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ABSTRACT 

 

 

Enhanced diffusion of a suspended particle in a porous medium has been observed when 

an oscillatory forcing has been imposed. The mechanism of enhancement, termed 

oscillatory diffusion, occurs when oscillating particles occasionally become temporarily 

trapped in the pore spaces of the porous medium, and are then later released back into 

the oscillatory flow. This thesis investigates the oscillatory diffusion process 

experimentally, stochastically, and analytically. An experimental apparatus, consisting 

of a packed bed of spheres subjected to an oscillatory flow field, was used to study the 

dynamics of a single particle. A variety of statistical measures were used and developed 

to characterize the diffusive process. A stochastic model was developed and showed great 

agreement with the experimental results. The experimentally validated stochastic model 

was then compared to an analytic prediction for diffusion coefficient from the 

continuous-time random walk (CTRW) theory for a range of physical and numerical 

parameter values. Good agreement between the stochastic model and CTRW theory was 

observed for certain ranges of parameter values, while differences of predictions are 

discussed and explained in terms of the assumptions used in each model. Results of the 

paper are relevant to applications such as nanoparticle penetration into biofilms, drug 

capsule penetration into human tissue, and microplastic transport within saturated soil.      
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CHAPTER 1: MOTIVATION AND OBJECTIVE 

1.1. Motivation 

The problem of diffusion of particles immersed in a porous medium is applicable 

to many fields. Furthermore, it has been experimentally observed in a number of contexts 

that imposing an oscillatory flow field (e.g., via an acoustic signal) on particles in a porous 

medium has increased their effective diffusion coefficient, allowing the particles to 

penetrate farther and faster than previously able (Ma et al., 2015; Paul et al., 2014). The 

mechanism facilitating this enhanced diffusion has been identified as a form of bulk 

diffusion termed oscillatory diffusion (Balakrishnan and Venkataraman, 1981b; Marshall, 

2016).  

Oscillatory diffusion occurs when a particle, in an oscillatory flow field, 

experiences random hindering, due to interactions with the surrounding porous medium, 

that either reduces the particle's velocity below that of the surrounding flow field or 

completely stops the particle. This process, averaged over an ensemble of particles, 

resembles a diffusion process (Marshall, 2016). A visual representation of this process is 

shown in Fig 1.1, where two particle paths are shown with one particle freely oscillating 

(blue) while the other particle experiences hindering due to a porous medium (red). Both 

particles are subjected to the same oscillatory flow field (𝑣𝑓). The figure shows the particle 

position as a time series, with arrows indicating the direction of the flow field. At the initial 

time (t0), both particles start at the same y-position (y0), with velocity oriented in the 

positive y-direction. Both particles oscillate in phase together until the red particle becomes 

stuck in one of the pores at time t1. This hindering of the red particle causes the blue particle 

to travel farther than the red particle during this time, resulting in an offset. Once the flow 
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field changes directions, the red particle is released and can now move with the flow field 

in phase with the blue particle, but the offset in the y-direction remains. The corresponding 

particle trajectories are also plotted in Figure 1, with the red line corresponding to the 

hindered (red) particle and the blue dashed line corresponding to the freely oscillating 

(blue) particle. It is observed that the process of the red particle being stuck for a period of 

time and then re-entering the flow allows for it to travel further from the initial y-position 

(𝑦0) than is the case for the blue particle, which simply oscillates up and down with the 

flow field. As the process is repeated with increasing time, the hindered (red) particle can 

drift further and further away from its initial position. Applying this process to a finite 

number of particles leads to a bulk diffusion away from the initial particle location y0. 

While the oscillatory diffusion phenomenon is qualitatively understood, an improved 

quantitative understanding of the phenomenon would aid in development of methods that 

utilize an oscillating flow field to enhance diffusion in porous media.   
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Figure 1: Schematic diagram comparing a freely oscillating particle (blue) and oscillatory diffusion 

of a particle in a porous bed (red), both subject to the same oscillating fluid velocity field 𝒗𝒇(𝒕). 

 

1.1.1 Biofilms 

A common porous medium of significant interest to several important applications 

is a biofilm. Biofilms are diverse colonies of microbes that are given structure by a 

polymeric matrix (EPS). The EPS, shown in Figure 2, is primary composed of 

polysaccharides, which allow bacteria to bind to various surfaces and survive environments 

that would be lethal for bacteria in a free-floating (planktonic) state. The EPS matrix also 

provides resistance to common eradication techniques such as antimicrobial agents or host 

organism immune defenses, which make treating diseases such as cystic fibrosis or 

tuberculosis more intensive (Hunter et al., 2008). Biofilms are also commonly found on 

medical equipment such as catheters, prosthetic heart values, and intrauterine devices, 

increasing the risk of infection. In the food industry, biofilms can be found on processing 
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equipment, increasing the likelihood of contamination (Kokare et al., 2009). The resistance 

to various antimicrobial agents that the EPS provides poses a major threat to the 

pharmaceutical industry as well as industries affected by the presence of biofilms, thus 

finding methods to mitigate biofilms is of great interest.  

 

Figure 2: Magnified electron micrograph of a biofilm of Staphylococcus aureus bacteria found on 

the luminal surface of an indwelling catheter (Hunter et al., 2008). 

Ultrasound has been used to mitigate biofilms in a process that has been called 

ultrasound histotripsy. This process attempts to use high intensity focused ultrasound to 

break down the EPS. This is done by inducing acoustic cavitation in the water present in 

biofilm which produces enough energy to cause cell damage, a diagram illustrating this 

process is provided in Figure 3 (Bsoul et al., 2010). Acoustic cavitation is the process of 

microscopic gas bubbles forming due to the local pressure drop, from an ultrasonic wave, 

to below the vapor pressure of the liquid. Once the bubbles form, they collapse producing 

a large concentration of energy. Using this method to treat biofilms has been studied and 

is found to increase biofilm removal and in some cases completely eradicate them (Bigelow 

et al., 2009; Bsoul et al., 2010). Though this method is very promising for removing 
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biofilms from non-organic surfaces, it requires a large amount of energy and there is 

clinical concern due to the tissue damage observed in testing.  

 

Figure 3: Schematic diagram of cavitation bubbles formation, growth, and implosion due to an 

ultrasonic wave (Johansson et al., 2017). 

A low energy biofilm mitigation approach was developed by using low intensity 

ultrasound (< 3 𝑊 𝑐𝑚2⁄ ) with an antimicrobial agent to eradicate biofilms. It was found 

that the oscillatory flow field imposed by the ultrasound coupled with the antimicrobials 

can enhance the degradation of biofilms (Pitt et al., 1994; Qian et al., 1996; Qian et al. 

1997; Rediske et al., 1999). Due to the lower power density used, the degradation of the 

biofilm is not due to the intensity of the ultrasound, but instead is hypothesized to be due 

to the enhanced transport of the microbial agents (Qian et al., 1996; Qian et al., 1997). This 

method has been proven in vivo by significantly reducing populations of Escherichia coli 

in rabbits, which is usually found on prosthetics (Rediske et al., 1999). Given the porous 

nature of biofilms, the process enhancing the diffusion of these antimicrobials is thought 

to be an oscillatory diffusion process where the antimicrobials are transported into the 

biofilm due to intermediate hindering caused by the EPS.   
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Antimicrobial administration can be further improved by encapsulating the 

antimicrobial agents in a nanoparticle. Nanoparticles, examples show in Figure 4, are 

submicron (< 100nm) spherical particles, typically liposomes or polymer hybrids, which 

provide shielding to reduce the interaction between the drugs and media, until such time 

that the contained medium is released. This shielding allows the antibiotic to penetrate 

farther than un-encapsulated antimicrobial agents, which decreases the amount of agent 

needed and allows a higher concentration of drugs to be administered at infected sites 

without losing some of the bulk antibiotic during transport. The nanoparticles have also 

been shown to circumvent some of the resistance mechanisms that biofilms use to reduce 

the diffusion of antimicrobial agents (Cheow et al., 2011; Forier et al., 2014). The enhanced 

efficacy of this method has been shown to improve the thrombolytic effect, used to break 

down blood clots, when compared to an un-encapsulated agent with the same ultrasonic 

treatment (Tiukinhoy-Laing et al., 2007).  

 

Figure 4: Schematic representation of polymer and lipid–polymer hybrid nanoparticles (Forier et 

al., 2014). 
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1.1.2 Targeted Drug Delivery 

Another application of interest that utilizes an oscillating flow field to enhance 

particle transport is targeted drug delivery methods. Traditional drug delivery methods 

introduce the medicine to the vascular system, orally or intravenously, where it will be 

carried through the body and eventually reach the disease site (Figure 5). Unfortunately, 

this method requires more drug than needed to treat the diseased cells and exposes healthy 

tissue to the drug (Bertrand et al., 2011).  

 

Figure 5 Schematic of drug flow path through the human body after intravenous injection. 

(Bertrand et al., 2011). 

Targeted drug delivery aims to deliver a higher concentration of drug directly to 

disease sites and minimalize exposure of healthy tissue to the drug. This is accomplished 

by using nanoparticles as drug delivery vehicles, which can travel to diseased sites before 

releasing their payload. The most common nanoparticles used for this method are 

liposomes because they are biocompatible, biodegradable, and are undetectable by the host. 



 

 8 

Targeting can be done either passively or actively. Passive targeting utilizes the enhanced 

permeability and retention (EPR) effect, which suggests that nanoparticles are more likely 

to accumulate in diseased cells, while active targeting needs information about the diseased 

cells so that compatible receptors can be added to the nanoparticle to promote bonding 

(Bae et al., 2001; Singh et al., 2009). Drug release can then be initiated by decomposing 

the nanoparticle membrane, typically educed by the local environment of the diseased 

tissue. Drug release can also be initiated by rupturing the nanoparticle, which is typically 

done with high-intensity ultrasound (Figure 6).  (Schroeder et al., 2009; Paul et al., 2013).  

 

Figure 6 Schematic of nanoparticle (liposome) membrane rupturing by ultrasound with (A) 

corresponding to a hydrophobic membrane while (B) corresponds to a hydrophilic membrane 

(Schroeder et al., 2009). 

Efforts have been made to diffuse the nanoparticles into the diseased tissue before 

drug release to administer a more homogeneous drug distribution, rather than simply 

allowing the nanoparticles to collect on the surface of the diseased tissue. Pitt et al. (2004) 

demonstrated experimentally that low intensity ultrasound (lower than needed to rupture 

the nanoparticle) can enhance transport of nanoparticles in tissue. This effect has been 

found to improve the thrombolytic effect, used to break down blood clots, when compared 
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to an un-encapsulated agent with the same ultrasonic treatment (Tiukinhoy-Laing et al., 

2007).  

1.1.3 Other Applications 

There are a variety of other applications involving particle transport in porous 

media of various types, for which particle diffusion plays an important role. While 

oscillatory diffusion has not been employed in these applications to date, the potential 

exists that application of an oscillatory flow field (such as an acoustic field) could also be 

beneficial in enhancing particle diffusion in such applications. One such application of 

particular interest is the removal of microplastic particles from soil. Microplastics (MPs) 

are very small plastic particles (< 5mm) that are generated by processes such as plastics 

manufacturing, sewage treatment, and agricultural systems (Corradini et al., 2019; Fu et 

al., 2020). These MP’s typically end up in marine environments, but they have more 

recently been identified as a major environmental issue in terrestrial soil (Huffer et al., 

2019).  The issue with MPs in soil is that their size allows them to be consumed by soil 

dwelling organisms, which can have a negative impact on agricultural production and has 

the potential to introduce plastic into the food chain (Rillig et al., 2012, Rillig et al., 2017). 

The presence of MPs have also been found to effect organisms that play an important role 

in modifying the soil system (Kim et al., 2019, Souza Machado et al., 2019). A large effort 

is put on accurately and effectively extracting microplastics from samples for study (Wang 

et al., 2018; Fu et al., 2020). Development of techniques for effective removal of 

microplastics from soil is an on-going challenge, but oscillatory diffusion might prove to 

be a useful method to enhance transport of microplastics out of a layer of soil.  

 



 

 10 

1.2 Objective and Scope 

The objective of this thesis is to provide a fundamental quantitative understanding 

of oscillatory diffusion by studying the individual dynamics of a particle in a packed bed 

of spheres subjected to an oscillatory flow field. An experiment in which a series of tests 

observing individual particle motion subject to oscillatory flow has been conducted, in 

which the particle diameter and the frequency and amplitude of the oscillatory flow are 

varied. A statistical analysis of the particle response to the oscillatory flow was conducted, 

describing both the freely oscillating motion of the particle and the period of particle 

hindering by the surrounding porous bed. The results from the experiment were used to 

improve and validate a stochastic model and to validate a previously developed continuous 

time random walk (CTRW) theory for oscillatory diffusion (Balakrishnan and 

Venkataraman, 1981b).  

A literature review related to hindered diffusion and oscillatory diffusion of 

particles in porous media is provided in Chapter 2. The experimental apparatus and 

methods are explained in Chapter 3. The statistical measures used for data analysis are 

presented in Chapter 4. The experimental results are discussed in Chapter 5. A stochastic 

model of oscillatory diffusion is introduced in Chapter 6. A parametric study comparing 

parameter sensitivities for both the stochastic model as well as the CTRW theory is 

presented and discussed in Chapter 7. Conclusions are provided in Chapter 8.
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CHAPTER 2: LITERACTURE REVIEW 

2.1    Particle Hindering Mechanisms 

Oscillatory diffusion relies heavily on the ability of the surrounding porous media 

to suppress or hinder the motion of the diffusing particles. It is, therefore, important to 

understand the various hindering mechanisms that come into play for porous media of 

different types. Hindered diffusion occurs when a diffusing particle is slowed down as it 

approaches the surface of the porous medium in which it is embedded. This hindering of 

the particle motion can occur via a variety of different forces imposed on the diffusing 

particle by the fluid and/or directly by the surrounding porous medium, including 

hydrodynamic drag, friction, van der Waals adhesion, electrostatic interactions, etc. The 

influence of this local forcing causes the particles diffusion rate to be reduced or 

temporarily stopped. Hindered diffusion is commonly observed in systems involving 

porous media diffusion of colloidal particles, such as microplastics in soil or passive 

particle filtration processes.  

