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Abstract

Cluster analysis explores the underlying structure of data and organizes it into
groups (i.e., clusters) such that observations within the same group are more similar
than those in different groups. Quantifying the “similarity” between observations,
choosing the optimal number of clusters, and interpreting the results all require careful
consideration of the research question at hand, the model parameters, the amount
of data and their attributes. In this dissertation, the first manuscript explores the
impact of design choices and the variability in clustering performance on different
datasets. This is demonstrated through a benchmark study consisting of 128 datasets
from the University of California, Riverside time series classification archive. Next,
a multivariate event time series clustering approach is applied to hydrological storm
events in watershed science. Specifically, river discharge and suspended sediment
data from six watersheds in the Vermont are clustered, and yield four types of
hydrological water quality events to help inform conservation and management efforts.
In a second application, a novel and computationally efficient clustering algorithm
called SOMTimeS (Self-organizing Map for Time Series) is designed for large time
series analysis using dynamic time warping (DTW). The algorithm scales linearly
with increasing data, making SOMTimeS, to the best of our knowledge, the fastest
DTW-based clustering algorithm to date. For proof of concept, it is applied to
conversational features from a Palliative Care Communication Research Initiative
study with the goal of understanding and motivating high quality communication in
serious illness health care settings.
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Chapter 1

Introduction

The recent explosion in time series data is due to the increase in sensor development

and other data generating devices (CRS, 2020; Evans, 2011) as well as their reduced

cost (UNEP, 2021). With this increase in time series data, the need for methods

capable of clustering and classifying the data abound in a variety of disciplines.

Examples include hydrological storm event analysis (Minaudo et al., 2017; Dupas

et al., 2015; Mather and Johnson, 2015; Bende-Michl et al., 2013), conversations (Ross

et al., 2020), financial portfolio building (Iorio et al., 2018), enhanced index

tracking (Gupta and Chatterjee, 2018), personalized drug design (Pirim et al., 2012),

cancer sub-type identification (Souto et al., 2008), and anomaly detection (Flanagan

et al., 2017), among others. Ultimately, how these data are used, and whether we

can successfully tackle the well-known challenges of structure and scale will depend

on who can translate this data and what they do with it.

Several aspects of data, available resources, and study objective affect the choice

of methodology in a cluster analysis. For instance, temporality of data affects the

quantification of similarity (Begum et al., 2015; Liao, 2005), the attributes of data

(e.g., outliers and number of features) affects the choice of clustering algorithm (Jin

and Han, 2010), the amount of data (e.g., number and length of time series) in

relation to available resources (i.e., computational power, available memory and time

1



constraint) affects choice of data preprocessing routines (e.g., sampling and reducing

sequence length), and the study objective often guides the feature selection. For

clustering the methodology needs to be tailored to the application domain of the

studied analysis without labeled data to guide selection.

There are three types of time series clustering algorithms (Jin and Han, 2010) —

1) raw-data-based, 2) feature-based, and 3) model-based. This dissertation focuses

on the first type (i.e., raw-data-based). Raw-data-based approaches differentiate

themselves from the other two by preserving the temporal order of variables within

the input observation (Jin and Han, 2010). Within the first type, I focus on clustering

algorithm, distance measure and application domain; the cluster analysis is tailored

to the study objective.

1.1 Study Problems

This dissertation is divided into three parts. In the first part a benchmark study for

time series clustering algorithms is presented. In the second and third part, selected

cluster analysis methods are applied to two disparate fields of research – the clustering

of hydrological storm events in watershed science to inform watershed conservation

and management efforts and the clustering of conversations in serious illness to

understand and incentivize high quality communication. Each part tailors several

aspects of time series clustering to the research problem and the study objective.

The benchmark study in the first part is based on the fact that, given the

exploratory nature of cluster analysis, different choices of methods can result in

different outcomes. Consequently, clustering methods show high variability in

performance (measured in terms of the ability to regenerate specific ground truths)

across datasets. Lack of availability of dataset-level performance metrics for different

clustering algorithms forces researchers to repeat benchmarking studies for algorithm
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selection. The benchmark used in this work comprises all 128 datasets available

in the University of California Riverside (UCR) archive. It examines eight popular

clustering methods representing three categories of clustering algorithms (partitional,

hierarchical and density-based) and three types of distance measures (Euclidean,

dynamic time warping, and shape-based). A phased evaluation approach was designed

for summarizing dataset-level assessment metrics and discussing the results.

In the second part of this dissertation, hydrological storm events are modeled as

multivariate time series and clustered using a multivariate event time series (METS)

clustering method. Hydrological storm events are primary drivers for transporting

water quality constituents such as suspended sediments and nutrients (Dupas et al.,

2015; Sherriff et al., 2016). Analyzing the concentration (C) of these water quality

constituents in response to river discharge (Q), particularly when monitored at high

temporal resolution during a hydrological event, helps to characterize the dynamics

and flux of such constituents (Aguilera and Melack, 2018; Burns et al., 2019; Williams

et al., 2018; Malutta et al., 2020). The proposed METS approach is the first to

incorporate temporal details of the C-Q relationship for the purpose of identifying

event types. The METS clustering was applied to river discharge and suspended

sediment data (acquired through turbidity-based monitoring) from six watersheds in

the Lake Champlain Basin located in the northeastern United States, and results in

identifying four common types of hydrological water quality events.

In the third part, serious illness conversations are modeled as story arcs (i.e.,

narrative times) and are clustered using a self-organizing maps for time series

(SOMTimeS) clustering method. SOMTimeS combines Kohonen self-organizing

maps (Kohonen et al., 2001) and dynamic time warping (DTW) (Sakoe and

Chiba, 1978) in a computationally efficient clustering algorithm. A framework

of conversational storytelling is a very useful conceptual foundation for studying

communication in serious illness. Conversational storytelling is a practical and
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effective way humans find and share meaning with one another. In the study,

SOMTimeS is used to discover fundamental shapes of serious illness conversational

stories. SOMTimeS was applied to 171 conversations obtained from a Palliative Care

Communication Research Initiative (PCCRI) study, and resulted in identifying two

fundamental shapes of conversational stories in serious illness.

1.2 Dissertation Outline

This dissertation is organized in a journal format according to the University

guidelines. It comprises three parts. The first part (Chapter 2) presents a benchmark

of time series clustering methods. The second part (Chapters 3) presents METS

clustering approach and its application to hydrological storm events. The third part

(Chapter 4) presents SOMTimeS clustering method and its application to serious

illness conversations. Finally, Chapter 5 concludes the dissertation.
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Chapter 2

A Benchmark Study on Time

Series Clustering

5



ABSTRACT

This paper presents the first time series clustering benchmark utilizing all time

series datasets currently available in the University of California Riverside (UCR)

archive — the state of the art repository of time series data. Specifically, the

benchmark examines eight popular clustering methods representing three categories

of clustering algorithms (partitional, hierarchical and density-based) and three types

of distance measures (Euclidean, dynamic time warping, and shape-based), while

adhering to six restrictions on datasets and methods to make the comparison

as unbiased as possible. A phased evaluation approach was then designed for

summarizing dataset-level assessment metrics and discussing the results. The

benchmark study presented can be a useful reference for the research community on

its own; and the dataset-level assessment metrics reported may be used for designing

evaluation frameworks to answer different research questions.
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2.1 Introduction

A time series is a sequence of variable values ordered by time. These data are

analyzed using a variety of statistical techniques, such as classification, clustering,

and anomaly detection. This paper focuses on clustering. Clustering is a well-known

unsupervised machine learning method for dividing data points (i.e., observations)

into groups (called “clusters”) such that observations within the same cluster tend

to be more similar (according to a pre-specified criteria) than those in different

clusters (Wu and Kumar, 2009). Time series data and its clustering applications

abound in many disciplines. Examples include financial portfolio building (Iorio et al.,

2018) and enhanced index tracking (Gupta and Chatterjee, 2018) using financial data,

personalized drug design (Pirim et al., 2012) and cancer sub-type identification (Souto

et al., 2008) using gene expression data, watershed management and conservation

efforts (Javed et al., 2020; Minaudo et al., 2017; Dupas et al., 2015; Mather and

Johnson, 2015; Bende-Michl et al., 2013) using environmental sensor-generated sample

data, and anomaly detection (Flanagan et al., 2017) using network traffic data.

With the increasing prevalence of time series data, time series clustering has

been gaining much attention over the past decade in order to identify previously

unknown trends (Aghabozorgi et al., 2015; Paparrizos and Gravano, 2016, 2017;

Du et al., 2019; Begum et al., 2015). The evaluation of clustering algorithms,

however, is inherently challenging because these statistical algorithms are, by design,

exploratory in nature. For this reason, the algorithm evaluation must rely on

empirical study, essentially assessing how well the algorithm “rediscovers” already

known classifications (Paparrizos and Gravano, 2016, 2017; Begum et al., 2015) of a

given time series data.

The University of California (UCR) time series archive (Dau et al., 2018b) is

arguably the most popular and largest labeled time series data archive, with thousands
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of citations and downloads. At the time of this writing, the archive had a total of

128 datasets comprising a variety of synthetic, real, raw and pre-processed data.

The archive was originally born out of frustration, with classification research papers

reporting error rates on a single time series dataset and implying that the results would

generalize to other datasets. In order to standardize the evaluation of algorithms, each

dataset in the UCR archive has been split into training and test data. Additionally,

each dataset is accompanied by three baseline straw man classification accuracy

scores obtained using the K-nearest neighbor algorithm and different input parameter

settings (window size) for dynamic time warping (DTW) (Sakoe and Chiba, 1978).

Despite extensive use of the archive in creating, validating and evaluating some of

the most recently popular time series clustering algorithms (Paparrizos and Gravano,

2016, 2017; Begum et al., 2015), at the time of this writing, the archive provides

no equivalent assessment metrics for assisting with evaluation or validation of the

clustering algorithms. The latter is the single largest limitation of the archive

when used for assessing clustering algorithms. Different researchers must repeat the

process of implementing and benchmarking clustering algorithms over the same data

sets. At a minimum, this may cost months or longer of run time (Paparrizos and

Gravano, 2017); and when benchmark tests are repeated, the subjective nature of

test details (e.g., pre-processing) may introduce bias that affects the objectivity and

re-producibility of the test results.

The work presented in this paper aims to address the limitation associated with

testing time series clustering algorithms by providing a clustering benchmark. The

intent of this benchmark is similar to the classification benchmark of Dau et al.

(2018b), that is to provide comparison with several established methods in order to

reduce both the repetition of experiments and time to publication. We would add to

this another goal, that is to study the impact of changing design choices that occur

within a given clustering method (i.e., a combination of clustering algorithm and
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distance measure). Additionally, the discussion highlights the value of considering a

pool of clustering methods for use in cluster analysis and provides guidance on how

to select individual algorithms in such a pool. To this end, we select eight clustering

methods in this benchmark study that span three types of clustering algorithms and

three distance measures, and assess each while adhering to the six restrictions laid

out below.

1. No pre-processing. All datasets in the archive were used without any additional

pre-processing (e.g., normalization in magnitude, filtering, smoothing). The

reason is that, while pre-processing is common and is shown to improve

results (Rakthanmanon et al., 2012), any improvement resulting from the

pre-processing should not be attributed to the clustering method itself (Dau

et al., 2018b; Keogh and Kasetty, 2003) and, even if it were, the same

pre-processing may have different performance impacts on different clustering

methods.

2. Only uniform length time series. Only datasets in which all time series have

equal length are used. The reason is that some of the clustering methods used

in this benchmark were designed to work only with time series of equal length.

(Only 11 out of 128 datasets in the archive have varying time series length.)

3. Known number of clusters. The clustering methods used in this work require

that the number of clusters, k, be provided as input. The value of k is

known from the class labels annotated in the datasets. There are several

techniques for estimating k (e.g., Bholowalia and Kumar, 2014; Patil and

Baidari, 2019; Subbalakshmi et al., 2015; Bezdek and Pal, 1998), but evaluating

those techniques is not part of this benchmark.

4. Minimum two classes. Only datasets with k = 2 or more classes (other than

a class designated as “noise”) are used, as clustering time series data that all
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belong to the same class (i.e., k = 1) is not meaningful. (Five datasets have

less than two classes.)

5. Established methods. All clustering methods used in this work are

well-established or have survived the test of time. They are treated with equal

merit with no effort to identify one as “superior” or “inferior” to another.

6. Dataset-level assessment metrics. The assessment metrics are reported for each

clustering method on each of the 112 remaining datasets. Using assessment

metrics at the dataset level enables evaluation frameworks to be designed with

the research questions in mind, eliminating repetitive experimentation.

The remainder of the paper is organized as follows. Section 2.2 discusses

related work. Section 2.3 describes the benchmark methods. Section 2.4 presents

the benchmark test results. Section 2.5 highlights the limitations and related

opportunities of the benchmark. Section 2.6 concludes the paper.

2.2 Related work

Benchmarking, in general, has been recognized as an important step in advancing the

knowledge of both supervised and unsupervised learning (Keogh and Kasetty, 2003;

Mechelen et al., 2018; Ding et al., 2010; Fränti and Sieranoja, 2018). See Keogh and

Kasetty (2003) for a nice summary on the need to benchmark time series algorithms.

They highlight many studies that use straw man algorithms to compare time series

classification algorithms, and note that many of these algorithms provide little value

because the levels of improvement are completely dwarfed by the variance observed

when tested on real datasets or when minor unstated implementation details change.

After a thorough survey of more than 350 time series data mining papers, they

concluded that a median of only 1.0 (or an average of 0.91) rival methods were
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compared against a “novel” method (e.g., clustering algorithm, distance measure,

pre-processing); and on average, each method was tested on only 1.85 datasets. While

their summary is based on time series classification, the same concerns apply to time

series clustering.

Works that compare time series clustering methods suggest that these comparisons

have either been done qualitatively, using a theoretical approach (e.g., Liao, 2005; Ali

et al., 2019; Roddick and Spiliopoulou, 2002), or quantitatively using an empirical

approach (e.g., Paparrizos and Gravano, 2016, 2017; Begum et al., 2015). ts Only the

empirical approaches provide evidence of performance measured on external datasets.

The UCR archive has been used for that purpose in most of the recent time series

clustering comparisons (e.g., Paparrizos and Gravano, 2016, 2017; Begum et al., 2015).

However, none of them reports assessment metrics at the dataset level accounting

for all datasets in the archive because the goal was to evaluate a novel method in

the context of unique research questions/objectives. While it may serve individual

research goals, the summarized results are often difficult and time-consuming to

re-produce because of missing details (e.g., parameter settings, pre-processing details)

and non-deterministic nature of the algorithm (e.g., K-means).

The absence of assessment metrics at the dataset level means that researchers must

repeat experiments in order to view the tradeoffs among methods, thereby wasting

precious resources and often delaying publications. The benchmark provided in this

paper is intended to relax some of the burdens on researchers to foster more objective

benchmark studies.

2.3 Benchmark Methods

The benchmark methods comprise clustering methods (Section 2.3.1) and evaluation

methods (Section 2.3.2).
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2.3.1 Clustering methods

There are two major design criteria in clustering methods: the clustering algorithm

and the distance measure. Eight clustering methods are used in this benchmark (see

Table 2.1). They represent three categories of clustering algorithms — partitional,

density-based, and hierarchical — and three distance measures — Euclidean, dynamic

time warping (DTW), and shape-based. This subsection summarizes the clustering

algorithms and distant measures.

Table 2.1: Eight benchmark clustering methods. [1] (Paparrizos and Gravano, 2016),
[2] (Sakoe and Chiba, 1978),[3] (Du et al., 2019), and [4] (Begum et al., 2015)

Clustering Method CategoryClustering algorithm Distance measure
K-means Euclidean

Partitional
K-medoids Euclidean

Fuzzy C-means Euclidean
K-means Shape-based [1]
K-means DTW [2]

Density Peaks [3] Euclidean Density-basedDensity Peaks DTW (TADPole [4])
Agglomerative Euclidean Hierarchical

Clustering algorithms

Choice of clustering algorithms may depend on the strategy used to maximize

the intra-group similarity and minimize the inter-group similarity. The algorithms

considered in this benchmark cover three popularly used categories of such strategies,

each described below.

Partitional

Three partitional clustering algorithms, K-means (MacQueen, 1967),

K-medoids (Kaufman and Rousseeuw, 1990), and Fuzzy C-means (Bezdek,

1981), are selected based on their popularity (Ali et al., 2019) and known accuracy
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(a) (b) (c)

Figure 2.1: Different types of centroids: (a) medoid in K-medoids, (b) centroid in K-means,
and (c) density peak in Density Peaks.

for time series data clustering (Paparrizos and Gravano, 2017). Note K-means with

shape-based distance is K-shape (Paparrizos and Gravano, 2017). These partitional

algorithms generate spherical clusters that are similar in size (Liao, 2005); and

optimize clustering by minimizing the distance between each cluster center (a.k.a.

centroid) and the data points within that cluster. A centroid may or may not be

an actual data point, depending on the algorithm – it is for K-medoids and not for

K-means and Fuzzy C-means (see Figure 2.1a and Figure 2.1b).

All three of these partitional algorithms require that one input parameter be

specified – the number of clusters (k). Given k, the algorithm iterates over two phases:

(1) calculate centroids, and (2) assign data points to their closest centroid, until some

termination condition (e.g., number of iterations or convergence) is met. For all

three algorithms used in this benchmark, the initial centroids are chosen at random,

making the algorithm non-deterministic; all subsequent centroids are calculated so as

to minimize the distance to all other data points within the given cluster.

While K-means and K-medoids are hard clustering algorithms (i.e., producing

non-overlapping partitions), Fuzzy C-means is a soft clustering algorithm (i.e.,

producing overlapping partitions). In this benchmark, the Fuzzy C-means clustering

results are similar to that of a hard clustering algorithm, as each data point is

assigned to the cluster that has the highest probability. There are several techniques

for improving the clustering accuracy of these algorithms including—performing
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z-score normalization1 on the input (Mohamad and Usman, 2013), or invoking the

algorithm multiple times using different random seeds to select the clusters with the

highest intra-cluster similarity and the lowest inter-cluster similarity. This benchmark

excludes using such techniques, per restrictions 1 and 5 (see Section 2.1).

Density-based

Density Peaks (Du et al., 2019) was selected as the representative for density-based

algorithms due to its recent popularity, particularly for time series clustering (Begum

et al., 2015). Unlike other density-based algorithms (Ester et al., 1996), Density Peaks

is not sensitive to the “density parameter” but needs the number of clusters, k, as

one of the inputs. This makes it a good fit for this benchmark, where k is assumed

to be known and no assumptions are made for other input parameters.

The Density Peaks algorithm generates cluster centroids (called “density peaks”)

that are surrounded by neighboring data points that have lower local density (see

Figure 2.1c) and are relatively farther from data points with a higher local density (Du

et al., 2019). The algorithm has two phases. It first finds centroids (density peaks),

and then assigns data points to the closest centroid. The algorithm requires two

input parameters: the number of clusters (k) and the local neighborhood distance

d (wherein the local density of a data point is calculated). While the value of k is

assumed to be known in this benchmark, the value of d is determined as the distance

wherein the average number of neighbors is 1 to 2% of the total number of observations

in the dataset, following a rule of thumb proposed by the original authors (Rodriguez

and Laio, 2014).
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Figure 2.2: Agglomerative clustering.

Hierarchical

A hierarchical clustering algorithm can be Agglomerative (bottom-up) or divisive

(top-down). In the former, each data point begins as its own cluster and cluster pairs

are merged as the algorithm moves up the hierarchy. In the latter, all data points

are initially assigned to a single cluster and clusters are split as the algorithm moves

down the hierarchy. Because of its popularity over divisive clustering (Liao, 2005),

Agglomerative clustering is used in this benchmark.

The algorithm has two phases. It first initializes each data point into its own

cluster and then repeatedly merges the two nearest clusters into one until there are

k clusters (see Figure 2.2). The value of k is an input to the algorithm. There are

several options for measuring the distance between pairs of clusters. Ward’s linkage,

which minimizes the variance of data points in the merged clusters (Großwendt et al.,

2019), is used in this benchmark due to its popularity and also its similarity to the

optimization strategy of the partitional clustering methods. Other popular distance

measures include single-linkage (minimum distance between a pair of data points

belonging to different clusters) and complete-linkage (maximum distance between a

pair of data points belonging to different clusters) (Li and de Rijke, 2017).
1About 80% of datasets in the UCR archive are z-score normalized.
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Distance measures

The choice of distance measure is the other criterion that has a direct impact on the

clustering performance. This section discusses the three distance measures used in

this benchmark.

