
PARALLÉLISATION MASSIVE DES ALGORITHMES DE

BRANCHEMENT

par

Andres Pastrana Cruz

Mémoire présenté au Département d’informatique
en vue de l’obtention du grade de maître ès sciences (M.Sc.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, 10 septembre 2021

Le 10 septembre 2021

Le jury a accepté le mémoire de Andres Pastrana Cruz dans sa version
finale

Membres du jury

Professeur Manuel Lafond
Directeur

Département d’informatique

Professeur Jean-Pierre Dussault
Membre interne

Département d’informatique

Professeur Gabriel Girald
Président-rapporteur

Département d’informatique

i

Sommaire

Les problèmes d’optimisation et de recherche sont souvent NP-complets et des
techniques de force brute doivent généralement être mises en œuvre pour trouver
des solutions exactes. Des problèmes tels que le regroupement de gènes en bio-
informatique ou la recherche de routes optimales dans les réseaux de distribution
peuvent être résolus en temps exponentiel à l’aide de stratégies de branchement ré-
cursif. Néanmoins, ces algorithmes deviennent peu pratiques au-delà de certaines
tailles d’instances en raison du grand nombre de scénarios à explorer, pour lesquels
des techniques de parallélisation sont nécessaires pour améliorer les performances.

Dans des travaux antérieurs, des techniques centralisées et décentralisées ont été
mises en œuvre afin d’augmenter le parallélisme des algorithmes de branchement tout
en essayant de réduire les coûts de communication, qui jouent un rôle important dans
les implémentations massivement parallèles en raison des messages passant entre les
processus.

Ainsi, notre travail consiste à développer une bibliothèque entièrement générique
en C++, nommée GemPBA, pour accélérer presque tous les algorithmes de branche-
ment avec une parallélisation massive, ainsi que le développement d’un outil novateur
et simpliste d’équilibrage de charge dynamique pour réduire le nombre de messages
transmis en envoyant les tâches prioritaires en premier. Notre approche utilise une
stratégie hybride centralisée-décentralisée, qui fait appel à un processus central chargé
d’attribuer les rôles des travailleurs par des messages de quelques bits, telles que les
tâches n’ont pas besoin de passer par un processeur central.

De plus, un processeur en fonctionnement génère de nouvelles tâches si et seule-
ment s’il y a des processeurs disponibles pour les recevoir, garantissant ainsi leur
transfert, ce qui réduit considérablement les coûts de communication.

ii

Sommaire

Nous avons réalisé nos expériences sur le problème de la couverture minimale de
sommets, qui a montré des résultats remarquables, étant capable de résoudre même
les graphes DIMACS les plus difficiles avec un simple algorithme MVC.

Mots-clés: Équilibrage de charge ; couverture de sommet ; algorithmes parallèles ;
parallélisme évolutif ; algorithmes de branchement

iii

Abstract

Optimization and search problems are often NP-complete, and brute-force tech-
niques must typically be implemented to find exact solutions. Problems such as clus-
tering genes in bioinformatics or finding optimal routes in delivery networks can be
solved in exponential-time using recursive branching strategies. Nevertheless, these
algorithms become impractical above certain instance sizes due to the large number of
scenarios that need to be explored, for which parallelization techniques are necessary
to improve the performance.

In previous works, centralized and decentralized techniques have been implemen-
ted aiming to scale up parallelism on branching algorithms whilst attempting to
reduce communication overhead, which plays a significant role in massively parallel
implementations due to the messages passing across processes.

Thus, our work consists of the development of a fully generic library in C++,
named GemPBA, to speed up almost any branching algorithms with massive paral-
lelization, along with the development of a novel and simplistic Dynamic Load Ba-
lancing tool to reduce the number of passed messages by sending high priority tasks
first. Our approach uses a hybrid centralized-decentralized strategy, which makes use
of a center process in charge of assigning worker roles by messages of a few bits of
size, such that tasks do not need to pass through a center processor.

Also, a working processor will spawn new tasks if and only if there are available
processors to receive them, thus, guaranteeing its transfer, and thereby the commu-
nication overhead is notably decreased.

We performed our experiments on the Minimum Vertex Cover problem, which sho-
wed remarkable results, being capable of solving even the toughest DIMACS graphs
with a simple MVC algorithm.

iv

Abstract

Keywords: Load balancing ; vertex cover ; parallel algorithms ; scalable parallelism ;
branching algorithms

v

Remerciements

Je tiens à remercier ma mère Yadira d’avoir toujours cru en moi et d’être si
positive.

Je tiens à remercier mon épouse, Angela, qui m’a soutenu dans toutes mes épreuves,
mes absences, mes crises de dépit et d’impatience. Elle m’a apporté son soutien et
son aide, a discuté d’idées et a évité plusieurs faux pas.

Je tiens à remercier mon superviseur, le Dr. Manuel Lafond, pour avoir fourni des
conseils et des commentaires tout au long de ce projet.

Je tiens à remercier Calcul Canada, pour m’avoir permis d’accéder à leurs serveurs
pour effectuer des tests exhaustifs de mon projet.

Je tiens à remercier les mauvaises circonstances qui ont fait de moi quelqu’un de
plus exigeant et discipliné.

vi

Abbreviations

BnB Branch and Bound

FPT Fixed-Parameter Tractable

MVC Minimum Vertex Cover

DLB Dynamic Load Balancing

IPC Inter-Process Communication

vii

Contents

Sommaire ii

Abstract iv

Remerciements vi

Abbreviations vii

Contents viii

List of Figures xi

List of Tables xiii

Introduction 1

1 Preliminary notions 6
1.1 Branch & bound algorithms . 6
1.2 Fixed-parameter tractable algorithms 9
1.3 Parallelization . 10

1.3.1 Process . 11
1.3.2 Thread . 12
1.3.3 Multiprocessing . 12
1.3.4 Multithreading . 13

1.4 Multiprocessing + Multithreading (hybrid) 14
1.5 Critical section . 15

viii

Contents

1.6 Not embarrassingly parallel . 15
1.7 Probability of speedup . 16

1.7.1 Amdahl’s law . 16
1.8 Types of branching algorithms . 17
1.9 Inter-process communication strategies 20

1.9.1 Centralized topology . 20
1.9.2 Decentralized topology . 22

1.10 Reduction rules . 24
1.11 Vertical tree search . 27

2 State of the Art 29
2.1 Dual processor scheduling with dynamic reassignment 29
2.2 Multicomputers: message-passing concurrent computers 31
2.3 Scalable Parallel Algorithms for FPT Problems 32
2.4 The buffered Work-Pool approach . 34
2.5 Parallel Vertex Cover: A Case Study in Dynamic Load Balancing . . 36
2.6 On scalable parallel recursive backtracking 37

3 A Lightweight Semi-Centralized Strategy for the Massive Paral-
lelization of Branching Algorithms 41
3.1 Introduction . 44
3.2 Preliminary notions . 46

3.2.1 Search tree algorithms . 46
3.2.2 Previous search tree parallelization strategies 48

3.3 A semi-centralized load-balancing strategy 50
3.3.1 Center and worker responsibilities 52
3.3.2 Center implementation . 54
3.3.3 Worker implementation . 56
3.3.4 Maintaining the most urgent task in workers 58
3.3.5 Startup phase . 62

3.4 Implementation and experimental results 63
3.4.1 Converting sequential to parallel 64
3.4.2 Experiments . 66

ix

Contents

3.5 Conclusion and future work . 75
3.6 Code modifications . 76
3.7 Flowcharts . 78

4 Challenges 84
4.1 OpenMPI . 84

4.1.1 Two-sided communication . 85
4.1.2 One-sided communication . 86
4.1.3 Implementation . 86

Conclusion 88

x

List of Figures

1 Well-balanced binary tree. 4

1.1 Centralized topology . 21
1.2 Decentralized topology . 22
1.3 First rule . 25
1.4 Second rule . 26
1.5 Third rule . 26
1.6 Fourth rule . 27

2.1 Equitable task distribution . 30
2.2 Greedy Load Balancing within the search domain of a processor . . . 32
2.3 The proactive parallel decomposition. 33
2.4 Buffered Workpool approach. 35
2.5 Branching algorithm for the MVC. 36
2.6 Core topology . 38
2.7 Initial task-to-core assignment and core hierarchy 39

3.1 Communication topology . 53
3.2 Quasi-horizontal visualization, heterogeneous search tree 62
3.3 Process topology . 64
3.4 Sequential MVC algorithm . 65
3.5 Parallel MVC algorithm . 66
3.6 Performance comparison on the p_hat1000-2 graph 70
3.7 Performance comparison on the p_hat700-1 graph 71
3.8 Performance comparison on the frb30_15_1 graph 72

xi

List of Figures

3.9 Multiprocess environment setup . 77
10 Center process flowchart . 79
11 Perform assignments for running tags. 80
12 Perform assignments for available tags. 81
13 Worker process . 82
14 Worker process, do job details . 83

xii

List of Tables

3.1 Performance attained for the p_hat1000-2.clq graph. 73
3.2 Performance attained for the p_hat700-1.clq graph. 73
3.3 Performance attained for the frb30-15-1.mis graph. 74
3.4 Significance of dynamic load balancing over the greedy approach, on

the p_hat1000-2.clq graph . 74

xiii

Introduction

In this chapter, we present the subject of research and part of the motivation of
this study.

Context

A great variety of problems in Computer Science are approachable by the means
of algorithms that are aimed to find a particular solution. There exist multiple ap-
proaches for the same problem, which result in a vast miscellany of algorithms. Most
algorithms start from their naive version, which is the most intuitive and first attempt
to solve a specific problem. However, most of them are improved over time due to
scientific interest. This improvement is typically performed because these algorithms
obtain solutions in exponential time, which in practice, the age of the observable
universe would not be enough to attain a solution depending on the input. The class
of NP-complete problems is well-known for the fact that there is no known algorithm
capable of finding a solution in polynomial time [1].

Computational capacity per processor has increased significantly since a few decades
ago, yet scientific needs outrun this performance improvement by far. In order to
tackle hardware limitations, supercomputers allow to massively cooperate to perform
parallel computations, which is to be seized as the solution to accelerate branching
algorithms to handle large instances.

1

Introduction

Exponential branching algorithms

The idea behind a recursive branching algorithm is to split a given instance into
sub-instances that are explored recursively, such that one of these sub-instances leads
to an optimal solution. In most scenarios, a solution is found by trial-and-error
but following some logic steps, which is essentially trying all possible combinations
to achieve an acceptable or exact solution. Since the number of combinations may
lead to an enormous number and therefore no solutions; there exist some heuristic
algorithms that attain solutions in a reasonable time-frame, yet exact algorithms keep
being the main interest for the scientific community [27].

These strategies are used in several areas such as in bioinformatics for the cluster
editing problem [54] or the vertex cover problem[57]. Thus, various techniques are
constantly applied for these exact algorithms to narrow down the complexity as much
as possible such that Branch-and-Bound (BnB) and Fixed-Parameter Tractability
(FPT).

BnB algorithms consist of recursively apply branching steps to sub-instances
I1, I2, . . . , Il of I, until they become simple tasks. Thus, this algorithm creates a
search tree where each recursive call corresponds to a node. The exploration of a
path is halted when in the recursive path, the series of decisions detect that this
branch will lead to a non-optimal solution [18]. This approach allows the program
to be aware of the best solution so far and therefore ceasing the search as soon as a
current solution is equal or worse than the existing one.

On the other hand, the FPT approach wants to answer the question if there exists
a solution of size at most k, where k is a parameter that will be typically reduced
as the exploration progresses. If a solution of size k is found, unlike the BnB, the
FPT approach halts the whole search and returns a Y ES, otherwise, the algorithm
returns NO [18]. The previous techniques can be combined to attain even better
performance with adequate implementations.

Although the scientific community has accomplished great advances, even the
most efficient algorithm is still exponential. For instance, the classic Minimum Ver-
tex Cover problem in its most naive approach is of complexity O∗(2n), where the
O∗-notation suppresses all polynomial factors and n is the size of the input, for which

2

Introduction

its most efficient exact algorithm so far is of complexity O(kn + 1.2738k), where k is
an upper bound on the size of the target solution [16]. Such branching algorithms
are nowadays challenging, which may lead the scientists to launch calculations during
days, months, and even more than that depending on the nature and urgency of the
problem. See [13] for more applications of FPT algorithms in bioinformatics.

Thus, consider the Minimum Vertex Cover (MVC) problem, where given an undi-
rected graph G = (V, E), we must find a subset V ′ ⊆ V of minimum size that touches
every edge, i.e. such that for all uv ∈ E, u ∈ V ′ or v ∈ V ′. A pseudo-code of an
algorithm is presented in Algorithm 1. Under the ideal circumstances, we could say
that the binary search tree of this algorithm is well balanced, that is, the number of
leaves on the left-hand side is equal to the number of leaves on the right-hand side,
as illustrated in Fig. 1. This scenario may lead us to jump to the conclusion that
speeding up the solution by parallelism may be trivial.

1 function mvc(G = (V, E), S)
2 if |V |= 0 then
3 if |S|< |best| then
4 best = S

5 return
6 Let uv be an arbitrarily chosen edge, with uv ∈ E(G)
7 mvc(G− u, S ∪ {u})
8 mvc(G− v, S ∪ {v})
9 return

Algorithm 1: Minimum Vertex Cover pseudo-algorithm.

Nevertheless, branching algorithms are typically unbalanced and even though they
may have a specific branching factor of c, all recursions might not be required to be
traversed. For instance, the solution of Algorithm 1 may be accelerated by changing
the search strategy, where the highest degree vertex u is arbitrarily chosen for the
left-hand side and the neighbors of this vertex, N(u), chosen for the right-hand side.
This may cause to reach a leaf on the right branches faster than going into the left
ones. Then, each branch can be seen as a task that can be delegated to another pro-

3

Introduction

root

leaves

Figure 1 – Well-balanced binary tree.

cessor, which makes it a non-trivial work since the search tree nodes that are worth
exploring are determined dynamically and thus are not known in advance. Therefore,
this requires a dynamic task distribution strategy, and performing this optimally is
still a debated topic.

Hence, our center of attention in this study is to tackle the distinct approaches
to improve the performance of these algorithms by the means of parallelization tech-
niques.

Our contributions

In this thesis, we present a novel semi-centralized inter-process communication
strategy along with a novel Dynamic Load Balancing strategy, which combined show
competitive performance. The semi-centralized approach minimizes the inter-process
message passing such that a process is designated as the center in a lightweight fash-
ion where its responsibilities are reduced. The center is essentially responsible for
remembering the workers’ state and assigning workers to assist other workers with
light messages of only a few bits. This worker assignment guarantees that a message
is delivered to its destination, and thereby avoiding failed requests. Messages are
sent asynchronously to improve performance and restrain from blocking calculations
by the processors. Thus, heavy tasks are sent directly among the workers without
the need for job queues and without tasks passing through the center, which differs
from centralized strategies where the whole communication is controlled by the cen-

4

Introduction

ter resulting in a bottleneck that restricts scalability. The dynamic load balancing
approach allows each processor to keep track of its highest priority search tasks or
unvisited nodes in the search tree, which reduces considerably the number of gener-
ated tasks and therefore the communication overhead. Furthermore, our approach
uses a process-thread hybrid implementation, which reduces the number of spawned
processes and allows each process to manage its own threads and memory domain.

We performed experiments on the Minimum Vertex Cover problem implementing a
basic MVC algorithm of complexity O(2nn). Our results not only demonstrated to be
competitive against the decentralized technique presented by Abu-Khzam et al., [2],
which was the best approach known so far, but also achieved super linear speedups
on certain scenarios.

This thesis is organized as follows. In Chapter 1, we present the preliminary notions
to provide the reader with a sufficient understanding of this research. In Chapter 2,
we present the state of the art in massive parallelization for branching algorithms
and load balancing strategies. In Chapter 3, a paper submitted to the Journal of
Parallel and Distributed Computing is presented with the most relevant information
of this study. In Chapter 4, we present the most significant challenges that were not
included in the paper, followed by the Conclusion.

5

https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing
https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing

Chapter 1

Preliminary notions

In this chapter we address some concepts that will be relevant along this thesis.

1.1 Branch & bound algorithms

Branch and Bound algorithms commonly abbreviated as BnB, are fundamentally
used to produce exact solutions. Their goal is to find a representative value that
maximizes or minimizes an optimization criterion by the means of creating a search
space that explores all possible combinations and then choosing the most appropriate
solution [36].

As its name suggests, it consist of branching in a search space according to some
decisions and then bounding as a prospective solution is found. Putting this into
perspective, a real world analogy follows.