2.1.1    Mechanical Filtration 

The most pertinent hindering mechanism to this study is mechanical filtration.  This 

occurs in porous media when the diffusing particle enters a pore that is smaller than the 

particle in diameter, as shown in Figure 7, causing the particle to become trapped. Filtration 

has also been observed to occur in pores that are larger than the individual particle diameter, 

due to formation of particle clusters, as is also shown in Figure 7. This mode of particle 

hindering is largely dependent on the pore size distribution of the porous media and the 

size distribution of the diffusing particles. For this reason, many researchers use the ratio 

of the particle hydrodynamic radii to the mean pore size to classify the strength of this 
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mechanism. The pore size is measured either experimentally, e.g., if using a natural media 

(sand, biofilm, agarose gel, etc.), or geometrically assuming an equilateral triangle between 

three co-planar spheres, as shown in Figure 8. The latter method provides a minimum pore 

size when the porous medium is composed of a packed bed of spheres. Due to the 

dependency on the particle-pore size ratio, hindering by filtration typically only occurs 

when the mean particle diameter of the suspension is near, or larger than, the mean pore 

diameter of the media, except for in the case of particle clustering.  

 

Figure 7: Illustration particle hindering by mechanical filtration with the black filled circles 

representing the particles and the unfilled ovals represent the pores (Kuzmina and Osipov, 2006). 

 

Figure 8: Cross section of pore, showing the equilateral triangle approximation used to estimate 

the pore diameter (You et al., 2013). 
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The particle-pore diameter ratio has been shown to help classify different regimes 

of behavior for particle in porous media. Gerber et al. (2018) examined the transport of 

spherical polystyrene beads in a packed bed of glass spheres and found that adjusting the 

particle-pore ratio not only determined when the particles would begin to be trapped in the 

pores, but also determined the transition to formation of particle caking, a critical issue in 

water reclamation systems (Wang et al., 2018) where the particles can no longer penetrate 

the bed and accumulate at the inlet.  Mechanical filtration has also been observed to alter 

the flow conditions of the porous media. As particles become trapped in the pores, the 

porosity and permeability of the porous medium is reduced. By blocking smaller pores, the 

flow is redirected toward larger pores, creating preferential pathways. This phenomenon 

was observed by Sirivithayapakorn and Keller (2003), while studying the transport of 

fluorescent latex spheres in a silicon micromodel of fine sand, as shown in Figure 9.  

 

Figure 9: Composite image of the etched repeat pattern in a micromodel of sand, measuring 

approximately 509 X 509 mm and etched to a depth of about 15 mm. Pore throats are on the order 

of 3–20 mm in diameter and the pores may be up to 50 mm across. The pattern is repeated 

100x100 times in the micromodel, forming a square domain, with the inlet and outlet ports on each 

of the corners (Sirivithayapakorn and Keller, 2003). 
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2.1.2    Straining 

Another important hindering mechanism is straining, which can be thought of as a 

combination of mechanical filtration and adhesive capture (Bradford et al., 2002; Bradford 

et al., 2003; Bradford et al., 2006; Cu et al., 2006; Porubcan et al., 2011). In this process, 

particles enter the smallest region of a pore space at a surface-surface contact where they 

become trapped, as shown in Figure 10 (Bradford et al., 2006). This entrapment is due to 

frictional forces between the particles and surfaces as well as attracting adhesive forces 

between the particle surface and the surface of the porous medium. This form of hindering 

has been shown to be important in filtration systems of colloidal particles in porous media. 

Straining has been suggested to improve agreement between the established theory 

describing colloidal hindering, known as Clean Bed Filtration Theory (CBFT), and 

experimental observations. Including straining as a deposition mechanism has been found 

to reduce error between experimental data and models significantly (Bradford 2003). Like 

mechanical filtration, the effects of straining are estimated by the ratio of particle to pore 

size, where straining is most likely to occur in cases where this ratio is very small.    
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Figure 10: (right) Illustration of strained colloids in the smallest regions of the soil pore space 

formed adjacent to points of surface-surface contact (Bradford et al., 2006); (left) image of particle 

straining of spherical polystyrene beads in a packed bed of glass spheres, with the white 

corresponding to the surfaces (grains) and the light grey corresponding to the beads (Gerber et al., 

2018). 

2.1.3    Hydrodynamic Hindering 

When a particle enters the vicinity of a solid-fluid interface within the porous 

medium, an increase in hydrodynamic drag is experienced by the particle. This increase in 

drag is due to both to the fact that fluid velocity near the porous medium boundary has a 

lower magnitude than within the bulk fluid, as well as to the increased shear stress in the 

narrow gap between the moving particle and the porous medium boundary. Figure 11 

shows a typical velocity profile of fluid flowing in a channel, where the fluid velocity is 

reduced closer to the channel walls. Hydrodynamic drag is most effective when the flow is 

laminar, and the viscosity is high. This form of hindering is used in the separation process 

of microplastics, where microplastics are allowed to flow through a bed of packed spheres, 

shown in Figure 12. Due to the size range of microplastics (typically 10-1000 𝑛𝑚), the 

larger particles are less affected by the drag and remain near the center of flow field, while 
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the smaller particles are more readily hindered by the boundary layer and are brought close 

to the walls, where adhesion can capture them (David et al., 2019, Fu et al., 2020).  

 

Figure 11: Diagram of velocity profile near surfaces, with the bulk region, diffusion region, and 

potential region identified (Seetha et al., 2015). 

 

Figure 12: Schematic of microplastic filtration techniques which utilize hydrodynamic drag to 

hinder particles (Fu et al., 2020). 
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2.1.4    Adhesive Capture 

A major hindering mechanism for low velocity flows with small particles is 

adhesive capture. Adhesion can occur from van der Waals force (due to dipole interactions) 

as well as by electrostatic forces between the particle and porous media surfaces. The 

theory formulated to describe these surface-surface interactions in an ionic liquid is known 

as Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The electric double layer (EDL) 

is formed when ions within the liquid are attracted to the surface of a charged body. These 

ions tend to form in layers, with the first layer (the surface charge) consisting of ions of the 

opposite charge as the body which are adsorbed onto the body surface and the second layer 

(the diffuse layer) consisting of ions of the same charge as the body which are attracted to 

the ions in the first layer. The effect of these two layers is to electrically screen the body 

charge. When two charged bodies come sufficiently close to each other (typically on the 

order of tens of nanometers), the EDLs of the bodies can overlap giving rise to an 

electrostatic force between the bodies. DLVO theory combines this electrostatic force with 

the attractive van der Waals force to examine the net force acting between the two bodies.      

If the charges of the interacting bodies (e.g., a diffusing particle and a porous 

medium surface) are the opposite, the electrostatic force from the overlapping EDLs is 

attractive and the interaction is said to be favorable. In this case, the colloidal particles 

quickly deposit on the surface of the porous medium. If the charge of the two interacting 

bodies are the same, the electrostatic force from the overlapping EDLs is repulsive and the 

interaction is said to be unfavorable (Lee, 1991; Pizzi and Mittal, 2003). Plots of the total 

interaction energy help to explain how and where particle adhesion to the porous medium 

can occur. Figure 2.7 shows the total interaction energy for cases where the wall and 
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particle surface charges are (a) opposite and (b) the same. In this plot, a negative force 

corresponds to an adhesive force and a positive force to a repulsive force. When the charges 

between the bodies are opposite (Figure 13a), the force between the bodies is always 

attractive and increases in magnitude as bodies approach each other. When the charges 

between the bodies are the same (Figure 13b), the force between the bodies is attractive at 

both large and small distances but may exhibit a region of repulsive force at an intermediate 

separation distance. The energy required for the bodies to cross this repulsive force region 

is known as the energy barrier. Capture of a particle by the porous medium under 

unfavorable conditions is more difficult than under favorable conditions, but not 

impossible. Figure 14 plots the total interaction energy (green) for a case with an 

unfavorable condition, in which both a primary and a secondary minimum can be 

identified. The deep primary minimum occurs close to the wall, whereas the shallower 

minimum farther from the wall is known as the secondary minimum. Depending on the 

ionic strength and the particle energy, capture in the primary minimum is possible, but it 

has been observed that the majority of capture for colloidal particles actually occurs at the 

weaker secondary minimum (Shen et al., 2007; Tong et al., 2007; Shen et al., 2010).  
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Figure 13: Total particle-surface interaction energy plotted for (a) favorable condition and (b) 

unfavorable condition. Adhesive forces are negative and repulsive forces are positive (Kermani et 

al., 2020). 

 

 

Figure 14: Typical repulsive, attractive, and net interaction energy curves between a sphere and a 

flat plate based on DLVO theory for an unfavorable interaction (Hahn et al., 2004). 
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2.2    Hindered Diffusion in Biofilms 

The previous section discussed several hindering mechanisms that are present in a 

large variety of physical systems and processes. To give some prospective on how these 

mechanisms operate in a specific real-world system, hindered particle diffusion in biofilms 

is examined in the current section. A biofilm is considered a porous medium due to the 

surrounding hydrogel formed of the extracellular polymeric substance (EPS) (Miller et al., 

2013; Laspidou et al., 2014). Due to the high density of the EPS, flow is restricted through 

the pores, which are typically on the order of < 100𝑛𝑚 (Stewart et al., 2003). This 

restrictive flow environment means that transport is dominated by diffusion. Biofilms 

typically have a large water content, in some cases up to 90%, so the diffusion of water 

(𝐷𝑤) is typically the reference point when comparing biofilm diffusion. The ratio of the 

diffusion coefficient within the biofilm (𝐷𝑏) over that in water is called the relative 

diffusion coefficient (𝐷𝑏 𝐷𝑤⁄ ). The presence of the polymer matrix in the biofilm has been 

observed to reduce the diffusion coefficient resulting in a relative diffusion coefficient that 

is less than unity (Beuling et al., 1998). Several mechanisms have been investigated to 

understand the hindering effects of a biofilm, most notably mechanical filtration and 

adhesion. Reaction-diffusion will not be discussed in this review, but it can also be a 

significant factor for determining penetration depth for reactive substances (Stewart et al., 

2003).  

2.2.1    Mechanical Filtration in Biofilms 

Mechanical filtration is an important hindering mechanism for biofilms. As is 

typical for a system experiencing mechanical filtration, the particle-pore size ratio plays an 

important role. The value of this ratio has been studied for several different biofilms and 
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hydrogel models. Fatin-Rouge et al. (2004) found the critical particle-pore ratio of an 

agarose gel to be near 0.4, where for values below this ratio anomalous diffusion was 

observed and for values above this ratio mechanical filtration was observed. Anomalous 

diffusion refers to diffusion in which the variance does not increase linearly in time, and is 

typical of Brownian motion in inhomogeneous porous media (Oliveira et al., 2019). Figure 

15 shows the two regions of anomalous diffusion, either superdiffusive or subdiffusive, 

where the particle diffusion rate is either increasing exponentially with time (α > 1) or 

decaying exponentially with time (α < 1) respectively. The variance is typically fit with 

an exponential as shown in (1),  

𝐥𝐨𝐠𝒏→∞〈𝒓𝟐(𝒕)〉~𝒕𝜶               (1) 

 

The exponent (α) is used to classify whether or not a diffusive process is anomalous. 

The prediction of anomalous diffusion in biofilms and hydrogels was confirmed by 

Peulen et al. (2011), who found the diffusion coefficient value for P. fluorescens to 

decrease exponentially with distance into the biofilm, though the anomalous coefficients 

that were extracted are close to unity, . 89 < α < 1.01. The prediction of mechanical 

filtration for particle-pore ratios less than 0.4 was further probed using a range of particle 

sizes, 40-550 𝑛𝑚 (Forier et al., 2014a). It was found that the particle size cutoff was around 

100-130 𝑛𝑚 for B. multivorans and P. aeruginosa, with particles above this threshold 

showing almost no penetration into the biofilm. 
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Figure 15: The variance for 3 diffusive processes; superdiffusion α = 1.5  (upper blue curve), 

normal diffusion α = 1 (middle yellow curve), and subdiffusion α = 0.5   (lower green curve) 

(Oliveira et al., 2019). 