Euclidean distance

The most common distance measure used in a broad range of application is the

Euclidean distance (Faloutsos et al., 1994). Equation 2.1 shows how the Euclidean

distance d(T1, T2) is calculated between two time series T1 = (T11, T12, ..., T1n) and

T2 = (T21, T22, ..., T2n).

d(T1, T2) =
√√√√ n∑

i

(T1i − T2i)2 (2.1)

Dynamic time warping

Figure 2.3: Alignment between two times series for calculating distance.

Dynamic time warping (DTW) is a mapping of points between a pair of time series,

T1 and T2 (see Figure 2.3) designed to minimize the pairwise Euclidean distance. It

is becoming recognized as one of the most accurate similarity measures for time series

data (Paparrizos and Gravano, 2017; Rakthanmanon et al., 2012; Johnpaul et al.,

2020). The optimal mapping should adhere to three rules.

16



• Every point from T1 must be aligned with one or more points from T2, and

vice versa.

• The first and last points of T1 and T2 must align.

• No cross-alignment is allowed, that is, the warping path must increase

monotonically.

DTW is often restricted to mapping points within a moving window. In general,

the window size could be optimized using supervised learning with training data;

this, however, is not possible with clustering as it is an unsupervised learning

task. Paparrizos and Gravano (2016) found 4.5% of the time series length to be

the optimal window size when clustering 48 of the time series datasets in the UCR

archive; as a result, we use a fixed window size of 5% in this benchmark study.

Density Peaks with DTW as the distance measure can be computationally

infeasible for larger datasets because the Density Peaks algorithm is non-scalable

of O(n2) complexity (Paparrizos and Gravano, 2017). We employ a novel pruning

strategy (see TADPole (Begum et al., 2015)) to speed up the algorithm by pruning

unnecessary DTW distance calculations.

Shape-based distance

Shape-based distance is both shift-invariant and scale-invariant (Paparrizos and

Gravano, 2016), that is, not affected by the shifting or scaling of the time series

data. It calculates the cross-correlation between two time series and produces a

distance value between 0.0 to 2.0, with 0.0 indicating that the time series are

identical and 2.0 indicating maximally different shapes. To ensure the distance

measure is scale-invariant, each original time series, T , is z-normalized to T ′ as
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follows (Paparrizos and Gravano, 2016):

T ′ = T − µ
σ

(2.2)

so T ′ has mean µ′ = 0 and standard deviation σ′ = 1.

2.3.2 Evaluation methods

The purpose of this benchmark study is to assess the performance of the eight

clustering algorithms on the 112 datasets, as well as the impact of changing design

choices in either clustering algorithms or distance measures. To this end, the

evaluation framework and select assessment metrics are discussed in this section.

Assessment metrics

Metrics for assessing clustering output may be external or internal. External

measures are used when the class labels are available for individual data points.

Examples include the Rand Index (RI) (Hubert and Arabie, 1985), Adjusted

Rand Index (ARI) (Santos and Embrechts, 2009), Adjusted Mutual Information

(AMI) (Romano et al., 2016), Fowlkes Mallows index (FMS) (Fowlkes and Mallows,

1983), Homogeneity (Rosenberg and Hirschberg, 2007), and Completeness (Rosenberg

and Hirschberg, 2007). Internal measures quantify the goodness of clusters

based on a optimization objective for the clustering output, without the need for

class labels; examples include Silhouette score (Rousseeuw, 1987), Davies-Bouldin

index (Davies and Bouldin, 1979), Calinski- Harabasz index (Calinski and JA, 1974),

the I-index (Maulik and Bandyopadhyay, 2002) and sum of square errors (SSE).

We used all the external measures listed above in this benchmark because having

the class labels provided in the UCR archive makes the evaluation independent

of the algorithm’s optimization function. Despite the popularity of the Rand
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Index (Figure 2.4f) for prior UCR archive studies (e.g., Paparrizos and Gravano,

2016, 2017; Begum et al., 2015), we find the adjusted measures more suitable for

clustering because they are independent of the number of clusters. As demonstrated

in Figure 2.4, the accuracy scores resulting from random cluster assignment are

consistently low as the number of clusters varies for the two adjusted measures

(Figures 2.4a and 2.4b), while this is not the case for the other measures. In this

work, the Adjusted Rand Index was selected as the default measure unless stated

otherwise.

For the partitional algorithms in this benchmark, all of which are

non-deterministic, the scores reported for each external measure are the average over

ten runs using randomly selected initial centroids.

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Accuracy scores resulting from randomly assigning 1000 data points to a varying
number of clusters.

Adjusted Rand Index

The Adjusted Rand Index is the adjusted-for-chance version of the more commonly

used Rand Index. Given two sets of clusters, X and Y , and a contingency table where
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each cell nij is the number of elements in both the ith cluster of X and the jth cluster

of Y, the Adjusted Rand Index is calculated as shown in Equation 2.3.

Adjusted Rand Index =
∑j

i

(
nij

2

)
− [∑i

(
ai

2
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where ai is the sum of the ith row and bj is the sum of the jth column in the contingency

table.

Spread between clustering outputs

The measure of spread is used to quantify how much the accuracy of the two clustering

methods differ from each other over multiple datasets (see Equation 2.4).

Spread =
∑n

i=1 (A1i − A2i)2

n
(2.4)

where A1i and A2i are the accuracy scores of the two methods for dataset i; and n is

the total number of datasets.

Evaluation framework

Researchers will often design an evaluation framework for assessing accuracy because

what constitutes “good” with respect to the assessment metrics may vary depending

on the research question. One of the simplest approaches is to rank the performance

of each clustering method and tally the number of winning performances across all

available (in this work 112) datasets. This approach, however, is not without bias, as it

depends on the distribution of both the datasets and clustering methods. For instance,

in this work there are five partitional methods and one density-based method. If one

half the datasets are amenable to partitional and the other half to density-based,

this evaluation metric will bias the density-based method because the tally for the
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partitional methods would be partitioned across the five datasets. On the other

extreme, if pairwise comparison were performed on all clustering methods, it would

result in 28 (=
(

8
2

)
) pairwise comparisons for each of the 112 datasets (i.e., 3,136

comparisons). More importantly, a pairwise comparison assumes that every algorithm

is designed to achieve the same result.

Based on the above challenges, we designed a phased evaluation approach in this

benchmark study. This approach first compares the eight clustering methods, and

then controls for either the distance measure or clustering algorithm while evaluating

the impact of changing the other.

Phase 1 All eight methods are compared using all datasets, and the resulting

accuracy is averaged over all datasets for each method.

Phase 2 Partitional algorithms with Euclidean distance are compared to select the

one that achieves the highest accuracy on the largest number of datasets.

Phase 3 Different distance measures are compared using the partitional algorithm

selected in Phase 2.

Phase 4 Clustering algorithms belonging to different categories are compared using

Euclidean distance. Among them, the partitional algorithm is the one selected in

Phase 2 (i.e., K-means with Euclidean distance).

Phase 5 Density Peaks algorithm using Euclidean distance is compared with

Density Peaks algorithm using DTW.

Phase 6 Density Peaks algorithm using DTW is compared with the partitional

algorithm selected in Phase 2 but using DTW.
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In Phase 1, we report the average scores and standard deviations across all datasets

for all six external assessment metrics used in this work. In each subsequent phase,

we report the number of datasets (called “winning count”) for which an algorithm

or a distance measure achieved the highest ARI, and refine the comparison with the

measure of spread (see Section 2.3.2) and the associated scatter plots. Here, datasets

that result in an ARI score lower than 0.05 are excluded from winning counts since

scores that approach 0.00 represent random assignment.

2.4 Benchmark Test Results

This section provides the results of dataset-level assessment (Section 2.4.1) and the

phased evaluation (Section 2.4.2), and discusses the results (Section 2.4.3).

2.4.1 Dataset-level assessment

2.7 shows the Adjusted Rand Index (ARI) scores for all eight clustering methods

on the 112 short-listed datasets (see Section 2.1) in the UCR archive (Table A.1),

and the spread of ARI scores (Table A.2) between each pair of clustering methods.

Additionally, in line with the restriction 6 (dataset-level assessment; see Section 2.1),

the scores of each clustering method on each dataset tested for all the six external

measures (see Section 2.3.2) are available at GitHub (Javed, 2019) along with the

source codes.

2.4.2 Phased evaluation

Phase 1 - Ranked comparison of all methods Figure 2.5 shows the average

ARI’s for each of the eight clustering methods in decreasing order. In addition,

Table 2.2 and Table 2.3 provide details, including the average and standard
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deviation of the clustering scores resulting from the six external assessment metrics

(see Section 2.3.2). Table 2.2 shows the results for the two adjusted metrics

ARI and AMI; they are in agreement about the highest and lowest scorers in

terms of the average score across all datasets. The highest average was for the

Agglomerative clustering using Ward linkage and Euclidean as distance measure;

and the lowest average was for Density Peaks using DTW as distance measure.

Figure 2.5: Average ARI for each clustering method in Phase 1.

Table 2.2: Average and standard deviation of adjusted measures for each clustering method
in Phase 1.

Clustering Method
Category

ARI AMI

Algorithm Distance measure Avg Std Avg Std

Agglomerative Euclidean Hierarchical 0.26 0.26 0.31 0.27

K-means DTW

Partitional

0.24 0.24 0.29 0.25

K-means Euclidean 0.24 0.24 0.29 0.24

Fuzzy C-means Euclidean 0.22 0.25 0.24 0.25

K-medoids Euclidean 0.22 0.23 0.26 0.25

K-means Shape-based 0.21 0.22 0.25 0.23

Density Peaks Euclidean
Density-based

0.19 0.24 0.25 0.26

Density Peaks DTW 0.16 0.25 0.24 0.27

Table 2.3 shows the results for the other (non-adjusted) metrics, RI, Homogeneity,

Completeness, and FMS. They result in ordering of scores different from the ordering

from the (adjusted) ARI and AMI. Since those measures are not independent of

the value of k, averaging their scores across datasets with different k values is
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Table 2.3: Average and standard deviation of non-adjusted measures for each clustering
method in Phase 1.

Clustering Method RI Homogeneity Completeness FMS

Algorithm Distance
measure Avg Std Avg Std Avg Std Avg Std

Agglomerative Euclidean 0.72 0.17 0.34 0.28 0.36 0.29 0.51 0.20
K-means DTW 0.71 0.16 0.31 0.27 0.34 0.28 0.51 0.19
K-means Euclidean 0.72 0.16 0.32 0.25 0.33 0.27 0.49 0.19

Fuzzy C-means Euclidean 0.69 0.15 0.27 0.26 0.31 0.27 0.48 0.21
K-medoids Euclidean 0.71 0.15 0.30 0.25 0.31 0.25 0.47 0.19
K-means Shape-based 0.66 0.17 0.27 0.23 0.38 0.29 0.50 0.18

Density Peaks Euclidean 0.65 0.18 0.27 0.26 0.34 0.29 0.50 0.20
Density Peaks DTW 0.62 0.18 0.25 0.26 0.36 0.31 0.51 0.20

not so meaningful in this benchmark. For instance, for certain datasets such

as GunPointAgeSpan, GunPoindMaleVersusFemale and GunPointOldVersusYoung

(see 2.7), K-means with shape-based distance converged to a single cluster during

the iterative process, thus maximizing the Completeness score to 1.0 (for k=1), and

keeping the FMS score higher than it would be for k > 1; in contrast, this convergence

to k = 1 penalizes K-means with shape-based distance when Homogeneity is used for

scoring the result. Like this, these non-adjusted measures are driven to be biased

toward extreme values of k (i.e., 1 or the number of data points) and consequently

should not be used for averaging the scores from datasets with different k values.

The standard deviations shown in Table 2.2 and Table 2.3 are rather significant

relative to the average values for all assessment metrics used. This indicates the wide

variation of the scores across different datasets.

Phase 2 - Comparison of partitional algorithms using Euclidean distance

Of the partitional clustering methods that use a Euclidean distance measure, K-means

had a winning count of 54 datasets, while Fuzzy C-means and K-medoids performed

best on 31 and 18 datasets, respectively, (see Table 2.4). While K-means had a higher

ARI score in almost twice as many datasets, differences in score values were minor,

with a spread of only 0.005 against K-medoids (see Figure 2.6a) and only slightly
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(a) K-medoids vs. K-means. (b) Fuzzy C-means vs.
K-means

(c) K-medoids vs. Fuzzy
C-means.

Figure 2.6: Spread of ARI scores between each pair of the three clustering algorithms with
Euclidean distance in Phase 2.

Table 2.4: Clustering algorithms with Euclidean distance in Phase 2.
Algorithm Winning count

Triple-wise
K-means 54

Fuzzy C-means 31
K-medoids 18

Pairwise
K-means 64
K-medoids 17
K-means 54

Fuzzy C-means 27
Fuzzy C-means 41
K-medoids 39

larger (0.010) against Fuzzy C-means (see Figure 2.6b). This result is not surprising,

given the similarity of methodology (all partitional using Euclidean distance) across

the three algorithms.

Phase 3 - Comparison of distance measures using selected partitional

algorithm When we examine the winning counts for K-means (i.e., method that

performed best in Phase 2) using the three distance measures, the tallies are 32,

31 and 28 for DTW, shape-based, and Euclidean, respectively (see Table 2.5). A

pairwise comparison between the distance measures also shows the wining counts to

be 45 vs. 38 between DTW and Euclidean, 52 vs. 38 between DTW and shape-based,

and 45 vs. 44 between shape-based and Euclidean. The scatter plots in Figure 2.7
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(a) Euclidean vs. DTW (b) Shape-based vs. DTW
(c) Shape-based vs.
Euclidean

Figure 2.7: Spread of ARI scores between each pair of distance measures in Phase 3

Table 2.5: Different distance measures for K-means (from Phase 2) in Phase 3.
Distance measure Winning count

Triple-wise
DTW 32

Shape-based 31
Euclidean 28

Pairwise
DTW 45

Euclidean 38
DTW 52

Shape-based 38
Shape-based 45
Euclidean 44

show the spreads between each of the paired distance measures. The shape-based

distance has a relatively larger spread with each of the other two measures. As a side

note, when the optimal DTW window size is assumed to be known, then it is trivial

to understand that DTW will always achieve a score that is higher or equal to that

of Euclidean distance, since the two measures are equivalent when the window size is

0.

Phase 4 - Comparison of clustering algorithms using Euclidean distance

When we hold the distance measure (in this case, Euclidean distance) constant and

examine the winning counts across the clustering algorithms that use this distance

measure, the tallies are 45, 21, and 19 in the order of Agglomerative, K-means,

and Density Peaks. A pairwise comparison is also shown in Table 2.6, where the
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winning counts are 57 vs. 26 between Agglomerative and Density Peaks, 52 vs. 30

between Agglomerative and K-means, and 60 vs. 23 between K-means and Density

Peaks. Despite the difference in winning counts, the spreads of ARI values between

Agglomerative and K-means (see Figure 2.8a) is fairly small compared with the spread

of either method with Density Peaks (see Figure 2.8b and Figure 2.8c).

(a) K-means vs.
Agglomerative.

(b) Density Peaks vs.
Agglomerative.

(c) Density Peaks vs.
K-means.

Figure 2.8: Different algorithms with Euclidean distance measure in Phase 4.

Table 2.6: Different algorithms with Euclidean distance measure in Phase 4.
Algorithm Winning count

Triple-wise
Agglomerative 45

K-means 21
Density Peaks 19

Pairwise
Agglomerative 57
Density Peaks 26
Agglomerative 52

K-means 30
K-means 60

Density Peaks 23

Phase 5 - Comparison of Euclidean distance and DTW in Density Peaks

algorithm The Density Peaks algorithm achieved a higher winning count (i.e.,

across 45 datasets; see Table 2.7) when Euclidean distance was used as the distance

measure compared to a count of 31 with DTW. Figure 2.9 shows the spread of ARI

scores between Euclidean distance and DTW to be 0.021.
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Figure 2.9: Euclidean vs. DTW for Density Peaks algorithm in Phase 5.

Table 2.7: Euclidean vs. DTW for Density Peaks algorithm in Phase 5.
Distance measure Winning count

Euclidean 45
DTW 31

Phase 6 - Comparison of Density Peaks and selected partitional algorithm

using DTW Lastly, when the DTW distance measure is held constant, we may

compare across the clustering algorithms that use this distance measure - Density

Peaks and K-means. K-means achieved a higher winning count (i.e., winner across

60 datasets; see Table 2.8) compared to a winning count of 24 for Density Peaks. But

while the winning count appears positively skewed in favor of K-means, there are still

a considerable number of datasets for which Density Peaks achieved higher ARI, and

the spread of ARI scores (see Figure 2.10) was the largest (0.052) observed in the six

phases.

Figure 2.10: DTW in Density Peaks and K-means (selected in Phase 2) in Phase 6.

Table 2.8: DTW in Density Peaks and K-means (selected in Phase 2) in Phase 6.
Algorithm Winning count
K-means 60

Density Peaks 24
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2.4.3 Discussion

This section analyzes the results of each evaluation phase and provides concluding

remarks summarizing the analysis.

Phase 1 - Ranked comparison of all methods The high standard deviations

associated with the average scores of Table 2.2 and Table 2.3 suggest that accuracy is

dependent on which clustering method is used on which dataset; and that it may be

fair to conclude that we have no clear winner in this benchmark. The high variability

in scores also suggests that using a simple winning count of dataset-level assessment

as the only means of evaluation, may be very misleading. While reporting counts

of win-lose-tie for clustering method accuracy has become common practice in the

literature, the UCR archive authors describe it as not that useful (Dau et al., 2018b).

In light of these issues as well as noting that adjusted measures are more suitable in

this benchmark, we used both winning counts and the ARI scores in this benchmark

and reinforced the measures with ARI score scatter plots and the associated spreads.

Phase 2 - Comparison of partitional algorithms using Euclidean distance

When comparing the three partitional algorithms that use the Euclidean distance

measure, a researcher may well select K-means based on the winning count (see

Table 2.4), especially without adequate prior knowledge of how the algorithm

performs on the individual datasets. However, the selection may likely change when

the user has knowledge of the dataset and/or application at hand. For instance,

K-medoids is more resilient to outliers, because the medoids are not as sensitive to

the presence of outliers as say, the centroids in K-means. In another example, Fuzzy

C-means may be preferred over K-means given a dataset where the membership of

data points are “soft”, as in the case when categorical classes have numerical attribute

values that overlap. As an aside, Fuzzy C-means shows a larger spread of ARI scores
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against K-means (Figure 2.6b) and K-medoids (Figure 2.6c), indicating that changing

from K-means to the fuzzy mechanism of C-means has more impact on the final

clustering than changing from means to medoids.

Phase 3 - Comparison of distance measures using selected partitional

algorithm The results in Table 2.5 appear to suggest that the winning count

does not favor the shape-based distance measure in the same manner that it did

in a prior study (Paparrizos and Gravano, 2017) that used 85 datasets in the UCR

archive compared to the 112 datasets (and different evaluation criteria) used in

this benchmark study. The larger spreads observed when one distance measure is

shape-based (Figures 2.7b and 2.7c) suggest the method is useful as the best distance

measure for a nontrivial number of datasets, and therefore, should be considered in a

pool of potential clustering methods. We believe the larger spread may be a result of

the shape-based distance measure’s lack of sensitivity to the magnitudes and shifts in

time series data compared with the Euclidean measure, or for that matter, DTW (for

which the underlying distance measure is also Euclidean), which therefore results in

a different partitioning.

Phase 4 - Comparison of clustering algorithms using Euclidean distance

The very small spread in Figure 2.8a shows similar performance for the K-means

and Agglomerative algorithms on most datasets in the archive. With Agglomerative

clustering, this can be attributed to the use of Ward’s linkage, which merges the

two clusters that when combined provide the minimum increase in variance. This

optimization using Ward’s linkage has some similarity to optimizing the centroids in

K-means (i.e., minimizing the total variance within cluster). Using a different linkage

criteria such as “complete” linkage does not bias clusters to be as spherical as Ward

linkage (and for that matter K-means). Such a change will result in different clusters

when compared to K-means. Specifically, with complete linkage, Agglomerative
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clustering has a measure of spread of 0.026 when compared to K-means, and an

average ARI of 0.17± 0.24.