Analogy 1.1.1. An individual is trying to find the shortest path through a
labyrinth. In order to achieve this task, the most naive way is to explore all
pathways. This individual will have to decide which pathway to take every time
it reaches a fork and then measures its distance. Once it has found the first
pathway, it will keep exploring the other pathways that he left behind at every
fork.

6

1.1. Branch & bound algorithms

Assuming that the individual encounters the same number of forks on every path-
way, this leaves it with at most cn paths to explore, where c is the forking factor
and n is the number of forks per pathway which is directly related to its length. For
instance, c = 2 and n = 5 would leave the walker with at most 32 pathways to tour,
since some other pathways might be shorter but it is unknown yet.

It is impractical to tour all possible paths to find the shortest pathway. Thus,
bounding comes with a promising solution, which is allowing the individual to re-
member the shortest path found so far. Therefore, if after exploring the first pathway,
it found its distance to be 3, when exploring other pathway and reaching a distance
of 3 but not reaching the end, it is safe to say that it is not worth it to keep walking
in this direction, then it should return to explore the other path at the preceding fork.

Considering the aforementioned bounding analogy, this does not guarantee that
our character will explore fewer pathways because if all pathways are of the same
length, then it will always reach the end of each pathway. However, if the individual
is lucky and finds the shortest path to be 2 on its first attempt, then it will not
explore more than 2 length units on the other forks, which will decrease from 25 ex-
plored possible pathways to only 22 and still finding the shortest path.

As seen in the Analogy 1.1.1, branching happens every time a decision must be
taken whether it splits in two or more ways, and bounding potentially decreases the
task complexity. Also, each time a fork is reached, all solutions from now on depend
on the path traveled up to that moment, which is essentially the definition of recursion.

Note that, whether all branching algorithms are recursive, not all recursive algo-
rithms are of branching type.

Additionally, the previous analogy was aimed to find the shortest path, but also
its purpose could easily be adapted to find the longest path, which makes it suitable
for virtually any computable problem. Note that BnB algorithms apply more natu-
rally to minimization problems, because in maximization problems, the best solution

7

1.1. Branch & bound algorithms

found so far does not allow us to cut branches prematurely.

As an additional example, consider the cluster editing problem as per the Algorithm 2,
which is a common experimental benchmark [11, 24], where given a graph G = (V, E),
the goal is to insert or remove a minimum number of edges so that each connected
component G is a clique. To achieve this, all connected components of G are cliques
if and only if G is P3-free, i.e. there is no path on 3 vertices without a shortcut. Thus,
the algorithm should find some vertices u, v, w that form a P3, and branch into the
three possibilities to disassemble it, which are: splitting u − v, splitting v − w and
joining u−w. In this case, the branching factor is c = 3, which should typically give a
complexity of O(3nn), where n is the number of vertices in G. However, to ensure that
the algorithm converges to a solution, some rules must be applied such that if two ver-
tices have been joined, they get tagged as forced. If two vertices have been split, they
get tagged as forbidden. For a FPT application of the cluster editing problem see [24].

1 function clusterEditing(G = (V, E), forced, forbidden)
2 if each connected component is a clique then
3 nbEdges = forced.size() + forbidden.size()
4 if nbEdges < best then
5 best = nbEdges

6 Let u, v, w be a P3 of G, with uv, vw ∈ E(G)
7 if uv is not in forced then
8 clusterEditing(G− uv, forced, forbidden ∪ {uv})
9 if vw is not forced then

10 clusterEditing(G− vw, forced, forbidden ∪ {vw})
11 if uw is not in forbidden then
12 clusterEditing(G + uw, forced ∪ {uw}, forbidden)

Algorithm 2: The cluster editing problem.

As mentioned above, these rules allow the algorithm to split vertices that have been
previously joined or vice versa, thus, it is up to the algorithm to decide if a branch
must be explored or not. Therefore, this algorithm is likely to be unbalanced

8

1.2. Fixed-parameter tractable algorithms

1.2 Fixed-parameter tractable algorithms

Algorithms with running time O(f(k) · nc), for a constant c independent of both n

and k, are called fixed-parameter algorithms, or FPT algorithms. Typically the goal
in parameterized algorithmics is to design FPT algorithms, trying to make both the
f(k) factor and the constant c in the bound on the running time as small as possible.
FPT algorithms can be put in contrast with less efficient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k) · ng(k), for some functions f ,
g. There is a tremendous difference in the running times f(k) · ng(k) and f(k) · nc.
In parameterized algorithmics, k is simply a relevant secondary measurement that
encapsulates some aspect of the input instance, be it the size of the solution sought
after, or a number describing how “structured” the input instance is [18].

The classical optimization problem in computer science, the Minimum Vertex Cover
(MVC) problem is a good example of it, which consists of finding a set of vertices
that touches at least one endpoint of every edge in a graph, as defined in Section 3.1.

Thus, a brute force and naive algorithm to solve this problem would be choosing an
edge uv arbitrarily and include one of its ends, either u or v, leaving a new subgraph
G′ such that G′ = G\u ∨ G′ = G\v, as presented in Algorithm 1. This creates an
exponential time algorithm of complexity O∗(2|V |), where 2 is the branching factor
because the decision is based on the number of vertices per edge and |V | is the number
of vertices.

One could easily see how finding a solution to this problem becomes rapidly un-
practical, since, after a certain graph size, the maximum theoretical number of pos-
sible solutions would take more time to be solved than the age of the observable
universe even using the most powerful computer in the world.

To exemplify, given a graph G = (V, E) with |V |= 1000 vertices, this brute force
algorithm has a complexity O(21000), which would yield to 21000 ≈ 1.07 · 10301 pos-
sibilities. For the FPT version, if the MVC is of size k, the algorithm will receive

9

1.3. Parallelization

this parameter and at each time a decision is made, the value of k will be reduced to
k−1, representing a solution that has been achieved. Thus, the algorithm will return
false when k = −1 and true when k ≥ 0 ∧ G = ∅, which allows us to constrain the
algorithm to O(2kn) since the solution is at most k, where 0 < k ≤ n.

Depending on the graph topology, this k could lead to a super-fast solution in the
best scenarios or just no improvement at all in the worst scenario. If for the previous
MVC example, if k = 10, then 210n is reasonable, but if k = 500, this would still
require at most ≈ 2500 computations.

One important detail of a FPT algorithm is that these algorithms search for a Y ES

or NO result since its purpose is only to ascertain if there exists a solution of size k.
Once a Y ES condition is met, the whole search can be halted, and depending on the
user’s interest, a new search can be launched with different k. This also means that,
if we are lucky enough, the solution may be found within the first few seconds, also
depending on the search strategy.

In addition, an FPT agorithm of a problem can be easily modified to return the
the cover by the means of a partially growing cover as stated in Algorithm 1.

1.3 Parallelization

A task is typically completed by a series of instructions, whether it is digging a hole
in the ground, where each instruction would be shoveling, or solving a graph com-
putationally where each instruction may be a primitive operation like multiplication,
summation or division.

Most of the time, the simplest instructions are independent of the others, meaning
that their individual outcomes do not affect the individual outcomes of other instruc-
tions, though it does affect the final combined outcome.

10

1.3. Parallelization

Allow us the following analogy.

Analogy 1.3.1. Considering the aforementioned digging-a-hole example, this
task could be accelerated by increasing the number of workers, leading to a
faster solution. However, some scenarios must be considered as follows:

— There might be a limited number of shovels, therefore, it might be un-
practical to hire more workers than the actual number of available tools.

— There is a limited space, therefore, too many workers will not necessarily
accelerate the job.

Knowing that the simplest instruction is a shovel load, it is feasible to split
the whole task into as many possible shovel loads and a worker per instruc-
tion. However, let’s say that a worker needs at least one square meter to work
efficiently without bothering his colleague. It will take more effort to assign
a single instruction for a single worker than allowing a few workers to resolve
multiple instructions each.

In the previous analogy, shovels might be interpreted as physical cores on a computing
device, and workers as the instance of a computer program which could be a process
or a thread. For additional details and extension of this subject, we refer the reader
to [53].

1.3.1 Process

A process is a program in execution which should be distinguished of only the word
program. A program is a passive entity that contains a series of instructions on disk,
commonly know as the executable file, whereas a process is this active entity. A pro-
cess typically contains the stack, data section, heap and text section. The stack
contains temporary data as function parameters, return address and local variables.
The Data section contains global variable, the heap is memory that is dynamically
allocated during the process run time, and the text section contains other than lines

11

1.3. Parallelization

of code [47].

A program becomes a process when it is loaded to the memory and it is worth
mentioning that multiple processes may be associated with the same program, how-
ever, they will be independent, unless special communication techniques are applied,
which will be discussed later. A process is typically independent, has its own ID, and
its memory is private to other running processes. By default, a process spawns at
least one thread, which will be discussed in the next section [47].

1.3.2 Thread

A thread is a basic unit of CPU utilization; similar to a process, it has its own ID.
A thread has privileged access to all the information contained within a process.
Threads are instances that perform the instructions, resolve tasks and they share all
information with other threads, [47].

Allow us to illustrate with an analogy.

Analogy 1.3.2. A thread could be seen as a worker of a company, and a process
as this company. As in the real world, a company cannot run without at least
one employee but it can perfectly operate having just a single one. Companies
are usually independent of others and their information is typically private,
just like a process. Analogously, a company may have multiple employees to
perform more than one task at a time and all employees are able to communicate
easily with each other and access the company data (assuming that there are
no position hierarchies).

1.3.3 Multiprocessing

As its name suggests, multiprocessing is the technique of using multiple processes
to perform operations. These operations may have a wide degree of independence,

12

1.3. Parallelization

meaning that an operation of a process may participate somehow in the operation of
another process, or they might be simply fully independent [39].

There are several factors that could lead a user to implement multiprocessing, in
which one of them is taking advantage of the independence, ie. the tabs of an inter-
net browser could be managed by different processes, in which a given failure scenario,
will affect only the handling process. Then, as long as the inter-process communica-
tion is properly implemented, a failure of a process will not affect another running
process, which would allow to restart of the failing process and continue its job where
it was left [39].

Since processes manage their own resources and are independent, this makes them
appropriate to massive parallelization because as mentioned in Section 1.3.1, they can
be attached to the same program, meaning that communication can be established
as long as there is a communication band in between.

Hence, having a supercomputer cluster, it is possible to spawn processes across all
computing nodes, allowing to initiate communication regardless of the process loca-
tion and therefore utilizing all the processors of the cluster [39].

1.3.4 Multithreading

Analogously to multiprocessing, this is the technique to perform operations using mul-
tiple threads. A thread may be running independent tasks but it will share resources
with its parent process, meaning that it relies on its parent limitations. However,
multithreading is computationally cheaper than multiprocessing [40].

Conversely, parallelism implementation is typically more efficient with multithread-
ing because it maximizes the utilization of the processor execution units [40], and
depending on the problem, it may be easier to apply because its implementation is
usually supported by the programming language already.

13

1.4. Multiprocessing + Multithreading (hybrid)

Let us introduced the following analogy.

Analogy 1.3.3. A construction company is hired to build a bridge, the con-
tractor provides it with a fixed number of tools that are meant to be utilized
continuously to attain a deadline. Here, the hired company already has a limi-
tation which is the work-site and their tools, just as a process would have with
memory and number of processors. The company is free to hire as many work-
ers as it considers appropriate, though no worker is able to do anything without
a tool. If there are more workers than the number of tools, then they will be
forced to share tools. On the other hand, if there are fewer workers than the
number of tools, it would result in a delay in the construction.

Thus, as per Analogy 1.3.3, if a processor is meant to be used continuously, a
proper number of threads, matching the number of cores, should be spawned to
optimize CPU utilization.

1.4 Multiprocessing + Multithreading (hybrid)

Multithreading and Multiprocessing have both their corresponding advantages and
disadvantages. For a super intense and cooperative task that needs to be solved in
parallel, it would make more sense that multithreading would deliver more perfor-
mance. Although, nowadays technology has hardware limitations like the number of
processors per computing node and memory size [41].

Hence, it is mandatory to implement multiprocessing such that massive paralleliza-
tion can be implemented. Though, to decrease communication overhead due to inter-
process messaging, the number of processes should be minimized, which could be
one process per computing node. Thus, as stated in Section 1.3.3, multiprocessing
offers the benefit of establishing communication between several nodes whereas mul-
tithreading offers the benefit of sharing resources for direct communication between
processors working on a problem.

14

1.5. Critical section

The hybrid implementation allows to send the heaviest tasks to processes located
on different computing nodes, then these heavy tasks can be processed by the local
threads within the process domain, and thereby decreasing communication overhead
and achieving better performances.

1.5 Critical section

When it comes to accessing shared data, there might exist the case where two threads
attempt to modify a particular cell in memory. Consider two threads each of which
is to add 1 to a shared data item, var. To add 1 to var, it will necessary to read
the cell, compute the operation var + 1, and then write back the result to the same
location. If the original value was 0, and the two threads read the value at the same
time, they would compute the operation 0+1 simultaneously and then write var = 1,
which will result in var = 1, rather than var = 2; this is called race condition [53].

In order to avoid a race condition, there exist several techniques to stop a thread from
accessing a section of code where shared data access would take place; which is called
critical section. A critical section characterizes for starting typically with a Lock and
ending with an Unlock which can be emulated using semaphores or mutexes, where
a mutex is the most common. A Lock essentially operates as a door lock, where only
one thread can acquire the lock at a time, and the other threads are compelled to
wait until the owner thread of the lock has unlocked it [53].

1.6 Not embarrassingly parallel

The parallelization of a for-loop is usually the easiest implementation as long as each
iteration is independent of the preceding one, otherwise, a for-loop would not be
parallelizable. This is easy because the number of possible independent tasks are
well-known from the beginning and it is typically known before running a program,
which can be easily assigned to a fixed number of processors, a.k.a embarrassingly

15

1.7. Probability of speedup

parallel [26].

However, certain implementations as parallelization of branching algorithms are far
from being trivial, since the number of tasks evolves dynamically and their number is
not known in advance, as illustrated by the cluster editing algorithm in Algorithm 2.
Furthermore, branching algorithms are not guaranteed to explore all their branches,
which makes it even more difficult to reach parallelization.

These algorithms can potentially create an exponential number of tasks, which should
be properly handled such that parallelization is doable and efficient, otherwise, par-
allelization would be implemented but attaining worse performance.

1.7 Probability of speedup

In this section, we present the governing law of parallelism which states viability and
limitations based on multiple factors.

1.7.1 Amdahl’s law

Amdahl’s law states that given a piece of a program for which we aim to paral-
lelize if there is a proportion that does not get benefit from parallelization, that is,
sequential operations are enforced, then there is a maximum theoretical performance
that can be attained regardless of the number of processors utilized for the problem.

Thus, for a program that needs 20 hours to reach a solution using a single proces-
sor, if the non-parallelizable portion, x, takes one hour, there are therefore 19 hours
that could benefit from parallelism, yet it will never be less than 1 hour. Amdahl’s
law writes as follows.

speedup = 1
x + 1−x

N

16

1.8. Types of branching algorithms

where N is the number of processors used to perform the parallelizable portion. Note
that this is subject to a non-parallelizable section that must be run sequentially for
the whole program. On the other hand, if a program is composed of individual inde-
pendent tasks, x will decrease to only critical sections where a global variable would
be modified by the processors. From the equation above, we see that when x ap-
proaches to zero, the speedup approaches the ideal value which is N [7].

Furthermore, a critical section does not necessarily mean that it has to be se-
quential, on the contrary, it only means that a thread can access a memory cell at
a time to avoid race conditions as mentioned in Section 1.5 because each proces-
sor may be executing an independent task. If a task can be split into N sub-tasks,
one could expect an average speedup of N , however all tasks may be conditioned to
halt when the first sub-task has attained a solution, thus resulting in speedups above
N if this sub-task is solved in in less time than the average as we will see in Chapter 3.

1.8 Types of branching algorithms

For the sake of this project, we created two groups to classify all branching algorithms,
as follows:

— Waiting algorithm: At every recursion level, it returns an element that
would be crucial to decide if exploring other branches or it is required for
comparison or merging purposes. A branching algorithm is of waiting type,
because if each branch were executed by a different processor, then the proces-
sor in charge of the scope will have to wait for their return value before being
able to leave the scope. An example of this algorithm is the merge-sort [32].
It is worth mentioning that different techniques to avoid waiting could be im-
plemented, however for the sake of this study and simplicity, this is applied to
the aforementioned scenario.

— Non-waiting algorithm: finds a solution when reaching a leaf and this local
solution is compared with a global variable to see if a more optimal solution
has been found or if it has to be discarded. A branching algorithm is of type

17

1.8. Types of branching algorithms

non-waiting because if each branch were executed by a different processor, then
the current processor will not have to wait from their return value, and then
the processor in charge of the scope is free to leave it as soon as it finishes its
corresponding task. i.e., the cluster editing algorithm.

