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ABSTRACT

This work concerns parameter estimation for a bivariate normal model where the dif-

ference of the two normal means is bounded. A hierarchical prior is considered which

allows uncertainty to be introduced in the parametric constraint. We begin by studying

the case of a uniform prior on θ1− θ2 ≥ m where m ∼ N(0, σ2
m). We show that the Bayes

estimator of θ1 dominates X1 under squared error loss, which extends the known result

for σ2
m = 0 ; that is, without uncertainty in the constraint. An ad hoc credible set for θ1

is then presented along with an analysis of its frequentist properties including coverage

probability. Finally, the last chapter considers two modifications to the previous model :

a parametric restriction of the form |θ1 − θ2| ≤ m and the case of unknown variances.
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SOMMAIRE

Ce mémoire porte sur l’estimation paramétrique d’un modèle normal bivarié où la diffé-

rence des deux moyennes normales est bornée. Une loi a priori hiérarchique est considérée,

ce qui permet d’introduire de l’incertitude dans la restriction paramétrique. En premier

lieu, le cas d’une loi a priori uniforme sur θ1 − θ2 ≥ m est étudié où m ∼ N(0, σ2
m).

On montre que l’estimateur de Bayes de θ1 domine X1 en termes de perte quadratique

lorsque θ1 − θ2 ≥ 0. Ceci étend le résultat connu pour le cas σ2
m = 0 ; c’est-à-dire, en

absence d’incertitude dans la contrainte. On présente ensuite un intervalle de crédibilité

ad hoc pour θ1 ainsi qu’une analyse de ses propriétés fréquentistes dont la probabilité de

recouvrement. Finalement, le dernier chapitre considère deux modifications au modèle

précédent : une restriction paramétrique de la forme |θ1 − θ2| ≤ m et le cas de variances

inconnues.
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INTRODUCTION

This work concerns parameter estimation for a bivariate normal model in the presence of

a constraint on the difference of the two normal means. The larger topic at hand is thus

estimation in restricted parameter spaces, a field which has gained attention since the

1950s. Parametric constraints arise naturally in many situations and in various forms.

Perhaps the most fundamental example of such a problem was studied by Katz [Kat61]

in 1961 and concerns point estimation of a positive normal mean under squared error

loss. While there is no guarantee that estimators retain their favourable properties when

a parametric restriction is introduced, some do carry over and it is of interest to study

such problems (see van Eeden [vE06]).

The problem of estimating the larger of two normal means has been well studied, dating

back to the late 1960s with a series of papers by Blumenthal & Cohen [BC68a,BC68b]

followed by Cohen & Sackrowitz [CS70]. Questions of admissibility and minimaxity are

discussed for both the simultaneous estimation of the two means as well as the estimation

of the larger mean. Several estimators are studied including restricted and unrestricted

maximum likelihood estimators as well as Bayes estimators with respect to a uniform

prior on the restricted parameter space. In particular, the Bayes estimator, for both

(θ1, θ2) in the simultaneous estimation of the two means and θ1 in estimating the larger

1



normal mean, is shown to be minimax and admissible on R2 under squared error loss.

A recent motivation for this work comes from a paper by Marchand & Nicoleris [MN19].

The authors consider estimating a normal mean which is suspected to be positive. They

introduce uncertainty in the lower bound by using a hierarchical prior (see O’Hagan &

Leonard [OL76] for an early use of this idea), yielding the following model and prior :

X|θ,m ∼ N(θ, σ2), θ|m ∼ N(µ, τ 2)1[m,∞)(θ), m ∼ N(0, σ2
m),

where µ and σ2, τ 2, σ2
m ≥ 0 are known. The case σ2

m = 0 recovers the deterministic

constraint θ ≥ 0 which corresponds to the problem considered by Katz [Kat61]. Mar-

chand & Nicoleris proceed to show that a class of generalized Bayes estimators of θ1 do-

minate the benchmark estimator X1 and are thus minimax. The results obtained under

this uncertain constraint framework, along with the known two-sample point estimation

results when θ1 ≥ θ2 (without uncertainty), suggest the idea of adding uncertainty to the

bound in the two-sample problem and serve as motivation for this work. The performance

of point estimators in such problems also leads to interest in Bayes credible sets. Bayesian

credible sets typically do not have matching coverage probability, and even in rare occa-

sions where they do, adding a parametric restriction further perturbs the probability mat-

ching (e.g., Mandelkern [Man02] ; Marchand & Strawderman [MS06]). Investigating the

behaviour of the frequentist coverage of Bayes credible sets in restricted parameter spaces

remains an interesting topic, especially for multiparameter problems. For example, there

are a number of situations where Bayes credible sets associated with a non-informative

or diffuse prior provide coverage probability close to the nominal credibility (e.g., Zhang

& Woodfoofe [ZW03] ; Roe & Woodroofe [RW00] ; Marchand & Strawderman [MS06] ;

Marchand et al. [MSBL08] ; Marchand & Strawderman [MS13] ; Ghashim et al. [GMS16]).
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This document is organized as follows. Chapter 1 is dedicated to preliminary theory, pre-

senting both definitions and results which are used later. The chapter begins by presenting

relevant distributions along with related properties. The focus then shifts to parameter

estimation where both point and interval estimation are discussed. Measures of goodness

of estimates such as frequentist coverage probability, credibility, minimaxity and admis-

sibility are defined with an emphasis placed on the differences between frequentist and

Bayesian approaches.

The main portion of this work is presented in Chapter 2 and concerns estimation of the

suspected larger of two normal means. This chapter forms the basis of a recently submit-

ted paper. We consider a model of the form Xi ∼ N(θi, σ
2
i ), Xi independent for i = 1, 2

and σ2
i known, with a hierarchical prior π(θ1, θ2|m) = 1[m,∞)(θ1 − θ2), m ∼ N(0, σ2

m)

where σ2
m is known. The degenerate case without uncertainty in the parametric restric-

tion ; that is, for a prior π(θ1, θ2) = 1[0,∞)(θ1 − θ2) (or equivalently taking σ2
m → 0 in

the hierarchical prior), has been well studied in the literature, notably by Blumenthal &

Cohen [BC68b] and Cohen & Sackrowitz [CS70]. We obtain a class of minimax Bayes es-

timators of θ1 that dominate the benchmark estimator X1 under squared error loss, thus

extending the known minimaxity result for σ2
m = 0. We also address questions of admissi-

bility. We then turn to the construction of Bayesian credible sets for θ1 and introduce an

ad hoc credible interval of a standard form E[θ|x]± zα/2
√

V[θ|x] with approximate 1−α

credibility (see Denis [Den10]). An ad hoc procedure of this type has been advocated

as a reasonable approach by several authors (e.g., Berger [Ber85]). We study the ad hoc

interval’s frequentist coverage probability and provide numerical evidence of it closely

matching the nominal credibility. Finally, we incorporate a spending function and study

its impact on the frequentist coverage probability and credibility.

3



The last chapter complements Chapter 2 by presenting two modifications to the model

and parametric constraint and studying the resulting ad hoc credible interval defined in

Chapter 2. Section 3.1 considers the same model for X1 and X2 as in Chapter 2, but

now doubly-bounds the difference of means θ1− θ2. Section 3.2 deals with the same type

of constraint (i.e., ordered means), but with the variances of X1 and X2 unknown (but

equal).

4



CHAPTER 1

Preliminary theory

In this section, we lay a (non-exhaustive) theoretical foundation for the results to come

by presenting some preliminary theory pertaining to normal and skewed distributions

as well as Bayesian inference, in particular to point and interval estimation. We also

introduce other useful functions and results.

1.1 Multivariate normal distribution

The following well-known theory pertaining to the multivariate normal distribution can

be found in Muirhead [Mui82].

Definition 1.1. X has a p-variate normal distribution with mean µ and positive definite

covariance matrix Σ when it has density on Rp given by

fX(x) =
1

(2π)p/2(det Σ)1/2
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
.

We denote such a distribution X ∼ Np(µ,Σ).

5



Lemma 1.2. Let X ∼ Np(µ,Σ). Then the moment generating function of X is given by

MX(t) = E
[
et
>X
]

= et
>µ+ 1

2
t>Σt.

For p = 2, let V[Xi] = σ2
i for i = 1, 2 and let ρ denote the Pearson correlation coefficient

between X1 and X2. Such a situation corresponds to the bivariate normal distribution,

which can be standardized by setting Zi = Xi−µi
σi

for i = 1, 2. The joint density of Z1 and

Z2 can easily be shown to be

fZ(z1, z2) =
1

2π(1− ρ2)1/2
exp

{
− 1

2(1− ρ2)
(z2

1 + z2
2 − 2ρz1z2)

}
.

Lemma 1.3. Let (X, Y ) ∼ N2

(
µ =

[
µX
µY

]
,Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

])
with |ρ| ≤ 1. Then

the conditional distribution of Y given X = x is given by

Y |X = x ∼ N

(
µY + ρ

σY
σX

(x− µX), σ2
Y (1− ρ2)

)
.

Lemma 1.4. Let X ∼ Np(µ,Σ) and Y = AX + b, where A is q× p and b is q× 1. Then

Y ∼ Nq

(
Aµ+ b, AΣA>

)
.

Proof. We have

E
[
et
>Y
]

= E
[
et
>(AX+b)

]
= et

>b E
[
et
>AX

]
= et

>bMX(A>t)

= et
>bet

>Aµ+ 1
2
t>(AΣA>)t = et

>(Aµ+b)+ 1
2
t>(AΣA>)t,

which one recognizes as the moment generating function of a Nq(Aµ + b, AΣA>) distri-

bution.

Corollary 1.5. Let (X1, X2)> ∼ N2

(
µ =

[
µ1

µ2

]
,Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
. Then setting

Y1 = X1 and Y2 = 1√
1−ρ2

(
X2 − ρσ2

σ1
X1

)
, we have

(Y1, Y2)> ∼ N2

(
µ′ =

[
µ1

1√
1−ρ2

(
µ2 − ρσ2

σ1
µ1

)]
,Σ′ =

[
σ2

1 0
0 σ2

2

])
.

In particular, Y1 and Y2 are independent.

6



Proof. We use Lemma 1.4 with p = 2, A =

[
1 0

− ρσ2

σ1
√

1−ρ2
1√

1−ρ2

]
and b = 0. From this,

we immediately obtain µ′ and the covariance matrix is evaluated as follows

AΣA> =

[
1 0

− ρσ2

σ1
√

1−ρ2
1√

1−ρ2

][
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]1 − ρσ2

σ1
√

1−ρ2

0 1√
1−ρ2

 =

[
σ2

1 0
0 σ2

2

]
.

1.2 Skewed distributions

Skewed distributions arise from various situations, one of which is hidden truncation.

