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ABSTRACT

Accurate estimations of surgical risks is important for improving the shared decision

making and informed consent processes. Reintubation is a severe postoperative complication that

can lead to various other detrimental outcomes. Reintubation can also be broken up into early

reintubation (within 72 hours of surgery) and late reintubation (within 30 days of surgery). Using

clinical data provided by ACS NSQIP, scoring systems were developed for the prediction of

combined, early, and late reintubation. The risk factors included in each scoring system were

narrowed down from a set of 37 pre and perioperative factors. The scoring systems demonstrated

good performance in terms of both accuracy and discrimination, and these results were only

marginally worse than prediction using the full set of risk variables. While more work needs to

be done to identify clinically relevant differences between the early and late reintubation

outcomes, the scoring systems provided here can be used by surgeons and patients to improve

the quality of care overall.

INTRODUCTION

Comprehending surgical risks is important for surgeons and patients throughout the

shared decision-making process.1 In the context of surgery, informed consent is the voluntary

authorization of a surgical treatment by a patient with full comprehension of the risks involved.2

Patients and surgeons both need information about surgical risks to discuss the possibility of

alternative procedures and non-surgical treatments. Unfortunately, predicting postoperative risks

has generally been based off of individual surgeon experience and does not take into account

patient-specific risk factors.3

Identifying patient-specific risk factors associated with a range of surgical outcomes is an

essential step in understanding and preventing these postoperative complications. While



identifying these risk factors for a broad range of complications is important, efforts are often

focused on more adverse outcomes such as mortality. One postoperative indicator for an

increased risk of mortality is the need for unplanned reintubation, which is defined as requiring

postoperative placement of an endotracheal tube in the 30 days following surgery.4 In addition to

this, unplanned reintubation is also associated with longer hospital stays and increased costs.5,6

Therefore, determining risk factors that predispose patients to unplanned reintubation will help

lead to fewer instances of detrimental complications.

Unplanned reintubation specifically is an intriguing complication to investigate as it can

be broken up into two component outcomes. It is known that the risk of hypoxemia is greatest

during the first 72 hours after surgery, and this is also the peak respiratory depressant period.7

Reintubations that occur within this high-risk period, called early reintubation, are associated

with a distinct set of risk factors and complications compared to reintubations performed after

this period, which are referred to as late reintubation. It is important to thoroughly investigate the

differences between these distinct postoperative events in order to fully understand the

unfavorable unplanned reintubation outcome.

A range of factors that are independently associated with unplanned reintubation have

been previously identified. However, none of these studies establish a widely accepted simple

evaluation tool to assess the probability of unplanned reintubation occurring.5 Moreover, these

studies have been concerned with determining risks for early reintubation or the combined

reintubation outcome.4,5,7 These methodologies fail to draw comparisons between risk factors

associated with early and late reintubation that could be clinically important. We were interested

in determining the most important risk factors for predicting and distinguishing between

postoperative early and late reintubation. Our goal is to use machine learning methods to identify



the most important factors associated with the prediction of both early and late reintubation, and

use these to develop and validate a simple scoring metric to estimate the probability of both

outcomes occurring. This metric should be simple enough to use without requiring expensive

computational power, and will be utilized by clinicians throughout the surgical decision-making

process to maintain informed consent and improve patient outcomes.

METHODS

Data and Patients

Data for this study came from the database of the American College of Surgeons (ACS)

National Surgical Quality Improvement Program (NSQIP). The data were collected from over

500 participating hospitals in the U.S. for adult patients who underwent major surgical

procedures across all subspecialties except for trauma and transplant.8,9 For each case, a trained

risk assessment nurse prospectively collected information for 273 variables including patient

demographics, preoperative comorbidities, operative information, interoperative variables, and

30-day postoperative outcomes.10 Further information regarding the ACS NSQIP data and its

collection methods has been described extensively elsewhere.11,12

From the ACS NSQIP data, patients were identified who underwent surgical procedures

between 2009 and 2017. As one would expect, the number of reintubation cases in the data

(n=51,383) is very low compared to the total number of cases (n=6,002,268). This class

imbalance can cause standard machine learning classification algorithms to ignore the minority

class in the pursuit of accurate performance over the full range of instances and is a common

problem that has been previously identified.13 One way to alleviate this issue is to resample the

minority instances, in our case patients who experience unplanned reintubation, until this class

contains as many instances as the majority.14 However, in this case since the reintubation class



contains a relatively large number of instances, it is more sensible to simply randomly sample an

equal number of instances from the non-reintubation cases to create a perfectly balanced dataset

for prediction. This was done independently for the combined reintubation, early reintubation

(n=19,422) and late reintubation (n=31,766) outcomes. It is important to note that for 195 of the

reintubation cases in the data, the days until the reintubation variable was not available to create

the distinction between early and late reintubation.