Phase 5 - Comparison of Euclidean distance and DTW in Density Peaks

algorithm The spread (0.021) between DTW and Euclidean (see Figure 2.9) in

Density Peaks algorithm is relatively consistent with spread (0.016) between DTW

and Euclidean in K-means algorithm (see Figure 2.7a). These medium to high level of

spread values indicate the difference of clusters formed when using DTW as opposed

to Euclidean distance. Density Peaks is an O(n2) complexity algorithm (where n is

the number of data points) that when used with DTW may become computationally

infeasible for large datasets. The TADPole method (Begum et al., 2015), with its

novel pruning strategy, makes Density Peaks with DTW feasible enough for use on

large datasets in the archive. However, even with this accelerated TADPole, the

largest 20 datasets of the archive took 32 days to cluster on a dual 20-Core Intel

Xeon E5-2698 v4 2.2 GHz machine with 512 GB 2,133 MHz DDR4 RDIMM.

Phase 6 - Comparison of Density Peaks and selected partitional algorithm

using DTW When using DTW as a distance metric, K-means and Density Peaks

produce different clusters as indicated by the relatively higher spreads of ARI 0.052

(see Figure 2.10), which is consistent with the somewhat high spread 0.036 observed

between the two methods (see Phase 4 with Euclidean distance, Figure 2.8c). This

result is counter-intuitive given that both K-means and Density Peaks form spherical

clusters by assigning data points to the closest centroid, and leads one to speculate

that the cause may be the fundamentally different locations of the centroids in the

K-means and Density Peaks algorithms (see Figure 2.1).

Concluding remarks Overall, this benchmark study shows that among all

methods tested, the variation in performance, as measured by the average and
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standard deviation of ARI (see Table 2.2 and Figure 2.5), is higher than the variation

observed across winning counts (Table 2.4 to Table 2.8). Notably, there is no one

method that performs better than the others for all datasets in this benchmark, and

that method performance is much more sensitive with respect to the datasets, for a

given evaluation objective (i.e., assessment metric). Similar findings for time series

representation methods and distance measures were made in an earlier benchmark

study using UCR archive (Ding et al., 2010). This is not to say that the recently

invented algorithms or methods are of no use. K-means is the first and one of the most

popular clustering methods invented in the 1950s (Kaufman and Rousseeuw, 2008),

while Density Peaks algorithm and shape-based distance were invented more recently.

While the later methods may not necessarily be superior to the earlier methods, the

advances in time series clustering are noted in the collective improvements in their

ability to correctly identify clusters. As new clustering methods are invented over the

years, the clustering result, as assessed by the average of the maximum ARI scores

achieved by different methods for each dataset in the benchmark, has been steadily

increasing (see Figure 2.11). In light of these two findings, and noting that exploratory

cluster analysis typically involves trying multiple clustering methods rather than a

single method to identify correct clusters, cluster analysis should be conducted by

selecting a pool of methods that produce different clusters, rather than those that

produce similar clusters. In other words, select methods that show greater spread

(i.e., combination of average accuracy scores and their spread) rather than those with

higher winning counts. Methods with higher spreads of ARI are likely to produce

different clusters for the same dataset—all of which may be valid depending on the

target research goal. For instance, using three algorithms with higher spread values

(e.g., K-means (shape-based), Agglomerative (Euclidean) and Density Peaks (DTW)

of Figure 2.7c, Figure 2.8a and Figure 2.9) on the same dataset are more likely

to provide three dissimilar clustering outputs, compared to those generated using
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Figure 2.11: Maximum achievable average ARI score for progressively increasing number of
methods (over time).

K-means (Euclidean), K-medoids (Euclidean), and Fuzzy C-means (Euclidean) (lower

spread values in Figure 2.6).

2.5 Limitations and Opportunities

There are a few managerial limitations in our benchmark that offer opportunities.

First, the UCR archive is currently the best available to build a benchmark

for designing and evaluating clustering algorithms. As acknowledged by the

curators (Dau et al., 2018a), however, the datasets in the archive represent the

interests and hobbies of the curators, and as a result may invite a question on

any benchmark built on top of the datasets. While we believe that our benchmark,

built on a comprehensive set of datasets from the UCR archive, is viable for general

purpose clustering methods, for specific applications it may be prudent to use in the

benchmark those select datasets that are closely related to the individual applications,

thus opening an opportunity for domain-specific benchmarks.

Secondly, while our benchmark helps reduce the number of clustering methods

to be considered for a given dataset, deeper insights into the “mapping” between

methods and datasets can help match a method to a dataset; this will be highly
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desirable from an application perspective. Such insights have not been adequately

published, consequently leaving the application community to consider the latest

method as the “state of the art.” Unfortunately, the latest is not always the best

choice, as this benchmark study suggests. This opens an opportunity to conduct

a more in-depth study and publish the gained insights, namely dataset–method

mapping for time series clustering, to meet the need.

Finally, we used only external measures to evaluate clusters in this benchmark

study and it served our purpose because of the availability of class labels in the

datasets. In general, however, evaluation using internal measures as an addition or

alternative would open an opportunity to make the benchmark more comprehensive,

especially when no class labels are available as the ground truth.

2.6 Conclusion

This paper reports benchmark test from applying eight popular time series clustering

methods on 112 datasets in the UCR archive. One essential goal of the benchmark is to

make the results available and reusable to other researchers. In this work, we laid out

six restrictions to help reduce bias. Eight popular clustering methods were selected

to cover three categories of clustering algorithms (i.e., partitional, density-based, and

hierarchical) and three distance measures (i.e., Euclidean, Dynamic time warping, and

shape-based). The dataset-level assessment metrics are reported using six external

evaluation measures. Adjusted Rand Index was selected as the default measure for

discussion in this paper. A phased evaluation framework was designed such that in

each phase only one of the two building blocks of a clustering method—algorithm

and distance measure—is varied at a time. Benchmark results show the overall

performance of the eight algorithms to be similar with high sensitivity to the datasets,

indicating that no method is superior to the others for all datasets. Discussion of the
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results helps highlight the importance of creating a pool of clustering methods with

high spread in accuracy scores for effective exploratory analysis.

For practical implications of our benchmark, researchers can adopt the

recommendations we made in concluding remarks (Section 2.4.3) as is, if they

are using the same clustering methods and datasets. Otherwise (i.e., with their

own methods and/or datasets), they can leverage the phased evaluation framework

presented in Section 2.3.2 to conduct their own benchmark study. Either way,

this benchmark can be a useful resource for exploratory clustering analysis by an

application community. For the future work, we plan to expand the benchmark by

adding evaluations using internal measures (one of the opportunities discussed in

Section 2.5).
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2.7 Dataset-Level Assessment Results

Table A.1: ARI scores of the eight clustering methods on the 112 datasets in the UCR
archive.

Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

ACSF1 0.16 0.17 0.14 0.10 0.20 0.13 0.06 0.15

Adiac 0.25 0.25 0.24 0.23 0.18 0.23 0.11 0.18

ArrowHead 0.20 0.26 0.18 0.23 0.18 0.27 0.25 0.07

Beef 0.15 0.14 0.11 0.12 0.17 0.05 0.09 0.07

BeetleFly 0.05 0.04 0.04 0.01 0.00 0.04 0.11 -0.02

BirdChicken 0.04 0.03 0.07 0.00 0.04 0.00 0.05 0.04

BME 0.14 0.16 0.23 0.36 0.12 0.23 0.22 0.18

Car 0.14 0.14 0.13 0.20 0.16 0.05 0.03 0.11

CBF 0.33 0.22 0.73 0.33 0.34 0.14 0.10 0.44

Chinatown 0.16 0.19 -0.05 0.24 0.18 -0.07 -0.08 0.16

ChlorineConcentration 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CinCECGTorso 0.15 0.14 0.06 0.21 0.04 0.45 0.34 0.13

Coffee 0.34 0.54 0.16 -0.01 0.81 1.00 1.00 0.67

Computers 0.00 0.00 0.07 0.00 0.00 0.00 0.01 0.00

CricketX 0.10 0.07 0.16 0.13 0.03 0.04 0.14 0.11

Continued on next page
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Table A.1 – continued from previous page

Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

CricketY 0.13 0.11 0.18 0.14 0.07 0.08 0.11 0.14

CricketZ 0.10 0.07 0.16 0.13 0.03 0.05 0.14 0.12

Crop 0.31 0.28 0.08 0.31 0.28 0.18 0.18 0.33

DiatomSizeReduction 0.83 0.82 0.82 0.60 0.74 0.75 0.96 0.86

DistalPhalanxOutlineAgeGroup 0.39 0.39 0.42 0.51 0.42 -0.04 -0.02 0.42

DistalPhalanxOutlineCorrect 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00

DistalPhalanxTW 0.43 0.38 0.50 0.76 0.43 0.13 -0.05 0.74

DodgerLoopDay 0.23 0.23 0.08 0.17 0.20 0.22 0.18 0.20

DodgerLoopGame 0.01 0.00 0.20 0.00 0.00 0.00 0.01 0.01

DodgerLoopWeekend 0.92 0.53 0.07 -0.04 0.83 -0.01 0.09 0.92

Earthquakes 0.00 0.00 0.03 0.00 0.00 0.00 -0.09 -0.01

ECG5000 0.51 0.43 0.49 0.71 0.35 0.52 0.62 0.59

ECGFiveDays 0.00 0.00 0.40 0.03 0.00 0.22 0.03 0.02

ElectricDevices 0.16 0.05 0.09 0.19 0.08 0.00 0.14 0.20

EOGHorizontalSignal 0.21 0.20 0.14 0.18 0.18 0.10 0.00 0.22

EOGVerticalSignal 0.10 0.11 0.11 0.10 0.09 0.09 0.13 0.08

EthanolLevel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FaceAll 0.22 0.21 0.45 0.26 0.04 0.30 0.14 0.28

FaceFour 0.32 0.29 0.42 0.14 0.29 0.48 0.14 0.32

FacesUCR 0.21 0.20 0.41 0.24 0.04 0.30 0.14 0.28

FiftyWords 0.26 0.24 0.20 0.40 0.09 0.24 0.28 0.31

Fish 0.21 0.18 0.27 0.28 0.07 0.28 0.00 0.24

FreezerRegularTrain 0.29 0.25 0.28 0.28 0.29 0.27 0.05 0.24

FreezerSmallTrain 0.29 0.24 0.28 0.28 0.29 0.27 0.05 0.27

Continued on next page
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Table A.1 – continued from previous page

Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

Fungi 0.64 0.63 0.15 0.55 0.61 0.85 0.52 0.72

GunPoint -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

GunPointAgeSpan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GunPointMaleVersusFemale 0.23 0.23 0.00 0.23 0.23 0.23 0.23 0.23

GunPointOldVersusYoung 0.24 0.24 0.00 0.24 0.24 0.24 0.24 0.24

Ham 0.05 0.03 0.05 0.03 0.04 0.00 0.00 0.06

HandOutlines 0.29 0.28 0.32 0.04 0.29 0.01 0.00 0.39

Haptics 0.06 0.06 0.06 0.06 0.06 0.08 0.04 0.06

Herring 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 0.02

HouseTwenty 0.11 0.11 0.11 0.18 0.12 0.16 -0.01 0.07

InlineSkate 0.01 0.01 0.04 0.04 0.01 0.01 0.02 0.01

InsectEPGRegularTrain 1.00 1.00 0.00 1.00 0.96 1.00 1.00 1.00

InsectEPGSmallTrain 0.91 0.91 0.00 1.00 1.00 1.00 1.00 1.00

InsectWingbeatSound 0.34 0.33 0.17 0.25 0.14 0.33 0.18 0.33

ItalyPowerDemand 0.00 0.35 0.01 0.00 0.00 0.54 0.17 0.00

LargeKitchenAppliances 0.02 0.02 0.01 0.03 0.02 0.01 0.06 0.02

Lightning7 0.26 0.22 0.35 0.20 0.15 0.23 0.18 0.30

Mallat 0.77 0.72 0.70 0.80 0.95 0.58 0.43 0.84

Meat 0.62 0.62 0.46 0.55 0.49 0.82 0.45 0.44

MedicalImages 0.05 0.04 0.08 0.05 0.05 0.04 -0.04 0.04

MelbournePedestrian 0.44 0.45 0.10 0.41 0.43 0.41 0.24 0.47

MiddlePhalanxOutlineAgeGroup 0.35 0.34 0.39 0.42 0.42 0.01 -0.03 0.43

MiddlePhalanxOutlineCorrect 0.00 0.00 0.00 -0.01 0.00 -0.02 -0.02 -0.01

MiddlePhalanxTW 0.37 0.37 0.46 0.58 0.44 -0.01 0.11 0.37
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Table A.1 – continued from previous page

Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

MixedShapesRegularTrain 0.44 0.30 0.44 0.47 0.38 0.38 0.13 0.55

MixedShapesSmallTrain 0.46 0.40 0.48 0.53 0.41 0.40 0.52 0.55

MoteStrain 0.39 0.36 0.61 0.42 0.45 0.55 0.00 0.38

NonInvasiveFetalECGThorax1 0.43 0.38 0.33 0.35 0.15 0.12 0.08 0.47

NonInvasiveFetalECGThorax2 0.50 0.45 0.46 0.49 0.19 0.22 0.17 0.54

OliveOil 0.51 0.40 0.49 0.36 0.70 0.23 0.15 0.63

OSULeaf 0.14 0.12 0.24 0.13 0.05 0.07 0.01 0.18

PhalangesOutlinesCorrect 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00

Phoneme 0.02 0.01 0.04 0.01 0.00 0.00 0.01 0.00

PigAirwayPressure 0.05 0.04 0.01 0.06 0.06 0.04 0.05 0.05

PigArtPressure 0.16 0.14 0.00 0.14 0.09 0.15 0.11 0.19

PigCVP 0.07 0.07 0.00 0.09 0.08 0.05 0.04 0.08

Plane 0.70 0.63 0.74 0.80 0.86 0.83 1.00 0.80

PowerCons 0.73 0.61 0.05 0.66 0.75 0.15 0.00 0.86

ProximalPhalanxOutlineAgeGroup 0.42 0.43 0.50 0.57 0.51 0.35 0.02 0.52

ProximalPhalanxOutlineCorrect 0.07 0.06 0.07 0.05 0.07 0.06 0.11 0.05

ProximalPhalanxTW 0.40 0.40 0.44 0.32 0.38 0.25 0.33 0.42

RefrigerationDevices 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

Rock 0.22 0.19 0.06 0.23 0.23 -0.01 0.23 0.30

ScreenType 0.02 0.01 0.01 0.01 0.03 0.00 0.00 0.02

SemgHandGenderCh2 0.00 0.00 0.13 0.00 -0.01 0.01 -0.01 0.00

SemgHandMovementCh2 0.14 0.14 0.05 0.16 0.14 0.01 0.00 0.13

SemgHandSubjectCh2 0.08 0.08 0.12 0.10 0.07 0.03 0.00 0.10

ShapeletSim 0.00 0.01 0.46 0.00 0.00 0.00 0.00 0.00
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Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

ShapesAll 0.36 0.31 0.36 0.35 0.06 0.12 0.12 0.37

SmallKitchenAppliances 0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.00

SmoothSubspace 0.44 0.29 0.18 0.43 0.43 0.35 0.03 0.50

SonyAIBORobotSurface1 0.34 0.23 0.46 0.71 0.53 0.03 0.00 0.41

SonyAIBORobotSurface2 0.32 0.21 0.18 0.30 0.32 -0.03 -0.02 0.26

StarLightCurves 0.52 0.35 0.53 0.53 0.52 0.54 0.68 0.51

Strawberry -0.02 0.01 -0.02 -0.01 0.00 -0.04 0.08 -0.05

SwedishLeaf 0.30 0.28 0.32 0.15 0.27 0.09 0.04 0.30

Symbols 0.64 0.58 0.71 0.65 0.67 0.38 0.82 0.68

SyntheticControl 0.59 0.34 0.60 0.64 0.52 0.26 0.31 0.61

ToeSegmentation1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02

ToeSegmentation2 0.00 0.00 0.27 0.00 0.00 0.02 -0.01 0.05

Trace 0.34 0.35 0.32 0.41 0.34 0.34 0.66 0.33

TwoLeadECG 0.00 0.00 0.08 0.02 0.00 0.00 0.03 0.00

TwoPatterns 0.02 0.02 0.21 0.07 0.02 0.08 0.29 0.02

UMD 0.15 0.13 0.14 0.15 0.15 0.12 0.21 0.14

UWaveGestureLibraryAll 0.55 0.50 0.62 0.52 0.17 0.54 0.25 0.59

UWaveGestureLibraryX 0.34 0.32 0.30 0.39 0.32 0.40 0.49 0.41

UWaveGestureLibraryY 0.33 0.30 0.24 0.35 0.30 0.23 0.26 0.34

UWaveGestureLibraryZ 0.31 0.29 0.34 0.34 0.31 0.31 0.28 0.29

Wine 0.00 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01

WordSynonyms 0.16 0.14 0.19 0.23 0.10 0.14 0.18 0.17

Worms 0.02 0.00 0.05 0.02 0.01 0.00 0.00 0.07

WormsTwoClass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01

Continued on next page
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Dataset name K-

mean-

Euc

K-

med-

Euc

K-

mean-

shape

K-

mean-

DTW

C-

mean-

Euc

D-

Peaks-

Euc

D-

Peaks-

DTW

Agglo-

Euc

Yoga 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.2: Pairwise spread of ARI scores between clustering methods.

Clustering method Agglo-
merative
(Euc)

K-
means
(DTW)

K-
means
(Euc)

C-
means
(Euc)

K-
med
(Euc)

K-
means
(shape)

Density
peaks
(Euc)

Density
Peaks
(DTW)

Agglomerative (Euclidean) - 0.020 0.004 0.011 0.011 0.050 0.043 0.054
K-means (DTW) - - 0.016 0.025 0.017 0.041 0.043 0.052
K-means (Euclidean) - - - 0.010 0.005 0.043 0.036 0.045
C-means (Euclidean) - - - - 0.011 0.053 0.038 0.043
K-medoids (Euclidean) - - - - - 0.042 0.021 0.032
K-means (shape-based) - - - - - - 0.060 0.067
Density Peaks (Euclidean) - - - - - - - 0.021
Density Peaks (DTW) - - - - - - - -
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Chapter 3

Multivariate Event Time Series

Analysis using Hydrological and

Suspended Sediment Data
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ABSTRACT

Hydrological storm events are a primary driver for transporting water quality

constituents such as suspended sediments and nutrients. Analyzing the concentration

(C) of these water quality constituents in response to river discharge (Q), particularly

when monitored at high temporal resolution during a hydrological event, helps to

characterize the dynamics and flux of such constituents. A conventional approach

to storm event analysis is to reduce C-Q time series to two-dimensional (2-D)

hysteresis loops and analyze these 2-D patterns. While informative, this hysteresis

loop approach has limitations because projecting the C-Q time series onto a 2-D

plane obscures detail (e.g., temporal variation) associated with the C-Q relationships.

In this paper, we address this limitation using a multivariate event time series

(METS) clustering approach that is validated using synthetically generated event

times series. The METS clustering is then applied to river discharge and suspended

sediment data (acquired through turbidity-based monitoring) from six watersheds in

the Lake Champlain Basin located in the northeastern United States, and results

in identifying four common types of hydrological water quality events. Statistical

analysis on the events partitioned by both methods (METS clustering and 2-D

hysteresis classification) helped identify hydrometeorlogical features of common event

types. In addition, the METS and hysteresis analysis were simultaneously applied to

a regional Vermont dataset to highlight the complimentary nature of using them in

tandem for hydrological event analysis.
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3.1 Introduction

Characterizing the processes associated with rainfall-runoff events is an essential

part of watershed research; and studying the dynamics that drive these processes

(e.g., the timing and location of water quality constituent fluxes through the

landscape) has many applications in the hydrological sciences. These include

identifying sources of erosion present in a watershed (Sherriff et al., 2016),

monitoring for shifts in watershed function (Burt et al., 2015), improving hydrological

model forecasts (Ehret and Zehe, 2011), and informing watershed conservation and

management efforts (Bende-Michl et al., 2013; Chen et al., 2017). Environmental

managers and scientists often analyze hydrological data (e.g., suspended sediment

concentration and streamflow) at an event scale — in this work, the period of

storm-runoff resulting from a rainfall event – because this period is the primary

mechanism for transporting many constituents of concern (Dupas et al., 2015; Sherriff

et al., 2016). The timing of constituent delivery relative to stream discharge is

complex and often exhibits a high degree of variability, especially when the monitoring

frequency is high (Minaudo et al., 2017); and unsurprisingly, the relationship

between multiple responses during a single event (e.g., discharge and water quality

constituents) is often not linear (Onderka et al., 2012). However, despite the inherent

complexity and dynamic behavior, the analysis of concentration-discharge (C-Q)

relationships to infer mechanistic watershed processes at the event scale has a long

tradition in hydrology, geomorphology and ecology (Aguilera and Melack, 2018; Burns

et al., 2019; Williams et al., 2018; Malutta et al., 2020).

