:

map : (∀s′. {x :: τ1 | Dτ1(xC, xB) ≤ s′} → {y :: τ2 | Dτ2(yC, yB) ≤ s·s′})

→ ∀s′. {xs :: list τ1 | D(list τ1)(xsC, xsB) ≤ s′}

→ {ys :: list τ2 | D(list τ2)(ysC, ysB) ≤ s·s′}

This type for map means the same thing as the Fuzz type shown above, and

HOARe2 likewise reports that (1) is 1-sensitive and (2) is 2-sensitive, each in

xs, and where Dτ is some family of distance metrics indexed by types τ . To

arrive at this conclusion, HOARe2 generates relational verification conditions

(where, e.g., xC is drawn from a hypothetical “first/left run” of the program,

and xB is drawn from a hypothetical “second/right run” of the program) which

are discharged by an external solver (e.g., SMT). In this approach, sensitivity

is not concluded via an interpretation of a purely syntactic type system (e.g.,

linear typing in Fuzz), rather the relational semantic property of sensitivity

(and its scaling) is embedded directly in the relational refinements of higher-order

function types.

In designing Duet, we follow the design of Fuzz in that programs adhere

to a linear type discipline, i.e., the mechanics of our type system is based on

counting variables and (in some cases) scaling, and we prove a soundness theorem

that says well-typed programs are guaranteed to be sensitive/private programs.

Our type for map is identical to the one shown above for Fuzz.

Non-Linear Scaling

Fuzz encodes an ε-differentially private function as an ε-sensitive function

which returns a monadic type © τ . The Laplace differential privacy mechanism

is then encoded in Fuzz as an ε-sensitive function from R to © R:

laplace : R(ε © R
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Because the metric on distributions for pure ε-differential privacy scales linearly,

laplace can be applied to a 2-sensitive argument to achieve 2ε-differential privacy,

e.g.:

laplace (x+ x)

gives 2ε-differential privacy for x. Adding more advanced variants of differential

privacy like (ε, δ) to Fuzz has proved challenging because these variants do not

scale linearly. Azevedo de Amorim et al’s path construction successfully adds

(ε, δ)-differential privacy to Fuzz by tracking privacy “cost” as an index on the

monadic type operator ©ε,δ. However, in order to interpret a function application

like the one shown, the group privacy property for (ε, δ)-differential privacy must

be used, which results in undesirable non-linear scaling of the privacy cost. The

derived bound for this program using group privacy (for k = 2) is not (2ε, 2δ)

but (2ε, 2eεδ) Dwork et al. (2014a). As a result, achieving a desired ε and δ

by treating an s-sensitive function as 1-sensitive and leveraging group privacy

requires adding much more noise than simply applying the Gaussian mechanism

with a sensitivity of s.

In HOARe2, the use of scaling which might warrant the use of group privacy

is explicitly disallowed in the stated relational refinement type. This is in contrast

to sensitivity, which likewise must explicitly allow arbitrary scaling. The type for

gauss in HOARe2 (the analogous mechanism to laplace in the (ε, δ)-differential

privacy setting) is written:

gauss : {x :: R | DR(xC, xB) ≤ 1} →Mε,δ R

Notice the assumed sensitivity of x to be bounded by 1, not some arbitrary

s′ to be scaled in the output refinement (as was seen in the type for map in
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HOARe2 above). In this way, HOARe2 is able to restrict uses of gauss to

strictly 1-sensitive arguments, a restriction that is not possible in a pure linear

type system where arbitrary program composition is allowed and interpreted via

scaling.

In Duet, we co-design two languages which are mutually embedded inside one

another. The sensitivity language is nearly identical to Fuzz, supports arbitrary

scaling, and is never interpreted to mean privacy. The privacy language is also

linearly typed, but restricts function call parameters to be strictly 1-sensitive—a

property established in the sensitivity fragment. The gauss mechanism in Duet

is (essentially) given the type:

gauss : R@〈ε, δ〉(∗ R

where (∗ is the function space in Duet’s privacy language, and the annota-

tion @〈ε, δ〉 tracks the privacy cost of that argument following a linear typing

discipline.

Multiple Private Parameters Both HOARe2 and the path construction track

(ε, δ)-differential privacy via an indexed monadic type, notated Mε,δ and ©ε,δ

respectively. E.g., a program that returns an (ε, δ)-differentially private real

number has the typeMε,δ(R) in HOARe2. These monadic approaches to privacy

inherently follow an “effect” type discipline, and as a result the monad index

must track the sum total of all privacy costs to any parameter . For example,

a small program that takes two parameters, applies a mechanism to enforce

differential privacy for each parameter, and adds them together, will report a

double-counting of privacy cost. E.g., in this HOARe2 program (translated to
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Haskell-ish “do”-notation):

let f = λ x y → do { r1 ← gaussε,δ x ; r2 ← gaussε,δ y ; return (r1 + r2) }

The type of f in HOARe2 reports that it costs (2ε, 2δ) privacy:

f : {x :: R | DR(xC, xB) ≤ 1} → {y :: R | DR(yC, yB) ≤ 1} →M2ε,2δ R

This bound is too conservative in many cases: it is the best bound in the case that

f is applied to the same variable for both arguments (e.g., in f a a), however, if

f is applied to different variables (e.g., in f a b) then a privacy cost of (2ε, 2δ) is

still claimed, interpreted as for either or both variables 2ε, 2δ privacy is consumed.

A better accounting of privacy in this second case should report (ε, δ)-differential

privacy independently for both variables a and b, and such accounting is not

possible in either HOARe2 or the path construction.

In Duet, we track privacy following a co-effect discipline (linear typing

without scaling), as opposed to an effect discipline, in order to distinguish

privacy costs independently for each variable. The type of the above program in

Duet is:

f : (R@〈ε, δ〉,R@〈ε, δ〉)(∗ R

indicating that f “costs” (ε, δ) for each parameter independently, and only when f

is called with two identical variables as arguments are they combined as (2ε, 2δ).

Due to limitations of linear logic in the absence of scaling, privacy lambdas

must be multi-argument in the core design of Duet—they cannot be recovered

by single-argument lambdas. As a consequence, our privacy language is not

Cartesian closed.
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5.1.2 Duet by Example

Sensitivity. Duet consists of two languages: one for tracking sensitivities

(typeset in green), and one for tracking privacy cost (typeset in red). The

sensitivity language is similar to that of DFuzz Gaboardi et al. (2013a); its

typing rules track the sensitivity of each variable by annotating the context. For

example, the expression x+ x is 2-sensitive in x; the typing rules in Figure 5.3

allow us to conclude:

{x :2 R} ` x+ x : R

In this case, the context {x :2 R} tells us that the expression is 2-sensitive in x.

The same idea works for functions; for example:

∅ ` λx : R⇒ x+ x : R(2 R

Here, the context is empty; instead, the function’s sensitivity to its argument

is encoded in an annotation on its type (the 2 in R(2 R). Applying such a

function to an argument scales the sensitivity of the argument by the sensitivity

of the function. This kind of scaling is appropriate for sensitivities, and even

has the correct effect for higher-order functions. For example:

{y :2 R} ` (λx : R⇒ x+ x) y : R

{y :4 R} ` (λx : R⇒ x+ x) (y + y) : R

{y :4 R, z :2 R} ` (λx : R⇒ x+ x) (y + y + z) : R

{y :1 R} ` λx : R⇒ y : R(0 R

{y :1 R, z :0 R} ` (λx : R⇒ y) z : R

{y :2 R, z :0 R} ` (λf : R(0 R⇒ (f z) + (f z)) (λx : R⇒ y) : R
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Privacy. Differentially private mechanisms like the Gaussian mechanism Dwork

et al. (2014a) specify how to add noise to a function with a particular sensitivity

in order to ensure differential privacy. In Duet, such mechanisms form the

interface between the sensitivity language and the privacy language. For example:

{x :ε,δ R} ` gauss[R+[2.0], ε, δ] <x> {x+ x} : R

In a gauss expression, the first three elements (inside the square brackets)

represent the maximum allowed sensitivity of variables in the expression’s body,

and the desired privacy parameters ε and δ. The fourth element (here, <x>) is

a list of variables whose privacy we are interested in tracking. Variables not in

this list will be assigned infinite privacy cost.

The value of the gauss expression is the value of its fifth element (the “body”),

plus enough noise to ensure the desired level of privacy. The body of a gauss

expression is a sensitivity expression, and the gauss expression is well-typed

only if its body typechecks in a context assigning a sensitivity to each variable of

interest which does not exceed the maximum allowed sensitivity. For example,

the expression gauss[R+[1.0], ε, δ] <x> {x+ x} is not well-typed, because x+x

is 2-sensitive in x, but the maximum allowed sensitivity is 1.

Privacy expressions like the example above are typed under a privacy context

which records privacy cost for individual variables. The context for this example

({x :ε,δ R}) says that the expression provides (ε, δ)-differential privacy for the

variable x. Tracking privacy costs using a co-effect discipline allows precise

tracking of the privacy cost for programs with multiple inputs:

{x :ε,δ R, y :ε,δ R} ` gauss[R+[1.0], ε, δ] <x, y> {x+ y} : R
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The Bind rule encodes the sequential composition property of differential privacy.

For example:

{x :2ε,2δ R} `

v1 ← gauss[R+[1.0], ε, δ] <x> {x} ;

v2 ← gauss[R+[1.0], ε, δ] <x> {x} ;

return v1 + v2

: R

{x :ε,δ R, y :ε,δ R} `

v1 ← gauss[R+[1.0], ε, δ] <x> {x} ;

v2 ← gauss[R+[1.0], ε, δ] <y> {y} ;

return v1 + v2

: R

In the example on the left, the Gaussian mechanism is applied to x twice, so

the total privacy cost for x is (2ε, 2δ). In the example on the right, x and y are

each used once, and their privacy costs are tracked separately. The Return rule

provides a second interface between the sensitivity and privacy languages: a

return expression is part of the privacy language, but its argument is a sensitivity

expression. The value of a return expression is exactly the value of its argument,

so the variables used in its argument are assigned infinite privacy cost. return

expressions are therefore typically used to compute on values which are already

differentially private (like v1 and v2 above), since infinite privacy cost is not a

problem in that case.

Gradient descent. Machine learning problems are typically defined in terms of

a loss function L(θ;X, y) on a model θ, training samples X = (x1, x2, . . . , xn) (in

which each sample is typically represented as a feature vector) and corresponding

labels y = (y1, y2, . . . , yn) (i.e. the prediction target). The training task is to

find a model θ̂ which minimizes the loss on the training samples (i.e. θ̂ =

argminθL(θ;X, y).

One solution to the training task is gradient descent, which starts with an

initial guess for θ and iteratively moves in the direction of an improved θ until

the current setting is close to θ̂. To determine which direction to move, the
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algorithm evaluates the gradient of the loss, which yields a vector representing

the direction of greatest increase in L(θ;X, y). Then, the algorithm moves in

the opposite direction.

To ensure differential privacy for gradient-based algorithms, we need to

bound the sensitivity of the gradient computation. The gradients for many kinds

of convex loss functions are 1-Lipschitz Wu et al. (2017): if each sample in

X = (x1, . . . , xn) has bounded L2 norm (i.e. ‖ xi ‖2≤ 1), then for all models θ

and labelings y, the gradient ∇ (θ;X, y) has L2 sensitivity bounded by 1. For

now, we will assume the existence of a function called gradient with this property

(more details in Section 6.1).

gradient : MU
L2[1, n] R(∞ MU

L∞[m, n] D( 1
m
MU

L∞[m, 1] D( 1
m
MU

L2[1, n] R

The function’s arguments are the current θ, a m × n matrix X containing n

training samples, and a 1× n matrix y containing the corresponding labels. In

Duet, the type MU
L∞[m,n] D represents a m×n matrix of discrete real numbers;

neighboring matrices of this type differ arbitrarily in a single row. The function’s

output is a new θ of type MU
L2[1, n] R, representing a matrix of real numbers

with bounded L2 sensitivity (see Section 6.1 for details on matrix types). We can

use the gradient function to implement a differentially private gradient descent

algorithm:

noisy-gradient-descent(X, y, k, ε, δ) ,

let θ0 = zeros (cols X1) in

loop[δ′] k on θ0 <X1, y> {t, θ ⇒

gp ← mgauss[ 1
m
, ε, δ] <X, y> {gradient θ X y} ;

return θ − gp }

The arguments to our algorithm are the training data (X and y), the desired
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number of iterations k, and the privacy parameters ε and δ. The first line

constructs an initial model θ0 consisting of zeros for all parameters. Lines 2-4

represent the iterative part of the algorithm: k times, compute the gradient of

the loss on X and y with respect to the current model, add noise to the gradient

using the Gaussian mechanism, and subtract the gradient from the current model

(thus moving in the opposite direction of the gradient) to improve the model.

The typing rules presented in Figure 5.3 allow us to derive a privacy bound

for this algorithm which is equivalent to manual proof of Bassily et al. Bassily

et al. (2014b). Based on the type of the gradient function, the (-E rule allows

us to conclude that the gradient operation is 1
m -sensitive in the training data,

which is reflected by the sensitivity annotations in the context:

{θ :∞ τ1, X : 1
m
τ2, y : 1

m
τ3} ` gradient θ X y : MU

L2[1, n] R

where τ1 = MU
L2[1, n] R

τ2 = MU
L∞[m,n] D

τ3 = MU
L∞[m, 1] D

Next, the MGauss rule represents the use of the Gaussian mechanism, and

transitions from the sensitivity language (implementing the gradient) to the

privacy language (in which we use the noisy gradient). The rule allows us to

conclude that since the sensitivity of the gradient computation is 1
m , our use

of the Gaussian mechanism satisfies (ε, δ)-differential privacy. This context

is a privacy context, and its annotations represent privacy costs rather than

sensitivities.

{θ :∞ τ1, X :〈ε,δ〉 τ2, y :〈ε,δ〉 τ3} ` mgauss[ 1
m , ε, δ] <X, y> {gradient θ X y}

: MU
L2[1, n] R

Finally, the Loop rule for advanced composition allows us to derive a bound on
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the total privacy cost of the iterative algorithm, based on the number of times

the loop runs:

{θ :∞ τ1, X :〈ε′,kδ+δ′〉 τ2, y :〈ε′,kδ+δ′〉 τ3} ` loop[δ′] k on θ0 <X1, y> {t, θ ⇒ . . .}

: MU
L2[1, n] R

where ε′ = 2ε
√

2k log(1/δ′)

Variants of Differential Privacy. The typing rules presented in Figure 5.3

are specific to (ε, δ)-differential privacy, but the same framework can be easily

extended to support the other variants described in Figure 2.1. New variants

can be supported by making three simple changes: (1) Modify the privacy cost

syntax p to describe the privacy parameters of the new variant; (2) Modify the

sum operator + to reflect sequential composition in the new variant; and (3)

Modify the typing for basic mechanisms (e.g. gauss) to reflect corresponding

mechanisms in the new variant. The extended version of this paper Near et al.

(2019a) includes typing rules for the variants in Figure 2.1.

As an example, considering the following variant of the noisy gradient descent

algorithm presented earlier, but with ρ-zCDP instead of (ε, δ)-differential privacy.

There are only two differences: the loop construct under zCDP has no δ′

parameter, since standard composition yields tight bounds, and the mgauss

construct has a single privacy parameter (ρ) instead of ε and δ.

noisy-gradient-descent(X, y, k, ρ) ,

let θ0 = zeros (cols X1) in

loop k on θ0 <X1, y> {t, θ ⇒

gp ← mgauss[ 1
m
, ρ] <X, y> {gradient θ X y} ;

return θ − gp }

Typechecking for this version proceeds in the same way as before, with the
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modified typing rules; the resulting privacy context gives both X and y a privacy

cost of kρ.

Mixing Variants. Duet allows mixing variants of differential privacy in a

single program. For example, the total privacy cost of an algorithm is often

given in (ε, δ) form, to enable comparing the costs of different algorithms; we can

use this feature of Duet to automatically derive the cost of our zCDP-based

gradient descent in terms of ε and δ.

noisy-gradient-descent(X, y, k, ρ, δ) ,

let θ0 = zeros (cols X1) in

ZCDP [δ] { loop k on θ0 <X1, y> {t, θ ⇒

gp ← mgauss[ 1
m
, ρ] <X, y> {gradient θ X y} ;

return θ − gp } }

The ZCDP {. . .} construct represents embedding a mechanism which satisfies

ρ-zCDP in another mechanism which provides (ε, δ)-differential privacy. The

rule for typechecking this construct encodes the property that if a mechanism

satisfies ρ-zCDP, it also satisfies (ρ+ 2
√
ρ log(1/δ), δ)-differential privacy Bun

and Steinke (2016). Using this rule, we can derive a total privacy cost for the

gradient descent algorithm in terms of ε and δ, but using the tight bound on

composition that zCDP provides.

{X :〈ε′,δ〉 τ2, y :〈ε′,δ〉 τ3, k :∞ τ4, ρ :∞ τ5} ` noisy-gradient-descent(X, y, k, ρ, δ)

: MU
L2[1, n] R

where ε′ = kρ+ 2
√
kρ log(1/δ), τ3 = R+[k], and τ5 = R+[ρ]

We might also want to nest these conversions. For example, when the dimen-

sionality of the training data is very small, the Laplace mechanism might yield

more accurate results than the Gaussian mechanism (due to the shape of the
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distribution). To use the Laplace mechanism in an iterative algorithm which

satisfies zCDP, we can use the fact that any ε-differentially private mechanism

also satisfies 1
2ε

2-zCDP; by nesting conversions, we can determine the total cost

of the algorithm in terms of ε and δ.

noisy-gradient-descent(X, y, k, ε, δ) ,

let θ0 = zeros (cols X1) in

ZCDP [δ] { loop k on θ0 <X1, y> {t, θ ⇒

gp ← EPS_DP { mlaplace[ 1
m
, ε] <X, y> {gradient θ X y} } ;

return θ − gp } }

{X :〈ε′,δ〉 τ2, y :〈ε′,δ〉 τ3, k :∞ R+, ρ :∞ R+} ` noisy-gradient-descent(X, y, k, ε, δ)

: MU
L2[1, n] R

where ε′ = 1
2kε

2 + 2
√

1
2kε

2 log(1/δ)

Such nestings are sometimes useful in practice: in Section 7.1, we will define

a variant of the Private Frank-Wolfe algorithm which uses the exponential

mechanism (which satisfies ε-differential privacy) in a loop for which composition

is performed with zCDP, and report the total privacy cost in terms of ε and δ.

Contextual Modal Types

A new problem arises in the design of Duet governing the interaction of

sensitivity and privacy languages: in general—and for very good reasons which

are detailed in the next section—let-binding intermediate results in the privacy

language doesn’t always preserve typeability. Not only is let-binding intermediate

results desirable for code readability, it can often be essential in order to achieve

desirable performance. Consider a loop body which performs an expensive
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operation that does not depend on the inner-loop parameter:

λ xs θ0 → loop k times on θ0 { θ →

gaussε,δ (f (expensive xs) θ)) }

A simple refactoring achieves much better performance:

λ xs θ0 → let temp = expensive xs in

loop k times on θ0 { θ →

gaussε,δ (f temp θ) }

However instead of providing (ε, δ)-differential privacy for xs, as was the case

before the refactor, the new program provides (ε, δ)-differential privacy for

temp—an intermediate variable we don’t care about—and makes no guarantees

of privacy for xs.

To accommodate this pattern we borrow ideas from contextual modal type the-

ory Nanevski et al. (2008) to allow “boxing” a sensitivity context, and “unboxing”

that context at a later time. In terms of differential privacy, the argument that the

above loop is differentially private relies on the fact that temp ≡ expensive(xs)

is 1-sensitive in xs (assuming expensive is 1-sensitive), a property which is lost

by the typing rule for let in the privacy language. We therefore “box” this

sensitivity information outside the loop, and “unbox” it inside the loop, like so:

λ xs θ0 → let temp = box (expensive xs) in

loop k times on θ0 { θ →

gaussε,δ (f (unbox temp) θ) }

In this example, the type of temp is a �[xs@1] data (a “box of data 1-sensitive

in xs”) indicating that when unboxed, temp will report 1-sensitivity w.r.t xs,

not temp. f is then able to make good on its promise to gauss that the result of
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m,n ∈ N r ∈ R ṙ, ε, δ ∈ R+ x, y ∈ var
s ∈ sens ::= ṙ | ∞ p ∈ priv ::= ε, δ | ∞

τ ∈ type ::= N | R | N[n] | R+[_r] | box[Γs] τ numeric and box
| τ (s τ | (τ@p, . . . , τ@p)(* τ functions

Γs ∈ tcxts , var ⇀ sens× type ::= {x :s τ , . . . , x :s τ} sens. contexts

Γp ∈ tcxtp , var ⇀ priv × type ::= {x :p τ , . . . , x :p τ} priv . contexts

es ∈ exps ::= N[n] | N[_r] | n | r | real e numeric literals
| e + e | e-e | e·e | 1/e | e mod e arithmetic
| x | let x = e in e | e e let/sens. app.
| sλ x : τ ⇒ e | pλ (x : τ , . . . , x : τ)⇒ e sens. /priv . fun.
| box e | unbox e sensitivity capture

ep ∈ expp ::= return e | x← e ; e | e(e, . . . , e) ret/bind/priv . app.
| loop[e] e on e <x, . . . , x> {x, x⇒ e} finite iteration
| gauss[e, e, e] <x, . . . , x> {e} gaussian noise

Figure 5.1: Core Types and Terms

f is 1-sensitive in xs (assuming f is 1-sensitive in its first argument), and gauss

properly reports its privacy “cost” in terms of xs, not temp.

We use exactly this pattern in many of our case studies, where expensive

is a pre-processing operation on the input data (e.g., clipping or normalizing),

and f is a machine-learning training operation, such as computing an improved

model based on the current model θ and the pre-processed input data temp.

5.1.3 Duet Syntax & Typing Rules

Figure 22.1 shows a core subset of syntax for both languages. We only present

the privacy fragment for (ε, δ)-differential privacy in the core formalism, although

support for other variants (and combined variants) is straightforward as sketched

in the previous section. See the extended version of this paper Near et al.

(2019a) for the complete presentation of the full language including all advanced

variants of differential privacy. We use color coding to distinguish between the

sensitivity language, privacy language, and shared syntax between languages.

The sensitivity and privacy languages share syntax for variables and types, which
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Γ ` e : τ

Nat

` n : N

Real

` r : R

Singleton Nat

` N[n] : N[n]

Singleton Real

` R+[_r] : R+[_r]

Real-S
Γ ` e : N[n]

` real e : R+[n]

Real-D
Γ ` e : N

Γ ` real e : R

Times-DS
Γ1 ` e1 : R Γ2 ` e2 : R+[_r]

ṙΓ1 ` e1·e2 : τ

Mod-DS
Γ1 ` e1 : R Γ2 ` e2 : R+[_r]

eΓ1dṙ ` e1 mod e2 : τ

Var

{x :1 τ} ` x : τ

Let
Γ1 ` e1 : τ1 Γ2 ] {x :s τ1} ` e2 : τ2

sΓ1 + Γ2 ` let x = e1 in e2 : τ2
(-I

Γ ] {x :s τ1} ` e : τ2

Γ ` (λ x : τ1 ⇒ e) : τ1(s τ2

(-E
Γ1 ` e1 : τ1(s τ2 Γ2 ` e2 : τ1

Γ1 + sΓ2 ` e1 e2 : τ2

(∗-I
Γ ] {x1 :p1

τ1, . . . , xn :pn τn} ` e : τ

eΓd∞ ` (pλ (x1 : τ1, . . . , xn : τn)⇒ e) : (τ1@p1, . . . , τn@pn)(
* τ

Box-I
Γ ` e : τ

` box e : box[Γ] τ
Box-E

Γ ` e : box[Γ′] τ

Γ + Γ′ ` unbox e : τ

Sub
Γ1 ` e : τ Γ1 ≤ Γ2

Γ2 ` e : τ

Figure 5.2: Core Typing Rules: Sensitivity
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Γ ` e : τ

Return
Γ ` e : τ

eΓd∞ ` return e : τ

Bind
Γ1 ` e1 : τ1 Γ2 ] {x :∞ τ1} ` e2 : τ2

Γ1 + Γ2 ` x ← e1 ; e2 : τ2

(∗-E Γ ` e : (τ1@p1, . . . , τn@pn) (*
τ eΓ1d

1 ` e1 : τ1 · · · eΓnd
1 ` en : τn

eΓd∞ + eΓ1d
p1 + · · · + eΓnd

pn ` e(e1, . . . , en) : τ

Loop (Advanced Composition)

Γ1 ` e1 : R+
[δ
′
] Γ2 ` e2 : N[n] Γ3 ` e3 : τ Γ4 + ebΓ′4cd

ε,δ

{x′1,...,x
′
n}
] {x1 :∞ N, x2 :∞ τ} ` e4 : τ

eΓ3d
∞

+ eΓ4d
∞

+ ebΓ′4cd
2ε
√

2n ln(1/δ′),δ′+nδ
{x′1,...,x

′
n}

` loop[e1] e2 on e3 <x
′
1, . . . , x

′
n> {x1, x2 ⇒ e4} : τ

Gauss
Γ1 ` e1 : R+

[_rs] Γ2 ` e2 : R+
[ε] Γ3 ` e3 : R+

[δ] Γ4 + ebΓ′4cd
ṙs
{x1,...,xn}

` e4 : R

eΓ4d
∞

+ ebΓ′4cd
ε,δ

{x′1,...,x
′
n}
` gauss[e1, e2, e3] <x

′
1, . . . , x

′
n> {e4} : R

Figure 5.3: Core Typing Rules: Privacy

are typeset in blue. Expressions in the sensitivity language are typeset in green,

while expressions in the privacy language are typeset in red.1

Types τ include base numeric types N and R and their treatment is standard.

We include singleton numeric types N[n] and R+[ṙ]; these types classify runtime

numeric values which are identical to the static index n or ṙ, e.g., N[n] is a type

which exactly describes its runtime value as the number n. Static reals only

range over non-negative values, and we write ṙ for elements of the non-negative

reals R+. Singleton natural numbers are used primarily to construct matrices

with some statically known dimension, and to execute loops for some statically

known number of iterations. Singleton real numbers and are used primarily for

tracking sensitivity and privacy quantities. Novel in Duet is a “boxed” type

box[Γs] τ which delays the “payment” of a value’s sensitivity, to be unboxed

and “paid for” in a separate context. Boxing is discussed in more detail later

in this section. The sensitivity function space (a la Fuzz) is written τ1 (s τ2

and encodes an s-sensitive function from τ1 to τ2. The privacy function space

(novel in Duet) is written (τ1@p1, . . . , τn@pn)(∗ τ and encodes a multi-arity

function that preserves pi-privacy for its ith argument. Privacy functions are
1Colors were chosen to minimize ambiguity for colorblind persons following a colorblind-

friendly palette: http://mkweb.bcgsc.ca/colorblind/img/colorblindness.palettes.png
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multi-arity because functions of multiple arguments cannot be recovered from

iterating functions over single arguments in the privacy language, as can be done

in the sensitivity language.

In our implementation and extended presentation of Duet in the extended

version of this paper, we generalize the static representations of natural numbers

and reals to symbolic expression η, which may be arbitrary symbolic polynomial

formulas including variables. E.g., suppose ε is a type-level variable ranging over

real numbers and x:N[ε], then 2x:N[2ε]. Our type checker knows this is the same

type as N[ε+ε] using a custom solver we implemented but do not describe in

this paper. Because the typelevel representation of a natural number can be a

variable, its value is therefore not statically determined , rather it is statically

tracked via typelevel symbolic formulas.

Type contexts in the sensitivity language Γs track the sensitivity s of each

free variable whereas in the privacy language Γp they track privacy cost p.

Sensitivities are non-negative reals ṙ extended with a distinguished infinity

element ∞, and privacy costs are specific to the current privacy mode. In the

case of (ε, δ)-differential privacy, p has the form ε, δ or ∞ where ε and δ range

over R+.

We reuse notation conventions from Fuzz for manipulating contexts, e.g.,

Γ1+Γ2 is partial and defined only when both contexts agree on the type of each

variable; adding contexts adds sensitivities pointwise, i.e., {x:s1+s2τ} ∈ Γ1+Γ2

when {x:s1τ} ∈ Γ1 and {x:s2τ} ∈ Γ2; and scaling contexts scales sensitivities

pointwise, i.e., {x:ss′τ} ∈ sΓ when {x:s′τ} ∈ Γ.

We introduce a new operation not shown in prior work called truncation and

written es1ds2 for truncating a sensitivity and eΓds for truncating a sensitivity

context, which is pointwise truncation of sensitivities. Sensitivity truncation
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e ds maps 0 to 0 and any other value to s:

e d ∈ sens× sens→ sens es1ds2 ,

0 if s1 = 0

s2 if s1 6= 0

Truncation is defined analogously for privacies ep1dp2 , for converting between

sensitivities and privacies esdp and epds, and also for liftings of these operations

pointwise over contexts eΓdp, eΓdp and eΓds. Sensitivity truncation is used for

typing the modulus operator, and truncating between sensitivities and privacies

is always to ∞/∞ and appears frequently in typing rules that embed sensitivity

terms in privacy terms and vice versa.