Arnold & Beaver [AB02] use the example of waist sizes for uniforms of elite troops,

of which members are only selected if they are above a certain height, but it is easy

to think of other examples of such a truncation where the units are selected only if

they meet a certain threshold requirement. In the troop uniform example, a normal

distribution wouldn’t be appropriate to model the waist sizes since the latter are positively

skewed. It would be better to use a skewed distribution. In this example, the truncation

is not so hidden, but it is possible to have instances where there was some subliminal

truncation or selection (see Arnold & Beaver [AB02] for more examples) which render

the choice of a skewed distribution less obvious, yet more appropriate than that of a

symmetric distribution. In a more formal estimation setting, skewed distributions can

arise in posterior distributions where the prior is truncated to some restricted parameter

space (see Chapter 2). We refer the reader to Azzalini [Azz14] for a detailed account of

skewed distributions, with an emphasis on the construction of such distributions from

the starting point of a continuous symmetric density. We denote throughout φ(·) and

Φ(·) as the standard normal density and cdf respectively.

Definition 1.6. ν has a truncated normal distribution with parameters α ∈ R, τ 2 > 0

7



and (a, b), −∞ ≤ a < b ≤ ∞, when it has density on (a, b) given by

f(ν) =
1

τ

φ
(
ν−α
τ

)
Φ
(
b−α
τ

)
− Φ

(
a−α
τ

)1(a,b)(ν).

We denote such a distribution ν ∼ TN (α, τ 2, (a, b)).

Lemma 1.7. Let ν ∼ TN (α, τ 2, (a, b)). Then the expectation and variance of ν are given

by

E[ν] = α + τ
φ
(
a−α
τ

)
− φ

(
b−α
τ

)
Φ
(
b−α
τ

)
− Φ

(
a−α
τ

) ; (1.1)

V[ν] = τ 2

1 +

(
a−α
τ

)
φ
(
a−α
τ

)
−
(
b−α
τ

)
φ
(
b−α
τ

)
Φ
(
b−α
τ

)
− Φ

(
a−α
τ

) −

(
φ
(
a−α
τ

)
− φ

(
b−α
τ

)
Φ
(
b−α
τ

)
− Φ

(
a−α
τ

))2
 . (1.2)

Proof. The moment generating function of ν is given by

Mν(t) = E[et ν ]

=

∫ b

a

et ν
1

τ

φ
(
ν−α
τ

)
Φ
(
b−α
τ

)
− Φ

(
a−α
τ

)dν
=

e−
1

2τ2
(α2−(τ2t+α)2)

Φ
(
b−α
τ

)
− Φ

(
a−α
τ

) ∫ b

a

1

τ
φ

(
ν − (τ 2t+ α)

τ

)
dν

=
eα t+

τ2t2

2

Φ
(
b−α
τ

)
− Φ

(
a−α
τ

) [Φ(b− (τ 2t+ α)

τ

)
− Φ

(
a− (τ 2t+ α)

τ

)]
,

from which we obtain E[ν] = M ′
ν(0) and V[ν] = E[ν2]− (E[ν])2 = M ′′

ν (0)− (M ′
ν(0))2.

Definition 1.8. U has an extended skew-normal distribution with parameters c, d ∈ R

when it has density on R given by

f(u) =
φ(u)Φ (cu+ d)

Φ
(

d√
1+c2

) ,

and we write U ∼ SN(c, d).

8



This density was proposed by Azzalini [Azz85] in 1985 and was further studied by Arnold

& Beaver [AB02] among others. One recovers Azzalini’s [Azz85] original skew-normal

distribution, with density f(u) = 2φ(u)Φ(c u), for c ∈ R, with d = 0. The choice c = 0

of the shape parameter recovers the standard normal density. The cases c > 0 yield

positively skewed distributions whereas negatively skewed distributions arise when c < 0.

Remark 1.9. We can introduce location and scale parameters, µ and β respectively, in

Definition 1.8 to obtain the following augmented class of densities

f(u) =
1

β

φ
(
u−µ
β

)
Φ
(

d√
1+c2

)Φ

(
c(u− µ)

β
+ d

)
.

We denote such distributions as U ∼ SN (c, d, µ, β).

The following well-known result is useful for several calculations in this work, notably in

computing posterior distributions in the following chapters.

Lemma 1.10. Let Z ∼ N(0, 1) and λ, ε ∈ R. Then E
[
Φ(λ(Z + ε))

]
= Φ

(
λ ε√
1+λ2

)
.

Proof. We have

E
[
Φ(λ(Z + ε))

]
=

∫ ∞
−∞

∫ λ(z+ε)

−∞
φ(y)φ(z)dydz = P [Y − λZ ≤ λε] = Φ

(
λ ε√

1 + λ2

)
,

where Y ∼ N(0, 1) is independent of Z.

Lemma 1.11. For U ∼ SN (c, d), the moment generating function, expectation and va-

riance of U are given respectively by

MU(t) =
e
t2

2

Φ
(

d√
1+c2

)Φ

(
c t+ d√
1 + c2

)
,

E[U ] =
c√

1 + c2

φ
(

d√
1+c2

)
Φ
(

d√
1+c2

) , and

9



V[U ] = 1− d c2

(1 + c2)3/2

φ
(

d√
1+c2

)
Φ
(

d√
1+c2

) − c2

1 + c2

φ
(

d√
1+c2

)
Φ
(

d√
1+c2

)
2

.

Proof. With the change of variables y = u− t (dy = du), we have

MU(t) = E
[
et U
]

=

∫ ∞
−∞

etu
φ(u)Φ (c u+ d)

Φ
(

d√
1+c2

) du

=
1

Φ
(

d√
1+c2

) ∫ ∞
−∞

1√
2π

et(y+t)e−
(y+t)2

2 Φ (c (y + t) + d) dy

=
e
t2

2

Φ
(

d√
1+c2

) ∫ ∞
−∞

φ(y)Φ

(
c

(
y + t+

d

c

))
dy

=
e
t2

2

Φ
(

d√
1+c2

)E [Φ(c(Y + t+
d

c

))]

=
e
t2

2

Φ
(

d√
1+c2

)Φ

(
c t+ d√
1 + c2

)
,

where Y ∼ N(0, 1) and making use of Lemma 1.10. The expectation and variance follow

by straightforward calculations.

Skew-normal distributions relate to mean mixtures of normal distributions (e.g., Nega-

restani et al. [NJSB19]), as given by the following results.

Definition 1.12. Let X|ν ∼ N(θ+ aν, σ2), ν ∼ G with density g, where a 6= 0 and σ2 is

known. Then X is said to be a mean mixture of normals and we write

X ∼ MMN(θ, a, σ2, g).

Lemma 1.13. Let X ∼MMN(θ, a, σ2, g), a 6= 0, where g ∼ TN(α, τ 2, (0,∞)). Then

X ∼ SN

(
aτ

σ
,
α
√
a2τ 2 + σ2

στ
, θ + aα,

√
a2τ 2 + σ2

)
.

10



Proof. For X|ν ∼ N(θ+aν, σ2), a 6= 0, with ν ∼ TN(α, τ 2, (0,∞)), the marginal density

of X is given by

fX(x) =

∫
R
fX|ν=y(x|y)fν(y)dy

=

∫ ∞
0

1√
2π σ

e−
(x−(θ+ay))2

2σ2
1√

2π τ

1

Φ
(
α
τ

)e− (y−α)2

2τ2 dy

=
1

2πστΦ
(
α
τ

) ∫ ∞
0

e−
x2

2σ2
+
x(θ+ay)

σ2
− (θ+ay)2

2σ2 · e−
y2

2τ2
+αy

τ2
− α2

2τ2 dy

=
e−

1
2σ2

(x−θ)2e−
α2

2τ2

2πστΦ
(
α
τ

) ∫ ∞
0

e
− 1

2

(
a2τ2+σ2

σ2τ2

)
y2+( a

σ2
(x−θ)+ α

τ2
)ydy

=
e−

1
2σ2

(x−θ)2e−
α2

2τ2

2πστΦ
(
α
τ

) · e
1
2

(a(x−θ)τ2+ασ2)
2

σ2τ2(a2τ2+σ2)

∫ ∞
0

e
− 1

2

(
a2τ2+σ2

σ2τ2

)(
y− aτ2(x−θ)+ασ2

a2τ2+σ2

)2

dy.

One recognizes the last integrand as the (unnormalized) density of a truncated normal

on (0,∞) with location and scale parameters given respectively by

µ̃ =
aτ 2(x− θ) + ασ2

a2τ 2 + σ2
and σ̃ =

√
σ2τ 2

a2τ 2 + σ2
.

We therefore have

fX(x) =
e−

1
2σ2

(x−θ)2e−
α2

2τ2

√
2π στΦ

(
α
τ

) · e 1
2

(a(x−θ)τ2+ασ2)
2

σ2τ2(a2τ2+σ2)

(
στ√

a2τ 2 + σ2

)
Φ

(
µ̃

σ̃

)

=
1√
2π

1√
a2τ 2 + σ2

1

Φ
(
α
τ

)Φ

(
aτ 2(x− θ) + ασ2

στ
√
a2τ 2 + σ2

)
e
− 1

2σ2
(x−θ)2− α2

2τ2
+ 1

2

(a(x−θ)τ2+ασ2)
2

σ2τ2(a2τ2+σ2)

=
1√

a2τ 2 + σ2
φ

(
x− θ − aα√
a2τ 2 + σ2

)
1

Φ
(
α
τ

)Φ

(
aτ 2(x− θ) + ασ2

στ
√
a2τ 2 + σ2

)
,

from which we can conclude that

X ∼ SN

(
c =

aτ

σ
, d =

α
√
a2τ 2 + σ2

στ
, µ = θ + aα, β =

√
a2τ 2 + σ2

)
.

11



Note that without loss of generality, one can set θ = 0 and τ = 1. Lemma 1.13 indicates

how a choice of (a, σ2, α) for a MMN distribution leads to a SN(c, d, µ, β) distribution.

Conversely, from parameters (c, d, µ, β), there is one redundant parameter. For instance,

for α = d√
1+c2

, a = µ
√

1+c2

d
and σ2 = µ2(1+c2)

c2 d2
, we have β = µ(1+c2)

d
as being redundant.

The next result summarizes how to generate a SN(c, d) distribution.

Corollary 1.14. Let Z|ν ′ ∼ N(
√

1− ρ ν ′, ρ) with ν ′ ∼ TN(0, 1, (−α,∞)) and 0 < ρ < 1.

Then Z ∼ SN
(
c =

√
1−ρ
ρ
, d = α√

ρ

)
. Equivalently, if U ∼ SN(c, d), then U admits the

representation U |ν ′ ∼ N(
√

1− ρ ν ′, ρ) with ν ′ ∼ TN(0, 1, (−α,∞)) and where ρ = 1
1+c2

and α = d√
1+c2

.