2.2.2    Adhesive Effects in Biofilms 

Another significant hindering mechanism of biofilms is the effect of adhesive 

forces imposed on the particles due to the presence of the EPS. The EPS of most biofilms 

have a net negative charge, so it would be expected that a negatively charged particle might 

be given a repulsive cushion while a positively charged particle would be attracted to the 

walls of the EPS, where they would be deposited. It was found that in fact positively 

charged particles have an increased diffusion coefficient compared to negatively charged 

particles in E. coli and S. mutans (Zhang et al., 2011; Li et al., 2015). It was suggested that 

the electrostatic repulsion could have effectively reduced the pore sizes experienced by the 

negatively charged particles, increasing mechanical filtration, while the enhanced diffusion 

coefficient of the positively charged particles was probably attributed to hydrophobic 

interactions. 
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2.3    Oscillatory Diffusion  

2.3.1    Analytical Approximations 

One of the earliest studies of diffusion in an oscillatory potential was developed to 

describe the dynamics of ions in superionic conductors. The process was made up of two 

possible states, (1) short range Brownian diffusion and (2) free oscillation state. The 

Brownian diffusion is described by the corresponding Langevin equation, given by 

 

𝒎𝒙̈ + 𝒎𝜸𝒙̇ − 𝑲(𝒙) = 𝒇(𝒕)                   (2) 

 

Here, 𝑚 corresponds to the particle mass, 𝑥 is the particles position, γ is the friction 

coefficient, K(x) =  -
∂V(x)

∂x
 is the oscillatory forcing, where 𝑉(𝑥) is the potential field, and 

f(t) is the stochastic force. Due to the random nature of Brownian particles, 𝑓(𝑡) is modeled 

as Gaussian white noise with an autocorrelation function given by 

 

〈𝒇(𝒕)𝒇(𝟎)〉 = 𝟐𝒎𝜸𝒌𝒃𝑻𝜹(𝒕)            (3) 

 

where kb is the Boltzmann Constant, T is the temperature, and δ(t) is delta 

function. The two states are achieved by looking at the temperature extremes. If kbT ≪ V0, 

then oscillation is dominant, and if kbT ≫ V0, Brownian diffusion is dominant. In-between 

these limits, both Brownian diffusion and oscillation play a role (Dieterich and Peschel, 

1977). 

Another approach to describe the dynamics of oscillatory diffusion uses the Fokker-

Planck equation. This equation estimates the time evolution of the probability density 
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functions for stochastic differential equations. Unfortunately, it very difficult to find 

closed-form analytical solutions to the general Fokker-Planck equation, though several 

generalized versions have been developed such as the Smoluchowski equation, developed 

for Brownian diffusion. Solutions to this equation have been found, such as the Hill 

solution, but due to its assumption of a weak potential there is a limited range of angular 

velocities and time that can be predicted accurately (Das, 1979).  

Continuous time random walk (CTRW) is a generalized random walk theory which 

treats the time in-between successive steps as a random variable. This theory has been 

shown to successfully describe many different processes including anomalous diffusion, 

photon imaging, and financial distributions (Sokolov and Klafter, 2007; Chernomordik et 

al., 2010; Masoliver et al., 2006). CTRW has also been applied to oscillatory diffusion by 

Balakrishnan and Venkataraman (1981). They use a two-state model, where the particle is 

either in a ‘flight’ state when the particle is freely moving between sites or an oscillatory 

state, when the particle experiences local oscillations at a single site. The time duration that 

the particle occupies at each state is treated as a random variable, which is called the 

'holding time'. Unlike the Langevin or Fokker-Planck methods, the CTRW theory is not 

restricted to a single dimension and provides closed-form solutions for the diffusion 

coefficient as well as a number of other parameters.  

2.3.1    Experimental Observations 

An experimental study examining the effect of an acoustic field on diffusion in a 

packed bed of spherical beads was reported by Vogler and Chrysikopoulos (2001) for 

solute diffusion and by Thomas and Chrysikopoulos (2007) for particle diffusion. Thomas 

and Chrysikopoulos (2007) forced tracer particles through a wet bed of packed spheres 
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using an ultrasonic transducer. A schematic diagram of the experiment is shown in Figure 

16. The concentration of particles was measured at the outlet of the bed as a function of 

time, allowing for particle speed and peak concentration information to be extracted. It was 

found that when an oscillating forcing was introduced, the peak concentration measured at 

the outlet occurred 7% earlier than for the control case but did not alter the concentration 

distribution significantly. One of the challenges with this experiment is that it does not 

readily allow the investigator to distinguish between the effect of enhanced diffusion versus 

that of acoustic radiation pressure (King, 1934).   

 

Figure 16: Schematic of experimental apparatus consisting of an acoustic transducer forcing 

injected tracer particles through a packed bed of spheres (Thomas and Chrysikopoulos, 2007). 

Acoustic enhancement of particle diffusion was later observed by Ma et al. (2015) 

when studying the effect of ultrasound on particle transport to, and penetration into, a 

hydrogel. A suspension of fluorescent tracer particles was placed above an alginate 

hydrogel, where the positioning of the ultrasound transducer relative to the hydrogel is 
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indicated in the schematic diagram in Figure 17. The ultrasound was found to improve 

transport to the gel surface due to the formation of an acoustic streaming flow. Ultrasound 

was also observed to increase the penetration of nanoparticles into the hydrogel. Images of 

a three-dimensional section of the hydrogels showing fluorescence induced by penetrated 

nanoparticles is shown in Figure 18 for both the control case (with no ultrasound) and for 

the case with ultrasound treatment. The fluorescent intensity corresponds to the 

concentration of nanoparticles. The control case appears to have experienced almost no 

penetration, while the ultrasound-treated case shows significant fluorescence, indicating 

that a large number of nanoparticles have penetrated into the hydrogel to various depths. 

The fluorescent intensity was measured as a function of depth, as shown in Figure 19, 

where an exponential decay can be observed. In a follow up study, Ma et al. (2018) 

obtained detailed measurements of the effect of ultrasound on the diffusion coefficient for 

two sizes of nanoparticles (20 and 100nm) diffusing into an agarose hydrogel. The 

apparatus is similar to the previous study, but now the hydrogel is formed of two layers, 

one of which is seeded with fluorescent tracer particles and the other of which is unseeded. 

The experiment measured the rate of diffusion of particles from the seeded layer into the 

unseeded layer both with no acoustic forcing and in the presence of low-intensity 

ultrasound forcing. An increase in diffusion coefficient of between 74-133% was 

experienced with ultrasound compared to the control case (with no ultrasound).  
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Figure 17: Schematic diagram of the experimental apparatus consisting of an ultrasonic 

transducer forcing either a liposome or nanoparticle suspension toward an alginate film (Ma et al., 

2015). 

 

Figure 18: Slices of hydrogels for the ultrasound treated gel (left) and the control gel (right). The 

fluorescent intensity corresponds to concentrations of tracer particles (Ma et al., 2015). 
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Figure 19: Plot showing the fluorescent intensity with the depth into the hydrogel for the 

ultrasound treated gel (Ma et al., 2015). 

A one-dimensional stochastic model was developed by Marshall (2016) to describe 

the enhanced diffusion caused by acoustic forcing in the experimental studies mentioned 

above. The model explains the enhanced diffusion of particles subjected to an oscillatory 

flow using a combination of a freely oscillating particle state and random hindering state, 

in which the particle is temporarily captured by the porous medium. In the limit of many 

time steps, the stochastic model was shown to reduce to a solution of the standard diffusion 

equation, but where the effective diffusion coefficient was dependent on the acoustic 

forcing. Figure 20 shows a plot of the predicted probability density function by the 

stochastic model and the standard one-dimensional diffusion equation. While this model 

clearly demonstrates the oscillatory diffusion mechanism by which acoustic forcing can 

act to enhance particle diffusion in a porous medium, it does not connect well with the 

physics of particle transport through the porous bed. For instance, physical parameters such 

as particle and pore size do not enter into the model.  



 

 29 

 

Figure 20: Comparison of predicted probability density functions (PDF) for the stochastic model 

(symbols) and the one-dimensional diffusion equation (solid line) are plotted. The PDF was capture 

at three time steps, 𝒕 = 𝟐 (triangles),  𝟏𝟎 (crosses), and  𝟏𝟎𝟎 (circles) (Marshal, 2016). 
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CHAPTER 3: EXPERIMENTAL METHOD 

Experiments examining particle diffusion in a quasi-two-dimensional bed of 

spheres were conducted using the apparatus shown in Figure 21. The system used a 

variable-speed motor to oscillate a piston, causing an oscillatory sloshing flow through the 

porous bed. Details of the motor-piston assembly are shown in Figure 21b. The motor shaft 

rotation frequency (Iron Horse MTR-P50_3BD18) was controlled using an AC drive 

(Automation Direct GS1-10P5). The shaft frequency was reduced with a worm gear box 

(Iron Horse WG-175-005-H) with gear ratio of 5. A 10.2 cm pulley on the motor shaft was 

connected to a similar pulley on a second shaft (the ‘bearing shaft’, identified as K in Figure 

21b) via a 140 cm V-belt. A crank-and-piston assembly was used to convert the rotational 

motion of the bearing shaft to vertical motion of the piston. The piston was connected to 

the rotating bearing shaft via a 19 cm long drive rod (M in Figure 21b), which was 

connected to the bearing shaft via an amplitude plate (L in Figure 21b). The oscillation 

amplitude was adjusted by moving the connection point of the drive shaft between five 

available holes drilled into the amplitude plate, which were located at radial distances of 

1.3, 2.5, 4.1, 5.8 and 7.4 cm (  0.1 cm) from the center of rotation of the bearing rod. The 

drive rod was attached using a ball joint to a vertical 61 cm long threaded piston rod that 

connected to the piston. The piston was formed from two 1.3 cm PVC end caps and a 1.3 

cm coupling, which were sanded to fit inside the 2.5 cm PVC pipe. The threaded piston 

rod was passed through the piston and was held in place with nuts on each end.  
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Figure 21: Schematic diagrams of the experimental apparatus. (a) Overview of apparatus showing 

[A] piston rod, [B] fluid level, [C] piston, [D] valve, [E] flange, [F] test section, [G] transparent 

beads, and [H] moving test particle. (b) Close-up of the drive mechanism, showing [I] variable-

speed motor, [J] belt, [K] bearings and bearing shaft, [L] bar to set oscillation amplitude, [M] drive 

shaft, [N] piston shaft, and [O] piston. (c) Close-up of the test section.           

  

Supports were placed below the system and along the sides to hold the system 

rigidly in place. A PVC ball valve (D in Figure 1a) and exit tube were installed to empty 

the fluid from the system. The 2.5 𝑐𝑚 pipe was connected to a 2.5 𝑐𝑚 flange (E in Figure 

21a), which was bolted onto the test apparatus. The test apparatus was formed of two 

polycarbonate sheets with sides formed of oak boards. The test section measured 7.6 𝑐𝑚 

wide, 1.9 𝑐𝑚 thick and 40.6 𝑐𝑚 tall, with an additional 10.2 𝑐𝑚 long transition section 

that connects the test section to the flange. The sides of the polycarbonate sheets were 

coated with 6 𝑚𝑚 diameter glass hemispheres. In-between the two layers of hemispheres 

were placed three layers of borosilicate glass beads with diameter 𝑑𝑏𝑒𝑎𝑑 = 6 𝑚𝑚 . Pure 

glycerin was used as the working fluid, which was selected in order to match refractive 

(a) (b) (c) 
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index with the borosilicate glass beads, so that the glass beads were transparent in the 

glycerin. The glycerin had density 𝜌𝑔𝑙𝑦 = 1.26 𝑔 𝑐𝑚3  ⁄ and viscosity 𝜇𝑔𝑙𝑦 = 0.95 𝑃𝑎 ∙ 𝑠  

. The porosity of the packed bed in the test section was measured to be 𝜙 = 0.334 ± 0.006.  

The oscillation amplitude 𝑦𝑎𝑚𝑝 is defined as the amplitude that a passive fluid 

particle would nominally travel within the porous medium in response to the oscillating 

motion of the piston. Oscillation amplitude was calibrated by first filling the liquid to a 

height over the top of the porous bed and measuring the amplitude of oscillation 𝑦𝑓𝑙𝑢𝑖𝑑 of 

the fluid interface under the given piston oscillation amplitude and frequency. The nominal 

oscillation amplitude of a particle within the porous bed is then obtained as  

 

/fluidamp yy = .     (4) 

 

The nominal particle motion within the porous bed (with no particle hindering) is therefore 

given by the equation 

 

 0)sin()( ytyty ampp +=  ,          (5) 

 

where 𝜔 = 2𝜋𝑓𝑜𝑠𝑐 and 𝑓𝑜𝑠𝑐  is the oscillation frequency. The nominal oscillating velocity 

can be obtained by taking the time derivative of (5), giving 

 

 )cos()( tvtv ampp = ,       (6) 
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where the amplitude of the velocity oscillation is given by ampamp yv = . The parameters 

ampy , ampv  and oscf  are used for nondimensionalization of the experimental data. 

Each experimental run examined motion in the porous bed of a single moving test 

particle. The test particle was placed approximately mid-depth in the porous bed at the start 

of each run using a 25.4 cm long hypodermic needle (14 gauge). Each run was repeated 

nominally 20 times in order to obtain an ensemble of samples. Two sizes of test particles 

were used in the experiments. The first particle type consisted of fluorescent red 

polyethylene spheres (Cospheric) with diameter 03.052.01 =d mm, sphericity 

999996.01 = , and density 03.022.11 = g/cm3. The second particle type consisted of 

black acrylic spheres (Avashop) with diameter 1.03.12 =d mm, sphericity 996.02 = , 

and density 02.006.12 = g/cm3. None of the test particles were observed to move a 

measurable amount when suspended in a bath of stationary glycerin. The particle diameter 

was measured using an optical microscope (Nikon LABOPHOT-2), from which we 

obtained both the mean and root-mean-square (rms) values for a sample of 25 particles of 

each type.  