The syntax and language features for both sensitivity and privacy languages

are discussed next alongside their typing rules. Figure 5.3 shows a core subset of

typing rules for both languages. In the typing rules, the languages embed within

each other—sensitivity typing contexts are transformed into privacy contexts and

vice versa. Type rules are written in logical style with an explicit subsumption

rule, although a purely algorithmic presentation is possible (not shown) following

ideas from Azevedo de Amorim et al De Amorim et al. (2014) which serves as

the basis for our implementation.

5.1.4 Sensitivity Language

Duet’s sensitivity language is similar to that of DFuzz Gaboardi et al. (2013a),

except that we extend it with significant new tools for machine learning in

Section 6.1. We do not present standard linear logic connectives such as sums,

additive products and multiplicative products (a la Fuzz), or symbolic type-

level expressions (a la DFuzz), although each are implemented in our tool and

described formally in the extended version of this paper Near et al. (2019a).

We do not formalize or implement general recursive types in order to ensure
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that all Duet programs terminate. Including general recursive types would be

straightforward in Duet (following the design of Fuzz), however such a decision

comes with known limitations. As described in Fuzz Reed and Pierce (2010),

requiring that all functions terminate is necessary in order to give both sound and

useful types to primitives like set-filter. The design space for the combination of

sensitivity types and nontermination is subtle, and discussed extensively in prior

work Reed and Pierce (2010); Azevedo de Amorim et al. (2017).

Typing for literal values is immediate (Nat, Real). Singleton values are

constructed using the same syntax as their types, and where the type level

representation is identical to the literal (Singleton Nat, Singleton Real). Naturals

can be converted to real numbers through the explicit conversion operation real

(Real-S, Real-D). For the purposes of sensitivity analysis, statically known

numbers are considered constant, and as a consequence any term that uses

one is considered 0-sensitive in the statically known term. The result of this

is that the sensitivity environment Γ associated with the subterm at singleton

type is dropped from the output environment, e.g., in Real-S. This dropping is

justified by our metric space interpretation JN[n]K for statically known numbers

as singleton sets {n}, and because for all x, y ∈ JN[n]K, x = y and therefore

|x− y| = 0.

Type rules for arithmetic operations are given in multiple variations, depend-

ing on whether or not each argument is tracked statically or dynamically. We

show only the rule for multiplication when the left argument is dynamic and

the right argument is static (Times-DS). The resulting sensitivity environment

reports the sensitivities of e1 scaled by ṙ—the statically known value of e2—and

the sensitivities for e2 are not reported because its value is fixed and cannot

vary, as discussed above. When both arguments are dynamic, the resulting

sensitivity environment is ∞(Γ1 + Γ2), i.e., all potentially sensitive variables
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for each expression are bumped to infinity. The modulus operation is similar

to multiplication in that we have cases for each variation of static or dynamic

arguments, however the context is truncated rather than scaled in the case of

one singleton-typed parameter; we show only this static-dynamic variant in the

figure (Mod-DS).

Typing for variables (Var) and functions ((-I, (-E) is the same as in

Fuzz: variables are reported in the sensitivity environment with sensitivity 1;

and closures are created by annotating the arrow with the sensitivity s of the

argument in the body, and by reporting the rest of the sensitivities Γ from

the function body as the sensitivity of whole closure as a whole; and function

application scales the argument by the function’s sensitivity s.

The first new (w.r.t. DFuzz) term in our sensitivity language is the privacy

lambda. Privacy lambdas are multi-arity (as opposed to single-arity sensitivity

lambdas) because the privacy language does not support currying to recover multi-

argument functions. Privacy lambdas are created in the sensitivity language with

pλ (x : τ , . . . , x : τ)⇒ e and applied in the privacy language with e(e, . . . , e).

The typing rule for privacy lambdas ((∗-I) types the body of the lambda in

a privacy type context extended with its formal parameters, and the privacy

cost of each parameter is annotated on its function argument type. Unlike

sensitivity lambdas, the privacy cost of variables in the closure environment are

not preserved in the resulting typing judgment. The reason for this is twofold:

(1) the final “cost” for variables in the closure environment depends on how

many times the closure is called, and in the absence of this knowledge, we must

conservatively assume that it could be called an infinite number of times, and (2)

the interpretation of an ∞-sensitive function coincides with that of an ∞-private

function, so we can soundly convert between ∞-privacy-cost and ∞-sensitivity

contexts freely using truncation.
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The final two new terms in our sensitivity language are introduction and

elimination forms for “boxes” (Box-I and Box-E). Boxes have no operational

behavior and are purely a type-level mechanism for tracking sensitivity. The

rules for box introduction capture the sensitivity context of the expression,

and the rule for box elimination pays for that cost at a later time. Boxes

are reminiscent of contextual modal type theory Nanevski et al. (2008)—they

allow temporary capture of a linear context via boxing—thereby deferring its

payment—and re-introduction of the context at later time via unboxing. In a

linear type system that supports scaling, this boxing would not be necessary, but

it becomes necessary in our system to achieve the desired operational behavior

when interacting with the privacy language, which does not support scaling.

E.g., in many of our examples we perform some pre-processing on the database

parameter (such as clipping) and then use this parameter in the body of a loop.

Without boxing, the only way to achieve the desired semantics is to re-clip the

input (a deterministic operation) every time around the loop—boxing allows

you to clip on the outside of the loop and remember that privacy costs should

be “billed” to the initial input.

5.1.5 Privacy Language

Duet’s privacy language is designed specifically to enable the composition of

individual differentially private computations. It has a linear type system, but

unlike the sensitivity language, annotations instead track privacy cost, and the

privacy language does not allow scaling of these annotations, that is, the notation

pΓ is not used and cannot be defined. Syntax return e and x←e;e (pronounced

“bind”) are standard from Fuzz, as are their typing rules (Return, Bind), except

for our explicit conversion from a sensitivity context Γ to a privacy context Γ

by truncation to infinity in the conclusion of Return. Bind encodes exactly the
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post-processing property of differential privacy—it allows e2 to use the value

computed by e1 any number of times after paying for it once.

Privacy application e(e, . . . , e) applies a privacy function (pλ, created in the

sensitivity language) to a sequence of 1-sensitivity arguments—the sensitivity is

enforced by the typing rule. The type rule ((*-E) checks that the first term

produces a privacy function and applies its privacy costs to function arguments

which are restricted by the type system to be 1-sensitive. We use truncation in

well-typed hypothesis for e1 . . . en to encode the restriction that the argument

must be 1-sensitive. This restriction is crucial for type soundness—arbitrary

terms cannot be given tight privacy bounds statically due to the lack of a tight

scaling operation in the model for (ε, δ)-differential privacy. The same is true for

other advanced variants of differential privacy.

The loop expression is for loop iteration fixed to a statically known number

of iterations. The syntax includes a list of variables (<x, . . . , x>) to indicate

which variables should be considered when calculating final privacy costs, as

explained shortly. The typing rule (Loop) encodes advanced composition for

(ε, δ)-differential privacy. e1 is the δ′ parameter to the advanced composition

bound and e2 is the number of loop iterations—each of these values must be

statically known, which we encode with singleton types (a la DFuzz). Statically

known values are fixed and their sensitivities do not appear in the resulting

context. e3 is the initial value passed to the loop, and for which no claim is

made of privacy, indicated by truncation to infinity. e4 is a loop body with free

variables x1 and x2 which will be iterated e2 times with the first variable bound

to the iteration index, and the second variable bound to the loop state, where e3

is used as the starting value. The loop body e4 is checked in a privacy context

Γ4 + ebΓ′4cd{x′ε,δ1 ,...,x′n}
, shorthand for ebΓ′4c{x′1,...,x′n}d

ε,δ where bΓ′4c{x′1,...,x′n} is

a context restricted to only the variables x′1, . . . , x′n. The ε, δ is an upper bound
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on the privacy cost of the variables x′i in the loop body, and the resulting privacy

bound is restricted to only those variables. This allows variables for which the

programmer is not interested in tracking privacy to appear in Γ4 in the premise,

and the rule’s conclusion makes no claims about privacy for these variables. We

make use of this feature in all of our examples programs.

The gauss expression is a mechanism of (ε, δ)-differential privacy; other

mechanisms are used for other privacy variants. Like the loop expression,

mechanism expressions take a list of variables to indicate which variables should

be considered in the final privacy cost. The typing rule (Gauss) is similar in spirit

to Loop: it takes parameters to the mechanism which must be statically known

(encoded as singleton types), a list of variables to consider for the purposes of

the resulting privacy bound, and a term {e} for which there is a bound ṙ on

the sensitivity of free variables x1, . . . , xn. The resulting privacy guarantee is

that the term in brackets {e} is ε, δ differentially private. Whereas loop and

advanced composition consider a privacy term loop body with an upper bound

on privacy leakage, gauss considers a sensitivity term body with an upper bound

on its sensitivity.

5.1.6 Metatheory

We denote sensitivity language terms e ∈ exp into total, functional, linear

maps between metric spaces—the same model as the terminating fragment of

Fuzz. Every term in our language terminates by design, which dramatically

simplifies our models and proofs. This restriction poses no issues in implementing

most differentially private machine learning algorithms, because such algorithms

typically terminate in a statically determined number of loop iterations in order

to achieve a particular privacy cost.

Types in Duet denote metric spaces, as in Fuzz. We notate metric spaces D,
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their underlying carrier set ‖ D ‖, and their distance metric |x− y|D, or |x− y|

where D can be inferred from context. Sensitivity typing judgments Γ ` e : τ

denote linear maps from a scaled cartesian product interpretation of Γ:

JΓ {x1:s1τ1, . . . ,xn:snτn} ` τK , !s1Jτ1K⊗ · · · ⊗ !snJτnK( JτK

Although we do not make metric space scaling explicit in our syntax (for the

purposes of effective type inference, a la DFuzz De Amorim et al. (2014)), scaling

becomes apparent explicitly in our model. Privacy judgments Γ ` e : τ denote

probabilistic, privacy preserving maps from an unscaled product interpretation

of Γ:

JΓ {x1:p1
τ1, . . . ,xn:pnτn} ` τK , (Jτ1K@p1, . . . ,JτnK@pn)(∗‖ JτK ‖

The multi-arity (ε, δ)-differential-privacy-preserving map is defined:

(D1@(ε1, δ1), . . . ,Dn@(εn, δn))(∗ X ,

{ f ∈‖ D1 ‖ × · · · × ‖ Dn ‖→ D(X)

| |xi − y|Di ≤ 1⇒ Pr[f(x1, . . . ,xi, . . . ,xn) = d]

≤ eεiPr[f(x1, . . . ,y, . . . ,xn) = d] + δi }

where D(X) is a distribution over elements in X.

We give a full semantic account of typing in the extended version of this

paper Near et al. (2019a), as well as prove key type soundness lemmas, many of

which appeal to well-known differential privacy proofs from the literature.

The final soundness theorem, proven by induction over typing derivations, is

that the denotations for well-typed open terms es and ep in well-typed environ-

ments γs and γp are contained in the denotation of their typing contexts Γs ` τ

and Γp ` τ .
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Theorem 5.1.1.

1. If Γp ` ep : τ and Γp ` γp then JepKγp ∈ JΓp ` τK

2. If Γs ` es : τ and Γs ` γs then JesKγs ∈ JΓs ` τK

A corollary is that any well-typed privacy lambda function satisfies (ε, δ)-

differential privacy for each of its arguments w.r.t. that argument’s privacy

annotation used in typing.
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Chapter 6

Machine Learning in Duet

6.1 Language Tools for Machine Learning

Machine learning algorithms typically operate over a training set of samples,

and implementations of these algorithms often represent datasets using matrices.

To express these algorithms, Duet includes a core matrix API which encodes

sensitivity and privacy properties of matrix operations.

We add a matrix type Mc
`[m,n] τ , encode vectors as single-row matrices, and

add typing rules for gradient computations that encode desirable properties. We

also introduce a type for matrix indices idx[n] for type-safe indexing. These new

types are shown in Figure 6.2, along with sensitivity operations on matrices—

encoded as library functions because their types can be encoded using existing

connectives—and new matrix-level differential PprivacyP mechanisms—encoded

as primitive syntactic forms because their types cannot be expressed using

existing type-level connectives.

In the matrix type Mc
`[m,n] τ , the m and n parameters refer to the number

of rows and columns in the matrix, respectively. The ` parameter determines
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the distance metric used for the matrix metric for the purposes of sensitivity

analysis; the c parameter is used to specify a norm bound on each row of the

matrix, which will be useful when applying gradient functions.

6.1.1 Distance Metrics for Matrices

Differentially private machine learning algorithms typically move from one

distance metric on matrices and vectors to another as the algorithm progresses.

For example, two input training datasets are neighbors if they differ on exactly

one sample (i.e. one row of the matrix), but they may differ arbitrarily in that

row. After computing a gradient, the algorithm may consider the L2 sensitivity of

the resulting vector—i.e. two gradients g1 and g2 are neighbors if ‖ g1−g2 ‖2≤ 1.

These are very different notions of distance—but the first is required by the

definition of differential privacy, and the second is required as a condition on the

input to the Gaussian mechanism.

The ` annotation on matrix types in Duet enables specifying the desired

notion of distance between rows. The annotation is one of L∞, L1, or L2; an

annotation of L∞, for example, means that the distance between two rows is

equal to the L∞ norm of the difference between the rows. The distance between

two matrices is always equal to the sum of the distances between rows. The

distance metric for the element datatype τ determines the distance between

two corresponding elements, and the row metric ` specifies how to combine

elementwise distances to determine the distance between two rows.

Figure 6.1 presents the complete set of distance metrics for matrices, as well

as real numbers and the new domain data for elements of the D type, which is

operationally a copy of R but with a discrete distance metric. Many combinations

are possible, including the following common ones:

Ex. 1: |X −X ′|MU
L∞[m,n] D =

∑
i

maxj |Xi,j −X ′i,j |D
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Domain Carrier : X ∈ set Metric: | − | ∈ X → X → R ] {∞}
real R |r1 − r2| , |r1 − r2|R

data R |r1 − r2| ,
{

0 when r1 = r2

1 when r1 6= r2

matrix[n1, n2]L∞(D) M[n1, n2](‖ D ‖) |m1 −m2| ,
∑
i

maxj |m1[i, j]−m2[i, j]|D

matrix[n1, n2]L1(D) M[n1, n2](‖ D ‖) |m1 −m2| ,
∑
i,j

|m1[i, j]−m2[i, j]|D

matrix[n1, n2]L2(D) M[n1, n2](‖ D ‖) |m1 −m2| ,
∑
i

√∑
j

|m1[i, j]−m2[i, j]|2D

Figure 6.1: Distance Metrics for Matrices

Distance is the number of rows on which X and X ′ differ ; commonly used to

describe neighboring input datasets.

Ex. 2: |X −X ′|MU
L1[m,n] R =

∑
i

∑
j

|Xi,j −X ′i,j |R

Distance is the sum of elementwise differences.

Ex. 3: |X −X ′|MU
L2[m,n] R =

∑
i

√∑
j

|Xi,j −X ′i,j |2R

Distance is sum of the L2 norm of the differences between corresponding rows.

Ex. 4: |X −X ′|MU
L2[1,n] R =

√∑
j

|X1,j −X ′1,j |2R

Represents a vector; distance is L2 sensitivity for vectors, as required by the

Gaussian mechanism.

These distance metrics are used in the types of library functions which operate

over matrices.

6.1.2 Matrix Operations

Figure 6.2 summarizes the matrix operations available in Duet’s API. We focus

on the non-standard operations which are designed specifically for sensitivity or

privacy applications. For example, fr-sens allows converting between notions of

distance between rows; when converting from L2 to L1, the distance between
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` ∈ norm ::= L1 | L2 | L∞ c ∈ clip ::= ` | U τ ∈ type := . . . | D | idx[n] | Mc
`[n, n] τ

rows : Mc
`[m, n] τ (0 N[m] convert : M`

`′ [m, n] D(1 MU
`[m, n] R

cols : Mc
`[m, n] τ (0 N[n] clip` : Mc

`′ [m, n] D(1 M`
`′ [m, n] D

discf : (τ (∞ R)(1 τ (1 D fr-sensL∞ : Mc
L∞[m, n] τ (√n Mc

L2[m, n] τ
undisc : D(∞ R fr-sensL2 : Mc

L2[m, n] τ (√n Mc
L1[m, n] τ

transpose : Mc
L1[m, n] τ (1 MU

L1[n, m] τ to-sens` : Mc
L1[m, n] τ (1 Mc

`[m, n] τ

mcreate : N[m](0 N[n](0 (idx[m](∞ idx[n](∞ τ)(mn MU
L1[m, n] τ

# [ , ] : Mc
`[m, n] τ (1 idx[m](∞ idx[n](∞ τ

# [ , 7→ ] : Mc
`[m, n] τ (1 idx[m](∞ idx[n](∞ τ (1 MU

`[m, n] τ
fld : (τ1 (s1 τ2 (s2 τ3)(mn τ2 (smn2

Mc
L1[m, n] τ1 (s1 τ2

map : (τ1 (s τ2)(mn Mc
`[m, n] τ1 (s MU

`[m, n] τ2
fld-row : (τ1 (s1 τ2 (s2 τ2)(m τ2 (s2m Mc

`[m, n] τ1 (s1 MU
`[m, 1] τ2

map-row : (M`
c1
1

[1, n1] τ1 (s M`
c2
2

[1, n2] τ2)(m M`
c1
1

[m, n1] τ1 (s M`
c2
2

[m, n2] τ2

L ∇g` [ ; , ] : M`
`′ [1, n] R(∞ M`

`′′ [1, n] D(1 D(1 MU
`[1, n] R

U ∇[ ; , ] : M`
`′ [1, n] R(∞ M`′′

L∞[1, n] D(1 D(1 MU
L∞[1, n] D

above-threshold : (Mc
`[1, n] (τ (1 R)@∞, R+[ε]@0, τ@〈ε, 0〉, R@∞)(* idx[n]

pfld-rows : (Mc1
L∞[m, n1] D@〈ε, δ〉, Mc2

L∞[m, n2] D@〈ε, δ〉,
((Mc1

L∞[1, n1] D@〈ε, δ〉, Mc2
L∞[1, n2] D@〈ε, δ〉, D@∞)(* τ)@∞,

τ@∞
)(* τ

sample : (N[m2]@〈0, 0〉,
Mc

L∞[m1, n1] D@〈2m2ε1/m1, m2δ1/m1〉, Mc
L∞[m1, n2] D@〈2m2ε2/m1, m2δ2/m1〉,

((Mc
L∞[m2, n1] D@〈ε1, δ1〉, Mc

L∞[m2, n2] D@〈ε2, δ2〉)(* τ)@∞
)(* τ

Γ ` e : τ
MGauss

Γ1 ` e1 : R+[_r]

Γ2 ` e2 : R+[ε] Γ3 ` e3 : R+[δ] Γ4 + ebΓ5cdṙ{x1,...,xn} ` e4 : Mc
L2[m, n] R

eΓ1 + Γ2 + Γ3d0,0 + eΓ4d∞ + eΓ5dε,δ ` mgauss[e1, e2, e3] <x1, . . . , xn> {e4} : MU
L∞[m, n] R

Exponential
Γ1 ` e1 : R+[_r]

Γ2 ` e2 : R+[ε] Γ3 ` e3 : Mc
`[1, m](τ) Γ4 + ebΓ5cdṙ{x1,...,xn} ] {x :∞ τ} ` e4 : R

eΓ1 + Γ2d0,0 + eΓ3 + Γ4d∞ + eΓ5dε,0 ` exponential[e1, e2] <x1, . . . , xn> e3 {x⇒ e4} : τ

Figure 6.2: Matrix Typing Rules
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two rows may increase by
√
n (by Cauchy-Schwarz), so the corresponding version

of fr-sens has a sensitivity annotation of
√
n.

undisc allows converting from discrete to standard reals, and is infinitely

sensitive. discf allows converting an infinitely sensitive function which returns a

real to a 1-sensitive function returning a discrete real; we can recover a 1-sensitive

function from reals to discrete reals (disc : R(1 D) by applying discf to the

identity function.

Pabove-thresholdP encodes the Sparse Vector Technique Dwork et al. (2014a),

discussed in the extended version of this paper Near et al. (2019a). Ppfld-rowsP

encodes parallel composition of privacy mechanisms, and is discussed in Sec-

tion 7.1.5. P sampleP performs random subsampling with privacy amplification,

and is discussed in Section 7.1.4.

Gradients are computed using L ∇gM`M [ ; , ] and U ∇[ ; , ]. The first

represents an `-Lipschitz gradient (typical in convex optimization problems like

logistic regression) like the gradient function introduced in Section 5.1.2; it is

a 1-sensitive function which produces a matrix of real numbers. The second

represents a gradient without a known Lipschitz constant (typical in non-convex

optimization problems, including training neural networks); it produces a matrix

of discrete reals. We demonstrate applications of both in Section 7.1.

In order to produce a matrix with sensitivity bound L2, L ∇gML2M requires

input of type MML2
` [m, n] DM for any `. We obtain such a matrix by clipping,

a common operation in differentially private machine learning. Clipping scales

each row of a matrix to ensure its c norm (for c ∈ {L∞, L1, L2}) is less than 1:

clipc xi ,


xi
‖xi‖c if ‖ xi ‖c> 1

xi if ‖ xi ‖c≤ 1

The clipping process is encoded in Duet as clip (Figure 6.2), which introduces

57



a new bound on the c norm of its output.

6.1.3 Vector-Valued Privacy Mechanisms

Both the Laplace and Gaussian mechanisms are capable of operating directly

over vectors; the Laplace mechanism adds noise calibrated to the L1 sensitivity

of the vector, while the Gaussian mechanism uses its L2 sensitivity. With the

addition of matrices to Duet, we can introduce typing rules for these vector-

valued mechanisms, using single-row matrices to represent vectors. We present

the typing rule for MGauss in Figure 6.2; the rule for MLaplace is similar.

We also introduce a typing rule for the exponential mechanism, which picks one

element out of an input vector based on a sensitive scoring function (Figure 6.2,

rule Exponential).
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Chapter 7

Case Studies in Duet

7.1 Case Studies

In this section, we demonstrate the use of Duet to express and verify a number

of different algorithms for differentially private machine learning.

There are four basic approaches to differentially private convex optimization:

input perturbation Chaudhuri et al. (2011), objective perturbation Chaudhuri

et al. (2011), gradient perturbation Song et al. (2013); Bassily et al. (2014b),

and output perturbation Chaudhuri et al. (2011); Wu et al. (2017). Of these,

the latter three are known to provide competitive accuracy, and the latter two

(gradient perturbation and output perturbation) are the most widely used; our

first two case studies verify these two techniques. Our third case study verifies

the noisy Frank-Wolfe algorithm Talwar et al. (2015), a variant of gradient

perturbation especially suited to high-dimensional datasets.

Our next three case studies demonstrate the use of Duet to verify commonly-

used variations on the above algorithms, including various kinds of minibatching

and a gradient clipping approach used in deep learning. Our final three case stud-
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ies explore techniques for preprocessing input datasets so that the preconditions

of the above algorithms are satisfied.

In Section 7.1.6, we discuss the use of Duet to combine all of these

components—many of which leverage different variants of differential privacy—to

build a complete machine learning system. Our case studies are summarized in

the following table.

Technique Ref. § Privacy Concept

Optimization Algorithms

Noisy Gradient Descent Bassily et al. (2014b) 7.1.1 Composition

Gradient Descent w/ Output Perturbation Wu et al. (2017) 7.1.2 Parallel comp. (sens.)

Noisy Frank-Wolfe Talwar et al. (2015) 7.1.3 Exponential mechanism

Variations on Gradient Descent

Minibatching Bassily et al. (2014b) 7.1.4 Ampl. by sampling

Parallel-composition minibatching — 7.1.5 Parallel composition

Gradient clipping Abadi et al. (2016) † Sensitivity bounds

Preprocessing & Deployment

Hyperparameter tuning Chaudhuri and Vinterbo (2013) † Exponential mechanism

Adaptive clipping — † Sparse Vector Technique

Z-Score normalization skl (2019) † Composition

Combining All of the Above 7.1.6 Composition

7.1.1 Noisy Gradient Descent

We begin with a fully-worked version of the differentially-private gradient descent

algorithm from Section 5.1.2. This algorithm was first proposed by Song et

al. Song et al. (2013) and later refined by Bassily et al. Bassily et al. (2014b).

Gradient descent is a simple but effective training algorithm in machine learning,

and has been applied in a wide range of contexts, from simple linear models to

deep neural networks. The program below implements noisy gradient descent

in Duet (without minibatching, though we will extend it with minibatching

in Section 7.1.4). It performs k iterations of gradient descent, starting from an

initial guess θ0 consisting of all zeros. At each iteration, the algorithm computes

a noisy gradient using noisy-grad, scales the gradient by the learning rate η, and
† these case studies appear in this paper Near et al. (2019a).
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subtracts the result from the current model θ to arrive at the updated model.

noisy-grad(θ,X, y, ε, δ) ,

let s = R[1. 0]/real (rows X) in

let z = zeros (cols X) in

let gs = mmap-row (sλ Xi yi ⇒

L ∇LR
L2[θ; Xi, yi]) X y in

let g = fld-row (sλ x1 x2 ⇒ x1 + x2) z gs in

let gs = map (sλ x⇒ s · x) g in

mgauss[s, ε, δ] <X, y> {gs}

zeros(n) , mcreateL∞ 1 n (sλ i j ⇒ 0.0)

noisy-gradient-descent(X, y, k, η, ε, δ) ,

let X1 = box (mclipL2 X) in

let θ0 = zeros (cols X1) in

loop[δ′] k on θ0 <X1, y> {t, θ ⇒

gp ← noisy-grad θ (unbox X1) y ε δ ;

return θ − η·gp }

Under (ε, δ)-differential privacy, Duet derives a total privacy cost of

(2ε
√

2k log(1/δ′), kδ + δ′)-differential privacy for this implementation, which

matches the total cost manually proven by Bassily et al. Bassily et al. (2014b).

Duet can also derive a total cost for other privacy variants: the same program

satisfies kρ-zCDP, or (α, kε)-RDP.

7.1.2 Output Perturbation Gradient Descent

An alternative to gradient perturbation is output perturbation—adding noise to

the final trained model, rather than during the training process. Wu et al. Wu

et al. (2017) present a competitive algorithm based on this idea, which works

by bounding the total sensitivity (rather than privacy) of the iterative gradient

descent process. Their algorithm leverages parallel composition for sensitivity:

it divides the dataset into small chunks called minibatches, and each iteration

of the algorithm processes one minibatch. A single pass over all minibatches

(and thus, the whole dataset) is often called an epoch. If the dataset has size

m and each minibatch is of size b, then each epoch comprises m/b iterations of

the training algorithm. This approach to minibatching is often used (without

privacy) in deep learning. The sensitivity of a complete epoch in this technique

is just 1/b.

61



gd-output-perturbation(xs, ys, k, η, ε, δ) ,

let m0 = zeros (cols X) in

let c = box (mclipL2 xs) in

let s = real k/real b in

mgauss[s, ε, δ] <xs, ys> {

loop k on m0 { a, θ ⇒

mfold-row b, θ,unbox c, ys { θ, xb, yb⇒

let g = ∇LR
L2 [θ ; xb, yb] in

θ-η·g } } }

We encode parallel composi-

tion for sensitivity in Duet us-

ing the mfold-row function, de-

fined in Section 6.1, whose type

matches that of foldl for lists in

the Fuzz type system Reed and

Pierce (2010). mfold-row consid-

ers each row to be a “minibatch”

of size 1, but is easily extended to

consider multiple rows at a time (as in our encoding below). Duet derives a

sensitivity bound of k/b for the training process, and a total privacy cost of

(ε, δ)-differential privacy, matching the manual analysis of Wu et al. Wu et al.

(2017).

7.1.3 Noisy Frank-Wolfe

frank-wolfe X y k ε δ ,

let X1 = clip-matrixL∞ X in

let d = cols X in

let θ0 = zeros d in

let idxs = mcreateL∞[1,2·d]{i,j⇒

〈j mod d,sign(j-d)〉} in

ZCDP [δ] { loop k on θ0 {t, θ ⇒

let µ = 1. 0/((real t) + 2. 0) in

let g = L ∇LR
L∞[θ; X1, y] in

〈i, s〉 ← EPS DP {

exponential[ 1
rows X1

, ε] idxs {〈i, s〉 ⇒

s·g # [0, i]} ;}

let gp = (zeros d)# [0, i 7→ s·100] in

return ((1.0− µ)·θ) + (µ·gp) } }

We next consider a variation

on gradient perturbation called

the private Frank-Wolfe algo-

rithm Talwar et al. (2015).

This algorithm has dimension-

independent utility, making

it useful for high-dimensional

datasets. In each iteration, the

algorithm takes a step of fixed

size in a single dimension, using

the exponential mechanism to

choose the best direction based
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on the gradient. The sensitiv-

ity of each update is therefore

dependent on the L∞ norm of each sample, rather than the L2 norm.

Our implementation uses the exponential mechanism to select the direction

in which the gradient has its maximum value, then updates θ in only the

selected dimension. To get the right sensitivity, we compute the gradient with

L ∇LRL∞, which requires an L∞ norm bound on its input and ensures bounded

L∞ sensitivity.