Proof. From Lemma 1.13, the representation

Z =
X − aα√
a2 + σ2

| ν ∼ N

(
a(ν − α)√
a2 + σ2

,
σ2

a2 + σ2

)
with ν ∼ TN(α, 1, (0,∞)) implies that

Z ∼ SN

(
c =

a

σ
, d =

α
√
a2 + σ2

σ

)
.

Conversely, for Z|ν ′ ∼ N(
√

1− ρ ν ′, ρ) and setting ν ′ d= ν − α ∼ TN(0, 1, (−α,∞)), we

obtain from Lemma 1.13 that

Z ∼ SN

(
c =

√
1− ρ
ρ

, d =
α
√
ρ

)
,

with ρ = σ2

a2+σ2 .

1.3 Reverse Mill’s ratio

An important function which appears consistently throughout this work is the reverse

Mill’s ratio, also sometimes referred to as the reversed hazard rate and which relates to

12



the Mill’s ratio. We introduce this function and provide some of its properties here. We

refer the reader to Baricz [Bar08] for a wealth of other properties.

Definition 1.15. The reverse Mill’s ratio is given by

R(t) =
φ(t)

Φ(t)
, t ∈ R.

Lemma 1.16. (Properties of the reverse Mill’s ratio)

(a) R(t) + t > 0 ∀t ∈ R ;

(b) R(t) is a decreasing function of t with lim
t→−∞

R(t) = +∞ and lim
t→∞

R(t) = 0 ;

(c) R′(t) = −R(t)
(
t + R(t)

)
is an increasing function of t (i.e., R(t) is convex) with

bounds −1 < R′(t) < 0 ∀t ∈ R ;

(d) lim
t→−∞

R(t)(t+R(t)) = 1 and lim
t→−∞

(t+R(t)) = 0 ;

(e) lim
t→∞

(tR(t)) = 0 ;

(f) lim
t→−∞

R(t)
t

= −1.

Proof. These properties are well-known and can be found in the literature (e.g., Gordon

[Gor41] ; Baricz [Bar08] ; Sampford [Sam53]). We provide an instructional proof for part

(a).

(a) This property can be obtained from a probabilistic point of view. For X ∼ N(µ, 1)

and prior π(µ) = 1(0,∞)(µ), we obtain the posterior µ|x ∼ TN(x, 1, (0,∞)), a

density which is defined on (0,∞). From (1.1) of Lemma 1.7, we obtain that

E[µ|x] = x+R(x) from which we can conclude that x+R(x) > 0 since P[µ > 0|x] = 1.

13



1.4 Monotone likelihood ratio

The following general theory concerning monotone likelihood ratios can be found in

Lehmann & Romano [LR05] and Casella & Berger [CB02] among others.

Definition 1.17. The family of densities {pθ(x) : θ ∈ Θ} has monotone likelihood ratio

in x (or in a statistic T (x)) if for all θ1 > θ0,
pθ1 (x)

pθ0 (x)
is monotone in x (or T (x)).

Example 1.18. An example which relates to our work concerns a truncated normal

distribution. X ∼ TN(θ, σ2, (a, b)) with a, b and σ2 > 0 fixed has increasing likelihood

ratio in x. Indeed, for θ1 > θ0, we have

fθ1(x)

fθ0(x)
=

Φ
(
b−θ0
σ

)
− Φ

(
a−θ0
σ

)
Φ
(
b−θ1
σ

)
− Φ

(
a−θ1
σ

) · φ (x−θ1σ

)
φ
(
x−θ0
σ

) = A · e
x
σ2

(θ1−θ0), A > 0,

which is increasing in x since f(t) = et is an increasing function of t and θ1 > θ0. Setting

a = −∞ and b = ∞ recovers the result for the normal distribution. This can also be

generalized to all one-parameter densities in the exponential family, admitting density

fθ(x) = h(x)c(θ)eη(θ)t(x), provided that η(θ) is non-decreasing.

Lemma 1.19. Let X ∈ R1 be a random variable and let f(x) and g(x) be increasing

functions of x. Then E[f(X)g(X)] ≥ E[f(X)]E[g(X)], assuming all expectations exist.

In other words, Cov(f(X), g(X)) ≥ 0.

Proof. Let X and Y be i.i.d. Since f and g are increasing, for all x, y ∈ R, we have

(f(x)− f(y))(g(x)− g(y)) ≥ 0. Thus, by the monotonicity of expectation, we have

E[(f(X)− f(Y ))(g(X)− g(Y ))] ≥ 0.
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Expanding and using the fact that X and Y are i.i.d., we have

E[f(X)g(X)− f(X)g(Y )− f(Y )g(X) + f(Y )g(Y )] ≥ 0

=⇒ E[f(X)g(X)]− E[f(X)]E[g(Y )]− E[f(Y )]E[g(X)] + E[f(Y )g(Y )] ≥ 0

=⇒ 2E[f(X)g(X)]− 2E[f(X)]E[g(X)] ≥ 0

=⇒ Cov(f(X), g(X)) ≥ 0.

Theorem 1.20. Let {pθ : θ ∈ Θ} have increasing likelihood ratio in x, with pθ0 > 0

whenever pθ1 > 0, and for g : R1 → R1, let g(x) be increasing in x. Then Eθ[g(X)] is

increasing in θ, given the expectations exist. In other words, the ordering of the family

transfers to the ordering of the function.

Proof. Let {pθ : θ ∈ Θ} have increasing likelihood ratio in x, with pθ0 > 0 whenever

pθ1 > 0, and let g(x) be increasing in x. Let θ1 > θ0. Then,

Eθ1 [g(X)] =

∫
g(x)pθ1(x)dµ(x)

=

∫
g(x)

pθ1(x)

pθ0(x)
pθ0(x)dµ(x)

= Eθ0
[
g(X)

pθ1(X)

pθ0(X)

]
≥ Eθ0 [g(X)]Eθ0

[
pθ1(X)

pθ0(X)

]
(1.3)

= Eθ0 [g(X)], (1.4)

where (1.3) holds by Lemma 1.19 since g(x) and pθ1 (x)

pθ0 (x)
are both increasing functions of

x, and (1.4) holds since pθ1 is a density, so Eθ0
[
pθ1 (X)

pθ0 (X)

]
= 1.
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1.5 Estimation

1.5.1 Interval estimation

Both point estimation and interval estimation have the common objective of estimating

some unknown parameter. As their names indicate, point estimation gives a single value

estimate whereas interval estimation gives an estimate within some margin of error.

Of course, one wishes to obtain the most precise estimate possible, which would lead to

point estimation. The trade-off however is in the confidence that one has in this estimate.

Interval estimation becomes a question of finding a balance between the preciseness of the

estimate (the length of the interval) and the level of confidence that this interval contains

the true parameter. Such confidence can be expressed in terms of coverage probability,

which is defined in Definition 1.21.

Definition 1.21 (Casella & Berger [CB02]). Let I(X) = [l(X), u(X)] be an interval

estimator for some function τ(θ) ∈ R1 of a parameter θ ∈ Rk, where X ∼ Fθ(·). Then

the coverage probability of I(X) ; that is, the probability that I(X) covers the true value

τ(θ), is given by Pθ[τ(θ) ∈ [l(X), u(X)]].

There exist several methods to construct interval estimators. From a frequentist perspec-

tive, one thinks of inverting test statistics or using pivotal quantities for example (see

Casella & Berger [CB02]). Here we limit ourselves to a Bayesian setting and concern our-

selves with constructing Bayesian credible sets (the counterpart of confidence intervals in

a frequentist setting). If the credible set takes the form of an interval, it is common to refer

to it as a credible interval. It is important to realize that from a frequentist perspective,

it is the confidence interval itself which is random, not the parameter. The parameter is

considered fixed. On the other hand, under a Bayesian model, the unknown parameter is

a random variable which follows some prior distribution π. This prior can be proper or
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improper (informative or non-informative) and is subjectively determined. It represents

experts’ prior beliefs or understanding on the matter, or lack of prior knowledge (in the

case of a non-informative prior). Given a model for X and a prior π, one can use Bayes’

rule to determine the posterior density.

Definition 1.22. For X|θ having density f(x|θ) and prior density π(θ) (with respect to

the Lebesgue measure on Rk), the posterior density of θ is given by π(θ|x) = f(x|θ)π(θ)
m(x)

,

where m(x) =
∫

Θ
f(x|θ)π(θ)dθ is the marginal density of X.

Example 1.23. Let X1, . . . , Xn ∼ N(θ, σ2) i.i.d. and θ ∼ N(µ, τ 2), where µ, σ2 and τ 2

are known. Then by Definition 1.22, with

f(x1, . . . , xn|θ) =
n∏
i=1

(2πσ2)−
1
2 e−

1
2σ2

(xi−θ)2 and π(θ) = (2πτ 2)−
1
2 e−

1
2τ2

(θ−µ)2 ,

and by completing the square, one obtains that

θ|x1, . . . , xn ∼ N(µ̃(x), τ̃ 2(x)),

where

µ̃(x) =
σ2µ+ nτ 2x̄

σ2 + nτ 2
and τ̃ 2(x) =

σ2τ 2

σ2 + nτ 2
.

In a Bayesian setting, all credible sets will be based on the posterior distribution. As was

the case in the frequentist setting, there are several ways to construct Bayesian credible

sets. A few common credible sets are highest posterior density and equal-tails.

Definition 1.24 (Casella & Berger [CB02]). Let X|θ have density f(x|θ), prior π(θ)

and posterior density π(θ|x). A 1 − α level highest posterior density (HPD) credible set

for θ is given by

A = {θ : π(θ|x) ≥ k} such that
∫
A

π(θ|x)dθ = 1− α.
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For k = 1, a unimodal posterior density guarantees that the HPD set will be an interval.

Otherwise, it is possible that the region does not take the form of an interval. Moreover,

by construction, the HPD interval is the shortest 1 − α level credible interval (though

it can coincide with the equal-tails interval for example if the posterior distribution is

symmetric).

Definition 1.25. Let X|θ have density f(x|θ), prior π(θ) and posterior density π(θ|x).

A 1− α level equal-tails credible interval is given by [a(x), b(x)], where∫ a(x)

−∞
π(θ|x)dθ =

α

2
and

∫ ∞
b(x)

π(θ|x)dθ =
α

2
.

While the HPD and equal-tails credible sets are conceptually easy to devise, calculating

the bounds of the intervals must sometimes rely on numerical evaluations. Indeed, obtai-

ning analytic bounds requires a closed form for the quantiles of the posterior distribution.

A measure of the performance of a credible set is its credibility ; that is, the posterior

probability that the random parameter is in the credible set.