For the purposes of this study, patients with preoperative ventilator dependence and

patients whose principal anesthesia techniques were not general anesthesia were removed from

the analysis. Intubation of patients that are dependent on a ventilator prior to surgery is not

considered unplanned, and it would not make sense to investigate reintubation for patients that

were not initially intubated during the administration of general anesthesia. It is typical in this

type of risk prediction analysis to exclude emergent and/or outpatient procedures, due to their

high and low-acuity natures respectively.3-5,7 Having an emergency surgery generally comes with

increased risks and therefore could be a meaningful predictor for unplanned reintubation, which

is why these cases are left in the analysis. Excluding outpatient cases could eliminate a

substantial number of low-risk surgeries that prediction might still be meaningful for. After

applying this exclusion criteria, the cohort for this analysis consisted of 92,731 cases for

combined reintubation, 35,725 cases for early reintubation, and 56,679 cases for late reintubation

in the NSQIP database.

Risk Factors

It is common in the literature to select a set of variables a priori based on predictive value

for the primary outcome of interest, which in our case is unplanned reintubation. However, this

can cause potentially important predictors to be left out of the analysis.3,4 For the risk prediction



models created here, any variable of clinical relevance that is included in the ACS NSQIP data

and known pre or perioperatively is to be considered a candidate variable. This was done in order

to capture any and all risk factors that may be associated with both early and late reintubation.

This left 37 risk factors to be considered by the risk prediction models. Due to the categorical

nature of many of these risk factors, some were broken down into multiple variables through

techniques such as one-hot encoding to make the modelling process easier.15 The 37 risk factors

were encoded into 125 variables or features that were available to the precision models.

Demographic variables included age, race, and gender. Lifestyle variables included

smoking (current smoker within one year of procedure). General factors included ASA

classification, wound classification, transfer status, functional status, emergency status and body

mass index. Preoperative comorbidities included history of severe COPD, ascites, congestive

heart failure in 30 days before surgery, hypertension requiring medication, acute renal failure,

currently on dialysis, disseminated cancer, open wound, steroid use for chronic condition, weight

loss (>10% loss in body weight in the last 6 months), bleeding disorders, transfusion, diabetes,

dyspnea, and sepsis in 48 hours before surgery. Laboratory or bloodwork variables were only

considered if they were available for greater than 75% of cases included in the data. This left

serum sodium, blood urea nitrogen, serum creatinine, white blood cell count, hematocrit, and

platelet count. Finally, operative variables included elective status, surgical subspecialty, and

present at the time of surgery (PATOS) variables for the following outcomes: surgical site

infection, pneumonia, UTI, and sepsis. Missing data was handled using Buck’s method for

imputation, which is the standard ACS NSQIP modeling approach.3,16 Extensive univariate

analyses of these risk factors have been performed previously and are therefore left out of this

analysis.3,10,12



To provide more operative information to the prediction models, a risk value was

calculated for each current procedural terminology (CPT) code included in the data. ACS NSQIP

has previously created procedure-specific risk prediction models that were used to generate

CPT-specific risk values.3 These risk values could then be used as a predictor in a generalized

model that spans many different procedures. However, the procedure-specific models and

CPT-specific risk values generated by ACS NSQIP are not publicly available. Therefore, a

simple workaround had to be used in which for each CPT code, the risk value was assigned to be

the proportion of surgeries where a postoperative complication occurred. This was done

independently for each postoperative outcome. These CPT-specific risk values were calculated

based on the full dataset and then mapped to the resampled datasets for each of the reintubation

outcomes. This does induce a small amount of data leakage as bits of information from training

sets will now be included in testing sets during modeling, however it should not affect the

validity of the process overall. A histogram of the CPT-specific risk values for the combined

reintubation, early reintubation and late reintubation outcomes are shown in Figure 1.



Figure 1: Histogram of CPT-specific risk values for combined reintubation (top left), early

reintubation (top right) and late reintubation (bottom).