The particle density was obtained by measuring the time required for particles to 

settle a distance of 6 cm at terminal velocity Tv  in a beaker of water, which yielded a 

terminal velocity of 3.37 ± 0.02 cm/s and 5.10 ± 0.08 cm/s for a sample of 20 particles of 

type 1 and 2, respectively. The particle density was obtained by an equilibrium condition 

between drag and gravitational force, giving 

 



 

 34 

2

4

3
1/ T

D
wp v

gd

C
+= ,                        (7) 

 

where for a sphere with Reynolds number 𝑅𝑒𝑝 = 𝜌𝑤𝑑𝑣𝑡 𝜇𝑤⁄   in the range 𝑅𝑒𝑝 < 800, the 

drag coefficient can be approximated using the Schiller-Naumann (1933) correlation as 

 

 )Re15.01(
Re

24 687.0

p

p

DC +=     (8) 

 

The particle Reynolds number at terminal velocity in water was obtained as 19.96 and 

74.49 for particles of type 1 and 2, respectively. The uncertainty in the density 

measurement was estimated from the measured uncertainties in diameter and terminal 

velocity, 𝛿𝑑 and 𝛿𝑣𝑡, using the standard variance equation 
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The test particles were photographed using a video camera (Sony Handycam) at 30 

frames per second, with lighting provided by a 50W LED flood light. The camera was 

mounted with viewpoint orthogonal to the side of the polycarbonate sheet on the side of 

the test section. Fiji particle tracking software, with the plug-in TrackMate, was used to 

track the motion of the moving particles during each experimental run. This software 

identifies the test particle at each frame of the video sequence and outputs the location in a 

coordinate frame. Because we experienced some gaps and errors in the automated particle 
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tracking, we also manually tracked particle paths for each run. The particle location data 

was used to compute statistical measures of the particle diffusion, as discussed in Chapter 

3.  
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CHAPTER 4: DATA ANALYSIS 

The output of the particle tracking software is a string of data indicating the particle 

position )(ty  at times it , i = 1,2,3,4,…, in the vertical direction, denoted by iy . The 

statistical measures of a diffusion process change as functions of time. The averages in 

these statistics are taken over repeated realizations of the process (or different experimental 

‘runs’). We call each of these runs a string, and refer to the entire set of strings for a given 

set of parameter values as an ensemble. The ensemble average 
EnE tftf )()(   and the 

time average 
Tnn tff )(  of some quantity )(tf  are defined by  

 

 )(
1

)()(
1

tf
N

tftf n

N
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EnE

E
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T
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1

)(
0

= ,  (10) 

 

where subscript n denotes the string number, EN  is the number of strings forming the 

ensemble, and (0,T) is the time interval over which the data is taken. With this terminology, 

we define the mean, variance, skew and kurtosis of the particle position as follows:  

 

 
EE tyty )()( = ,    (11) 

 
E

E tytyty 2
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E
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E
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The mean square deviation (MSD) is based on the difference between the measured 

signal 𝑦(𝑡) and a prescribed predicted signal 𝑦𝑝(𝑡), and it is defined by 

 

 
ET

pMSD tytyy 2)]()([ −= .    (15) 

 

For a normal random walk process the predicted value might be set to the initial particle 

height 𝑦0, whereas for oscillatory diffusion the predicted value might be set to an 

oscillating function of the form (5). 

The autocorrelation function 𝜌(𝑡) provides an indication of the correlation between 

a signal at the current time and the same function at a previous time, hence giving an 

indication of the degree to which a signal repeats itself. A height difference function )(ty  

is defined by 

 

 )()()( tytyty E−= ,    (16) 

 

which is equal to the deviation of the particle height from its ensemble mean value. The 

autocorrelation function is then defined as 

 

 
ET

tyty )()()( −=  ,    (17) 

 

where   is called the lag time.  
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The power spectrum 𝑒(𝑓) describes the spectral make-up of a signal's 'energy' in 

frequency space. The power spectrum is a plot of the spectral energy density 𝑒(𝑓) =

|𝑦̂(𝑓)|2  against the frequency 𝑓. The power spectrum was computed for each data set, and 

then averaged over all data sets in the ensemble. 

As a baseline, we present examples for these various statistical measures for a 

random walk process, as is typical of Brownian diffusion. In order to be consistent with 

the data analysis approach used in our experimental study, we have formed an ensemble 

with 20 strings and have used a run length with approximately the same number of data 

points as in the experimental runs. The effective diffusion coefficient for the random walk 

calculations was 000125.0=D  and the time step was 01.0=t , so that the corresponding 

displacement length   for each random step was given by  

 

 00158.0]2[ 2/1 = tD .    (18) 

 

Several different measures for the random walk computations are plotted in Figure 

22, along with theoretical predictions (shown using a dashed line). The ensemble variance 

)(var ty  is plotted versus time in Figure 22a, and it is found to agree well with the theoretical 

prediction 

 

 Dtty 2)(var = .     (19) 
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Figure 22: Plots illustrating statistical measures for a random walk process, showing (a) the 

ensemble variance and (b) the ratio of the kurtosis over the variance squared as functions of time, 

(c) autocorrelation as a function of time delay, and (d) the power spectrum. Theoretical predictions 

are plotted as dashed lines. 

 

The mean-square deviation (MSD) for the random walk computation was computed as 

00127.0=MSDy , which compares well with the theoretical value 

00125.0)(var =
TMSD tyy . The ratio of the kurtosis to the square of the variance is 

plotted versus time in Figure 22b, and it is compared to the theoretical prediction 

3)(/)( 2

var =tytykurt  for a normally distributed process.  

(a) (b) 

(c) (d) 
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 The autocorrelation 𝜌(𝜏) is plotted as a function of the delay time 𝜏 in Figure 22c. 

For a random walk process, if a displacement 𝑦(𝑡) has a variance given by (19), then the 

correlation of 𝑦(𝑡) with itself at two times s and t is given by 

 

 ),min(2)]()([ tsDtysyE = .    (20) 

 

The theoretical value of the autocorrelation function defined by (17) is a linear function of 

the lag time 𝜏, given by 
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This theoretical value is shown in Figure 22c to be in reasonably good agreement with the 

predicted value from the random walk computation. The computed power spectrum (Figure 

22d) is consistent with the theoretical prediction 
2/1)( ffe   for a random walk process, 

indicated by the dashed line with slope −2 on the log-log plot. 
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CHAPTER 5: EXPERIMENTAL RESULTS 

The experimental cases listed in Table 1 were analyzed in terms of the statistical 

measures described in Chapter 4. Results are given below for Case B-2, which is 

characteristic of the other cases examined. We then focus more on the measures of particle 

hold-up for the different cases.    

 
Table 1: Parameter values used for the different experimental runs. The uncertainty is  ±𝟏 mm for 

oscillation amplitude, ± 𝟎. 𝟎𝟑 mm for diameter of the small particles, and ±𝟎. 𝟏  mm for diameter 

of the large particles. The uncertainty for frequency is 1% of the recorded value. 

Run 

ID 

Test particle 

diameter  

d  (mm) 

Frequency  

oscf   (Hz) 

Position 

amplitude 

ampy  (mm)  

Velocity 

amplitude 

ampv  

(mm/s) 

Number 

of 

repeated 

runs 

Total run 

time, 

osctT /  

R-1 0.52 0.15 15.0 14.1 20 260 

R-2 0.52 0.25 15.3 24.0 13 138 

R-3 0.52 0.50 17.3 54.3 20 1292 

R-4 0.52 0.75 12.0 56.5 20 1211 

R-5 0.52 0.25 31.0 48.7 21 128 

R-6 0.52 0.25 42.9 67.4 20 50 

B-1 1.3 0.15 15.0 14.1 21 241 

B-2 1.3 0.25 15.3 24.0 20 348 

B-3 1.3 0.50 17.3 54.3 20 1846 

B-4 1.3 0.75 12.0 56.5 20 3557 

 

 

5.1    Standard Statistical Measures  

After the particle is released in the oscillating flow field within the central part of 

the porous bed, it is observed to oscillate up and down with the imposed oscillatory flow, 

but to also intermittently pause in a fixed position for different intervals of time before 

continuing in oscillatory motion. The particle eventually reaches either the upper or lower 

boundary of the porous bed, at which time the experiment is stopped. A typical particle 
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string )(ty  is plotted in Figure 23, along with the associated velocity )(tv . In order to 

smooth the data in the presence of experimental noise, we computed velocity using a 

moving least-square fit to a set of five points surrounding the point at which the velocity is 

desired (Ghazi and Marshall, 2014). The particle position oscillates with the driving 

frequency, but with an amplitude that varies with time. There are time intervals where the 

particle oscillation amplitude is very small, and other times where it approaches the 

nominal amplitude ampy . 

 

Figure 23: Plot showing time variation of a sample experimental string for  𝒚(𝒕) (bottom, left-hand 

axis) and 𝒗(𝒕) (top, right-hand axis) for Case B-2. 

 

The mean, variance, and kurtosis of the particle displacement were computed using 

ensemble averages over the different particle strings (Figure 24), as discussed in Chapter 

4. These ensemble-averaged measures are found to oscillate in time at approximately the 

driving frequency due to the phase differences between the different particle strings. This 

effect would be expected to diminish as the number of strings becomes large. The particle 

mean oscillates in time with a slight upward drift. The variance exhibits a nearly linear 

increase superimposed on the oscillations, typical of a diffusion process. The ratio of 
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kurtosis to variance squared ranges between 2 and 3, as was also the case for the random 

walk process (Figure 22b).  

 

Figure 24: Plots showing time variation of (a) mean (red) and variance (black) of y position and (b) 

ratio 𝒚𝒌𝒖𝒓𝒕 𝒚𝒗𝒂𝒓
𝟐⁄   for Case B-2. Theoretical results are indicated by dashed lines.  

 

 

Figure 25: Plots showing (a) the autocorrelation and (b) the power spectrum for Case B-2. The 

dashed line in (a) is the theoretical expression in Eq. (15) for a random-walk process, and the 

dashed line in (b) is for the theoretical power law for random walk diffusion. 

  

  

(a) (b) 

(a) (b) 
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The autocorrelation is plotted in Figure 25a as a function of the dimensionless lag 

time oscf . It is noted that for a random walk diffusion process, the autocorrelation is a 

linear function of lag time with decreasing slope, indicated by the dashed line in Figure 

25a. For a purely oscillating process, the signal is perfectly correlated once every 

oscillation period, and the resulting autocorrelation is an oscillatory function. The curve 

observed in Figure 25a for an oscillatory diffusion process is a combination of these two 

trends, consisting of an oscillating function with a downward trending mean value. The 

power spectrum plotted in Figure 25b is found to be similar to that for random walk 

processes (Figure 22d), with a variation closely following a line with slope of -2 on the 

log-log plot, indicating a 
2/1)( ffe   power-law dependence with frequency. A 

probability density function (P.D.F.) for the velocity is plotted in Figure 26 which indicates 

that the particle velocity varies nearly as a Gaussian function (dashed line), with the 

exception of a high spike at 0=f , indicative of a particle that is not moving (or a 'captured' 

particle).     
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Figure 26: Probability density function of velocity for Case B-2 at time 𝒇𝒐𝒔𝒄𝒕 = 𝟎. 𝟒 . The dashed 

line is for the Gaussian curve 𝒇(𝒙) = 𝟎. 𝟓 𝒆𝒙𝒑(−𝒙𝟐) . 

 

5.2    Hold-up Measures 

In an oscillatory diffusion process, particles move periodically up and down in the 

direction of oscillation, while intermittently getting stuck (captured) for random intervals 

of time. This behavior is in contrast to the simple one-dimensional random walk process, 

for which the velocity magnitude is equal to a constant value 
2/1]/2[/ tDtv ==  . 

Particle hold-up is identified by time steps where the absolute value of the particle velocity 

v is less than a prescribed fraction cutC  of the velocity amplitude, or  

 

ampcutvCv  .     (22) 

 

When (22) is satisfied we say that the particle is in a captured state, and when it is not we 

say that the particle is in a free state. For each hold-up event, the hold-up duration time 
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𝑡ℎ𝑜𝑙𝑑 is set equal to the number of consecutive cycles during which the particle is in a 

captured state times the time step Δ𝑡. The set of hold-up duration times for all strings in an 

ensemble was sorted into a set of bins, and the number of hold-up events falling in each 

bin is denoted as 𝑁ℎ𝑜𝑙𝑑,𝑖, where the bin number 𝑖 corresponds to a certain interval of the 

hold-up duration time 𝑡ℎ𝑜𝑙𝑑. A plot showing the values of the normalized number of hold-

up events 𝑁ℎ𝑜𝑙𝑑 (𝑁𝑡𝑜𝑡𝑓𝑜𝑠𝑐Δ𝑡𝑏𝑖𝑛)⁄  for these bins is given in Figure 27 for the case B-2, 

comparing results for 𝐶𝑐𝑢𝑡 values of 0.1, 0.2 and 0.3 for a plot with 50 bins of uniform 

width. In this plot, 𝑁𝑡𝑜𝑡 is the total number of hold-up events and Δ𝑡𝑏𝑖𝑛 is the bin width. 

For larger 𝐶𝑐𝑢𝑡 values there are more long-duration hold-up events (with larger values 

of 𝑡ℎ𝑜𝑙𝑑), whereas for smaller 𝐶𝑐𝑢𝑡 values the long duration hold-up events tend to be 

broken up into a series of shorter duration events. However, the symbols in Figure 27 seem 

to be scattered about a similar curve for all three cases, suggesting that a common 

distribution of hold-up events might apply. 

 

Figure 27: Plot showing the normalized number of hold-up events as a function of the 

dimensionless hold time 𝒇𝒐𝒔𝒄𝒕𝒉𝒐𝒍𝒅  for Case B-2 with different values of the cut-off coefficient:  

𝑪𝒄𝒖𝒕 = 𝟎. 𝟏 (squares), 𝟎. 𝟐 (deltas), and 𝟎. 𝟑 (circles). 
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In order to characterize the hold-up data, we fit the hold-up distribution plot for 

each case to a log-normal distribution, with 𝑥 ≡ 𝑡ℎ𝑜𝑙𝑑𝑓𝑜𝑠𝑐  treated as a random variable. 

The fit was done using the following series of steps:  

1. The experimental hold-up distribution was integrated in x to obtain the cumulative 

distribution function (C.D.F.), denoted by )(xFE , at the sample points ix . 