When implementing an algorithm programmatically, this one is essentially defined
as a function, regardless of the programming language. All programming languages
have in common that functions might return a value (int , float , ..., etc) or not
(void).

Thus, a waiting algorithm is coded as a function (returns a value) and a non-waiting
algorithm as a procedure (function that returns nothing). This is important because
each one has its respective limitations and advantages when being solved in parallel.

Consider the pseudo-code presented in Algorithm 3 for a waiting algorithm, this al-
gorithm receives an instance, which is processed to create the sub-instances Ileft and
Iright at each recursion level. Let’s say, there are two processors, p1 and p2 that will
be used to divide a binary branching algorithm, where p1 is the processor running
the current scope. Ileft could be sent to p2 and Iright recursed by p1 at level 0. Since
it is a waiting algorithm, if either p1 or p2 returns before the other, then one of them
will be unutilized by the algorithm until the other has finished. This brings us to two
scenarios as follows:

— p2 returns first: since p2 was invoked in this scope, then it is no longer
attached to the result. Hence, it becomes idle and able to receive another task
that p1 may spawn within its search domain.

— p1 returns first: it is compelled to await(idle) p2 and this processor cannot
be assigned to another task until it has already culminated its original instance.

If a task queue is being employed to distribute loads over the processors, where a
task can be a branch call, it can be seen that the queue size must be constrained to
the number of available processors. Assuming a queue size of 3 and considering the

18

1.8. Types of branching algorithms

same task distribution as per the previous paragraph; if p2 spawns a sub-task, it will
be compelled to wait until some processor has treated it, but p1 is also forced to wait
for the return value from p2. This is an infinite waiting, because p1 could be waiting
for the return value from p2, and p2 ends up waiting for any processor to handle the
sub-task, but no processor is currently available to handle any other task.

1 function binary(I)
2 if I meets termination condition then

// return branch_solution

3

// Some operations to obtain Ileft and Iright

4 rleft ← binary(Ileft)
5 rright ← binary(Iright)

// scope_solution← do something with rleft and rright

6 return scope_solution

Algorithm 3: Binary waiting algorithm.

Now consider the pseudo-code presented in Algorithm 4, if tasks are distributed as
per the previous example, in this case, the processors are free to return without wait-
ing for the result from any other processor. Once a processor becomes idle, special
techniques can be used to re-assign these tasks. Also, if a task queue strategy is
employed, there is no limit on this size, however, branching algorithms could make
this queue grows exponentially, for which proper control should also be implemented.

19

1.9. Inter-process communication strategies

1 function binary(I)
2 if I meets termination condition then

// Update global value

3

// Some operations to obtain Ileft and Iright

4 binary(Ileft)
5 binary(Iright)
6 return

Algorithm 4: Binary non-waiting algorithm.

1.9 Inter-process communication strategies

In this section, we discuss the two major approaches used to establish communi-
cation among processors, especially if massive parallelization is part of the objectives.

1.9.1 Centralized topology

The most common communication model is centralized, where a single processor is
in charge of tasks assignments. In this type of topology, all generated tasks typically
pass by the center processor, which decides which processor would receive these tasks.
Thus, the center acts as a tasks redirector [53].

Whether it is a multiprocessing or multithreading implementation, a centralized ap-
proach characterizes for having a single processor dedicated only to handle commu-
nication and tasks redirection, as illustrated in Fig. 1.1.

However, even though this strategy attempts to decrease communication overhead it
still faces this issue since all tasks must pass by the center. That is, if the weight of
a task is 100 MB, then this memory data should be transferred between a worker to
the center, which is then transferred from the center to another worker. This satu-
rates the communication band twice for the same task, which would be equivalent to

20

1.9. Inter-process communication strategies

Center

worker

worker

worker

worker

worker

Figure 1.1 – Centralized topology. Arrows are tasks passing.

transferring 200MB.

It seems that all responsibilities lie on the center processor, but workers need to con-
stantly keep track of their local tasks and communicate to center when they request
or generate tasks. In addition, there is continuously a request/reply protocol that will
result in success or failure for approved transfers or neglected transfers respectively,
thereby saturating the communication band.

It is worth highlighting that most of the communication overhead is irrelevant when
processors belong to the same computing node due to the possibility of sharing mem-
ory (if implemented). That is, tasks do not necessarily need to be copied and sent
over the network. On the other hand, massive parallelization takes place on super-
machines that require network communication in which copying tasks is unavoidable
when communicating two processors on different machines.

21

1.9. Inter-process communication strategies

1.9.2 Decentralized topology

Since the centralized approach faces at least two package transfers for the same task
and the other aforementioned issues; moreover, a significant disadvantage of the cen-
tralized strategy is that the master process can only issue one task at a time.

The decentralized strategy aims to improve the communication surplus by allowing
all processors to communicate with each other, in which an initial processor is in
charge of splitting the first task and therefore the other processors will split theirs
as long as there are available processors, for which some sort of hierarchy is typically
implemented to avoid chaotic communication attempts, as illustrated in Fig. 1.2.

We should acknowledge that there are two mechanisms to implement a decentralized
topology, which are essentially by using multiprocessing or multithreading[53].

worker

worker

worker0

worker

worker

worker

worker

Figure 1.2 – Decentralized topology. Arrows are tasks passing and the sub-index 0
refers the process that initializes the execution.

In principle, multithreading implementation is decentralized by default, since all

22

1.9. Inter-process communication strategies

threads belong to the same process and therefore share memory. Multithreading
synchronization has been well studied and is also well defined. This approach is gen-
erally tackled by implementing a thread pool, which allows spawning threads that
match the number of processors only once. Threads generally dequeue tasks from a
global job queue meaning that processors are utilized continuously.

Special techniques should be applied to avoid infinite waits for the waiting algo-
rithms, which do not allow to enqueue more tasks than available processors because
they might end up in line waiting for one another, where p1 → p2 . . . pn−1 → pn →
unassigned_task and the last processor waits for a task to be assigned.

Although non-waiting algorithms do not face this infinite wait scenario, the task
queue should be adequately controlled, otherwise, it might grow indefinitely causing
memory overflow, as discussed in Section 1.8.

Lastly, the greatest limitation of multithreading is that they cannot be distributed
across several computing nodes because they are attached to a single process, which
does not make it suitable for massive parallelization.

For multiprocessing implementations, proper synchronization should be attained us-
ing asynchronous communication the most, rather than synchronous communication,
where asynchronous communication allows a processor to continue performing tasks
as the communication is completed in the background as explained in Chapter 4.
That is, threads have mutexes that are optimized for them where they turn into
sleeping mode when awaiting a critical section. This can be emulated using processes
but should be avoided since communication overhead is now part of the equation.

Inter-process communication should guarantee that processors continue working on
the problem even if there is still a delay of the global information. This delay is
strongly bounded to the bus or the network depending if processes are on a single
machine or scattered across multiple computing nodes.

Thus the challenge is to adequately establish communication between processes,

23

1.10. Reduction rules

meaning that a process will attempt to request/notify another process that it needs
a new task or it has a new task to share.

Even though this technique is promising, it is difficult to maintain a global value across
the computing nodes because the processes might not be up-to-date and would be
computing useless instances since another process might have discarded it already.
This is solved by broadcasting the best solution so far and their availability to com-
pute more tasks. Unfortunately, broadcasting comes with a significant communication
overhead, which is part of the issues we address in this study.

1.10 Reduction rules

Problems like the Minimum Vertex Cover, Travelling salesman, or Cluster Editing,
are typically solved using an enhanced brute force approach, which is to say branch
and bound. Algorithms to these problems are typically exponential time in which for
the worst scenario, all possible combinations must be explored to achieve the optimal
solution.

Hence, the larger the graph the longer it takes to attain a solution and this solution
time grows accordingly with the algorithm complexity. Thus, for an algorithm that
has a complexity of O∗(2n), where n is the graph size; each additional vertex dupli-
cates the number of instructions under the worst scenario. Then, applying a binary
brute force algorithm to a graph of size 400 would represent at most 2400 possible
solutions, which is an absurdly large number and therefore almost impossible to solve
with nowadays technology.

There are certain logic statements that can be applied to these graphs in order to
reduce their initial size and therefore the total solution time. These logic statements,
also known as preprocessing rules, analyze the input graph and prune vertices de-
pending on the problem.

24

1.10. Reduction rules

Chen et al., [15], presented some of the most common rules for the MVC problem, as
listed below.

— Rule N.1 An isolated vertex (one of degree zero) cannot be in a vertex cover
of optimal size. Because there is no edges incident upon such a vertex, there
is no benefit in including it in any cover. Thus, in Fig. 1.3, an isolated vertex,
u, can be eliminated, reducing n0 by one. This rule is applied repeatedly until
all isolated vertices are eliminated.

u

Figure 1.3 – First rule

— Rule N.2 In the case of a pendant vertex, u (one of degree one), there is
an optimal vertex cover that does not contain u but does contain its unique
neighbor, v. Thus, in Fig. 1.4, v can be added to a growing partial solution.
It can then be removed, along with all its incident edges that it covers. As
a result, u becomes an isolated vertex and can also be removed due to the
previous rule. This reduces n0 by the number of deleted vertices and reduces
k by one, where k is the FPT value. This rule is applied repeatedly until no
more vertex can be removed in this way.

25

1.10. Reduction rules

u

v

Figure 1.4 – Second rule

— Rule N.3 Suppose that there is vertex u with exactly two neighbors v and w,
such that v and w are adjacent. Then we may assume that both v and w are
in an optimal solution. Indeed, if v is not in the solution, then both u and w

must be in it to cover the vw and uv edges. In this case, we can replace u by v

in this solution. The same argument applies if w is not in the solution. Then
parameter k is reduced by 2.

u v

w

Figure 1.5 – Third rule

— Rule N.4 Having a vertex u with exactly two neighbors v and w such that
v and w are not adjacent to each other. Then u, v, and w are removed and
replaced by u′ that is adjacent to all neighbors of v and w, also known as the
folding rule. Once a solution is achieved, the cover S is scanned for the folded
vertices; thus, if u′ ∈ S then v and w are present in the cover, otherwise u is
in the cover.

26

1.11. Vertical tree search

u
u'

v

w

Figure 1.6 – Fourth rule

Thus, for our graph of size 400, after applying these preprocessing rules, its size
may narrow down to the point it finds the optimal solution without even running an
algorithm, or it may not be applicable due to its own topology. These reduction rules
are just examples of the available techniques, for which several other problems admit
these types of strategies.

1.11 Vertical tree search

There are typically two strategies to solve a branching algorithm considering its search
tree.

The easiest way is the vertical search, also known as depth-first search, which is a
conceptual idea were the nodes in a tree are visited by giving priority to the deepest
available node when exploring. That is, for a binary search scenario and the leftmost
branch is the first one called in the algorithm, once a leaf is reached within this left-
most branch, then the next branch to be treated will be the immediate rightmost of
the nearest parent node and so on and so forth.

This vertical search is practical for sequential algorithms because if branch & bound
techniques are applied, then a great number of branches will be just skipped. If we
are lucky enough to explore this tree, we might not even need to explore the rightmost
branch of the root, which implies at least 50% fewer branches, therefore less execution
time, as the example presented in Analogy 1.1.1.

27

1.11. Vertical tree search

Whether this seems to be optimal enough, it is conflicting when attempting to apply
parallelization. Thus, having a fixed number of processors, each branch is a potential
new task that can be delegated to another processor, also known as randomized load
balancing [50]. However, even though the algorithm might be bounded, processors
will likely receive light tasks because these tasks are being generated from down the
search tree, more likely from bottom to top which might result in exponential parallel
calls. Thus, assigning an exponential number of tasks to processors will not necessar-
ily accelerate the solution in the worst-case scenario because forwarding a task might
be more expensive than solving it sequentially.

Another fact to mention is that the leftmost branch will likely be the one generating
more tasks, since other processors will receive light tasks that will not have that many
branches to explore, thereby constraining the CPU utilization.

As per the latest paragraph, the CPU load is quite balanced from the point of view
that they are constantly working on tasks, yet there might be more processors await-
ing probably light tasks than processors generating meaningful jobs. Thus, these
other processors will remain on standby for a little fraction of time until a new task
is created and assigned to them, which is considerably significant in branching algo-
rithms with exponential time solutions.

In consequence, CPU idle time and an excessive number of parallel calls must be prop-
erly managed with a correct load balancing strategy. If CPU idle time is decreased
as much as possible, this could accelerate the solution a few folds in combination
with the reduction of parallels calls. The second and better approach is discussed
in Section 3.3.

28

Chapter 2

State of the Art

In this section, we discuss the current state of the art relevant to parallel imple-
mentations of branching algorithms.

2.1 Dual processor scheduling with dynamic reas-
signment

In 1979, Bokhari [12], presented his work aiming to optimally partition a modular
program over a dual-processor system. His idea can be summarized as taking an
input task and split it into equal parts such that each processor receives a sub-task.
Having a search tree of a branching algorithm, all branches at depth logc p, where p

is the number of processors and c is the branching factor, will become new sub-tasks
that will be assigned to a processor Pi, with 0 < i < p. An illustration is presented
in Fig. 2.1.

29

2.1. Dual processor scheduling with dynamic reassignment

P1 P2 P3 P4 P5 Pp-1 Pp...

...

task0

Figure 2.1 – Equitable task distribution. At depth log2(p), each processor receives a
task.

However, this comes with an important assumption, which is that once a task is as-
signed to a processor, it remains on that processor while the characteristics of the
computations are constant. Additionally, it assumes that the search tree is well-
balanced.

Hence, whether it is the most intuitive way to parallelize a branching algorithm,
there is no guarantee that all branches are equally complex. That is, p− 1 processors
could exhaust their tasks and turn into idle mode really quickly because the heavy
operations might be in the remaining branch, meaning that only one processor ends
up performing the rest of the search. This happens because processors are not re-
used after they return from their tasks, and therefore, the performance attained from
this parallelization technique might be insignificant. Please see [52] for additional
information on the performance of this strategy.

30

2.2. Multicomputers: message-passing concurrent computers

2.2 Multicomputers: message-passing concurrent
computers

In 1988, Athas et al., [8] improved the previous attempt by dynamically allocating
processors to newly generated tasks in a random fashion. They also called it Random
placement. They achieved this by reusing the processors as soon as they finish their
tasks.

The approach consists of a processor-like pool where a processor pi starts exploring
the branching algorithm. Before going sequentially into a branch, it checks if there
is an available processor. If there is at least one, it will prune that branch from its
search domain, to avoid performing it twice, and it sends it to the available processor,
as illustrated in Fig. 2.2. This process is repeated always before branching, allowing
to keep all processors busy and decreasing the idle time. This strategy has also been
called the Work-stealing approach.

The author reported that random placement performs remarkably well and requires
no global information. They also concluded that there is a software overhead regard-
ing the message passing technique implemented, which was subject to further studies.

While this technique successfully accomplishes parallelization and decreases idle time,
there is a bias towards assigning tasks lower in the search tree, meaning that processors
are likely to receive light tasks that might have been faster to solve sequentially rather
than being sent to another processor. Since these tasks are being generated from an
exponential time algorithm, then there is a great number of them due to the vertical
task creation. It is not easy to see either that each processor takes a fraction of time
to dispatch its last job and then notify somehow that it is free to receive another task.
This might be only a few CPU cycles, but they impact meaningfully in the overall
performance due to the exponential number of calls.

31

2.3. Scalable Parallel Algorithms for FPT Problems

ex
plore

d

pruned

firs
t

pruned

se
co

nd

root

Figure 2.2 – Greedy Load Balancing within the search domain of a processor. Dotted
nodes have already been resolved, orange for another processor and gray for sequential
by the current processor.

2.3 Scalable Parallel Algorithms for FPT Prob-
lems

Aiming to minimize processors interruption, the authors in [4], developed a proactive
parallel decomposition strategy, which acts essentially as a fully centralized approach.
In their research, they created a driver that acts as a center and is in charge of assign-
ing tasks to all the participating processes as long as they are available. The center
maintains a job queue where the unvisited branches are stored temporarily, which is
used to constantly feed processors and keep them busy, and thereby minimizing the
idle time, as illustrated in Fig. 2.3. The job queue is constructed by addressing the
tasks that are more likely to contain a potential solution and, tasks that may generate

32

2.3. Scalable Parallel Algorithms for FPT Problems

more heavy sub-tasks.

Graph Splitter

Job Scheduler

Branching Initializer

Job Queue

Socket Branching

Socket

Socket

Processor 1

Branching
Processor 2

Branching
Processor N

... ...
Driver

Processes

SSH

Figure 2.3 – The proactive parallel decomposition.