Statistical Analysis

In order to create a reasonable scoring metric for both early and late reintubation, the set

of 125 encoded variables had to be narrowed down. Logistic regression, random forest

classification, and gradient boosting classification models were initially fit on the full set of

features using the created balanced datasets for combined reintubation, early reintubation and

late reintubation. Logistic regression assumes underlying linear relationships in the data, hence

the classification models were fit to assess different nonlinearities and determine which of the

three had the best performance on the full set of features. Random forest and gradient boosting

classification are both popular machine learning algorithms that use an ensemble of decision



trees for prediction, and their methods have been published and discussed extensively

elsewhere.17,18 These three modeling approaches were also chosen because it is easy to extract the

features that are important for prediction for each, through the coefficients from logistic

regression and the importances from random forest and gradient boosting classification.

For each of the reintubation complications, the models were trained on 5 different 80%

train/20% test splits. Cross-validation occurred on the first iteration to tune the values of the

following hyperparameters: regularization strength and maximum iterations for logistic

regression, and number of trees, maximum depth of trees and maximum features used per tree

for the classification models. Each iteration, the models were evaluated on the test set using Brier

score to assess probability prediction accuracy, and c-statistic to assess the discriminative power

of the models. The Brier score is the average squared difference between patients' predicted

probabilities and observed outcomes. The c-statistic is also known as the area under the receiver

operating characteristic (ROC) curve, and ranges from 0.5 to 1, with a value of 0.5 indicating the

model is doing no better than random at discriminating between events and non-events. The

Brier score is the metric used for evaluation during cross-validation because it is computed from

differences between the actual events and predicted probabilities, and is more informative than

the c-statistic for our purposes. Another use for the Brier score is to get a benchmark value when

the overall event rate in the training data is assigned to each patient, and this “null model” can be

used to assess the added predictive contribution from the full set of features.

To determine which of the models demonstrated the best performance on the full set of

features, a rank-sums test was utilized on the Brier score results from the 5 training and testing

iterations for each of the three reintubation outcomes. This rank-based non-parametric test

determines whether two samples come from distributions with the same median and is very well



established in the field of statistics.19 Two different methods were then used to extract the

features that are most important for the prediction of each outcome. The first method is to use the

covariates with either the top coefficients from the logistic regression models in terms of

absolute value, or the top importances from the random forest and gradient boosting

classification models. While these are not formally checked for significance, they still provide an

idea of which variables are affecting the probability prediction most overall. The other method is

to use the permutation importances evaluated on the test set that prove to be statistically

significant at the 95% level. The permutation importance of a variable can be described as the

gain or loss in some specified metric (i.e., Brier score, c-statistic) when that variable is randomly

shuffled, or permuted, throughout the data. Detailed information regarding permutation

importances and their methods have been published.20,21

One issue with this type of analysis is that the coefficients or importances, as well as the

permutation importances, that show up as most important for the prediction of each outcome can

be inconsistent between model runs. This is due to the large feature space being assessed and the

specific train/test splits that are generated. Additionally, the number of features that show up as

significant in terms of the permutation importances is dependent on the chosen evaluation metric.

One other issue is that the CPT-specific risk values alone provide prediction that is similar in

performance to using the full feature set, which can skew the predictive importance of other

variables when these risk values are included.

To alleviate these issues and gain a better understanding of which features show up most

often as important for prediction, a heuristic feature analysis was performed. Here, each of the

models was run four times for each permutation importance evaluation metric being tested (i.e.

Brier score and c-statistic), twice with the CPT-specific risk values included and twice without.



This led to 8 model runs for each of the algorithms and was performed for each of the three

reintubation complications. The training and testing procedure stayed the same as before, with

each run consisting of five iterations and cross-validation occurring on the first of those, tuning

the same hyperparameters. From there, the number of times each feature showed up in the top 10

coefficients/importances and the significant permutation importances were tallied across the 8

model runs and subsequently ranked by their total appearances. The top 20 features in terms of

total appearances identified by each model were isolated for each reintubation complication

respectively.

The models were re-fit on this reduced set of features for each of the three complications.

Cross-validation occurred on the set of 20 features, with the same hyperparameters being tuned

as before. To establish the ideal number of risk factors to use in a scoring system, the set of 20

features was reduced iteratively by removing the least important in terms of total appearances,

and refitting the models until only one feature (the most important) remained. On each iteration,

the Brier score and c-statistic from the model was stored to allow for the creation of plots that

show the performances vs. the number of features included. These will reveal the ideal number

of features that should be used in a scoring system before performance falls off significantly, for

each model and reintubation complication respectively. It is important to note that for this

portion of the analysis, CPT-specific risk values are not included, because as discussed

previously they can skew performance.