2. The log-normal C.D.F., denoted by )(xFLN , was fit to the experimental C.D.F. 

using a least-squares fit, where the resulting pair of nonlinear equations was solved 

for the coefficients   and   using the Newton-Raphson iteration method. 

3. The corresponding log-normal probability density function (P.D.F.) )(xpLN  was 

compared to the experimental P.D.F. for hold-up time, which was obtained by 

plotting )/( binosctothold tfNN   versus x. The bin width bint  in this plot was adjusted 

to eliminate bins with 0=holdN . 

In the above, the log-normal P.D.F. and C.D.F. functions are defined by 
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where erf() denotes the error function.  
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Figure 28: Example comparing experimental data (symbols) and a log-normal fit (solid line) for (a) 

the complementary cumulative distribution function (1-C.D.F.) and (b) the probability density 

function (P.D.F.) for Case B-4. 

An example illustrating these steps is given in Figure 28 for Case B-4, where for 

this case and all further cases discussed in this section we use 150 bins, 𝐶𝑐𝑢𝑡 = 0.2, and a 

bin width of 𝑓𝑜𝑠𝑐Δ𝑡𝑏𝑖𝑛 = 1. The log-normal coefficients 𝜇 and 𝜎 were obtained for each 

case by a two-step process. In the first step, a square error estimate is defined by  
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where )(xFE  is the experimental cumulative distribution function. The value of E is 

computed over a grid of   and   values with step size 0.01, and the values giving the 

lowest value of E were identified. In the second step, we obtained a formal least-square 

error by setting 0// ==  EE , and solved the resulting nonlinear system of 

(a) (b) 
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equations with a Newton-Raphson iteration. The   and   values obtained from the first 

step were used as initial guesses for the iteration. The best-fit values of   and   for all 

cases examined are listed in Table 2.  

We note that the criterion for hold-up described above will register a hold-up event 

for a sinusoidally oscillating velocity field each time the velocity passes through zero. 

These hold-up events are spurious, however, since the particle is not really captured by the 

porous media, but rather they are simply an artifact of the oscillating velocity field. In order 

to eliminate these spurious hold-up events from consideration, we do not include hold-up 

events with 5.0oschold ft  either in fitting the coefficients   and   or in the figures 

plotting hold-up duration distribution (such as Figure 28). Consequently, the log-normal 

function should be viewed as a fit to the longer-time hold-up events, but may not be 

representative of short-time particle hold-up events. The half-period duration for the hold-

up time cut-off used here is based on the length of time that the velocity has a given sign 

during a single oscillation before changing the direction of motion.   

The mean value of the log-normal distribution is given by  

 

 )
2

exp(
2

 +=LNx .           (26) 

 

This theoretical mean value for log-normal distributions is found to compare reasonably 

well with the experimental mean value computed directly from the hold-up time 

distribution, as listed in Table 2, considering that data for long-time hold-up events is fairly 

sparse. The total percentage of run time that a particle spends in a free state (with |𝑣| >
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𝑣𝑐𝑢𝑡) and in a captured state (with |𝑣| < 𝑣𝑐𝑢𝑡 and 𝑡ℎ𝑜𝑙𝑑𝑓𝑜𝑠𝑐 > 0.5) were computed, as listed 

in Table 2. The remaining time (not listed in the table) corresponds to time spent by a 

particle in a captured state with 𝑡ℎ𝑜𝑙𝑑𝑓𝑜𝑠𝑐 < 0.5). For most cases examined, particles were 

observed to be in a captured state for a very significant percentage of the run time. Also 

shown in Table 2 is the average frequency of hold-up events, which was computed by the 

ratio 𝑓ℎ𝑜𝑙𝑑 = 𝑁𝑡𝑜𝑡 𝑇⁄  of the total number of hold-up events to the total run time. 

 
Table 2: Data on frequency of particle hold-up and best-fit values of dimensionless  𝝁 and  𝝈 

coefficients from a log-normal distribution to the cumulative distribution function for particle 

hold-up time. 

Run ID Log-normal 

coefficients 

Mean hold-up 

time 

oschold ft  

Percentage time 

in each state 

Hold-up 

frequency, 

oschold tf  

µ σ Exp. Log-

normal 

Free Capt. 

R-1 -0.125 0.491 0.977 0.996 20.4 47.7 0.489 

R-2 -0.121 0.223 0.783 0.908 43.8 9.1 0.116 

R-3 0.033 1.314 2.432 2.451 5.1 86.2 0.354 

R-4 0.259 1.247 2.691 2.819 5.4 85.0 0.316 

R-5 -0.046 0.316 0.935 1.004 14.7 47.3 0.506 

R-6 0.044 0.339 1.002 1.107 15.4 46.0 0.459 

B-1 -0.387 0.357 0.737 0.724 26.2 17.5 0.237 

B-2 -0.086 0.426 0.943 1.005 23.9 23.6 0.250 

B-3 -0.392 1.753 3.189 3.141 14.2 56.8 0.178 

B-4 -0.557 1.804 2.810 2.916 16.4 41.3 0.147 

 

The cumulative distribution function depends on the particle diameter 𝑑 and the 

oscillation frequency 𝑓𝑜𝑠𝑐  and amplitude 𝑦𝑎𝑚𝑝. A plot of the complementary cumulative 

distribution function C.C.D.F (= 1 - C.D.F) is shown in Figure 29 for cases with two 

different particles diameters, 𝑑 = 0.52 𝑚𝑚 (Case R-4) and 𝑑 = 1.3 𝑚𝑚 (Case B-4), with 

the same oscillation frequency and amplitude. The C.C.D.F. values for both particle sizes 
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are fairly close, with the difference that the larger particles exhibit more long-duration 

hold-up events and the smaller particle experiences more short-duration hold-up events.  

 

 

Figure 29: Comparison of complementary cumulative distribution function for cases with particle 

diameters of 𝒅 = 𝟎. 𝟓𝟐 mm (red squares, Case R-4) and 𝒅 = 𝟏. 𝟑 mm (black deltas, Case B-4). 

 A comparison of the effect of oscillation frequency on the complementary 

cumulative distribution function is shown in Figure 30a for Cases B-1 through B-4 with 

frequency varying from 𝑓𝑜𝑠𝑐 = 0.15 − 0.75 𝐻𝑧, all having the same oscillation amplitude 

and particle diameter. A comparison of the effect of oscillation amplitude on the 

complementary cumulative distribution function is shown in Figure 30b for Cases R-2, R-

5 and R-6, with amplitude varying from 𝑦𝑎𝑚𝑝 = 15.3 − 42.9 𝑚𝑚, all having the same 

oscillation frequency and particle diameter. Comparing these C.C.D.F. plots with the 

values of run time listed in Table 1, we see that the experimental runs fall into two 

categories - cases with relatively short run-time and cases with relatively long run-time. 

The C.C.D.F. is similar for all cases with short run-time (Cases R-1, R-2, B-1, B-2, R-5, 
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R-6), and it is again similar for all cases with long run-time (Cases R-3, R-4, B-3, B-4); 

however, the C.C.D.F. for the long run-time cases is shifted significantly to the right of that 

for the short run-time cases (as soon in Figure 30a). For cases where the run times were 

relatively short, the longer-duration hold-up events had less of a chance to occur within the 

experimental time frame than for cases with much longer values of 𝑇𝑓𝑜𝑠𝑐 , which likely 

explains the observed difference in the C.C.D.F. plots.     

     

   

Figure 30: Comparison of complementary cumulative distribution function for cases with (a) 

oscillation frequency of 𝒇𝒐𝒔𝒄 = 𝟎. 𝟏𝟓 Hz (squares, Case B-1), 𝒇𝒐𝒔𝒄 = 𝟎. 𝟐𝟓 Hz (X's, Case B-2),  

𝒇𝒐𝒔𝒄 = 𝟎. 𝟓𝟎 Hz (circles, Case B-3), and 𝒇𝒐𝒔𝒄 = 𝟎. 𝟕𝟓 Hz (deltas, Case B-4) and (b) oscillation 

amplitude of 𝒚𝒂𝒎𝒑 = 𝟏𝟓. 𝟑 mm (squares, Case R-2), 𝒚𝒂𝒎𝒑 = 𝟑𝟏. 𝟎 mm (deltas, Case R-5), and 

𝒚𝒂𝒎𝒑 = 𝟒𝟐. 𝟗 mm (circles, Case R-6).   

 

 

 

 

 

 

(a) (b) 
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CHAPTER 6: STOCHASTIC MODEL 

Our proposed mechanism to explain oscillatory diffusion involves the notion that a 

combination of particle oscillation and random hindering yields a diffusion process 

(Marshall, 2016). For millimeter-scale particles, the hindering occurs primarily via a 

filtration process, in which particles randomly enter a pore space that is sufficiently small 

to temporarily trap the particles. When the velocity direction changes, the particle may or 

may not be able to escape the pore space.  

We propose a simple stochastic model in an effort to illustrate the mechanics of the 

oscillatory diffusion process. In this model, each particle exists in either a free state or a 

captured state. All particles in the free state move within the porous bed in accordance with 

(6). The pore size b occupied by a particle in the porous bed is treated as a random variable, 

which is assumed to exhibit a log-normal distribution of the form 

 

 𝒃 = 𝒃𝒎𝒊𝒏 + 𝒅𝒃𝒆𝒂𝒅 𝒆𝒙𝒑 (𝝁𝒑𝒐𝒓𝒆 + 𝝈𝒑𝒐𝒓𝒆𝒁),   (27) 

 

The value of minb  is set to the minimum geometrically possible pore size, which is usually 

associated with the pore space between three touching co-planar spheres whose centers 

form an equilateral triangle, such that 155.03/)332(/min −=beaddb . In (), Z is a 

random variable with a standard normal distribution and pore  and pore  are adjustable 

parameters. Plots of the probability density function (P.D.F.) of the pore size difference 

ratio beaddbb /)( min−  are plotted in Figure 31 for different values of the parameters pore  

and pore . The value of pore  is generally negative and the value of pore  is positive for 
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the cases examined here, and as the value of pore  decreases or the value of pore  increases, 

the P.D.F. plot exhibits an increasingly large spike for progressively lower values of Z. The 

computations in the current paper were performed with 8.1−=pore  and pore  = 1, which 

were found to yield a best fit to experimental data for prediction of particle diffusion rate. 

The P.D.F. plot corresponding to these values of pore  and pore  is indicated by a heavy 

dashed black line in Figure 31.  

 

Figure 31: Probability density function (P.D.F.) for the distribution of pore size difference 

(𝒃 − 𝒃𝒎𝒊𝒏) 𝒅𝒃𝒆𝒂𝒅⁄  with different values of the parameters 𝝁𝒑𝒐𝒓𝒆 and 𝝈𝒑𝒐𝒓𝒆: (a) distribution for  

𝝈𝒑𝒐𝒓𝒆 = 𝟏 and  𝝁𝒑𝒐𝒓𝒆 = −𝟑 (A, blue), −𝟐 (B, red), 0 (C, green) and (b) distribution for 𝝁𝒑𝒐𝒓𝒆 =

−𝟏. 𝟖 and   𝝈𝒑𝒐𝒓𝒆 = 𝟎. 𝟓 (A, blue), 1.5 (B, red), 2.0 (C, green). The dashed black curve is the 

distribution used for the example computation in the current paper (𝝁𝒑𝒐𝒓𝒆 = −𝟏. 𝟖,𝝈𝒑𝒐𝒓𝒆 = 𝟏. 𝟎). 

A flow chart of the stochastic model is given in Figure 32. The two possible particle 

states - free and captured - are indicated using circles. We start with a particle with diameter 

(a) (b) 
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d at the circle indicating the free state, in which the particle moves up and down in 

accordance with the fluid velocity fv   given by  

 

 )sin()( 00 tAtv f = ,     (28) 

 

where A is the nominal oscillation amplitude of a fluid element within the porous bed, 

oscosc tf /1=  is the flow oscillation frequency, and oscf 20  . Each time the particle 

travels a distance equal to the bead diameter beadd , it enters a new pore space. For each 

new pore space that the particle enters, there is assumed to be a random process during 

which the pore size b is selected from the log-normal distribution (27). If the new pore size 

satisfies the condition bd  , then the particle is considered to be captured by the pore. If 

the pore size fails this condition, then the particle remains in the free state and the cycle 

will repeat.   

 

Figure 32: Flow chart of the stochastic model for a particle with diameter 𝒅. 
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 A captured particle can be released from the pore when the oscillating fluid velocity 

𝑣𝑓 changes direction from the value 𝑣𝑓0 which it had when the particle was captured. 

However, we observed in our experimental visualizations that captured particles can 

sometimes bounce around within a pore and remain trapped for multiple cycles of the 

oscillating flow. Release of a captured particle is therefore represented in the stochastic 

model via a second probabilistic process, which we call the particle release process. In this 

release process, at each time step for which sign(𝑣𝑓) ≠ sign(𝑣𝑓0), we select a random 

number 𝑝 with uniform probability distribution between 0 and 1. We also set a prescribed 

threshold value 𝑡ℎ, such that 0 < 𝑡ℎ < 1. If the random number 𝑝 satisfies 𝑝 < 𝑡ℎ, the 

particle is released from the captured state and reverts back to the free state, so that it again 

moves with the fluid velocity 𝑣𝑓(𝑡). If the condition 𝑝 < 𝑡ℎ is not satisfied, then the particle 

remains in the captured state. In order that the particle behavior is independent of the time 

step size Δ𝑡, we set the value of the threshold as  

 

 tfCt oschh =  ,    (29) 

 

where 𝐶ℎ is a prescribed release coefficient.   