The execution is initially done by populating the processors with the branches at
depth log p, where p is the number of processors in an equitable fashion. The main
challenge they faced was to properly control the job queue since when decomposing
a task using a branching algorithm, this queue can grow exponentially. Moreover,
constraining the queue size may lead to a job starving state, where processors will
end up in standby mode.

The authors highlighted that no message-passing library was employed like MPI, be-
cause active processes had no need to communicate with one another. They reported
to accelerate algorithms that in its static(equitable) parallelization test lasted 6+
days, to barely a couple of hours.

The queue size was controlled by splitting only "large subgraphs" that may lead to

33

2.4. The buffered Work-Pool approach

a significant amount of computation, which is, in turn, a downside due to the need
of developing a method that enqueues the most promising tasks and the communi-
cation overhead introduced by properly controlling the queue such that it does not
starve. These large subgraphs may lead to an unbalanced search tree, since these
sub-instances may appear more often on one side of the search space, depending on
the algorithm itself. In addition, branching algorithms tend to saturate quickly job
queues, and thereby skipping relevant tasks that might have been worth it to process
in parallel. A fully centralized strategy was also implemented in [31].

2.4 The buffered Work-Pool approach

Abu-Khzam et al. [6], presented a centralized topology that combines threading and
message passing among processors of any supercomputer. As per Fig. 2.4, it consisted
of creating a center-worker technique where the center is in charge of distributing tasks
according to workers’ availability. This approach allows a process to manage their
own local shared work-pools using their local threads. Then, communication overhead
is attempted to be decreased by allowing inter-processes communication for certain
tasks but attaining the benefit of shared memory for threads within the process do-
main.

34

2.4. The buffered Work-Pool approach

Center Task
 Buffer Worker Task

 Buffer

Task [1]
Task [2]

.

.
Task [Hungry Level]

.

.
Task [Starving Level]

.

.
Task [n]]

Task [1]
Task [2]

.

.
Task [Hungry Level]

.

.
Task [Starving Level]

.

.
Task [n]]

Center

Search
thread

Comm.
thread

Worker i

request to receive (when center hungry level/worker starving level is reached)
urgent request to receive (when center starving level is reached)
request to send (when buffer is full)
take/add Tasks

...

...

Search
thread

Search
thread

Search
thread

Figure 2.4 – Buffered Workpool approach.

Their approach used a system of task queues, where each process has a fixed-size
queue of prioritized tasks that serves as a constant task supplier such that processors
are always busy, and therefore reducing idle time.

It is worth mentioning that the authors presented a preliminary study, for which no
massive parallelization was conducted and their average results demonstrated relative
linear speedup. Though, this implementation is promising for more generic scenarios,
where they were testing for problems like the Minimum Vertex Cover, SAT and
Maximal Cliques Enumeration. Nevertheless, further studies and tests were pending
to show their effectiveness on large scale.

35

2.5. Parallel Vertex Cover: A Case Study in Dynamic Load
Balancing

2.5 Parallel Vertex Cover: A Case Study in Dy-
namic Load Balancing

The authors in [52], implemented a parallel approach for the Minimum Vertex Cover.
They used one of the simplest strategies to tackle the MVC algorithm combined with
kernelization and FPT techniques. For the kernelization, they used some of the rules
previously mentioned in Section 1.10. As for the branching strategy, one of the high-
est or the highest degree vertex v is chosen and included in a partially constructed
cover S, and k is decremented by 1 for the left-hand branch. For the right-hand
branch, the neighbours of the vertex N(v) are selected and included in S, while the
parameter k is decremented accordingly, k −N(v), as shown in Fig. 2.5.

..., t, u

..., t, u, v ..., t, u, N(v)

k'=k-1 k'=k - |N(v)|

v

k

v

Figure 2.5 – Branching algorithm for the MVC.

The authors compared the equitable parallelization method previously presented in Sec-
tion 2.1 in order to demonstrate how parallelism does not always result in better
performance. Thus, to tackle this equitable parallelization approach, they developed
a Dynamic Load Balancing strategy so the processors could be re-utilized each time
a task is fulfilled.

36

2.6. On scalable parallel recursive backtracking

Based on the fact that the leftmost branch removes a vertex one by one, they came
to the conclusion that this might be the hardest instance. Thus, their strategy con-
sisted of a scheduler that dedicates a processor to this branch, for which they called
it the donor. Then, the donor is the only one in charge of job donating due to the
computing cost of tracking tasks, and when a processor turns into waiting mode, it
notifies the scheduler of its availability. The scheduler notifies the donor, and this
one sends a task to the requesting processor. Once the donor finishes its instance, it
notifies the scheduler and this one sends a termination signal to the other processors,
meaning that the donor has no more task to give.

They demonstrated to achieve scalability of this approach up to 2,400 processors.
However, this strategy was specific to the MVC problem, which does not make it
directly suitable for other algorithms. Besides, it can be seen that it is a constrained
scenario of the work-stealing technique presented in Section 2.2 for the tasks manage-
ment, and whether the left-most branch of an algorithm may be the hardest instance,
decomposition of this branch may not necessarily lead to a faster optimal solution.

2.6 On scalable parallel recursive backtracking

In order to minimize the fully centralized strategy flaws, Abu-Khzam et al. [2], de-
veloped a virtual core topology where the cores are initially assigned hierarchically
such that a core has a parent to request tasks from and children to send tasks to, as
shown in Fig. 2.6.

37

2.6. On scalable parallel recursive backtracking

C0

C1 C2

C3 C5 C6

C4

Figure 2.6 – Core topology, for c = 7.

The idea is to equitably distribute the most urgent tasks at depth log c of the
search tree, where c is the number of participating cores, as shown in Fig. 2.7. This
core topology is intended to match the search tree topology, yet it is not enforced to
be maintained, as it evolves when a task request fails, then the core switch to another
parent. During the exploration, each core ci updates its parent, and each time it
concludes its task, it attempts to request another from its parent. If the parent is idle
or has no tasks, it switches to another parent. This is repeated until the core obtains
a task. Authors presented their strategy to allow this core topology to be initially
constructed, which is flexible as each core should find a parent that gives it a task,
as specified in Algorithm 5.

38

2.6. On scalable parallel recursive backtracking

N0,0

N1,0 N1,1

N2,0 N2,1

N3,0 N3,1 N3,2 N3,3 N3,4

N2,2 N2,3

N3,6 N3,7N3,5

C0

C1

C3

C5C6

C2

C4

Figure 2.7 – Initial task-to-core assignment and core hierarchy, for c = 7.

When a core receives a task request from another, it will spawn a task applying
a modified version of the strategy presented in Section 2.2. The authors applied a
task indexing technique to keep track of the highest unvisited branches, in which each
core will prune this branch when it needs to send a task. This indexing technique is
relatively easy to implement on well-balanced search trees, however, it becomes more
difficult to apply when the search tree is heterogeneous.

39

2.6. On scalable parallel recursive backtracking

1 function getParent(r,c)
2 parent← 0
3 for i = 0..c− 1 do
4 if 2i > r then
5 break
6 parent← r − 2i

7 return parent

8 function getNextParent(r, c)
9 parent← (parent + 1) mod c

10 if parent = r then
11 parent← (parent + 1) mod c

12 return parent

Algorithm 5: GetParent and getNextParent functions. r is the core rank,
such that 0 ≤ r < c.

This study demonstrated to be highly scalable, yet there is room for improvement.
Since a core has to request a task, this introduces a fail request possibility, which
increases according to the number of cores. Furthermore, due to the unbalanced
nature of most algorithms, some cores are more likely to receive help than others.

40

Chapter 3

A Lightweight Semi-Centralized
Strategy for the Massive
Parallelization of Branching
Algorithms

This article presents a novel inter-process communication protocol, which com-
bines the advantages of a centralized topology by the means of a center process that
acts as a task manager without passing tasks through. In a nutshell, a center process
is responsible for dynamically assigning process-to-process delegations such that all
inter-process requests result in successful communication.

We distinguish the center in our approach from the previous centralized work.
In our implementation, the workers do not saturate the center with task requests
since the center arranges only the strictly necessary communication, thus, a task is
transferred between a pair of processes only once and it is always guaranteed to be
delivered.

A simplistic but robust dynamic load balancing (DLB) is also presented, which
is flexible to implement with heterogeneous search trees. The DLB guarantees that

41

each generated task is likely the hardest task from the search tree it comes from,
and thereby avoiding task queues. Priority is given to processes by default such that
the heaviest jobs are sent to these processes, where each process will partition them
accordingly with the number of threads they manage locally, yet a user is able to
adapt priorities.

Thus, a proper combination of inter-process communication topology and dynamic
load balancing, resulted in competitive performance, reaching super-linear speedups
as a frequent outcome.

Contributions

The contributions within the domain of the article are listed here below.
— A novel fully generic framework for almost any branching algorithm, applicable

for massive parallelization.
— A novel dynamic load balancing model for branching algorithms.
— Performance demonstration and effectiveness of the study.

This chapter is a slightly modified version of a paper submitted on the July 08th,
2021 to the Journal of Parallel and Distributed Computing.

42

https://www.sciencedirect.com/journal/journal-of-parallel-and-distributed-computing

A Lightweight Semi-Centralized Strategy for the
Massive Parallelization of Branching Algorithms

Andres Pastrana, Manuel Lafond

Département d’informatique, Université de Sherbrooke,2500 Boulevard de
l’Université, Sherbrooke, QC J1K 2R1

Abstract

Several NP-hard problems are solved exactly using exponential-time branch-
ing strategies, whether it be branch-and-bound algorithms, or bounded
search trees in fixed-parameter algorithms. These are usually limited to
small inputs, while massive parallelization has been shown to significantly
increase the size of instances that can be solved exactly. However, previ-
ous centralized approaches require too much communication to be efficient,
whereas decentralized approaches are more efficient but have difficulty keep-
ing track of the global state of the exploration.

In this work, we propose to revisit the centralized paradigm while avoid-
ing previous bottlenecks. In our strategy, the center has lightweight respon-
sibilities, requires only a few bits for every communication, but is still able
to keep track of the progress of every worker. In particular, the center never
holds any task but is able to guarantee that a process with no work always
receives the highest priority task globally.

Our strategy was implemented in a generic C++ library called GemPBA,
which allows a programmer to convert a sequential branching algorithm into
a parallel version by changing only a few lines of code. An experimental
case study on the vertex cover problem shows that even with the simplest
algorithm, we can solve the toughest instances from the DIMACS challenge
graphs.

43

3.1. Introduction

3.1 Introduction

Several scientific disciplines require solving NP-hard problems for which no polynomial-
time algorithm is believed to exist. This includes, for instance, clustering proteins
in biological networks [28], maximizing influence in a social network [33], or optimiz-
ing weights in neural networks [29]. Such NP-hard problems are usually handled by
fast heuristics or approximation algorithms when the running times are crucial. How-
ever, the recent ease of access to high-performance architectures, combined with novel
algorithmic techniques, have allowed researchers to aim for exact algorithms in rea-
sonable times, even if above polynomial. These are usually exponential in the input
size, and recent research has focused on making the algorithmic complexity tolerable
for some practical purposes [23] (for instance, achieving a complexity of O∗(1.23n) for
maximum independent set [22], where O∗ suppresses polynomial factors). Branch-
and-bound algorithms, which brute-force every possible solution but skip those that
cannot do better than the current optimal, have also been studied extensively [17, 37].
Another recent research trend consists of fixed-parameter tractability (FPT), which
aims to design algorithms that are exponential, but only with respect to a parame-
ter that is expected to be small [38, 20, 19]. We also refer the reader to [55] for an
excellent survey of exact algorithms for NP-hard problems.

In this paper, we focus on improving the scalability of such approaches with mas-
sive parallelization. A well-known technique for both exponential and FPT algorithms
is recursive search tree exploration. In a nutshell, when given an instance I to solve,
search tree algorithms generate a few sub-instances of I in a way that at least one
of them leads to an optimal solution. The algorithm then explores each sub-instance
recursively until a solution is found, or until the whole space has been searched, de-
pending on the algorithm. This forms a recursion tree in which nodes correspond to
function calls and children correspond to its recursive calls.

There is an extensive literature on the problem of parallelizing search tree algo-
rithms. If p processes are available, the most straightforward strategy is to assign
each node at depth log p its own process, and see which one finds a solution [12, 14].
This works in an idealized setting where each process is assigned a tree of about the
same height, but most search trees are unbalanced and some processes will finish

44

3.1. Introduction

before others. In this case, they can and should be reassigned to other subtrees of
the search tree, leading to the problem of dynamic load-balancing.

It is not obvious how to perform this optimally, since massive parallelization of
search trees introduces two problems: how to distribute search trees to processes,
and how to minimize communication. Unsurprisingly, there is an inherent tradeoff
to choose from between communication overhead and search efficiency, as more com-
munication allows assigning free processes to the most important or most promising
task globally available. A centralized strategy was developed by Abu-Khzam et al. [4]
with this idea in mind, where a center would maintain a queue of available tasks and
nodes, and thus could always make optimal assignment choices. As argued later by
Abu-Khzam et al. [2], communication overhead is not worth the gained efficiency,
especially since tasks may require sending lots of information. An opposite decen-
tralized strategy was therefore developed. The idea is to arrange the cores into a
virtual hierarchy and let cores only accept tasks from their superior. This optimizes
communication but no core has an idea of the global situation and, as we argue in
this paper, this leads to suboptimal task assignment and exploration. We also refer
the reader to [46, 43, 30, 48, 5, 49, 52] for further works that have focused on how to
explore tasks efficiently in parallel.

Our contributions. In this paper, we propose a novel semi-centralized load-balancing
strategy that takes advantage of both approaches and offers a balance in the commu-
nication versus exploration tradeoff. The main idea is to make use of a central process,
but in an extremely lightweight fashion, in the sense that communication with the
center is asynchronous, limited, and always requires only a few bits of information.
The center is relieved from the heavy responsibility of maintaining a task queue, and
instead is only present to maintain the status of working processes and dynamically
decide which processes should exchange tasks. The heavy task communication is
only performed between working processes that need to share information, and only
when it is necessary to do so. In particular, an idle working process only needs to
request work once, in contrast with previous solutions where such requests could fail
and require multiple communication rounds. We also propose a strategy that allows
each worker to maintain the hierarchy of its highest priority search tasks which is

45

3.2. Preliminary notions

applicable to search tree algorithm with any branching factor, even if it is heteroge-
neous across the search tree. Moreover, our approach allows a process-thread hybrid
implementation. That is, a subtree assigned to a process can be partitioned into fur-
ther subtrees, each assigned to a different thread. Our strategy is implemented in a
generic, open-source C++ library called GemPBA. The library uses Message Passing
Interface (MPI), is user-centric, and a programmer is able to parallelize any existing
sequential search tree function by changing a few lines of code.

We use the traditional vertex-cover problem as a case study. We demonstrate
that even with the simplest branching implementation for vertex-cover, our library
achieves close to linear speedup and can solve some of the toughest instances of the
DIMACS challenge graphs.

3.2 Preliminary notions

In this section, we first explain the branch-and-bound and fixed-parameter search
tree algorithms at a high level. To motivate the need for novel ideas in parallelizing
these algorithms, we then discuss the main load-balancing strategies that have been
applied to branching algorithms in the literature, along with their advantages and
disadvantages.

3.2.1 Search tree algorithms

In essence, all branching algorithms have a similar structure. Given an instance I,
we first verify whether I is a solution to our problem, which corresponds to a termi-
nal case. Otherwise, we generate a set of (usually smaller) instances I1, . . . , Ik from I

in a way that at least one Ij can lead to a solution. We then explore each Ij recursively.

46

3.2. Preliminary notions

1 function searchTree(I)
2 if I cannot lead to a solution better than best then
3 return
4 if I is a solution then
5 if I is better than best then
6 best← I

7 return
8 I1, I2, . . . , Ik ← sub-instances of I

9 for j = 1..k do
10 searchTree(Ij)
11 end

Algorithm 6: Structure of a sequential search tree algorithm.

We distinguish branch-and-bound and fixed-parameter algorithms, which we briefly
describe since our methodology applies to both. In the well-known Branch-and-Bound
(B&B) paradigm, we must optimize some value and the best solution found so far
is stored globally. When reaching a terminal case, we check whether the solution
is better than the best, and if so we update it. More importantly, whenever an in-
stance is guaranteed to lead to a worse solution than the best, we stop the recursion.
The branching factor is the maximum number of recursive calls the algorithm makes.
Algorithm 6 presents the general structure of this type of algorithm. In the fixed-
parameter tractability (FPT) paradigm, we instead have a decision problem that asks
whether there exists a solution of size k. If I cannot lead to such a solution, we can
return. If I is such a solution, we can return “yes” and stop all exploration (con-
trasting with branch-and-bound, which keep exploring). Notably, fixed-parameter
algorithms are known for kernelization, which describe rules to reduce the I instance
to a smaller size (see e.g. [21, 19]). Several parallelism ideas have been proposed for
FPT algorithms [14, 2, 10].