A fundamental feature of suspended sediment and solute transport in rivers is that

the concentration of such constituents is often not in phase with the associated stream

discharge, resulting in hysteresis being observed in the C-Q relationship. Williams

(1989) was one of the first to use hysteresis patterns to study hydrological storm
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events, identifying six classes of hydrological events and offering linkages between the

hysteresis classes and watershed processes. While the study focused on suspended

sediment concentration (SSC) data, these event classifications have been widely

adopted in studies of both sediment and solutes, and continue to be used today

to group storm events (e.g., Aguilera and Melack, 2018; Rose et al., 2018; Keesstra

et al., 2019). An alternate to using 2D hysteresis patterns for categorization is to

simplify the C-Q relationship into a scalar hysteresis index (Lloyd et al., 2016b).

While both approaches are effective for inferring certain physical processes, each

loses some information associated with the raw time series data, because both

approaches “collapse” the time dimension, either by projecting the C-Q data onto

a two-dimensional plane, or reducing the information into a scalar value (an index).

Thus, temporal information associated with the original times series, such as the

rate of change of a variable as well as aspects of its shape (e.g., linear, convex,

concave), may be lost. With the increasing availability of high frequency sensors

and associated data processing tools, it is now possible to leverage the temporal

information embedded in multiple time series and fuse the data with complementary

event analysis schemes such as hysteresis loop classification (Williams, 1989).

A few hydrological studies have used univariate time series (e.g., discharge) to

quantify the similarity between storm events for forecasting purposes. Ehret and Zehe

(2011) used manual feature extraction to propose a similarity measure for discharge

time series that leverages hydrograph attributes such as the rising limb, peak and

receding limb. Such manual feature extraction works well for hydrographs, but may

not generalize to multivariate water quality time series. Ewen (2011) modified the

minimal variance matching algorithm (Latecki et al., 2005) to quantify the similarity

between two hydrographs. Presented with a hydrograph defined by a sequence

of discharge measurements (called a “query sequence”), the method finds a target

hydrograph that contains a sub-sequence most similar to the query sequence. Because
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only a portion of the target sequence is matched (Latecki et al., 2005), similarity is

not symmetric in both directions (i.e., d(x, y)! = d(y, x)) and, hence, may not be

appropriate for use in clustering hydrological event data. Wendi et al. (2019) used

recurrence quantification analysis and cross-recurrence plots to measure similarity

between recurring hydrograph patterns. Recurrence quantification analysis is useful

for large flood events (particularly those with multiple peaks); however, when the

events are delineated, as is done in our work, the approach may not be appropriate.

Regardless, none of the above classification methods were designed for analyzing

events with multivariate time series.

Several studies have clustered storm events using event metrics and/or coefficients

of best fit models. Dupas et al. (2015) used dynamic time warping (DTW) and

K-means clustering to cluster re-scaled time series of phosphorus concentration.

They manually select an ideal hydrograph and use the DTW algorithm to align

each hydrograph in the dataset to the ideal hydrograph. Using these aligned

hydrographs, the respective event phosphorus concentration graphs are then clustered

to find dominant response patterns associated with physical processes occurring in

the watershed. Bende-Michl et al. (2013) used high frequency data to build a

database of events summarized by metrics such as precipitation, discharge, runoff

coefficient and maximum discharge. These metrics were then used in cluster analysis

to study nutrient dynamics in the Duck River, in north-western Tasmania, Australia.

Minaudo et al. (2017) applied the non-linear empirical modeling method of Mather

and Johnson (2014) using continuous records of turbidity and discharge to estimate

high frequency phosphorus concentration values from low frequency (e.g., weekly)

sampling. They then clustered storm events using sets of model coefficients that

were fit to each storm event. The coefficients were re-calibrated for each cluster

to obtain one set of coefficients representative of all storm events in the cluster.

Mather and Johnson (2015) modeled event turbidity as a function of event discharge

50



using a power-law model, and performed cluster analysis on the model parameters to

select the number of hysteresis loop categories, thereby avoiding a priori selection of

the number of classes. While all of these works extract event information from two

monitored variables (e.g., C and Q), none directly use the full time series (i.e., without

transformation or feature extraction) associated with both variables to cluster storm

events.

In this paper, we present a data-driven approach for clustering multivariate water

quality time series at the event scale. We refer to this method as METS (multivariate

event time series) clustering throughout the remainder of the manuscript; and

show proof-of-concept using two variables: concentration (C) and discharge (Q).

These time series may be visualized as trajectories in a 3-D space, namely a

C-Q-T plot. Our concentration data comprise three years of high-resolution

riverine suspended-sediment concentration (SSC) time series – for generalizability,

referred to simply as C – collected from six watershed sites in Vermont. The

efficacy of the approach is demonstrated both qualitatively, using multi-dimensional

visualizations (i.e., C-Q-T plots), and quantitatively using metrics that summarize

event characteristics. We also highlight the complementary nature of using METS

in tandem with other analysis schemes, in this work – the C-Q hysteresis patterns of

Williams (1989).

3.2 Study Area and Data

Our study area, located in the Mad River watershed (Figure 3.1) in the Lake

Champlain Basin and central Green Mountains of Vermont, is the site of

several ongoing geomorphic and sediment dynamics studies at the University of

Vermont (Stryker et al., 2017; Wemple et al., 2017; Hamshaw et al., 2018). Continuous

streamflow and suspended sediment monitoring data (SSC) were collected for more
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Figure 3.1: The Mad River watershed and study sub-watersheds within the Lake Champlain
Basin of Vermont.

than 600 storm events in this watershed (and its five sub-watersehds) between October

19th, 2012 to August 21th, 2016 (Table 3.1). Hamshaw et al. (2018) used this

dataset to automate and demonstrate possible refinements to the 2D (C-Q) hysteresis

classifications of Williams (1989). Turbidity data were collected every 15 minutes

using turbidity sensors and SSC-turbidity regression models were used to calculate

SSC (see Hamshaw et al. (2018) for details). Discharge data were obtained from

the United States Geological Survey (USGS) stream gauges or calculated using

stage-discharge rating curves. The individual storm events were extracted from the

continuous sensor records using a semi-automated approach based on thresholds

to detect events and manual identification of storm end points. Meteorological

data (rainfall and soil moisture) were also collected over the monitoring period and

summarized into 24 storm event metrics (see Table 3.2); for full details on data

collection and event delineation methodology, readers are referred to Hamshaw et al.

(2018).

The Mad River watershed ranges in elevation from 132m to 1,245m above sea level

and is predominantly forested except for the valley bottom, which features agriculture,
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Table 3.1: Number of storm events and monitoring start and end dates for each watershed
study site.

Site
Number of

events
monitored

Monitoring
start date

Monitoring
end date

Freeman Brook 54 Jun 2nd, 2013 Nov 17th, 2013

Folsom Brook 96 Jul 17th, 2013 Sept
13th, 2015

Mill Brook 158 Oct 19th, 2012 Dec 23rd, 2015
High Bridge Brook 41 Jun 6th, 2013 Nov 17th, 2013
Shepard Brook 106 Jul 18th, 2013 Dec 23rd, 2015

Mad River (main stem) 148 Oct 29th, 2012 Aug 21th, 2016

All Sites 603 Oct
19th, 2012

Aug
21th, 2016

village centers, and other developed lands (Supporting Information Table S1). The

watershed has a mean annual precipitation ranging from approximately 1,100 mm

along the valley floor to 1,500mm along the upper watershed slopes (PRISM,

2019). Soils range from fine sandy loams derived from glacial till deposits in the

uplands to silty loams from glacial lacustrine deposits in the lowlands. Erosional

watershed processes include bank erosion, agricultural runoff, unpaved road erosion,

urban storm water, and hillslope erosion. Similar to many watersheds in Vermont,

reducing excessive erosion and sediment transport in the Mad River is a focus of

several management efforts including stormwater management practices, streambank

stabilization and river conservation.

In addition to the Mad River watershed sites, we created an expanded regional

dataset by adding 190 events from three additional watersheds (Hungerford Brook,

Allen Brook, and Wade Brook) in the Lake Champlain Basin to the existing (n = 603)

Mad River events, and another 21 events from within the Mad River watershed
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Table 3.2: Description of the 24 storm event metrics used in this work.

Metric Description
Hydrograph/ Sedigraph characteristics

TQ Time to peak discharge (hr)
TSSC Time to peak TSS (hr)
TQSSC Time between peak SSC and peak flow (hr)
QRecess Difference in discharge value at the beginning and end of event
SSCRecess Difference in concentration value at the beginning and end of event

DQ Duration of stormflow (hr)
FI Flood intensity

SSCP eak Peak SSC (mg/L)
HI Hysteresis index

Antecedent conditions
TLAST P Time since last event (hr)
A3P 3-Day antecedent precipitation (mm)
A14P 14-Day antecedent precipitation (mm)

SMSHALLOW Antecedent soil moisture at 10 cm depth (%)
SMDEEP Antecedent soil moisture at 50 cm depth (%)
BFNORM Drainage area normalized pre-storm baseline flow(m3/s/km2)

Rainfall characteristics
P Total event precipitation (mm)

Pmax Maximum rainfall intensity (mm)
DP Duration of precipitation (hr)
TP SSC Time between peak SSC and rainfall center of mass (hr)

Streamflow and sediment characteristics
BL Basin lag

QNORM Drainage area normalized stormflow (m3/s/km2)
Log(QNORM) Log-normal stormflow quantile (%)
SSLNORM Drainage area normalized total sediment (kg/m2)
FLUXNORM Drainage area and flow normalized sediment flux (kg/m3/km2)
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during the period from April 3rd, 2007 to November 25th, 2016. This results in a

total of 814 storm events from nine watersheds, hereafter referred to as the “regional

Vermont dataset”. Hungerford Brook, Allen Brook, and Wade Brook are watersheds

with ongoing monitoring efforts (Vaughan et al., 2017) that represent a spectrum of

land uses (e.g., agricultural, forested, and developed, respectively) and feature varied

topographic characteristics (Supporting Information Table S1). Data from these

sites, and supplemental events from the Mad River do not have the corresponding

hydrometeorological data metrics associated with the Mad River dataset and thus

were not the focus of our primary analyses.

3.3 Methods

3.3.1 Event Time Series Processing

The sensor data collected during individual storm events are conceptualized as

trajectories and may comprise multivariate time series of two or more variables.

For example, two (univariate) time series, TS1 = 〈V 11, V 12, V 13, ..., V 1n〉 and

TS2 = 〈V 21, V 22, V 23..., V 2n〉, when combined, make a bivariate time series TS =

〈(V 11, V 21), (V 12, V 22), ..., (V 1n, V 2n)〉. This approach can be generalized to the

multivariate case of a matrix ofm variables and n time steps (Supporting Information

Figure S1).

The time series in this work (discharge and SSC) were collected in situ using

multiple environmental sensors. These data typically contain noise, have missing
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(a) (b) (c) (d)

Figure 3.2: Pre-processing of (a) raw C and Q time series, (b) smoothed and normalized
C and Q time series, and the resulting (c) C-Q plot, and (d) C-Q-T plot for an individual
(delineated) storm event.

values, and often require pre-processing (i.e., filtering) to extract general trends in the

C-Q relationship. In addition, because of our interest in comparing C-Q relationships

across hydrological events, we normalized both the length of the time series as well

as the magnitude of each variable individually over each event (Figure 3.2), as is

commonly done in C-Q analyses. Pre-processing steps were performed as follows:

Smoothing: To reduce noise, the discharge and concentration time series were

smoothed using the Savitsky-Golay Filter (Savitzky and Golay, 1964). We

selected a third-order, 21-step filter for the Mad River (main stem) and a

fourth-order, 13-step filter for each of the five sub-watersheds. To preserve

the peaks and overall shape of the event data, the filter order and step size

were selected based on visual inspection of the resulting event time series in a

manner similar to Hamshaw et al. (2018).

Standardization of event length: Discharge and concentration time series were

re-scaled to a uniform length of 50 time steps for all events using univariate

spline fitting (Dierckx, 1993). The number 50 was selected empirically as the

minimum number of data points that preserves the shape and characteristics of
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the event time series. Standardizing all events to have the same length ensured

that clustering was not affected by the duration of the event but by the relative

rate of change of C-Q variables. We note that this re-sampling was performed

separately from the calculation involving event metrics (Table 3.2) based on the

original data.

Normalization of magnitude: The discharge and concentration time series were

scaled individually to values between 0 and 1. This ensured that the clustering is

not affected by the magnitude of the individual time series but by the orientation

of change (e.g., clockwise and counter-clockwise), and the shape (e.g., linear,

convex and concave). Normalizing the magnitude of variables is common for a

meaningful comparison between time series (Rakthanmanon et al., 2012).

3.3.2 Concentration-discharge (C-Q)

Hysteresis Classification

Each hydrological event in our dataset was categorized visually (by two or more

domain experts) into one of the six hysteresis classes (Figure 3.3) of Williams

(1989). Class I represents linear C-Q relationships that show little hysteretic behavior,

whereas Class II and Class III represent clockwise and counter-clockwise hysteretic

behaviors, respectively. A C-Q plot exhibiting a linear relationship followed by a

clockwise loop is indicative of Class IV behavior. These patterns could reasonably

be considered a special case of Class II (clockwise hysteresis); and rarely are studied
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as a separate hysteresis category (Malutta et al., 2020). The figure-eight loops are

represented as Class V. Events that do not fall into any of these five classes are placed

into a class labeled “Complex”.

3.3.3 Multivariate Time Series Clustering

Clustering of the multivariate time series data at the storm event scale was a first

step in exploring linkages between storm event responses (i.e., C-Q dynamics) and

watershed processes. To this end, a number of clustering methods were investigated.

Paparrizos and Gravano (2017) conducted extensive benchmark tests using four

clustering algorithms (partitional, hierarchical, spectral, and density-based) and

three distance measures – Euclidean distance, dynamic time warping of Sakoe and

Figure 3.3: Six class scheme for concentration-discharge hysteresis loops (top panels)
and corresponding hydrographs and sedigraphs (lower panels, solid and dot-dashed lines,
respectively).
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Chiba (1978), and shape-based (Paparrizos and Gravano, 2016). All of the datasets

(85 in total) available in the University of California at Riverside (UCR) time

series archive (Dau et al., 2018) at the time of their publication were used in the

benchmark; they identified K-medoids with dynamic time warping (DTW) (discussed

in Section 3.3.3 and Section 3.3.3, respectively) as having achieved the highest

adjusted Rand index across the greatest number of datasets. Leveraging their work,

we conducted additional benchmark tests using the four algorithms on their short

list — TADPole (Begum et al., 2015), K-shape (Paparrizos and Gravano, 2016),

K-medoids with DTW, and K-medoids with Euclidean. Using all datasets (currently

128 in total) available in the UCR time series archive (Dau et al., 2018), we also

found that K-medoids with DTW achieved the highest adjusted Rand index across

the greatest number of datasets. All of the event time series data in UCR archive

were pre-processed as outlined in Section 3.3.1 to avoid unexpected consequences

that might result from treating benchmark data differently from our hydrological

event dataset.

K-medoids Clustering Algorithm

K-medoids is a variant of the popular K-means (Wu et al., 2007), in which the cluster

centroids are observation points (called “medoids”) as opposed to coordinates as in

K-means. These medoids are mapped from a multivariate time series of length n (i.e.,

t1, t2, ..., tn) to vectors of the multiple variables (i.e., V 1, V 2, ..., V m) at each time

step ti. Like K-means, the K-medoids algorithm is iterative (Supporting Information

Algorithm S1) where the initial K medoids are selected randomly. The algorithm
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has two phases: Phase 1 assigns observation points to clusters (Line 3); and Phase 2

calculates new medoids for each cluster (Line 4). In Phase 1, the distance between all

observation points and each of the medoids is calculated, and each observation point

is assigned to the closest medoid. In Phase 2, a new medoid is selected from each

cluster by finding the observation point that minimizes the sum of squared distances

(i.e., sum of squared errors) to all other observation points in that cluster. These two

phases are repeated for a given number of iterations or until there is no change in

the medoid selection. Algorithm S1 in Supporting Information was implemented in

Python (version 3.6.1); the source codes may be found at GitHub (Javed, 2019b).

For a given dataset, the optimal number of clusters may vary depending on the

research question/objective. In this study, the elbow method guided the selection

of the “optimal” number of clusters. This method consists of plotting the sum of

squared errors (SSEs) against an increasing number of K clusters. An optimal value

for K is selected (visually) as the value for which further increases in K result in

diminishing reduction in SSE, thus creating the onset of the plateau.

Dynamic Time Warping

The K-medoids clustering algorithm used a variant of dynamic time warping (DTW)

to calculate the distance between two multivariate times series. Originally introduced

for speech recognition (Sakoe and Chiba, 1978), DTW is arguably the most popular

distance measure for time series clustering, and is particularly appealing for sensor

data generated during hydrological events because of (i) the challenges associated

with defining the beginning and end of an event (i.e., the ambiguity inherent in event
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delineation), and (ii) the noise present in the sensor data (e.g., variability in readings

due to sensor interference from debris, maintenance activities, and temporary fouling.)

Figures 3.4a and 3.4b illustrate how distance between two time series (T1 in

red and T2 in blue) is calculated using the more common Euclidean distance

compared with DTW. While Euclidean distance uses a one-to-one alignment, DTW

employs a one-to-many alignment that enables a warping of the time dimension to

minimize the distance between the two time series. As such, DTW can optimize

alignment, both global alignment (by shifting the entire time series left or right)

and local alignment (by stretching or squeezing parts of time series). Paparrizos

and Gravano (2016) showed that the best accuracy (as measured by the Rand

index) is obtained when DTW is constrained to a limited window size. Multiple

window size constraints ranging from 0% to 100% were tested to cluster our Mad

River dataset. Based on a preliminary qualitative analysis of event visualizations,

a window size constraint of 10% was selected for our analysis. Constraining the

window size to 10% of the observation data is usually considered adequate for

real applications (Ratanamahatana and Keogh, 2004); and it accommodates minor

differences in timing between similar hydrological events, as is often the case when

delineating the end of an event proves challenging.

Aligning two time series, T1 of length a and T2 of length b, using DTW involves

creating an a× b matrix, D, where the element D[i, j] is the square of the Euclidean

distance, d(t1i, t2j)2, d(·, ·) is the Euclidean distance, t1i is the ith point of T1, and

t2j is the jth point of T2. A warping path P is defined as the sequence of matrix

elements that are mapped between T1 and T2 (see Figures 3.4c and 3.4d). This
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Figure 3.4: The top row illustrates the alignment between two times series for calculating
distance in (a) Euclidean (one-to-one) and (b) dynamic time warping (one-to-many);
Bottom row illustrates an optimal (c) alignment of each point in time series T1 and time
series T2 (shown with black lines) and (d) warping path, i.e., optimal alignment of time
series T1 (red) and T2 (blue), where each matrix cell (i, j) is the distance between ith
element of T1 and jth element of T2; the DTW distance is the sum of the distances along
the optimal path shown in orange.

warping path must satisfy the following three conditions:

1. Every point from T1 must be aligned with one or more points from T2, and

vice versa.

2. The first and last points of T1 and T2 must align, meaning the warping path

must start and finish at diagonally opposite corner cells of the optimal warping

matrix.

3. No cross-alignment is allowed, that is, the path must increase monotonically

within the matrix.

For all paths that satisfy the three conditions above, DTW finds a path that
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minimizes the distance calculated as in Equation 3.1 (Shokoohi-Yekta and Keogh,

2015):

DTW(T1, T2) = min
P

√ ∑
(i,j)∈P

D[i, j], (3.1)

Algorithm S2 in Supporting Information outlines the procedure for calculating this

minimum distance using dynamic programming method (Bellman, 1957).

The environmental sensor data in this proof-of-concept are bivariate, representing

water quality concentration and stream discharge time series. There are two DTW

variants – DTW-independent (DTW-I) and DTW-dependent (DTW-D). In DTW-I,

the distance between T1 and T2 is the sum of distances calculated separately for each

variable (by invoking the DTW algorithm for each variable). Whereas in DTW-D, T1

and T2 are handled as multivariate time series; and the DTW algorithm is invoked

only once. Because of the strong dependency between discharge and concentration in

this work, DTW-D is used. The source code, implemented in Python (version 3.6.1),

may be found at GitHub (Javed, 2019a).