 To illustrate this stochastic model, an example showing the model predictions was 

examined for a case with oscillatory flow characterized by 25.0=oscf Hz and 15=A  mm 

and with particle and bead diameters given by 3.1=d  mm and 6=beadd  mm. The release 

coefficient for this example calculation is selected as 1=hC . The stochastic model was 

used to generate an ensemble of 100 data strings, each of which is a different run of the 
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model with a different initial condition. The runs were conducted with a step size of 

03.0=t s, and each run was carried out to an end time of 100=T s.  

 An example trace predicted by a single run of the stochastic model for the particle 

position 𝑦𝑝(𝑡) and velocity 𝑣𝑝(𝑡) is shown in Figure 33. The value of the velocity alternates 

between a sinusoidal oscillation (in the free state) and zero (in the captured state). The 

particle position also alternates between oscillating in time (in the free state) and 

maintaining a constant value (in the captured state). However, since the time at which this 

transition occurs is a random variable, the resulting particle motion exhibits a drift in either 

the upward or downward direction. A set of 20 traces for particles initiated at 𝑦 = 0 are 

shown in Figure 34a, with some traces ending above and some below the initial location. 

A probability density function (P.D.F.) of the particle location at dimensionless time 

𝑓𝑜𝑠𝑐𝑡 = 25 is given in Figure 34b, along with a Gaussian curve characteristic of a typical 

diffusion process indicated by a solid curve. The two plots in Figure 34 illustrate that 

oscillatory diffusion behaves like a diffusion process in which the diffusion coefficient is 

enhanced by the imposed acoustic oscillations.   
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Figure 33: Plot showing time variation of a sample experimental trace for 𝒚𝒑(𝒕) (bottom, left-hand 

axis) and 𝒗𝒑(𝒕) (top, right-hand axis) for the stochastic model. 

 

 

. 

 

  

Figure 34: Illustration of the diffusive characteristic of the particle motion: (a) traces of 20 

particles released from 𝒚 = 𝟎, (b) P.D.F. of particle location for 2000 traces sorted into 50 bins in 

𝒚 𝑨⁄ , evaluated at time 𝒇𝒐𝒔𝒄𝒕 = 𝟐𝟓. 

(a) (b) 



 

 59 

 Ensemble-averaged data for the set of 20 data strings are shown in Figure 35a and 

35b in comparison to the experimental data for Case B-2. In Figure 35a, the variance is 

observed to increase in time by fluctuating about a nearly linear increase. A dashed line 

with the same slope as the linear increase passing through the origin is plotted in Figure 

35a. Figure 35b shows the ratio of the kurtosis to the square of the variance for )(ty , which 

after an initial transient oscillates about the theoretical value of 3 for a normally-distributed 

process (dashed line). The computed autocorrelation for the stochastic model predictions 

are plotted against the lag time in Figure 35c. The predicted autocorrelation curve is nearly 

straight, as is also the case for a random walk process. The autocorrelation function for the 

experimental data in Case B-2 exhibited more oscillation than the stochastic model 

predictions, but both curves are reasonably close to each other. The power spectrum for the 

stochastic model predictions is plotted in Figure 35d, with a dashed line representing the 

2− fe  power law on the log-log plot. This power law gives a fairly close fit to the mean 

slope of the data, as was also the case for the random walk process and the experimental 

data. 
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Figure 35: Plots comparing a variety of statistical measures for the experimental case B-2 (B-2, 

black line I plots a-c) and the stochastic model (SM, red line in plots a-c): (a) the ensemble variance 

and (b) the ratio of the kurtosis over the variance squared as functions of time; (c) autocorrelation 

as a function of time delay, and (d) power spectrum for the stochastic model. Dashed lines indicate 

(a) best fit to slope of variance passing through origin, (b) theoretical value for a normally 

distributed process, and (d) 𝒇−𝟐 power law typical of a random walk process. 

 Hold-up data for the stochastic model predictions is sensitive to the value of the 

threshold parameter 𝑡ℎ. Smaller values of 𝑡ℎ cause the particles to remain captured for 

longer times, whereas smaller values of 𝑡ℎ lead to shorter capture times. In Figure 36, the 

complementary cumulative distribution function and the probability density function are 

(b) 

(c) (d) 

(a) 
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plotted for the stochastic model predictions with 𝑡ℎ = 0.017. The solid lines in these plots 

represent the best-fit log-normal curves for the experimental data for Case B-2. The 

stochastic model predictions exhibit more long-duration hold-up events than the 

experimental log-normal fit. However, even with these differences, the simple probabilistic 

release model assumed here is nevertheless seen to yield reasonable predictions for 

distribution of particle hold-up time. 

 

Figure 36: Plot showing (a) the complementary cumulative distribution function (1-C.D.F.) and (b) 

the probability density function (P.D.F.), with the stochastic model prediction indicated by symbols 

and the log-normal fit for the experimental data in Case B-2 indicated by solid lines.  

 

 

  

 

(a) (b) 



 

 62 

CHAPTER 7: PARAMETRIC STUDY OF STOCHASTIC MODEL AND 

COMPARISON TO CTRW THEORY 

Continuous time random walk (CTRW) is a generalization of the random walk 

process in which particles wait for a random time increment before jumping between states 

(Montroll and Weiss, 1965; Balakrishnan and Venkataraman, 1981a). This basic model 

was generalized by Balakrishnan and Venkataraman (1981b; hereinafter referred to as 

BV81b) to the problem of oscillatory diffusion, where it was assumed that particles 

fluctuate back and forth between an oscillatory state and a random jump state with constant 

velocity 0v , and that the transition time between these two states is a random variable. 

Assuming that the transitions between these states occurs via a series of uncorrelated binary 

decisions (i.e., a set of Bernoulli trials), BV81b concluded that the holding time distribution 

for each state would be of the form of a Poisson distribution, which we denote by )(tp  for 

the oscillatory state and by )(tq  for the random jump state. In the limit of many state 

transitions, we assume that these distributions approach the exponential form  

 

 )/exp()( 0osctftp −= , )/exp()( 1osctftq −= ,   (30) 

 

where 0  and 1  are the dimensionless average holding times in the oscillatory and jump 

states, respectively. The oscillatory diffusion examined in the current paper can be regarded 

as a special case of that examined in BV81b in which we let the jump velocity 00 =v , so 

that the particle is stationary (or captured) in the jump state. We henceforth refer to the 

jump state of BV81b as the captured state in the current model.    
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The hold-up time distribution for particle capture in the stochastic model 

predictions is sensitive to the value of the release coefficient 𝐶ℎ in (29) which is used to 

determine whether to release a particle or retain it in a captured state. Small values of  𝐶ℎ 

cause particles to remain captured for longer times than do larger values of 𝐶ℎ. The 

complementary cumulative distribution function (C.C.D.F.) and the probability density 

function (P.D.F.) for the hold-up time variable in the captured state are plotted for the 

example problem with 𝐶ℎ = 1 in Figure 37. In this plot, particle capture is identified as 

occurring for any time step where the absolute value of the particle velocity 𝑣𝑝(𝑡) is less 

than a fraction 𝐶𝑐𝑢𝑡 of the velocity amplitude 𝑣𝑎𝑚𝑝 = 𝜔0𝐴 (22), where 𝐴 = 𝑦𝑎𝑚𝑝. 

For the example case shown in Figure 37, we selected 𝐶𝑐𝑢𝑡 = 0.1. The C.C.D.F. 

data in Figure 37a was fit using the exponential probability distribution (30), which for a 

semi-logarithmic plot yields a linear expression that passes through the point (0,1) and has 

slope −1 𝜏1⁄ . The value of the mean holding-time 𝜏1 for the captured state was determined 

using a least-square linear regression to the logarithm of the C.C.D.F., which was selected 

to give the tails of the distribution equal weight in the fit to the values near the initial time. 

This procedure yielded an estimate 𝜏1 = 1.82 with a coefficient of determination of 𝑟2 =

0.98, which is indicated by the solid black line in Figure 37. The uncertainty in the estimate 

of 1  is evaluated using a 95% confidence interval, yielding upper and lower bounds for 

the fit line indicated by the dashed lines in Figure 37.   

The C.C.D.F. and P.D.F for the free oscillation time distribution are plotted in 

Figure 38. The best-fit exponential distribution is indicated in these plots by a solid line, 

and the 95% confidence interval is indicated by dashed lines. The average holding-time 



 

 64 

value for the free oscillation was obtained from the C.C.D.F. data for this example 

computation as 44.10 = , with a coefficient of determination of 96.02 =r .  

 

Figure 37: Plots showing results for particle capture-time distribution, including: (a) the 

complementary cumulative distribution function C.C.D.F. and (b) the probability density function 

(P.D.F.). The data (symbols) was computed from the stochastic model for the example case 

described in Chapter 4. The least-square fit (lines) was obtained using the exponential distribution 

in Eq. (9) with 𝝉𝟏 = 𝟏. 𝟖𝟐. 

 

  

 

 

 

(a) (b) 
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Figure 38: Plots showing results for free particle oscillation time distribution, including: (a) the 

complementary cumulative distribution function C.C.D.F. and (b) the probability density function 

(P.D.F.). The data (symbols) was computed from the stochastic model for the example case 

described in Chapter 4. The least-square fit (lines) was obtained using the exponential distribution 

in Eq. (9) with 𝝉𝟎 = 𝟏. 𝟒𝟒.  

A theoretical expression for the oscillatory contribution to the diffusion coefficient, 

denoted by 𝐷𝑡, was obtained from the CTRW theory by BV81b, which can be written in 

terms of the variables used in the current paper as  
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This result indicates that the dimensionless diffusion coefficient, oscTT fADD 2/ , is a 

function only of the dimensionless average holding time in the oscillating state, 0 . The 

CTRW theory assumes that the particle holding-time has an exponential distribution of the 

form (30) for both the captured state and the oscillating state, which is in good agreement 

(a) (b) 
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with the predictions of our stochastic model (as shown in Figure 37 and Figure 38). 

However, there are also several differences between our stochastic model assumptions and 

the CTRW theory. One difference is that the stochastic model only allows the particle to 

become captured after it has traveled a distance equal to the bead diameter, whereas the 

CTRW theory has no minimum travel distance for transition of the particle state. Secondly, 

the stochastic model only allows particle release from a captured state during times where 

the velocity is opposite in sign to that at which the capture occurred. No such restriction is 

found in the CTRW theory.  

A parametric study was conducted to test sensitivity of the stochastic model to 

various physical and numerical parameters, and to compare predicted diffusion coefficient 

values with those of the CTRW theory. The numerical parameters examined include the 

dimensionless time step tft osc= , the velocity cut-off coefficient cutC  used in (22) for 

assigning a particle to a captured state, and the particle release coefficient hC  in (29). The 

physical parameters examined include the ratio of oscillation amplitude to bead diameter 

beaddA / , the ratio of particle diameter to bead diameter beaddd / , and the pore size 

parameter pore . The dimensionless diffusion coefficient SD   from the stochastic model 

was computed for each case using the variance data from the model as 
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where 
2

var / Ayyvan =  and tft osc=  are the dimensionless variance and time, respectively. 

The derivative in (32) was obtained using a linear fit to the variance data obtained by linear 

regression. The comparison theoretical value of the dimensionless diffusion coefficient 

from CTRW theory, TD , was calculated using (31) with the average holding time 0  for 

the free oscillation state extracted from the stochastic model data using a least-square fit of 

the exponential C.C.D.F. distribution, as shown in Figure 38. 

It is noted that the stochastic model is dependent on the values of a series of random 

numbers, and as a consequence the predicted values of the dimensionless diffusion 

coefficient obtained from the stochastic model, SD , are not the same for two repeated runs 

of the code, even if all parameter values are the same. We also observe variation between 

runs for the value of 0 , which therefore results in fluctuations in the theoretical prediction 

for TD  from (31). In order to quantify the size of the fluctuations in diffusion coefficient 

values, we performed two sets of experiments by repeated runs for a 'standard case', for 

which the dimensionless parameter values are given as follows: 

 

           1.0=cutC , 1=hC , 0083.0=t , 55.2/ =beaddA , 

 217.0/ =beaddd , 155.0/min =beaddb , 1=pore , 8.1−=pore .       (33)  

 

which is consistent with the example case described in Chapter 4. The stochastic model 

computation was repeated for these parameter values both 20 times and 100 times. The 

mean and standard deviation of the predicted values of SD  and TD  for each of these sets 

of runs are recorded in Table 3. The standard deviation of the stochastic model prediction 
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is between 10-12% of the mean value, whereas that of the CTRW theory prediction is 

between 1-3% of the mean value. Comparison of the mean and standard deviation values 

for the cases with 20 and 100 iterations indicates the sensitivity of these values to number 

of iterations.  

 
Table 3: Comparison of the mean and standard deviation of the predictions for dimensionless 

diffusion coefficient from the stochastic model and the CTRW theory for different number of 

iterations of the model. 

Quantity 20 Iterations 100 Iterations 

mean standard 

deviation 

mean standard 

deviation 

Stochastic 

model, SD  

0.1467 0.0153 0.1523 0.0176 

CTRW theory, 

TD  

0.1562 0.00405 0.1541 0.00219 

 

In the parametric study, we examine sensitivity of the stochastic model predictions 

to variation of the first six parameters listed in (33). For each parameter, 20 different values 

were examined by varying the test parameter value while holding the remaining parameters 

constant. Each run was repeated 100 times to obtain mean and standard deviation for each 

set of parameter values. Plots showing the predictions for dimensionless diffusion 

coefficient from both the stochastic model and the CTRW theory are shown in Figure 39 

for the three stochastic model numerical parameters, 𝐶𝑐𝑢𝑡, 𝐶ℎ, and Δ𝑡′. In Figure 40, 

dimensionless diffusion coefficient predictions from the CTRW theory and the stochastic 

model are presented for three physical parameters describing the porous bed, the oscillating 

flow, and the moving particle. The mean value is indicated in these plots by a symbol and 

the standard deviation is indicated by error bars. 
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Figure 39a shows that the predicted diffusion coefficient values from the stochastic 

model and the CTRW theory agree well under the standard model conditions listed in (33), 

and that neither of these predicted diffusion coefficient values change significantly as the 

value of 𝐶𝑐𝑢𝑡 is varied from 0 - 0.4. We recall that 𝐶𝑐𝑢𝑡 is used in the criterion (22) to 

determine when a particle transitions from a free state to a captured state in the stochastic 

model. The reported results indicate that the model predictions are not sensitive to the value 

of this velocity cut-off coefficient.  