As a concrete example of a search tree algorithm, consider the vertex cover problem.
In the optimization version, we receive a graph G = (V, E) and must find a subset
X ⊆ V of minimum size that touches every edge, i.e. for all uv ∈ E, u ∈ X or

47

3.2. Preliminary notions

v ∈ X. A simple branching strategy goes as follows. Each recursion receives a partial
solution S ⊆ V , with S = ∅ at the initial call. We choose uv ∈ E not covered by S

and observe that we can either 1) add u to S; 2) not add u to S. In the second case,
all the neighbors N(u) of u must be added to S to cover its incident edges. We thus
recursively branch into two subinstances: G−{u} with partial solution S ∪ {u}, and
G−N(u) with partial solution S ∪N(u) (G−X is the graph obtained by removing
the X vertices). The recursive calls then check whether these partial solutions have
more vertices than the current best solution, and if so do not explore it. In terms of
FPT, the algorithm is the same, except that we stop exploring if the current partial
solution has more vertices than k, the parameter. Vertex cover is a standard problem
that is used for several experimental benchmarking tools [4, 2, 51, 3].

3.2.2 Previous search tree parallelization strategies

Several approaches have been proposed to parallelize branching algorithms. We
present the main categories that we have identified, with an emphasis on full de-
centralization, since it has been reported to be able to solve the most difficult vertex
cover instances.

Equitable parallelization Assume that p processors are available and that the
branching factor is r. In [12], the authors propose to execute the algorithm sequen-
tially until a depth of logr p is reached. This defines a tree with p leaves corresponding
to p instances, at which point each processor is assigned a distinct instance. This dis-
tributes the search tree across processes “equally”, but an obvious disadvantage of
this approach is that, once a process has finished exploring the search tree of its as-
signed instance, it is not recycled to help exploring other subtrees. This strategy was
also used in [14] to solve FPT problems (along with several other strategies, including
the usage of free processors for faster kernelization).

Greedy load balancing In [46], the authors apply process recycling to the search
tree exploration. When a recursive call needs to branch into a new subtree T , if some
process pi is available, then it assigns pi to T , and otherwise explore sequentially. We
must assume that each free pi broadcasts its avaibility to the others. We call this the

48

3.2. Preliminary notions

greedy approach since a process assigns its most recent task to the most recently freed
process as soon as possible, regardless of the current state of the search tree. This
idea has also been called the randomized work-stealing approach. The advantage is
that processes are constantly participating in some tree exploration. However, this
strategy tends to assign processes vertically. That is, once a process pi is assigned to
a subtree it will start digging deeper and deeper into it. When another process pj

gets freed, it will be assigned to the current location of pi, which is likely to be deep
in its recursion. This tends to bias the exploration to similar parts of the search tree.
Moreover, free processes get assigned small search trees, leading them to finish quickly
and broadcast information more often. In [52], a hybrid strategy is proposed, where
processes are first distributed in an equitable manner, and then reassigned greedily.

Fully centralized approach In [4], Abu-Khzam et al. have developed a strategy
where a central process is responsible for receiving tasks from the other processes. The
center maintains a queue of tasks of bounded size. When another process requests
a task, the center can choose which one to send according to some priority function.
Examples of priority include the task with the largest subtree to explore, or the task
with the most promising solution so far. This is an important advantage, since such a
priority scheme avoids the vertical-exploration problem mentioned above. The main
drawback is the large communication overhead for constant requests to center. Also,
exponential algorithms tend to saturates the task queue very quickly. The ability
for the center to choose tasks with priority is therefore hindered by the fact that
most tasks never make it into the queue, and in the end, there is little control over
task priority. Let us also mention that in [52], the authors developed a centralized
scheduler-based strategy specifically for the FPT vertex cover problem.

Fully decentralized approach To address the problems of full centralization,
Abu-Khzam et al. explored the other extreme by devising a fully decentralized ap-
proach [2]. In this strategy, the available cores are organised into a tree (which should
be distinguished from the search tree). In this topology, the parent of core number r

is r − 2⌊log(r)⌋. Initially, the root of the core-tree is assigned the full instance. Then,
each core requests a task to its parent in the core-tree. The degree distribution of the

49

3.3. A semi-centralized load-balancing strategy

core tree is heaviliy skewed towards nodes near the root. The root of the core-tree
has around log c children, while the majority of nodes have 0 or 1 children, where c

is the number of cores. This topology is chosen because it initially assigns cores as in
the equitable strategy.

When a core is finished with its instance, it asks its parent for a new task asyn-
chronously, and if none is available, the request fails and it switches to a new parent.
This strategy requires no synchronization, since there is no way a process can re-
ceive multiple tasks. Another important aspect of this strategy is that when a core
r has a pending request from a child core q, r chooses to give q the sub-instance
that is the highest in its search tree. An indexing of tasks is proposed to maintain
the highest priority, which is the highest unexplored node in the search tree. The
vertical-exploration problem is therefore avoided, although each core has its own pri-
ority instead of having a center that maintains global priority. Therefore, a worker
receives the most urgent task from its parent, not necessarily the most globally urgent
task. Moreover, because the core-tree is imbalanced, some cores are more likely to
receive help than others. For instance, a subtree assigned to a leaf of the core-tree will
never receive help (unless a lucky parent reassignment occurs), whereas log c cores
are available to assist the subtree assigned to core 0. This inherent bias is difficult to
circumvent in a fully decentralized setting, which motivates our new strategy. Finally,
let us also mention that work requests can fail, which occurs when a parent has no
work for a child. This forces the child to send another request to another core and,
as the experiments in [2] show, this can have a significant performance impact on
difficult graphs.

3.3 A semi-centralized load-balancing strategy

As we have discussed, centralized and decentralized strategies each have their own
pros and cons. Here, we propose a novel strategy that is in-between. We do make use
of a central process, but its responsibilities are reduced to a minimum, as well as its
communication and memory requirements. In particular, tasks do not go through the
center, as it only stores the smallest amount of information required to know which

50

3.3. A semi-centralized load-balancing strategy

processes should exchange tasks. The center is designed with three goals in mind:

1. The center must never become overloaded, and its memory usage should be
independent of the number of ongoing or pending tasks;

2. Communication and synchronization should be minimized. In particular, a
process should never be waiting for a reply from another process, unless it has
no task to work on. Also, failed work requests should be minimized or non-
existent.

3. When a process is available, it should be possible to assign it to the task
with highest global priority. Moreover, the current best solution found glob-
ally should always be available to every process.

Let us also mention that our strategy is designed to achieve the ease of use illustrated
in Algorithm 7. This shows the same algorithmic structure as Algorithm 6, where
GemPBA does some bookkeeping and performs the recursive calls as well as handling
the parallelization, as will be explained in Algorithm 10. Such a delegation scheme
allows almost any sequential branching algorithm to be parallelized with minor mod-
ifications.

1 function searchTree(I)
2 best = GemPBA.getBestSolution()
3 if I cannot lead to a solution better than best then
4 return
5 if I is a solution then
6 GemPBA.handleSolution(I)
7 return
8 I1, I2, . . . , Ik ← sub-instances of I

9 GemPBA.addChildInstances(I1, . . . , Ik, parent = I)
10 for j = 1..k do
11 GemPBA.search(Ij) // Library handles parallelism

12 end
Algorithm 7: Structure of a parallelized search tree algorithm.

Our load-balancing is also required to be compatible with a combination of multi-

51

3.3. A semi-centralized load-balancing strategy

threaded and multiprocess exploration, so that processes could use thread for their
exploration without affecting the above goals.

3.3.1 Center and worker responsibilities

In addition to handling startup and termination, the center is only responsible for:
— Maintaining the list of processes available to receive new tasks, and possibly

other metadata on each process;
— Determining which working process should send a task to which available node,

without conflict;
— Maintaining the value of the best global solution so far.

One can see that in terms of storage, center only needs to remember a simple array
of process statuses, and a numerical value for the best solution. The metadata is
optional and is intended to store the priority (an integer) of the most urgent task in
each process. This metadata can be used to determine, when a process pi is available,
which process pj has the heaviest task currently. In that manner, center can let pi

know that it should send it to pj. Other assignments are possible if no metadata is
present, for instance by choosing pj randomly.

The workers are responsible for:
— Exploring the search tree of a given instance
— Communicating with center to request work
— Sending and updating the value of the best solution found so far
— Sending their heaviest pending task to processes assigned by center

Note that we aim for work requests to never fail, in contrast with the decentralized
setting. This will be achieved by ensuring that the center links idle workers in a
direct fashion creating a dynamic queue-like relationship wi → wj → . . . → wn with
i ̸= j ̸= n, where multiple queues coexist or a single one at certain point since they
are dynamic. However, the head of the queue, wi is always guaranteed to receive a
task, and if wi does not create sub-tasks and returns, then wi is assigned to the tail,
wn, of another queue or any other running worker without a queue. In consequence,

52

3.3. A semi-centralized load-balancing strategy

as long as there is a running worker, all the others are guaranteed to receive sub-tasks,
and if no worker is running, then it is interpreted as the end of the execution and the
center sends a termination signal.

Also note that maintaining the heaviest pending tasks is not trivial. Later in this
section, we propose a strategy that stores the state of the pending search tree nodes to
achieve this, while only requiring an amount of memory that grows linearly. Fig. 3.1
illustrates the relationship between processes.

process
assignments

process
statuses

global
best value

comm.
thread

Thread pool

waiting
 process

global
best value

-local best solution
-local best value

worker
...

...

center

worker

First and only task passed by center process, seed
Tasks passing
Running state notification when receiving a new task
Available state notification when process finishes
Variables update: best val, waiting process(center)
Exit signal and best solution fetch
“arrow’s origin shows whose responsibility it is”

Figure 3.1 – Communication topology. The “seed” refers to the original instance that
is sent to the first working process to initiate the exploration.

53

3.3. A semi-centralized load-balancing strategy

3.3.2 Center implementation

Given its lightweight set of responsibilities, the center is relatively simple to imple-
ment. Not shown here, during the initialization steps, the center loads the seed and
sends it to the first worker. The high level ideas are shown in Algorithm 8. The
reader should bear in mind that whenever a message is sent, there is no need to wait
for a reply or a confirmation — everything occurs asynchronously. The center is in a
listening loop and reacts to worker messages. To manage the optimal value, it stores
a single numerical value bestV alSoFar to remember the global optimal and, when a
worker thinks it has found a better value, it receives a bestval_update request. Since
several such updates can be received in a short time span, center needs to verify this
claim, but this is an easy check. If the best value indeed changes, center broadcasts
this to all processes in a non-blocking fashion, so that workers can update their local
best value when they have time.

54

3.3. A semi-centralized load-balancing strategy

1 function centerLoop()
2 Recv(tag, source, data)
3 if tag == bestval_update and data < bestV alSoFar then
4 bestV alSoFar = data

5 Async_Broadcast(tag = bestval_update, data = data)
6 else if tag == available then
7 w = getNextWorkingNode(metadata)
8 if w then
9 Async_Send(dest = w, tag = send_work, data = source)

10 status[source] = assigned

11 else
12 status[source] = available

13 else if tag == started_running then
14 status[source] = running

15 if ∃w such that status[w] == available then
16 Async_Send(dest = source, tag = send_work, data = w)
17 status[w] = assigned

18 else if tag == metadata then
19 updateMetaData(source, data)
Algorithm 8: Pseudocode of the center loop (assuming a minimization prob-
lem)

The center can also receive messages when a worker changes state. An array of states
is maintained, with one entry per process. When a worker r has finished exploring
its subtree, center receives an available message. At this point, center chooses a
worker w with the getNextWorkingNode function, and at this point w should send
its heaviest task to r. This choice can either be made randomly, or according to some
priority function based on the metadata. Importantly, the task to send does not go
through center — rather, center sends a non-blocking message to w to let it know
it must send a task to r, and then remembers that r is waiting by putting its state
to assigned. This ensures that one and only one worker can now send a task to r,

55

3.3. A semi-centralized load-balancing strategy

thereby avoiding conflict. Moreover, this assignment persists until w does send work
to r, ensuring that the work request from r does not fail. It is possible that w has
no work to send immediately, but in this case, center will ask some other process to
send work to w, and the chain of task sending will resume. Of course, center can
ensure that no cyclic dependencies are introduced, which is handled by a GemPBA
data structure developed to follow the aforementioned rules.

When an idle worker r receives a task, it lets center know by sending a started_running

message. If there happens to be an available worker that we were not able to assign,
we can immediately ask r asynchronously to delegate to it (this happens rarely, since
workers are usually assigned when they become available). Finally, workers can decide
to send metadata to center when needed. Although there is no conceptual constraint
in our framework, this should consist of small amounts of data, for instance an integer
representing the priority of the heaviest task (Note that metadata is not related to
the task to give, rather than information about the state of the exploration).

3.3.3 Worker implementation

Workers can either send new information to center, or react to center messages. This
is done by periodically calling the update functions updateWorkerIPC, updateWaiting-
Processes and updateWaitingThreads displayed in Algorithm 9. The periodical calls
to these functions could be implemented in two ways. They could be called at the
start of every call to the searchTree procedure in Algorithm 7. Another option is to
dedicate a thread to updates and communications, which would call the functions in
a loop. Although straightforward, the two options are worth mentioning because the
former is not compatible with every inter-process communication library. Indeed, in a
multithreaded environment, the first solution allows any thread to send remote mes-
sages, and openmpi has reportedly difficulty dealing with this [25]. Fixing a looping
thread for these tasks is therefore easier to implement — the priority of this thread
can be lowered or a small sleep can be added to make it use less CPU.

56

3.3. A semi-centralized load-balancing strategy

1 function updateWorkerIPC()
2 if hasMessage() then
3 Recv(source, tag, data)
4 if tag == bestval_update then
5 if data < local_bestval then
6 global_bestval = local_bestval = data

7 else if tag == send_work then
8 addToWaitingProcesses(process = data)
9 updateWaitingProcesses()

10 else if tag == work then
11 //this can only be received when no task is running
12 Async_Send(dest = center, tag = started_running)
13 sendTaskToNextThread(instance = data)
14 if local_bestval < global_bestval then
15 Async_Send(dest = center, tag = bestval_update, data =

local_bestval)
16 if hasMetadata() then
17 Async_Send(dest = center, tag = metadata, data = metadata)
18

19 function updateWaitingProcesses()
20 while hasPendingTasks() and hasWaitingProcess() do
21 sendHighestPriorityTask(dest = next_process)
22 end
23 function updateWaitingThreads()
24 while hasPendingTasks() and thread_pool.hasIdle() do
25 sendHighestPriorityTask(dest = next_thread)
26 end
Algorithm 9: Pseudocode of worker update functions. These functions should
be locked by a mutex (which should be non-blocking, i.e. if a thread fails to
acquire the mutex, the updates are skipped for the current pass). The tag
work is sent within the sendHighestPriorityTask in Algorithm 11.

57

3.3. A semi-centralized load-balancing strategy

In any case, let us emphasize that workers should never be in a blocking listening
mode. Instead, the update functions check whether center has left them a message
in their receiving buffer and resume if not (which most libraries allow, for instance
MPI_Iprobe using openmpi). We assume that workers store a variable local_bestval

for the optimal value found by its threads, and global_bestval for the optimal value
seen by center. When center sends a better value than the local, both are updated
(protected by a mutex, since threads can change the local). Center can also ask to
send work to another process r, in which case we add r to our waiting list. The
update functions will eventually send work to those on the waiting list. Note that in
our implementation, the center ensures that each waiting list has at most one element
(except at startup).

After checking for center messages, the worker can decide to send its local best
value if it thinks it is better than center’s (and the latter will verify this). We also
check whether a task can be sent to an idle thread if there is one, and metadata
update can be sent to center if needed.

When a worker has finished exploring its instance, only one thread is active. At
this point, the worker first lets center know of its availability by sending an available

message (not shown). After that, it calls the updateWorkerIPC() function in a
loop. This allows the worker process to continue receiving all updates on the best
value. This continues until a work message is received from another process. The
worker lets center know that it started running again, and the received instance can
be explored. To implement this, the received task could either be taken by the main
thread, which will eventually assign tasks to the other threads, or the task could be
sent to a thread in a pool, and the current thread would continue looping. Not shown
here is a termination message that can be sent by center, which will end the current
process if no exploration is ongoing (i.e. every process is available, and a sufficent
time has passed since none of them has sent a started_running message).