3.3.4 Generating Synthetic Hydrograph and

Concentration-graph Data

Synthetic multivariate times series “event data” were generated using eight conceptual

hydrographs and two conceptual concentration graphs (Figure 3.5), and then

combined to produce a set of heterogenous, albeit simplified, hydrographs and

sedigraphs (concentration graphs). A stochastic generator was designed to produce
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.5: Example synthetic hydrographs and concentration graphs generated from eight
conceptual hydrograph types: (a) flashy, early peak – return to baseline flow, (b) early peak
– slow return to baseline flow, (c) mid-peak – return to baseline flow, (d) delayed rise to
peak – return to baseline flow, (e) flashy, early peak – incomplete return to baseline flow,
(f) early peak – slower incomplete return to baseline flow, (g) mid-peak – incomplete return
to baseline flow, and (h) delayed rise to peak – incomplete return to baseline flow, and two
conceptual concentration graphs: (i) early peak and (j) late peak.

synthetic data with sensor noise. Random samples were drawn from a normal

(Gaussian) distribution with a mean of 0.00 and standard deviation of 0.05 and

added to the discharge and concentration values at each time step in order to

simulate noise. When combining each of the eight synthetic hydrograps with the two

concentration-graphs, sixteen synthetic storm event types can be produced. These

combined event types can be labeled and used as “ground truth” events to help assess

and validate the methodology.

Five control parameters, ranging from 0 to 1, were used to generate the synthetic

graphs: time-to-peak, duration-of-peak, delay, recess, and initial baseline conditions.
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Time-to-peak controls the timing for the concentration/discharge values to reach the

peak (normalized value of 1); duration-of-peak controls the duration of flow above

baseline conditions; delay controls the time at which the value (either discharge or

concentration) begins to rise in magnitude above the baseline conditions; recess

controls the degree to which event concentration/discharge values return to the

baseline conditions; and initial baseline controls the minimum value of the flow over

an event. Parameter values for generating each type of synthetic graph (hydrograph

and concentration-graph) were determined qualitatively based on re-production of

simplified yet realistic approximation of typical hydrographs and sedigraphs observed

in our study watershed (Supporting Information Table S2).

3.3.5 Measures for Assessing Clustering

Performance

We used the Hopkins Statistic to measure the clustering tendency of our three datasets

(i.e., the synthetic dataset, the Mad River dataset and the expanded regional Vermont

dataset). The statistic value ranges from 0 to 1, where 1 indicates a high tendency

to cluster and 0 indicates uniformly distributed data (Banerjee and Dave, 2004).

Additionally, transformed variables (those representing the 24 storm event metrics of

Table 3.2) were examined post-clustering to see whether these event metrics had 1)

any association with clusters or 2) statistical power to differentiate between clusters

using One-way Analysis of Variance (ANOVA) followed by Tukey Honest Significant

Differences (HSD) tests between individual group means. For those variables (or
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their transformations) that were not normally distributed, nonparametric methods

were applied (Kruskal-Wallis). Lastly, Z-score values were calculated for each of the

24 storm event metrics of Table 3.2 to identify feature importance associated with

cluster differences. The Z-score represents the distance of an individual storm metric

from the population mean (measured in terms of standard-deviation).

3.4 Results

3.4.1 Using Synthetic Data to Validate

Methodologies

To help validate the METS clustering approach, we generated 800 synthetic

storm events, equally distributed among the sixteen possible combinations (see

Section 3.3.4). As one might expect, the synthetic data had a high clustering tendency

(Hopkins statistic of 1.00); and the optimal number of clusters, determined using

elbow method as K = 16 (see Figure 3.6a), matched the intended synthetic design

(16 event types). Examples of synthetic events from each of the 16 event classes

are shown in Figure 3.7. Despite the presence of stochastically generated noise, the

synthetic dataset clustered with 100% accuracy using K-medoids with DTW (i.e.,

clusters were identical to the ground truth).
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(a) (b)

Figure 3.6: Sum of squared errors (SSE) for different number of clusters from (a) the
synthetic storm event dataset (elbow point at K=16) and (b) the Mad River storm event
dataset (elbow point at K=4).

Figure 3.7: Example events in each of the 16 event classes in the synthetic dataset.

3.4.2 Application of METS to the Mad River

Dataset

In applying the METS clustering to the 603 Mad River storm events, we identified

K = 4 event clusters with distinct SSC and Q responses (see the plateau in the elbow
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Cluster Class I Class II Class III Class IV Class V Complex Total
1 11 167 16 12 20 8 234
2 12 58 16 15 15 9 125
3 1 80 6 18 2 9 116
4 6 80 13 14 10 5 128

Total 30 385 51 59 47 31 603

Figure 3.8: Distribution of hysteresis loop classes over METS clusters.

plot of Figure 3.6b). Approximately one third of the events (n = 234) fell into cluster

1, with each of the three remaining clusters having between 116 and 128 events (see

Figure 3.8). Unlike the synthetic dataset, the optimal number of clusters for the Mad

River dataset, any real dataset for that matter, will never be known with any degree

of certainty. However, these data have a Hopkins test statistic of 0.96 indicating they

are highly clusterable. We first explored whether a relationship existed between the

four METS clusters and the six-class hysteresis scheme presented in Section 3.3.2.

We found little association between the two as the confusion matrix and cluster

distribution of Figure 3.8 show the six classes to be fairly evenly distributed across

the four METS clusters.

Qualitative interpretation of METS clusters using event visualizations

Finding little relationship between the METS clustering and the hysteresis

classification, we further investigated the characteristics associated with combined
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(a) Cluster 1. n = 234

(b) Cluster 2. n = 125

(c) Cluster 3. n = 116

(d) Cluster 4. n = 128

Figure 3.9: Mad River storm events closest to the centroid of each of the K = 4 clusters,
superimposed on a single graph with the mean value plotted as a solid line — (a) cluster
1 events have a broad clockwise hysteresis pattern featuring an early and relatively brief
duration of high SSC, (b) cluster 2 events have a narrow clockwise hysteresis loop and broad
sedigraphs and hydrographs with streamflows that do not fully return to baseline levels, (c)
cluster 3 events have flashier and sometimes multi-peaked sedigraphs that are shorter in
duration, and (d) cluster 4 have a delayed rise of hydrograph and sedigraph, and typically
more aligned.

hydrograph and sedigraph trajectories of the METS clusters using multiple

visualization approaches. To visualize overall trends, we superimposed 20 storm

events closest to the centroid of each of the four METS clusters onto single plots

(Figure 3.9); mean values are plotted as solid lines. Additionally, examples of

the event times series, C-Q hysteresis plots, and 3-dimensional C-Q-T plots for

each cluster are provided in Figure 3.10. In general, the METS cluster 1 events

69



(Figure 3.9a and Figure 3.10a) have broad clockwise hysteresis patterns with an

early, and relatively brief duration of high SSC. The hydrographs are flashy, rise

quickly and return nearly to baseline flows. Cluster 2 events typically have a more

narrow hysteresis loop compared to cluster 1 and broad (less flashy) sedigraphs

and hydrographs with streamflows that do not fully return to the baseline levels

(Figure 3.9b and Figure 3.10b). Cluster 3 events are similar to cluster 2, but

exhibit flashier and sometimes multi-peaked sedigraphs that are shorter in duration

(Figure 3.9c and Figure 3.10c). Multi-peaked events sometimes exhibit compound

behavior including, for example, portions of clockwise hysteresis loops and no

hysteretic behavior (linear relationships). Cluster 4 events typically have a delay

in the rise of the hydrograph and sedigraph, and typically more aligned (Figure 3.9d

and Figure 3.10d). In contrast to cluster 2 and 3 events, the hydrographs of cluster

4 also tend to return to near baseline levels.

Statistical Analysis of METS clusters

Of the 24 storm event metrics in Table 3.2, 19 metrics had significantly different mean

values for at least one of the METS clusters. The reader should bear in mind that

these event metrics were not used as input to either the METS clustering algorithm

or the hysteresis classification scheme. Both the METS clusters and hysteresis classes

have event metrics with good discriminatory power; but there was little overlap for

a given metric. For instance, two of the metrics shaded in Table 3.3 (e.g., SSCP eak

and the difference in discharge values at the beginning and end of an event (QRecess))

show an ability to discriminate between the clusters generated by METS, but little

70



(a) Cluster 1. n = 234

(b) Cluster 2. n = 125

(c) Cluster 3. n = 116

(d) Cluster 4. n = 128

Figure 3.10: Six storm events closest to the centroid of the four Mad River dataset METS
clusters (K = 4, N = 603) — (a) cluster 1 events have a broad clockwise hysteresis pattern
featuring an early and relatively brief duration of high SSC, (b) cluster 2 events have a
narrow clockwise hysteresis loop and broad sedigraphs and hydrographs with streamflows
that do not fully return to baseline levels, (c) cluster 3 events have flashier and sometimes
multi-peaked sedigraphs that are shorter in duration, and (d) cluster 4 have a delayed rise
of hydrograph and sedigraph, and typically more aligned.
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Table 3.3: Result of post-hoc Tukey HSD test (α = 0.05) for all pairwise comparisons
of hydrograph/sedigraph related storm event metrics. Within each metric, if two
classes/clusters do not share the same letter, the metric means are significantly
different.Shaded columns are highlighted to show examples of metrics distinguished well
by METS, but not by hysteresis classes (light shading) and metrics discriminated well by
hysteresis classes (dark shading).

Hydrograph/Sedigraph Characteristics
Metric TQ TSSC TQSSC QRecess SSCRecess DQ FI SSCP eak HI

METS clusters
cluster 1 a a a a a a a a a
cluster 2 b b a b b a b b b b
cluster 3 b c b c a a b b c b
cluster 4 c b a d c b b a c b

Hysteresis classes
Class I a b a b a a b a b a b a b a a
Class II a a b a a a a b a b
Class III a a c a b a b a b a c
Class IV a b a b a b b a a b a a d
Class V a a a a a a b b a a
Complex b b a b a b a b a b a a

statistical power to discriminate between the six classes of the hysteresis classification

method. In contrast, both the hysteresis index (HI) and time between peak SSC

and peak flow (TQSSC) show power to discriminate between the hysteresis classes,

but not the MET clusters (Table 3.3). Similar differences in discriminatory power

were observed in metrics related to antecedent conditions, rainfall characteristics, and

streamflow/sediment characteristics (Supporting Information Table S3 to Table S5).
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Figure 3.11: Typical hydrometeorological characteristics of METS clusters as represented
by storm event Z-score metrics for each of the four clusters.

Next, we explored the hydrometeorotological factors associated with the four

METS clusters using event metric Z-score values. Again, these event metrics were

not used as input to the clustering algorithm, but as a means to study linkages

between these characteristics and the resulting clusters. The storm events of cluster

1 have greater amounts of precipitation (positive Z-score for P and PMax) and wetter

antecedent conditions exhibited by higher mean BFNorm, SMDeep,SMShallow, A3P

and A14P . In general, these factors are associated with higher stream discharge

as confirmed by the positive Z-score for Log (QNorm), QNorm, and FI (flood intensity)

as well as higher peak SSC values. Other notable characteristics include hydrographs

that return to baseline flow (negative Z-score for QRecess), and a rapid rise in the

73



sedigraph and hydrograph (negative Z-score for TSSC and TQ) and positive Z-score

for HI, which translate to a 2D hysteresis that is dominated by a broad clockwise

pattern (observed in Figure 3.9a and Figure 3.10a).

Cluster 2 is associated with smaller precipitation events (negative Z-score for P

and PMax) and drier antecedent conditions (negative BFNorm, SMDeep, A3P and A14P

Z-scores), both resulting in lower stream discharge (negative Log (QNorm), QNorm, and

FI Z-scores). These events also have positive QRecess and SSCRecess Z-score values.

These two metrics were designed to capture whether streamflow and SSC return

to baseline levels; positive scores are associated with events that do not return to

base levels (Figure 3.9b and Figure 3.10b). Additional characteristics include lower

peak SSC concentrations and negative Z-scores for BL (indicative of watersheds that

respond more slowly to a rainfall event), and a longer duration between the peak SSC

and center of mass for rainfall (positive Z-score for TPSSC). The latter translates to

hysteresis patterns with more narrow loop, which is confirmed visually (Figure 3.9b

and Figure 3.10b), and by the negative Z-score for hysteresis index.

Cluster 3 events have a rapid rise in both streamflow and SSC (Figure 3.9c and

Figure 3.10c) and are associated with a positive Z-scores for QRecess and negative for

SSCRecess, which is indicative of sedigraphs that return to base levels and hydrographs

that do not. The sedigraph is also often characterized by multiple peaks; and in

general, there is a short duration between the peak SSC and the center of mass

for rainfall (negative Z-score for TPSSC) as well as between the peak SSC and

peak discharge (negative TQSSC). In addition, these events have lower precipitation

(negative Z-scores for P and PMax) and stream discharge (negative Log (QNorm),
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QNorm, and FI), as well as Z-scores that approach zero for BFNorm, SMDeep, SMShallow,

A3P and A14P , which indicate average antecedent conditions.

Lastly, cluster 4 events are associated with higher precipitation (positive Z-score

for P ) that are longer in duration (positive Z-score for DP ); however, these events

have less intense rainfall (near zero Z-score for PMax), and are associated with average

to fairly dry antecedent conditions (i.e., slightly negative Z-score values for BFNorm,

SMDeep, SMShallow, A3P and A14P ), all of which results in near average streamflows

(near zero Z-score for Log (QNorm), QNorm, and FI). Other event characteristics

include a long time to peak SSC and Q (positive Z-score for TSSC and TQ) and larger

amounts of sediment transport during events (positive SSLNorm).

3.4.3 Effects of Additional Watersheds on

METS Clustering

The number and type of event clusters/classes are dependent on geographic range of

study. In re-running the METS analysis on the expanded regional Vermont dataset,

the number of clusters increased from K = 4 to K = 9 (Supporting Information

Figure S2). This is not surprising given the differences, particularly in topography and

land use, associated with the added watersheds. Hungerford Brook, for instance, is a

low gradient agricultural basin, while Allen Brook drains a highly developed suburban

area (Supporting Information Table S1). The METS results show the expanded

dataset cluster 5 to have a substantially large number (54%) of counter-clockwise

hysteresis loops, which correspond to events where the sedigraph peaks after the
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hydrograph (hysteresis Class III), and no events that are clockwise (hysteresis Class

II or Class IV) (Supporting Information Figure 3.12 and Table S6).

(a) (b)

(c)

Figure 3.12: Storm events closest to the centroid of the cluster 5 dominated by counter
clockwise hysteresis type events (when K = 9) in the expanded regional Vermont dataset,
discovered by including more watersheds: (a) all 56 events in cluster 5 superimposed, with
the mean plotted as a solid line, (b) distribution of cluster by hysteresis loop classification,
and (c) six events closest to the centroid of the cluster (n = 56).

3.5 Discussion

We present a new clustering approach within the broader discipline of event-based

studies — one that leverages the temporal information in two or more time series

for the purpose of grouping or identifying similar events — in this manuscript,

a hydrological event comprising hydrograph and sedigraph data modeled as

three-dimensional C-Q-T trajectories. This contrasts with current hydrological event

approaches that either collapse the time dimension (e.g., 2D hysteresis pattern

analysis of Lloyd et al. (2016b)) or focus on the response of a single variable such as

the DTW clustering approach of Dupas et al. (2015); the latter re-scales events using
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a single (ideal) hydrograph and then clusters the concentration response. While these

approaches are important to a variety of research applications, these 2-D hysteresis

methodologies lose the temporal information, while the latter requires a rescaling of

the C-Q variables. The multivariate version of DTW-D used in the METS clustering

of this manuscript is designed to extract relationships between the time series of

two or more variables, resulting in a dataset partitioning that is dissimilar and

complementary to existing hysteresis methods.

3.5.1 Effects of Regional Scale on METS

Clustering.

Our motivations for limiting the primary analysis to the Mad River watershed

were two-fold. First, meteorological data were not available for the additional

watersheds; and secondly, we wanted, at least initially, to control for certain watershed

characteristics such as topography and land use (e.g., the Mad River has primarily

two land use types - forest and agriculture). In this single watershed study, we

identified four predominant clusters for hydrological events occurring between the

period from 2013 and 2016, with one cluster type occurring most frequently (38%),

and 64% of the events categorized as clockwise patterns. This relatively small number

of event types (i.e., four clusters) might be expected, given the uniformity of watershed

characteristics across the six Mad River monitoring sites; as this is similar in number

to other event analyses from single study areas. Bende-Michl et al. (2013) identified

3-4 cluster in a study on nutrient dynamics; Mather and Johnson (2015) identified 5-7
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clusters when analyzing C-Q loops; and 3 nutrient-event response types were identified

in the work of Dupas et al. (2015). In general, there is a great deal of interest and

merit in tracking the change in both the number and type of event responses within a

single study area, particularly for example, when monitoring in-stream changes prior

to and after restoration efforts. However, other monitoring applications may require

tracking changes across watersheds at larger geographical scale; and one might expect

the number of clusters (event types) to increase with the geographic range of study

as demonstrated in Section 3.4.3.

Regardless of regional scale, we found the METS clustering to be heavily

influenced by the degree to which both of the time series (SSC and Q) return

(or not) to base levels at the end of the event. This was evidenced both visually

(Figure 3.10) and by the significance of the SSCRecess and QRecess metrics (Table 3.3

and Figure 3.11). From a hydrological perspective, the rate and degree of recession

(return to baseline flow and background concentration levels) are important indicators

of soil moisture, groundwater elevations, and the resulting hydrological flowpaths.

Classification schemes based on the shape and direction of hysteresis do not necessarily

capture this “return to baseline conditions” behavior because the overall C-Q

patterns are primarily driven by the middle portion of the hydrograph-sedigraph

(i.e. largest offset between C-Q) rather than differences between the times series

at the start or end of the event. The ability of the METS clustering to capture

this return-to-baseline conditions phenomena, in addition to other metrics, holds

promise for many applications (e.g., model validation) used in forecasting floods,

water quality monitoring, watershed similarity studies, and detecting change in
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watershed functions.

3.5.2 Leveraging Methodological Strengths to

Group Events

The post-cluster analysis performed on event metrics (hydrological and meteorological

metrics in Table 3.2) was an attempt to explore which factors (i.e., characteristics

associated with the event time series) might be driving the METS clustering, bearing

in mind that these metrics were not used as inputs to the clustering analysis itself.

Prior event-based hydro-meteorological studies have successfully used this type of

post-statistical analysis to tease out factors important in discriminating between (or

correlated with) event groupings. Examples include the classifying of event hysteresis

patterns to study erosional processes (Seeger et al., 2004; Nadal-Romero et al., 2008;

Sherriff et al., 2016; Hamshaw et al., 2018).

Here, we highlight some key results from our post-cluster statistical analysis,

particularly the event metric with statistically significant differences across the METS

clustering and/or hysteresis classification. First, while the event hysteresis index (HI)

was identified, not surprisingly, as important for differentiating between the hysteresis

class types (see Table 3.3 in Supporting Information), the temporal hydrograph

and sedigraph metrics (e.g., time to peaks – TQ, and TSSC), as well as the degree

to which both time series return to baseline conditions (QRecess and SSCRecess)

were not identified as important drivers. In contrast, these four metrics as well as

the Peak SSC (SSCP eak), duration of stormflow (DQ) and antecedent precipitation
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metrics (Section 3.4.2) were identified as important for differentiating between the

METS-based clusters (Table 3.3 and Supporting Information Table S3).

3.5.3 Using Methods in Tandem to Leverage

Strengths

(a) (b)

Figure 3.13: Application of METS after pre-classifying events based on hysteresis directions
of (a) clockwise hysteresis and (b) counter clockwise hysteresis that can correspond to general
proximity and timing of erosion source activation. METS clustering further partitions these
hysteresis classes into sub-clusters (visualized as two example events) distinguishable by
different hydrograph and sedigraph characteristics. Photos from observed, active erosion
sources within the Mad River watershed.
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Each of the clustering and classification approaches have unique strengths and

weaknesses; and the post-statistical analyses (e.g., Tukey HSD test and Z-scores

of Section 3.4.2) provide some guidance on method selection that best aligns with

manager or stakeholder goals. However, using more than one method in tandem may

help to leverage methodological strengths. For example, in event-based suspended

sediment studies — those aimed at identifying the proximity of riverine erosion

sources, a two-phased approach may add value. Let’s consider our expanded dataset

in which more than two thirds of the events have clockwise hysteresis patterns.