Definition 1.26 (Casella & Berger [CB02]). Let X|θ have density f(x|θ), prior π(θ)

and posterior density π(θ|x), and let A be some set of possible values of τ(θ) ∈ R1, where

θ ∈ Rk. The credibility of A, given some observation x, is given by

P[τ(θ) ∈ A|x] =

∫
A

π(θ|x)dθ.

Some sets have exact credibility by construction (for example the equal-tails credible set)

whereas others do not. It is important to recognize the distinction between credibility and

frequentist coverage probability. Much work has been done on the study of frequentist

coverage of Bayesian credible sets, and on determining lower bounds for the coverage.

See Section 2.4 for more on this.
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Although there is typically a discrepancy between frequentist coverage and credibility,

there are also rare occasions where the frequentist and Bayesian approaches are in agree-

ment, as can be seen in Example 1.27 (e.g., Evans & Rosenthal [ER06]).

Example 1.27. Let (x1, . . . , xn) be a sample from a N(µ, σ2) model with σ2 known

(the case where σ2 is unknown also yields a similar outcome). Then an exact 1 − α

confidence interval for µ is given by I(x) =
[
x− zα/2 σ√

n
, x+ zα/2

σ√
n

]
. The interval I(x)

also corresponds to the Bayes HPD credible set under a uniform prior for µ on R, which

has exact 1 − α credibility. There is hence a convergence of the two approaches for this

example.

1.5.2 Point estimation

For the following, we denote Θ to be the parameter space. We also refer to a loss function

L(θ, δ). While there exist numerous loss functions, we focus on squared error loss, given

by L(θ, δ) = (δ−θ)2. The following theory on point estimation can be found in Lehmann

& Casella [LC98] among others.

Definition 1.28. Let δ be an estimator of θ and let L(θ, δ) be a loss function. Then the

associated risk function is given by

R(θ, δ) = Eθ[L(θ, δ(X))].

Definition 1.29. An estimator δ∗ of τ(θ) ∈ R1 (θ ∈ Rk) is minimax with respect to a

risk function R(θ, δ) if

sup
θ∈Θ

R(θ, δ∗) = inf
δ

sup
θ∈Θ

R(θ, δ).

Definition 1.30.

a) As estimators of τ(θ), an estimator δ∗ dominates δ if R(θ, δ∗) ≤ R(θ, δ) ∀θ ∈ Θk,

and with strict inequality for at least one θ.
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b) An estimator δ is inadmissible if there exists another estimator δ∗ which dominates

δ. Otherwise, δ is said to be admissible.

Definition 1.31. For X|θ ∼ f(x|θ), prior density π(θ) and loss function L(θ, δ) in

estimating τ(θ), we call δπ(x) a Bayes estimator of τ(θ) if it minimizes E[L(θ, δ)|x] in δ.

Lemma 1.32. Let δ∗ be a minimax estimator and let δ′ dominate δ∗. Then δ′ is also

minimax.

Proof. Let δ∗ be a minimax estimator of θ. Then

sup
θ∈Θ

R(θ, δ∗) = inf
δ

sup
θ∈Θ

R(θ, δ).

Moreover, suppose that δ′ dominates δ∗ ; that is, R(θ, δ′) ≤ R(θ, δ∗) for all θ ∈ Θ, and

with strict inequality for at least one θ ∈ Θ. This implies that

sup
θ∈Θ

R(θ, δ′) ≤ sup
θ∈Θ

R(θ, δ∗) = inf
δ

sup
θ∈Θ

R(θ, δ),

with equality since δ∗ is minimax. Thus, δ′ is also minimax.

An illustration of the result above can be found in Example 1.36.

Lemma 1.33. Under squared error loss, L(θ, δ) = (δ − θ)2, the Bayes estimator δπ(x)

is the posterior expectation of θ ; that is, δπ(x) = E[θ|x], provided that E[θ2|x] <∞.

Proof. We have

E
[
(δ − θ)2|x

]
= δ2 − 2 δ E[θ|x] + E[θ2|x],

which can easily be differentiated and found to be minimized for δ = E[θ|x].

Remark 1.34. Note that for X ∼ N(θ, I), L(θ, δ) = |θ − δ|2 and prior π, the Bayes

estimator for θ can be written as δπ(x) = x+∇ logmπ(x), where mπ(x) =
∫

Θ
f(x|θ)π(θ)dθ

is the marginal density of X and ∇ represents the gradient operator.
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1.5.3 Estimation in restricted parameter spaces

Literature on estimation in restricted parameter spaces is plentiful and dates back to the

1950s. We refer the reader to van Eeden [vE06] and Marchand & Strawderman [MS04] for

an overview of past results. One important element to consider when looking at estimation

in restricted parameter spaces is that good properties of estimators in the unrestricted

space (one thinks of admissibility and minimaxity for example) do not necessarily carry

over to the restricted space. Perhaps the most foundational example of estimation in

restricted parameter spaces concerns a positive normal mean.

Example 1.35 (van Eeden [vE06]). For X ∼ N(θ, 1) and squared error loss, the MLE

of θ in the unrestricted parameter space (θ ∈ R), namely X, is unbiased, admissible and

minimax. Moreover, it is normally distributed. However, for the restricted space θ ≥ 0, the

(restricted) MLE is max{0, X}, and it clearly dominates X since the latter takes values

outside of the parameter space and L(θ, θ̂MLE(X)) ≤ L(θ,X) for all x < 0, θ ≥ 0, with

equality if and only if x ≥ 0, θ ≥ 0. Katz [Kat61] showed that the MLE is minimax, but it

is not admissible (Sacks [Sac63]). It is also a biased estimator of θ and certainly does not

follow a normal distribution. (See Lehmann & Casella [LC98] Example 2.8 and Example

2.9 where the information inequality is used for such proofs. A more general method

of showing admissiblity is Blyth’s mehtod, which uses sequences of priors (Lehmann &

Casella [LC98], Theorem 7.13).)

Another significant estimator concerning a positive normal mean which is discussed by

Katz [Kat61] is the Bayes estimator under squared error loss with respect to a uniform

prior on the restricted parameter space.

Example 1.36. Let X ∼ N(θ, σ2) with improper prior π(θ) = 1[0,∞)(θ). The posterior
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distribution of θ is given by

π(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ)π(θ)dθ

=

1√
2πσ2

e−
(x−θ)2

2σ2 1[0,∞)(θ)∫∞
0

1√
2πσ2

e−
(x−θ)2
2σ2 dθ

=
1
σ
φ
(
θ−x
σ

)
Φ
(
x
σ

) 1[0,∞)(θ),

which one recognizes as a TN(x, σ2, (0,∞)) distribution. The Bayes estimator under squa-

red error loss is therefore given by Lemma 1.7 to be δπ(x) = E[θ|x] = x + σR
(
x
σ

)
, and

can be shown to dominate the unrestricted MLE X, and is thus minimax, and admissible.

The previous examples have dealt with one-sample problems, where a normal mean has

been bounded below. The focus of this work however concerns a difference of normal

means being bounded. It is therefore of interest to present some theory and examples

of such situations. In a one-dimensional setting, the different plausible possibilities of

parametric bounds are quite limited. The parameter can be lower-bounded, θ ≥ m, or

doubly-bounded, −m ≤ θ ≤ m. For an upper-bounded parameter, a simple transforma-

tion of variables (change of signs) easily turns this case into that of a lower-bounded para-

meter. In higher dimensions, the possibilities are much more plentiful. In a k-dimensional

setting, there can be a complete ordering of parameters, θ1 ≤ . . . ≤ θk, or an incomplete

ordering such as a tree-ordering θ1 ≤ θi for all i ∈ {2, . . . , k} or an umbrella-ordering

θ1 ≤ θ2 ≤ . . . ≤ θi ≥ θi+1 ≥ . . . ≥ θk to name just a few (see van Eeden [vE06]). We will

later focus on a two-dimensional problem and consider bounds of the form θ1 − θ2 ≥ m

(Chapter 2) and |θ1 − θ2| ≤ m (Chapter 3).

Example 1.37. Let Xi ∼ N(θi, σ
2
i ), i = 1, 2, independent with σ2

i known. For

the unrestricted parameter space (θ1, θ2) ∈ R2, the MLE is simply (X1, X2). For

the restricted parameter space θ1 ≥ θ2, it is convenient to consider the pro-

blem of observing
(
Y1 = X1−X2

2
, Y2 = X1+X2

2

)
instead of (X1, X2), and thus estimating(

µ1 = θ1−θ2
2
, µ2 = θ1+θ2

2

)
(where µ1 ≥ 0 and µ2 ∈ R) instead of (θ1, θ2). We have

µ̂1,MLE(X) = max
{

0, X1−X2

2

}
and µ̂2,MLE(X) = X1+X2

2
. Since (θ1, θ2) = (µ1+µ2, µ2−µ1),
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we obtain

θ̂MLE(X) =
(
µ̂1,MLE(X) + µ̂2,MLE(X), µ̂2,MLE(X)− µ̂1,MLE(X)

)
=

(X1, X2) if X1 ≥ X2(
X1+X2

2
, X1+X2

2

)
else.

Estimation of the larger of two normal means is a problem that has been well studied, and

results pertaining to it can be readily found. Two situations can be considered : 1) the

simultaneous estimation of the two means, and 2) the estimation of the larger (or smaller)

of the two means. We proceed with a brief account of related results and refer the reader

to van Eeden [vE06], van Eeden & Zidek [vEZ02] and Marchand & Strawderman [MS04]

for a more complete picture. While there exist many estimators in the literature, we will

focus on three of them, namely the unrestricted MLE (δULE), the MLE (δMLE) and the

Bayes estimator with respect to a uniform prior on the restricted parameter space, often

called the Pitman estimator (δP ).

— Blumenthal & Cohen [BC68b] consider the simultaneous estimation of (θ1, θ2) under

squared error loss and show that δP is minimax and admissible on R2.

— Patra & Kumar [PK17] extend the minimaxity and admissibility properties of δP

to cover a correlated bivariate normal model.

— Cohen & Sackrowitz [CS70] consider the estimation of the larger of two normal

means and show that δP is minimax and admissible on R2. Note that their estimator

is incorrect, as is mentioned by van Eeden & Zidek [vEZ02]. These same authors

provide a simpler proof of the admissibility result and refer to Kumar & Sharma

[KS88] for a more straightforward proof of the minimaxity result.

— Van Eeden & Zidek [vEZ02] also state the following results in estimating the smaller

of two normal means : δMLE and δULE are minimax, δP and δMLE dominate δULE,

and δMLE is inadmissible.
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A very useful result comes from the well-established rotation technique (see Blumenthal

& Cohen [BC68a] for an early use of this technique for ordered translation parame-

ters). Simply put, this technique reduces a two-dimensional problem to one dimension.