3.3.4 Maintaining the most urgent task in workers

We have mentioned several times that the highest priority task should be sent to
either free threads or processes, but have not specified how exactly. As in [2], our

58

3.3. A semi-centralized load-balancing strategy

point of view is that in a search tree algorithm, the most urgent tasks correspond
to highest nodes in the search tree (i.e. those of minimum depth). This spreads the
exploration across more different parts of the search tree, which allows finding better
solutions more quickly, thereby cutting useless branches more quickly as well. The
recursion tree should be maintained in some way so that at any point, we can access
highest nodes when a new task is required to be sent. Abu-Khzam et al. proposed to
assign each node an index based on its location in the tree. A counter can keep track
of the highest priority node and, when it is sent, the counter can be incremented. This
is not too hard to achieve for binary search trees, but this gets arguably more complex
for algorithms with higher branching factors, especially when they are heterogeneous
across the tree.

Here, we propose an alternate method that is conceptually simple for any branch-
ing factor, even if heterogeneous across the search tree. The idea is simply to store
the recursion tree explicitly, in a traditional tree data structure, while ensuring that
the size of the tree does not grow exponentially. Maintaining a global tree in a mul-
tithreaded environment is somewhat complex to do, owing to its dynamic nature.
Instead, we propose that each thread ti maintains its own task tree Ti. The root of Ti

is the task that was initially assigned to ti, with the descending nodes resulting from
the recursion. If needed, the highest priority task can be recovered by inspecting each
tree stored by the threads. As usual, this management should entirely be performed
by the library and should be independent of the branching algorithm.

Recall that in Algorithm 7, the searchTree procedure first passes the child in-
stances I1, . . . , Ik of parent I to GemPBA.addChildInstances, and then runs GemPBA-
.search on each subinstance individually. The pseudo-code of these routines is illus-
trated in Algorithm 10.

59

3.3. A semi-centralized load-balancing strategy

1 function GemPBA::addChildInstances(I1, I2, . . . , Ik, parentI)
2 for j = 1..k do
3 Add Ij as a child of parentI in the Ti task tree
4 end
5 function GemPBA::search(I)
6 if task I is still in the Ti tree then
7 Mark I as “Exploring” in Ti

8 searchTree(I) // Explore sequentially

9 Remove task I from Ti

Algorithm 10: Construction of the task tree Ti for thread ti.

When an instance I generates child tasks I1, . . . , Ik in thread ti, they must be added
in the task tree Ti. At this point, the update functions could decide to send one
of these tasks at any moment to another thread or process. This is why the search
procedure first checks whether an instance is still present before letting the current
thread explore it sequentially. If there is only one process and one thread, this mimics
the sequential version of the search tree exploration. When a child task and all its
descendants are done, it can be removed from the tree.

Size of task trees. Let us note that the number of nodes in each Ti will always re-
main proportional to the branching factor times the depth of the search in the current
thread. Assuming a constant branching factor and that the maximum exploration
depth is bounded by the size of the initial instance, the size of each task tree is linear.
This is because the topology of the task tree is always a caterpillar tree. That is, each
internal node of this tree has at most one child that is another internal node — the
rest are leaf-children. To see this, it suffices to observe that only tasks of the search
tree explored sequentially can have child tasks. Moreover, when a sequential call is
finished, its corresponding task node is removed from the task tree. It follows that
the internal nodes correspond to the path of exploration undertaken by the current
thread.

60

3.3. A semi-centralized load-balancing strategy

Obtaining highest priority tasks To find and send the highest priority task,
we need a dynamic load balancing (DLB) strategy that sends and removes the first
leaf-child of the root of the task tree (the root itself is being explored by the current
thread). After sending several tasks, it is possible to exhaust all the leaf-children of
the root, in which case it has only one child, which is a task on the path currently
explored by the current thread. In this case, the root is of no interest and it can be
pruned. Its single child becomes the new root. When a leaf-child task to be sent is
found, it is removed from the tree. At this point, it will become the root of the thread
or process it is being sent to. Note that all tree operations can be done in time O(1)
with appropriate data structures.

1 function GemPBA::sendHighestPriorityTask(dest)
2 r = root of the Ti task tree
3 done = False

4 while not done do
5 if r has no children then
6 return “No task"
7 else if r has one child q then
8 delete r

9 Reroot the tree to q, and let r = q

10 else
11 Let ℓ be a leaf-child of r not marked as “Exploring”
12 Remove ℓ from the current tree
13 send(ℓ, dest)
14 done = True

15 end
Algorithm 11: Finding a high priority task and updating the task tree

61

3.3. A semi-centralized load-balancing strategy

explored sent to process / thread

lower
ing

ro
ot

n1,0 n1,1

n0,0

n1,2

n2,1n2,0

n3,0 n3,1 n3,2 n3,3

ti root

Figure 3.2 – Quasi-horizontal visualization, heterogeneous search tree. A node labeled
nd,j indicates that its depth in the search tree is d, and that it is the j-th child of its
parent. Nodes that are dotted have been removed from the tree, either because they
were fully explored (gray), or sent to another process/thread (red).

As shown in Fig. 3.2, our dynamic load balancing strategy is very simplistic and
is not limited to a specific search tree topology. This figure shows the search domain
of a single thread ti, where the shown root represents the original task received by
the pool thread.

3.3.5 Startup phase

Even though our strategy is fully dynamic and allows any pair of processes to share
tasks, it is beneficial to start the exploration as in the equitable strategy mentioned
above. Since center can decide which processes exchange tasks, this can be achieved
by populating the process-to-process assignments and waiting lists appropriately at
startup. Our aim is that each search tree node at depth = log p to be handled by a
distinct process. It is worth mentioning that in [2], the authors also adopted a strat-
egy to achieve equitable startup, albeit in a different manner for their decentralized

62

3.4. Implementation and experimental results

strategy.

1 function buildWaitingList(pi, base_d, b, p)
2 //pi = process index, b = branching factor, p = # processes
3 //base_d is the depth of the highest search node assigned to pi

4 //Initial call is made with pi = 1 and base_d = 0
5 for d = base_d..max_depth do
6 for j = 1..b− 1 do
7 q ← (j × bd) + pi

8 if q ≤ p then
9 Add q to the waiting list of pi

10 buildWaitingList(q, d + 1, b, p)
11 end
12 end

Algorithm 12: Waiting list assignment algorithm.

Algorithm 12 populates waiting lists to achieve an assignment of search tree nodes
as shown in Fig. 3.3, where the initial waiting list of a process pi is populated based
branching factor b. We assume that process pi will always send its first b− 1 search
tree tasks to its waiting list, proceed sequentially on the b−th task, and repeat the
process as it goes deeper. The waiting list is built accordingly, using a parameter
d that starts as the depth of the highest search task it will be assigned, and then
increases until some maximum depth to mimic the sequential behavior of process pi.

In this model, no process is aware of who it is assigned to, and all spawned tasks
are sent to the processes in the waiting list in the order of assignment. That is,
in Fig. 3.3, when sending tasks to other processes, p1 will send them to p2, p3, p4 and
lastly p7 in that order. The search tree nodes, ni in Fig. 3.3 are horizontally indexed
for convenience, which is not directly to the process topology indexing. Note that
waiting list items are purged after tasks are sent, and thus this initial assignment only
holds at startup.

3.4 Implementation and experimental results

We have implemented our semi-centralized strategy in C++20, using boost [34] for
task serialization and openmpi to accomplish inter-process communication. The code

63

3.4. Implementation and experimental results

p0

p1
n0

p1
n3

p3
n2

p2
n1

p4
n10

p3
n9

p9
n8

p6
n7

p2
n6

p8
n5

p5
n4

p7
n11

p1
n12

Figure 3.3 – Process topology, where red arrows refers to intended inter-process tasks
passing.

is open-source and available at https://git.io/Jnx7k.

Using vertex cover as a case study, we first describe how to convert sequential code
to parallel concretely, using our implementation. We then describe the performance
results that we obtained on the DIMACS challenge graphs.

3.4.1 Converting sequential to parallel

First note that since processes run their own copy of a program, a multiprocess en-
vironment must be set up to ensure that only center process reads input data and
writes the final solution. More details on the initial setup, which typically requires
modifying main.cpp, can be found in 3.6.

Consider the sequential version of the vertex cover algorithm (we have commented
the part not relevant to parallelism), shown in Fig. 3.4.

64

https://github.com/rapastranac/gempba.git

3.4. Implementation and experimental results

void mvc(Graph g, S s){

if(g.size() == 0){

if(s.size() < bestS.size()){ bestS = s;}

else{ return; }

}

/* apply reduction rules, find u of maximum degree,

g_l = g - u, g_r = g - N(u),

s_l = s + u, s_r = s + N(u)*/

mvc(g_l, s_l);

mvc(g_r, s_r);

}

Figure 3.4 – Sequential MVC algorithm

In order to adapt this code to our framework, the function must include two additional
parameters, which is the thread ID (tid) as the first one, and the Tree data structure
(parent) as the last one, as seen in Fig. 3.5. Branch calls are delegated to GemPBA
and our algorithm code is ready to go. In our implementation, adding sub-instances
can be done by creating tree nodes with the given parent and letting them hold the
sub-instances. The try_push function is analogous to an update, as it asks gemPBA
to send tasks, possibly T_l, to waiting processes and threads. If T_l is not sent,
it will be explored sequentially. The forward function tells gemPBA to explore the
given instance sequentially, without trying to send to an available worker. Lastly, the
serializer and deserializer instances seen in Fig. 3.5 are necessary to pass instances
via openmpi. They are lambda functions that follow a blueprint that GemPBA
understands in which the user can implement their favourite serialization method.

65

3.4. Implementation and experimental results

using Tree = GemPBA::Tree<void, Graph, S>;

void mvc(int tid, Graph g, S s, void *parent){

if(g.size() == 0){

if(s.size() < gemPBA.bestValue()){

gemPBA.holdSolution(s, serializer);

gemPBA.updateBestValue(s.size());

} else { return; }

}

/* apply reduction rules, find u of maximum degree,

g_l = g - u, g_r = g - N(u),

s_l = s + u, s_r = s + N(u)*/

Tree T_l(dlb, tid, parent); // for left branch

T_l.holdInstance(g_l, s_l);

Tree T_r(dlb, tid, parent); // for right branch

T_r.holdInstance(g_r, s_r);

gemPBA.try_push<void>(mvc, tid, T_l, serializer);

gemPBA.forward<void>(mvc, tid, T_r);

}

Figure 3.5 – Parallel MVC algorithm

Note that try_push sends to either a process or thread, which is handled by
GemPBA giving priority to processes over threads by default. If only multithreading
parallelism is of the user’s interest, then a function called try_pushMT can be called
to only send tasks to threads. This way, everything related to inter-process commu-
nication can be avoided and there is no need for MPI initialization or serialization.

3.4.2 Experiments

We now describe the performance of our approach on DIMACS challenge graphs.

66

3.4. Implementation and experimental results

Experimental setup

We report the results of our mvc implementation. Computations were performed on
the Niagara supercomputer at the SciNet HPC Consortium 1. Niagara is a homoge-
neous cluster of initially 61,920 cores but expanded (in 2020) to 80,640 cores, owned
by the University of Toronto and operated by SciNet. Designed for large parallel
workloads, Niagara has a low-latency high-bandwidth Mellanox EDR InfiniBand in-
terconnect in a Dragonfly+ topology [45] with 4 wings and HDR100 InfiniBand for
the fifth wing; each wing containing at most 468 nodes (i.e. 18720 cores).

We tested our framework with the Minimum-Vertex-Cover (MVC) problem, for which
we used one of the most basic branching strategies as described in Section 3.2. We
also implemented four reduction rules listed below, for further details we refer the
reader to [15].

— Rule 1: Remove isolated vertices (i.e. of degree 0) from the graph.
— Rule 2: For each vertex u of degree 1, add its unique neighbor v to the solution

and remove both u and v.
— Rule 3: For each vertex u with exactly two neighbors v and w such that vw

is an edge, add v and w to the solution and remove u, v, w from the original
graph.

— Rule 4: As long as there is a vertex u with exactly two neighbors v and w such
that v and w are not adjacent to each other, replace u, v, w by u′ and make u′

adjacent to all neighbors of v and w. This is known as the folding rule. Note
that u′ cannot be replaced if it results from a previous folding. Once a solution
is achieved, the cover S is scanned for the folded vertices; thus, if u′ ∈ S then
v and w are present in the cover, otherwise u is in the cover.

Rules are applied iteratively until the graph does not change any more. Once the
algorithm is running, Rule [1-3] are iteratively applied every time a branching (ver-
tices removal) is executed. We used an adjacency matrix bitset implementation to

1. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario;
Ontario Research Fund - Research Excellence; and the University of Toronto [42, 35]

67

3.4. Implementation and experimental results

represent our graphs, which allowed for faster union and intersection computations
for the reduction rules.

We adapted the aforementioned sequential MVC algorithm following the model in
Algorithm 7, and we tested it on the following graphs.

— p_hat1000-2.clq: 1,000 vertices, 244,799 edges with a MVC of size 946.
— p_hat700-1.clq: 700 vertices, 60,999 edges with a MVC of size 635.
— frb30-15-1.mis: 450 vertices, 17,827 edges with a MVC of size 420.

The first two graphs were obtained from the Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS), these graphs are challenges utilized to
benchmark algorithms. The third instance is one of the most challenging graphs for
which the exact size of a solution was only known by theoretical predictions until it
was first solved exactly by Abu-Khzam et al. [2] in 2015. For more details about the
frb30-15-1.mis graph, please see [56].

Due to the system limitations, all our experiments were constrained to a maximum
running time of 24 hours. Additionally, Niagara allows a maximum of 20 nodes allo-
cation per user by default; we were granted permission to test up to 256 nodes (10,240
cores). Hyperthreading implementation was not part of the scope of this study and
therefore only physical cores were taken into account for the actual calculations.

We compared the performance of each graph against the data reported by Abu-
Khzam et al. [2], using the decentralized strategy, by matching the number of cores
in common for each tests. All calculations were made on computing nodes with a
blocking factor of 1:1, except for a special case on the frb30_15_1 graph, which will
be discussed later. Where a blocking factor is K: 1, if the maximum number of com-
puters to share a bandwidth is K.

In order to optimize memory access, we spawned a process per cpu socket, and
a thread per core within the socket, ie. on Niagara, each computing node has two

68

3.4. Implementation and experimental results

cpu sockets, where each cpu has 20 physical cores. Thus, on Tables 3.1 to 3.3 the
number of cores, |c|, involved in calculations is given by nodes×sockets_per_node×
cores_per_socket− 20. It is worth mentioning that the column |c| does not account
for the center process, which uses only 1 core. This was a server constraint at the time
of running experiments since an equal number of cores had to be assigned per process.
Furthermore, the number of nodes reported on the tables were chosen according to
the number of available nodes during the time of experiments. In consequence, shown
speedup is relative to the preceding point where the expected ideal speedup (Exp.)
is presented next to the actual speedup.

Results

In Figs. 3.6 and 3.7, we compare the ideal speedup (i.e. p process implies speedup ×p)
against the speedup attained by our framework and the speedup reported by Abu-
Khzam et al. [2] for the p_hat1000-2 graph and p_hat700-1 graph respectively. It can
be seen how GemPBA is substantially achieving linear growth whilst accomplishing
a performance nearly the ideal contrasted to the number of utilized cores. Note that
Abu-Khzam reportedly implemented a different branching MVC algorithm. They use
Chen et al.’s algorithm [16], which runs in time O(kn + 1.28k), where k is the vertex
cover size, whereas our algorithm is much simpler but runs in time O(2kn). Also,
they performed their experiments on different machines — hence the running times
themselves are incomparable, but the speedup comparison should help situating the
performance of our approach. In addition, we cannot exclude the possibility that our
simpler algorithm benefits more from parallelism than theirs, since we evaluate more
branching possibilities. Nevertheless, we emphasise that our simpler implementation
was still able to solve difficult instances.

We can infer from Figs. 3.6 and 3.7 that the performance of the parallelization
tool depends on the graph, meaning that some instances are more likely to benefit
from massive parallelism. Notice that p_hat1000-2 is an easier graph to solve than
the p_hat700-1 graph, even though they differ significantly in size, which results in
search tree nodes exhausting faster and providing fewer eligible tasks to parallelize.
Despite the uniqueness of these instances, GemPBA manages to make the most of

69

3.4. Implementation and experimental results

parallelization.

0 500 1000 1500 2000

0

500

1000

1500

2000

Ideal
GemPBA
Abu-Khzam

Figure 3.6 – Performance comparison on the p_hat1000-2 graph, number of cores
(x-axis) vs speedup (y-axis).