The second numerical parameter examined was the dimensionless time step 't . 

Sensitivity of predicted diffusion coefficient to 't  is examined in Figure 39b, which shows 

that both the CTRW theory and the stochastic model predictions have little sensitivity to 

this parameter when 't  is greater than about 0.005. However, for computations with 't  

much smaller than this value, the stochastic model predictions exhibit a small increase in 

diffusion coefficient while the CTRW theory exhibits a very large increase. The difference 

between the CTRW predictions and the stochastic model predictions for small values of 

't  is associated with the fact that the stochastic model is only allowed to make a decision 

for whether or not a particle is captured after the particle has traveled a distance equal to a 

multiple of the bead diameter, whereas the CTRW theory makes this decision at every time 

step. The ratio of distance traveled by the particle to bead diameter can be estimated using 

the velocity amplitude A0  from (28) for the maximum velocity as 
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In terms of this parameter, breakdown in agreement between the stochastic model and the 

CTRW theory coincides in Figure 39b with the condition 

 

015.0
beadd

A
t .    (35) 

 

The final numerical parameter examined was the particle release coefficient hC , 

which is used in the expression (29) to determine the value of the release threshold ht  used 

to determine if a particle is released from a captured state. The results in Figure 39c indicate 

that the CTRW theory predicts a nearly linear increase in the diffusion coefficient with hC

. The CTRW theoretical prediction agrees closely with the stochastic model prediction for 

8.1hC , but above this value the stochastic model prediction begins to flatten out. These 

results indicate that hC  is the primary numerical parameter that influences the predictions 

of the stochastic model.   

 

 

Figure 39: Sensitivity study of the dimensionless diffusion coefficient predictions for the stochastic 

model (red triangles) and the CTRW theory (black squares) as functions of three different 

numerical parameters: (a) 𝑪𝒄𝒖𝒕, (b) 𝚫𝒕′, and (c) 𝑪𝒉. Symbols represent the mean value and error 

bars represent the standard deviation of 100 repeated computations for each point. 

(a) (b) (c) 
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It would be expected that physical parameters, such as the particle and bead 

diameters, the frequency and amplitude of oscillation, and the pore size distribution of the 

underlying porous medium, would influence the resulting particle diffusion. From these 

variables, we selected three dimensionless physical parameters to examine sensitivity of 

the predicted dimensionless diffusion coefficient. The first parameter, 𝐴 𝑑𝑏𝑒𝑎𝑑⁄ , represents 

the ratio of the maximum amplitude of particle displacement to the bead diameter. Based 

on the criterion (35) with the dimensionless time step given in (33), we would expect the 

stochastic model predictions to begin deviating from the CTRW theory for 𝐴 𝑑𝑏𝑒𝑎𝑑 < 1.8⁄ , 

which agrees well with the results in Figure 40a. Because the particle can only change from 

a freely oscillating state to a captured state in the stochastic model if it travels a distance 

greater than 𝑑𝑏𝑒𝑎𝑑 , the diffusion coefficient predicted by the stochastic model, shown in 

Figure 40a, reduces to zero when the maximum distance of particle displacement (2𝐴) is 

less than 𝑑𝑏𝑒𝑎𝑑  (or 𝐴 𝑑𝑏𝑒𝑎𝑑 < 1 2⁄⁄ ). 

The stochastic model predictions are highly sensitive to the value of the ratio 

𝑑 𝑑𝑏𝑒𝑎𝑑⁄  of the particle diameter to the bead diameter. If 𝑑 𝑑𝑏𝑒𝑎𝑑 < 𝑏𝑚𝑖𝑛 𝑑𝑏𝑒𝑎𝑑 = 0.155⁄⁄ , 

the particles will always be smaller than the pore size and pass through the pore without 

hold-up, with the consequence that the diffusion coefficient will vanish. We note that the 

current stochastic model is based on the assumption that particle capture occurs only from 

filtration, and it does not include effects of particle adhesion or other forms of hindering. 

On the other hand, as 𝑑 𝑑𝑏𝑒𝑎𝑑⁄  gets large, the likelihood of the particle encountering a pore 

that is smaller than the particle becomes progressively smaller. This results in a condition 

where the particle becomes continually captured by the surrounding beads, with rapid 

decrease in diffusion coefficient. As a result of these two considerations, we see in Figure 
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40b that the diffusion coefficient predicted by the stochastic model has a fairly narrow peak 

and reduces rapidly when 𝑑 𝑑𝑏𝑒𝑎𝑑⁄  is either larger or smaller than this peak value. The 

location of the peak value and the narrowness of the profile will be dependent primarily on 

the parameters 𝜇𝑝𝑜𝑟𝑒 and 𝜎𝑝𝑜𝑟𝑒 that govern the assumed pore size distribution. In the region 

with highest diffusion coefficient value within this peak region, the CTRW theory 

predictions are close to those of the stochastic model; however, the CTRW theory does not 

provide an accurate prediction for values of 𝑑 𝑑𝑏𝑒𝑎𝑑⁄  outside of this peak region.  

 The final physical parameter examined is 𝜎𝑝𝑜𝑟𝑒, which as shown in Figure 31 

influences the shape of the pore size distribution. The diffusion coefficient predictions for 

computations with different values of 𝜎𝑝𝑜𝑟𝑒 is shown in Figure 40c. For small values of 

𝜎𝑝𝑜𝑟𝑒, the pore size distribution has a very narrow peak, and hence only a narrow range of 

𝑑 𝑑𝑏𝑒𝑎𝑑⁄  values exhibit significant diffusion. As 𝜎𝑝𝑜𝑟𝑒 increases, the pore size distribution 

widens, and significant diffusion coefficient values are observed for a larger interval of 

𝑑 𝑑𝑏𝑒𝑎𝑑⁄  values. For the value of 𝑑 𝑑𝑏𝑒𝑎𝑑⁄   listed in (34) we observe a significant decrease 

in the diffusion coefficient predicted by the stochastic model for 𝜎𝑝𝑜𝑟𝑒 less than about 0.9. 

For values of 𝜎𝑝𝑜𝑟𝑒 above this value, the diffusion coefficient exhibits small sensitivity to 

𝜎𝑝𝑜𝑟𝑒 and the predictions of CTRW theory and of the stochastic model are reasonably 

close.    
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Figure 40: Parametric study of the dimensionless diffusion coefficient predictions for the stochastic 

model (red triangles) and the CTRW theory (black squares) as functions of three physical parameters: 

(a) 𝑨 𝒅𝒃𝒆𝒂𝒅⁄ , (b) 𝒅 𝒅𝒃𝒆𝒂𝒅⁄ , and (c) 𝝈𝒑𝒐𝒓𝒆. Symbols represent the mean value and error bars represent 

the standard deviation of 100 repeated computations for each point. 
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CHAPTER 8: CONCLUSIONS 

 A study has been performed on the effect of oscillatory forcing on the enhancement 

of diffusion of colloidal particles suspended in a rigid porous bed composed of fixed 

spheres. The combination of particle oscillation induced by the oscillatory flow and random 

hindering due to interaction with the porous bed produces a type of particle random walk. 

This combination leads to particle diffusion in the bed via a process known as oscillatory 

diffusion. This process was studied experimentally by following individual particles 

moving under an imposed oscillatory flow field in a porous bed of spherical glass beads. 

Refractive index matching was used to visualize the particle in the porous bed. The particle 

was observed to oscillate up and down with the imposed oscillatory flow field, but also to 

intermittently be captured by the porous bed for intervals of various durations. The particle 

location data was extracted from video images, from which the particle position and 

velocity were determined as functions of time. Experiments were conducted with two 

different particle sizes and with various frequencies and amplitudes of the oscillating flow 

field. Each condition was repeated approximately 20 times to generate an ensemble of data.      

 A variety of statistical measures were applied to the experimental data for particle 

position within the porous bed in the presence of oscillatory flow, including ensemble 

averaging, autocorrelation, spectral analysis, and distribution of particle hold-up times. 

These measures were found to exhibit many attributes similar to diffusive processes, 

including nearly linear increase in variance with time, nearly linear decrease in 

autocorrelation as a function of lag time, and a power-law dependence 
2− fe  between 

spectral power and frequency. At the same time, the experimental data also exhibited some 

attributes of an oscillatory process, which resulted in superposition of oscillations for the 
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variance and autocorrelation functions onto the linear dependence typical of diffusive 

processes. The distribution of particle hold-up duration that characterizes the intermittent 

particle capturing was found to be well fit by a log-normal distribution. The cumulative 

distribution plots were used to compare the hold-up distribution data for the different cases 

examined.  

  A stochastic model was developed to describe the oscillatory diffusion process for 

particles in a porous bed which involves a transition between a freely oscillating state and 

a captured state of the particle. A particle that is initially freely oscillating can become 

captured if it moves into a pore space that is smaller than the particle diameter, where the 

pore size is assumed to be a log-normally distributed random variable. However, the 

particle only moves into a new pore space once it has moved a distance equal to the nominal 

diameter of the beads making up the porous bed, which places a limit of the frequency that 

particle state transition can occur. Once a particle is captured, it can transition back to the 

freely oscillating state during the particle release process, which occurs only when the sign 

of the velocity is opposite that at which the initial capture occurred. Particle release is 

allowed to occur when the value of a uniformly-distributed random variable is less than a 

threshold value. Example computations using this stochastic model exhibit many of the 

theoretical characteristics of random walk processes such as a linearly increasing variance, 

a ratio of kurtosis to square of variance close to 3.0, and a power spectrum that is inversely 

proportional to the square of the frequency. The hold-up time for both the capture and 

freely-oscillating states are found to be well fit by exponential probability distributions in 

the stochastic model.    
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 The oscillatory diffusion process was described in terms of a continuous time 

random walk (CTRW) process by Balakrishnan and Venkataraman (1981b) and includes 

an analytical solution for the particle diffusion coefficient; however, some of the 

assumptions made in development of this CTRW theory are not consistent with the 

physical processes involved for particles in a porous bed. After being non-dimensionalized 

by oscfA2
, where A is the particle oscillation amplitude in the porous bed and 

oscf  is the 

oscillation frequency, the dimensionless diffusion coefficient was found to depend only on 

the dimensionless particle average hold-up time 
0  in the freely oscillating state. A 

parametric study of the sensitivity of the stochastic model was performed by varying three 

dimensionless numerical parameters that control the stochastic model and three 

dimensionless physical parameters describing properties of the particle, the porous bed, 

and the acoustic forcing. For each case the dimensionless diffusion coefficient predicted 

by the stochastic model was compared with the analytical solution from the CTRW theory. 

The degree of sensitivity of the stochastic to different parameters was determined, and 

regions exhibiting agreement and disagreement of the stochastic model predictions with 

the CTRW theory were identified and explained. 

 We caution that the current experiments and stochastic model are limited to 

particulate transport at the millimeter size scale. For much smaller-scale processes, such as 

the problem of ultrasound-enhanced diffusion of nanoparticles in a hydrogel, other 

processes come into play. For instance, for small-scale particles, adhesive capture of the 

particles by the hydrogel network is expected to be an important hindering mechanism. 

The stochastic model also assumed that the particle was either moving freely or at rest and 
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did not account for an in-between state in which the surrounding porous media slows down 

(but does not stop) the particle motion.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



 

 78 

REFERENCES 

Balakrishnan, V., Venkataraman, G., Two-state random walk model of diffusion. 2. 

Oscillatory diffusion. Pramana 16(6), 437-455 (1981b).  

 

Bigelow, T.A., Northagen, Y.T., Hill, T.M., Saileret, F.C., The destruction of escherichia 

coli biofilms using high-intensity focused ultrasound, Ultrasound in Med. & Biol 35(6), 

1026–1031, (2009) 

 

Bsoul, A.A., Magnin, J.P., Commenges-Bernole, N., Gondrexon, N., Willison, J., Petrier, 

Christian., Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain 

(6PY1), Ultrasonics Sonochemistry 17, 106–110 (2010) 

 

Bertrand, N., Leroux, J.C., The journey of a drug-carrier in the body: An anatomo-

physiological perspective, Journal of Controlled Release (2011). 

 

Bae, Y.H., Park, K., Targeted drug delivery to tumors: myths, reality and possibility, J 

Control Release 153(3), 198–205 (2011). 

 

Bradford S.A., Yates, S.R., Bettahar, M., Simunek, J., Physical factors affecting the  

transport and fate of colloids in saturated porous media, Water Resources Research 

38(12), 1321 (2002) 

 

Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R., Modeling 

Colloid Attachment, Straining, and Exclusion in Saturated Porous Media, Environ. Sci. 

Techno 37, 2242-2250 (2003). 

  

Bradford S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R., Significance  

of straining in colloid deposition: Evidence and implications, Water Resour. Res., 42, 

W12S15, doi:10.1029/2005WR004791 (2006). 

 

Braeckmans, K., Probing the size limit for nanomedicine penetration into Burkholderia 

multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release 195, 

21-28 (2014a). 

 

Beuling, E.E., van Dusschoten, D., Lens, P., van den Heuvel, J.C., Van As, H., Ottengraf, 

S.P.P., Characterization of the diffusive properties of biofilms using pulsed field 

gradient-nuclear magnetic resonance, Biotechnology and Bioengineering 60(3), (1998). 