To establish a scoring system, the logistic regression models were once again refit, this

time using the ideal number of features revealed from the plots. An 80% train/20% test split was

utilized and cross-validation was once again performed to tune the regularization strength and

maximum iteration hyperparameters.  Here, the CPT-specific risk values were included to boost



the performance. The coefficients from these refit models will be used to scale each variable,

allowing for the creation of a reasonable scoring system for combined reintubation, early

reintubation, and late reintubation respectively. While the heuristic feature analysis was

performed for the classification models as well, the importances are not as interpretable in terms

of scaling the covariates included in the system like the coefficients from the logistic regression

models are.

RESULTS

From the ACS NSQIP database, three different sized cohorts of patients were identified

for the analysis of combined reintubation (n=92,731), early reintubation (n=35,725), and late

reintubation (n=56,679). These cases spanned all surgical subspecialties except for trauma and

transplant, and consisted of 2,063 unique CPT codes being available for the creation of scoring

systems for each reintubation complication.

Table 1 shows the results from fitting logistic regression, random forest classification,

and gradient boosting classification models on the full set of features for each complication

respectively. The values shown are the averages over the five training and testing iterations.

Performance for late reintubation seems to be the best across the three models, both in terms of

Brier score and c-statistic, however the values for the other complications are still reasonable.



Logistic Regression Random Forest Gradient Boosting

Outcome Brier Score C-stat Brier score C-stat Brier score C-stat

Reintubation 0.1401 0.8796 0.1439 0.8785 0.1328 0.8891

Early Reintubation 0.1598 0.8452 0.1514 0.8591 0.1456 0.8690

Late Reintubation 0.1359 0.8862 0.1304 0.8929 0.1226 0.9037

Table 1: Performance on the full set of features.

Tables 2, 3, and 4 contain the p-values from the rank sums tests based on the Brier score

results from running the models on the full set of features for the combined reintubation, early

reintubation, and late reintubation complications respectively. An asterisk indicates that the

model in that row is performing significantly better than the model in that column. The null

model scores were generated by assigning the overall event rate in the training data to each

patient, and each of the models consistently outperforms this null model across all complications.

Gradient boosting classification performs significantly better than both logistic regression and

random forest classification across the reintubation outcomes. It is important to note that the

p-values are very similar since comparing a distribution that only consists of five data points (for

the five training and testing iterations) leads to a very limited number of comparisons that can be

made.

Model Null Logistic Regression Random Forest Gradient Boosting

Logistic Regression 0.009* x 0.047* 0.009

Random Forest 0.009* 0.047 x 0.009

Gradient Boosting 0.009* 0.009* 0.009* x

Table 2: P-values from the rank-sums tests for the combined reintubation complication.



Model null Logistic Regression Random Forest Gradient Boosting

Logistic Regression 0.009* x 0.009* 0.009

RF 0.009* 0.009 x 0.009

GBC 0.009* 0.009* 0.009* x

Table 3: P-values from the rank-sums tests for the early reintubation complication.

Model null Logistic Regression Random Forest Gradient Boosting

Logistic Regression 0.009* x 0.009* 0.009

RF 0.009* 0.009 x 0.009

GBC 0.009* 0.009* 0.009* x

Table 4: P-values from the rank-sums tests for the late reintubation complication.

Table 5 displays the results from fitting the three models using only the CPT-specific risk

values. While these results are statistically significantly worse than the results from fitting the

models with the full feature set (Table 1), they are practically similar. The high level of

performance when the CPT-specific risks are the sole predictor indicates that the importance of

other variables can be skewed when these are included, and is the reason why half of the runs for

the heuristic feature analysis do not contain these CPT-specific risks.

Logistic Regression Random Forest Gradient Boosting

Outcome Brier Score C-stat Brier score C-stat Brier score C-stat

Reintubation 0.1838 0.8315 0.1662 0.8312 0.1662 0.8312

Early Reintubation 0.2469 0.7980 0.1829 0.7979 0.1830 0.7971

Late Reintubation 0.1837 0.8558 0.1527 0.8556 0.1528 0.8552

Table 5: Performance on only the CPT-specific risk values.