We mix several variants of differential privacy in this implementation. Each

use of the exponential mechanism provides ε-differential privacy; each itera-

tion of the loop satisfies 1
2ε

2-zCDP, and the whole algorithm satisfies ( 1
2ε

2 +

2
√

1
2ε

2 log(1/δ), δ)-differential privacy. The use of zCDP for composition is an

improvement over the manual analysis of Talwar et al. Talwar et al. (2015),

which used advanced composition.

7.1.4 Minibatching

An alternative form of minibatching to the one discussed in Section 7.1.2 is to

randomly sample a subset of of the data in each iteration. Bassily et al. Bassily

et al. (2014b) present an algorithm for differentially private stochastic gradient

descent based on this idea: their approach samples a single random example

from the training to compute the gradient in each iteration, and leverages the

idea of privacy amplification to improve privacy cost. The privacy amplification

lemma states that if mechanismM(D) provides (ε, δ)-differential privacy for the

datset D of size n, then runningM on uniformly random γn entries of D (for

γ ≤ 1) provides (2γε, γδ)-differential privacy Bassily et al. (2014b); Wang et al.

(2018) (this bound is loose, but used here for readability).
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minibatch-gradient-descent X y k b η ε δ ,

let X1 = clip-matrix X in

loop [δ] k on zeros (cols X1) <X1, y> {t, θ ⇒

sample b on X1, y {X′1, y′ ⇒

gp ← noisy-grad θ X′1 y′ ε δ ; return θ-η·gp }}

We encode the privacy

amplification lemma in

Duet using the sample

construct defined in Sec-

tion 6.1. Similar privacy

amplification lemmas ex-

ist for RDP Wang et al. (2018) and tCDP Bun et al. (2018), but not for zCDP.

We can use sampling with privacy amplification to implement minibatching SGD

in Duet. Under (ε, δ)-differential privacy with privacy amplification, Duet

derives a total privacy cost of (4(b/m)ε
√

2k log(1/δ′), (b/m)kδ + δ′)-differential

privacy for this algorithm, which is equivalent to the manual proof of Bassily et

al. Bassily et al. (2014b).

7.1.5 Parallel-Composition Minibatching

As a final form of minibatching, we consider extending the parallel composition

approach used by Wu et al. Wu et al. (2017) for sensitivity to parallel composition

of privacy mechanisms for minibatching in the gradient perturbation approach

from Section 7.1.1. Since the minibatches are disjoint in this approach, we

can leverage the parallel composition property for privacy mechanisms (McSh-

erry McSherry (2009), Theorem 4; Dwork & Lei Dwork and Lei (2009), Corollary

20), which states that running an (ε, δ)-differentially private mechanism k times

on k disjoint subsets of a database yields (ε, δ)-differential privacy. We encode

this concept in Duet using the pfld-rows construct defined in Section 6.1. The

arguments to pfld-rows include the dataset and a function representing an

(ε, δ)-differentially private mechanism, and pfld-rows ensures (ε, δ)-differential

privacy for the dataset. This version considers minibatches of size 1, and is

easily extended to consider other sizes. We can use pfld-rows to implement
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epoch-based minibatching with gradient perturbation, even for privacy variants

like zCDP which do not admit sampling:

epoch b ρ η ,

pλ xs ys θ ⇒

let s = R+[1. 0]/real b in

g← mgauss[s, ρ] <xs, ys> {∇LR [θ ; xs, ys] } ;

return θ-η·g

epoch-minibatch-GD X y ρ η k b ,

let m0 = zeros (cols xs) in

loop k on m0 <X, y> {a, θ ⇒

pfld-rows(b, θ,mclipL2 X, y, epoch b ρ η)

}

This algorithm is similar in concept to the output perturbation approach

of Wu et al. Wu et al. (2017), but leverages parallel composition of privacy

mechanisms for gradient perturbation instead, and has not been previously

published. The algorithm runs k epochs with a batch size of b, for a total of kb

iterations. Duet derives a privacy cost of kρ-zCDP for the algorithm.

7.1.6 Composing Privacy Variants to Build Complete Learn-

ing Systems

adaptiveClippingGradientDescent xs ys k ε δ ηs bs ,

means← colMeans(xs, ε, δ, bs);

scales← EPS_DP { colScaleParams(xs, ε, bs, means) };

let xsn = box (normalize xs means scales) in

η ← pick_η(unbox xsn, ys, k, ε, δ, ηs);

ZCDP[δ]{noisyGradientDescentZCDP(b·(unbox xsn), ys, k, η, ε, δ)}

Putting together

the pieces we

have described

to build real

machine learn-

ing systems that

preserve differ-

ential privacy often requires mixing privacy variants in order to obtain optimal

results. We can use Duet’s ability to mix variants of differential privacy to

combine components in a way that optimizes the use of the privacy budget. We

demonstrate this ability with an example that performs several data-dependent

analyses as pre-processing steps before training a model. Our example uses
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Duet’s ability to mix variants to compose z-score normalization (using both pure

ε and (ε, δ)-differential privacy), hyperparameter tuning (with (ε, δ)-differential

privacy), and gradient descent (with zCDP), returning a total (ε, δ) privacy

cost.
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Chapter 8

Evaluation of Duet

8.1 Implementation & Evaluation

This section describes our implementation of Duet, and our empirical evaluation

of Duet’s ability to produce accurate differentially private models. Our results

demonstrate that the state-of-the-art privacy bounds derivable by Duet can

result in huge gains in accuracy for a given level of privacy.

8.1.1 Implementation & Typechecking Performance

Technique LOC Time (ms)

Noisy G.D. 23 0.51ms

G.D. + Output Pert. 25 0.39ms

Noisy Frank-Wolfe 31 0.59ms

Minibatching 26 0.51ms

Parallel minibatching 42 0.65ms

Gradient clipping 21 0.40ms

Hyperparameter tuning 125 3.87ms

Adaptive clipping 68 1.01ms

Z-Score normalization 104 1.51ms

Figure 8.1: Summary of Typechecking Perfor-

mance on Case Study Programs

We have implemented a proto-

type of Duet in Haskell that

includes type inference of pri-

vacy bounds, and an inter-

preter that runs on all exam-

ples described in this paper.

We do not implement Hindley-

Milner-style constraint-based
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type inference of quantified

types; our type inference is

syntax-directed and limited to

construction of privacy bounds

as symbolic formulas over input

variables. Our implementation of type inference roughly follows the bottom-up

approach of DFuzz’s implementation De Amorim et al. (2014). Type checking

requires solving constraints over symbolic expressions containing log and square

root operations. Prior work (DFuzz and HOARe2) uses an SMT solver during

typechecking to check validity of these constraints, but SMT solvers typically

do not support operators like log and square root, and struggle in the presence

of non-linear formulas. Because of these limitations, we implement a custom

solver for inequalities over symbolic real expressions instead of relying on support

from off-the-shelf solvers. Our custom solver is based on a simple decidable (but

incomplete) theory which supports log and square root operations, and a more

general subset of non-linear (polynomial) formulas than typical SMT theories.

The Duet typechecker demonstrates very practical performance. Figure 8.1

summarizes the number of lines of code and typechecking time for each of our

case study programs; even medium-size programs with many functions typecheck

in just a few milliseconds.

8.1.2 Evaluation of Private Gradient Descent and Private

Frank-Wolfe

We also study the accuracy of the models produced by the Duet implementations

of private gradient descent and private Frank-Wolfe in Section 7.1. We evaluate

both algorithms on 4 datasets. Details about the datasets can be found in

Figure 8.2.
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We ran both algorithms on each dataset with per-iteration εi ∈

{0.0001, 0.001, 0.01, 0.1} and then used Duet to derive the corresponding total

privacy cost. We fixed δ = 1
n2 , where n is the size of the dataset. For private

gradient descent, we set η = 1.0, and for private Frank-Wolfe we set the size of

each corner c = 100.

We randomly shuffled each dataset, then chose 80% of the dataset as training

data and reserved 20% for testing. We ran each training algorithm 5 times on

the training data, and take the average testing error over all 5, to account for

the randomness in the training process.

Dataset Samples Dim.

Synthetic 10,000 20

Adult 45,220 104

KDDCup99 70,000 114

Facebook 40,949 54

Figure 8.2: Dataset Used in Accu-

racy Evaluation

We present the results in Figure 8.3.

Both algorithms are capable of generating

accurate models at reasonable values of ε.

Note that all three models in the results pro-

vide exactly the same privacy guarantee for

a given value of ε, yet their accuracies vary

significantly—demonstrating the advantages

of recently developed variants of differential

privacy.
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Figure 8.3: Accuracy Results for Noisy Gradient Descent (Top) and Noisy Frank-
Wolfe (Bottom).
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Part III

DDuo: General-Purpose

Dynamic Analysis for

Differential Privacy
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Chapter 9

Introduction & Contributions

Differential privacy enables general statistical analysis of data with formal

guarantees of privacy protection at the individual level. Tools that assist data

analysts with utilizing differential privacy have frequently taken the form of

programming languages and libraries. However, many existing programming

languages designed for compositional verification of differential privacy impose

significant burden on the programmer (in the form of complex type annotations).

Supplementary library support for privacy analysis built on top of existing

general-purpose languages has been more usable, but incapable of pervasive

end-to-end enforcement of sensitivity analysis and privacy composition.

We introduce DDuo, a dynamic analysis for enforcing differential privacy.

DDuo is usable by non-experts: its analysis is automatic and it requires no

additional type annotations. DDuo can be implemented as a library for existing

programming languages; we present a reference implementation in Python which

features moderate runtime overheads on realistic workloads. We include support

for several data types, distance metrics and operations which are commonly

used in modern machine learning programs. We also provide initial support for
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tracking the sensitivity of data transformations in popular Python libraries for

data analysis.

We formalize the novel core of the DDuo system and prove it sound for

sensitivity analysis via a logical relation for metric preservation. We also illustrate

DDuo’s usability and flexibility through various case studies which implement

state-of-the-art machine learning algorithms.

Both static and dynamic tools have been developed to help non-experts

write differentially private programs. Many of the static tools take the form of

statically-typed programming languages, where correct privacy analysis is built

into the soundness of the type system. However, existing language-oriented tools

for compositional verification of differential privacy impose significant burden

on the programmer (in the form of additional type annotations) (Reed and

Pierce, 2010; Gaboardi et al., 2013b; Near et al., 2019b; de Amorim et al., 2019;

Zhang et al., 2019a; Winograd-Cort et al., 2017; Barthe et al., 2019, 2012, 2013,

2016b; Sato et al., 2019; Albarghouthi and Hsu, 2018; Zhang and Kifer, 2017;

Wang et al., 2019; Bichsel et al., 2018; Ding et al., 2018; Wang et al., 2020) (see

Chapter 25 for a longer discussion).

The best-known dynamic tool is PINQ (McSherry, 2009), a dynamic anal-

ysis for sensitivity and privacy. It features an extensible system which allows

non-experts in differential privacy to execute SQL-like queries against relational

databases. However, PINQ comes with several restrictions that limit its ap-

plicability. For example, PINQ’s expressiveness is limited to a subset of the

SQL language for relational databases. Methods in PINQ are assumed to be

side-effect free, which is necessary to preserve their privacy guarantee.

We introduce DDuo, a dynamic analysis for enforcing differential privacy.

DDuo is usable by non-experts: its analysis is automatic and it requires no

additional type annotations. DDuo can be implemented as a library for existing
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programming languages; we present a reference implementation in Python. Our

goal in this work is to answer the following four questions, based on the limitations

of PINQ:

• Can a PINQ-style dynamic analysis extend to base types in the programming

language, to allow its use pervasively?

• Is the analysis sound in the presence of side effects?

• Can we use this style of analysis for complex algorithms like differentially

private gradient descent?

• Can we extend the privacy analysis beyond pure ε-differential privacy?

We answer all four questions in the affirmative, building on PINQ in the following

ways:

• DDuo provides a dynamic analysis for base types in a general purpose

language (Python). DDuo supports general language operations, such as

mapping arbitrary functions over lists, and tracks the sensitivity (stability)

and privacy throughout.

• Methods in DDuo are not required to be side-effect free and allow pro-

grammers to mutate references inside functions which manipulate sensitive

values.

• DDuo supports various notions of sensitivity and arbitrary distance metrics

(including L1 and L2 distance).

• DDuo is capable of leveraging advanced privacy variants such as (ε, δ) and

Rényi differential privacy.

Privacy analysis is reliant on sensitivity analysis, which determines the scale

of noise an analyst must add to values in order to achieve any level of privacy.

Dynamic analysis for differential privacy is thus a dual challenge:
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9.1 Dynamic sensitivity analysis.

Program sensitivity is a (hyper)property quantified over two runs of a program

with related inputs (sources). A major challenge for dynamic sensitivity analysis

is the ability to bound sensitivity, ensuring that the metric preservation property

is satisfied, by only observing a single run of the program. In addition, an

analysis which is performed on a specific input to the program must generalize

to future possible arbitrary inputs.

The key insight to our solution is attaching sensitivity environments and

distance metric information to values rather than variables. Our approach

provides a sound upper bound on global sensitivity even in the presence of side

effects, conditionals, and higher-order functions. We present a proof using a

step-indexed logical relation which shows that our sensitivity analysis is sound.

9.2 Dynamic privacy analysis.

To implement a dynamic privacy analysis, we leverage prior work on privacy

filters and odometers (Rogers et al., 2016). This work, originally designed for

the adaptive choice of privacy parameters, can also be used as part of a dynamic

analysis for privacy analysis. We view each application of a privacy mechanism

(e.g. the Laplace mechanism) as a global privacy effect on total privacy cost, and

use privacy filters and odometers to track total privacy cost.

We implemented these features in a Python prototype of DDuo via object

proxies and other pythonic idioms. We implement several case studies to showcase

these features and demonstrate the usage of DDuo in practice. We also provide

integrations with several popular Python libraries for data and privacy analysis.
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9.3 Contributions.

In summary, DDuo makes the following contributions:

- We introduce DDuo, a dynamic analysis for enforcing differential privacy, and

a reference implementation as a Python library 1.

- We formalize a subset of DDuo in a core language model, and prove the

soundness of DDuo’s dynamic sensitivity analysis (as encoded in the model)

using a step-indexed logical relation.

- We present several case studies demonstrating the use of DDuo to build

practical, verified Python implementations of complex differentially private

algorithms.

1The reference implementation is available here: https://github.com/uvm-plaid/dduo-
python
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Chapter 10

Overview of DDuo

DDuo is a dynamic analysis for enforcing differential privacy. Our approach does

not require static analysis of programs, and allows DDuo to be implemented as

a library for programming languages like Python. DDuo’s dynamic analysis has

complete access to run-time information, so it does not require the programmer

to write any additional type annotations—in many cases, DDuo can verify

differential privacy for essentially unmodified Python programs (see the case

studies in Chapter 15). As a Python library, DDuo is easily integrated with

popular libraries like Pandas and NumPy.

Challenges of dynamic analysis for differential privacy. Differential

privacy is an example of a hyperproperty—a property that relates two executions

of a program on two different inputs. Verifying a hyperproperty via dynamic

analysis is challenging, because in this setting, only one execution of the pro-

gram is observable. Control flow is particularly difficult: only one branch of a

conditional is visible to a dynamic analysis, for example, while a static analysis

can examine both branches. This is the key challenge of DDuo—to build a

sound dynamic analysis for a hyperproperty.
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Advantages and disadvantages of dynamic privacy analysis Dynamic

privacy analysis of general purpose programs is valuable due to its usability

and practicality for a wide variety of programmers. DDuo takes a lightweight

approach based on implementation around existing general-purpose languages

such as Python. A static analyzer for all of Python is unrealistic; and it would be

very inconvenient to learn an entirely new language with a confusing/unfamiliar

type system. Tools such as Python, Pandas, and NumPy are incredibly popular,

and a runtime privacy monitor built around these tools is much more convenient.

However there are also certain disadvantages to the dynamic approach: it is

impossible to obtain a privacy bound without running the program, and there

may be instrumentation overhead cost during runtime.

10.1 Threat model.

We assume an “honest but fallible” programmer—that is, the programmer intends

to produce a differentially private program, but may unintentionally introduce

bugs. We assume that the programmer is not intentionally attempting to subvert

DDuo’s enforcement approach. Our reference implementation is embedded in

Python, an inherently dynamic language with run-time features like reflection.

In this setting, a malicious programmer or privacy-violating third-party libraries

can bypass our dynamic monitor and extract sensitive information directly.

We allow several common side-effects such as reference mutation, printing,

reading/writing files, etc. Note that printing/writing sensitive values in DDuo

will reveal the type of the value, but not the actual value. Data-independent

exceptions can be safely used in our system, however our model must explicitly

avoid data-dependent exceptions such as division-by-zero errors. Terminated

programs can be rerun safely (while consuming the privacy budget) because our

analysis is independent of any sensitive information (our metatheory implies that
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sensitivity of a value is itself not sensitive). We also do not address side-channels,

including execution time. Like existing enforcement approaches (PINQ, OpenDP,

Diffprivlib), DDuo is intended as a tool to help well-intentioned programmers

produce correct differentially private algorithms.

Soundness of the analysis. We formalize our dynamic sensitivity analysis

and prove its soundness in Chapter 14. Our formalization includes the most

challenging features of the dynamic setting—conditionals and side effects—and

provides evidence that our Python implementation will be effective in catching

privacy bugs in real programs. DDuo relies on existing work on privacy filters

and odometers (discussed in Chapter 13), whose soundness has been previously

established, for tracking privacy cost.
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Chapter 11

DDuo by Example

This chapter introduces the DDuo system via examples written using our

reference Python implementation.

Data Sources. Data sources are wrappers around sensitive data that enable

tracking of privacy information in the DDuo python library. Each data source is

associated with an identifying string, such as the name of the input file the data

was read from. Data sources can be created manually by attaching an identifying

string (such as a filename) to a raw value (such as a vector). Or, data sources be

created automatically upon loading data through DDuo’s custom-wrapped third

party APIs, such as pandas. Note that our API can be easily modified to account

for initial sensitivities greater than 1 when users have multiple datapoints in the

input data.

from dduo import pandas as pd

df = pd.read_csv("data.csv")

df
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Sensitive(<'DataFrame'>, {data.csv 7→ 1}, L∞)

A Sensitive value is returned. Sensitive values represent sensitive infor-

mation that cannot be viewed by the analyst. When a Sensitive value is printed

out, the analyst sees (1) the type of the value, (2) its sensitivity environment,

and (3) its distance metric. The latter two components are described next. The

analyst is prevented from viewing the value itself.

11.1 Sensitivity & distance metrics.

Function sensitivity is a scalar value which represents how much a change in

a function’s input will change the function’s output. For example, the binary

addition function f(x, y) = x+y is 1-sensitive in both x and y, because changing

either input by n will change the sum by n. The function f(x) = x+ x, on the

other hand, is 2-sensitive in its argument x, because changing x by n changes

the function’s output by 2n. Sensitivity is key to differential privacy because it

is directly proportional to the amount of noise we must add to the output of a

function to make it private.

A sensitivity environment is a mapping of program variables to their sensitiv-

ities. For example, in the program f(x) = x+ x, the sensitivity ennvironment is

x : 2. In the program f(x, y) = x+ y, the sensitivity environment is x : 1, y : 1.

Note that the identity function f(x) = x that does nothing with its input and

simply returns it as output has a sensitivity environment of x : 1, y : 1

DDuo tracks the sensitivity of a value to changes in the program’s inputs

using a sensitivity environment mapping input data sources to sensitivities. Our

example program returned a Sensitive value with a sensitivity environment of

{data. csv 7→ 1}, indicating that the underlying value is 1-sensitive in the data

contained in data. csv . The DDuo library tracks and updates the sensitivity
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environments of Sensitive objects as operations are applied to them. For

example, adding a constant value to the elements of the DataFrame results in

no change to the sensitivity environment.

df + 5 # no change to sensitivity environment

Sensitive(<'DataFrame'>, {data.csv 7→ 1}, L∞)

Adding the DataFrame to itself doubles the sensitivity, in the same way as the

function f(x) = x+ x.

df + df # doubles the sensitivity

Sensitive(<'DataFrame'>, {data.csv 7→ 2}, L∞)

Finally, multiplying the DataFrame by a constant scales the sensitivity, and

multiplying the DataFrame by itself results in infinite sensitivity.

( df * 5, df * df)

( Sensitive(<'DataFrame'>, {data.csv 7→ 5}, L∞),

Sensitive(<'DataFrame'>, {data.csv 7→ ∞}, L∞) )

The distance metric component of a Sensitive value describes how to

measure sensitivity. For simple numeric functions like f(x) = x+ x, the distance

between two possible inputs x and x′ is simply |x−x′| (this is called the cartesian

metric). For more complicated data structures (e.g. DataFrames), calculating

the distance between two values is more involved. The L∞ metric used in

our example calculates the distance between two DataFrames by measuring

how many rows are different (this is one standard way of defining “neighboring
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databases” in differential privacy). DDuo’s handling of distance metrics is

detailed in Section 12.2.

11.2 Privacy.

DDuo also tracks the privacy of computations. To achieve differential privacy,

programs add noise to sensitive values. The Laplace mechanism described earlier

is one basic mechanism for achieving differential privacy by adding noise drawn

from the Laplace distribution (DDuo provides a number of basic mechanisms,

including the Gaussian mechanism). The following expression counts the number

of rows in our example DataFrame and uses the Laplace mechanism to achieve

ε-differential privacy, for ε = 1.0.

dduo.laplace(df.shape[0], ε=1.0)

9.963971319623278

The result is a regular Python value—the analyst is free to view it, write it to a

file, or do further computation on it. Once the correct amount of noise has been

added, the principle of post-processing applies, and so DDuo no longer needs to

track the sensitivity or privacy cost of operations on the value.

When the Laplace mechanism is used multiple times, their privacy costs

compose (i.e. the εs “add up” as described earlier). DDuo tracks total privacy

cost using objects called privacy odometers (Rogers et al., 2016). The analyst

can interact with a privacy odometer object to learn the total privacy cost of a

complex computation.
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with dduo.EpsOdometer() as odo:

_ = dduo.laplace(df.shape[0], ε = 1.0)

_ = dduo.laplace(df.shape[0], ε = 1.0)

print(odo)

Odometer_ε({data.csv 7→ 2.0})

Printing the odometer’s value allows the analyst to view the privacy cost of the

program with respect to each of the data sources used in the computation. In

this example, two differentially private approximations of the number of rows in

the dataframe df are computed, each with a privacy cost of ε = 1.0. The total

privacy cost of running the program is therefore 2·ε = 2.0.

DDuo also allows the analyst to place upper bounds on total privacy cost (i.e.

a privacy budget) using privacy filters (Rogers et al., 2016). Privacy odometers

and filters are discussed in detail in Chaper 13.
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Chapter 12

Dynamic Sensitivity Tracking

DDuo implements a dynamic sensitivity analysis by wrapping values in Sensitive

objects and calculating sensitivities as operations are performed on these objects.

Type systems for sensitivity (Reed and Pierce, 2010; Gaboardi et al., 2013b)

construct a sensitivity environment for each program expression; in the static

analysis setting, a sensitivity environment records the expression’s sensitivity

with respect to each of the variables currently in scope.

DDuo attaches sensitivity environments to values at runtime: each Sensitive

object holds both a value and its sensitivity environment. As described earlier,

DDuo’s sensitivity environments record a value’s sensitivity with respect to each

of the program’s data sources.

Formally, the sensitivity of a single-argument function f in its input is defined

as:

sens(f) , argmaxx,y

(d(f(x), f(y))

d(x, y)

)

Where d is a distance metric over the values x and y could take (distance metrics

are discussed in Section 12.2). Thus, a sensitivity environment {a 7→ 1} means
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that if the value of the program input a changes by n, then the value of f(a)

will change by at most n.

12.1 Bounding the Sensitivity of Operations

Operations on Sensitive objects are defined to perform the same operation

on the underlying values, and also construct a new sensitivity environment for

the operation’s result. For example, DDuo’s __add__ operation sums both the

underlying values and their sensitivity environments:

def __add__(self, other):

assert self.metric == other.metric

return dduo.Sensitive(self.value + other.value,

self.senv + other.senv,

self.metric)

The sum of two sensitivity environments is defined as the element-wise sum of

their items. For example:

{a 7→ 2, b 7→ 1}+ {b 7→ 3, c 7→ 5} = {a 7→ 2, b 7→ 4, c 7→ 5}

The DDuo library provides sensitivity-aware versions of Python’s basic numeric

operations (formalized in Chapter 14). We have also defined sensitivity-aware

versions of commonly-used library functions, including the Pandas functions

used in Chapter ??, and subsets of NumPy and Scikit-learn.

12.2 Distance Metrics

At the core of the concept of sensitivity is the notion of distance: how far apart

we consider two information sources to be from each other. For scalar values,

the following two distance metrics are often used:
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• Cartesian (absolute difference) metric: d(x, y) = |x− y|

• Discrete metric: d(x, y) = 0 if x = y; 1 otherwise

For more complex structures—like lists and dataframes—we can use distance

metrics on vectors. Two commonly-used metrics for vectors x and y of equal

length are:

• L1(di) metric: d(x, y) =
∑

xi,yi∈x,y
di(xi, yi)

• L2(di) metric: d(x, y) =
√ ∑
xi,yi∈x,y

di(xi, yi)2

Both metrics are parameterized by di, a metric for the vector’s elements. In

addition to these two, we use the shorthand L∞ to mean L1(d), where d is the

cartesian metric defined above. The L∞ metric works for any space with equality

(e.g. strings), and measures the number of elements where x and y differ.

The definition of differential privacy is parameterized by a distance metric that

is intended to capture the idea of two inputs that differ in one individual’s data.

Database-oriented algorithms typically assume that each individual contributes

exactly one row to the database, and use the L∞ metric to define neighboring

databases (as we did in Chapter ??).

Distance metrics can be manipulated manually through operations such

as clipping, a technique commonly employed in differentially private machine

learning. DDuo tracks distance metrics for Sensitive information, which can

allow for automatic conservation of the privacy budget while providing more

accurate query analysis.

Lists and arrays are compared by one of the L1, L2, or L∞ distance metrics.

The choice of distance metric is important when defining sensitivity and thus

privacy. For example, the Laplace mechanism can only be used with the L1

metric, while the Gaussian mechanism can be used with either L1 or L2.
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12.3 Conditionals & Side Effects

Conditionals and other branching structures are challenging for any sensitiv-

ity analysis, but they present a particular challenge for our dynamic analysis.

Consider the following conditional:

if df.shape[0] == 10:

return df.shape[0]

else:

return df.shape[0] * 10000

Here, the two branches have different sensitivities (the else branch is 10,000

times more sensitive in its data sources than the then branch). Static sensitivity

analyses handle this situation by taking the maximum of the two branches’

sensitivities (i.e. they assume the worst-case branch is executed), but this

approach is not possible in our dynamic analysis.

In addition, special care must be taken when a sensitive value appears in the

guard position (as in our example). Static analyses typically scale the branches’

sensitivity by the sensitivity of the guard; in practice, this approach results in

infinite sensitivity for conditionals with a sensitive guard.

To retain soundness in our dynamic analysis, DDuo requires that conditional

guards contain no sensitive values. A run-time error is thrown if DDuo finds

a sensitive value in the guard position (as in our example above). Disallowing

sensitive guards makes it possible to ignore branches that are not executed:

the guard’s value remains the same under neighboring program inputs, so the

program follows the same branch for neighboring executions. This approach

does not limit the set of useful programs we can write, since conditionals with

sensitive guards yield infinite sensitivities even under a precise static analysis.

Since DDuo attaches sensitivity environments to values (instead of variables),
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the use of side effects does not affect the soundness of the analysis. When a

program variable is updated to reference a new value, that value’s sensitivity

environment remains attached. DDuo handles many common side-effect-based

patterns used in Python this way; for example, DDuo correctly infers that the

following program results in the variable total holding a value that is 20 times

more sensitive than df.shape[0].

total = 0

for i in range(20):

total = total + df.shape[0]

For side effects, our dynamic analysis is more capable than type-based

static analysis, due to the additional challenges arising in the static setting (e.g.

aliasing). We have formalized the way DDuo handles side effects and conditionals,

and proved the soundness of our sensitivity analysis; our formalization appears

in Chapter 14.
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Chapter 13

Dynamic Privacy Tracking

DDuo tracks privacy cost dynamically, at runtime. Dynamic privacy tracking is

challenging because the dynamic analysis has no visibility into code that is not

executed. For example, consider the following conditional:

if dduo.gauss(ε=1.0, δ=1e-5, x) > 5:

print(dduo.gauss(ε=1.0, δ=1e-5, y))

else:

print(dduo.gauss(ε=100000000000.0, δ=1e-5, y))

The executed branch of this conditional depends on the result of the first call

to dduo.gauss , which is non-deterministic. The two branches use different

privacy parameters for the remaining calls to dduo.gauss ; in other words, the

privacy parameter for the second use of the Gaussian mechanism is chosen

adaptively, based on the results of the first use. Sequential composition theorems

for differential privacy (Dwork et al., 2014b) are typically stated in terms of

fixed (i.e. non-adaptive) privacy parameters, and do not apply if the privacy

parameters are chosen adaptively.

A static analysis of this program will consider both branches, and most
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analyses will produce an upper bound on the program’s privacy cost by combining

the two (i.e. taking the maximum of the two ε values). This approach avoids

the issue of adaptively-chosen privacy parameters.

A dynamic analysis, by contrast, cannot consider both branches, and must

bound privacy cost by analyzing only the branch that is executed. Sequential

composition does not apply directly when privacy parameters are chosen adap-

tively, so ignoring the non-executed branch in a dynamic analysis of privacy

would be unsound.