 

Cheow, W.S., Chang, M.W., Hadinoto, K., The roles of lipid in anti-biofilm efficacy of 

lipid-polymer hybrid nanoparticles encapsulating antibiotics. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects 389, 158-165 (2011). 

 



 

 79 

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 

Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal, 

Science of the Total Environment 671, 411–420 (2019). 

 

Chernomordik, V., Gandjbakhchea, A.H., Hassana, M., Pajevicb, S., Weissb, 

G.H., A CTRW-based model of time-resolved fluorescence lifetime 

imaging in a turbid medium, Opt Commun. 283(23), 4832–4839 (2010) 

 

Dieterich, W., Peschel, I., Schneider, W.R., Diffusion in periodic potentials, Z. Physik 

27, 177 -187 (1977). 

 

Das, A.K., Stochastic diffusion in a periodic potential, Physica 98A, 528-544 (1979).  

 

David, J., Weissmannova, H.D., Steinmetz, Z., Kabelikova, L., Demyan, M.S., 

Simeckova, J., Tokarski, D., Siewert, C., Schaumann, G.E., Kucerik, J., Introducing a soil 

universal model method (SUMM) and its application for qualitative and quantitative 

determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene 

terephthalate) microplastics in a model soil, Chemosphere 225, 810e819 (2019). 

 

Fatin-Rouge, N., Starchev, K., Buffle, J., Size effects on diffusion processes within 

agarose gels, Biophysical Journal Volume 86, 2710–2719 (2004)  

 

Forier, K., Messiaen, A.S., Raemdonck, K., Nelis, H., De Smedt, S., Demeester, J., 

Coenye, T., and Braeckmans, K., Probing the size limit for nanomedicine penetration into 

Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled 

Release 195, 21-28 (2014a). 

 

Forier, K., Messiaen, A.S., Raemdonck, K., Nelis, H., De Smedt, S., Demeester, J., 

Coenye, T., Braeckmans, K., Probing the size limit for nanomedicine penetration into 

Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled 

Release 195, 21-28 (2014a) 

 

Forier, K., Raemdonck, K., De Smedt, S.C., Demeester, J., Coenye, T., Braeckmans, K., 

Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. Journal of 

Controlled Release 190, 607-623 (2014b). 

 

Fu, W., Min, J., Jiang, W., Li, Y., Zhang, W., Separation, characterization and 

identification of microplastics and nanoplastics in the environment, Science of the Total 

Environment 721, 137561 (2020). 

 

Gerber, G., Rodts, S., Aimedieu, P., Faure, P., Coussot, P., Particle-size exclusion  

clogging regimes in porous media, Physcal Review Letters 120, 148001 (2018) 

 



 

 80 

Hahn M.W., O’Melia, C.R., Deposition and reentrainment of brownian particles in 

porous media under unfavorable chemical conditions: some concepts and applications, 

Environ. Sci. Technol. 38, 210-220 (2004) 

 

Hunter, P.,  The mob response: the importance of biofilm research for combating chronic 

diseases and tackling contamination, EMBO reports 9(4), (2008). 

 

Huffer T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T.C., Hofmann, T., 

Polyethylene microplastics influence the transport of organic contaminants in soil, 

Science of the Total Environment 657, 242–247 (2019). 

 

Kermani, M.S., Jafari, S., Rahnama, M., Raoof, A., Direct pore scale numerical 

simulation  

of colloid transport and retention. Part I: Fluid flow velocity, colloid size, and pore 

structure effects, Advances in Water Resources 144, 103694 (2020). 

 

Kuzmina, L., Osipov, T., Deep bed filtration with multiple pore-blocking mechanisms. 

Theoretical Foundation of Civil Engineering 196, 04003 (2018). 

 

King, L.V., On the acoustic radiation pressure on spheres, The Royal Society 147(861), 

(1934). 

 

Kim, S.W., An, Y.J., Soil microplastics inhibit the movement of springtail species, 

Environment International 126, 699–706 (2019). 

 

Kokare, C.R., Charkraborty, S., Khopade, A.N., Mahadik, K.R., Biofilm: importance and 

applications, Indian Journal of Biotechnology 8, 159-168 (2008). 

 

Laspidou, C.S., Spyrou, L.A., Aravas, N., Rittmann, B.E., Material modeling of biofilm 

mechanical properties, Mathematical Biosciences 251, 11–15 (2014). 

 

Lee-Haung, L., Adhesive Bonding, Springer Science+Business Media New York, DOI 

10.1007/978-1-4757-9006-1 (1991) 

 

Li, X., Yeh, Y.C., Giri, K., Mout, R., Landis, R.F., Prakash, Y.S., and Rotello, V.M., 

Control of nanoparticle penetration into biofilms through surface design. Chem. 

Commun. 51, 282-285 (2015).  

 

Ma, D., Green, A.M., Willsey, G.G., Marshall, J.S., Wargo, M.J., and Wu, J.R., Effects 

of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm 

mitigation effectiveness of drug-loaded liposomes. Journal of the Acoustical Society of 

America 138(2), 1043-1051 (2015).  

 



 

 81 

Ma, D., Marshall, J.S., and Wu, J.R., Measurement of ultrasound-enhanced diffusion 

coefficient of nanoparticles in an agarose hydrogel. Journal of the Acoustical Society of 

America 144(6), 3496-3502 (2018). 

 

Masoliver, J., Montero, M., Perello, J., Weiss, G.H., The CTRW in finance: Direct and 

inverse problems with some generalizations and extensions, Physica A 379, 151–167 

(2006) 

 

Miller, J.K., Neubig, R., Clemons,  C.B., Kreider, K.L., Wilber, J.P., Young, G.W., Ditto, 

A.J., Yun, Y.H., Milsted, A., Badawy, H.T., Panzner, M.J., Youngs, W.J., Cannon, C.L., 

Nanoparticle deposition onto biofilms, Ann Biomed Eng. 41(1), 53–67, 

doi:10.1007/s10439-012-0626-0 (2013). 

 

Marshall, J.S., A model of ultrasound-enhanced diffusion in a biofilm. Journal of the 

Acoustical Society of America 139(6), EL228-EL233 (2016). 

 

Machado, A.A.S., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., 

Becker, R., Gorlich, A.S., Rillig, M.C., Microplastics can change soil properties and 

affect plant 

Performance, Environ. Sci. Technol. 53, 6044−6052 (2019). 

 

Oliveira, F.A., Ferreira, R.M.S., Lapa, L.C., Vainstein, M.H., Anomalous diffusion: a 

basic mechanism for the evolution of inhomogeneous systems, Frontiers in Physics 7(18), 

(2019). 

 

Porubcan A.A., Xu, S., Colloid straining within saturated heterogeneous porous Media,  

Water Research 45, 1796-1806 (2011). 

 

Pizzi, A., Mittal, K.L., Handbook of adhesive technology second edition, revised and 

expanded, Marcel Dekker, Inc, ISBN: 0-8247-0986-1 (2003) 

 

Peulen, T.O., and Wilkinson, K.J., Diffusion of nanoparticles in a biofilm. Environmental 

Science 

& Technology 45, 3367-3373 (2011). 

 

Paul, S., Nahire, R., Mallik, S., Sarkar, K., Encapsulated microbubbles and echogenic 

liposomes for contrast ultrasound imaging and targeted drug delivery, Comput Mech 53, 

413–435 (2014). 

 

Paul, S., Nahire, R., Mallik, S., Sarkar, K., Encapsulated microbubbles and achogenic 

liposomes for contrast ultrasound imaging and targeted drug delivery. Computational 

Mechanics 53, 413-436 (2014).  

 



 

 82 

Piti, W.G., Mcbride, M.O., Lunceford, J.K. , Roper, R.J., Sagers, R.D., Ultrasonic 

enhancement of antibiotic action on gram-negative bacteria, Antimicrobial Agents And 

Chemotherapy 38(11), 2577-2582 (1994). 

 

Pitt, W.G., Husseini, G.A., Staples, B.J., Ultrasonic drug delivery – a general review, 

Expert Opin Drug Deliv. 1(1), 37–56 (2004) 

 

Qian, Z., Stoodley, P., Pitt, W.G., Effect of low-intensity ultrasound upon biofilm 

structure from confocal scanning laser microscopy observation, Biomaterials 17, 1975-

1980 (1996). 

 

Qian, Z., Sagers, R.D., Pitt, W.G., The effect of ultrasonic frequency upon enhanced 

killing of 

p. aeruginosa biofilms, Annals of Biomedical Engineering 25, 69-76 (1997) 

 

Rediske, A.M., Roeder, B.L., Brown, M.K., Nelson, J.L., Robison, R.L., Draper, D.O., 

Schaalje, G.B., Robison, R.A., Pitt, W.G., Ultrasonic enhancement of antibiotic action on 

escherichia coli biofilms: an in vivo model, Antimicrobial Agents And Chemotherapy 

43(5), 1211–121 (1999) 

 

Rillig, M.C., Microplastic in terrestrial ecosystems and the soil?, American Chemical 

Society 2012. 

 

Rillig , M.C., Ziersch, L., Hempel, S., Microplastic transport in soil by earthworms, 

Scientific Reports 7, 1362, DOI:10.1038/s41598-017-01594-7 (2017) 

 

Singh, R., Lillard, J.W., Nanoparticle-based targeted drug delivery, Exp Mol Pathol. 

86(3), 215–223. doi:10.1016/j.yexmp.2008.12.004. (2009) 

 

Schroeder, A., Kost, J., Barenholz, Y., Ultrasound, liposomes, and drug delivery: 

principles for using ultrasound to control the release of drugs from liposomes. Chemistry 

and Physics of Lipids 162, 1-16 (2009). 

 

Sirivithayapakorn, S., Keller, A., Transport of colloids in saturated porous media: A pore-  

scale observation of the size exclusion effect and colloid acceleration, Water Resources 

Research 39(4), 1109 (2003). 

 

Seetha, N.,Hassanizadeh, S.M.,Mohan Kumar, M. S., Raoof, A., Correlation equations 

for average deposition rate coefficients of nanoparticles in a cylindrical pore, Water 

Resour. Res., 51, 8034–8059, doi:10.1002/2015WR017723 (2015). 

 

Shen, C., Li, B., Haung, Y., Jin, Y., Kinetics of coupled primary- and secondary-

minimum deposition of colloids under unfavorable chemical conditions, Environ. Sci. 

Technol. 41, 6976-6982 (2007). 

 



 

 83 

Shen, C., Huan, Y., Li, B., Jin Y., Predicting attachment efficiency of colloid deposition  

under unfavorable attachment conditions, Water Resour. Res. 46, W11526,  

doi:10.1029/2010WR009218, (2010) 

 

Stewart, P.S., Diffusion in biofilms, Journal of Bacteriology 185(5), 485–1491 (2003) 

 

Sokolov, I.M., Klafter, J., Continuous-time random walks in an oscillating field: Field-

induced dispersion and the death of linear response, Chaos, Solitons and Fractals 34, 81–

86 (2007) 

 

Tiukinhoy-Laing, S.D., Huang, S., Klegerman, M., Holland, C.K., McPherson, D.D., 

Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic 

liposomes. Thrombosis Research 119(7), 777-784 (2006). 

 

Thomas, J.M. and Chrysikopoulos, Experimental investigation of acoustically enhanced 

colloid transport in water-saturated packed columns. Journal of Colloid and Interface 

Science 308, 200-207 (2007). 

 

Tong, M., Johnson, W.P., Colloid population heterogeneity drives hyperexponential  

deviation from classic filtration theory, Environ. Sci. Technol. 41, 493-499 (2007). 

 

Vogler, T., and Chrysikopoulos, C.V., Experimental investigation of acoustically 

enhanced solute transport in porous media. Geophysical Research Letters 29(15), 1710 

(2001). 

 

Wang, Y., Huo, M., Li, Q., Fan, W., Yang, J., Cui, X., Comparison of clogging induced 

by organic and inorganic suspended particles in a porous medium: implications for 

choosing physical clogging indicators, Journal of Soils and Sediments 5, (2018) 

 

Wang, Z., Taylor, S.E., Sharma, P., Flury, M., Poor extraction efficiencies of polystyrene 

nano- and microplastics from biosolids and soil, PLoS ONE 13(11), e0208009 (2018). 

 

You, Z., Badalyan, A., Bedrikovetsky, P., Size-Exclusion colloidal transport in porous  

media-stochastic modeling and experimental study., SPE Journal, 162941 (2013). 

 

Zhang, Z., Nadezhina, E., Wilkinson, K.J., Quantifying diffusion in a biofilm of 

streptococcus mutans, Antimicrobial Agents And Chemotherapy 55(3),  1075–1081 

(2011) 

 

 

  


	Statistics Of Particle Diffusion Subject To Oscillatory Flow In A Porous Bed
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: MOTIVATION AND OBJECTIVE
	1.1. Motivation
	1.2 Objective and Scope
	CHAPTER 2: LITERACTURE REVIEW
	2.1    Particle Hindering Mechanisms
	2.2    Hindered Diffusion in Biofilms
	2.3    Oscillatory Diffusion
	CHAPTER 3: EXPERIMENTAL METHOD
	CHAPTER 4: DATA ANALYSIS
	CHAPTER 5: EXPERIMENTAL RESULTS
	5.1    Standard Statistical Measures
	5.2    Hold-up Measures
	CHAPTER 6: STOCHASTIC MODEL
	CHAPTER 7: PARAMETRIC STUDY OF STOCHASTIC MODEL AND COMPARISON TO CTRW THEORY
	CHAPTER 8: CONCLUSIONS
	REFERENCES