Consider the problem of estimating θ1 under squared error loss L(θ, d) = (d− θ1)2 with

X1 ∼ N(θ1, σ
2
1), X2 ∼ N(θ2, σ

2
2) independent, σ2

1, σ
2
2 known, and with the additional prior

information θ1− θ2 ∈ A ⊂ R. As reviewed by Marchand & Strawderman [MS04], one can

define the following class of estimators :

C1 =

{
δφ(X) = Y2 + φ(Y1) where Y1 =

X1 −X2

1 + τ
, Y2 =

τX1 +X2

1 + τ
, and τ =

σ2
2

σ2
1

}
, (1.5)

where φ(·) is some function. Under such a model for X, it is easy to verify that Y1

and Y2 are independently distributed (this follows from Cov(Y1, Y2) = 0 since (Y1, Y2)>

is a bivariate normal distribution) with Y1 ∼ N(µ1, σ
2
Y1

) and Y2 ∼ N(µ2, σ
2
Y2

), where

µ1 = θ1−θ2
1+τ

, σ2
Y1

=
σ2
1

1+τ
, µ2 = τθ1+θ2

1+τ
and σ2

Y2
=

τσ2
1

1+τ
. Furthermore, the mean squared error

of the estimator δφ(X) reduces to

R(θ, δφ(X)) = Eθ
[
(Y2 + φ(Y1)− θ1)2

]
= Eθ

[(
Y2 + φ(Y1)−

(
τθ1 + θ2

1 + τ
+
θ1 − θ2

1 + τ

))2
]

= Eθ

[((
Y2 −

τθ1 + θ2

1 + τ

)
+

(
φ(Y1)− θ1 − θ2

1 + τ

))2
]

= Eθ
[
(Y2 − µ2)2 + (φ(Y1)− µ1)2 + 2(Y2 − µ2)(φ(Y1)− µ1)

]
= Eθ

[
(Y2 − µ2)2]+ Eθ

[
(φ(Y1)− µ1)2] , (1.6)

since Y1 and Y2 are independent. The efficiency of the estimator δφ(X) in estimating θ1

is therefore reliant on that of the estimator φ(Y1) in estimating µ1 (since the first term

of (1.6) is not affected by the choice of δφ ∈ C1). This leads immediately to the following

result which is also reviewed by Marchand & Strawderman [MS04].
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Lemma 1.38. For estimating θ1 under the model X1 ∼ N(θ1, σ
2
1), X2 ∼ N(θ2, σ

2
2)

independent, σ2
1, σ

2
2 known, squared error loss L(θ1, d) = (d − θ1)2, and prior additional

information θ1 − θ2 ∈ A ⊂ R, the estimator δφ1(X) dominates δφ0(X) if and only if

φ1(Y1) dominates φ0(Y1) in the problem of estimating µ1 ∈ C = {y : (1 + τ)y ∈ A}.

Remark 1.39. Of particular interest is the choice δφ0(X) = X1, the unrestricted MLE

of θ1, which is obtained by taking φ(Y1) = Y1.

Under the setting of the rotation technique presented here and by virtue of Lemma 1.38,

any estimator which dominates in one dimension will also dominate in the two-sample

problem. Much work has been done on such one-sample problems, one of which is Ku-

bokawa’s method, reviewed by Marchand & Strawderman [MS04] (also see Marchand &

Strawderman [MS05]) and given below for the case of a normal model.

Theorem 1.40. Let W ∼ N(ε, σ2
W ) with ε ≥ 0. Then estimators δh(W ) = W+h(W ) do-

minate δ0(W ) = W under squared error loss whenever h is absolutely continuous, decrea-

sing on R and 0 ≤ h(w) ≤ hU(w) for all w ∈ R (δh 6= δ0), and where hU(w) = σWR
(

w
σW

)
.

Proof. This is a particular case of a more general result which is stated and proved by

Marchand & Strawderman [MS04]. The expression for hU can be found in Example 1.36

as part of the Bayes estimator for W under a uniform prior on the restricted parameter

space.

This generates many improvements on X1 for estimating θ1 when θ1 ≥ θ2 which is

summarized in the following corollary based on Lemma 1.38 and Theorem 1.40.

Corollary 1.41. Estimators δh(Y1) = Y1 + h(Y1) dominate δ0(Y1) = Y1 in estimating

µ1 = θ1−θ2
1+τ

whenever h is absolutely continuous, decreasing on R and 0 ≤ h(y1) ≤ hU(y1)

for all y1 ∈ R (δh 6= δ0), and where hU(y1) = σY1R
(

y1
σY1

)
. Consequently, estimators

δφ(X) = Y2 + δh(Y1) dominate X1 in estimating θ1.
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Maruyama & Iwasaki [MI05] provide such estimators of µ1, including Bayes and admis-

sible estimators.

The results above pertain to point estimation in restricted parameter spaces ; however,

much work has also been carried out for interval estimation (e.g., Gelfand [GSL92]). It has

already been mentioned that Bayesian credible sets do not guarantee matching frequentist

coverage probability (they are not designed to do so), a class of exceptions being given

by Example 1.27. This exception holds more generally for location and scale models

with no parametric restrictions and non-informative priors. Even so, in such problems,

in the face of a parametric restriction θ ∈ C, the truncation of such non-informative

priors on C perturbs probability matching, with both higher and lower coverage than

credibility occurring (e.g., Mandelkern [Man02] ; Marchand & Strawderman [MS06]). It

is nonetheless of interest to study the frequentist coverage probability of Bayesian credible

sets (e.g., Fraser [Fra11] ; Wasserman [Was11]). Example 1.42 presents a situation where

a lower bound for the frequentist coverage can be obtained.

Example 1.42 (Zhang & Woodroofe [ZW03] ; Marchand & Strawderman [MS06] ;

Marchand et al. [MSBL08]). For X ∼ N(θ, σ2), W ∼ Ga(r/2, 2σ2) and prior

π(θ, σ) = 1
σ
1[a,∞)(θ)1(0,∞)(σ), a lower bound for the frequentist coverage probability of

the 100× (1−α)% HPD credible set Iπ(X,W ) is given by (Zhang & Woodroofe [ZW03])

Pθ,σ [θ ∈ Iπ(X,W )] ≥ 1− α
1 + α

,

for all θ ≥ a and σ > 0. Marchand & Strawderman [MS06] extend such a result to a

more general setting, and Marchand et al. [MSBL08] improve on this lower bound (to

1 − 3α
2

for α < 1
3
) for logconcave pivotal densities such as the one related to a N(θ, σ2)

model with known σ2 and prior density π(θ) = 1(0,∞)(θ).
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1.5.4 Uncertain parametric restrictions

As mentioned earlier, when additional information is known about the parameters, one

wishes to profit from this information. Some parametric constraints are known with cer-

tainty and all data that could possibly be collected would never contradict them. Such

certainty in the additional information is not necessarily at hand though. For example,

experts might compare crops with two different fertilizers and have a strong prior belief

that one fertilizer outperforms the other, but it remains possible to obtain data which

contradicts this belief. In this case, does one wish to allow the estimates to go against

the parametric constraint ?

This question arose in the early 2000s under the context of two high-energy physics pro-

blems (see Mandelkern [Man02]). The first involved estimating the mass of a neutrino.

It had long been believed that neutrinos were massless, but calibration was yielding

data that indicated otherwise. More specifically, this setting involved estimating θ where

X ∼ N(θ, σ2), σ2 is known and θ ≥ 0. The second setting concerned the estimation of θ,

a signal mean, under a model where X ∼ Poisson(θ + b), b > 0 is a known background

mean and θ ≥ 0.

O’Hagan & Leonard [OL76] address this issue of data conflicting the model and suggest

a hierarchical prior to account for the uncertainty in the constraint. Doing so allows for

a more flexible and encompassing model, where the data is allowed to contradict the

believed parametric constraint. Moreover, with such a model, one has the ability to take

into account the degree of prior belief in the constraint. Liseo & Loperfido [LL03] extend

results from O’Hagan & Leonard [OL76] and consider uncertain linear restrictions.

Example 1.43. Marchand & Nicoleris [MN19] consider such a hierarchical prior for a
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lower-bounded normal mean, where the model and prior are given by

X|θ,m ∼ N(θ, σ2), θ|m ∼ N(µ, τ 2)1[m,∞)(θ), m ∼ N(0, σ2
m),

with µ and σ2, τ 2, σ2
m ≥ 0 known. The case σ2

m = 0 recovers the deterministic constraint

θ ≥ 0 (which corresponds to the problem considered by Katz [Kat61]), while τ 2 → ∞

yields a flat prior on the restricted parameter space.

Marchand & Nicoleris [MN19] proceed to present a class of minimax Bayes estimators,

the result of which is given below.

Theorem 1.44 (Marchand & Nicoleris [MN19]). For X ∼ N(θ, σ2), squared error

loss L(θ, d) = (d − θ)2 and parametric restriction θ ≥ 0, the class of estimators

δc(X) = X + cσR
(
cX
σ

)
, c ∈ (0, 1], dominates δ0(X) = X. Moreover, this class of estima-

tors contains Bayes point estimators of θ under the hierarchical prior π(θ|m) = 1[m,∞)(θ)

with m ∼ N(0, σ2
m), namely δc, with c = σ√

σ2+σ2
m

.

Proof. Their proof relies on the application of Stein’s integration by parts identity and

then change of sign arguments, and can be found in [MN19].

Remark 1.45. Note that this class of estimators provided by Marchand & Nicoleris

[MN19] does not fall in the class of dominating estimators given in Theorem 1.40 since

the condition h(x) ≤ hU(x) for all x ∈ R is not satisfied.

In terms of interval estimation under uncertain parametric restrictions, we refer the reader

to Madi et al. [MLT00] among others.
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CHAPTER 2

Estimating the suspected larger of two

normal means

This chapter forms the basis of a recently submitted paper co-authored by Courtney

Drew and Éric Marchand.

Abstract

For X1, X2 independently distributed with means θ1 and θ2, variances σ2
1 and σ2

2, we

consider Bayesian inference about θ1 with the difference θ1 − θ2 being lower-bounded

by an uncertain m. We obtain a class of minimax Bayes estimators of θ1, based on a

posterior distribution for (θ1, θ2)> taking values on R2, which dominate the unrestricted

MLE under squared error loss for θ1 − θ2 ≥ 0. We also construct and study an ad hoc

credible set for θ1 with approximate 1 − α credibility and provide numerical evidence

of its frequentist coverage probability closely matching the nominal credibility level. A

spending function is incorporated which further increases the coverage.
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2.1 Introduction

It has long been known, for a bivariate normal model with X1 and X2 independently dis-

tributed with means θ1 and θ2, and known variances σ2
1 and σ2

2, that the Bayes estimator

of θ1 with respect to a uniform prior on θ1 ≥ θ2 dominates the benchmark minimax esti-

mator X1 when θ1 ≥ θ2 under squared error loss (Cohen & Sackrowitz [CS70]). However,

there are situations where one would not expect this bound to hold exactly, and one could

envisage introducing uncertainty in the parametric constraint. This has been previously

proposed (see O’Hagan & Leonard [OL76] for an early reference where uncertainty is

introduced through a hierarchical prior, as well as Liseo & Loperfido [LL03] for a later

reference with uncertain linear restrictions) and allows for a more flexible and encompas-

sing model, where the data is allowed to contradict the believed parametric constraint.