13.1 Privacy Filters & Odometers

Privacy filters and odometers were originally developed by Rogers et al. (Rogers

et al., 2016) specifically to address the setting in which privacy parameters are

selected adaptively. Winograd-Cort et al. (Winograd-Cort et al., 2017) used

privacy filters and odometers as part of the Adaptive Fuzz framework, which

integrates both dynamic analysis (for composing privacy mechanisms) and static

analysis (for bounding the cost of individual mechanisms). Recently, Feldman

and Zrnic (Feldman and Zrnic, 2020) developed filters and odometers for Rényi

differential privacy (Mironov, 2017b).

Privacy odometers can be used to obtain a running upper bound on total

privacy cost at any point in the sequence of adaptive mechanisms, and to obtain

an overall total at the end of the sequence. A function COMPδg : R2k
≥0 → R∪{∞} is

called a valid privacy odometer (Rogers et al., 2016) for a sequence of mechanisms

M1, . . . ,Mk if for all (adaptively-chosen) settings of (ε1, δ1), . . . , (εk, δk) for the

individual mechanisms in the sequence, their composition satisfies (COMPδg (·), δg)-

differential privacy. In other words, COMPδg(·) returns a value for ε that upper-

bounds the privacy cost of the adaptive sequence of mechanisms. A valid privacy

odometer for sequential composition in (ε, δ)-differential privacy can be defined
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as follows (Rogers et al. (Rogers et al., 2016), Theorem 3.6):

COMPδg (ε1, δ1, . . . , εk, δk) =


∞ if

k∑
i=1

δi > δg

k∑
i=1

εi otherwise

Privacy filters allow the analyst to place an upper bound (εg, δg) on the

desired privacy cost, and halt the computation immediately if the bound is

violated. A function COMPεg,δg : R2k
≥0 → {HALT, CONT} is called a valid privacy

filter (Rogers et al., 2016) for a sequence of mechanismsM1, . . . ,Mk if for all

(adaptively-chosen) settings of (ε1, δ1), . . . , (εk, δk) for the individual mechanisms

in the sequence, COMPεg,δg(ε1, δ1, . . . , εk, δk) outputs CONT only if the sequence

satisfies (εg, δg)-differential privacy (otherwise, it outputs HALT for the first

mechanism in the sequence that violates the privacy cost bound). A valid privacy

filter for sequential composition in (ε, δ)-differential privacy can be defined as

follows (Rogers et al. (Rogers et al., 2016), Theorem 3.6):

COMPεg,δg (ε1, δ1, . . . , εk, δk) =
HALT if

k∑
i=1

δi > δg or
k∑
i=1

εi > εg

CONT otherwise

It is clear from these definitions that the odometer and filter for sequential

composition under (ε, δ)-differential privacy yield the same bounds on privacy

loss as the standard theorem for sequential composition (Dwork et al., 2014b)

(i.e. there is no “cost” to picking the privacy parameters adaptively).

Rogers et al. (Rogers et al., 2016) also define filters and odometers for advanced

composition under (ε, δ)-differential privacy ((Rogers et al., 2016), §5 and §6); in
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this case, there is a cost. In exchange for the ability to set privacy parameters

adaptively, filters and odometers for advanced composition have slightly worse

constants than the standard advanced composition theorem (Dwork et al., 2014b)

(but are asymptotically the same).

13.2 Filters & Odometers in DDuo

DDuo’s API allows the programmer to explicitly create privacy odometers and

filters, and make them active for a specific part of the program (using Python’s

with syntax). When an odometer is active, it records a running total of the total

privacy cost, and it can be queried to return this information to the programmer.

with dduo.EdOdometer(max_delta = 10e-5) as odo:

_ = dduo.gauss(df.shape[0], ε = 1.0, δ = 10e-6)

_ = dduo.gauss(df.shape[0], ε = 1.0, δ = 10e-6)

print(odo)

Odometer_(ε, δ)({data.csv 7→ (2.0, 20−6)})

When a filter is active, it tracks the privacy cost for individual mechanisms, and

halts the program if the filter’s upper bound on privacy cost is violated.

with dduo.EdFilter(ε = 1.0, δ = 10e-6) as odo:

print('1:', dduo.gauss(df.shape[0], ε=1.0, δ=10e-6))

print('2:', dduo.gauss(df.shape[0], ε=1.0, δ=10e-6))

1: 10.5627

Traceback (most recent call last):

...

dduo.PrivacyFilterException
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In addition to odometers and filters for sequential composition under (ε, δ)-

differential privacy (such as EdFilter and EdOdometer), DDuo provides odome-

ters and filters for advanced composition (AdvEdFilter and AdvEdOdometer)

and Rényi differential privacy (RenyiFilter and RenyiOdometer, which follow

the results of Feldman and Zrnic (Feldman and Zrnic, 2020)).

13.3 Loops and Composition

Iterative algorithms can be built in DDuo using Python’s standard looping

constructs, and DDuo’s privacy odometers and filters take care of ensuring

the correct form of composition. Parallel composition is also available—via

functional mapping. Advanced composition can be achieved via special advanced

composition filters and odometers exposed in the DDuo API. For example, the

following simple loop runs the Laplace mechanism 20 times, and its total privacy

cost is reflected by the odometer:

with dduo.EpsOdometer() as odo:

for i in range(20):

dduo.laplace(df.shape[0], ε = 1.0)

print(odo)

Odometer_ε({data.csv 7→ 20.0})

To use advanced composition instead of sequential composition, we simply replace

the odometer with a different one:

with dduo.AdvEdOdometer() as odo:

for i in range(20):

dduo.gauss(df.shape[0], ε = 0.01, δ = 0.001)
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13.4 Mixing Variants of Differential Privacy

The DDuo library includes support for pure ε-differential privacy, (ε, δ)-differential

privacy, and Rényi differential privacy (RDP). Programs may use all three vari-

ants together, convert between them, and compose mechanisms from each.

We demonstrate execution of a query while switched to the Rényi differential

privacy variant using pythonic "with" syntax blocks. For programs that make

extensive use of composition, this approach yields significant improvements in

privacy cost. For example, the following program uses the Gaussian mechanism

200 times, using Rényi differential privacy for sequential composition; the total

privacy cost is automatically converted into an (ε, δ)-differential privacy cost

after the loop finishes.

with dduo.EdOdometer(max_delta = 1e-4) as odo:

with dduo.RenyiDP(1e-5):

for x in range(200):

noisy_count = dduo.renyi_gauss(α = 10,

ε=0.2, df.shape[0])

print(odo)

Odometer_(ε, δ)({data.csv 7→ (41.28, 1−5)})
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Chapter 14

Formal Description of

Sensitivity Analysis

In DDuo we implement a novel dynamic analysis for function sensitivity , which

is a relational (hyper)property quantified over two runs of the program with

arbitrary but related inputs. In particular, our analysis computes function

sensitivity—a two-run property—after only observing one execution of the

program. Only observing one execution poses challenges to the design of the

analysis, and significant challenges to the proof, all of which we overcome. To

overcome this challenge in the design of the analysis, we first disallow branching

control flow which depends on any sensitive inputs; this ensures that any two

runs of the program being considered for the purposes of privacy will take the

same branch observed by the dynamic analysis. Second, we disallow sensitive

input-dependent arguments to the “scalar” side of multiplication; this ensures

that the dynamic analysis’ use of that argument in analysis results is identical

for any two runs of the program being considered for the purposes of privacy.

Our dynamic analysis for function sensitivity is sound—meaning that the true
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sensitivity of a program is guaranteed to be equal or less than the sensitivity

reported by DDuo’s dynamic monitor—and we support this claim with a detailed

proof.

14.1 Formalism Approach.

We formalize the correctness of our dynamic analysis for function sensitivity

using a step-indexed big-step semantics to describe the dynamic analysis, a

step-indexed logical relation to describe the meaning of function sensitivity, and

a proof by induction and case analysis on program syntax to show that dynamic

analysis results soundly predict function sensitivity. A step-indexed relation is a

relation R ∈ A→ B → prop whose definition is stratified by a natural number

index n, so for each level n there is a new relation Rn. Typically, the relation

R0 is defined R0(x, y) , true, and the final relation of interest is R̂ ,
⋂
nRn,

i.e., R̂(x, y) ⇐⇒ ∀n. Rn(x, y). Step-indexing is typically used—as we do in our

formalism—when the definition of a relation would be not well founded in its

absence. The most common reason a relation definition might be not well-founded

is the use of self-reference without any decreasing measure. When a decreasing

measure exists, self-reference leads to well-founded recursion, however when a

decreasing measure does not exist, self-reference is not well-founded. When using

step-indexing, self-reference is allowed in the definition of Rn, but only for the

relation at strictly lower levels, so Rn′ when n′ < n; this is well-founded because

the index n becomes a decreasing measure for the self-reference. In this way,

step-indexing enables self-reference without any existing decreasing measure by

introducing a new decreasing measure, and maintains well-foundedness of the

relation definition.

A logical relation is one where the definition of relation on function values (or

types) is extensional, essentially saying “when given related inputs, the function
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produces related outputs”. This definition is self-referrential and not well-founded,

and among common reasons to introduce step-indexing in programming language

proofs. As the relation R is stratified with a step-index to Rn, so must the

definition of the semantics, so for a big-step relation e ⇓ v (relating an expression

e to its final value v after evaluation) we stratify as e ⇓n v. Also, because the

definition of a logical relation decrements the step-index for the case of function

values, we increment the step-index in the semantic case for function application.

These techniques are standard from prior work (Ahmed, 2006), and we merely

summarize the key ideas here to give background to our reader.

14.2 Formal Definition of Dynamic Analysis.

We model language features for arithmetic operations (e � e), conditionals

(if0(e){e}{e}), pairs (〈e, e〉 and πi(e)), functions (λx. e and e(e)) and references

(ref(e), !e and e← e); the full language is shown in Figure 22.1. There is one base

value: r@Σ
m for a real number result r tagged with dynamic analysis information

Σ—the sensitivity analysis for the expression which evaluated to r—and m—the

metric associated with the resulting value r. The sensitivity analysis Σ—also

called a sensitivity environment—is a map from sensitive sources o ∈ source to

how sensitive the result is w.r.t. that source. Our formalism includes two base

metrics m ∈ metric: diff and disc for absolute difference (|x− y|) and discrete

distance (0 if x = y and 1 otherwise) respectively—and two derived metrics: >

and ⊥ for the smallest metric larger than each base metric and largest metric

smaller than each base metric, respectively. Each metric is commonly used

when implementing differentially private algorithms. Pair values (〈v, v〉), closure

values (〈λx. e | ρ〉) and reference values (`) do not contain dynamic analysis

information.

Our dynamic analysis is described formally as a big-step relation ρ ` x
p
σ, ey
q ⇓n
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x
p
σ, vy
q where ρ ∈ var ⇀ value is the lexical environment mapping lexical variables

to values, σ ∈ loc ⇀ value is the dynamic environment (i.e., the heap, or

store) mapping dynamically allocated references to values, e is the expression

being executed, and v is the resulting runtime value which also includes dynamic

analysis information. We write gray box corners around the “input” configuration

x
p
σ, ey
q and the “output” configuration x

p
σ, vy
q to aid readability. The index n is for

step-indexing, and tracks the number of function applications which occurred in

the process of evaluation. We show the full definition of the dynamic analysis in

Figure 22.5.

Consider the following example:

{x 7→ 21@
{o7→1}
diff } ` ∅, (x+ x) ⇓0 42@

{o7→2}
diff

This relation corresponds to a scenario where the program to evaluate and

analyze is x+ x, the variable x represents a sensitive source value o, we want to

track sensitivity w.r.t. the absolute difference metric, and the initial value for x is

21. This information is encoded in an initial environment ρ = {x 7→ 21@
{o 7→1}
diff }.

The result value is 42, and the resulting analysis reports that e is 2-sensitive in

the source o w.r.t. the absolute difference metric. This analysis information is

encoded in the return value 42@
{o 7→2}
diff . Because no function applications occur

during evaluation, the step index n is 0.

14.3 Formal Definition of Function Sensitivity.

Function sensitivity is encoded through multiple relation definitions:

1. ρ1, σ1, e1 ∼Σ
n ρ2, σ2, e2 holds when the input triples ρ1, σ1, e1 and ρ2, σ2, e2

evaluate to output stores and values which are related by Σ. Note this

definition decrements the step-index n, and is the constant relation when
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b ∈ B n ∈ N i ∈ Z r ∈ R x ∈ var

o ∈ source sensitive sources
` ∈ loc reference locations
e ∈ expr ::= x variables

| r real numbers
| e� e arith. operations
| if0(e){e}{e} cond. branching
| 〈e, e〉 pair creation
| πi(e) pair access
| λx. e function creation
| e(e) function application
| ref(e) reference creation
| !e reference read
| e← e reference write

q ∈ R̂ ::= r | ∞ ext. reals
� ∈ binop ::= + | n | o operations
m ∈ metric ::= diff absolute difference

| disc discrete
| ⊥ bot metric
| > top metric

v ∈ value ::= r@Σ
m tagged base value

| 〈v, v〉 pair
| 〈λx. e | ρ〉 function (closure)
| ` location (pointer)

ρ ∈ env , var ⇀ value value environment
σ ∈ store , loc ⇀ value mutable store
Σ ∈ senv , source ⇀ R̂ sens. environment

ρ1, σ1, e1 ∼Σ
0 ρ2, σ2, e2

M⇐⇒ true

ρ1, σ1, e1 ∼Σ
n+1 ρ2, σ2, e2

M⇐⇒ ∀n1 ≤ n, n2, σ′1, σ
′
2, v1, v2.

ρ1 ` x
p
σ1, e1y

q
⇓n1 x

p
σ′1, v1y

q
∧ ρ2 ` x

p
σ2, e2y

q
⇓n2 x

p
σ′2, v2y

q

⇒ n1 = n2 ∧ σ′1 ∼n−nΣ
1
σ′2 ∧ v1 ∼n−nΣ

1
v2

ρ, σ, e ∼Σ
n ρ, σ, e

r ∼rm r

r1 ∼rdiff r2
M⇐⇒ |r1 − r2| ≤ r

r1 ∼rdisc r2
M⇐⇒

{
0 ≤ r if r1 = r2
1 ≤ r if r1 6= r2

r1 ∼r⊥ r2
M⇐⇒ r1 ∼rdiff r2 ∧ r1 ∼rdisc r2

r1 ∼r> r2
M⇐⇒ r1 ∼rdiff r2 ∨ r1 ∼rdisc r2

r1@
m

Σ1
1

∼Σ
n r2@

m
Σ2
2

M⇐⇒ Σ1 = Σ2 ∧ m1 = m2 ∧ r1 ∼
m

Σ·Σ1
1

r2

〈v11, v12〉 ∼Σ
n 〈v21, v22〉

M⇐⇒ v11 ∼Σ
n v21 ∧ v12 ∼Σ

n v22

〈λx. e1 | ρ1〉 ∼Σ
n 〈λx. e2 | ρ2〉

M⇐⇒ ∀n′ ≤ n, v1, v2, σ1, σ2. σ1 ∼Σ
n′ σ2 ∧ v1 ∼Σ

n′ v2

⇒ σ1, {x 7→ v1} ] ρ1, e1 ∼Σ
n′ σ2, {x 7→ v2} ] ρ2, e2

`1 ∼Σ
n `2

M⇐⇒ `1 = `2

v ∼Σ
n v

ρ1 ∼Σ
n ρ2

M⇐⇒ ∀x ∈ (dom(ρ1) ∪ dom(ρ2)). ρ1(x) ∼Σ
n ρ2(x)

σ1 ∼Σ
n σ2

M⇐⇒ ∀` ∈ (dom(σ1) ∪ dom(σ2)). σ1(`) ∼Σ
n σ2(`)

ρ ∼Σ
n ρ

σ ∼Σ
n σ

Figure 14.1: Formal Syntax & Step-indexed Logical Relation.
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n = 0.

2. r1 ∼rm r2 holds when the difference between real numbers r1 and r2 w.r.t.

metric m is less than r.

3. v1 ∼Σ
n v2 holds when values v1 and v2 are related for initial distance Σ and

step-index n. The definition is by case analysis on the syntactic category

for values, such as:

(a) The relation on base values r1@
m

Σ1
1
∼Σ
n r2@

m
Σ2
2

holds when Σ1, Σ2,

m1 and m2 are pairwise equal, and when r1 and r2 are related by

Σ·Σ1, where Σ is the initial distances between each input source o,

and Σ1 is how much r1 and r2 are allowed to differ as a linear function

of input distances Σ, and where this function is applied via vector

dot product ·.

(b) The relation on pair values 〈v11, v12〉 ∼Σ
m 〈v21, v22〉 holds when each

element of the pair are pairwise related.

(c) The relation on function values 〈λx. e1 | ρ1〉 ∼Σ
n 〈λx. e2 | ρ2〉 holds

when each closure returns related output configurations when evalu-

ated with related inputs.

(d) The relation on locations `1 ∼Σ
n `2 holds when the two locations are

equal.

4. ρ1 ∼Σ
n ρ2 holds when lexical environments ρ1 and ρ2 map all variables to

related values.

5. σ1 ∼Σ
n σ2 holds when dynamic environments σ1 and σ2 map all locations

to related values.

Note that the definitions of ρ1, σ1, e1 ∼Σ
n ρ2, σ2, e2 and v ∼Σ

n v are mutually

recursive, but are well founded due to the decrement of the step index in the
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former relation. We show the full definition of these relations in Figure 22.6.

The function sensitivity of an expression is encoded first as a statement

about expressions respecting relatedness, that is, returning related outputs when

given related inputs, i.e., (assuming no use of the store) if ρ1 ∼Σ
n ρ2 and ρ1 `

∅, e ⇓n1
∅, v1 and ρ2 ` ∅, e ⇓n2

∅, v2 then n1 = n2 and v1 ∼n−nΣ
1
v2. When

instantiated to base types, we have: if ρ1 ∼Σ
n ρ2 and ρ1 ` ∅, e ⇓n1

∅, r1@
m

Σ1
1

and

ρ2 ` ∅, e ⇓n2 ∅, r2@
m

Σ2
2

then n1 = n2, Σ1 = Σ2, m1 = m2 and r1 ∼mΣ·Σ1
1

r2.

The fully general form of this property is called metric preservation, which is

the main property we prove in our formal development.

14.4 Metric Preservation.

Metric preservation states that when given related initial configurations and

evaluation outputs, then those outputs are related. Outputs include result values,

as well as dynamic analysis results, and the relationship that holds demonstrates

the soundness of the analysis results.

Theorem 14.4.1 (Metric Preservation).

If: ρ1 ∼Σ
n ρ2 (H1)

And: σ1 ∼Σ
n σ2 (H2)

Then: ρ1, σ1, e ∼Σ
n ρ2, σ2, e

That is, either n = 0 or n = n′ + 1 and. . .
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e dr ∈ R̂→ R̂
e dr ∈ senv→ sens

er′dr ,
{

0 if r′ = 0
r if r′ 6= 0

eΣdr(o) , eΣ(o)dr
alloc(L) /∈ L ∈ ℘(loc)Z =

{o 7→ 0}

ρ ` x
p
σ, ey
q ⇓n x

p
σ, vy
q

Var

ρ ` x
p
σ, xy
q ⇓0 x

p
σ, ρ(x)y

q

Real

ρ ` x
p
σ, ry
q ⇓0 x

p
σ, r@Z

discy
q

Fun

ρ ` x
p
σ, λx. ey

q ⇓0 x
p
σ, 〈λx. e | ρ〉y

q

Plus

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , r1@

m
Σ1
1 y
q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, r2@

m
Σ2
2 y
q

ρ ` x
p
σ, e1 + e2y

q ⇓n1+n2 x
p
σ′′, (r1 + r2)@

m
Σ1+Σ2
1 tm2y

q

Times-L

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , r1@mZ

1y
q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, r2@

m
Σ2
2 y
q

ρ ` x
p
σ, e1 n e2y

q ⇓n1+n2 x
p
σ′′, (r1 × r2)@

m
r1Σ2
2 y
q

Times-R

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , r1@

m
Σ1
1 y
q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, r2@mZ

2y
q

ρ ` x
p
σ, e1 o e2y

q ⇓n1+n2 x
p
σ′′, (r1 × r2)@

m
r2Σ1
1 y
q

IfZ-T

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , r1 @mZ

1y
q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, v2y

q
r1 = 0

ρ ` x
p
σ, if0(e1){e2}{e3}y

q ⇓n1+n2 x
p
σ′′, v2y

q

Figure 14.2: Formal Big-step, Step-indexed Semantics and Metafunctions.
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ρ ` x
p
σ, ey
q ⇓n x

p
σ, vy
q

IfZ-F

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , r1 @mZ

1y
q

ρ ` x
p
σ′, e3y
q ⇓n2 x

p
σ′′, v3y

q
r1 6= 0

ρ ` x
p
σ, if0(e1){e2}{e3}y

q ⇓n1+n2 x
p
σ′′, v3y

q

Pair

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , v1y

q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, v2y

q

ρ ` x
p
σ, 〈e1, e2〉y

q ⇓n1+n2 x
p
σ′′, 〈v1, v2〉y

q

Proj

ρ ` x
p
σ, ey
q ⇓n x

p
σ′, 〈v1, v2〉y

q

ρ ` x
p
σ, πn′(e)y

q ⇓n x
p
σ′, vn′y

q

Ref

ρ ` x
p
σ, ey
q ⇓n x

p
σ′, vy
q

` = alloc(dom(σ))

ρ ` x
p
σ, ref(e)y

q ⇓n x
p{` 7→ v} ] σ′, ỳ

q

Read

ρ ` x
p
σ, ey
q ⇓n x

p
σ′, `y
q

ρ ` x
p
σ, !ey
q ⇓n x

p
σ′, σ′(`)y

q

Write

ρ ` x
p
σ , e1y
q ⇓n1 x

p
σ′ , `y
q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, vy
q

ρ ` x
p
σ, e1 ← e2y

q ⇓n1+n2 x
p
σ′′[` 7→ v], vy

q

App

ρ ` x
p
σ, e1y
q ⇓n1 x

p
σ′, 〈λx. e | ρ〉y

q

ρ ` x
p
σ′, e2y
q ⇓n2 x

p
σ′′, vy
q {x 7→ v} ] ρ ` x

p
σ′′, ey
q ⇓n3 x

p
σ′′′, v′y

q

ρ ` x
p
σ, e1(e2)y

q ⇓n1+n2+n3+1 x
p
σ′′′, v′y

q

Figure 14.3: Formal Big-step, Step-indexed Semantics and Metafunctions.
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If: n1 ≤ n (H3)

And: ρ1 ` x
p
σ1, ey
q ⇓n1 x

p
σ′1, v1y

q (H4)

And: ρ2 ` x
p
σ2, ey
q ⇓n2 x

p
σ′2, v2y

q (H5)

Then: n1 = n2 (C1)

And: σ′1 ∼n−nΣ
1
σ′2 (C2)

And: v1 ∼n−nΣ
1
v2 (C3)

Proof. See detailed proof in Chapter 16.

14.5 Instantiating Metric Preservation.

Metric preservation is not enough on its own to demonstrate sound dynamic

analysis of function sensitivity. Suppose we execute the dynamic analysis on

program e with initial environment ρ, yielding a final store σ, base value r,

sensitivity environment Σ, metric m and step-index n as a result:

ρ ` ∅, e ⇓n σ, r@Σ
m

To know the sensitivity of e is to know a bound on two arbitrary runs of e, that is,

using two arbitrary environments ρ1 and ρ2. Does Σ tell us this? Remarkably, it

does, with one small condition: ρ1 and ρ2 must agree with ρ on all non-sensitive

values. This is not actually limiting: a non-sensitive value is essentially auxiliary

information; they are constants and fixed for the purposes of sensitivity and

privacy.

We can encode the relationship that environments ρ and ρ1 agree on all

non-sensitive values as ρ ∼Σ′ ρ1 for any Σ′, and we allow for environments ρ

and ρ1 to differ on any sensitive value while agreeing on non-sensitive values as

ρ ∼{o 7→∞} ρ1. Under such an assumption, Σ and m are sound dynamic analysis

results for two arbitrary runs of e, i.e., under environments ρ1 and ρ2, so long as
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one of those environments agrees with ρ—the environment used to compute the

dynamic analysis. We encode this property formally as the following corollary

to metric preservation:

Corollary 14.5.0.1 (Sound Dynamic Analysis for Sensitivity).

If: n1 < n, n2 < n and n3 < n (H1)

And: ρ ∼{o 7→∞}n ρ1 (H2)

And: ρ ` x
p∅, ey
q ⇓n1 x

p
σ, r@Σ

my
q (H3)

And: ρ1 ∼Σ′

n ρ2 (H4)

And: ρ1 ` x
p∅, ey
q ⇓n2 x

p
σ1, r1@

m
Σ1
1 y
q (H5)

And: ρ2 ` x
p∅, ey
q ⇓n3 x

p
σ2, r2@

m
Σ2
2 y
q (H6)

Then: r1 ∼Σ′·Σ
m1

r2 (C1)

Proof.

By Metric Preservation, (H2), (H1), (H3) and (H5) we have Σ1 = Σ andm1 = m.

By Metric Preservation, (H4), (H1), (H5) and (H6) we have proved the goal

(C1).

Note that the final results are related using Σ—the analysis result derived

from an execution under ρ—while r1 and r2 are derived from executions under

unrelated (modulo auxiliary information) environments ρ1 and ρ2.

In simpler terms, this corollary shows that even though the dynamic analysis

only sees one particular execution of the program, it is accurate in describing

the sensitivity of the program—even though the notion of sensitivity considers

two arbitrary runs of the program, including those whose inputs differ entirely

from those used in the dynamic analysis.

106



Chapter 15

Implementation & Case

Studies

We have developed a reference implementation of DDuo as a Python library,

using the approaches described in Chapters ??, 12, and 13.

A major goal in the design of DDuo is seamless integration with other

libraries. Our reference implementation provides initial support for NumPy,

Pandas, and Sklearn. DDuo provides hooks for tracking both sensitivity and

privacy, to simplify integrating with additional libraries.

We present case studies which focus on demonstrating DDuo’s (1) similarity

to regular Python code, (2) applicability to complex algorithms, (3) easy integra-

tion with existing libraries. Although our approach is automatic, DDuo is able to

compute privacy leakage bounds that match those of bespoke privacy-preserving

algorithms.

We introduce new adaptive variants of algorithms that stop early when

possible to conserve privacy budget. These variants cannot be verified by prior

work using purely static analyses, because their privacy parameters are chosen
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Name Type Conditions

laplace : (ε : R, value : R) → R where priv(laplace(ε, value)) , ε

gauss : (ε : R, δ : R, value : R) → R where priv(gauss(ε, δ, value)) , (ε, δ)

ed_odo : (f : A → B, in : A) → (out : B, (ε, δ)) where priv(ed_odo(f, in)) , priv(f(in))

renyi_odo : (f : A → B, in : A) → (out : B, (α, ε)) where priv(renyi_odo(f, in)) , priv(f(in))
ed_filter : (f : A → B, in : A, (ε, δ)) → (out : B) where (ε, δ) ≥ priv(f(in))

renyi_filter : (f : A → B, in : A, (α, ε)) → (out : B) where (α, ε) ≥ priv(f(in))
conv_renyi : (f : A → B, in : A, δ : R) → (out : B) where priv(f(...)) = (α, ε)

and conv(α, ε, δ) = (ε, δ)
svt : (ε : R, qs : [A → B], data : [A], t : R) → N where for q in qs, sens(q) = 1

and priv(svt(ε, qs, data, t)) , ε

exp : (ε : R, q : A → B, data : [A]) → N where priv(exp(ε, q, data)) , ε

map : (f : A → B, in : [A]) → [B] where sens(map(f, )) , sens(f( ))

priv: denotes the privacy leakage of a program given by dynamic analysis; sens: denotes the
sensitivity of a program given by dynamic analysis; conv: represents the conversion equation
from renyi to approximate differential privacy; ε,δ,and α are always assumed to be of type R.
Types are written as follows: the → symbol is used to seperate the domain and range of a

function, either of which may be given as an atomic type such as a natural number (N), or as
a tuple which is a comma-seperated list of types surrounded by parentheses, or as a symbol

(A) indicating parametric polymorphism (generics). In some cases, types may also be
accompanied with a placeholder name (ε : R) for further qualification in the where clause.

Figure 15.1: Core API Methods

adaptively.

15.1 Run-time overhead.

Run-time overhead is a key concern in DDuo’s instrumentation for dynamic

analysis. Fortunately, experiments on our case studies suggest that the overhead

of DDuo’s analysis is generally low. Table 15.1 presents the run-time perfor-

mance overhead of DDuo’s analysis as a percentage increase of total runtime.

The worst overhead time observed in our case studies was less than 60%.

In certain rare cases, DDuo’s overhead can be much higher. For example,

mapping the function lambda x: x + 1 over a list of 1 million numbers takes

160x longer under DDuo than in standard Python. The overhead in this

case comes from a combination of factors: first, DDuo’s map function, itself

implemented in Python, is much slower than Python’s built-in map operator;

second, DDuo’s map function requires the creation of a new Sensitive object

for each element of the list—a slow operation in Python.