A first phase might use hysteresis classification to prioritize the clockwise versus

counter-clockwise nature of the hysteresis patterns, as the direction embeds key

process information. This Phase I classification could then be further partitioned into

subgroups (via METS methodology) to help refine the understanding of watershed

processes.

To highlight the potential of such an approach, we applied the 2-D

hysteresis analysis and METS clustering in tandem using the expanded dataset of

Section 3.4.3. In Phase I, hydrological events were classified (e.g., into clockwise and

counter-clockwise groups) based on their hysteresis patterns; and in Phase II, the

METS clustering was applied to each of the Phase I classes, respectively (Figure 3.13

and Supporting Information Figure S3 and Figure S4). Clockwise hysteresis patterns

are typically indicative of erosion sources (e.g., gullies or rills) that are located very

close to the monitoring site. Whereas the events in the counter-clockwise group

are characterized by hydrographs that occur (and peak) prior to the accompanying

sedigraphs. These are often indicative of more distal sediment sources (e.g., upstream
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streambank collapse). The METS sub-clusters shown in the lower half of Figure 3.13

(sub-clusters B), were differentiated by temporal information that was not fully

captured by the Phase I hysteresis classification. Both sub-clusters are characterized

by hydrographs and sedigraphs that return more completely (relative to sub-clusters

A) to baseline levels. Whether used on its own or on a dataset that has been

pre-classified or grouped by some other means, METS offers hydrological researchers a

flexible and powerful approach for data-driven analysis of high-frequency water quality

data; and the methodology may be easily adapted to different analysis objectives.

3.5.4 Challenges and Opportunities

The sparsity of hydrological events is an inherent data challenge that relies on

data-driven or machine learning methods of analysis. Our study area, a typical

humid and temperate watershed, experiences on average about 30 rainfall-runoff

(i.e., storm) events a year. Other recent, prominent event-based studies (Wymore

et al., 2019; Sherriff et al., 2016; Vaughan et al., 2017) are similarly constrained by

event sizes ranging between 8 and 90 events per monitoring site. Albeit large from

an environmental monitoring perspective, these relatively small sample sizes cause

significant challenges for machine learning methods. The challenges are compounded

when analyzing multivariate time series generated from in-situ sensors that must

be kept online during extreme events and operating simultaneously. Currently,

the hydrological informatics community is investing significantly in the integration

and maintenance of data hubs that comprise multiple researchers across multiple
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organizations such as those of the Consortium of Universities for the Advancement of

Hydrological Sciences, Inc. (CUAHSI, 2019). Despite the development of new machine

learning methods to address data sparsity issues, another promising approach is to

generate synthetic hydrological storm events as demonstrated in this work.

METS clustering operates on delineated events and is influenced by the degree

to which both time series (SSC and Q) return (or not) to base levels at the end of

the event. This highlights the importance of precise event delineation in METS

clustering. In hydrology, many event-based studies rely on semi-automated and

somewhat subjective methods to identify the start and end of an event, particularly

when handling multipeak (consecutive) events (Wymore et al., 2019; Vaughan et al.,

2017; Hamshaw et al., 2018; Sherriff et al., 2016; Gellis, 2013). Automation of

event delineation is another area that can benefit from advances in machine learning

methods, new data hubs, and access to synthetic, pre-delineated event data.

A key challenge with any clustering method is determining the optimal number,

K, of categories (e.g., the correct number of storm event types). In this work, we select

K based on the inflection point of an elbow plot. However, identifying the inflection

point is often subjective. This is further complicated in hydrogeological applications,

where the optimal number of categories is dependent on both the research objectives

as well as the geographic location. In this proof-of-concept, we made no assumptions

or preconceptions about the desired number of outcome categories. However, domain

experts familiar with a particular region of study may have intuitive knowledge

regarding the desired number of outcomes. Varying the number of clusters in METS

is relatively straightforward and not computationally intensive; thus, researchers
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can easily evaluate the effect of cluster number – particularly when methods for

evaluating “optimal” (e.g., the elbow method) are not definitive. Alternatively, one

could replace the METS clustering algorithm with an alternative algorithm such as

the density-based clustering algorithm of Ester et al. (1996), which does not require

the number of clusters as an input.

The METS clustering approach is applicable to any water quality constituent

or solute (e.g., nitrate, phosphorous and conductivity), which would be expected

to demonstrate very different C-Q-T trajectories and resulting clusters compared

to suspended sediment concentration response (Lloyd et al., 2016a; Zuecco et al.,

2016). Additionally, the approach may be extended beyond a single parameter

(e.g., SSC) to multiple parameters (e.g., SSC and nitrate) to explore/reveal any

unknown interactions during storm events. Expansion to multiple parameters will

bring interesting visualization and analysis challenges. One approach may be to

visualize events as 3-D signal trajectories such as those we presented in this work.

3.6 Conclusion

The rapidly increasing volume and availability of high-frequency time series data

offer considerable opportunity to analyze watershed systems at the storm event scale.

In this work, we introduce the multivariate event time series (METS) approach for

categorizing hydrological storm events into a limited number of clusters given data

from multiple sensors deployed in the Mad River watershed in Vermont, USA. In

order to validate the approach, we showed that stochastic generation of synthetic
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hydrographs and concentration graphs provided a simple and effective solution to

over-coming the data sparsity challenge in training machine learning algorithms on

environmental data. The approach is flexible enough to be used with any water quality

constituents (e.g., nitrate, phosphorous and conductivity) alone or in combination.

We highlight areas for further research to expand the application of event-based

analysis. Additionally, we discuss how the METS clustering can be used in tandem

with a traditional hysteresis based event classification scheme. Whether used on its

own or in tandem with other partitioning methods, this method offers hydrological

researchers a flexible and powerful approach for analyzing high-frequency water

quality data; and opens up new possibilities for interpreting emergent event behavior

in watersheds.
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3.8 Supporting Information

This supporting information contains tables and figures to provide additional

information on the following aspects of the study:

1. Table S1: Study watershed characteristics.

2. Figure S1: Matrix representation of multivariate time series.

3. Algorithm S1: K-medoids algorithm for hydrological event clustering.

4. Algorithm S2: Dynamic time warping algorithm for calculating the distance

between two time series.

5. Table S2: Default parameter settings for synthetic hydrograph and

concentration-graph generator.

90



6. Table S3: Result of post-hoc Tukey HSD test for all pairwise comparisons of

antecedent conditions metrics.

7. Table S4: Result of post-hoc Tukey HSD test for all pairwise comparisons of

rainfall characteristics metrics.

8. Table S5: Result of post-hoc Tukey HSD test for all pairwise comparisons of

streamflow and sediment characteristics metrics.

9. Figure S2: SSE for varying number of clusters for Mad River dataset and

Expanded dataset.

10. Table S6: Distribution of hysteresis loop classes over METS cluster 5 (when

K= 9) in the expanded dataset(n= 56).

11. Figure S3: Three storm events closest to the centroid of the four extended

dataset tandem clockwise hysteresis sub-clusters (K= 4, N= 496).

12. Figure S4: Three storm events closest to the centroid of the four extended

dataset tandem counter clockwise hysteresis sub-clusters (K= 2, N= 90).

Figure S1: A matrix representation of multivariate time series (m variables, n time steps);
a column for each variable and a row for variable value at each time step.
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Table S1: Study watershed characteristics.

Characteristic Freeman
Brook

Folsom
Brook

Mill
Brook

High
Bridge
Brook

Shepard
Brook

Mad
River

Allen
Brook

Hungerford
Brook

Wade
Brook

Area (km2) 17.0 18.2 49.2 8.6 44.6 344.0 25.5 16.7 48.1
Minimum

elevation (m) 266 229 216 225 195 140 61 320 33

Maximum
elevation (m) 860 886 1114 796 1117 1245 351 981 354

Elevation
range (m) 594 657 898 571 923 1105 290 661 321

Stream
order 4th 4th 4th 3rd 4th 5th 3rd 3rd 5th

Drainage density
(km/km2) 1.95 1.77 2.16 2.45 2.38 0.97 1.81 1.57 2.28

% Forested
land 76.2 77.6 89.2 66.7 92.2 85.5 39.3 95.1 40.5

% Developed
land 8.3 12.7 1.5 16.6 1.0 4.7 26.5 0.8 7.9

% Agricultural
land 14.6 8.8 7.0 15.5 5.6 8.0 28.6 0.6 44.8

% Other
land 1.7 0.7 0.8 2.1 1.1 1.1 5.6 3.5 6.8

Algorithm K-medoids
Input: storm events (i.e., their multivariate time series representations);
number k of clusters to be generated.
Output: k clusters generated from the events.
Procedure
Randomly select k events as medoids from the input events.

1 while termination criteria are not met do
2 // Termination condition can be convergence of medoids or maximum

allowed iterations.
3 Phase 1: Assign each event to its closest medoid.
4 Phase 2: From each cluster consisting of the medoid and events assigned

to it, select an event that gives the smallest sum of distances to all the
other events in the cluster and make the selected event a new medoid.

5 end
6 Return each cluster, consisting of a medoid and all events assigned to it.

Algorithm S1: K-medoids algorithm for hydrological event clustering.
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Algorithm DTW
Input: T1, T2: time series, W: warping window size
Output: distance between T1 and T2
Procedure

1 Let a and b be the lengths of T1 and T2, respectively.
2 Let m be the number of variables in T1 and T2, respectively.
3 Create a distance matrix D of size a× b and initialize all matrix elements to
∞.

4 D[0, 0] := 0. // Initialize the first entry in D.
5 i := 1. j = 1. // Initialize the index of a warping path between T1 and T2.
6 while i ≤ a and j ≤ b do
7 Calculate the squared Euclidean distance, ∑m

c=1(t1c
i − t2c

j)2, between the
ith item in T1 and each of the jth item in T2 within the range of
j = [i−W, i+W ].

8 Update D[i, j] to ∑m
c=1(t1c

i − t2c
j)2 +

min{D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]}.
9 increase i by 1.

10 end
11 return

√
D[a, b].

Algorithm S2: Dynamic time warping algorithm for calculating the distance
between two time series.

Figure S2: SSE for varying number of clusters for Mad River dataset and Expanded dataset.
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Table S2: Default parameter settings for synthetic hydrograph and concentration-graph
generator.

Hydrograph

Type
Duration

of
peak

Time
to

peak
Delay Recess Initial

Baseflow

Flashy - early peak
return to baseflow 0.4 0.5 0 0.1 0

Flashy - early peak
incomplete return to baseflow 0.4 0.5 0 0.4 0

Early peak
slow return to baseflow 0.8 0.2 0 0.1 0

Early peak
incomplete return to baseflow 0.8 0.2 0 0.4 0

Mid-peak
return to baseflow 0.8 0.5 0 0.1 0

Mid-peak
incomplete return to baseflow 0.8 0.5 0 0.4 0

Delayed rise to mid-peak
return to baseflow 0.8 0.5 0.2 0.1 0.1

Delayed rise to mid-peak
incomplete return to baseflow 0.8 0.5 0.2 0.4 0.1

Concentration-graph

Type Duration
Time
to

peak
Onset Recess Storm

flow

Early peak 0.5 0.5 0 0 0
Late peak 0.5 0.5 0.5 0 0
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Table S3: Result of post-hoc Tukey HSD test for all pairwise comparisons of antecedent
conditions metrics. Within each classification scheme if two classes/clusters do not share a
letter the mean metric value is significantly different (alpha = 0.05).

Antecedent conditions
Metric TLAST P A3P A14P SMSHALLOW SMDEEP BFNORM

METS clusters
cluster 1 a a a a a a
cluster 2 a b b a a b
cluster 3 a b c b a a a b
cluster 4 a c b a a b

Hysteresis classes
Class I a a b a a a a
Class II a a a a a a
Class III a b a a a a
Class IV a a b a a a a
Class V a a b a a a a
Complex a a b a a a a

Table S4: Result of post-hoc Tukey HSD test for all pairwise comparisons of rainfall
characteristics metrics. Within each classification scheme if two classes/clusters do not
share a letter the mean metric value is significantly different (alpha = 0.05).

Rainfall characteristics
Metric P PMAX DP TP SSC

METS clusters
cluster 1 a a a a
cluster 2 b b a b
cluster 3 b b a a
cluster 4 a c b b

Hysteresis classes
Class I a b a a b a b
Class II a a a c
Class III b a a d
Class IV a b a a b a
Class V a b a a b a b
Complex a b a b b d
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Table S5: Result of post-hoc Tukey HSD test for all pairwise comparisons of streamflow and
sediment characteristics metrics. Within each classification scheme if two classes/clusters
do not share a letter the event metric value is significantly different (alpha = 0.05).

Streamflow and sediment characteristics
Metric BL QNORM Log(QNORM) SSLNORM FLUXNORM

METS clusters
cluster 1 a a a a a
cluster 2 b b b a a
cluster 3 a c a b b a a
cluster 4 b c a b a a a

Hysteresis classes
Class I a b a a b a a
Class II c a a a a
Class III a b a b a b
Class IV a c a a b a a
Class V a b a a b a a
Complex b a a b a a
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Hysteresis class Count
I - Linear (Counter-clockwise) 7

II - Clockwise 0
III - Counter-clockwise 30

IV - Linear then clockwise 0
V - Figure eight 9

Complex (Counter-clockwise) 10
Total 56

Table S6: Distribution of hysteresis loop classes over METS cluster 5 (when K = 9) in the
expanded dataset (n = 56).
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(a) Sub-cluster A. n = 70

(b) Sub-cluster B. n = 140

(c) Sub-cluster C. n = 92

(d) Sub-Cluster D. n = 167

Figure S3: Three storm events closest to the centroid of the four extended dataset tandem
clockwise hysteresis sub-clusters (K = 4, N = 496) — (a) cluster 1 events have sedigraph
peaks that occur well before the hydrographs resulting in an “L” shaped loop, (b) cluster 2
have quickly rising hydrographs and sedigraphs, (c) cluster 3 have slow rising hydrographs
and sedigraphs, and (d) cluster 4 have sedigraphs that peak before the hydrographs resulting
in broad clockwise loops.
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(a) Sub-cluster A. n = 46

(b) Sub-cluster B. n =44

Figure S4: Three storm events closest to the centroid of the four extended dataset tandem
counter clockwise hysteresis sub-clusters (K = 2, N = 90) — (a) cluster 1 events have
sedigraph peaks that occur well after the hydrographs resulting in an approximate mirror
image of “L” shaped loop and (b) cluster 2 events have sedigraph peaks that occur slightly
after the hydrograph peaks.
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Chapter 4

SOMTimeS: Self Organizing Maps

for Time Series Clustering and

its Application to Serious Illness

Conversations
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ABSTRACT

There is an increasing demand for scalable algorithms capable of clustering and

analyzing large time series datasets. The Kohonen self-organizing map (SOM) is

a type of unsupervised artificial neural network used for visualizing and clustering

complex data, reducing the dimensionality of data, and selecting influential features.

Like all clustering methods, the SOM requires a means of measuring similarity

between input observations (in this work time series data). Dynamic time warping

(DTW) is one such method, and a top performer given that it is resilient to the

distortions in time series alignment. Despite its prior use in clustering methods,

including the SOM algorithm, DTW is limited in practice because this resilience

comes at a high computational cost when clustering large amounts of data associated

with real applications; DTW is quadratic in runtime complexity with the length

of the time series data. To address this, we present a new DTW-based clustering

method, called SOMTimeS (a Self-Organizing Map for TIME Series) that uses

DTW, yet scales better and runs faster than competing DTW-based clustering

methods. The computational performance of SOMTimeS stems from its ability

to prune unnecessary DTW computations during the SOM’s unsupervised learning

(i.e., training) phase. We evaluated the performance accuracy and scalability on

112 benchmark time series datasets from the University of California, Riverside

classification archive. SOMTimeS clustered data with state-of-the-art accuracy.
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That is - it matched and in some cases exceed the performance accuracy of the

two top-performing DTW-based clustering methods, namely K-means and TADPole.

However, the computational pruning demonstrated an empirical runtime complexity

(with respect to the number and length of time series) that is 1.6x and 10x times faster

than K-means and TADPole, respectively. SOMTimeS also inherits the outstanding

visualization ability of SOM. In this regard, we apply SOMTimeS to a complex time

series of conversational features extracted from natural language conversation data

collected as a part of a large healthcare cohort study of patient-family-clinician serious

illness discussions.
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4.1 Introduction

By 2025, it is estimated that more than four hundred fifty exabytes of data will

be collected and stored every day (WorldEconomicForum, 2019). Much of that

data will be collected continuously and represent phenomena that change over

time. We propose that fully understanding the meaning of these data will often

require complexity scientists to model them as time series. Examples include data

collected by sensors (CRS, 2020; Evans, 2011), every day natural language (e.g.,

Bentley et al., 2018; Ross et al., 2020; Reagan et al., 2016; Chu et al., 2017),

biomonitors (Gharehbaghi and Linden, 2018), waterflow, barometric pressure and

other routine environmental condition meters (e.g., Hamami and Dahlan, 2020; Javed

et al., 2020a; Ewen, 2011), social media interactions (e.g., De Bie et al., 2016; Javed

and Lee, 2018, 2016, 2017), and hourly financial data reported by fluctuating world

stock and currency markets (Lasfer et al., 2013). In response to the increasing

amounts of time-oriented data available to analysts, the applications of time-series

modeling are growing rapidly (e.g., Minaudo et al., 2017; Dupas et al., 2015; Mather

and Johnson, 2015; Bende-Michl et al., 2013; Iorio et al., 2018; Gupta and Chatterjee,

2018; Pirim et al., 2012; Souto et al., 2008; Flanagan et al., 2017).

Time series modeling is computationally “expensive” in terms of processing power

and speed of analysis. Indeed, as the numbers of observations or measurement

dimensions for each observation increase, the relative efficiency of time series modeling

diminishes, creating an exponential deterioration in computational speed. Under
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conditions where computing power is in excess or when result generating speed is

unimportant, these challenges would be less pressing. However, these conditions are

rarely met currently, and the accelerating rate of data collection promises to continue

outpacing the computational infrastructure available to most analysts.

In this work, we present SOMTimeS (Self-organizing Map for Time Series), a

computationally efficient and fast time series clustering algorithm for application to

large time series datasets. The computational efficiency of SOMTimeS is attributed

to the pruning of unnecessary DTW computations during the SOM training phase.

When assessed using 112 time series datasets belonging to different domains from the

University of California, Riverside (UCR) classification archive, 43% of the needed

DTW computations were pruned. Empirically the pruning rate increased proportional

to the increase in DTW computation time as the length of time series increased. As

a result, the algorithm scales better with increasing data, making SOMTimeS, to the

best of our knowledge, the fastest DTW-based clustering algorithm to date.

SOMTimeS also inherits the outstanding visualization ability of SOM. In order

to explore the potential utility of SOMTimeS to novel problems of high complexity

and natural sequential ordering of data, we evaluated its performance when applied

to the science of doctor-family-patient conversations in high emotion settings.

Understanding and improving serious illness communication is a national priority for

21st century healthcare, but our existing methods for measuring and analyzing data is

cumbersome, human intensive, and far too slow to be relevant for large epidemiological

studies, communication training or time-sensitive reporting. Here, we use data from

an existing multi-site epidemiological study of healthcare serious illness conversations
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as one example of how efficient computational methods can add to the science of

healthcare communication.

The remainder of this paper is organized as follows. Section 4.2 provides

background information on SOMs and DTW. Section 4.3 presents the SOMTimeS

algorithm. Section 4.4 and Section 4.5 evaluate the results of SOMTimeS clustering

algorithm on UCR benchmark datasets and serious illness discussions, respectively.

Section 4.6 discusses the results. Section 4.7 concludes the paper and suggests future

work.

4.2 Background

Similar to the work by Silva and Henriques (2020), Li et al. (2020), Parshutin and

Kuleshova (2008) and, Somervuo and Kohonen (1999), SOMTimeS combines an

artificial neural network known as the Kohonen SOM with the robust DTW-based

distance measure. While the Kohonen SOM (see details in Section 4.2.1) is linearly

scalable with respect to the number of input data, it often performs hundreds of

passes (i.e., epochs) when self-organizing or clustering the training data. Each epoch

requires n×M distance calculations, where n is the number of observations andM is

the number of nodes in the network map. This large number of distance calculations

is problematic, particularly when the distance measure is computationally expensive,

as is the case with DTW (see Section 4.2.2).