We noticed that GemPBA is capable of achieving competitive results on challeng-
ing problems. For instance, in Fig. 3.8, the performance comparison between our
approach vs the performance reported by Abu-Khzam et al. [2] is presented for the
frb30_15_1 graph. We would like to highlight that we performed two scenarios that
are relevant when considering massive parallelization, which are strictly linked to the
blocking factor that exists among computing nodes.

All our experiments showed linear speedup when considering a blocking factor
(BF) of 1:1 on Niagara, however when this BF is greater than 1, this hardware
limitation becomes a dominant variable by decreasing the growth rate of the perfor-
mance, yet providing meaningful boost. On Fig. 3.8, the trending green line shows
how GemPBA achieves super linear performance on the frb30_15_1 graph. This is
possible since a great number of cores are simultaneously searching a solution, and
as soon as a solution is found, it is reported and all branch explorations leading to

70

3.4. Implementation and experimental results

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000 Ideal
GemPBA
Abu-Khzam

Figure 3.7 – Performance comparison on the p_hat700-1 graph, number of cores (x-
axis) vs speedup (y-axis). Last bullet point from Abu-Khzam is interpolated.

a worse outcome are halted. Such branches might have been explored wastefully
with fewer cores since the good solution might have taken more time to be found.
The trending purple line diverges after 5100 cores, which is the last common point
with the green line using BF 1:1. From this point onward, BF 2:1 started to play
a significant role where super lineal speedup is not achieved any more, although our
implementation still achieves remarkable performance.

Since it is impractical to launch a job solving these graphs in sequential mode,
the results of our experiments and those ones reported by Abu-Khzam et al. [2] were
used to project the running time of these graphs using a single core, by the means of
a power regression. These projected values are reported on the Tables 3.1 to 3.3 on
the first entry, marked with a star symbol (∗).

Idle time is presented and it refers the total wall time that the cores were waiting
for task assignments, which is considerably low for all the graphs compared to the

71

3.4. Implementation and experimental results

total execution time, meaning that our Dynamic Load Balancer has positively im-
pacted the performance.

On Table 3.3, the last entry, marked with the dagger symbol (†), shows a signifi-
cant difference to the tendency of the preceding values because it is the scenario that
considers a blocking factor of 2:1. The large amount of idle time of this point might
be caused by side effects of communication overhead, that is, since messages take
longer to be sent, our framework will address new tasks to local threads by default
instead of other processes, causing that the other processes will receive more tasks
from down the tree rather than the heaviest ones that have been probably taken by
local threads, and since the algorithm is exponential, this also increases the total
number of spawned tasks and therefore the execution time. Further to the Figs. 3.6
to 3.8, we see how our framework approaches and surpasses on certain cases the ideal
speedup.

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000
Ideal
GemPBA
Abu-Khzam
GemPBA BF(2:1)

Figure 3.8 – Performance comparison on the frb30_15_1 graph, number of cores
(x-axis) vs speedup (y-axis). Last bullet point from Abu-Khzam is interpolated.

72

3.4. Implementation and experimental results

nodes p |c| Time Req. Idle time Speedup Exp.
1 36.44 hr*

1 2 20 2.277 hr 1 0.01 s 20.00
2 4 60 43.54 min 29,617 5.48 s 3.138 3.000
4 8 140 20.33 min 46,490 3.71 s 2.141 2.333
8 16 300 10.26 min 74,490 2.66 s 1.982 2.143
16 32 620 5.272 min 458,120 6.24 s 1.946 2.067
20 40 780 4.317 min 224,409 3.07 s 1.221 1.258
29 58 1140 2.872 min 328,012 3.09 s 1.503 1.462
58 116 2300 1.472 min 1,669,036 6.21 s 1.952 2.018

Table 3.1 – Performance attained for the p_hat1000-2.clq graph.

nodes p |c| Time Req. Idle time Speedup Exp.
1 26.54 day∗

2 4 60 11.25 hr 8,160 2.13 s 60.00
4 8 140 4.638 hr 24,407 2.31 s 2.425 2.333
8 16 300 2.355 hr 138,401 5.59 s 1.969 2.143
16 32 620 1.106 hr 120,850 2.30 s 2.130 2.067
20 40 780 53.11 min 400,797 5.51 s 1.249 1.258
29 58 1140 37.14 min 180,007 1.96 s 1.430 1.462
58 116 2300 18.23 min 1,007,782 4.48 s 2.038 2.018
116 232 4620 9.173 min 2,068,338 4.93 s 1.987 2.009
232 464 9260 4.574 min 1,635,128 3.76 s 2.005 2.004
256 512 10220 4.139 min 1,937,849 4.42 s 1.105 1.104

Table 3.2 – Performance attained for the p_hat700-1.clq graph.

73

3.4. Implementation and experimental results

nodes p |c| Time Req. Idle time Speedup Exp.
1 1.879 yr∗

26 52 1020 15.21 hr 135,687 1.78 s 1020
32 64 1260 12.16 hr 152,562 16.63 s 1.250 1.235
64 128 2540 6.061 hr 647,088 3.22 s 2.007 2.016
128 256 5100 2.976 hr 1,332,643 3.72 s 2.036 2.008
256 512 10220 1.482 hr 2,679,795 4.59 s 2.008 2.004
†256 512 10220 1.651 hr 22,954,998 7.63 min 2.008 2.004

Table 3.3 – Performance attained for the frb30-15-1.mis graph.

Preliminary data on the importance of choosing high priority nodes

As a preliminary analysis, in Table 3.4, we see how the DLB, i.e. always choosing
the highest pending search tree task, impacts performance when multiprocessing or
only multithreading is applied. We compared our task-choosing strategy against the
greedy one. One can see that the discrepancy in the running times is significant.
Furthermore, the idle time is a consequence of the number of requests, meaning that
the threads/processes will be more often waiting for a task. The first two rows account
for multiprocessing and multithreading (hybrid) implementation, whereas the last two
rows account for only multithreading implementation.

case n p |c| Time IPR TR/IPR T IT
DLB 4 8 112 26.23 min 81.5 K 198 16.1 M 5.243 s

Greedy 4 8 112 38.54 min 37 K 9.91 366.7 M 15.66 min
DLB 32 1.63 hr 35.5 K 0.007 s

Greedy 32 1.92 hr 161.4 M 32.214 s

Table 3.4 – Significance of dynamic load balancing over the greedy approach, on
the p_hat1000-2.clq graph. IPR is inter-process requests, TR is thread requests,
T = IPR× TR is total requests and IT is idle time.

74

3.5. Conclusion and future work

We note that a complete set of experiments on task-choosing strategies is beyond
the scope of this paper. This will be the subject of future research.

3.5 Conclusion and future work

Our semi-centralized strategy strategy has demonstrated to be capable of maintaining
CPU utilization close to 100% whilst decreasing the number of spawned tasks. To
summarize the highlights of our strategy:

— Despite the presence of a center process, bottleneck are avoided by minimizing
the requirements for communication.

— All task requests are guaranteed to be successful, therefore communication
overhead is significantly decreased.

— The genericity of our framework allows easy migration of a serial algorithm to
its parallel version in minutes with simple code modifications.

— Experimental results show how the number of generated tasks can be kept
relatively low with our DLB strategy, which is critical to optimize parallelism.

— Super linear performance can be achieved in certain cases.
— GemPBA demonstrated to be scalable up to 10,240 physical cores, even in-

cluding a blocking factor greater than 1. We hope to massively test our imple-
mentation with larger computing nodes and distinct blocking-factor scenarios
to establish if it has some limitations.

There is absolutely a vast field to explore where we believe we could find significant
improvements. We have contemplated an adaptive communication topology that can
take advantage of the cluster’s topology, i.e., launch a second level center process that
will be in charge of the communication and task assignment of a wing on Niagara,
thus there would be five second level centers plus and the absolute center, where five
of the highest priority tasks would be sent to these wings and therefore a worker
within a wing would need to communicate only with its wing neighbors, and thereby
minimizing the side effects of the blocking factor.

75

3.6. Code modifications

3.6 Code modifications

To setup the inter-process environment, the main function is modified as in Fig. 3.9,
in which three modules are initialized: GemPBA, DLB and the MpiScheduler which
are in charge of branch handling, load balancing and the inter-process communication
respectively; thus all processes are properly set up. Once this is done, the process
ranked as r = 0, runs the center by passing the first task as a serialized buffer, and
all other processes run the worker code.

76

3.6. Code modifications

int main(){

/* instantiate: gemPBA, dlb, mpiScheduler

graph, cover, and read input data

buffer = serializer(graph, cover) */

int rank = mpiScheduler.rank_me();

gemPBA.setBestValue(graph.size());

gemPBA.setBestValStrategyLookup("minimize");

if (rank == 0){

// runs MPI Scheduler for the center process

mpiScheduler.runCenter(buffer);

} else {

// runs MPI Scheduler for the workers

gemPBA.initThreadPool(numThreads);

auto bufDecoder =

gemPBA.bufDecoder<void, Graph, S>(mvc, deserializer);

mpiScheduler.runWorker(gemPBA, bufDecoder, serializer);

}

mpiScheduler.barrier();

if (rank == 0){

S cover;

stringstream ss;

string buffer = mpiScheduler.fetchSolution();

ss << buffer;

deserializer(ss,cover);

// output is stored already in "cover"

}

}

Figure 3.9 – Multiprocess environment setup

77

3.7. Flowcharts

3.7 Flowcharts

In this section we present a more detailed flowchart of our implementation for this
study, where Fig. 10 shows the series of decisions made by the center process. Figs. 11
and 12 are the expansion of the description boxes when the center process receives
running and available notifications as tags. In Fig. 13, we show the decisions by the
worker process, pi, which is in constant listening mode from any other process and
start working when it receives a message containing a task. The series of decisions
made when it is doing its job, is expanded in Fig. 14, where the main thread t0 of
this process is in charge of the inter-process communication. Not shown here is the
pool threads, ti, . . . , t|c|−1, which receive the initial task from the main thread, then
it is partitioned into other tasks and sent accordingly to waiting processes or waiting
threads availability, prioritizing processes by default.

78

3.7. Flowcharts

start

send seed

Listen

TIMEOUT
YESNO

NO NO

YES

YES

NO

NO

Perform assignments
for running tags

Perform assignments
for available tags

update global
best value

YES

YES

Broadcast

YES

best
value
tag

available
tag

running
tag

running
processes = 0

build process
topology

send
exit tag

receive
message

receive
solutions

end

Figure 10 – Center process flowchart

79

3.7. Flowcharts

Listen

YES

NO

YES

YES

running tag
from pj

pj has
waiting
process

find
available

pi

NO

send waiting
process tag to pj

set pi to
assigned state

assign
pi to pj

set pj to
running state

Figure 11 – Perform assignments for running tags.

80

3.7. Flowcharts

Listen

YES

YES

NO

NO

YES

ListenListen

available tag
from pj

pi has
waiting
process

assign pj to pi

send waiting
process tag to pi

set pj to
available state

set pj to
assigned state

iterate
over

running
pi,i≠j

Figure 12 – Perform assignments for available tags.

81

3.7. Flowcharts

Listen

YES YES

NO

NO

YES

YES

NO

NO

start

Update waiting
process

Update local
best value

best
value
tag

waiting
process

tag

task
receivedexit tag

send
solution

end

notify running

do job

notify available

Figure 13 – Worker process

82

3.7. Flowcharts

forward task
to thread pool

is pool
done

NO

new task
from pool

thread

send task to
waiting process

NO

NO

NO

notify available

NO

notify running

listen

best
value
tag

waiting
process

tag

update waiting
process

update local
best value

YES

YES

YES

YES

Figure 14 – Worker process, do job details

83

Chapter 4

Challenges

In this chapter, we address the main challenges that were not discussed in the
paper presented in Chapter 3. We discuss the procedures implemented to achieve
proper inter-process communication in the context of this research study.

4.1 OpenMPI

We used openmpi to handle inter-process communication due to its long-term support
and availability on most of the servers. We acknowledge the existence of other capable
tools such as UPC++ [9], which has accomplished in some cases better performance
than MPI. Our implementation is so lightweight and simplistic that migrating from
openmpi to UPC++ should be easy, which should be subject to discussion in further
research studies.

In MPI, there exist four environments to include threads participation, as follows.

— MPI_THREAD_SINGLE meaning that the application is single-threaded and
no other thread is spawned within the process domain.

— MPI_THREAD_FUNNELED meaning that the application may be multi-
threaded, however only the thread that initialized the MPI environment is

84

4.1. OpenMPI

allowed to perform MPI calls.
— MPI_THREAD_SERIALIZED meaning that the application may be multi-

threaded, yet only one thread can make MPI calls at a time.
— MPI_THREAD_MULTIPLE meaning that the application may be multi-

threaded and any thread can make MPI calls. However, this is still exper-
imental for which special care should be considered.

If threads conditions are not applied with the proper environment, it might result in
unknown behavior.

4.1.1 Two-sided communication

Inter-process communication is particularly different than multithreading since
processes are fully independent by default. In consequence, when a process sends
a message to another process, a proper communication channel must be established
among the participating workers. This channel is well managed by the mpi communi-
cators, which synchronizes and isolates messages, guaranteeing message delivery from
the source to the destination, as long as it is properly set up by the user[44].

Therefore, when a message is to be transmitted between two workers, the sender
and the receiver must synchronize such that a buffer can be successfully delivered.
This type of communication can be achieved either synchronously (blocking) or asyn-
chronously (non-blocking). Asynchronous transmission is not an issue when the cur-
rent instruction of a running process does not depend on the incoming message.
However, even though asynchronous messages are guaranteed to be delivered, the
order in which a message is delivered is not, since multiple processes typically share
the same communicator. Then, a user must synchronize at some point the incoming
message to be certain that it has successfully been received, yet other techniques can
be applied to verify that a message was delivered.

Hence, if a message is not immediately required, one should implement non-
blocking messaging to avoid the disruption of a task. i.e. when updating the bestVal-
SoFar in our implementation, it is safe to allow asynchronous messaging since in the
worst case, information would be a few cycles delayed, which would cause to discard
a solution that has been found somewhere else. This is not the case when receiving

85

4.1. OpenMPI

a task, because a process cannot attempt to solve a task that has not been fully
received. Most of the time, messages can be sent/received in a non-blocking fashion,
though it will depend on the application.

One of the major disadvantages of this technique is that when a process sends a
message, the destination process should also participate in the receiving. This could
add some complexity to the implementation since the user should ascertain a way to
revisit a inter-process communication scope while executing local tasks, or designating
a thread only for MPI communication.

4.1.2 One-sided communication

In order to release responsibilities to receiving nodes, there exists the one-sided
communication model, which supports three synchronization models: Fence, Post-
start-complete and passive target. The passive target synchronization is of our interest
since it does not require the target to participate in the communication. It consists
of allocating a shared memory, which is accessible from any process belonging to
the same communicator domain. This shared memory is emulated by the usage of a
window, which is essentially an array in which each entry corresponds to the rank id
of a process. Each entry points to the remote memory of the process, this memory
can be either a single value or another array[44].

This approach is very convenient since a process pi can read or write data on the
domain of a process pj with i ̸= j, or any other process part of the window and com-
municator. Nevertheless, this approach is not yet supported by MPI_THREAD_-
MULTIPLE environment, which makes it unsuitable for most multithreaded applica-
tions.

One-sided communication has demonstrated to improve performance at large
scales [44], however, servers must be properly configured otherwise communication
may not be established when attempting passive synchronization.

4.1.3 Implementation

GemPBA was initially developed implementing one-sided communication, which
demonstrated high performance on Niagara supercomputer, though infinite waits were

86

4.1. OpenMPI

appearing on other servers, even with a minimal working example. This infinite waits
consisted of a process pA trying to write on process pB but never attaining communi-
cation, which were related to the servers configuration. Since our goal is to create a
fully generic tool, we opted for migrating this approach to two-sided communication
by dedicating a single thread for the inter-process communication for which the mes-
sage passing never failed.

We chose the MPI_THREAD_FUNNELED environment since it is the most
convenient approach based on our objectives. Since it isolates the inter-process com-
munication from the multithreading domain and minimizes the MPI calls.

It is worth mentioning that, when massive parallelism takes place, there will be
an enormous number of processors communicating with each other, in which, more
MPI calls, make the application prone to errors due to the difficulty of synchro-
nizing threads and processes simultaneously. These errors are easy to track with
MPI_THREAD_FUNNELED by localizing a process per computing node, where
each process will handle its own threads separately such that only one thread is re-
sponsible for inter-process communication, consequently reducing the participating
processors in remote communication.

Hence, errors were easily addressed and fixed, which for further studies and ex-
tension of the GemPBA framework, would be easier to adapt.