Fortunately, the same strategies for producing high-performance Python
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Technique Ref. Libraries Used Overhead
Noisy Gradient Descent (Bassily et al., 2014b) NumPy 6.42%
Multiplicative Weights (MWEM) (Hardt et al., 2012) Pandas 14.90%
Private Naive Bayes Classification (Vaidya et al., 2013) DiffPrivLib 12.44%
Private Logistic Regression (Chaudhuri and Monteleoni, 2008) DiffPrivLib 56.33%

Table 15.1: List of case studies included with the DDuo implementation.

code without privacy also help reduce DDuo’s overhead. Python’s performance

characteristics have prompted the development of higher-performance libraries

like NumPy and Pandas, which essentially provide data-processing combinators

that programmers compose. By providing sensitivity annotations for these

libraries, we can re-use these high-performance implementations and avoid

creating extra objects. As a result, none of our case studies demonstrates the

worst-case performance overhead described above.

15.2 Case study: gradient descent with NumPy.

Our first case study (Figure 23.3) is a simple machine learning algorithm based

on (Bassily et al., 2014b) implemented directly with DDuo-instrumented NumPy

primitives.

Given a dataset X which is a list of feature vectors representing training

examples, and a vector y which classifies each element of X in a finite set,

gradient descent is the process of computing a model (a linear set of weights)

which most accurately classifies a new, never seen before training example, based

on our pre-existing evidence represented by the model.

Gradient descent works by first specifying a loss function that computes the

effectiveness of a model in classifying a given dataset according to its known

labels. The algorithm then iteratively computes a model that minimizes the loss

function, by calculating the gradient of the loss function and moving the model

in the opposite direction of the gradient.

One method of ensuring privacy in gradient descent involves adding noise to

the gradient calculation, which is the only part of the process that is exposed to

109



the private training data. In order to add noise to the gradient, it is convenient

to bound its sensitivity via clipping to some L2 norm. In this example, clipping

occurs in the gradient_sum function before summation.

The original implementation of this algorithm (Bassily et al., 2014b) was

based on the advanced composition theorem. Advanced composition improves

on sequential composition by providing much tighter privacy bounds over several

iterations, but requires the analyst to fix the number of iterations up front,

regardless of how many iterations the gradient descent algorithm actually takes

to converge to minimal error.

We present a modified version based on adaptive Renyi differential privacy

which provides not only a tighter analysis of the privacy leakage over several

iterations, but also allows the analyst to halt computation adaptively (conserving

the remaining privacy budget) once a certain level of model accuracy has been

reached, or loss has been minimized. We introduce random noise to the accuracy

calculation because it is a computation on the sensitive input training dataset in

this case.

15.3 MWEM with Pandas

The MWEM algorithm (Hardt et al., 2012) constructs a differentially private

synthetic dataset that approximates a real dataset. MWEM produces competi-

tive privacy bounds by utilizing a combination of the exponential mechanism,

Laplacian/Gaussian noise, and the multiplicative weights update rule. The

algorithm uses these mechanisms iteratively, providing a tight analysis of privacy

leakage via composition.

The inputs to the MWEM are as follows: some uniform or random distribu-

tion over a domain (syn_data), some sensitive dataset (age_counts), a query

workload, a number of iterations i, and a privacy budget ε.
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def dp_gradient_descent(iterations, alpha, eps):
eps_i = eps/iterations
theta = np.zeros(X.shape[1])
with dduo.RenyiFilter(alpha,eps_max):

with dduo.RenyiOdometer((alpha, eps)) as odo:
noisy_count = dduo.renyi_gauss(α=alpha,
ε=eps,X.shape[0])
priv_acc = 0
acc_diff = 1

while acc_diff > 0.05:
grad_sum = gradient_sum(theta,

X_train, y_train, sensitivity)
noisy_grad_sum = dduo.gauss_vec(grad_sum,
α=alpha,ε=eps_i)

noisy_avg_grad = noisy_grad_sum/noisy_count
theta = np.subtract(theta, noisy_avg_grad)
priv_acc_curr = dduo.renyi_gauss(alpha,

eps_acc, accuracy(theta))
acc_diff = priv_acc_curr - priv_acc
priv_acc = priv_acc_curr

print(odo)
return theta

theta = dp_gradient_descent(iterations,
α=alpha, ε=epsilon)

acc = dduo.renyi_gauss(alpha,
eps_acc, accuracy(theta))

print(f"final accuracy: {acc}")

Odometer_(α, ε)({data.csv 7→ (10.0, 2.40)})
final accuracy: 0.753

Figure 15.2: Gradient Descent with NumPy
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The algorithm works by, at each iteration:

• privately selecting a query from the query workload (using the exponential

mechanism) whose result on the synthetic dataset greatly differs from the

real dataset

for t in range(i):

q = exponential(q_workload,score_fn,eps/(2*i))

...

• and then privately using the query result on the real dataset to adjust

the synthetic dataset towards the truth using the multiplicative weights

update rule

for t in range(i):

...

syn_data = mwem_step(q, age_counts, syn_data)

We present a modified, adaptive MWEM algorithm (Figure 23.4) which

privately halts execution if the error of the synthetic dataset reaches an acceptably

low level before the entire privacy budget is exceeded, conserving the remainder

of the budget for other private analyses.

15.4 DiffPrivLib

DiffPrivLib is library for experimenting with analytics and machine learning

with differential privacy in Python by IBM. It provides a comprehensive suite of

differentially private mechanisms, tools, and machine learning models.
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def mwem_step(query, real_data, syn_data):
lower, upper = query
sm = [v for k, v in syn_data.items()]
total = np.sum(sm)
q_ans = range_query(real_data, lower, upper)
real = dduo.renyi_gauss(α=alpha,ε=eps,q_ans,sens)
syn = range_query(syn_data, lower, upper)
l = [(k, mwem_update(k, x, lower, upper,

real, syn, total))
for k, x in syn_data.items()]

return dict(l)

with dduo.RenyiFilter(alpha,20.0):
with dduo.RenyiOdometer((alpha,2.0)) as odo:

while stable < stability_thresh:
e = err(age_counts,curr_syn)
curr_noisy_err=dduo.renyi_gauss(α=alpha,ε=1.0,e)
if (curr_noisy_err < thresh):

stable += step
else:

stable = 0
for t in range(iterations):

q = exponential(q_workload,score_fn,eps/(2*i))
curr_syn = mwem_step(q,age_counts,curr_syn)

acc = dduo.renyi_gauss(alpha, eps_acc,
accuracy(age_counts,curr_syn))

print(f"final accuracy: {acc}")

Odometer_(α, ε)({data.csv 7→ (10.0, 0.5)})
final accuracy: 0.703

Figure 15.3: MWEM with Pandas
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While DiffPrivLib provides several mechanisms, models and tools for develop-

ing private applications, as well as a basic privacy accountant, it lacks the ability

to perform a tight privacy analysis in the context of more sophisticated forms of

composition with dynamic and adaptive privacy tracking. Via integration with

DDuo we are able to gain these abilities with minimal changes to library and

program code.

Figure 15.4 shows an example of a modified DiffPrivLib program: a private

naive Bayes classifier run on the standard iris dataset. The original program

has been modified with DDuo hooks to detect sensitivity violations and track

privacy cost.

We also present a DDuo instrumented example of differentially private

logistic regression with DiffPrivLib (Figure 15.5).

Both of these programs have been modified to perform adaptively private

clipping. Over several iterations, clipping parameters are gradually modified to

optimize model accuracy. This form of control flow on probabilistic values is only

sound following the adaptive composition strategies that DDuo provides. In or-

der to preserve the privacy budget, such hyperparameter optimization procedures

should normally be run on artificial datasets based on domain knowledge.

The changes required for the integration with the DiffPrivLib library consist

of 15 lines of DDuo instrumentation code.
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from dduo import sklearn as sk
from dduo import DiffPrivLib as dpl
with dduo.AdvEdOdometer() as odo:

while noisy_acc < thresh or iters < max_iters:
prev_bounds = bounds
bounds = update_bounds(bounds)
clf = dpl.GNB(bounds=bounds, epsilon=epsilon)
clf.fit(X_train, y_train)
prev_acc = noisy_acc
accuracy = dpl.score(y_test, clf.predict(X_test))
noisy_acc = dduo.gauss(epsilon_acc,delta,accuracy)
if noisy_acc < prev_acc:

bounds = prev_bounds
iters += 1

dduo.print_privacy_cost()

Odometer_(ε, δ)({data.csv 7→ (0.82, 0.0035)})

Figure 15.4: DiffPrivLib: Naive Bayes Classification

from dduo import sklearn as sk
from dduo import DiffPrivLib as dpl
with dduo.AdvEdOdometer() as odo:

while noisy_acc < thresh or norm > 0.0:
dp_clf = dpl.LogisticRegression(epsilon=epsilon,

data_norm = norm)
dp_clf.fit(X_train, y_train)
accuracy = dp_clf.score(X_test, y_test)
noisy_acc = dduo.gauss(epsilon_acc,delta,accuracy)
norm -= step

dduo.print_privacy_cost()

Odometer_(ε, δ)({data.csv 7→ (0.53, 0.0015)})

Figure 15.5: DiffPrivLib: Logistic Regression
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Chapter 16

Lemmas, Theorems & Proofs

Lemma 16.0.1 (Plus Respects). If r1 ∼rm r2 Then (r1 + r3) ∼rm (r2 + r3).

Proof. By unfolding definitions and simple arithmetic.

Lemma 16.0.2 (Times Respects). If r1 ∼rm r2 then (r1 × r3) ∼r3rm (r2 × r3).

Proof. By unfolding definitions and simple arithmetic.

Lemma 16.0.3 (Triangle). If r1 ∼mrAA r2 and r2 ∼mrBB r3 then r1 ∼mrA+rB
A tmB

r3.

Proof. By unfolding definitions, simple arithmetic, and the standard triangle

inequality property for real numbers.

Lemma 16.0.4 (Real Metric Weakening). If r1 ∼rm r2, r ≤ r′ and m v m′ then

r1 ∼r
′

m′ r2.

Proof. By unfolding definitions and simple arithmetic.

Lemma 16.0.5 (Step-index Weakening). For n′ ≤ n: (1): If ρ1 ∼Σ
n ρ2 then

ρ1 ∼Σ
n′ ρ2; (2): If σ1 ∼Σ

n σ2 then σ1 ∼Σ
n′ σ2; and (3): If ρ1, σ1, e1 ∼Σ

n ρ2, σ2, e2

then ρ1, σ1, e1 ∼Σ
n′ ρ2, σ2, e2.
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Proof. By mutual induction on n for all three properties, and additionally case

analysis on e1 and e2 for property (3).

Theorem 16.0.6 (Metric Preservation).

If: ρ1 ∼Σ
n ρ2 (H1)

And: σ1 ∼Σ
n σ2 (H2)

Then: ρ1, σ1, e ∼Σ
n ρ2, σ2, e

That is, either n = 0 or n = n′ + 1 and. . .

If: n1 ≤ n (H3)

And: ρ1 ` x
p
σ1, ey
q ⇓n1 x

p
σ′1, v1y

q (H4)

And: ρ2 ` x
p
σ2, ey
q ⇓n2 x

p
σ′2, v2y

q (H5)

Then: n1 = n2 (C1)

And: σ′1 ∼n−nΣ
1
σ′2 (C2)

And: v1 ∼n−nΣ
1
v2 (C3)

Proof. See detailed proof later in this section.

Corollary 16.0.6.1 (Sound Dynamic Analysis for Sensitivity).

If: n1 < n, n2 < n and n3 < n (H1)

And: ρ ∼{o 7→∞}n ρ1 (H2)

And: ρ ` x
p∅, ey
q ⇓n1 x

p
σ, r@Σ

my
q (H3)

And: ρ1 ∼Σ′

n ρ2 (H4)

And: ρ1 ` x
p∅, ey
q ⇓n2 x

p
σ1, r1@

m
Σ1
1 y
q (H5)

And: ρ2 ` x
p∅, ey
q ⇓n3 x

p
σ2, r2@

m
Σ2
2 y
q (H6)

Then: r1 ∼Σ′·Σ
m1

r2 (C1)
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Proof.

By Metric Preservation, (H2), (H1), (H3) and (H5) we have Σ1 = Σ and

m1 = m.

By Metric Preservation, (H4), (H1), (H5) and (H6) we have proved the goal

(C1).

Proof of Metric Preservation.

By strong induction on n and case analysis on e:

- Case n = 0: Trivial by definition.

- Case n = n+ 1 and e = x:

By inversion on (H4) and (H5) we have: n1 = n2 = 0, σ′1 = σ1, σ′2 = σ2,

v1 = ρ1(x) and v2 = ρ2(x). To show: (C1): 0 = 0; (C2): σ1 ∼Σ
n σ2; and

(C3): ρ1(x) ∼Σ
n ρ2(x). (C1) is trivial. (C2) is immediate by (H2). (C3) is

immediate by (H1).

- Case n = n+ 1 and e = r:

By inversion on (H4) and (H5) we have n1 = n2 = 0, v1 = v2 = r@Z
disc,

σ′1 = σ1 and σ′2 = σ2. To show: (C1): 0 = 0; (C2): σ1 ∼Σ
n σ2; and (C3):

r ∼0
disc r. (C1) is trivial. (C2) is immediate by (H2). (C3) is immediate by

definition of relation ∼rm.

- Case n = n+ 1 and e = e1 + e2:

By inversion on (H4) and (H5) we have:
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ρ1 ` x
p
σ1, e1y

q ⇓n11 x
p
σ′1 , r11@

m
Σ11
11 y
q (H4.1)

ρ1 ` x
p
σ′1, e2y

q ⇓n12 x
p
σ′′1 , r12@

m
Σ12
12 y
q (H4.2)

ρ2 ` x
p
σ2, e1y

q ⇓n21 x
p
σ′2 , r21@

m
Σ21
21 y
q (H5.1)

ρ2 ` x
p
σ′2, e2y

q ⇓n22 x
p
σ′′2 , r22@

m
Σ22
22 y
q (H5.2)

and we also have: n1 = n11 + n12, n2 = n21 + n22, σ′1 = σ′′1 , σ′2 = σ′′2 , v1 =

(r11 +r12)@
m

Σ11+Σ12
11 tm12

and v2 = (r21 +r22)@
m

Σ21+Σ22
21 tm22

. By IH (n = n de-

creasing), (H1), (H2), (H3), (H4.1) and (H5.1) we have: n11 = n21 (IH.1.C1);

σ′1 ∼n−nΣ
11
σ′2 (IH.1.C2); and r11@

m
Σ11
11
∼n−nΣ

11
r21@

m
Σ21
21

(IH.1.C3). By

unfolding the definition in (IH.1.C3), we have: Σ11 = Σ21 (IH.1.C3.1);

m11 = m21 (IH.1.C3.2); and r11 ∼mΣ·Σ11
11

r21 (IH.1.C3.3). Note the fol-

lowing facts: n12 ≤ n−n11 (F1); and ρ1 ∼n−nΣ
11

(F2). (F1) follows from (H3)

and n1 = n11 + n12. (F2) follows from (H1) and Step-index Weakening.1. By

IH (n = n−n11 decreasing), (F2), (IH.1.C2), (F1), (H4.2) and (H5.2) we have:

n12 = n22 (IH.2.C1); σ′′1 ∼n−nΣ
11−n12

σ′′2 (IH.2.C2); and r12@
m

Σ12
12
∼nΣ

11−n12

r22@
m

Σ22
22

(IH.2.C3). By unfolding the definition in (IH.2.C3), we have:

Σ12 = Σ22 (IH.2.C3.1); m12 = m22 (IH.2.C3.2); and r12 ∼mΣ·Σ12
12

r22

(IH.2.C3.3). To show: (C1): n11 + n12 = n21 + n22; (C2): σ′′1 ∼n−nΣ
11−n12

σ′′2 ;

and (C3): (r11 + r12)@
m

Σ11+Σ12
11 tm12

∼n−nΣ
11−n12

(r21 + r22)@
m

Σ21+Σ22
21 tm22

.

(C1) is immediate from (IH.1.C1) and (IH.2.C1). (C2) is immediate from

(IH.2.C2). To show (C3) we must show: (C3.1): Σ11+Σ12 = Σ21+Σ22; (C3.2):

m11 tm12 = m21 tm22; and (C3.3): (r11 + r12) ∼
m

Σ·(Σ11+Σ12)
11 tm12

(r21 + r22).

(C3.1) is immediate from (IH.1.C3.1) and (IH.2.C3.1). (C3.2) is immediate

from (IH.1.C3.2) and (IH.2.C3.2). (C3.3) holds as follows: By Plus Respects,

(IH.1.C3.3) and (IH.2.C3.3): (r11+r12) ∼
m

Σ·Σ11
11

(r21+r12) ∼
m

Σ·Σ12
12

(r21+r22).

By Triangle: (r11 + r12) ∼
m

Σ·Σ11+Σ·Σ12
11 tm12

(r21 + r22). By basic algebra:

(r11 + r12) ∼
m

Σ·(Σ11+Σ12)
11 tm12

(r21 + r22) We have shown the goal.

- Case n = n+ 1 and e = e1 n e2:
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By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, e1y

q ⇓n11 x
p
σ′1 , r11@mZ

11y
q (H4.1)

ρ1 ` x
p
σ′1, e2y

q ⇓n12 x
p
σ′′1 , r12@mZ

12y
q (H4.2)

ρ2 ` x
p
σ2, e1y

q ⇓n21 x
p
σ′2 , r21@

m
Σ1
21y
q (H5.1)

ρ2 ` x
p
σ′2, e2y

q ⇓n22 x
p
σ′′2 , r22@

m
Σ2
22y
q (H5.2)

and we also have: n1 = n11 + n12, n2 = n21 + n22, σ′1 = σ′′1 , σ′2 = σ′′2 , v1 =

(r11 × r12)@
m
r11Σ12
12

and v2 = (r21 × r22)@
m
r21Σ22
22

. By IH (n = n decreasing),

(H1), (H2), (H3), (H4.1) and (H5.1) we have: n11 = n21 (IH.1.C1); σ′1 ∼n−nΣ
11

σ′2 (IH.1.C2); and r11@
m

Σ11
11
∼n−nΣ

11−n12
r21@

m
Σ21
21

(IH.1.C3). By unfolding

the definition in (IH.1.C3), we have: Σ11 = Σ21 (IH.1.C3.1); m11 = m21

(IH.1.C3.2); and r11 ∼m0
11
r21 (IH.1.C3.3). As a consequence of (IH.1.C3), we

have: r11 = r21. Note the following facts: n12 ≤ n− n11 (F1); and ρ1 ∼n−nΣ
11

(F2). (F1) follows from (H3) and n1 = n11 + n12. (F2) follows from (H1) and

Step-indexWeakening.1. By IH (n = n−n11 decreasing), (F2), (IH.1.C2), (F1),

(H4.2) and (H5.2) we have: n12 = n22 (IH.2.C1); σ′′1 ∼n−nΣ
11−n12

σ′′2 (IH.2.C2);

and r12@
m

Σ12
12
∼nΣ

11−n12
r22@

m
Σ22
22

(IH.2.C3). By unfolding the definition

in (IH.2.C3), we have: Σ12 = Σ22 (IH.2.C3.1); m12 = m22 (IH.2.C3.2);

and r12 ∼mΣ·Σ12
12

r22 (IH.2.C3.3). To show: (C1): n11 + n12 = n21 + n22;

(C2): σ′′1 ∼n−nΣ
11−n12

σ′′2 ; and (C3): (r11 × r12)@
m
r11Σ12
12

∼n−nΣ
11−n12

(r21 ×

r22)@
m

(r21Σ22)
22

. (C1) is immediate from (IH.1.C1) and (IH.2.C1). (C2) is

immediate from (IH.2.C2). To show (C3) we must show: (C3.1): r11Σ12 =

r21Σ22; (C3.2): m12 = m22; and (C3.3): (r11×r12) ∼
m

Σ·r11Σ12
12

(r21×r22). (C3)

holds as follows: (C3.1) is immediate from r11 = r21 and (IH.2.C3.1). (C3.2)

is immediate from (IH.2.C3.2). (C3.3) holds as follows: By Times Respects,

r11 = r21 and (IH.2.C3.3): (r11 × r12) = (r21 × r12) ∼
m
r11(Σ·Σ11)
21

(r21 × r22).

By basic algebra: (r11 × r12) = (r21 × r12) ∼
m

Σ·r11Σ11
21

(r21 × r22). We have

shown the goal.
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- Case n = n+ 1 and e = e1 o e2: Analogous to previous case.

- Case n = n+ 1 and e = if0(e1){e2}{e3}:

By inversion on (H4) and (H5) we have 4 subcases, each which induce:

ρ1 ` x
p
σ1, e1y

q ⇓n11 x
p
σ′1, r1@mZ

1y
q (H4.1)

ρ2 ` x
p
σ2, e1y

q ⇓n21 x
p
σ′2, r2@mZ

2y
q (H5.1)

By IH (n = n decreasing), (H1), (H2), (H3), (H4.1) and (H5.1) we have:

n11 = n21 (IH.1.C1); σ′1 ∼n−nΣ
11
σ′2 (IH.1.C2); and r1 ∼m0

1um2
r2 (IH.1.C3).

As a consequence of (IH.1.C3), we have: r1 = r2. The 4 subcases initially are

for: (1): r1 = 0 and r2 = 0; (2): r1 = 0 and r2 6= 0; (3): r1 6= 0 and r2 = 0;

and (4): r1 6= 0 and r2 6= 0. However 2 are absurd given r1 = r2, so these 4

subcases collapse to 2:

- Subcase r1 = r2 = 0:

From prior inversion on (H4) and (H5) and fact r1 = r2 = 0, we also have:

ρ1 ` x
p
σ′1, e2y

q ⇓n12 x
p
σ′′1 , v1y

q (H4.2)

ρ2 ` x
p
σ′2, e2y

q ⇓n22 x
p
σ′′2 , v2y

q (H5.2)

and we also have: n1 = n11 +n12, n2 = n21 +n22, σ′1 = σ′′1 , σ′2 = σ′′2 , v1 = v1

and v2 = v2. We continue reasoning in a generic way outside this subcase. . .

- Subcase r1 6= 0 and r2 6= 0:

From prior inversion on (H4) and (H5) and fact r1 = r2 6= 0, we also have:

ρ1 ` x
p
σ′1, e3y

q ⇓n12 x
p
σ′′1 , v1y

q (H4.2)

ρ2 ` x
p
σ′2, e3y

q ⇓n22 x
p
σ′′2 , v2y

q (H5.2)

and we also have: n1 = n11 + n12 n2 = n21 + n22 σ
′
1 = σ′′1 σ′2 = σ′′2 v1 = v1

v2 = v2 We continue reasoning in a generic way outside this subcase. . .

Note the following facts: n12 ≤ n − n11 (F1); and ρ1 ∼n−nΣ
11

(F2). (F1)

follows from (H3) and n1 = n11 + n12. (F2) follows from (H1) and Step-index

Weakening.1. By IH (n = n− n11 decreasing), (F2), (IH.1.C2), (F1), (H4.2)

and (H5.2) we have: n21 = n22 (IH.2.C1); σ′′1 ∼n−nΣ
11−n21

σ′′2 (IH.2.C2);
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and v1 ∼n−nΣ
11−n21

v2 (IH.2.C3). To show: (C1): n11 + n12 = n21 + n22;

(C2): σ′′1 ∼n−nΣ
11−n12

σ′′2 ; and (C3): v1 ∼n−nΣ
11−n12

v2. (C1) is immediate

from (IH.1.C1) and (IH.2.C1). (C2) is immediate from (IH.2.C2). (C3) is

immediate from (IH.2.C3)

- Case n = n+ 1 and e = 〈e1, e2〉:

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, e1y

q ⇓n11 x
p
σ′1 , v11y

q (H4.1)

ρ1 ` x
p
σ′1, e2y

q ⇓n12 x
p
σ′′1 , v12y

q (H4.2)

ρ2 ` x
p
σ2, e1y

q ⇓n21 x
p
σ′2 , v21y

q (H5.1)

ρ2 ` x
p
σ′2, e2y

q ⇓n22 x
p
σ′′2 , v22y

q (H5.2)

and we also have: n1 = n11 + n12, n2 = n21 + n22, σ′1 = σ′′1 , σ′2 = σ′′2 ,

v1 = 〈v11, v12〉 and v2 = 〈v21, v22〉. By IH (n = n decreasing), (H1), (H2), (H3),

(H4.1) and (H5.1) we have: n11 = n21 (IH.1.C1); σ′1 ∼n−nΣ
11
σ′2 (IH.1.C2);

and v11 ∼n−nΣ
11
v21 (IH.1.C3). Note the following facts: n12 ≤ n− n11 (F1);

and ρ1 ∼n−nΣ
11

(F2). (F1) follows from (H3) and n1 = n11 + n12. (F2)

follows from (H1) and Step-index Weakening.1. By IH (n = n − n11 de-

creasing), (F2), (IH.1.C2), (F1), (H4.2) and (H5.2) we have: n12 = n22

(IH.2.C1); σ′′1 ∼n−nΣ
11−n12

σ′′2 (IH.2.C2); and v12 ∼n−nΣ
11−n12

v22 (IH.2.C3).

To show: (C1): n11 + n12 = n21 + n22; (C2): σ′′1 ∼n−nΣ
11−n12

σ′′2 ; and

(C3): 〈v11, v12〉 ∼n−nΣ
11−n12

〈v21, v22〉. (C1) is immediate from (IH.1.C1)

and (IH.2.C1). (C2) is immediate from (IH.2.C2). (C3) is immediate from

(IH.1.C3) and (IH.2.C3).

- Case n = n+ 1 and e = πi(e):

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, ey
q ⇓n1 x

p
σ′1, 〈v11, v12〉y

q (H4.1)

ρ2 ` x
p
σ2, ey
q ⇓n2 x

p
σ′2, 〈v21, v22〉y

q (H5.1)
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and we also have: n1 = n1, n2 = n2, σ′1 = σ′1, σ′2 = σ′2, v1 = v1i and

v2 = v2i. By IH (n = n decreasing), (H1), (H2), (H3), (H4.1) and (H5.1)

we have: n1 = n2 (IH.1.C1); σ′1 ∼n−nΣ
1
σ′2 (IH.1.C2); and 〈v11, v12〉 ∼n−nΣ

1

〈v21, v22〉 (IH.1.C3). To show: (C1): n1 = n2; (C2): σ′1 ∼n−nΣ
1
σ′2; and (C3):

v1n′ ∼n−nΣ
1
v2n′ . (C1) is immediate from (IH.1.C1). (C2) is immediate from

(IH.1.C2). (C3) is immediate from (IH.1.C3).

- Case n = n+1 and e = λx. e: By inversion on (H4) and (H5) we have: n1 = 0,

n2 = 0, σ′1 = σ1, σ′2 = σ2, v1 = 〈λx. e | ρ1〉 and v2 = 〈λx. e | ρ2〉. To show:

(C1): 0 = 0; (C2): σ1 ∼Σ
n σ2; and (C3): 〈λx. e | ρ1〉 ∼Σ

n 〈λx. e | ρ2〉. (C1) is

trivial. (C2) is immediate from (H2). (C3) holds as follows: Unfolding the defi-

nition, we must show: (C3): ∀n′ ≤ n, v1, v2, σ
′
1, σ
′
2. σ

′
1 ∼Σ

n′ σ
′
2 ∧ v1 ∼Σ

n′ v2

⇒ σ′1, {x 7→ v1} ] ρ1, e ∼Σ
n′ σ

′
2, {x 7→ v2} ] ρ2, e

.

To show (C3), we assume: σ′1 ∼Σ
n′ σ

′
2 (C3.H1); and v1 ∼Σ

n′ v2 (C3.H2). And

we must show: (C3.1): σ′1, {x 7→ v1} ] ρ1, e ∼Σ
n′ σ

′
2, {x 7→ v2} ] ρ2, e. Note

the following facts: ρ1 ∼Σ
n′ ρ1 (F1); and {x 7→ v1} ] ρ1 ∼Σ

n′ {x 7→ v2} ] ρ2

(F2). (F1) holds from H1 and Step-index Weakening.1. (F2) holds from

(F1), (C3.H2) and the definition of ρ ∼Σ
n′ ρ. (C3.1) then holds by IH (n = n′

decreasing), F2 and C3.H1.