DTW, originally introduced in 1970s for speech recognition (Sakoe and Chiba,

1978), continues to be one of the more robust, top performing, and consistently
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chosen learning algorithms for time series data (Xi et al., 2006; Ding et al., 2008;

Paparrizos and Gravano, 2016, 2017; Begum et al., 2015; Javed et al., 2020b). Its

ability to shift, stretch, and squeeze portions of the time series helps address challenges

inherent to time series data (e.g., aligning the shapes of conversational story arcs).

Unfortunately, the ability to distort the temporal dimension comes with increased

computational overhead, which has hindered its use in practical applications involving

large datasets or long time series clustering (Javed et al., 2020b; Zhu et al., 2012).

The first subquadratic-time algorithm (O(m2/ log logm)) for DTW computation was

proposed by Gold and Sharir (2018), which is still more computationally expensive

in comparison to the simpler Euclidean distance (O(m)).

To address the computational cost, several studies have presented approximate

solutions (Zhu et al., 2012; Salvador and Chan, 2007a; Al-Naymat et al., 2009). To

the best of our knowledge, TADPole by Begum et al. (2015) is the only algorithm

(see supplementary material Section 4.8.1) that speeds up the DTW computation

without using an approximation. It does so by using a bounding mechanism to prune

the expensive DTW calculations. Yet, when coupled with the clustering algorithm

(i.e., Density Peaks of Rodriguez and Laio (2014)), it still scales quadratically. Thus,

even after decades of research (Zhu et al., 2012; Begum et al., 2015; Lou et al.,

2015; Salvador and Chan, 2007b; Wu and Keogh, 2020), the almost quadratic time

complexity of DTW-based clustering still poses a challenge when clustering time series

in practice.
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4.2.1 Self Organizing Maps

Figure 4.1: Self-organizing maps used for clustering and visualizing times series observations
from the UCR archive dataset — InsectEPGRegularTrain; the self-organized data are shown
with (a) a unified distance matrix, (b) color-coded clusters, and (c) a single input variable
(or feature value) in the background.

The Kohonen Self-Organizing Map (Kohonen et al., 2001; Kohonen, 2013) may

be used for either clustering or classifying observations, and has advantages when

visualizing complex, nonlinear data (Alvarez-Guerra et al., 2008; Eshghi et al., 2011).

Additionally, it has been shown to outperform other parametric methods on datasets

containing outliers or high variance (Mangiameli et al., 1996). Similar to methods

such as logistic regression and principal component analysis, SOMs may be used for

feature selection, as well as mapping input data from a high-dimensional space to

a lower-dimensional space (typically a two-dimensional mesh or lattice); one such

example is shown in Figure 4.1. The SOM clustering results using input data from

one of the datasets in the UCR classification archive (InsectEPGRegularTrain) have

been self-organized onto a 2-D mesh. Each gray node represents a time series (i.e.,

temporal pattern or arc). The self-organized observations may be plotted with what is

known as a unified distance matrix or U-matrix (Ultsch, 1993). The latter is obtained
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by calculating the average difference between the weights of adjacent nodes in the

trained SOM, and then plotting these values (in a gray scale of Figure 4.1) on the

trained 2-D mesh. Darker shading represents higher U-matrix values (larger average

distance between observations). In this manner, the U-matrix can help assess the

quality and the number of clusters. For example, see the U-matrix of Figure 4.1(b),

which separates the observations into three clusters that may be color-coded or labeled

(should labels exist). Finally, any information, input features, or metadata associated

with the observations may be visualized (red shading of Figure 4.1(c)) in the same

2-D space in order to explore associations and the importance of individual input

features with the clustered results. The ability to visualize individual input features

in the same space as the clustered observations (known as component planes) makes

the SOM a powerful tool for data analysis and feature selection.

4.2.2 Dynamic time warping

DTW is recognized as one of the most accurate similarity measures for time

series data (Paparrizos and Gravano, 2017; Rakthanmanon et al., 2012; Johnpaul

et al., 2020). While the most common measure, Euclidean distance, uses a

one-to-one alignment between two time series (e.g., labeled candidate and query in

Figure 4.2(a)), DTW employs a one-to-many alignment that warps the time dimension

(see Figure 4.2(b)) in order to minimize the sum of distances between time series

samples. As such, DTW can optimize alignment both globally (by shifting the entire

time series left or right) and locally (by stretching or squeezing portions of the time
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series). The optimal alignment should adhere to three rules:

1. Each point in the query time series must be aligned with one or more points

from candidate time series, and vice versa.

2. The first and last points of the query time series and a candidate time series

must align with each other.

3. No cross-alignment is allowed; that is, the aligned time series indices must

increase monotonically.

Figure 4.2: Alignment between two times series for calculating (a) Euclidean distance and
(b) DTW distance.

DTW is often restricted to aligning points only within a moving window of a

fixed size to improve accuracy and reduce computational cost. The window size may

be optimized using supervised learning on training data, but for clustering where

supervised learning is not possible, a window size amounting to 10% of the observation

data is usually considered adequate (Ratanamahatana and Keogh, 2004).

Upper and lower bounds of DTW distance

SOMTimeS uses distance bounding to prune the DTW calculations performed during

the SOM unsupervised learning. This distance bounding involves finding a tight upper
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and lower bound. Because DTW is designed to find a mapping that minimizes the sum

of the point-to-point distances between two time series, that mapping can never result

in a distance that is greater than the sum of point-to-point Euclidean distance. Hence,

finding the tight upper bound is straight forward – it is the Euclidean distance (Keogh,

2002). To find the lower bound, we use the LB_Keogh method (Keogh and Kasetty,

2003), which is commonly used in similarity searches (Keogh and Kasetty, 2003;

Ratanamahatana et al., 2005; Li Wei et al., 2005) and clustering (Begum et al., 2015).

The method comprises two steps (see Figure 4.3a and Figure 4.3b). Given a fixed

Figure 4.3: Two steps of calculating the L_Keogh tight lower bound for DTW in linear
time: (a) determine the envelope around a query time series, and (b) sum the point to point
distance shown in grey lines between the envelope and a candidate time series as LB_Keogh
(Equation 4.2).

DTW window size, W , one of the two time series (called the query time series, Q) is

bounded by an envelope having an upper (Ui) and lower boundary (Li) calculated,

respectively as:

Ui = max(qa, ..., qi, ..., qb)

Li = min(qa, ..., qi, ..., qb)
(4.1)

where a = i−W , and b = i+W (see Figure 4.3a). In the second step, the LB_Keogh

lower bound is calculated as the sum of Euclidean distance between the candidate time

series and the envelope boundaries (see vertical lines of Figure 4.3b). Equation 4.2
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shows the formula for calculating LB_Keogh:

LB_Keogh =

√√√√√√√√√√√√√√√√
m∑

i=1



(ti − Ui)2, if ti > Ui

(ti − Li)2, if ti < Li

0, otherwise

(4.2)

where ti, Ui, and Li are the values of a candidate time series, the upper and lower

envelope boundary, respectively, at time step i.

4.3 The SOMTimeS Algorithm

Figure 4.4: Schematic of the Kohonen Self-Organizing Map (after Kohnen, 2001) showing
weights (candidate time series) of the best matching unit (BMU) in blue surrounded by a
user-specified neighborhood (Nc).

SOMTimeS is a variant of the SOM (see Algorithm 4.1), where each input

observation (i.e., query time series) is compared with the weights (i.e., candidate time
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series) associated with each node in the 2-D mesh (see Figure 4.4). During training,

the comparison (or distance calculation) between these two time series is performed

to identify the SOM node whose weights are most similar to a given input time series;

this node is identified as the “best matching unit (BMU)”. Once the nodal weights

(candidate time series) of the BMU have been identified, these weights (and those of

the neighborhood nodes) are updated to more closely match the query time series.

This same process is performed for all query time series in the dataset – defined as one

epoch. While iterating through some user-defined fixed number of epochs, both the

neighborhood size and the magnitude of change to nodal weights are incrementally

reduced. This allows the SOM to self-organized or converge to a solution (stable

map of clustered nodes), where the set of weights associated with these self-organized

nodes now approximate the input time series (i.e., observed data). In SOMTimeS,

the distance calculation is done using DTW with bounding, which helps prune the

number of DTW calculations required to identify the BMU.

Figure 4.5: Identification of a qualification region in SOMTimeS.

The pruning is performed in two steps. First, an upper bound (i.e., Euclidean

distance) is calculated between the input observation and each weight vector
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associated with the SOM nodes (Line 9 of Algorithm 4.1). The minimum of these

upper bounds is set as the pruning threshold (see dotted line in Figure 4.5). Next,

for each SOM node we calculate a lower bound (i.e., LB_Keogh; see Line 10). If the

calculated lower bound is greater than the pruning threshold, the respective node is

pruned from being the BMU. If the lower bound is less than the pruning threshold,

then that SOM node lies in what we call the potential BMU region (see Figure 4.5,

and Line 11). As a result, the more expensive DTW calculations are performed only

for the nodes in this potential BMU region; the one with the minimum summed

distance is the BMU.

After identifying the BMUs for each input time series, the BMU weights, as well

as the weights attached to nodes in some neighborhood of the BMUs, are updated

to more closely match the respective input time series using a traditional learning

algorithm based on gradient descent (Line 15 of Algorithm 4.1). Both the learning

rate and the neighborhood size are reduced (see lines 16 and 17) over each epoch

until the nodes have self-organized (i.e., algorithm has converged). In this work,

unless otherwise stated, SOMTimeS is trained for 100 epochs. To further reduce

the SOM execution time, the set of input time series (i.e., set of query time series)

may be partitioned in a manner similar to Wu et al. (1991), Obermayer et al. (1990)

and Lawrence et al. (1999) for parallel processing (see Line 5). We should also note

that after convergence, SOMTimeS may be used to classify observations into a given

number of clusters. This is done by setting the mesh size equal to k (desired number

of clusters), and using the weights of the BMUs for direct cluster assignment.
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Algorithm SOMTimeS
Input: a set S of query time series {Q1, Q2, ..., Qn}, epochs: number of
epochs, W : warping window size
Assumption: Similarity between two observation is the DTW distance
between their time series.
Output: Best Matching Units
Procedure

1 mesh_size M := 5×
√
n // n = the number of time series in S

2 Create and randomly initialize a mesh of Nodes[
√
M ,
√
M ], where the weights

of each node are a randomly-generated time series (candidate time series) of
length equal to the query time series.

3 neighborhood size Nc :=
√
M/2

4 learning rate r := 0.9
5 Split S into subsets of equal size, S1,S2, ...,Sc, where c is the number of

available CPU cores in the machine.
6 for each epoch p do
7 for each split Si (i = 1, 2, ..., c) assigned to the core i in parallel do
8 for each input time series Qij

(j = 1, 2, ..., n/c) in Si do
9 upper bounds:= Euclidean distances between Qij

and weights of
each node.

10 lower bounds:= LB_Keogh between Qij
and weights of each node

using the W .
// Prune the set of all nodes to the set of
qualified nodes.
Qualified:= Set of nodes whose weights have a lower bound with
Qij
≤ min(upper bounds).

11 Best matching unit:= Compute DTW distance between Qij
and

weights of nodes in Qualified. The best matching unit (BMU) is
the node whose weights are most similar to Qij

.
12 end
13 end
14 for each time series Qi(i = 1, 2, ..., n) do
15 Update the node weights of the BMU (and its neighborhood)

identified for Qi using a gradient descent based on learning rate, to
more closely match Qi.

16 end
// Update the neighborhood size and the learning rate in
SOM.
Nc :=

√
M/2× (1− p/#epochs)

17 r := 0.9× (1− p/#epochs)
18 end
19 return Best matching units

Algorithm 4.1: SOMTimeS algorithm
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4.4 Performance Evaluations

The UCR time series classification archive (Dau et al., 2018), with thousands of

citations and downloads, is arguably the most popular archive for benchmarking time

series clustering algorithms. The archive was bornout of frustration, with studies on

clustering and classification reporting error rates on a single time series dataset, and

then implying that the results would generalize to other datasets. At the time of

this writing, the archive has 128 datasets comprising a variety of synthetic, real, raw

and pre-processed time series data, and has been used extensively for benchmarking

the performance of clustering algorithms (e.g., Paparrizos and Gravano, 2016, 2017;

Begum et al., 2015; Javed et al., 2020b; Zhu et al., 2012). For the evaluation of

SOMTimeS, we excluded sixteen of the archive datasets because they contained only

a single cluster, or had time series lengths that vary. The latter prohibited a fair

comparison of SOMTimeS to K-means. The remaining 112 datasets were used to

evaluate the accuracy, execution time, and scalability of SOMTimeS. We fixed the

DTW window constraint at 5% of the length of the observation data following earlier

recommendations by Paparrizos and Gravano (2016, 2017).

4.4.1 Algorithm Assessment

Accuracy is reported using six assessment metrics, which include the Adjusted

Rand Index (ARI) (Santos and Embrechts, 2009), Adjusted Mutual Information

(AMI) (Romano et al., 2016), the Rand Index (RI) (Hubert and Arabie, 1985),

115



Homogeneity (Rosenberg and Hirschberg, 2007), Completeness (Rosenberg and

Hirschberg, 2007), and Fowlkes Mallows index (FMS) (Fowlkes and Mallows, 1983).

Scalability and execution time of DTW-based clustering algorithms are inversely

affected by the length and total number of times series being clustered or classified.

As a result, we report the number of DTW computations and execution time as a

function of problem size, defined as ∑n
i=1 |Q|i, where |Q| is the length of times series

Q, and n is the total number of time series in the dataset. The presence of a few

large datasets in the archive makes it more informative to visualize problem size as the

natural logarithm (see Figure S1 in Supplementary Material). Finally, for comparison

purposes, the same assessment metrics are reported for two of the more popular and

robust clustering algorithms that use DTW as a distance measure — 1) K-means and

2) TADPole.

Clustering quality

The performance of SOMTimeS may be quantified in two important ways — 1)

comparison to available ground truth observations (i.e., in our case, the class

labels accompanying each dataset in the UCR archive), and 2) comparison to other

established DTW-based clustering methods.

Table 4.1 summarizes the execution time and six assessment indices associated

with the performance of the SOMTimeS, and the two top-performing DTW-based
1Adjusted Rand Index (Santos and Embrechts, 2009)
2Adjusted Mutual Information (Romano et al., 2016)
3Rand Index (Hubert and Arabie, 1985)
4Homogeneity (Rosenberg and Hirschberg, 2007)
5Completeness (Rosenberg and Hirschberg, 2007)
6Fowlkes Mallows index (Fowlkes and Mallows, 1983)
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Table 4.1: Comparison of execution time and assessment metrics for SOMTimeS, K-means
and TADPole clustering methods using six assessment indices averaged over the 112 datasets
in the UCR archive. Note: Assessment indices (usually expressed as values between 0 and
1) have been multiplied by 100; metric averages closer to 100 represent better performance.

Algorithm Hours ARI 1 AMI 2 RI 3 H4 C5 FMS6

avg std avg std avg std avg std avg std avg std
SOMTimeS
100-epochs 98 24 23 30 26 71 16 31 25 35 28 50 19

K-means - DTW 158 24 24 29 25 71 16 31 27 34 28 51 19
TADPole 1011 16 25 24 27 62 18 25 26 36 31 51 20

Figure 4.6: ARI scores for SOMTimeS (shown in green) vs. (a) TADPole (red), and (b)
K-means (blue) across all 112 of the UCR datasets.

clustering algorithms — K-means and TADPole clustering algorithms. While on

average, SOMTimeS has higher assessment indices and lower standard deviations

compared to K-means and TADPole, the differences between SOMTimeS and

K-means are negligible. Because ARI is recommended as one of the more robust

measures for assessing accuracy across datasets (Milligan and Cooper, 1986; Javed

et al., 2020b), we plot the ARI scores for SOMTimeS vs. TADPole, and SOMTimeS

vs. K-means (Figures 4.6 (a) and (b), respectively) for each of the 112 URC datasets.

The green points (75 of the 112 datasets) lying below the 45-degree line of panel

(a) represent higher accuracy for SOMTimeS, while ARI scores above the diagonal

(shown in red) indicate that TADPole outperforms SOMTimeS for 37 of the 112
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datasets. The comparison of ARI scores for SOMTimeS and K-means (Figure 4.6b)

shows higher accuracy for SOMTimeS for 52 of the 112 datasets, and lower accuracy

for the remaining 60 datasets.

Execution time and scalability

While the assessment metrics are very similar across all three algorithms, SOMTimeS

is much faster. When SOMTimeS is implemented on a single CPU, the algorithm

takes 98 hours (4 days) to cluster all 112 of the archived datasets. The closest

competitor from an accuracy standpoint took 158 hours (6.5 days) when the number of

iterations was capped at 10 or until it was run to convergence, whichever was shorter.

TADPole, on the other hand, took more than 40 days. All algorithms were executed

on same computational machine — dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz

machine with 512 GB 2,133 MHz DDR4 RDIMM. Moreover, SOMTimeS is amenable

to parallelization and, when SOMTimeS is executed in parallel, the execution time

reduces by a factor of the number of CPUs. In this benchmark study, it took 4.9

hours using 20 CPUs (and took only 40 minutes with comparable accuracy (ARI of

0.21± 0.23) when the number of SOM epochs was reduced from 100 to 10).

SOMTimeS’ scalability with the problem size (i.e., the number and lengths of time

series data) is a result of the pruning strategy. We study the effects of the pruning in

four ways — 1) percentage of DTW computations pruned as function of time series

length, 2) the total number of DTW computations pruned, 3) the scalability as a

function of DTW computations performed, and 4) the change in DTW pruning rate

over epochs.
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Percentage of pruning with respect to the length of individual time

series: Because DTW scales with the length of individual time series, we examined

the number of DTW computations pruned as a function of time series length.

Figure 4.7a shows the percentage of DTW computations pruned for increasing time

series length, in linear scale axis for a subset (n=36) of the UCR archived datasets.

Here the subset comprises all datasets where the total number of time series is greater

than 100 and the length of time series is greater than 500. Figure 4.7b shows the

corresponding log-log plot, where the slope approximates the relationship between

pruning rate and time series length. This increase in pruning rate is close to the DTW

complexity of ((m2/ log logm)), where m is the length of time series (see Figure 4.7c).

Figure 4.7: Percentage of DTW computations pruned with respect to the time series length
shown in (a) linear scale axis, (b) logarithm scale; each green star represents one of the 36
UCR archived datasets, and (c) empirical approximation of the pruning rate as a function
of time series length (m).

The total number of DTW computations pruned: Since TADPole is

the only algorithm designed to prune unnecessary DTW calculations to speed up

clustering, we compared the pruning effects of SOMTimeS with that of TADPole.

SOMTimeS (with epochs set to 10 and 100, respectively) pruned more than 50%
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Figure 4.8: The pruning effect of SOMTimeS (10 epochs shown in blown stars), SOMTimeS
(100 epochs in green stars) and TADPole (red squares) measured as the percentage of DTW
calls pruned during the clustering of a dataset for varying problem size in (a) linear scale
axis and (b) natural log axis.

of the DTW calculations for 8 and 21 of the 112 UCR datasets, respectively (see

Figure 4.8) whereas TADPole pruned more than 50% of the DTW calculations for

40 of the datasets. Despite this apparent pruning advantage of TADPole, however,

its quadratic O(n2) DTW calculations (as opposed to O(n) in SOMTimeS) results in

more DTW computations, particularly for larger datasets.

DTW computations performed: Since TADPole performs O(n2) DTW

calculations, the number of calls to DTW increases quadratically with the number n

of input time series. The cutoff (in terms of the number of input time series, n) at

which the number of calls to the DTW function in SOMTimeS is less than that of

TADPole, depending on the number of epochs. This cutoff is empirically observed to

be close to n = 100 and n = 2500 for 10 and 100 epochs, respectively (see Figure 4.9).

Overall, when clustering over all the datasets in the UCR archive, SOMTimeS

computed the DTW measure 13 million and 100 million times (at 10 and 100 epochs,

respectively); while TADPole by comparison computed DTW 200 million times (see
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Figure 4.9). At a dataset level, SOMTimeS had fewer calls for 88 of the datasets

(when using 10 epochs), and 26 of the datasets (for 100 epochs); yet regardless of the

epoch size, SOMTimeS achieved higher ARI scores than TADPole.

Figure 4.9: Comparison of the number of DTW computations performed for datasets
of varying sizes between TADPole (200 million computations total) and SOMTimeS (13
million computations total at 10 epochs, and 100 million computations at 100 epochs) shown
on linear scale axis (panels a and c) and corresponding natural-log axis (panels b and d).