Moreover, with such a model, one has the ability to take into account the degree of prior

belief in the constraint. Despite the earlier work, little is known about the frequentist

risk performance of associated Bayes point estimators or Bayes credible sets.

In this work, we consider Bayesian inference about θ1 for the two-sample normal problem

with hierarchical prior density given by π(θ1, θ2 |m) = 1[m,∞)(θ1−θ2) withm ∼ N(0, σ2
m),

and study the frequentist performance of (generalized) Bayesian point estimators and cre-

dible sets. We show that the Bayes estimator of θ1 dominates X1, and is hence minimax,

under squared error loss for θ1 − θ2 ≥ 0 and all choices of σ2
m > 0. We make use of

the so-called rotation technique (e.g., Blumenthal & Cohen [BC68a]) and a one-sample

minimax finding by Marchand & Nicoleris [MN19] set in the context of a single nor-

mal mean with an uncertain lower bound. The proposed Bayesian estimators stem from

posterior densities for θ = (θ1, θ2)> that take values on R2, but still pass the test of mi-

nimaxity for estimating θ1 when evaluated on the restricted parameter space θ1 ≥ θ2. In
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this sense, they are more flexible and desirable in the case of constraint uncertainty than

their counterpart estimator when σ2
m = 0, for which the posterior density is concentrated

on θ1 ≥ θ2. The finding adds to the known analyses for σ2
m = 0 carried out previously by

Cohen & Sackrowitz [CS70], van Eeden & Zidek [vEZ02], and Kumar & Sharma [KS88],

among others.

The attractive performance of the proposed point estimators of the suspected larger of

the two means, θ1, leads to interest in Bayes credible sets and to the investigation of the

extent to which one can capitalize on this additional information. We namely focus on

the performance of such credible sets as measured by frequentist coverage probability.

Typically, Bayesian credible sets are far from guaranteeing matching coverage probabi-

lity and are not designed to do so. Exceptions lie in location and scale models with no

parametric restrictions and non-informative priors. Even so, in such problems, in the face

of a parametric restriction θ ∈ C, the truncation of such non-informative priors on C

perturbs probability matching, with both higher coverage and lower coverage than credi-

bility occurring (Mandelkern [Man02] ; Marchand & Strawderman [MS06]). We point out

that there has been much work on evaluating and computing Bayesian posterior densities

and estimates in the presence of parametric restrictions, notably for ordered parameters

with or without nuisance parameters (e.g., Gelfand et al. [GSL92] ; Madi et al. [MLT00]).

We introduce below an ad hoc Bayes credible set with approximate 1 − α credibility

(based again on the prior π(θ1, θ2 |m) = 1[m,∞)(θ1 − θ2) with m ∼ N(0, σ2
m)), and study

its frequentist coverage probability with evidence of very good matching to the nominal

credibility 1 − α. Numerical evidence of the remarkable proximity between the actual

and nomimal credibilities is also provided. We explore how the performance is affected

by the choice of the hyperparameter σm, ranging from the case of a certain constraint
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(i.e., σm = 0) to the case of no useful information provided by X2 when σm →∞.

For a given posterior distribution, there is no single definitive choice of a Bayes credible set

and such a choice can be impactful in terms of frequentist coverage probability. Namely,

as illustrated by Marchand & Strawderman [MS13], as well as Ghashim et al. [GMS16],

we believe that the characterization or determination of such Bayes credible sets through

a spending function is impactful and merits to be considered. Thus, the analysis and

illustrations presented here also make use of the concept of a spending function, the

choice of which is guided.

This chapter is organized as follows. After having extracted and interpreted some useful

properties of the posterior distributions in Section 2.2, which relate to extended skew-

normal densities, the dominance and minimax results are presented and commented on

in Section 2.3. Related questions of admissibility are also addressed. Section 2.4 deals

with proposed Bayes credible sets for θ1, focusing mostly on their frequentist coverage

probability, but also discussing their expected length and exact credibility. The findings

are commented on at length and illustrated with several figures. Section 2.4.1 defines

and explores an ad hoc credible interval and Section 2.4.2 expands on modifications

which make use of the concept of a spending function. Concluding remarks in Section 2.5

summarize the findings and implications.

32



2.2 Posterior analysis

We consider the following model for X = (X1, X2)> and hierarchical prior :

X1 ∼ N(θ1, σ
2
1), X2 ∼ N(θ2, σ

2
2);

π(θ1, θ2|m) = 1[m,∞)(θ1 − θ2),m ∼ N(0, σ2
m), (2.1)

where X1 and X2 are independently distributed and σ1, σ2, σm > 0 are known. This

corresponds to a situation where the difference of parameters θ1 − θ2 is bounded below

by m, but where the bound is not deterministic ; that is, there is some uncertainty on

m. That being said, on average, m = 0. For σm > 0, an alternative and equivalent

representation of the prior in (2.1) is readily obtained by integrating out m and yielding

the improper density π(θ1, θ2) = Φ
(
θ1−θ2
σm

)
.

Remark 2.1.

(a) The situation given by (2.1) also covers the case of a parametric bound of the form

θ1 − c θ2 ≥ m, with c 6= 0. Setting X ′1 = X1, X
′
2 = cX2, the constraint becomes re-

expressible as µ1−µ2 ≥ m with X ′1 ∼ N(µ1, σ
2
1) and X ′2 ∼ N(µ2 = c θ2, σ

2′
2 = c2σ2

2).

(b) Similarly, analysis for model (2.1) will yield applications for correlated normally

distributed variables, specifically for

W = (W1,W2)> ∼ N2

(
ξ =

[
ξ1

ξ2

]
,Σ =

[
τ 2

1 ρτ1τ2

ρτ1τ2 τ 2
2

])
,

with ξ1 − ξ2 ≥ m, correlation coefficient ρ = ρ(W1,W2) ∈ (−1, 1), such that

λ = ρ τ1
τ2
6= 1. This is achieved by setting X1 = W1 − λW2 and X2 = W2, which

implies that X1 ∼ N(ξ1− λξ2, τ
2
1 (1− ρ2)) and X2 ∼ N(ξ2, τ

2
2 ), and whereupon part

(a) applies with θ1 = ξ1 − λξ2, θ2 = ξ2, c = (1− λ), σ2
1 = τ 2

1 (1− ρ2) and σ2
2 = τ 2

2 .

Remark 2.2. There exist many instances where summary statistics are well modeled by

normal observables such as in (2.1) or the variants of Remark 2.1. Common occurrences
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arise through sufficiency or asymptotically justified approximations. An example emerges

in a basic linear model W ∼ Nn(Z>β, σ2In) with Z(n×p) of full rank p, the least squares

estimator β̂ =
(
β̂1, . . . , β̂p

)>
= (Z>Z)−1Z>W , and the summary statistics X1 = β̂1 and

X2 = β̂2, where it is suspected that β1 ≥ β2. In such cases, with the link presented in part

(b) of Remark 2.1, analysis for (2.1) applies whether or not β̂1 and β̂2 are correlated.

Theorem 2.3. Under the model and prior given by (2.1), the joint posterior density of

(θ1, θ2) is given by

π(θ1, θ2|x) =

1
σ1 σ2

φ
(
θ1−x1
σ1

)
φ
(
θ2−x2
σ2

)
Φ
(
θ1−θ2
σm

)
Φ

(
x1−x2√
σ2
1+σ2

2+σ2
m

) , for (θ1, θ2)> ∈ R2.

Proof. This follows from writing the joint posterior density of (θ1, θ2) as

π(θ1, θ2|x) =

∫ θ1−θ2
−∞ f(x|θ) π(θ|m) π(m) dm∫∞

−∞

∫∞
−∞

∫ θ1−m
−∞ f(x|θ)π(θ|m)π(m) dθ2 dmdθ1

,

where

f(x|θ) π(θ|m) π(m) =
1

2πσ1σ2

e
− 1

2σ21
(x1−θ1)2

e
− 1

2σ22
(x2−θ2)2 1√

2πσ2
m

e
− m2

2σ2m 1[m,∞)(θ1 − θ2),

and using Lemma 1.10 to evaluate the integrals.

Theorem 2.4. Under the model and prior given by (2.1), the marginal posterior density

of U = θ1−x1
σ1

is given by

π(u|x) =

φ(u) · Φ
(

σ1u+d√
σ2
2+σ2

m

)
Φ

(
d√

σ2
1+σ2

2+σ2
m

) , (2.2)

where d = x1 − x2 and for u ∈ R.

Proof. This follows from Theorem 2.3 and again using Lemma 1.10 to evaluate the inte-

gral over θ2.
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One recognizes the posterior density in (2.2) as a SN
(

σ1√
σ2
2+σ2

m

, d√
σ2
2+σ2

m

)
, as given by

Definition 1.8. The first parameter is always positive, which implies that the posterior

density is always positively skewed. Note that the posterior density of U depends on the

observations x1 and x2, but solely through their difference d = x1 − x2. Also note that

this density holds for all σ2
m ≥ 0 ; that is, whether or not there is uncertainty in the

bound.

Remark 2.5. As σ2
m increases, Eq. (2.2) tends towards a standard normal density ; that

is, lim
σ2
m→∞

π(u|x) = φ(u). Heuristically, the case σ2
m → ∞ corresponds to an absence of

additional information provided by X2, and in such a case, a N(x1, σ
2
1) posterior would

be expected for θ1, which translates to a standard normal posterior for U = θ1−x1
σ1

.

(a) d = −1 (b) d = 0 (c) d = 1

Figure 2.1 – Posterior density of U for d = −1, 0, 1, σ2
1 = σ2

2 = 1 and varying σm.

Figure 2.1 presents the posterior density π(u|x) for varying σm and for d = −1, 0, 1. The

behaviour described in Remark 2.5 as σ2
m increases is apparent in these graphs. Moreover,

a similar observation can be made as d increases (i.e., the posterior density becomes less

skewed) since lim
d→∞

π(u|x) = φ(u).
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One readily obtains the posterior moment generating function, expectation and variance

of U using Lemma 1.11.