- Case n = n+ 1 and e = e1(e2):

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1 , e1y

q ⇓n11 x
p
σ′1 , 〈λx. e′1 | ρ′1〉y

q (H4.1)

ρ1 ` x
p
σ′1 , e2y

q ⇓n12 x
p
σ′′1 , v1y

q (H4.2)

{x 7→ v1} ] ρ′1 ` x
p
σ′′2 , e

′
1y
q ⇓n13 x

p
σ′′′1 , v

′
1y
q (H4.3)

ρ2 ` x
p
σ2 , e1y

q ⇓n21 x
p
σ′2 , 〈λx. e′2 | ρ′2〉y

q (H5.1)

ρ2 ` x
p
σ′2 , e2y

q ⇓n22 x
p
σ′′2 , v2y

q (H5.2)

{x 7→ v2} ] ρ′2 ` x
p
σ′′2 , e

′
2y
q ⇓n23 x

p
σ′′′2 , v

′
2y
q (H5.3)
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and we also have: n1 = n11 + n12 + n13 + 1, n2 = n21 + n22 + n23 + 1,

σ′1 = σ′′′1 , σ′2 = σ′′′2 , v1 = v′1 and v2 = v′2. By IH (n = n decreasing), (H1),

(H2), (H3), (H4.1) and (H5.1) we have: n11 = n21 (IH.1.C1); σ′1 ∼n−nΣ
11
σ′2

(IH.1.C2); and 〈λx. e′1 | ρ′1 ∼n−nΣ
11
v21 (IH.1.C3). Note the following facts:

n12 ≤ n− n11 (F1); and ρ1 ∼n−nΣ
11

(F2). (F1) follows from (H3) and n1 =

n11 +n12 +n13 +1. (F2) follows from (H1) and Step-index Weakening.1. By IH

(n = n− n11 decreasing), (H2), (IH.1.C2), (F1), (H4.2) and (H5.2) we have:

n12 = n22 (IH.2.C1); σ′′1 ∼n−nΣ
11−n12

σ′′2 (IH.2.C2); and v1 ∼n−nΣ
11−n12

v2

(IH.2.C3). Note the following facts, each of which follow from (H3) and

n1 = n11 +n12 +n13 +1: n13 ≤ n−n11−n12 (F3); and n−n11−n12−n13 > 0

(F4). Also note the following facts which follow from (IH.1.C3), (IH.2.C2),

(IH.2.C3), (F3) and (F4): n13 = n23 (F4.C1); σ′′′1 ∼n−nΣ
11−n12−n13−1 σ′′′2

(F4.C2); and v′1 ∼n−nσ11−n12−n13−1 v
′
2 (F4.C3). To show: (C1): n11 + n12 +

n13 + 1 = n21 + n22 + n23 + 1; (C2): σ′′′1 ∼n−nΣ
11−n12−n13−1 σ

′′′
2 ; and (C3):

v′1 ∼n−nΣ
11−n12−n13−1 v

′
2. (C1) is immediate from (IH.1.C1), (IH.2.C1) and

(F4.C1). (C2) is immediate from (F4.C2) and Step-index Weakening.2. (C3)

is immediate from (F4.C3) and Step-index Weakening.3.

- Case n = n+ 1 and e = ref(e):

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, ey
q ⇓n1 x

p
σ′1, v1y

q (H4.1)

`1 = alloc(dom(σ′1))(H4.2)

ρ2 ` x
p
σ2, ey
q ⇓n2 x

p
σ′2, v2y

q (H5.1)

`2 = alloc(dom(σ′2))(H4.2)

and we also have: n1 = n1, n2 = n2, σ′1 = {` 7→ v1} ] σ′1, σ′2 = {` 7→ v2} ] σ′2,

v1 = `1 and v2 = `2. By IH (n = n decreasing), (H1), (H2), (H3), (H4.1) and

(H5.1) we have: n1 = n2 (IH.1.C1); σ′1 ∼n−nΣ
1
σ′2 (IH.1.C2); and v1 ∼n−nΣ

1
v2

(IH.1.C3). Because σ1 ∼n−nΣ
1
σ′2, we know dom(σ1) = dom(σ2) and therefore
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`1 = `2. To show: (C1): n1 = n2; (C2): {` 7→ v1} ] σ′1 ∼n−nΣ
1
{` 7→ v2} ] σ′2;

and (C3): `1 ∼n−nΣ
1
`2. (C1) is immediate from (IH.1.C1). (C2) is immediate

from (IH.1.C2), (IH.1.C3) and the definition of σ ∼Σ
n σ. (C3) is immediate

by definition of v ∼Σ
n v and `1 = `2.

- Case n = n+ 1 and e = !e:

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, ey
q ⇓n1 x

p
σ′1, `1y

q (H4.1)

ρ2 ` x
p
σ2, ey
q ⇓n2 x

p
σ′2, `2y

q (H5.1)

and we also have: n1 = n1, n2 = n2, σ′1 = σ′1, σ′2 = σ′2, v1 = σ′1(`1) and

v2 = σ′2(`2). By IH (n = n decreasing), (H1), (H2), (H3), (H4.1) and (H5.1)

we have: n1 = n2 (IH.1.C1); σ′1 ∼n−nΣ
1
σ′2 (IH.1.C2); and `1 ∼n−nΣ

1
`2

(IH.1.C3). Because `1 ∼n−nΣ
1
`2, we know `1 = `2 by definition of v ∼Σ

n v. To

show: (C1): n1 = n2; (C2): σ′1 ∼n−nΣ
1
σ′2; and (C3): σ′1(`1) ∼n−nΣ

1
σ′2(`2).

(C1) is immediate from (IH.1.C1). (C2) is immediate from (IH.1.C2). (C3)

is immediate from (IH.1.C2) and `1 = `2.

- Case n = n+ 1 and e = e1 ← e2:

By inversion on (H4) and (H5) we have:

ρ1 ` x
p
σ1, e1y

q ⇓n11 x
p
σ′1 , `1y

q (H4.1)

ρ1 ` x
p
σ′1, e2y

q ⇓n12 x
p
σ′′1 , `2y

q (H4.2)

ρ2 ` x
p
σ2, e1y

q ⇓n21 x
p
σ′2 , v1y

q (H5.1)

ρ2 ` x
p
σ′2, e2y

q ⇓n22 x
p
σ′′2 , v2y

q (H5.2)

and we also have: n1 = n11 + n12, n2 = n21 + n22, σ′1 = σ′′1 , σ′2 = σ′′2 ,

v1 = v1 and v2 = v2. By IH (n = n decreasing), (H1), (H2), (H3), (H4.1)

and (H5.1) we have: n11 = n21 (IH.1.C1); σ′1 ∼n−nΣ
11
σ′2 (IH.1.C2); and

`1 ∼n−nΣ
11
`2 (IH.1.C3). Because `1 ∼n−nΣ

11
`2 we know `1 = `2. Note

the following facts: n12 ≤ n − n11 (F1); and ρ1 ∼n−nΣ
11

(F2). (F1) follows
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from (H3) and n1 = n11 + n12. (F2) follows from (H1) and Step-index

Weakening.1. By IH (n = n− n11 decreasing), (F2), (IH.1.C2), (F1), (H4.2)

and (H5.2) we have: n12 = n22 (IH.2.C1); σ′′1 ∼n−nΣ
11−n12

σ′′2 (IH.2.C2); and

v1 ∼n−nΣ
11−n12

v2 (IH.2.C3). To show: (C1): n11 + n12 = n21 + n22; (C2):

σ′′1 [` 7→ v1] ∼n−nΣ
11−n12

σ′′2 [` 7→ v2]; and (C3): v1 ∼n−nΣ
11−n12

v2. (C1) is

immediate from (IH.1.C1) and (IH.2.C1). (C2) is immediate from (IH.2.C2)

and (IH.2.C3). (C3) is immediate from (IH.2.C3).
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Part IV

Solo: A Lightweight Static

Analysis for Differential

Privacy
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Chapter 17

Introduction and

Contributions

All current approaches for statically enforcing differential privacy in higher

order languages make use of either linear or relational refinement types. A

barrier to adoption for these approaches is the lack of support for expressing

these “fancy types” in mainstream programming languages. For example, no

mainstream language supports relational refinement types, and although Rust

and modern versions of Haskell both employ some linear typing techniques, they

are inadequate for embedding enforcement of differential privacy, which requires

“full” linear types a la Girard/Reynolds. We propose a new type system that

enforces differential privacy, avoids the use of linear and relational refinement

types, and can be easily embedded in mainstream richly typed programming

languages such as Scala, OCaml and Haskell. We demonstrate such an embedding

in Haskell, demonstrate its expressiveness on case studies, and prove that our

type-based enforcement of differential privacy is sound.

Recent work has made significant progress towards techniques for static
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verification of differentially private programs. Existing techniques typically

define novel programming languages that incorporate specialized static type

systems (linear types (Reed and Pierce, 2010; Near et al., 2019b), relational

types (Barthe et al., 2015), dependent types (Gaboardi et al., 2013b), etc.).

However, there remains a major challenge in bringing these techniques to practice:

the specialized features they rely on do not exist in mainstream programming

languages.

We introduce Solo, a novel type system for static verification of differential

privacy, and present a reference implementation as a Haskell library. Solo is

similar to Fuzz (Reed and Pierce, 2010) and its descendants in expressive power,

but Solo does not rely on linear types and can be implemented entirely in

Haskell with no additional language extensions. In particular, Solo’s sensitivity

and privacy tracking mechanisms are compatible with higher-order functions,

and leverage Haskell’s type inference system to minimize the need for additional

type annotations.

In differential privacy, the sensitivity of a computation determines how much

noise must be added to its result to achieve differential privacy. Fuzz-like

languages track sensitivity relative to program variables, using a linear typing

discipline. The key innovation in Solo is to track sensitivity relative to a

set of global data sources instead, which eliminates the need for linear types.

Compared to prior work on static verification of differential privacy, our system

can be embedded in existing programming languages without support for linear

types, and supports advanced variants of differential privacy like (ε, δ)-differential

privacy and Rényi differential privacy.

We describe our approach using the Haskell implementation of Solo, and

demonstrate its use to verify differential privacy for practical algorithms in four

case studies. We formalize a subset of Solo’s sensitivity analysis and prove
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metric preservation, the soundness property for this analysis.

In summary, we make the following contributions:

• We introduce Solo, a novel type system for the static verification of differ-

ential privacy without linear types.

• We present a reference implementation of Solo as a Haskell library, which

retains support for type inference and does not require additional language

extensions.

• We formalize a subset of Solo’s type system and prove its soundness.

• We demonstrate the applicability of the Solo library in four case studies.

Type Systems for Differential Privacy. The first static approach for verify-

ing differential privacy in the context of higher-order programming constructs

was Fuzz (Reed and Pierce, 2010). Fuzz uses linear types to verify both

sensitivity and privacy properties of programs, even in the context of higher-

order functions. Conceptual descendents of Fuzz include DFuzz (Gaboardi

et al., 2013b), Adaptive Fuzz (Winograd-Cort et al., 2017), Fuzzi (Zhang et al.,

2019a), Duet (Near et al., 2019b), and the system due to Azevedo de Amorim et

al. (de Amorim et al., 2019). Approaches based on linear types combine a high

degree of automation with support for higher-order programming, but require

the host language to support linear types, so none has yet been implemented in

a mainstream programming language. See Chapter 25 for a complete discussion

of related work.
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Chapter 18

Overview of Solo

Solo is a static analysis for differential privacy, which can be implemented as

a library in Haskell. Its analysis is completely static, and it does not impose

any runtime overhead. Solo requires special type annotations, but in many

cases these types can be inferred, and typechecking is aided by the flexibilty of

parametric polymorphism in Haskell. Solo retains many of the strengths of linear

typing approaches to differential privacy, while taking a light-weight approach

capable of being embedded in mainstream functional languages. Specifically,

Solo:

1. is capable of sensitivity analysis for general-purpose programs in the context

of higher order programming.

2. implements a privacy verification approach with separate privacy cost

analysis for multiple program inputs using ideas from Duet.

3. leverages type-level dependency on values via Haskell singleton types,

allowing verification of private programs with types that reference symbolic

parameters
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4. features verification of several recent variants of differential privacy includ-

ing (ε, δ) and Rényi differential privacy.

However, Solo is not intended for the verification of low-level privacy mech-

anisms such as the core mechanisms described previously, the exponential mech-

anism (Dwork et al., 2014b), or the sparse vector technique (Dwork et al.,

2014b).

18.1 Threat Model.

The threat model for Solo is “honest but fallible”—that is, we assume the

programmer intends to write a differentially private program, but may make

mistakes. Solo is intended as a tool to help the programmer implement correct

differentially private programs in this context. Our approach implements a sound

analysis for sensitivity and privacy, but its embedding in a larger system (Haskell)

may result in weak points that a malicious programmer could exploit to subvert

Solo’s guarantees (unsoundness in Haskell’s type system, for example). The

Solo library can be used with Safe Haskell (Terei et al., 2012) to address this

issue; Solo exports only a set of safe primitives which are designed to enforce

privacy preserving invariants that adhere to our metatheory. However, Solo’s

protection against malicious programmers are only as strong as the guarantees

made by Safe Haskell. Our guarantees against malicious programmers are

therefore similar to those provided by language-based information flow control

libraries that also utilize Safe Haskell (e.g. (Russo et al., 2008)).

18.2 Soundness.

We formalize our privacy analysis in terms of a metric preservation metatheory

and prove its soundness in Chapter 22 via a step-indexed logical relation w.r.t. a
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step-indexed big-step semantics relation. A consequence of metric preservation

is that well-typed pure functions are semantically sensitive functions, and that

well-typed monadic functions are semantically differentially private functions.

Our model includes two variants of pair and list type connectives—one sensitive

and the other non-sensitive—as well as recursive functions.
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Chapter 19

Solo by Example

This section introduces the usage of Solo based on code examples written in

our Haskell reference implementation.

19.1 Data Sources.

Our approach makes use of the idea that a static privacy analysis of a program

can be centered around a set of sensitive data sources which the analyst wants to

preserve privacy for. A data source may be represented by some identifier such

as a string value, which represents some sensitive program input such as raw

numeric data, a file or an IO stream. Solo’s data sources are inspired by ideas

from static taint analysis—we “taint” the program’s data sources with sensitivity

annotations that are tracked and modified throughout type-checking.

To enable the static privacy analysis of a program, we track privacy infor-

mation for data sources at the type-level. Because our analysis is based on the

information flow of distinguished data source values throughout a program, we

are able to perform a fully static analysis without precise tracking of variable

usage within functions, and without a specialized linear type system. In Solo,
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data sources are created for sensitive inputs external to the program. For ex-

ample, the readDoubleFromIO function reads in a sensitive double value from the

user:

readDoubleFromIO :: ∀ m o. IO (SDouble m '[ '(o, 1) ])

Sensitive values (whose types are prefixed with "S" such as SDouble ) repre-

sent base values that have been tagged with sensitivity tracking information—

specifically, a sensitivity environment σ . readDoubleFromIO instantiates the

sensitivity environment to '[ '(o, 1) ] , which indicates that values with this

type are 1-sensitive with respect to the input read from the sensitive source. The

distance metric identifier m specifies the metric used to measure distance (as

described in Definition 2.2.1).

Sensitive values (like SDouble ) are encapsulated in order to restrict their

usage to only privacy preserving operations. The constructors of sensitive data

types are hidden, and they are manipulated solely through trusted primitive

operations provided in our implementation.

19.2 Sensitivity Tracking.

We can operate on SDouble values with an attached sensitivity environments

using specialized operators provided by Solo. For example, Solo’s <+> function

adds two SDouble values, and has the following type:

(<+>) :: SDouble 'Diff s1 -> SDouble 'Diff s2 -> SDouble 'Diff (Plus s1 s2)

The type of the <+> function indicates that it adds the sensitivity environments

of its arguments together ( (Plus a b) ), just like the typing rule for addition in

Fuzz. The distance metric Diff is described in Chapter 20. We can use <+>

to define a doubling function, as below. The type signature can be left off, and
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will be inferred automatically by Haskell. The type signature of dbl describes

its sensitivity—it is 2-sensitive in its argument.

dbl :: SDouble 'Diff senv -> SDouble 'Diff (Plus senv senv)

dbl x = x <+> x

19.3 Privacy.

We can use the Laplace and Gaussian mechanisms introduced in Part 2 to add

noise to sensitive values and satisfy differential privacy. Solo tracks the total

privacy cost of multiple uses of these mechanisms using a privacy monad, which

is similar to the one used in Fuzz and related systems. Solo implements privacy

monads for several different privacy variants, with conversion operations between

them. These monads are described in detail in Chapter 21. The following

function takes a SDouble as input, doubles it, and adds noise:

privacyFunc :: SDouble 'Diff '[ '(o, 1) ] -> EpsPrivacyMonad '[ '(o, 2) ] Double

privacyFunc x = laplace @2 Proxy x

The type EpsPrivacyMonad '[ '(o, 2) ] Double indicates that the function satisfies

ε-differential privacy for ε = 2. As in the previous example, Haskell is able to

infer the type if the annotation is left off.
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Chapter 20

Sensitivity Analysis

Prior type-based analyses for sensitivity analysis (Reed and Pierce, 2010;

Gaboardi et al., 2013b; Winograd-Cort et al., 2017; Near et al., 2019b) focus

on function sensitivity with respect to program variables. Solo’s type system,

in contrast, associates sensitivity with base types (not functions), and these

sensitivities are determined with respect to data sources (not program variables).

This difference represents a significant departure from previous systems, and is

the key innovation that enables embedding Solo’s type system in a language (like

Haskell) without linear types. Figure 20.1 presents the types for the sensitivity

analysis in the Solo system. The rest of this section describes types in Solo and

how they can be used to describe the sensitivity of a program. We describe the

privacy analysis in Chapter 21, and we formalize both analyses in Chapter 22.

20.1 Types, Metrics, and Environments

This section describes Figure 20.1 in detail. We begin with sources (written o),

environments (Σ), metrics (m and w), types (τ), and sensitive types (σ).
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import qualified GHC.TypeLits as TL

-- Sources & Sensitivity Environments (§20.1)
type Source = TL.Symbol -- sensitive data sources
data Sensitivity = InfSens | NatSens TL.Nat -- sensitivity values
type SEnv = [(Source, Sensitivity)] -- sensitivity environments

-- Distance Metrics (§20.1)
data NMetric = Diff | Disc -- distance metrics
SDouble :: NMetric -> SEnv -> * -- sensitive doubles

-- Pairs (§20.3.1)
data CMetric = L1 | L2 | LInf -- compound type metrics
SPair :: CMetric -> (SEnv -> *) -> (SEnv -> *) -- sensitive pairs

-> SEnv -> *
L1Pair = SPair L1 -- ⊗-pairs in Fuzz
L2Pair = SPair L2 -- Not in Fuzz
LInfPair = SPair LInf -- &-pairs in Fuzz

-- Lists (§20.3.1)
SList :: CMetric -> (SEnv -> *) -> SEnv -> * -- sensitive lists
L1List = SList L1 -- τ list in Fuzz
L2List = SList L2 -- Not in Fuzz
LInfList = SList LInf -- τ alist in Fuzz

Figure 20.1: Sensitivity Types in Solo.

Sources & Environments. Sensitive data sources are placeholders for sources

of sensitive data external to the program (e.g. the filename of a file full of sensitive

data that has been read in using readSensitiveFile ). These placeholders are

represented in Solo using type-level symbols. Solo tracks sensitivity relative to

data sources (i.e. Solo assumes that data sources have an “absolute sensitivity”

of 1). In Solo, like in Fuzz, sensitivities can be either a number or ∞. In

Solo, numeric sensitivities are represented using type-level natural numbers.

A sensitivity environment SEnv is an association list of data sources and their

sensitivities, and corresponds to the same concept in Fuzz.
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20.2 Distance Metrics & Metric-Carrying Types.

Interpreting sensitivity requires describing how to measure distances between

values; different metrics for this measurement produce different privacy properties.

Solo provides support for several distance metrics including those commonly

used in differentially private algorithms. The base metrics listed in Figure 20.1

( BMetric ) are distance metrics for base types. The sensitive base types ( SBase )

are metric-carrying base types (i.e. every sensitive type must have a distance

metric). For example, the type of a sensitive Double would be SBase Double m ,

where m is a metric. The metrics for base types in Solo are:

• Diff , the absolute difference metric, is defined as the absolute value of the

difference between two values: d(x, y) = |x− y|.

• Disc , the discrete metric, is 0 if its arguments are equivalent, and 1 if its

arguments are distinct: d(x, y) = 0 if x = y; 1 otherwise

Thus the types SBase Double Diff and SBase Double Disc mean very different

things when interpreting sensitivity. The distance between two values v1, v2 :

SBase Double Diff is |v1 − v2|, but the distance between two values v3, v4 :

SBase Double Disc is at most 1 (when v3 6= v4).

Both of these metrics are useful in writing differentially private programs;

basic mechanisms for differential privacy (like the Laplace mechanism) typically

require their inputs to use the Diff metric, while the distance between program

inputs is often described using the Disc metric. For example, we might consider

a “database” of real numbers, each contributed by one individual; two neighboring

databases in this setting will differ in exactly one of those numbers, but the

change to the number itself may be unbounded. In this case, each number in the

database would have the type SBase Double Disc . Fuzz fixes the distance metric

for numbers to be the absolute difference metric; Duet provides two separate

139



types for real numbers, each with its own distance metric.

20.3 Types.

A sensitive type in Solo carries both a metric and a sensitivity environment (e.g.

SBase has kind * -> BMetric -> SEnv -> * ). Thus, sensitivities are associated

with values, rather than with program variables (as in Fuzz). For example,

the type SDouble '[ '("sensitive_input", 1) ] 'Diff from Chapter 19 is the type

of a double value that is 1-sensitive with respect to the data source input

under the absolute difference metric. Adding such a value to itself results in

the type SDouble '[ '("sensitive_input", 2) ] 'Diff —encoding the fact that the

sensitivity has doubled. In Fuzz, the same information is encoded by the

sensitivities recorded in the context; but with respect to program variables

rather than data sources. Note that it is not possible to attach a sensitivity

environment to a function type—only the metric-carrying sensitive types may

have associated sensitivity environments. Solo does not provide a “sensitive

function” type connective (like Fuzz’s (); in Solo, function sensitivity must

be stated in terms of the sensitivity of the function’s arguments with respect to

the program’s data sources (more in Section 20.4).

20.3.1 Pairs and Lists

The Fuzz system contains two connectives for pairs, ⊗ and &, which differ in

their metrics. The distance between two ⊗ pairs is the sum of the distances

between their elements, while the distance between two & pairs is the maximum

of distances between their elements. Solo provides a single pair type, SPair ,

that can express both types by specifying a compound metric CMetric .
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20.3.2 Compound Metrics

In Solo, metrics for compound types are derived from standard vector-space

distance metrics. For example, a sensitive pair has the type SPair w where w

is one of the compound metrics in Figure 20.1:

• L1 , the L1 (or Manhattan) distance, is the sum of the distances between

corresponding elements: d(x, y) =
∑

xi∈x,yi∈y
di(xi, yi).

• L2 , the L2 (or Euclidian) distance, is the root of the sum of squares of

distances between corresponding elements: d(x, y) =
√ ∑
xi∈x,yi∈y

di(xi, yi)2

• LInf , the L∞ distance, is the maximum of the distances between corre-

sponding elements: d(x, y) = maxxi∈x,yi∈y di(xi, yi)

Thus we can represent Fuzz’s ⊗ pairs in Solo using the SPair L1 type con-

structor, and Fuzz’s & pairs using SPair LInf . We can construct pairs from

sensitive values using the following two functions:

makeL1Pair :: a m s1 -> b m s2 -> SPair L1 a b (Plus s1 s2) -- Fuzz's ⊗-pair

makeLInfPair :: a m s1 -> b m s2 -> SPair LInf a b (Join s1 s2) -- Fuzz's &-pair

Here, the Plus operator for sensitivity environments performs elementwise

addition on sensitivities, and the Join operator performs elementwise maximum.

20.3.3 Lists

Fuzz defines the list type τ list, and gives types to standard operators over

lists reflecting their sensitivities. In Solo, we define the SList type to represent

sensitive lists. Sensitive lists in Solo carry a metric, in the same way as sensitive

pairs, and can only contain metric-carrying types. The type of a sensitive list

of doubles with the L1 distance metric, for example, is SList L1 SDouble ; this

type corresponds to Fuzz’s ⊗-lists. The type SList LInf SDouble corresponds
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to Fuzz’s &-lists. Fuzz does not provide the equivalent of SList L2 SDouble ,

which uses the L2 distance metric.

The distance metrics available in Solo are useful for writing practical dif-

ferentially private programs. For example, we might want to sum up a list of

sensitive numbers drawn from a database. The typical definition of neighbor-

ing databases tells us that the distance between two such lists is equal to the

number of elements which differ—and those elements may differ by any amount.

As a result, their sums may also differ by any amount, and the sensitivity of

the computation is unbounded. To address this problem, differentially private

programs often clip (or “top-code”) the input data, which enforces an upper

bound on input values and results in bounded sensitivity. We can implement

this process in a Solo program:

db :: L1List (SDouble Disc) '[ '( "input_db", 1 ) ]

clip :: L1List (SDouble Disc) senv -> L1List (SDouble Diff) senv

sum :: L1List (SDouble Diff) senv -> SDouble Diff senv

summationFunction :: L1List (SDouble Disc) senv -> SDouble Diff senv

summationFunction = sum . clip

summationResult :: SDouble Diff '[ '( "input_db", 1 ) ]

summationResult = summationFunction db

Here, the clip function limits each element of the list to lie between 0 and 1,

which allows changing the metric on the underlying SDouble from the discrete

metric to the absolute difference metric (which is the metric required by the sum

function). Without the use of clip in summationFunction , the metrics would not

match, and the program would not be well-typed.

Solo’s sensitive list types are less powerful than Fuzz’s, but serve the same

purpose in analyzing programs. In Solo, it is possible to give types to recursive
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functions over lists (like map ), and we do so in Section 20.4. However, it is not

possible to implement these functions using Solo’s types, since the structure

of a sensitive list is opaque to programs written using the Solo library. Hence

map is provided as a trusted primitive with sound typing.

20.4 Function Sensitivity & Higher-Order Func-

tions

In Fuzz, an s-sensitive function is given the type τ1 (s τ2. Solo does not have

sensitive function types, but we have already seen examples of the approach

used in Solo to bound function sensitivity: we write function types that are

polymorphic over sensitivity environments. In general, we can recover the notion

of an s-sensitive function in Solo by writing a Haskell function type that scales

the sensitivity environment of its input by a scalar s:

-- An s-sensitive function

s_sensitive :: SDouble senv m -> SDouble (ScaleSens senv s) m

Here, ScaleSens is implemented as a type family that scales the sensitivity

environment senv by s : for each mapping o 7→ s1 in senv , the scaled sensitivity

environment contains the mapping o 7→ s·s1. The common case of a 1-sensitive (or

linear) function can be represented by keeping the input’s sensitivity environment

unchanged (as in clip and sum in the previous section):

-- A 1-sensitive function

one_sensitive :: SDouble senv m -> SDouble senv m
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20.5 Sensitive Higher-Order Operations

An important goal in the design of Solo is support for sensitivity analysis for

higher-order, general-purpose programs. For example, prior systems such as

Fuzz and Duet encode the type for the higher-order map function as follows:

map : (τ1 (s τ2)(∞ list τ1 (s list τ2

This map function describes a computation that accepts as inputs: an s-sensitive

unary function from values of type τ1 to values of type τ2 (map is allowed to

apply this function an unlimited number of times), and a list of values of type

τ1. map returns a list of values of type τ2 which is s-sensitive in the former list.

We can give an equivalent type to map in Solo as follows, by explicitly scaling

the appropriate sensitivity environments using type-level arithmetic:

map :: ∀ m s s1 a b.(∀ s'. a s' -> b (s*s')) -> SList m a s1 -> SList m b (s*s1)

20.6 Polymorphism for Sensitive Function Types.

Special care is needed for functions that close over sensitive values, especially in

the context of higher-order functions like map . Consider the following example:

dangerousMap :: SDouble m1 s1 -> SList m2 (SDouble m1) s2 -> _

dangerousMap x ls =

let f y = x

in map f ls

Note that f is not a function that is s-sensitive with respect to its input—

instead, it is s1-sensitive with respect to the closed-over value of x . This use

of map is dangerous, because it may apply f many times, creating duplicate
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copies of x without accounting for the sensitivity effect of this operation. Fuzz

assigns an infinite sensitivity for x in this program.

Solo rejects this program as not well-typed. The type of f is equiva-

lent to SDouble m1 s3 -> SDouble m1 s1 , but map requires it to have the type

(∀ s'. a s' -> b (s * s')) —and these two types do not unify. Specifically, the

scope of the sensitivity environment s' is limited to f ’s type—but in the

situation above, the environment s1 comes from outside of that scope.

This use of parametric polymorphism to limit the ability of higher-order

functions to close over sensitive values is key to our ability to support this kind

of programming. Without it, we would not be able to give a type for map that

ensures soundness of the sensitivity analysis. The use of parametric polymorphism

to aid in information flow analysis has been previously noted (Bowman and

Ahmed, 2015).
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Chapter 21

Privacy Analysis

The goal of static privacy analysis is to check that (1) the program adds the

correct amount of noise for the sensitivity of underlying computations (i.e. that

core mechanisms are used correctly), and (2) the program composes privacy-

preserving computations correctly (i.e. the total privacy cost of the program is

correct, according to differential privacy’s composition properties). A well-typed

program should satisfy both conditions. As described earlier, sensitivity analysis

often supports privacy analysis, especially in systems based on linear types.

Previous work has taken several approaches to static privacy analysis; we

provide a summary in the next section. Solo provides a privacy monad that

encodes privacy as an effect. As in our sensitivity analysis, the primary difference

between Solo and previous work is that our privacy monad tracks privacy cost

with respect to data sources, rather than program variables. This distinction

allows the implementation of Solo’s privacy monad in Haskell, and additionally

enables our approach to describe variants of differential privacy without linear

group privacy (e.g. (ε, δ)-differential privacy).
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21.1 Existing Approaches for Privacy Analysis

The Fuzz language pioneered static verification of ε-differential privacy, using a

linear type system to track sensitivity of data transformations. In this approach,

the linear function space can be interpreted as a space of ε-differentially private

functions by lifting into the probability monad. However, more advanced variants

of differential privacy such as (ε, δ) differential privacy do not satisfy the restric-

tions placed on the interpretation of the linear function space in this approach,

and Fuzz cannot be easily extended to support these variants. Azevedo de

Amorim et al. (de Amorim et al., 2019) provide an extension discussion of this

challenge.