Figure 2 displays the plots of performance vs. number of features that resulted from the

logistic regression heuristic feature analysis for the three reintubation complications. For early

reintubation, it is clear that the significant drop in performance occurs at 7 features. For both

combined reintubation and late reintubation, there is a significant drop in performance around 12

and 15 features respectively, and another around 6 features. To keep the scoring system

simplistic, the second significant drop in performance will be utilized.

Figure 2: Results from the heuristic feature analysis for logistic regression across the three

complications.

Figures 3 and 4 show the results from the heuristic feature analysis for random forest

classification and gradient boosting classification. While these results are not used in the creation

of a simple scoring system here, they could be incorporated into a more complex one that would

require more computational power. The drop in performance for the random forest is seen around

9 features for combined reintubation, 6 features for early reintubation, and 8 features for late

reintubation. For the gradient boosting models, the drop in performance comes at 6 features for

combined reintubation and 8 features for early reintubation. Late reintubation never really sees a



significant performance drop like the other two complications do, so it would be recommended

to use a similar number of features, however more experimentation may be needed.

Figure 3: Results from the heuristic feature analysis for random forest across the three

complications.

Figure 4: Results from the heuristic feature analysis for gradient boosting across the three

complications.

Tables 6, 7 and 8 show the results from fitting the logistic regression models using the

ideal number of features from the heuristic feature analysis (Figure 2). These coefficients will

form the basis for a basic scoring system. The CPT risk values consistently carry the most weight



in the prediction which is consistent from results seen from fitting models on the full set of

features. There are some features that show up in the scoring system for all three reintubation

complications, which is sensible because the outcomes only differ in timing. These include

pneumonia present at the time of surgery (PATOS), septic shock PATOS, ASA 1: no disturb, and

ASA 4: life threat. More interesting are the features that are distinct for each outcome, which

include organ space surgical site infection (SSI) PATOS for combined reintubation, ascites and

thoracic surgical subspecialty for early reintubation, and cardiac surgical subspecialty for late

reintubation.

Variable Coefficient

Reintubation CPT Risk 40.871

Pneumonia PATOS 2.590

ASA 1: No Disturb -2.358

Septic Shock PATOS 2.044

ASA 5: Moribund 1.669

ASA 4: Life Threat 1.448

Organ Space SSI PATOS 0.848

Table 6: Combined reintubation scoring system.



Variable Coefficient

Early Reintubation CPT Risk 9.034

ASA 1: No Disturb -2.834

Septic Shock PATOS 2.374

Pneumonia PATOS 2.069

ASA 2: Mild Disturb -1.608

ASA 4: Life Threat 1.216

Ascites 1.074

Surgical Subspecialty: Thoracic 0.914

Table 7: Early reintubation scoring system.

Variable Coefficient

Late Reintubation CPT Risk 42.036

ASA 1: No Disturb -2.715

Pneumonia PATOS 2.285

Septic Shock PATOS 2.227

ASA 4:  Life Threat 1.581

ASA 5: Moribund 1.528

Surgical Subspecialty: Cardiac 0.214

Table 8: Late reintubation scoring system.

Finally, table 9 contains the Brier score and c-statistic results for running the logistic

regression scoring systems. These values all lie in between the results seen when using the full

feature set, and the results seen when CPT-specific risk values were used as the only predictor.

Overall, the c-statistics show that for all three reintubation complications, the scoring systems are

doing fairly well at discriminating between patients that have a reintubation and those who do



not. The Brier scores show that the probability predictions are reasonable on average, with the

scoring system for combined and late reintubation performing slightly better than that of early

reintubation.

Outcome Brier Score C-stat

Reintubation 0.1674 0.8555

Early Reintubation 0.1825 0.8315

Late Reintubation 0.1668 0.8695

Table 9: Results from the logistic regression models using the scoring systems for the

reintubation complications.

DISCUSSION

Accurate estimation of reintubation risks can help lead to less detrimental outcomes and

better quality of patient care overall. Here, we set out to develop scoring systems for both early

and late reintubation in order to determine which risk factors were most important for the

prediction of each. These scoring systems have the potential to assist clinicians, patients and their

families, as well as hospitals through its use.

Many existing reintubation risk assessment tools use a priori variable selection, which

can leave potentially important factors out of these analyses, or only investigate the combined

reintubation outcome. Here, we fit initial models on all available, relevant data (37 risk factors

encoded as 125 variables), and demonstrate consistent performance across algorithms that

assume underlying linear and nonlinear patterns in the data. These initial models also helped to

determine the high level of performance that occurred when only CPT-specific risk values were



used for prediction, and uncovered bias seen in the predictive importance of other included

features.