Lemma 2.6. Under the context of Theorem 2.4, the posterior moment generating func-

tion, expectation and variance of U are given respectively by

MU |x(t) =
e
t2

2

Φ

(
d√

σ2
1+σ2

2+σ2
m

)Φ

(
tσ1 + d√

σ2
1 + σ2

2 + σ2
m

)
,

E[U |x] =
σ1√

σ2
1 + σ2

2 + σ2
m

R

(
d√

σ2
1 + σ2

2 + σ2
m

)
, and

V[U |x] = 1− σ2
1d

(σ2
1 + σ2

2 + σ2
m)3/2

R

(
d√

σ2
1 + σ2

2 + σ2
m

)
− σ2

1

(σ2
1 + σ2

2 + σ2
m)
R2

(
d√

σ2
1 + σ2

2 + σ2
m

)
,

where R(t) = φ(t)
Φ(t)

is the reverse Mill’s ratio given in Definition 1.15.

Proof. These can be obtained directly from Lemma 1.11.

In Section 2.4, we construct an ad hoc credible set for θ1 based on its posterior expectation

and variance. It is therefore of interest to study the properties of these quantities, which in

turn follow from well-known properties of the reverse Mill’s ratio. Figure 2.2 presents the

posterior expectation and variance of U as a function of d = x1−x2 for fixed σ2
1 = σ2

2 = 1

and varying σm.
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(a) Posterior expectation (b) Posterior variance

Figure 2.2 – Posterior expectation and variance of U as a function of d = x1 − x2 for
σ2

1 = σ2
2 = 1 and varying σm.

Several properties of the posterior expectation and variance become apparent in

Figure 2.2, and we summarize these features in the following result.

Lemma 2.7. In the setting of Lemma 2.6, the following properties of E[U |x] and V[U |x]

hold for d = x1 − x2 :

(a) E[U |x] is a decreasing function of d with lim
d→∞

E[U |x] = 0, lim
d→−∞

E[U |x] = +∞ and

lim
d→−∞

E[U |x]
d

= − σ1
σ2
1+σ2

2+σ2
m
.

(b) V[U |x] is an increasing function of d with lim
d→∞

V[U |x] = 1 and

lim
d→−∞

V[U |x] = 1− σ2
1

σ2
1+σ2

2+σ2
m
.

(c) E[U |x] is decreasing in σ2
m when d < 0, and V[U |x] is increasing in σ2

m when d < 0.

Proof. These results follow from properties of the reverse Mill’s ratio given in Lemma 1.16.
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(a) This follows from part (b) of Lemma 1.16 and writing the limit as

lim
d→−∞

E[U |x]

d
= lim

d→−∞

σ1

σ2
1 + σ2

2

R

(
d√

σ2
1+σ2

2

)
d√

σ2
1+σ2

2

= − σ1

σ2
1 + σ2

2

,

where we use part (f) of Lemma 1.16.

(b) We have

V[U |x] = 1− σ2
1

σ2
1 + σ2

2 + σ2
m

R

(
d√

σ2
1 + σ2

2 + σ2
m

)

·

[
d√

σ2
1 + σ2

2 + σ2
m

+R

(
d√

σ2
1 + σ2

2 + σ2
m

)]
,

from which we can conclude using parts (b), (c), (d) and (e) of Lemma 1.16.

(c) This follows from parts (b) and (c) of Lemma 1.16.

Remark 2.8. The case σm = 0 warrants particular attention since this corresponds to the

case where there is no uncertainty in the bound and the parametric restriction is reduced

to θ1 ≥ θ2. One recovers results for this degenerate case in the literature, notably in Cohen

& Sackrowitz [CS70] and Blumenthal & Cohen [BC68b]. Moreover, the case σm → ∞

corresponds to an absence of additional information. As carried out in previous work

(e.g., van Eeden & Zidek [vEZ02]), it is useful to consider heuristics related to these

limiting cases in order to gain an understanding of the contribution of the additional

information.

(a) If σm = 0 and x1 � x2, then d = x1 − x2 is large and under the assumption of

our model that θ1 ≥ θ2, x2 provides very little additional information. We would

therefore expect to obtain results similar to, and equal to in the limiting case, those

that are obtained if we only had information on x1. This is indeed the case, since

we would expect a N(x1, σ
2
1) posterior for θ1, which matches the limiting density of

U in (2.2) when d→∞.
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(b) In the opposite situation where σm = 0 but d � 0, we have data which appears to

contradict the model. Assuming the model is still correct, posterior belief would be

concentrated on the boundary θ1 = θ2. This suggests the benchmark model

Xi|θ1 ∼ N(θ1, σ
2
i ),

with Xi independent. For the flat prior π(θ1) = 1, the posterior distribution of θ1

becomes

θ1|x ∼ N

(
σ2

2x1 + σ2
1x2

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)
,

which implies that for very small d, we have

E[θ1|x] ≈ σ2
2x1 + σ2

1x2

σ2
1 + σ2

2

and V[θ1|x] ≈ σ2
1σ

2
2

σ2
1 + σ2

2

. (2.3)

From this, since U = θ1−x1
σ1

, we have for very small d that

V[U |x] =
1

σ2
1

V[θ1|x] ≈ σ2
2

σ2
1 + σ2

2

,

which matches the limiting value as d→ −∞ given in part (b) of Lemma 2.7 (taking

σm = 0). Additionally, this relates to part (a) of Lemma 2.7 since for very small d

and σm = 0, (2.3) gives

E
[
U

d
|x
]

= E
[
θ1 − x1

dσ1

|x
]
≈ 1

dσ1

(
σ2

2x1 + σ2
1x2

σ2
1 + σ2

2

− x1

)
= − σ1

σ2
1 + σ2

2

.

Finally, throughout this work we focus on the impact of σ2
m, but one can also explore the

effect of σ2
1 and σ2

2. If σ2
m = 0, and σ2

2 � σ2
1, then X2 has much more variability than

X1, which implies that the additional information provided by x2 is less valuable. Similar

heuristic arguments can be made to those in part (a) of Remark 2.8 for limiting cases.

2.3 Point estimation

This section concerns the efficiency of point estimators of θ1 for model (2.1). We obtain

a class of Bayesian estimators that dominate X1. From Cohen & Sackrowitz [CS70], it
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is known that X1 is minimax and admissible for θ1 ≥ θ2, which renders our class of

estimators also minimax. The result stems from the rotation technique and is obtained

by combining Lemma 1.38 with the one-sample result (in the presence of uncertainty in

the parametric constraint) by Marchand & Nicoleris [MN19], given by Theorem 1.44.

Theorem 2.9. Let X be distributed according to model (2.1), τ =
σ2
2

σ2
1
, with squared

error loss for estimating θ1, L(θ1, d) = (d− θ1)2. Then under the additional information

θ1 − θ2 ≥ 0, estimators of the form

δφc(X) = X1 +
c σ1√
1 + τ

R

(
c (X1 −X2)

σ1

√
1 + τ

)
(2.4)

dominate X1 for c ∈ (0, 1] and are hence minimax. Furthermore, the choice c =
√

1+τ√
1+τ+

σ2m
σ21

coincides with the Bayes estimator for θ1 under the prior given in (2.1) ; that is,

δπσm (X) = E[θ1|X] = X1 +
σ2

1√
σ2

1 + σ2
2 + σ2

m

R

(
X1 −X2√
σ2

1 + σ2
2 + σ2

m

)
. (2.5)

Proof. Under the setting of (1.5), Theorem 1.44 asserts that estimators of the form

δc(Y1) = Y1 + cσY1R

(
cY1

σY1

)
=
X1 −X2

1 + τ
+

c σ1√
1 + τ

R

(
c (X1 −X2)

σ1

√
1 + τ

)
(2.6)

dominate δ0(Y1) = Y1 for c ∈ (0, 1]. Thus, with φ0(Y1) = Y1 and correspondingly

δφ0(X) = Y2 + Y1 = X1, Lemma 1.38 yields (2.4) as a class of estimators which do-

minate X1 for c ∈ (0, 1].

Theorem 2.9 provides a class of (generalized) Bayes estimators that dominate X1 and are

minimax for θ1 ≥ θ2. As for the previously known result when σm = 0, the estimators

δπσm (X) incorporate the sample information X2 but, in contrast, do not arise from a

prior (or posterior) density for θ concentrated on θ1 ≥ θ2. Expressed otherwise, as op-

posed to the “certain constraint” θ1 ≥ θ2 associated with σm = 0, the prior choices with

σm > 0 allow more flexibility for the data to contradict such a constraint and for it to be
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better reflected in the posterior distribution. Despite this accommodation, the estimators

δπσm (X) for σm > 0 still remain minimax for θ1 ≥ θ2 and will have less inflated risk than

δπ0(X) for parameter values of θ such that θ1 < θ2 (see Figure 2.3). The value of σm

relates to the degree of confidence for which θ1 − θ2 ≥ m and impacts the corresponding

risk accordingly (see Marchand & Nicoleris [MN19]). The behaviour of Bayes credible

sets for the same priors in terms of frequentist coverage probability, which will be the

object of study in Section 2.4, will be analogous.

The rotation technique (more specifically Eq. (1.6)) allows one to express the risk as a

function of µ1 = θ1−θ2
1+τ

. Figure 2.3 does so for σ2
1 = σ2

2 = 1 and varying σm.

Figure 2.3 – Squared error risk as a function of µ1 = θ1−θ2
1+τ

for σ2
1 = σ2

2 = 1 and varying
σm.
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One observes in Figure 2.3 the improved performance of the Bayes estimator for µ1 ≤ 0

as σm increases. This is due to the robustness of the estimator which follows from the

increased flexibility of the model with uncertainty in the constraint. The minimax risk

for these choices of parameters is 1 and is attained at 0 and +∞ for σm = 0, but only at

+∞ on the restricted parameter space µ1 > 0 for other choices of σm (see Marchand &

Nicoleris [MN19] ; Marchand & Strawderman [MS05]). The minimaxity for all choices of

σm for µ1 ≥ 0, on account of Theorem 2.9, is also visible. In fact, for σm > 0, the estima-

tor remains minimax for some negative values of µ1. For instance, the Bayes estimator

with σm = 2 improves on the benchmark estimator X1 for θ ∈ (θ0, 0) with θ0 ≈ −0.515.

We complete this section with observations relative to the issues of admissibility

and minimaxity for model (2.1), for both the unrestricted parameter space θ ∈ R2

and the restricted parameter space Θ = {θ = (θ1, θ2)> ∈ R2 : θ1 ≥ θ2}. Mo-

reover, we not only address the performance of estimators θ̂1(X) of θ1 for risk

R1(θ, θ̂1) = E[(θ̂1(X) − θ1)2], but also the dual performance of estimators θ̂2(X) of

θ2 for risk R2(θ, θ̂2) = E[(θ̂2(X)− θ2)2], and the performance of estimators θ̂(X) of θ for

risk R(θ, θ̂) = E
[(
θ̂(X)− θ

)2
]

= R1(θ, θ̂1) + R2(θ, θ̂2).