More recently, Lobo-Vesga et al. in DPella present an approach in Haskell

which tracks sensitivity via data types which are indexed with their accumulated

stability i.e. sensitivity. Typically in privacy analysis we consider sensitivity

to be a property of functions, however as they show, we can also represent

sensitivity via the arguments to these functions. Their approach represents

private computations via a monad value and monadic operations, similar to the

approach in Fuzz. However, in the absence of true linear types, their approach

relies on dynamic taint analysis and runtime symbolic execution.

The technique of separating sensitivity composition from privacy composition

has been seen before, subsequent to Fuzz, in order to facilitate (ε, δ) differential

privacy. Azevedo de Amorim et al. (de Amorim et al., 2019) introduce a path

construction technique which performs a parameterized comonadic lifting of

a metric space layer à la Fuzz to a separate relational space layer for (ε, δ)

differential privacy. The Duet system (Near et al., 2019b) uses a dual type

system, with dedicated systems for sensitive composition and privacy composition.

In principle, this follows a combined effect/co-effect system approach (Petricek,

2017), where one type system tracks the co-effect (in this case sensitivity) and
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another tracks the effect which is randomness due to privacy.

Our approach embodies the spirit of Duet and simulates coeffectful program

behavior by embedding the co-effect (i.e. the entire sensitivity environment) as

an index in comonadic base data types. We then track privacy composition via a

special monadic type as an effect. As in Duet, the core privacy mechanisms such

as Laplace and Gauss police the boundary between the two. Due to the nature

of our co-effect oriented approach in which we track the full sensitivity context,

our solution can be embedded in Haskell completely statically, without the need

for runtime dynamic symbolic execution. We are also able to verify advanced

privacy variants such as (ε, δ) and state-of-the-art composition theorems such as

advanced composition and the moments accountant via a family of higher-order

primitives.

21.1.1 Monads & Effect Systems

Effect systems are known for providing more detailed static type information

than possible with monadic typing. They are the topic of a variety of research on

enhancing monadic types with program effect information, in order to provider

stricter static guarantees. Orchard et al (Orchard et al., 2014), following up on

initial work by Wadler and Thiemann (Wadler and Thiemann, 2003), provide a

denotational semantics which unify effect systems with a monadic-style semantics

as an parametric effect monad, establishing an isomorphism between indices of

the denotations and the effect annotations of traditional effect systems. They

present a formulation of parametric effect monads which generalize monads to

include annotation of an effect with a strict monoidal structure. Below typing
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rules of the general parametric effect monad are shown:

Bind

f : a→M r b g : b→M s c

λx. f x >>= g : a→M (r ⊗ s) c

Return

return : a→M ∅ a

These typing rules describe a formulation of parametric effect monads M which

accept an effect index as their first argument. This effect index of some arbitrary

type E is a monoid (E,⊗,∅).

21.2 Solo’s Privacy Monad

Solo defines privacy environments in the same way as sensitivity environments;

instead of tracking a sensitivity with respect to each of the program’s data

sources, however, a privacy environment tracks a privacy cost associated with

each data source. Privacy environments for pure ε-differential privacy are defined

as follows:

-- Privacy Environments

data EpsPrivacyCost = InfEps | EpsCost TLRat -- values for ε

type EpsPrivEnv = [(Source, EpsPrivacyCost)] -- privacy environments

TLRat is a type-level encoding of positive rational numbers by a pair of the

numerator and denominator as natural numbers in GCD-reduced form.

The sequential composition theorem for differential privacy (Theorem 2.4.1)

says that when sequencing ε-differentially private computations, we can add up

their privacy costs. This theorem provides the basis for the definition of a privacy

monad. We observe that our privacy environments have a monoidal structure

(EpsPrivEnv, EpsSeqComp, '[]) , where EpsSeqComp is a type family implementing

the sequential composition theorem. We derive a privacy monad which is indexed

by our privacy environments, in the same style as a notion of effectful monads
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or parametric effect monads given separately by Orchard (Orchard et al., 2014;

Orchard and Petricek, 2014) and Katsumata (Katsumata, 2014). Computations

of type PrivacyMonad are constructing via these core functions:

-- Privacy Monad for ε-differential privacy

return :: a -> EpsPrivacyMonad '[] a

(>>=) :: EpsPrivacyMonad p1 a -> (a -> EpsPrivacyMonad p2 b)

-> EpsPrivacyMonad (EpsSeqComp p1 p2) b

The return operation accepts some value and embeds it in the PrivacyMonad

without causing any side-effects. The (>>=) ( bind ) operation allows us to

sequence private computations using differential privacy’s sequential composition

property, encoded here as the type family EpsSeqComp . The implementation

of EpsSeqComp performs elementwise summation of two privacy environments.

In the computation f>>=g we execute the private computation f for some

polymorphic privacy cost p1 , pass its result to the private computation g , and

output the result of g at a total privacy cost of the degradation of the p1 and

p2 privacy environments combined according to sequential composition. Note

that while PrivacyMonad is not a regular monad in Haskell (due to the extra

index in its type) we may still make use of do -notation in our examples by using

Haskell’s RebindableSyntax language extension.

Note that return in Solo’s privacy monad is very different from the same

operator in Fuzz. The typing rule for return in Fuzz scales the sensitivities

in the context by ∞—reflecting the idea that return’s argument is revealed

with no added noise, incurring infinite privacy cost. However, this definition of

return does not satisfy the monad laws; for example, in Fuzz:

return x�= laplace 6= laplace x

The return operator in Solo attaches an empty privacy environment to the
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returned value, and does satisfy the monad laws. If a sensitive value is given as

the argument to return , then it remains sensitive, rather than being revealed

(as in Fuzz)—so there is no need to assign the value an infinite privacy cost.

This approach is not feasible in Fuzz because privacy costs are associated with

program variables rather than with values. We can recover Fuzz’s return

behavior (revealing a value without noise, and scaling its privacy cost by infinity)

using a reveal function with the following type:

reveal :: SDouble m senv -> EpsPrivacyMonad (ScaleToInfinity senv) Double

21.2.1 Core Privacy Mechanisms.

We can define core privacy mechanisms like the Laplace mechanism (described

in Part 2), which satisfies ε-differential privacy:

laplace :: Proxy ε -> SDouble s Diff

-> EpsPrivacyMonad (TruncateSens ε s) Double

listLaplace :: Proxy ε -> L1List (SDouble Diff) s

-> EpsPrivacyMonad (TruncateSens ε s) [Double]

The first argument to laplace is the privacy parameter ε (as a type-level

natural). The second argument is the value we would like to add noise to; it

must be a sensitive number with the Diff metric. The function’s result is a

regular Haskell Double , in the privacy monad. The TruncateSens type family

transforms a sensitivity environment into a privacy environment by replacing

each sensitivity with the privacy parameter ε. The function’s implementation

follows the definition of the Laplace mechanism; it determines the scale of the

noise to add using the maximum sensitivity in the sensitivity environment s

and the privacy parameter ε.
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The listLaplace function implements the vector-valued Laplace mechanism,

which adds noise to each element of a vector based on the vector’s L1 sensitivity.

Its argument is required to be a L1List of sensitive doubles with the Diff

metric, and its output is a list of Haskell doubles in the privacy monad.

As a simple example, the following function adds noise to its input twice,

once with ε = 2 and once with ε = 3, for a total privacy cost of ε = 5. If the

type annotation is left off, Haskell infers this type.

addNoiseTwice :: TL.KnownNat (MaxSens s)

=> SDouble s Diff

-> EpsPrivacyMonad (Plus (TruncateSens 2 s) (TruncateSens 3 s)) Double

addNoiseTwice x = do

y1 <- laplace @2 Proxy x

y2 <- laplace @3 Proxy x

return $ y1 + y2

21.2.2 (ε, δ)-Differential Privacy & Advanced Composition

The advanced composition theorem for differential privacy (Dwork et al., 2014b)

provides tighter bounds on the privacy cost of iterative algorithms, but requires

the use of (ε, δ)-differential privacy.

Theorem 21.2.1 (Advanced composition). For 0 < ε′ < 1 and δ′ > 0, the

class of (ε, δ)-differentially private mechanisms satisfies (ε′, kδ + δ′)-differential

privacy under k-fold adaptive composition for:

ε′ = 2ε
√

2k ln(1/δ′)

To support advanced composition in Solo, we first define privacy environments

and a privacy monad for (ε, δ)-differential privacy as follows:
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-- Privacy Environments & Monad for (ε, δ)-differential privacy

data EDPrivacyCost = InfED | EDCost TLReal TLReal

type EDEnv = [(TL.Symbol, EDPrivacyCost)]

return :: a -> EDPrivacyMonad '[] a

(>>=) :: EDPrivacyMonad p1 a -> (a -> EDPrivacyMonad p2 b)

-> EDPrivacyMonad (EDSeqComp p1 p2) b

where EDSeqComp is a type family that implements sequential composition for

(ε, δ)-differential privacy (Theorem 2.4.1) via elementwise summation of both

ε and δ values. Rational numbers were sufficient to represent privacy costs in

pure ε-differential privacy, but we use a type-level representation of real numbers

( TLReal ) for (ε, δ)-differential privacy. For advanced composition, we will need

operations like square root and natural logarithm. Haskell avoids supporting

doubles at the type level, because equality for doubles does not interact well

with the notion of equality required for typing. We therefore implement TLReal

by building type-level expressions that represent real-valued computations, and

interpret those expressions using Haskell’s standard double type at the value

level.

We can now write the type of a looping combinator primitive that leverages

advanced composition:

advloop :: NatS k -> a -> (a -> EDPrivacyMonad p a)

-> EDPrivacyMonad (AdvComp k δ′ p) a

The looping combinator advloop is designed to run an (ε, δ)-differentially

private mechanism k times, and satisfies (2ε
√

2k ln(1/δ′), δ′+kδ)-differential

privacy—which is significantly lower than the standard composition theorem

when k is large. The first argument k is the statically known number of iterations.

The type family AdvComp is a helper to statically compute the appropriate total

privacy cost given the privacy parameters of the private function passed as the
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penultimate parameter to the primitive which satisfies ε, δ-differential privacy.

AdvComp builds a type-level expression containing square roots and logarithms,

as described earlier.

The Gaussian Mechanism. The Gaussian mechanism (described in Part 2)

adds Gaussian noise instead of Laplace noise, and ensures (ε, δ)-differential

privacy (with δ > 0). The primary advantage of the Gaussian mechanism is

in the vector setting: the Gaussian mechanism uses L2 sensitivity, which is

typically much lower than the L1 sensitivity used by the Laplace mechanism.

This requirement is reflected in the type of the Gaussian mechanism in Solo:

gauss :: Proxy ε -> Proxy δ -> SDouble s Diff

-> EDPrivacyMonad (TruncateSensED ε δ s) Double

listGauss :: Proxy ε -> Proxy δ -> L2List (SDouble Diff) s

-> EDPrivacyMonad (TruncateSensED ε δ s) [Double]

21.2.3 Additional Variants & Converting Between Variants

Solo provides a type class of privacy monads instantiated for each supported

variant of differential privacy. For each privacy variant, the corresponding privacy

monad is indexed with a privacy environment that tracks the appropriate privacy

parameters, and the bind operation enforces the appropriate form of sequential

composition. Conversion operations are provided between variants to enable

variant-mixing in programs. For example, the following function converts an ε-

differentially private computation into an (ε, δ)-differentially private one, setting

δ = 0.

-- variant conversion function

conv_eps_to_ed :: EpsPrivacyMonad p1 a -> EDPrivacyMonad (ConvEpstoED p1) a
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-- interactive conversion example

x = conv_eps_to_ed applied3

:t x

-- x :: EDPrivacyMonad '[ '("sensitive_input",5,1)] Double

Solo currently supports ε-differential privacy, (ε, δ)-differential privacy, and

Rényi differential privacy (RDP) (Mironov, 2017b). Conversions are possible

from ε-DP to (ε, δ)-DP and RDP, and from RDP to (ε, δ)-DP. Conversions are

not possible from (ε, δ)-DP to ε-DP or RDP.
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Chapter 22

Formalism

In Solo, we implement a novel static analysis for function sensitivity and

differential privacy. Our approach can be seen as a type-and-effect system, which

may be embedded in statically typed functional languages with support for

monads and type-level arithmetic.

22.1 Program Syntax.

Figure 22.1 shows a core subset of the syntax for our analysis system. Our

language model includes arithmetic operations (e� e), pairs (〈e, e〉 and πi(e)),

conditionals (if0(e){e}{e}), and functions (λxx. e and e(e)). Types τ presented

in the formalism include: base numeric types real, singleton numeric types with

a known runtime value at compile-time real[r], booleans bool, functions τ → τ ,

pairs τ × τ , and the privacy monad ©Σ(τ). Regular types τ are accompanied

by sensitive types σ which are essentially regular types annotated with static

sensitivity analysis information Σ—which is the sensitivity analysis (or sensitivity

environment) for the expression which was typed as τ . Senstitive types shown in

our formalism include sensitive numeric types sreal, sensititve pairs σ ⊗ σ, and
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sensitive lists slist(σ). A metric-carrying singleton numeric type is unnecessary

since its value is fixed and cannot vary. Σ—the sensitivity/privacy environment—

is defined as a mapping from sensitive sources o ∈ source to scalar values which

represent the sensitivity/privacy of the resulting value with respect to that

source.

Types/values with standard treatment are not shown in our formalism, but

included in our implementation with both regular and metric-carrying versions,

include vectors and matrices which have known dimensions at compile-time

via singleton natural number indices. Single natural numbers are also used to

execute loops with statically known number of iterations and to help contruct

sensitivity and privacy quantities.

Figure 22.5 shows a core subset of the standard dynamic semantics that

accompanies the syntax for our analysis system.

22.2 Typing Rules.

Figure 22.3 shows typing rules in our system used to reason about the sensitivity

of computations. Sensitivity environment composition Σ1 t Σ2, and sensitivity

environment scaling s(Σ) are defined as seen in prior work (Reed and Pierce,

2010; Near et al., 2019b).

22.2.1 Type Soundness.

The property of type soundness in our system is defined (as in prior work) as

the metric preservation theorem. Essentially, metric preservation dictates a

maximum variation which is possible when a sensitive open term is closed over by

two distinct but related sensitive closure environments. This means that given

related initial well-typed configurations, we expect the outputs to be related by

some level of variation. Specifically: given two well-typed environments which are
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b ∈ B r ∈ R ṙ ∈ R ::= r | ∞ x, z ∈ var o ∈ source

Σ ∈ spenv , source ⇀ Ṙ sensitivity/privacy environment
τ ∈ type ::= bool | real | real[r] base and singleton types

| τ × τ | list(τ) | τ → τ connectives
| ©Σ(τ) | σ@Σ privacy monad and sensitive types

σ ∈ stype ::= sreal | σ ⊗ σ | slist(σ) sensitive types
� ∈ binop ::= + | × | o operations
e ∈ expr ::= x | b | r | sing(r) variables and literals

| e� e | if(e){e}{e} binary operations and conditionals
| 〈e, e〉 | πi(e) pair creation and access
| [] | e :: e list creation
| case(e){[].e}{x :: x.e} list destruction
| λxx. e | e(e) recursive functions
| reveal(e) | laplace[e, e](e) privacy operations
| return(e) | x← e ; e privacy monad

| 〈̂e, e〉̂ | π̂i(e) sensitive pair creation and access

| [̂̂] | e :̂: e sensitive list creation

| case(e){̂[̂].e}{x :̂: x.e} sensitive list destruction
γ ∈ venv , var ⇀ value evaluation environment

ρ ∈ ddist ,

{
f ∈ value→ R |

∑
v
f(v) = 1

}
discrete distributions (PMF)

v ∈ value ::= b | r literals
| 〈v, v〉 pairs
| [] | v :: v lists
| 〈λxx. e | γ〉 recursive closures
| ρ distributions of values

Figure 22.1: Syntax for types, expressions and values. � = sensitivity sources,
types and expressions unique to Solo.
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Γ ∈ tenv , var ⇀ type eΣds(o) , eΣ(o)ds esds′ ,
{

0 if s , 0
s′ if s 6= 0

R(sreal) , real R(σ ⊗ σ) , R(σ)×R(σ) R(slist(σ)) , list(R(σ))

Γ ` e : τ
t-var
Γ(x) = τ

Γ ` x : τ

t-blit

Γ ` b : bool

t-rlit

Γ ` r : real

t-sing

Γ ` sing(r) : real[r]

t-op
Γ ` e1 : real Γ ` e2 : real � ∈ {+,×}

Γ ` e1 � e2 : real

t-if
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if(e1){e2}{e3} : τ

t-pair
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2

t-proj
Γ ` e : τ1 × τ2
Γ ` πi(e) : τi

t-nil

Γ ` [] : list(τ)

t-cons
Γ ` e1 : τ Γ ` e2 : list(τ)

Γ ` e1 :: e2 : list(τ)

t-case
Γ ` e1 : list(τ) Γ ` e2 : τ ′ {x1 7→ τ, x2 7→ list(τ)} ] Γ ` e3 : τ ′

Γ ` case(e1){[].e2}{x1 :: x2.e3} : τ ′

t-lam
{x 7→ τ1, z 7→ τ1 → τ2} ] Γ ` e : τ2

Γ ` λzx. e : τ1 → τ2

t-app
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1(e2) : τ2

t-reveal
Γ ` e : σ@Σ

Γ ` reveal(e) : ©eΣd∞ (R(σ))

t-laplace
Γ ` e1 : real[rs] Γ ` e2 : real[rε] Γ ` e3 : sreal@Σ Σ v eΣds

Γ ` laplace[e1, e2](e3) : ©eΣdε (real)

t-return
Γ ` e : τ

Γ ` return(e) : ©∅(τ)

Figure 22.2: The type system. � = type rules unique to Solo.
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Γ ` e : τ
t-bind
Γ ` e1 : ©Σ1

(τ1){x 7→ τ1} ] Γ ` e2 : ©Σ2
(τ2)

Γ ` x← e1 ; e2 : ©Σ1+Σ2
(τ2)

t-splus
Γ ` e1 : sreal@Σ1 Γ ` e2 : sreal@Σ2

Γ ` e1 + e2 : sreal@(Σ1 + Σ2)

t-stimes
Γ ` e1 : real[r] Γ ` e2 : sreal@Σ

Γ ` e1 n e2 : sreal@rΣ

t-spair
Γ ` e1 : σ1@Σ1 Γ ` e2 : σ2@Σ2

Γ ` 〈̂e1, e2 〉̂ : (σ1 ⊗ σ2)@(Σ1 t Σ2)

t-sproj
Γ ` e : (σ1 ⊗ σ2)@Σ

Γ ` π̂i(e) : σi@Σ

t-snil

Γ ` [̂̂] : slist(σ)@∅

t-scons
Γ ` e1 : σ@Σ1 Γ ` e2 : slist(σ)@Σ2

Γ ` e1 :̂: e2 : slist(τ)@(Σ1 t Σ2)

t-scase
Γ ` e1 : slist(σ)@Σ Γ ` e2 : τ ′ {x1 7→ σ@Σ, x2 7→ slist(σ)@Σ} ] Γ ` e3 : τ ′

Γ ` case(e1){̂[̂].e2}{x1 :̂: x2.e3} : τ ′

Figure 22.3: The type system. � = type rules unique to Solo.
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ρ̄ ∈ value→ ddist n̄ ∈ value→ N γ ` e ⇓n v

e-var
γ(x) = v

γ ` x ⇓0 v

e-blit

γ ` b ⇓0 b

e-rlit

γ ` r ⇓0 r

e-plus
γ ` e1 ⇓n1

r1 γ ` e2 ⇓n2
r2

γ ` e1 + e2 ⇓n1+n1 r1 + r2

e-times
γ ` e1 ⇓n1

r1 γ ` e2 ⇓n2
r2

γ ` e1 × e2 ⇓n1+n2 r1r2

γ ` e1 n e2 ⇓n1+n2 r1r2

e-if-true
γ ` e1 ⇓ trueγ ` e2 ⇓ v
γ ` if(e1){e2}{e3} ⇓ v

e-if-false
γ ` e1 ⇓ falseγ ` e3 ⇓ v
γ ` if(e1){e2}{e3} ⇓ v

e-pair
γ ` e1 ⇓n1 v1 γ ` e2 ⇓n2 v2

γ ` 〈e1, e2〉 ⇓n1+n2
〈v1, v2〉

γ ` 〈̂e1, e2〉̂ ⇓n1+n2 〈v1, v2〉

e-proj
γ ` e ⇓n 〈v1, v2〉
γ ` πi ⇓n vi
γ ` π̂i ⇓n vi

e-nil

γ ` [] ⇓0 []

γ ` [̂̂] ⇓0 []

e-cons
γ ` e1 ⇓n1

v1 γ ` e2 ⇓n2
v2

γ ` e1 :: e2 ⇓n1+n2
v1 :: v2

γ ` e1 :̂: e2 ⇓n1+n2
v1 :: v2

e-case-nil
γ ` e1 ⇓n1

[] γ ` e2 ⇓n2
v

γ ` case(e1){[].e2}{x1 :: x2.e3} ⇓n1+n2
v

γ ` case(e1){̂[̂].e2}{x1 :̂: x2.e3} ⇓n1+n2
v

e-case-cons
γ ` e1 ⇓n1 v1 :: v2 {x1 7→ v1, x2 7→ v2} ] γ ` e3 ⇓n2 v3

γ ` case(e1){[].e2}{x1 :: x2.e3} ⇓n1+n2
v3

γ ` case(e1){̂[̂].e2}{x1 :̂: x2.e3} ⇓n1+n2 v3

Figure 22.4: Step-indexed big-step evaluation semantics.
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ρ̄ ∈ value→ ddist n̄ ∈ value→ N γ ` e ⇓n v

e-lam

γ ` λzx. e ⇓0 〈λzx. e | γ〉

e-app
γ ` e1 ⇓n1 〈λzx. e′ | γ′〉

γ ` e2 ⇓n2 v1 {x 7→ v1, z 7→ 〈λzx. e′ | γ′〉} ] γ′ ` e′ ⇓n3 v2

γ ` e1(e2) ⇓n1+n2+n3+1 v2

e-reveal
γ ` e ⇓n v

γ ` reveal(e) ⇓n {v 7→ 1}γ ` return(e) ⇓n {v 7→ 1}

e-laplace
γ ` e ⇓n r

γ ` laplace(e) ⇓n laplace(r)

e-bind
γ ` e1 ⇓n1

ρ1 ∀v. {x 7→ v} ] γ ` e2 ⇓n̄2(v) ρ̄2(v)

γ ` x← e1 ; e2 ⇓(
n1+

⊔
v
n̄2(v)

)
{
v 7→

∑
v′

ρ1(v′)ρ̄2(v′)(v)

}

Figure 22.5: Step-indexed big-step evaluation semantics.
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related by the logical relation (values may be apart by distance Σ, for n steps),

and a well typed term, then each evaluation of that term in each environment is

related by the relation, that is, when one side terminates in < n steps to a value,

the other side will deterministically terminate to a related value.

Theorem 22.2.1 (Metric Preservation).

If: γ1 ∼ γ2 ∈ GΣ
n JΓK (H1)

And: Γ ` e : τ (H2)

Then: γ1, e ∼ γ2, e ∈ EΣ
n JτK

That is, either n = 0, or n = n′ + 1 and. . .

If: n′′ ≤ n (H3)

And: γ1 ` e ⇓n′′ v1 (H4)

Then: ∃!v2. γ2 ` e ⇓n′′ v2 (C1)

And: v1 ∼ v2 ∈ VΣ
n−n′′JτK (C2)

Similar to prior work, in order to state and prove the metric preservation

theorem, we define the notion of function sensitivity as a (step-indexed) logical

relation. Figure 22.6 shows the step-indexed logical relation used to define

function sensitivity. We briefly describe the logical relations seen in this figure

below:

1. Two real numbers are related r1 ∼r r2 at type R and distance r when the

absolute difference between real numbers r1 and r2 is less than r.

2. Two values are related v1 ∼ v2 in VΣJτK when v1 and v2 are related at

type τ for initial distance Σ. We may define relatedness for the syntactic

category of values via case analysis as follows:
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(a) Base numeric values are related r1 ∼Σ r2 at type R in VΣ1JτK when r1

and r2 are related by Σ·Σ1, where Σ is the initial distances between

each input source o, and Σ1 describes how much these values may

wiggle as function arguments i.e. the maximum permitted argument

variation. · is defined as the vector dot product.

(b) Function values 〈λx. e1 | γ1〉 ∼ 〈λx. e2 | γ2〉 are related at type

(τ → τ) in VΣJτK when given related inputs, they produce related

computations.

(c) Pair values 〈v11, v12〉 ∼ 〈v21, v22〉 are related at type 〈τ, τ〉 in VΣJτK

when they are elementwise related.

(d) γ1, e1 ∼ γ2, e2 are related at type τ and distance Σ in EΣJτK when

the input doubles γ1, e1 and γ2, e2 evaluate to output values which

are related by Σ.

3. Two value environments γ1 ∼ γ2 are related at type environment Γ and

sensitivity environment Σ in GΣJΓK if value environments γ1 and γ2 both

map each variable in the type environment Γ to related values at a matching

type at distance Σ.

The proofs appear in Chapter 24.
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γ1, e1 ∼ γ2, e2 ∈ EΣ
n JτK M⇐⇒ n = 0 =⇒ true

∧ n = n′ + 1 =⇒ ∀n′′ ≤ n′, v1. γ1 ` e1 ⇓n′′ v1

⇒ ∃!v2. γ2 ` e2 ⇓n′′ v2 ∧ v1 ∼ v2 ∈ VΣ
n′−n′′JτK

γ, e ∼ γ, e ∈ EΣ
n JτK

r1 ∼r r2
M⇐⇒ |r1 − r2| ≤ r r ∼r r

b1 ∼ b2 ∈ VΣ
n JboolK M⇐⇒ b1 = b2

r1 ∼ r2 ∈ VΣ
n JrealK M⇐⇒ r1 = r2

r1 ∼ r2 ∈ VΣ
n Jreal[r]K M⇐⇒ r1 = r2 = r

r1 ∼ r2 ∈ VΣ
n Jsreal@Σ′K M⇐⇒ r1 ∼Σ·Σ′ r2

〈v11, v12〉 ∼ 〈v21, v22〉 ∈ VΣ
n Jτ1 × τ2K M⇐⇒ v11 ∼ v21 ∈ VΣ

n Jτ1K
∧ v12 ∼ v22 ∈ VΣ

n Jτ2K
〈v11, v12〉 ∼ 〈v21, v22〉 ∈ VΣ

n J(σ1⊗σ2)@Σ′K M⇐⇒ v11 ∼ v21 ∈ VΣ
n Jσ1@Σ′K

∧ v12 ∼ v22 ∈ VΣ
n Jσ2@Σ′K

v11 :: v12 ∼ v21 :: v22 ∈ VΣ
n Jlist(τ)K M⇐⇒ v11 ∼ v21 ∈ VΣ

n JτK
∧ v12 ∼ v22 ∈ VΣ

n Jlist(τ)K
v11 :̂: v12 ∼ v21 :̂: v22 ∈ VΣ

n Jslist(σ)@Σ′K M⇐⇒ v11 ∼ v21 ∈ VΣ
n Jσ@Σ′K

∧ v12 ∼ v22 ∈ VΣ
n Jslist(σ)@Σ′K

〈λzx.e1|γ1〉 ∼ 〈λzx.e2|γ2〉 ∈ VΣ
n Jτ1 → τ2K M⇐⇒ ∀n′ ≤ n, v1, v2. v1 ∼ v2 ∈ VΣ

n′Jτ1K
⇒ {x 7→ v1, z 7→ 〈λzx.e1 | γ1〉} ] γ1, e1
∼ {x 7→ v2, z 7→ 〈λzx.e2 | γ2〉} ] γ2, e2
∈ EΣ

n′Jτ2K
ρ1 ∼ ρ2 ∈ VΣ

n J©Σ′ (τ)K M⇐⇒ ∀v. ρ1(v) ≤ e|eΣd
1×Σ′|L∞ρ2(v)

v ∼ v ∈ VΣ
n JτK

γ1 ∼ γ2 ∈ GΣ
n JΓK M⇐⇒ ∀x ∈ dom(γ1 ∪ γ2). γ1(x) ∼ γ2(x) ∈ VΣ

n JτK γ ∼ γ ∈ GΣ
n JΓK

Figure 22.6: Step-indexed Logical Relation.
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Chapter 23

Implementation & Case

Studies

Additional tools. For our case studies, we introduce sensitive matrices

SMatrix σ m r c a , sensitive key-value mappings (dictionaries) SDict σ m a b ,

and sensitive sets SSet σ a , as well as sound primitive operations over these

values. r c are matrix dimensions, a b are type parameters representing the

contents of the compound types. σ represents the sensitivity environments as

usual, and m represents the distance metric. We provide the usual primitives

over these types seen in prior work (Reed and Pierce, 2010; Near et al., 2019b).