Change in the pruning rate over epochs: When we examine the pruning

effect as a function of epochs, both the number of DTW calls and the execution

time decrease as the number of epochs increases. Figure 4.10a shows the total

number of calls to the DTW function made for each dataset, normalized over all

epochs. The dashed line represents the average number of calls over all datasets

and the shaded region shows the 95% confidence interval. Figure 4.10b shows the

corresponding normalized execution time. Both DTW calls and execution time per

epoch steadily decrease with increasing number of epochs and iterative updating of
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SOM weights. The elbow point, where further epochs resultin diminishing reductions

of DTW calculations, is at the 6th epoch. This point is called the swapover point

and occurs when the self-organizing map moves from gross reorganization of the SOM

weights to fine-tuning of the weights.

(a) (b)

Figure 4.10: Change in the pruning effect of SOMTimeS measured as (a) the number of
calls to the DTW functionand (b) the execution time as the number of epochs increases.
The dashed line represents the mean value for all datasets after individually normalizing
run for each dataset over all epochs. The shaded region corresponds to 95% confidence
interval around the mean.

Finally, Figure 4.11 shows how SOMTimeS execution time scales with the problem

size. It increases at a lower rate than both TADPole and K-means. TADPole increases

at the highest rate, consistent with its O(n2) complexity of DTW calculations,

followed by K-means with a complexity of O(n× k× number of iterations), where k

is the number of clusters. SOMTimeS has complexity of O(n× k× e), where e is the

number of epochs. While in theory K-means has complexity of DTW calculations

similar to that of SOMTimeS, it does not prune the DTW calculations, and as a

result, it is both slower and less scalable. For an empirical point of view, SOMTimeS

scales better than existing DTW-based clustering algorithms.
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Figure 4.11: Execution time of K-means, TADPole, and SOMTimeS for the select 112 UCR
archive datasets in (a) linear scale axis, and (b) natural log axis.

4.5 Application to Serious Illness

Conversations

We demonstrate the utility of SOMtimeS in visualizing clustering output by

applying it to healthcare communication using actual lexical data collected in the

Palliative Care Communication Research Initiative (PCCRI) cohort study (Gramling

et al., 2015). The PCCRI is a multisite, epidemiological study that includes

verbatim transcriptions of audio-recorded palliative care consultations involving 231

hospitalized people with advanced cancer, their families and 54 palliative care

clinicians.
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4.5.1 Need for scalability in health care

communication science

Understanding and improving healthcare communication requires a method that can

measure what actually happens when patients, families, and clinicians interact in

large enough samples to represent diverse cultural, dialectical, decisional and clinical

contexts (Tulsky et al., 2017). Some features of inter-personal communication, such as

tone or lexicon, will require frequent sampling over the course of conversation in order

to reveal overarching patterns indicating types of interactions. Discovering patterns

(i.e., clusters) of conversations with frequent sampling of features over conversation

presents a need for scalable unsupervised machine learning methods. SOMTimeS is

equipped to meet the need.

Our previous work suggests that conversational narrative analysis offers a clinically

meaningful framework for understanding serious illness conversations (Ross et al.,

2020; Gramling et al., 2021), and others have demonstrated that unsupervised

machine learning can identify “types of stories” using time-series analysis of

lexicon (Reagan et al., 2016). One core feature of conversational narrative, called

temporal reference, characterizes how participants organize their conversations about

things that happened in the past, are happening now, or may happen in the

future (Romaine, 1983). This motivates a study of how SOMtimeS can be useful

to explore potential clusters of “emporal reference story arcs”. Natural language

processing methods can reasonably estimate the shape or “arc” of temporal reference
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by categorizing verb tenses spoken during a conversation and describing the relative

frequency of past/present/future referents over sequential deciles of total words

spoken in the conversation (i.e., narrative time). In order to avoid sparse decile-level

data in shorter conversations, we selected the 171 of 231 PCCRI clinical conversations

as the basis for examining potential clustering.

4.5.2 Data pre-processing: Verb tense as a time

series

We used a temporal reference tagger (Ross et al., 2020) to assign temporal reference

(past, present, or future) to verbs and verb modifiers in the verbatim transcripts.

Specifically, the Natural Language Toolkit (NLTK; www.nltk.org) was used to classify

each word in the transcripts into a part of speech (POS), and for any word classified as

a verb, the preceding context is used to assign that verb (and any modifiers) to a given

temporal reference. Then, each conversation was stratified into deciles of “narrative

time” based on the total word count for each conversation, and a temporal reference

(i.e., verb tense) time series was generated for each conversation as the proportion

of all future tense verbs relative to the total number of past and future tense verbs.

The vertical axis in Figure 4.12 represents the proportion of future vs. past talk

(per decile), where any value above the threshold (dashed line = 0.5) represents

more future talk. Each of the 171 generated time series (see Figure 4.12a) were then

smoothed using a 2nd-order, 9-step Savitzky-Golay filter (Savitzky and Golay, 1964)

(see Figure 4.12b). Savitzky-Golay filter works by fitting a polynomial over a moving
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window (2nd-order polynomial, over a 9-step window in this work) and replaces the

data points with corresponding values of the fitted polynomial. Smoothing reduces

noise that may result from simplifying assumptions used in modeling the temporal

reference time series (i.e., conversational story arcs). We then used SOMTimeS to

cluster the resulting conversational story arcs.

(a) (b)

Figure 4.12: Temporal plot showing the (a) raw time series, and (b) smoothed time series
for all conversations superimposed in brown; the red line represents the mean values, and
the shaded region around the red line represents 95% confidence interval.

4.5.3 Clustering verb tense time series

In applying SOMTimeS to the conversational PCCRI data, we identified k = 2

clusters with distinct temporal shapes (see Figure 4.13). Both of the conversational

arcs share a temporal narrative with more references to the past at the beginning of

the conversation, and more references to the future as the conversation progresses.

The proportions of future talk and past talk are more similar at deciles 1 and 10 than

at deciles 2 to 9. These conversational arcs are differentiated by the rate at which the

narrative changes. Cluster 1 does not enter the “more future talk” region until decile

9, while cluster 2 does much earlier (decile 2). It was expected that the first and last
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deciles of the conversations would be more similar given the nature of introductionat

the start and farewellat the end of a conversation.

Figure 4.13: Mean values of the proportion of future and past (i.e., verb tense) talks over
the narrative time decile for cluster 1 (green) and cluster 2 (brown) with the shaded region
representing 95% confidence interval.

Now, let us illustrate how SOMTimeS identifies the number of clusters and

visualizes the features that drive those clusters. When the U-matrix is superimposed

on the 2-D SOM mesh (see Figure 4.14a), the observations appear to cluster into 2–3

groups based on visual inspection. Keeping the case study objectives in mind, and

noting that the 2-D mesh is torodial, we color-coded the k = 2 clusters on Figure 4.14b

using spectral clustering. In Figure see 4.14c, we superimpose and interpolate the

sum of the proportion of future vs. past talk over all deciles in the time series (i.e.,

conversational arcs of Figure 4.13) in the same 2-D space as the clustered times series.

4.6 Discussion

We present SOMTimeS as a clustering algorithm for time series that exploits the

competitive learning of the Kohonen Self-Organizing Map, and the distance bounds

of DTW to improve execution time. SOMTimeS contrasts with other DTW-based
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Figure 4.14: Temporal reference time series data from 171 serious illness conversations
self-organized on a 2-D map(a) with U-matrix, (b) using spectral clustering, and (c)
interpolated sum of the temporal reference time series superimposed on the clustered map.

clustering algorithms given its ability to both reduce the dimensionality of, and

visualize input features associated with clustering temporal data. In terms of

accuracy, SOMTimeS has similar performance to K-means, which is not unexpected

given that both methods use single cluster centroid.

The benchmark experiments in this work are intended to put SOMTimeS in

context with state-of-the-art clustering algorithms. Keeping the study objectives

in mind, execution times are used to demonstrate scalability, and highlight the

feasibility of analyzing large time series datasets using SOMTimeS. K-means is

perhaps the most popular clustering algorithm and has been proven time and again to

outperform state-of-the-art algorithms; however, because of its simplicity, it lacks the

interpretability and visualization capabilities of SOMTimeS. TADPole on the other

hand, is a state-of-the-art clustering algorithm that organizes data differently from

SOMTimeS (and by extension K-means), as evident from the difference in ARI scores

(see Figure 4.6a), and choice of centroids (i.e., density peaks; see Supplementary

Material Section 4.8.1). For these reasons, the algorithms tested are not direct

competitors of each another and each has advantages in their own right.

128



SOMTimeS learns (i.e., self-organizes) in an iterative manner such that as the

number of SOM epochs increase, the execution time per epoch decreases (see

Figure 4.10b), making higher number of epochs feasible. This reduction in time is

also directly proportional to the number of calls to DTW function at each epoch. The

elbow point (at 6 for SOMTimeS with 100 epochs) indicates quick gains in pruning

DTW calculations. This same gain is observed when the total number of epochs

is set to 10 or 50 (see Supplementary Material Figure S2). SOMTimeS took 40

minutes to cluster the entire UCR archive using 10 epochs, and less than 300 minutes

when the number of epochs was increased 10-fold. Similarly, the largest dataset in

terms of problem size took 5 minutes to cluster using 10 epochs, and 35 minutes to

cluster at 100 epochs. SOMTimeS demonstrates sub-linear scalability when it comes

to increasing the number of epochs. The scalability, fast execution times, and the

ease of saving the state (weights) of a SOM make SOMTimeS a potential candidate

for an anytime algorithm. It possesses the five most desirable properties of anytime

algorithms (Zilberstein and Russell, 1995; Zhu et al., 2012).

4.7 Conclusion and Future Work

The explosion in volume of time series data has resulted in the availability of

large unlabeled time datasets. In this work, we introduce self-organizing maps for

time series (SOMTimeS). SOMTimeS is a self-organizing map for clustering and

classifying time series data that uses DTW as a distance measure of similarity between

time series. To reduce run time and improve scalability, SOMTimeS prunes DTW
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calculations by using distance bounding during the SOM training phase. This pruning

results in a computationally efficient and fast time series clustering algorithm that

is linearly scalable with respect to increasing number of observations. SOMTimeS

clustered 112 datasets from the UCR time series classification archive in under 5

hours with state-of-art accuracy. In comparison, other DTW-based algorithms can

take anywhere from days to months on the same computing platform. We applied

SOMTimeS to 171 conversations from the PCCRI dataset. The resulting clusters

showed two fundamental shapes of conversational stories.

To further improve computational efficiency and clustering accuracy, newer and

state-of-the-art variations of SOMs may be used that leverage the same pruning

strategy in this work. Improving computational time of DTW-based algorithms is

an active area of research, and any improvement in computational speed of DTW

can be incorporated in SOMTimeS for the unpruned DTW computations. Finally,

SOMTimeS is a uni-variate time series clustering algorithm. To create a multivariate

time series clustering algorithm, the pruning strategy will have to be revisited to

accommodate the variations of DTW for multi-variate time series. SOMTimeS is a

fast and linearly scalable algorithm that recasts DTW as a computationally efficient

distance measure for time series data clustering.
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4.8 Supplementary Material

This supplementary material provides additional information on the following aspects

of the study:

1. Section 4.8.1 describes the TADPole (Begum et al., 2015) algorithm.

2. Figure S1 show datasets sorted by increasing problem size on arithmetic and

log-log scale.

3. Figure S2 shows change in pruning efficiency of SOMTimeS when the total

number of epochs are set to 10.
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4.8.1 TADPole

TADPole (Begum et al., 2015) is a density based clustering method that uses

Density Peaks (Rodriguez and Laio, 2014) as the clustering algorithm and DTW

as the distance measure. The Density Peaks algorithm generates cluster centroids

(called “density peaks”) that are surrounded by neighboring data points that have

lower local density and are relatively farther from data points with a higher local

density (Rodriguez and Laio, 2014). The algorithm has two phases. It first finds

centroids (density peaks), and then assigns data points to the closest centroid. The

algorithm requires two input parameters: the number of clusters (k) and the local

neighborhood distance d (wherein the local density of a data point is calculated). In

this work, when TADPole is used, k is assumed to be known, and the value of d is

determined as the distance wherein the average number of neighbors is 1 to 2% of the

total number of observations in the dataset, following a rule of thumb proposed by the

original authors (Rodriguez and Laio, 2014). TADPole uses upper bound (Euclidean

distance) and lower bound (LB_Keogh) to prune unnecessary DTW calculations in

the first phase to speed up the clustering. The algorithm has a complexity of O(n2)

where n is the number of time series observations in the input.

(a) (b)

Figure S1: Distribution of all 128 datasets in the UCR archive in terms of (a) problem size
and (b) natural log of problem size

.
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(a) DTW calculations over epochs (b) Execution time over epochs

Figure S2: Change in pruning efficiency of SOMTimeS (10 epochs total) as reflected by the
calls to DTW function, and execution time over epochs. The dotted line represents the mean
value for all datasets after individually normalizing run for each dataset over all epochs.
The shaded region corresponds to 95% confidence interval around the mean.

139



Chapter 5

Conclusion

5.1 Summary

Across the three studies in this dissertation, the common, overarching theme is the

clustering of time series with a strong focus on distance measures that enabled time

series clustering of real-world observations/events.

In Chapter 2, the time series clustering benchmark study presented used all 128

datasets from the UCR time series classification archive. Observations in the datasets

are modeled as time series by default. The data were used in their original form

without any preprocessing to keep the benchmark study as unbiased as possible.

To ensure the results are useful for a broad range of researchers the benchmark

study examined eight popular clustering methods representing three categories of

clustering algorithms (partitional, hierarchical and density-based) and three types of

distance measures (Euclidean, dynamic time warping, and shape-based). A phased

evaluation framework was designed to study the tradeoffs between different algorithms

and distance measures. The clustering was evaluated using six popular performance

metrics and a proposed measure of spread to assess the variability in performance

between two clustering methods. The clustering methods demonstrated high variation
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in performance across the datasets. The benchmark study concludes that in the

absence of labeled data, the selection of a clustering method requires a thorough

understanding of the data, the application at hand and the study objectives.

In Chapter 3, hydrological storm events were modeled as multivariate event

time series of river discharge and suspended sediment data. Careful selection of

preprocessing routines (i.e., normalization and smoothing) assured that clustering

was driven by the shape of the C-Q time series and not by sensor noise or magnitude

of the variables. The study used k-medoids as the clustering algorithm and DTW as

the distance measure for their respective abilities to overcome outliers and sensor

noise. A synthetic hydrological storm event data generator was designed and

used to produce time series (event data) for different types of hydrological storm

events. Multivariate event time series (METS) clustering was validated using

this synthetic storm event data. The METS clustering was then applied to 603

hydrological events (i.e., river discharge and suspended sediment data) acquired

through turbidity-based monitoring from six watersheds in the Lake Champlain Basin

located in the Northeastern United States; this resulted in identifying four common

types of hydrological water quality events. A separate statistical analysis of the events

helped identify hydrometeorological features in common with (perhaps drivers) of the

event types. METS clustering approach opens up new possibilities for interpreting

emergent event behavior in watersheds.

In Chapter 4, feature values extracted as temporal reference from conversations

between seriously ill patients and their palliative care team were modeled as story

arcs over time. Careful preprocessing assured that features meaningful to serious

illness conversations, such as the proportion of future talk relative to past talk, were

preserved in the time series. These temporal data were clustered; DTW was selected

as the distance measure for its resilience to temporal distortions when aligning the

story arcs. To increase the computational efficiency of DTW-based clustering, a new
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method, called SOMTimeS (a SOM for TIME Series) was developed and applied to

the select conversational feature. SOMTimeS exploits the competitive learning step

of SOMs and the distance bounding of DTW. SOMTimeS was tested for accuracy,

speed, and scalability on 128 datasets from the same UCR time series classification

archive used in the benchmark study of Chapter 2. SOMTimeS accurately clustered

all 128 UCR datasets suitable for clustering in under 5 hours, while other competitors

took anywhere from 158 to 1011 hours on the same computing platform. SOMTimeS

was then applied to the feature value arcs (i.e., past and future verb tense) of

serious illness conversations and resulted in identifying two types of conversational

stories. Statistical analysis using pre- and post- conversation surveys helped visualize

whether the survey data (independent output variables) were correlated with the

identified conversation types/shapes with the intent of improving clinician-patient

communication. SOMTimeS provides researchers with a powerful algorithm to cluster

large time series datasets.

While clustering methods will organize input data into groups, there is no universal

standard for optimizing the number of clusters. Clustering methods are used often

as a sub-routine for further down-stream tasks ( e.g., engine optimization and image

processing), which may be used to assess the clustering with respect to the overall

arching goals. This in turn may be used to improve the clustering method. As

mentioned in Chapter 2, the validity of the clustering results depends on the target

research goals as well as the available data.

5.2 Suggested Future Work

There are three primary areas for future work, each corresponding to a chapter of this

dissertation. For the clustering benchmark study, presented in Chapter 2, quantifying

the optimal number of clusters and precision and recall of clusters remains an active
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research problem. External evaluation measures that compare clustering output to

ground truth are useful for benchmarking, but not as informative for exploratory

analysis. Internal evaluation measures quantify the intra cluster coherence and inter

cluster separation by using a distance measure. When an appropriate clustering

algorithm and distance measure are selected, both the internal and external measures

will quantify the clustering similarity with consistency. In other words, both the

internal and external assessment scores will either be low or high. Comprehensive

benchmark studies focusing on time series distance measures can help expand the

application of novel distance measures and improve our ability to quantify goodness

of clusters.

In the METS clustering of Chapter 3, there are three directions for future work.

The first relates to the complimentary nature of clustering and classification (e.g.,

leveraging the advantages of different classification and clustering algorithms to solve

real-world problems). We demonstrated METS’ strengths in tandem with the readlity

accepted hysteresis classification scheme of Williams (1989) by first classifying the

hydraulic events based on their hysteresis loop direction, followed by METS clustering.

The order of the tandem approach was based on the desire to preserve the timing of

the peaks and degree of offset between the two time series (i.e., hydrograph and

sedigraph) that are popular in the hydraulic community. Because DTW is not

designed to preserve the directional offset in peak timing (e.g., whether the peak of the

sedigraph occurs before or after the hydrograph peak) without altering the distance

measure, and because the existing hysteresis loop method captures this feature so

well, we opted to use the two methods in tandem in order to leverage their respective

strengths. While hysteresis loop classification captures the timing between the two

peaks, the METS’ DTW distance measure captures the vertical distance between

the two time series. For instance, the offset of the two time series at the end of a

hydrological event provides valuable process-based information on the ability of the
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hydrograph to return to baseflow, which relates to the degree of subsurface saturation.

In general, however, this leveraging of methodological strengths may be accomplished

in other ways. While not applicable given our motivation on sediment transport, if

the degree of subsurface saturation was of interest to stakeholder (e.g., because of

concerns regarding flooding), then it might be advantageous to reverse the order of

METS and Williams’ classifications. Alternatively, one could use a hybrid approach

(i.e., classify events using both methods in parallel) and weight the classifications

based on stakeholder needs.

The second direction for future work using METS involves the methods for

preprocessing data, which has a significant impact on the clustered output. The

hydrological input data to METS were normalized by the magnitude of the storm

event to values between 0 and 1, and standardized in time such that each individual

storm event has the same duration. Doing so was an attempt to force the clustering

to be driven by the shape of the multivariate time series and not the magnitude

or duration of an event. However, a classification scheme that preserves the

magnitude and duration of the individual events would have value in stream hydrology

applications. As a result, if METS were used without normalizing magnitude and

standardizing time in the manner done in this work, the event classification results

may very well be different from the classification result presented in this work.

The third direction for future work in METS, involves the choice of the K-medoids

algorithm as a partitional clustering algorithm; the latter assigns every event to a

certain cluster. In other words, K-medoids will not classify an event as a noisy event

(i.e., not assigned to any cluster). Using a modified K-medoids, or replacing it with

a density-based clustering algorithm like DBSCAN, will allow for identification of

complex type events that are not classifiable and, thereby, generate more meaningful

clusters.

The SOMTimeS algorithm presented in Chapter 4 is a computationally efficient
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DTW-based clustering algorithm. While already fast and accurate in performance,

SOMTimeS can still benefit from advances in learning rate optimization (e.g.,

momentum) that further reduce the execution time and often help avoid local optima.

In addition, different methods for defining the neighborhood of weights or convergence

algorithms can be incorporated to tailor SOMTimeS to research studies with different

objectives.
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