From these initial models, a heuristic feature analysis was performed to determine which

factors were most important for the prediction of combined, early, and late reintubation. Refitting

these models on the reduced set of most important features allowed for the determination of the

correct number to include in a scoring system. The scoring system displayed here is based on the

logistic regression models, as the coefficients from these models are the most interpretable in

terms of scaling each variable. The performance of the scoring systems for all three reintubation

outcomes was reasonable in terms of both discrimination and accuracy. As expected, this

performance lies in between the model performance when using the full set of features and the

model performance when using only the CPT-specific risk values for prediction. There are some

similarities in the features for the scoring systems determined for early and late reintubation,

however there are also some important differences that can be further investigated. This work

provides a foundation for discovering more differences between the distinct reintubation

outcomes through tweaking the heuristic feature analysis process, and also looking at the

important differences in features that result from the non-linear models.

There are some important limitations to the work that should be mentioned. First is that

the ACS NSQIP data is only collected from approximately 10% of hospitals in the US.3 The data

is also collected from hospitals all over the country with variable capacity, and there are certainly

variations in outcomes depending on the hospital and the surgeon performing an operation. The

risk estimation tools presented here do not contain any information that may normalize this

variation. Another limitation is that features that are tied in terms of importance from the

heuristic feature analysis must still be ranked, and this is done in an arbitrary way. The ranking



of feature importance is better determined by looking at the coefficients from the created scoring

systems. Additional work must also be done to extract the clinical relevance from the differences

seen in the scoring system and is better left to trained anesthesiology experts.

CONCLUSION

Accurate prediction of reintubation can lead to less instances of mortality after surgery, as

well as lower costs and length of hospital stays. While there is still more work to be done in

determining differentiating factors between early and late reintubation, the scoring systems

created here can be used by patients and surgeons to promote discussions that can better inform

the surgical decision making process. This in turn will improve patient understanding and

informed consent, leading to better patient care overall.

REFERENCES

1. Knops, A. M., Legemate, D. A., Goossens, A., Bossuyt, P. M. M., & Ubbink, D. T. (2013).
Decision Aids for Patients Facing a Surgical Treatment Decision: A Systematic Review
and Meta-analysis. Annals of Surgery, 257(5), 860–866.
https://doi.org/10.1097/SLA.0b013e3182864fd6

2. Leclercq, W. K. G., Keulers, B. J., Scheltinga, M. R. M., Spauwen, P. H. M., & van der Wilt,
G.-J. (2010). A Review of Surgical Informed Consent: Past, Present, and Future. A Quest
to Help Patients Make Better Decisions. World Journal of Surgery, 34(7), 1406–1415.
https://doi.org/10.1007/s00268-010-0542-0

3. Bilimoria, K. Y., Liu, Y., Paruch, J. L., Zhou, L., Kmiecik, T. E., Ko, C. Y., & Cohen, M. E.
(2013). Development and Evaluation of the Universal ACS NSQIP Surgical Risk
Calculator: A Decision Aid and Informed Consent Tool for Patients and Surgeons.
Journal of the American College of Surgeons, 217(5), 833-842.e3.
https://doi.org/10.1016/j.jamcollsurg.2013.07.385

4. Hua, M., Brady, J. E., & Li, G. (2012). A Scoring System to Predict Unplanned Intubation in
Patients Having Undergone Major Surgical Procedures. Anesthesia & Analgesia, 115(1),
88–94. https://doi.org/10.1213/ANE.0b013e318257012b



5. Brueckmann, B., Villa-Uribe, J. L., Bateman, B. T., Grosse-Sundrup, M., Hess, D. R., Schlett,
C. L., & Eikermann, M. (2013). Development and Validation of a Score for Prediction of
Postoperative Respiratory Complications. Anesthesiology, 118(6), 1276–1285.
https://doi.org/10.1097/ALN.0b013e318293065c

6. Beverly, A., Brovman, E. Y., Malapero, R. J., Lekowski, R. W., & Urman, R. D. (2016).
Unplanned Reintubation Following Cardiac Surgery: Incidence, Timing, Risk Factors,
and Outcomes. Journal of Cardiothoracic and Vascular Anesthesia, 30(6), 1523–1529.
https://doi.org/10.1053/j.jvca.2016.05.033