Sets are assumed to use the Hamming metric, while matrices and key-value maps

use the standard compound metrics discussed earlier: L1 | L2 | LInf . Recall

that NatS is a type for singleton naturals and natS @ 5 creates a singleton for

the value 5 .
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23.1 k-means clustering

We present a case study based on the privacy-preserving implementation of the

k-means clustering algorithm seen originally in Blum et al, as well as in the

presentation of the Fuzz language. The goal of the k-means clustering algorithm

is to iteratively find a set of k clusters to which n datapoints can be partitioned,

where each datapoint belongs to the cluster with the nearest center or centroid

to it.

The algorithm operates by beginning from an initial guess at the list of cluster

centroids which it iteratively improves on. A single iteration consists of grouping

each datapoint with the centroid it is closest to, then recalculating the mean of

each group to initialize the next round’s list of centroids.

The assign function is responsible for pairing each initial datapoint with the

index of the centroid it is closest to in the initial centroid list. The partition

function then groups the set of datapoints into a list of sets, where each set

represents a cluster. The rest of the algorithm proceeds to compute the private

new center of each cluster. Given that our datapoints are two-dimensional, totx

and toty sum the x and y coordinates of each cluster of datapoint. After

we compute the size of each cluster, the avg function calculates the new mean

of each cluster with the three-element tuple of coordinate and size data zipped

together for each cluster.

The Haskell typechecker can infer the privacy cost of one iteration of the

k-means algorithm as 3ε.

23.2 Cumulative Distribution Function

Our next case study implements the private cdf function as seen in DFuzz

(McSherry and Mahajan, 2010; Gaboardi et al., 2013b). Given a database of
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type Pt = (Double, Double)
-- helpers
assign :: [Pt] -> SSet σ Pt -> SSet σ (Pt,Integer)
ppartition :: SSet σ (Pt,Integer) -> SList σ m SSet (Set Pt)
totx :: SSet β Pt -> SDouble β 'AbsoluteM
toty :: SSet β Pt -> SDouble β 'AbsoluteM
size :: SSet β Pt -> SDouble β 'AbsoluteM
avg :: ((Double, Double), Double) -> (Double, Double)

-- kmeans: 3ε-private
iterate :: ∀ m σ. (TL.KnownNat (MaxSens σ)) => SSet σ Pt -> [Pt] -> _
iterate b ms = do

let b' = ppartition (assign ms b)
tx <- vector_laplace @1 Proxy $ map0 totx b'
ty <- vector_laplace @1 Proxy $ map0 toty b'
t <- vector_laplace @1 Proxy $ map0 size b'
let stats = zip (zip tx ty) t
return $ (map avg stats)

Figure 23.1: kmeans

numeric records, and a set of buckets associated with cutoff values, the cdf

function privately partitions each record to its respective bucket. As in DFuzz,

this case study demonstrates the ability of Solo to verify privacy costs which

depend on a program input, in this case the symbolic number of buckets m .

However, our approach to achieve this feature relies on singleton types in Haskell,

and does not require a true dependent type system.

23.3 Gradient Descent

We now present a case study (Figure 23.3) based on a simple machine learning

algorithm (Bassily et al., 2014b) which performs gradient descent.

As inputs, the gd algorithm accepts a list of feature vectors xs representing

sensitive user data, a set of corresponding classifier labels ys , a number of

iterations to run k and the desired privacy cost per iteration ε . Gradient

descent also requires a loss function which describes the accuracy of the current

model in predicting the correct classification of user examples. The algorithm
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cdf :: ∀ m o s ε. (TL.KnownNat m,TL.KnownNat ε) =>
NatS m

-> NatS ε
-> Matrix m 1 Double -- buckets
-> SSet σ Double -- db
-> EpsPrivacyMonad (ScalePriv m (TruncateSens ε σ)) [Double]

cdf m t buckets db = do
let f :: Double -> SSet σ Double

-> _
f = \x -> \db1 ->

let (lt,gt) = bag_split (\k -> k < x) db1 in
(laplace @ε Proxy (natS @5) $ (bag_size lt), db)

z = mloop1 m buckets db f $ return []
z

Figure 23.2: CDF

works by moving the current model in the opposite direction of the gradient

of the loss function. In order to preserve privacy for this algorithm, we may

introduce noise at the point where user data is exposed: the gradient calculation.

The let-bound function f in the gd algorithm contains the workload of a single

iteration of the program: in which we perform the gradient calculation and

introduce noise using the vector-based Laplacian mechanism.

23.4 Multiplicative-Weights Exponential Mecha-

nism

Our final case study, the MWEM algorithm (Hardt et al., 2012), builds a

differentially private synthetic dataset which approximates some sensitive real

dataset with some level of accuracy. The algorithm combines usage of the

Exponential Mechanism, Laplacian noise, and the multiplicative-weights update

rule to construct a noisy synthetic dataset over several iterations with competitive

privacy leakage bounds via composition.
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-- sequential composition privacy loop over a matrix
mloop :: NatS k

-> SMatrix σ LInf 1 n SDouble
-> (SMatrix σ LInf 1 n SDouble ->

EpsPrivacyMonad (TruncateSens ε σ) (Matrix 1 n Double))
-> EpsPrivacyMonad (ScalePriv k (TruncateSens ε σ)) (Matrix 1 n Double)

-- gradient descent algorithm
gd :: NatS k

-> NatS ε
-> SMatrix σ LInf m n SDouble
-> SMatrix σ LInf m 1 SDouble
-> EpsPrivacyMonad (ScalePriv k (TruncateSens ε σ)) (Matrix 1 n Double)

gd k t xs ys = do
let m0 = matrix (sn32 @ 1) (sn32 @ n) $ \ i j -> 0

cxs = mclip xs (natS @ 1)
let f :: SMatrix σ1 LInf 1 n SDouble

-> EpsPrivacyMonad (TruncateSens ε σ1) (Matrix 1 n Double)
f = \θ -> let g = mlaplace @ε Proxy (natS @5) $ xgradient θ cxs ys
in msubM (return θ) g
z = mloop @(TruncateNat t 1) k (sourceM $ xbp m0) f

z

Figure 23.3: Gradient Descent

mwem (Figure 23.4) takes the following inputs: a number of iterations k , a

privacy cost ε to be used by the exponential mechanism and Laplace, real_data

the sensitive information dataset, a query workload queries over the sensitive

dataset, and lastly syn_data which represents a uniform or random distribution

over the domain of the real dataset.

Each iteration, the mwem algorithm selects a query from the query workload

privately using the exponential mechanism. The query selected is selected by

virtue of a scoring function which determines that the result of the query on

the synthetic dataset greatly differs from its result on the real dataset (more so

than other queries in the workload, with some amount of error). The algorithm

updates the synthetic dataset using the multiplicative weights update rule, based

on the query result on the real dataset with some noise added. This process

continues over several iterations until the synthetic dataset reaches some some

level of accuracy relative to the real dataset.
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-- exponential mechanism
expmech :: [(Double,Double)]

-> NatS ε
-> SDict σ LInf SDouble SDouble
-> EpsPrivacyMonad (TruncateSens ε σ) Int

-- exponential mechanism + laplace loop
expnloop :: NatS k

-> NatS ε
-> [(Double,Double)]
-> SDict σ LInf SDouble SDouble
-> Map.Map Double Double
-> EpsPrivacyMonad (ScalePriv (2 TL.* k) (TruncateSens ε σ)) (Map.Map Double Double)

-- multiplicative-weights exponential mechanism
mwem :: NatS k

-> NatS ε
-> [(Double,Double)]
-> SDict σ LInf SDouble SDouble
-> Map Double Double
-> EpsPrivacyMonad (ScalePriv (2 TL.* k) (TruncateSens ε σ)) (Map Double Double)

mwem k ε queries real_data syn_data =
expnloop k ε queries real_data syn_data

Figure 23.4: Multiplicative Weights Exponential Mechanism.
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Chapter 24

Lemmas, Theorems & Proofs

Lemma 24.0.1 (Plus Respects).

If r1 ∼r r2 then r1 + r3 ∼r r2 + r3.

Proof.

By |r1 − r2| ≤ r =⇒ |(r1 + r3)− (r2 + r3)| ≤ r.

Lemma 24.0.2 (Times Respects).

If r1 ∼r r2 then r3r1 ∼r3r r3r2.

Proof.

By |r1 − r2| ≤ r =⇒ |r3r1 − r3r2| ≤ r.

Lemma 24.0.3 (Triangle).

If r1 ∼rA r2 and r2 ∼rB r3 then r1 ∼rA+rB r3.

Proof.

By the classic triangle inequality lemma for real numbers.

Lemma 24.0.4 (Step-index Weakening).

For n′ ≤ n: (1) If γ1 ∼ γ2 ∈ GΣ
n JΓK then γ1 ∼ γ2 ∈ GΣ

n′JΓK; and (2) If
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v1 ∼ v2 ∈ VΣ
n JτK then v1 ∼ v2 ∈ VΣ

n′JτK; and (3) If γ1, e1 ∼ γ2, e2 ∈ EΣ
n JτK then

γ1, e1 ∼ γ2, e2 ∈ EΣ
n JτK.

Proof.

By induction on n mutually for all properties; case analysis on v1 and v2 for

property (2), and case analysis on e1 and e2 for property (3).

Theorem 24.0.5 (Metric Preservation).

If: γ1 ∼ γ2 ∈ GΣ
n JΓK (H1)

And: Γ ` e : τ (H2)

Then: γ1, e ∼ γ2, e ∈ EΣ
n JτK

That is, either n = 0, or n = n′ + 1 and. . .

If: n′′ ≤ n (H3)

And: γ1 ` e ⇓n′′ v1 (H4)

Then: ∃!v2. γ2 ` e ⇓n′′ v2 (C1)

And: v1 ∼ v2 ∈ VΣ
n−n′′JτK (C2)

Proof.

By strong induction on n and case analysis on e and τ :

- Case n = 0: Trivial by definition.

- Case n = n′ + 1 and e = x:

By inversion on (H4) we have: n′ = 0 and v1 = γ1(x). Instantiate v2 = γ2(x)

in the conclusion. To show: (C1): γ2 ` x ⇓0 γ2(x) unique; and (C2):

γ1(x) ∼ γ2(x) ∈ VΣ
n′JτK. (C1) is by e-var application and inversion. (C2) is by

(H1) and Step-index Weakening.
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- Case n = n′ + 1 and e = r and τ = real:

By inversion on (H4) we have: n′ = 0 and v1 = r. Instantiate v2 = r in the

conclusion. To show: (C1): γ2 ` r ⇓0 r unique; and (C2): r = r. (C1) is by

e-real application and inversion. (C2) is trivial.

- Case n = n′ + 1 and e = r and τ = sreal@∅:

By inversion on (H4) we have: n′ = 0 and v1 = r. Instantiate v2 = r in the

conclusion. To show: (C1): γ2 ` r ⇓0 r unique; and (C2): r ∼0 r. (C1) is by

e-sreal application and inversion. (C2) is immediate by |r − r| = 0 ≤ 0.

- Case n = n′ + 1 and e = sing(r) and τ = real[r]:

By inversion on (H4) we have: n′ = 0 and v1 = r. Instantiate v2 = r in the

conclusion. To show: (C1): γ2 ` sing(r) ⇓0 r unique; and (C2): r = r. (C1)

is by e-sing application and inversion. (C2) is immediate.

- Case n = n′ + 1 and e = e1 + e2 and τ = real:

By inversion on (H4):

γ1 ` e1 ⇓n1 r11 (H4.1)

γ1 ` e2 ⇓n2
r12 (H4.2)

and we also have: n′ = n1 + n2, v1 = r11 + r12 and By IH (n = ni decreasing),

(H1), (H2), (H3), (H4.1) and (H4.2) we have: γ2 ` e1 ⇓n1
r21 (unique)

(IH.C1.1); γ2 ` e2 ⇓n2 r22 (unique) (IH.C1.2); r11 = r21 (IH.C2.1) ; and

r12 = r22 (IH.C2.2) . Instantiate v2 = r21 + r22. To show: (C1): γ2 `

e1 + e2 ⇓n1+n2
r21 + r22 (unique); and (C2): r11 + r12 = r21 + r22. (C1) is

by (IH.C1.1), (IH.C1.2), and e-plus application and inversion. (C2) is by

(IH.C2.1) and (IH.C2.2).

- Case n = n′ + 1 and e = e1 + e2 and τ = sreal@Σ′:

By inversion on (H2) and (H4) we have:
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Γ ` e1 : sreal@Σ1 (H2.1)

Γ ` e2 : sreal@Σ2 (H2.2)

γ1 ` e1 ⇓n1
r11 (H4.1)

γ1 ` e2 ⇓n2 r12 (H4.2)

and we also have: Σ′ = Σ1 + Σ2, n′ = n1 + n2, v1 = r11 + r12 and By

IH (n = ni decreasing), (H1), (H2), (H3), (H4.1) and (H4.2) we have:

γ2 ` e1 ⇓n1
r21 (unique) (IH.C1.1); γ2 ` e2 ⇓n2

r22 (unique) (IH.C1.2);

r11 ∼Σ·Σ1 r21 (IH.C2.1); and r21 ∼Σ·Σ2 r22 (IH.C2.2). Instantiate v2 =

r21 + r22. To show: (C1): γ2 ` e1 + e2 ⇓n1+n2
r21 + r22 (unique); and (C2):

r11 + r12 ∼Σ·(Σ1+Σ2) r21 + r22. (C1) is by (IH.C1.1), (IH.C1.2), and e-plus

application and inversion. (C2) is by (IH.C2.1), (IH.C2.2), Plus Respects and

Triangle.

- Case n = n′ + 1 and e = e1 n e2 and either τ = real or τ = sreal@Σ′:

Similar to previous two cases, using Times Respects instead of Plus Respects.

- Case n = n′ + 1 and e = if0(e1){e2}{e3}:

By inversion on (H4) we have 2 subcases, each which induce:

γ1 ` e1 ⇓n1 b1 (H4.1)

By IH (n = n1 decreasing), (H1), (H2), (H3) and (H4.1) we have: γ2 ` e1 ⇓n1

b2 (unique) (IH.1.C1); and b1 = b2 (IH.1.C2).

- Subcase b1 = b2 = true:

From prior inversion on (H4) we also have:

γ1 ` e2 ⇓n2
v1 (H4.2)

By IH (n = n2 decreasing), (H1), (H2), (H3) and (H4.2) we have: γ2 `

e2 ⇓n2 v2 (unique) (IH.2.C1); and v1 ∼ v2 ∈ VnΣ
1 +n2

JτK (IH.2.C2). In-

stantiate v2 = v2. To show: (C1): γ2 ` if(e1){e2}{e3} ⇓n1+n2
v2; and
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(C2): v1 ∼ v2 ∈ VnΣ
1 +n2

JτK. (C1) is by (IH.1.C1), (IH.2.C2) and e-if-true

application and inversion. (C2) is by (IH.2.C2).

- Subcase b1 = b2 = false:

Analogous to case b1 = b2 = true.

- Case n = n′ + 1 and either e = 〈e1, e2〉 and τ = τ1 × τ2 or e = 〈̂e1, e2〉̂ and

τ = (σ1 ⊗ σ2)@Σ′:

Analogous to cases for e = e1 + e2 where τ = real or τ = sreal@Σ′, and

instead of appealing to Triangle, appealing to the definition of the logical

relation.

- Case n = n′ + 1 and either e = πi(e) or e = π̂i(e)):

Analogous to cases for e = e1 + e2 where τ = real or τ = sreal@Σ′, and

instead of appealing to Triangle, appealing to the definition of the logical

relation.

- Case n = n′ + 1 and either e = e1 :: e2 and τ = list(τ) or e = e1 :̂: e2 and

τ = slist(σ)@Σ′:

Analogous to cases for e = e1 + e2 where τ = real or τ = sreal@Σ′, and

instead of appealing to Triangle, appealing to the definition of the logical

relation.

- Case n = n′ + 1 and either e = case(e1){[].e2}{x1 :: x2.e3} or e =

case(e1){̂[̂].e2}{x1 :̂: x2.e3}:

Analogous to cases for e = if(e1){e2}{e3}.

- Case n = n′ + 1 and e = λzx. e and τ = τ1 → τ2: By inversion on (H4)

we have: n′ = 0, and v1 = 〈λxz. e | γ1〉. Instantiate v2 = 〈λzx. e | γ2〉.

To show: (C1): γ2 ` λzx. e ⇓ 〈λzx. e | γ2〉 unique; and (C2): 〈λzx. e |

γ1〉 ∼ 〈λzx. e | γ2〉 ∈ VΣ
n′Jτ1 → τ2K. Unfolding the definition, we must
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show: ∀n′′ ≤ n′, v1, v2, . v1 ∼ v2 ∈ VΣ
n′′Jτ1K ⇒ {x 7→ v1, z 7→ 〈λzx. e | γ1〉} ]

γ1, e ∼ {x 7→ v2, z 7→ 〈λzx. e | γ2〉} ] γ2, e ∈ EΣ
n′′Jτ2K. To show, we assume:

v1 ∼ v2 ∈ VΣ
n′Jτ1K (C2.H1). Note the following facts: γ1 ∼ γ2 ∈ GΣ

n′JΓK (F1);

and {x 7→ v1} ] γ1 ∼ {x 7→ v2} ] γ2 ∈ GΣ
n′J{x 7→ τ1, z 7→ τ1 → τ2} ] ΓK

(F2). (F1) holds from H1 and Step-index Weakening.1. (F2) holds from (F1),

(C2.H1) and the definition of γ ∼ γ ∈ GΣ
n JΓK. Conclusion holds by IH (n = n′

decreasing), F2 and C2.H1.

- Case n = n′ + 1 and e = e1(e2):

By inversion on (H4) we have:

γ1 ` e1 ⇓n1
〈λzx. e′1 | γ′1〉 (H4.1)

γ1 ` e2 ⇓n2
v1 (H4.2)

{x 7→ v1, z 7→ 〈λzx. e′1 | γ′1〉} ] γ′1 ` e′1 ⇓n3 v
′
1 (H4.3)

and we also have: n′ = n1+n2+n3+1, and v1 = v′1. By IH (n = n′ decreasing),

(H1), (H2), (H3), (H4.1) and (H4.2) we have: γ2 ` e1 ⇓n1
〈λzx. e′2 | γ′2〉

(IH.1.C1), γ2 ` e2 ⇓n2 v2 (IH.2.C1), 〈λzx. e′1 | γ′1〉 ∼ 〈λzx. e′2 | γ′2〉 ∈

Vn′−nΣ
1
Jτ1 → τ2K (IH.1.C2), and v1 ∼ v2 ∈ Vn′−nΣ

2
Jτ1K (IH.2.C2). Note the

following facts: n3 ≤ n′ − n1 − n2 (F1); γ1 ∼ γ2 ∈ Gn−nΣ
1 −n2

JΓK (F2); and

v1 ∼ v2 ∈ Vn−nΣ
1 −n2

Jτ2K (F3). (F1) follows from (H3) and n′ = n1+n2+n3+1.

(F2) and (F3) follow from (H1), (IH.2.C2) and Step-index Weakening. By

IH (n = n′ − n1 − n2 decreasing), (H2), (IH.1.C2), (IH.2.C2), (F1), (F2),

(F3) and (H4.3) we have: {x 7→ v2, z 7→ 〈λzx. e′2 | γ′2〉} ] γ′2 ` e′2 ⇓n3 v′2

((IH.3.C1)) and v′1 ∼ v′2 ∈ Vn−nΣ
1 −n2−n3

Jτ2K (IH.3.C2). Instantiate v2 = v′2.

To show: (C1): γ2 ` e1(e2) ⇓n1+n2+n3+1 v
′
2 (unique); and (C2): v′1 ∼ v′2 ∈

Vn−nΣ
11−n12−n13−1Jτ2K. (C1) is immediate from (IH.1.C1), (IH.2.C1) and

(IH.3.C1). (C2) is immediate from (IH.3.C2) and Step-index Weakening.2.

- Case n = n′ + 1 and either e = reveal(e′) or e = return(e′) or e =

laplace[e1, e2](e3) or e = x← e1 ; e2:
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Follows from inductive hypothesis, post processing (for laplace) and sequen-

tial composition (for x ← e1 ; e2) theorems from the differential privacy

literature (Dwork et al., 2014a).
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Part V

Related Work & Conclusion
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Chapter 25

Related Work

25.1 Languages for Static Verification of Differen-

tial Privacy.

25.1.1 Linear Types.

Fuzz was the first language and type system designed to verify differential

privacy costs of a program, and did so by modeling sensitivity using linear types

(Reed and Pierce, 2010). DFuzz extended Fuzz with dependent types and

automation aided by SMT solvers (Gaboardi et al., 2013b).

As described by Azevedo de Amorim et al. (de Amorim et al., 2018), en-

coding (ε, δ)-differential privacy in linear type systems like Fuzz is particularly

challenging because these systems place restrictions on the interpretation of

the linear function space, and (ε, δ)-differential privacy does not satisfy these

restrictions. In particular, using Fuzz requires that the desired notion of privacy

can be recovered from an instantiation of function sensitivity for an appropriately

defined metric on probabilistic functions. No such metric can be defined for
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(ε, δ)-differential privacy, preventing a straightforward interpretation of linear

functions as (ε, δ)-differentially private functions.

The Duet language extends Fuzz with support for advanced variants of dif-

ferential privacy such as (ε, δ)-differential privacy (Near et al., 2019b). Adaptive

Fuzz embeds a static sensitivity analysis within a dynamic privacy analysis using

privacy odometers and filters (Winograd-Cort et al., 2017).

25.1.2 Indexed Monadic Types

In their work, Azevedo de Amorim et al. (de Amorim et al., 2018) define a

path construction to encode non-linear scaling via an indexed probability monad,

which can be used to extend Fuzz with support for arbitrary relational properties

(including (ε, δ)-differential privacy). However, this approach (1) internalizes

the use of group privacy (Dwork et al., 2014a) which in many cases provides

sub-optimal bounds on privacy cost–and (2) is unable to provide privacy bounds

for more than one input to a function–a useful capability of the original Fuzz

language, and a necessary feature to obtain optimal privacy bounds for multi-

argument functions. Note, however, that all the novel approaches proposed in

this dissertation provide optimal privacy bounds for multi-argument functions.

25.1.3 Program Logics

Program logics such as apRHL (Barthe et al., 2012, 2013) are very flexible and

expressive but difficult to automate. Fuzzi introduces a type system equivalent

to Fuzz which is then enriched with program logics (Zhang et al., 2019a) and is

more amenable to automation.

At a high level, Fuzzi (Zhang et al., 2019b) has a similar aim to Duet:

supporting differential privacy for general-purpose programs and supporting

recent variants of differential privacy. Duet is designed primarily as a fully-
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automated type system with a rich set of primitives for vector-based and higher-

order programming; low-level mechanisms in Duet are opaque and trusted.

On the other hand, Fuzzi is designed for general-purpose programming, low-

level mechanism implementation, and their combination; however, to achieve

this, Fuzzi has less support for higher-order programming and automation in

typechecking.

25.1.4 Higher-order Relational Type Systems

Following the initial work on linear typing for differential privacy (Reed and

Pierce, 2010), a parallel line of work (Barthe et al., 2015, 2016a) leverages

relational refinement types aided by SMT solvers in order to support type-

level dependency of privacy parameters (à la DFuzz (Gaboardi et al., 2013a)) in

addition to more powerful variants of differential privacy such as (ε, δ)-differential

privacy. These approaches support (ε, δ)-differential privacy, but did not support

usable type inference until a recently proposed heuristic bi-directional type

system (Çiçek et al., 2018). Although a direct case study of bidirectional type

inference for relational refinement types has not yet been applied to differential

privacy, the possibility of such a system appears promising.

The overall technique for supporting (ε, δ)-differential privacy in these rela-

tional refinement type systems is similar to (and predates) Azevedo de Amorim

et al.–privacy cost is tracked through an “effect” type, embodied by an indexed

monad. It is this “effect”-based treatment of privacy cost that fundamentally

limits these type system to not support multi-arity functions, resulting in non-

optimal privacy bounds for some programs.
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25.1.5 Relational Type Systems with Randomness Align-

ments & Probabilistic Couplings.

Yet another approach is LightDP which uses a light-weight relational type

system and randomness alignments to verify (ε, δ)-differential privacy bounds

of first-order imperative programs (Zhang and Kifer, 2017), and is suitable

for verifying low-level implementations of differentially private mechanisms.

Essentially, aligning randomness involves the creation of an injective function

from the randomness in the execution under a database D1 into the randomness

in the execution under an adjacent database D2, so that both executions generate

the same output. A notable achievement of this work is a lightweight, automated

verification of the Sparse Vector Technique (Dwork et al., 2014a) (SVT). However,

LightDP is not suitable for sensitivity analysis, an important component of

differentially-private algorithm design. Note that all the novel approaches

proposed in this dissertation are capable of sensitivity analysis, but are incapable

of verified implementation of the Sparse Vector Technique.

Differential privacy mechanisms often require knowledge of (or place restric-

tions on) function sensitivity of arguments to the mechanism. In principle, a

language like Fuzz could be combined with LightDP to fully verify both an

application which uses SVT, as well as the implementation of SVT itself.

Barthe et al introduce an approach for proving differential privacy using a

generalization of probabilistic couplings. They present several case studies in

the apRHL+ (Barthe et al., 2016b) language which extends program logics with

approximate couplings. The technique of aligning randomness is also used in

the coupling method.

Albarghouthi and Hsu (Albarghouthi and Hsu, 2018) use an alternative

approach based on randomness alignments as well as approximate couplings.
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25.2 Dynamic Enforcement of Differential Pri-

vacy.

The first approach for dynamic enforcement of differential privacy was PINQ

(McSherry, 2009). Since then several works have been based on PINQ, such as

Featherweight PINQ (Ebadi and Sands, 2015) which models PINQ formally and

proves that any programs which use its simplified PINQ API are differentially

private. ProPer (Ebadi et al., 2015) is a system (based on PINQ) designed to

maintain a privacy budget for each individual in a database system, and operates

by silently dropping records from queries when their privacy budget is exceeded.

UniTrax (Munz et al., 2018) follows up on ProPer: this system allows per-user

budgets but gets around the issue of silently dropping records by tracking queries

against an abstract database as opposed to the actual database records. These

approaches are limited to an embedded DSL for expressing relational database

queries, and do not support general purpose programming.

A number of programming frameworks for differential privacy have been

developed as libraries for existing programming languages. DPella (Lobo-Vesga

et al., 2020) is a Haskell library that provides static bounds on the accuracy of

differentially private programs. Diffprivlib (Holohan et al., 2019) (for Python) and

Google’s library (Wilson et al., 2020) (for several languages) provide differentially

private algorithms, but do not track sensitivity or privacy as these algorithms

are composed. εktelo (Zhang et al., 2018) executes programmer-specified plans

that encode differentially private algorithms using framework-supplied building

blocks.
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25.2.1 Dynamic Information Flow Control.

Our approach to dynamic enforcement of differential privacy can be seen as similar

to work on dynamic information flow control (IFC) and taint analysis (Austin

and Flanagan, 2009). The sensitivities that we attach to values are comparable

to IFC labels. However, dynamic IFC typically allows the programmer to branch

on sensitive information and handles implicit flows dynamically.

25.2.2 Dynamic Testing for Differential Privacy.

A recent line of work (Bichsel et al., 2018; Ding et al., 2018; Wang et al.,

2020; Wilson et al., 2020) has resulted in approaches for testing differentially

private programs. These approaches generate a series of neighboring inputs,

run the program many times on the neighboring inputs, and raise an alarm if

a counterexample is found. These approaches do not require type annotations,

but do require running the program many times. Static or dynamic analysis is

preferable to testing because it is more efficient and generates a proof of privacy.

25.3 Security as a Library/Language Extension

Li et al (Peng Li and Zdancewic, 2006) present an embedded security sublanguage

in Haskell using the arrows combinator interface. Russo et al introduce a

monadic library for light-weight information flow security in Haskell (Russo et al.,

2008). Crockett et al propose a domain specific language for safe homomorphic

encryption in Haskell (Crockett et al., 2018). Safe Haskell (Terei et al., 2012)

is a Haskell language extension which implements various security policies as

monads. Parker et al (Parker et al., 2019) introduce a Haskell framework for

enforcing information flow control policies in database-oriented web applications.

DPella (Lobo-Vesga et al., 2020) is a programming framework in Haskell that
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performs privacy and accuracy bound tracking of data analysis programs.
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Chapter 26

Conclusion

Differential privacy has become the standard for protecting the privacy of

individuals with formal guarantees of plausible deniability. In this dissertation we

have proposed new techniques for language-based analysis of differential privacy

of programs in a variety of contexts spanning static and dynamic analysis. Our

approach towards differential privacy analysis makes use of ideas from linear

type systems and static/dynamic taint analysis. We have shown a series of works

that, in short, demonstrated the following key ideas:

• A pure linear typing discipline is sufficient to perform accurate analysis of

differential privacy, even for its advanced variants.

• Prescriptive and descriptive dynamic analysis of differential privacy is

possible with low overhead for general-purpose programming languages.

• Mainstream statically typed languages can be made to perform differential

privacy analysis as part of their standard typechecking process, without

any runtime execution or information.

• Language-based analysis of differential privacy can be practical and conve-
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nient in any given scenario.

It is our hope that the usability and strong guarantees of the works contained

in this dissertation will inspire data analysts, technology corporations, researchers,

and students in computer science to continue to build a community and culture

of verifiable data privacy.
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