87

Conclusion

With the scientific interests for parallel implementations, non-trivial parallelizable
tasks such as branching algorithms are now feasible whilst avoiding a long learning
curve in parallelism. Fields like bioinformatics implement complex recursive algo-
rithms, which are constantly evolving to become more efficient, yet certain problems
that are impractical to solve sequentially have now become feasible with a few lines of
code modifications. Thanks to our generic framework, a user who has no experience
in parallelism can now parallelize almost any of his implementations, delegating the
hard synchronization to our framework.

Although our implementation was only evaluated on non-waiting algorithms, it is
possible to use our implementation on waiting algorithms, which would be the subject
of discussion in future studies.

A flexible dynamic load balancing was successfully developed, regardless of the
search tree topology. This DLB showed to impact significantly on the final perfor-
mance due to the spawning tasks control it offers.

GemPBA demonstrated to be capable of solving the most challenging graphs
from DIMACS. The performance shown was more than competitive but outstanding,
considering that we implemented one of the most basic algorithms for the MVC
problem.

Our study showed linear scalability of up to 10,240 physical cores, which is equiv-
alent to 256 computing nodes of the supercomputer cluster Niagara. Even though
a blocking factor of 2:1 was considered for a specific scenario, it has demonstrated
to attain almost the ideal speedup. Further studies would be required to assess sce-
narios involving distinct blocking factors, for which we would like to mitigate this
communication overhead by the means of constraining tasks passing, such that only

88

Conclusion

the most likely heavy task is sent to another node island and then the majority of
process-to-process communication would take place within blocking factors of 1:1.

89

Bibliography

[1] NP-Completeness, pages 359–392. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008. doi:10.1007/978-3-540-71844-4_15.

[2] Faisal N Abu-Khzam, Khuzaima Daudjee, Amer E Mouawad, and Naomi
Nishimura. On scalable parallel recursive backtracking. Journal of Parallel and
Distributed Computing, 84:65–75, 2015.

[3] Faisal N Abu-Khzam, DoKyung Kim, Matthew Perry, Kai Wang, and Peter
Shaw. Accelerating vertex cover optimization on a gpu architecture. In 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 616–625. IEEE, 2018.

[4] Faisal N. Abu-Khzam, Michael A. Langston, Pushkar Shanbhag, and Christo-
pher T. Symons. Scalable parallel algorithms for fpt problems. Algorithmica,
45(3):269–284, Jul 2006. doi:10.1007/s00453-006-1214-1.

[5] Faisal N Abu-Khzam, Mohamad A Rizk, Deema A Abdallah, and Nagiza F
Samatova. The buffered work-pool approach for search-tree based optimiza-
tion algorithms. In International Conference on Parallel Processing and Applied
Mathematics, pages 170–179. Springer, 2007.

[6] Faisal N. Abu-Khzam, Mohamad A. Rizk, Deema A. Abdallah, and Nagiza F.
Samatova. The buffered work-pool approach for search-tree based optimization
algorithms. In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and
Jerzy Wasniewski, editors, Parallel Processing and Applied Mathematics, pages
170–179, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[7] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring

90

https://doi.org/10.1007/978-3-540-71844-4_15
https://doi.org/10.1007/s00453-006-1214-1

Bibliography

Joint Computer Conference, AFIPS ’67 (Spring), page 483–485, New York, NY,
USA, 1967. Association for Computing Machinery. doi:10.1145/1465482.
1465560.

[8] W.C. Athas and C.L. Seitz. Multicomputers: message-passing concurrent com-
puters. Computer, 21(8):9–24, 1988. doi:10.1109/2.73.

[9] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. Upc++: A high-
performance communication framework for asynchronous computation. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 963–973, 2019. doi:10.1109/IPDPS.2019.00104.

[10] Max Bannach, Malte Skambath, and Till Tantau. Towards work-efficient par-
allel parameterized algorithms. In International Workshop on Algorithms and
Computation, pages 341–353. Springer, 2019.

[11] Sebastian Böcker, Sebastian Briesemeister, and Gunnar W Klau. Exact algo-
rithms for cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–
334, 2011.

[12] S. H. Bokhari. Dual processor scheduling with dynamic reassignment. IEEE
Transactions on Software Engineering, SE-5(4):341–349, 1979. doi:10.1109/
TSE.1979.234201.

[13] Laurent Bulteau and Mathias Weller. Parameterized algorithms in bioinformat-
ics: an overview. Algorithms, 12(12):256, 2019.

[14] James Cheetham, Frank Dehne, Andrew Rau-Chaplin, Ulrike Stege, and Peter J
Taillon. Solving large fpt problems on coarse-grained parallel machines. Journal
of Computer and System Sciences, 67(4):691–706, 2003.

[15] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observa-
tions and further improvements. Journal of Algorithms, 41(2):280–301, 2001.
URL: https://www.sciencedirect.com/science/article/pii/

S0196677401911861, doi:https://doi.org/10.1006/jagm.2001.

1186.
[16] Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover.

Theoretical Computer Science, 411(40-42):3736–3756, 2010.

91

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/2.73
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/TSE.1979.234201
https://doi.org/10.1109/TSE.1979.234201
https://www.sciencedirect.com/science/article/pii/S0196677401911861
https://www.sciencedirect.com/science/article/pii/S0196677401911861
https://doi.org/https://doi.org/10.1006/jagm.2001.1186
https://doi.org/https://doi.org/10.1006/jagm.2001.1186

Bibliography

[17] Jens Clausen. Branch and bound algorithms-principles and examples.
Department of Computer Science, University of Copenhagen, pages 1–30, 1999.

[18] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015.

[19] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized
algorithms, volume 5. Springer, 2015.

[20] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized
complexity, volume 4. Springer, 2013.

[21] Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer Science
& Business Media, 2006.

[22] Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. Journal of the ACM (JACM),
56(5):1–32, 2009.

[23] Fedor V Fomin and Petteri Kaski. Exact exponential algorithms.
Communications of the ACM, 56(3):80–88, 2013.

[24] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled
data clustering: Fixed-parameter algorithms for clique generation. In Italian
Conference on Algorithms and Complexity, pages 108–119. Springer, 2003.

[25] William Gropp and Rajeev Thakur. Issues in developing a thread-safe mpi imple-
mentation. In Bernd Mohr, Jesper Larsson Träff, Joachim Worringen, and Jack
Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 12–21, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[26] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming,
Revised Reprint 1st Edition. Morgan Kaufmann, Reading, Massachusetts, 2012.

[27] Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier, and Sebastian Wernicke.
Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological
Problems, pages 363–402. Springer New York, New York, NY, 2017. doi:

10.1007/978-1-4939-6613-4_20.

92

https://doi.org/10.1007/978-1-4939-6613-4_20
https://doi.org/10.1007/978-1-4939-6613-4_20

Bibliography

[28] Trey Ideker and Roded Sharan. Protein networks in disease. Genome research,
18(4):644–652, 2008.

[29] J Stephen Judd. Neural network design and the complexity of learning. MIT
press, 1990.

[30] Laxmikant V Kalé, Balkrishna Ramkumar, V Saletore, and AB Sinha. Prior-
itization in parallel symbolic computing. In US/Japan Workshop on Parallel
Symbolic Computing, pages 11–41. Springer, 1992.

[31] Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for back-
track search and branch-and-bound computation. J. ACM, 40(3):765–789, July
1993. doi:10.1145/174130.174145.

[32] Jyrki Katajainen and Jesper Larsson Trgff. A meticulous analysis of mergesort
programs. In in Proceedings of the 3rd Italian Conference on Algorithms and
Complexity, Lecture Notes in Computer Science 1203, Springer-Verlag, pages
217–228, 1997.

[33] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-
fluence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 137–
146, 2003.

[34] Christopher Kormanyos. Real-Time C : Efficient Object-Oriented and Template
Microcontroller Programming. Springer Berlin Heidelberg, 2018.

[35] Chris Loken, Daniel Gruner, Leslie Groer, Richard Peltier, Neil Bunn, Michael
Craig, Teresa Henriques, Jillian Dempsey, Ching-Hsing Yu, Joseph Chen,
L Jonathan Dursi, Jason Chong, Scott Northrup, Jaime Pinto, Neil Knecht, and
Ramses Van Zon. SciNet: Lessons learned from building a power-efficient top-20
system and data centre. Journal of Physics: Conference Series, 256:012026, nov
2010. doi:10.1088/1742-6596/256/1/012026.

[36] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C.
Sewell. Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning. Discrete Optimization, 19:79–102, 2016.
URL: https://www.sciencedirect.com/science/article/pii/

93

https://doi.org/10.1145/174130.174145
https://doi.org/10.1088/1742-6596/256/1/012026
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://www.sciencedirect.com/science/article/pii/S1572528616000062

Bibliography

S1572528616000062, doi:https://doi.org/10.1016/j.disopt.

2016.01.005.

[37] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell.
Branch-and-bound algorithms: A survey of recent advances in searching, branch-
ing, and pruning. Discrete Optimization, 19:79–102, 2016.

[38] Rolf Niedermeier. Invitation to fixed-parameter algorithms. 2006.

[39] Rob Oshana. Chapter 1 - principles of parallel computing. In Rob Os-
hana, editor, Multicore Software Development Techniques, pages 1–30. Newnes,
Oxford, 2016. URL: https://www.sciencedirect.com/science/

article/pii/B9780128009581000012, doi:https://doi.org/10.

1016/B978-0-12-800958-1.00001-2.

[40] Rob Oshana. Chapter 2 - parallelism in all of its forms. In Rob
Oshana, editor, Multicore Software Development Techniques, pages 31–
38. Newnes, Oxford, 2016. URL: https://www.sciencedirect.com/

science/article/pii/B9780128009581000024, doi:https://doi.
org/10.1016/B978-0-12-800958-1.00002-4.

[41] Rob Oshana. Chapter 4 - multicore software architectures. In Rob
Oshana, editor, Multicore Software Development Techniques, pages 53–
66. Newnes, Oxford, 2016. URL: https://www.sciencedirect.com/

science/article/pii/B9780128009581000048, doi:https://doi.
org/10.1016/B978-0-12-800958-1.00004-8.

[42] Marcelo Ponce, Ramses van Zon, Scott Northrup, Daniel Gruner, Joseph Chen,
Fatih Ertinaz, Alexey Fedoseev, Leslie Groer, Fei Mao, Bruno C. Mundim,
Mike Nolta, Jaime Pinto, Marco Saldarriaga, Vladimir Slavnic, Erik Spence,
Ching-Hsing Yu, and W. Richard Peltier. Deploying a top-100 supercomputer
for large parallel workloads: The niagara supercomputer. In Proceedings of
the Practice and Experience in Advanced Research Computing on Rise of the
Machines (Learning), PEARC ’19, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3332186.3332195.

[43] Vikram A Saletore and Laxmikant V Kale. Consistent linear speedups to a first
solution in parallel state-space search. In AAAI, pages 227–233, 1990.

94

https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://doi.org/https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/https://doi.org/10.1016/j.disopt.2016.01.005
https://www.sciencedirect.com/science/article/pii/B9780128009581000012
https://www.sciencedirect.com/science/article/pii/B9780128009581000012
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00001-2
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00001-2
https://www.sciencedirect.com/science/article/pii/B9780128009581000024
https://www.sciencedirect.com/science/article/pii/B9780128009581000024
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00002-4
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00002-4
https://www.sciencedirect.com/science/article/pii/B9780128009581000048
https://www.sciencedirect.com/science/article/pii/B9780128009581000048
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00004-8
https://doi.org/https://doi.org/10.1016/B978-0-12-800958-1.00004-8
https://doi.org/10.1145/3332186.3332195

Bibliography

[44] Danish Shehzad and Zeki Bozkuş. Optimizing neuron simulation environment
using remote memory access with recursive doubling on distributed memory
systems. Computational Intelligence and Neuroscience, 2016:3676582, Jun 2016.
doi:10.1155/2016/3676582.

[45] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak
Gafni, and Eitan Zahavi. Dragonfly+: Low cost topology for scaling datacenters.
In 2017 IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), pages 1–8, 2017.
doi:10.1109/HiPINEB.2017.11.

[46] W. Shu and L. V. Kale. A dynamic scheduling strategy for the chare-kernel
system. In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing,
Supercomputing ’89, page 389–398, New York, NY, USA, 1989. Association for
Computing Machinery. doi:10.1145/76263.76306.

[47] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System
Concepts with Java. Wiley Publishing, 8th edition, 2009.

[48] Amitabh B Sinha and Laxmikant V Kalé. A load balancing strategy for prior-
itized execution of tasks. In [1993] Proceedings Seventh International Parallel
Processing Symposium, pages 230–237. IEEE, 1993.

[49] Yanhua Sun, Gengbin Zheng, Pritish Jetley, and Laxmikant V Kalé. An adap-
tive framework for large-scale state space search. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum,
pages 1798–1805. IEEE, 2011.

[50] YANHUA SUN, GENGBIN ZHENG, PRITISH JETLEY, and LAXMIKANT V.
KALE. Parssse: An adaptive parallel state space search engine. Parallel
Processing Letters, 21(03):319–338, 2011. arXiv:https://doi.org/10.

1142/S0129626411000242, doi:10.1142/S0129626411000242.

[51] Luzhi Wang, Shuli Hu, Mingyang Li, and Junping Zhou. An exact algorithm for
minimum vertex cover problem. Mathematics, 7(7):603, 2019.

[52] Dinesh P. Weerapurage, John D. Eblen, Gary L. Rogers, and Michael A.
Langston. Parallel vertex cover: A case study in dynamic load balancing. In
Proceedings of the Ninth Australasian Symposium on Parallel and Distributed

95

https://doi.org/10.1155/2016/3676582
https://doi.org/10.1109/HiPINEB.2017.11
https://doi.org/10.1145/76263.76306
http://arxiv.org/abs/https://doi.org/10.1142/S0129626411000242
http://arxiv.org/abs/https://doi.org/10.1142/S0129626411000242
https://doi.org/10.1142/S0129626411000242

Bibliography

Computing - Volume 118, AusPDC ’11, page 25–32, AUS, 2011. Australian Com-
puter Society, Inc.

[53] Barry Wilkinson and C. Michael Allen. Parallel programming. Pearson/Prentice
Hall, 2 edition, 2005.

[54] Tobias Wittkop, Jan Baumbach, Francisco P Lobo, and Sven Rahmann. Large
scale clustering of protein sequences with force-a layout based heuristic for
weighted cluster editing. BMC bioinformatics, 8(1):1–12, 2007.

[55] Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey. In
Combinatorial optimization—eureka, you shrink!, pages 185–207. Springer, 2003.

[56] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre.
Random constraint satisfaction: Easy generation of hard (satisfiable) in-
stances. Artificial Intelligence, 171(8):514–534, 2007. URL: https://www.
sciencedirect.com/science/article/pii/S0004370207000653,
doi:https://doi.org/10.1016/j.artint.2007.04.001.

[57] Sinem Çınaroğlu and Sema Bodur. A new hybrid approach based on genetic
algorithm for minimum vertex cover. In 2018 Innovations in Intelligent Systems
and Applications (INISTA), pages 1–5, 2018. doi:10.1109/INISTA.2018.
8466307.

96

https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://doi.org/https://doi.org/10.1016/j.artint.2007.04.001
https://doi.org/10.1109/INISTA.2018.8466307
https://doi.org/10.1109/INISTA.2018.8466307

	Sommaire
	Abstract
	Remerciements
	Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminary notions
	Branch & bound algorithms
	Fixed-parameter tractable algorithms
	Parallelization
	Process
	Thread
	Multiprocessing
	Multithreading

	Multiprocessing + Multithreading (hybrid)
	Critical section
	Not embarrassingly parallel
	Probability of speedup
	Amdahl's law

	Types of branching algorithms
	Inter-process communication strategies
	Centralized topology
	Decentralized topology

	Reduction rules
	Vertical tree search

	State of the Art
	Dual processor scheduling with dynamic reassignment
	Multicomputers: message-passing concurrent computers
	Scalable Parallel Algorithms for FPT Problems
	The buffered Work-Pool approach
	Parallel Vertex Cover: A Case Study in Dynamic Load Balancing
	On scalable parallel recursive backtracking

	A Lightweight Semi-Centralized Strategy for the Massive Parallelization of Branching Algorithms
	Introduction
	Preliminary notions
	Search tree algorithms
	Previous search tree parallelization strategies

	A semi-centralized load-balancing strategy
	Center and worker responsibilities
	Center implementation
	Worker implementation
	Maintaining the most urgent task in workers
	Startup phase

	Implementation and experimental results
	Converting sequential to parallel
	Experiments

	Conclusion and future work
	Code modifications
	Flowcharts

	Challenges
	OpenMPI
	Two-sided communication
	One-sided communication
	Implementation

	Conclusion