7. Ramachandran, S. K., Nafiu, O. O., Ghaferi, A., Tremper, K. K., Shanks, A., & Kheterpal, S.
(2011). Independent Predictors and Outcomes of Unanticipated Early Postoperative
Tracheal Intubation after Nonemergent, Noncardiac Surgery. Anesthesiology, 115(1),
44–53. https://doi.org/10.1097/ALN.0b013e31821cf6de

8. Hall, B. L., Hamilton, B. H., Richards, K., Bilimoria, K. Y., Cohen, M. E., & Ko, C. Y. (2009).
Does Surgical Quality Improve in the American College of Surgeons National Surgical
Quality Improvement Program: An Evaluation of All Participating Hospitals. Annals of
Surgery, 250(3), 363–376. https://doi.org/10.1097/SLA.0b013e3181b4148f

9. Ingraham, A. M., Richards, K. E., Hall, B. L., & Ko, C. Y. (2010). Quality Improvement in
Surgery: The American College of Surgeons National Surgical Quality Improvement
Program Approach. Advances in Surgery, 44(1), 251–267.
https://doi.org/10.1016/j.yasu.2010.05.003

10. Khuri, S. F., Henderson, W. G., Daley, J., Jonasson, O., Jones, R. S., Campbell, D. A., Fink,
A. S., Mentzer, R. M., & Steeger, J. E. (2007). The Patient Safety in Surgery Study:
Background, Study Design, and Patient Populations. Journal of the American College of
Surgeons, 204(6), 1089–1102. https://doi.org/10.1016/j.jamcollsurg.2007.03.028

11. Hall, B. L., Richards, K., Ingraham, A., & Ko, C. Y. (2009). New approaches to the National
Surgical Quality Improvement Program: The American College of Surgeons experience.
The American Journal of Surgery, 198(5), S56–S62.
https://doi.org/10.1016/j.amjsurg.2009.07.026

12. Shiloach, M., Frencher, S. K., Steeger, J. E., Rowell, K. S., Bartzokis, K., Tomeh, M. G.,
Richards, K. E., Ko, C. Y., & Hall, B. L. (2010). Toward Robust Information: Data
Quality and Inter-Rater Reliability in the American College of Surgeons National
Surgical Quality Improvement Program. Journal of the American College of Surgeons,
210(1), 6–16. https://doi.org/10.1016/j.jamcollsurg.2009.09.031



13. Guo, X., Yin, Y., Dong, C., Yang, G., & Zhou, G. (2008). On the Class Imbalance Problem.
2008 Fourth International Conference on Natural Computation, 4, 192–201.
https://doi.org/10.1109/ICNC.2008.871

14. Japkowicz, N. (2000). The Class Imbalance Problem: Significance and Strategies. In
Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI),
111–117.

15. Seger, C. (2018). An investigation of categorical variable encoding techniques in machine
learning: Binary versus one-hot and feature hashing.
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237426

16. Cohen, M. E., Ko, C. Y., Bilimoria, K. Y., Zhou, L., Huffman, K., Wang, X., Liu, Y.,
Kraemer, K., Meng, X., Merkow, R., Chow, W., Matel, B., Richards, K., Hart, A. J.,
Dimick, J. B., & Hall, B. L. (2013). Optimizing ACS NSQIP Modeling for Evaluation of
Surgical Quality and Risk: Patient Risk Adjustment, Procedure Mix Adjustment,
Shrinkage Adjustment, and Surgical Focus. Journal of the American College of Surgeons,
217(2), 336-346.e1. https://doi.org/10.1016/j.jamcollsurg.2013.02.027

17. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

18. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

19. Krzywinski, M., & Altman, N. (2014). Nonparametric tests. Nature Methods, 11(5),
467–468. https://doi.org/10.1038/nmeth.2937

20. Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A
corrected feature importance measure. Bioinformatics, 26(10), 1340–1347.
https://doi.org/10.1093/bioinformatics/btq134

21. Ojala, M., & Garriga, G. C. (2009). Permutation Tests for Studying Classifier Performance.
2009 Ninth IEEE International Conference on Data Mining, 908–913.
https://doi.org/10.1109/ICDM.2009.108


	A Machine Learning Approach to Predicting Early and Late Reintubation
	Recommended Citation

	A Machine Learning Approach to Predicting Early and Late Reintubation