(a) Consider the joint estimator of (θ1, θ2)> given by

δπ(X) = E[θ|X] = (X1 + h(X1 −X2), X2 − h(X1 −X2))> , (2.7)

where h(t) = 1√
σ2
1+σ2

2+σ2
m

R

(
t√

σ2
1+σ2

2+σ2
m

)
.

Theorem 2.9 gives the dominance of the first component of Eq. (2.7) over X1. In

estimating θ2, the second component of δπ(X) also dominates X2 on Θ. This can

be seen by setting Z = (Z1, Z2)> = −X and observing that Theorem 2.9 applies
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for Z ∼ N2

(
µ ,

[
σ2

1 0
0 σ2

2

])
with µ = (µ1, µ2)> = −θ and implies that

E
[
(Z2 + h(Z2 − Z1) − µ2)2] ≤ E

[
(Z2 − µ2)2] for all µ1 ≤ µ2

⇐⇒ R2(θ,X2 − h(X1 −X2)) ≤ R2(θ,X2) for θ ∈ Θ .

In other words, for estimating the larger of two normal means, we have that

Z2 + h(Z2 − Z1) = −X2 + h(X1 − X2) dominates Z2 in estimating µ2, where

µ1 ≤ µ2. Thus, X2 − h(X1 −X2) dominates X2 in estimating θ2 when θ1 ≥ θ2.

(b) From above, it follows immediately that δπ(X) dominates X as an estimator of θ

for risk R1 + R2 and θ ∈ Θ . For σ2
m = 0, Blumenthal & Cohen [BC68b] showed

that δπ(X), which is the Bayes estimator for the uniform prior on Θ, is both

minimax and admissible. The minimax property also holds for σ2
m > 0, and this is

a novel finding. It follows since δπ(X) dominates X, and X is itself minimax for

θ ∈ Θ. Such a minimax result has been known for a long time (e.g., Blumenthal &

Cohen [BC68b]) and holds in many situations (see van Eeden [vE06] ; Marchand

& Strawderman [MS12] for elements of review) where a minimum risk equivariant

estimator designed for an untruncated parameter space remains minimax when

evaluated on a parametric restriction.

Although the estimator δπ(X) is designed for situations where it is only suspected

that θ1 ≥ θ2 and not certain, its minimaxity for θ1 ≥ θ2 remains an attractive

feature. For the constrained parameter space θ1 ≥ θ2, only the estimator δπ(X)

corresponding to σ2
m = 0 remains admissible as otherwise, Pθ[δπ(X) /∈ Θ] > 0 for

all θ ∈ Θ, and δπ(X) can be improved uniformly in risk by taking its projection

onto the constraint boundary θ1 = θ2. However, δπ(X) could well be admissible for

θ ∈ R2 and this merits further investigation.
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2.4 Bayes credible sets

Having evaluated the posterior distribution of θ1 under model and prior (2.1) and de-

termined the attractive performance of a class of corresponding Bayes estimators, we

now turn to the construction of a Bayesian credible set for θ1 and the study of its fre-

quentist coverage probability and length. One objective is to determine the effect of the

additional information on the credible sets. A way to observe this is through the length

of the intervals, as well as by considering the frequentist coverage probability and cre-

dibility. Naturally, one may strive to obtain a satisfactory compromise between a short

interval and good coverage. While there exist several types of credible sets, one thinks

of HPD or equal-tails for example, we focus on an ad hoc interval with approximate

1 − α credibility, mainly due to its ease of computation (i.e., explicit endpoints) and

interpretation, which also presents the potential for further analytical determination of

frequentist coverage probability. In Section 2.4.1, the ad hoc credible set studied is of a

standard form E[θ|x]± zα/2
√

V[θ|x] (e.g., Berger [Ber85]). In Section 2.4.2, we propose

and study a modification based on the idea of a spending function (e.g., Marchand &

Strawderman [MS13]) that shifts the above credible set towards lower values.

2.4.1 An ad hoc credible set

The Bayes credible set studied here is given by Definition 2.10.

Definition 2.10. Let E[U |x] and V[U |x] denote respectively the posterior expectation

and variance of U given by Lemma 2.6. The ad hoc Bayes credible interval for θ1 (i.e.,

for σ1U +X1) is defined as

Iah(X) = [X1 + l(X1 −X2), X1 + u(X1 −X2)], (2.8)

where l(d) = σ1E[U |x] − zα/2σ1

√
V[U |x] and u(d) = σ1E[U |x] + zα/2σ1

√
V[U |x] , and
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where zα/2 = Φ−1
(
1− α

2

)
.

One observes that the ad hoc interval is centered at the posterior mean of θ1 ; that is,

at E[θ1|x] = σ1E[U |x] + x1, and extends on either side of the posterior mean by equal

amounts, namely zα/2σ1

√
V[U |x] . This construction is generalized in Section 2.4.2 to

allow the interval to extend by different amounts on either side of the posterior mean.

Also note that explicit endpoints are obtained for the ad hoc interval, up to the definition

of the reverse Mill’s ratio which involves a standard normal cdf.

Remark 2.11. Limiting values of the functions l(d) and u(d) in Eq. (2.8) can easily

be obtained from the properties of the posterior expectation and variance of U given in

Lemma 2.7. Indeed, from parts (a) and (b) of Lemma 2.7, we have lim
d→∞

E[U |x] = 0 and

lim
d→∞

V[U |x] = 1, which imply that

lim
d→∞

u(d) = − lim
d→∞

l(d) = σ1zα/2. (2.9)

Similarly, we have lim
σ2
m→∞

E[U |x] = 0 and lim
σ2
m→∞

V[U |x] = 1, which yield

lim
σ2
m→∞

u(d) = − lim
σ2
m→∞

l(d) = σ1zα/2. (2.10)

Moreover, it can also be determined from Lemma 2.7 that l(d) is decreasing in d and is

always greater than −σ1zα/2. An equivalent analysis for u(d) is not readily available.

Theorem 2.12 (also see Denis [Den10]) gives an expression for the frequentist coverage

probability (see Definition 1.21) of a more general interval for θ1, of which Iah(X) is a

particular case. The following result is useful for numerical evaluations.

Theorem 2.12. Let Xi ∼ N(θi, σ
2
i ), i = 1, 2, independent, with d = X1−X2, σ2

i known,

and consider an interval of the form I(X) = [X1 + l(d), X1 + u(d)]. Then the frequentist
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coverage probability of I(X), i.e., P[θ1 ∈ I(X)], is given by

C(θ1, θ2) = EZ
[

Φ

(√
σ2

1 + σ2
2

σ1σ2

u

{√
σ2

1 + σ2
2 Z + β

}
+
σ1

σ2

Z

)

−Φ

(√
σ2

1 + σ2
2

σ1σ2

l

{√
σ2

1 + σ2
2 Z + β

}
+
σ1

σ2

Z

)]
, (2.11)

where β = θ1 − θ2 and Z ∼ N(0, 1).

Proof. We have

C(θ1, θ2) = Pθ [θ1 ∈ I(X)]

= Pθ [X1 + l{X1 −X2} ≤ θ1 ≤ X1 + u{X1 −X2}]

= Pθ [−u{(X1 − θ1)− (X2 − θ2) + (θ1 − θ2)} ≤ X1 − θ1

≤ −l{(X1 − θ1)− (X2 − θ2) + (θ1 − θ2)}]

= Pθ [−u{Y1 − Y2 + β} ≤ Y1 ≤ −l{Y1 − Y2 + β}] ,

where Yi = Xi − θi ∼ N(0, σ2
i ), i = 1, 2, are independent and β = θ1 − θ2. Now, we

have bounds for Y1 which depend on Y1 − Y2, where Y = Y1 − Y2 ∼ N(0, σ2
1 + σ2

2). From

Lemma 1.3, we have

Y1|Y ∼ N

(
σ2

1

σ2
1 + σ2

2

Y,
σ2

1σ
2
2

σ2
1 + σ2

2

)
,

since

ρY1,Y =
Cov(Y1, Y )

σY1σY
=
σY1
σY

=
σ1√

σ2
1 + σ2

2

due to the independence of Y1 and Y2. Now, by conditioning, we have

C(θ1, θ2) = P
[
Y1 ∈ [−u{Y + β},−l{Y + β}]

]
= E

[
1[−u{Y+β},−l{Y+β}](Y1)

]
= EY

[
E
[
1[−u{Y+β},−l{Y+β}](Y1)|Y

]]
= EY

[
P
[
Y1 ∈ [−u{Y + β},−l{Y + β}]|Y

]]
.
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Setting Z = Y1−Y2√
σ2
1+σ2

2

and Z ′ =
Y1−

σ21√
σ21+σ

2
2

Z√
σ21σ

2
2

σ21+σ
2
2

, we obtain (Z,Z ′)T ∼ N2(0, I2), and the

coverage can be expressed as

C(θ1, θ2) = P

[√
σ2

1 + σ2
2

σ2
1σ

2
2

(
−u
{√

σ2
1 + σ2

2 Z + β

}
− σ2

1√
σ2

1 + σ2
2

Z

)
≤ Z ′

≤

√
σ2

1 + σ2
2

σ2
1σ

2
2

(
−l
{√

σ2
1 + σ2

2 Z + β

}
− σ2

1√
σ2

1 + σ2
2

Z

)]

= EZ
[
P

[√
σ2

1 + σ2
2

σ2
1σ

2
2

(
−u
{√

σ2
1 + σ2

2 Z + β

}
− σ2

1√
σ2

1 + σ2
2

Z

)
≤ Z ′

≤

√
σ2

1 + σ2
2

σ2
1σ

2
2

(
−l
{√

σ2
1 + σ2

2 Z + β

}
− σ2

1√
σ2

1 + σ2
2

Z

)
| Z
]]

= EZ
[

Φ

(√
σ2

1 + σ2
2

σ1σ2

u

{√
σ2

1 + σ2
2 Z + β

}
+
σ1

σ2

Z

)]

− EZ
[

Φ

(√
σ2

1 + σ2
2

σ1σ2

l

{√
σ2

1 + σ2
2 Z + β

}
+
σ1

σ2

Z

)]
.

As a first illustration, Figure 2.4 presents the frequentist coverage probability of the ad

hoc interval as a function of β = θ1−θ2 for σ2
1 = σ2

2 = 1, a 0.95 nominal level and varying

σm.
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Figure 2.4 – Frequentist coverage probability of the ad hoc interval (1 − α = 0.95,
σ2

1 = σ2
2 = 1) as a function of β = θ1 − θ2 for varying σm.

While the maximum coverage appears to decrease in σ2
m, the overall discrepancy between

frequentist coverage and nominal credibility for β ≥ 0 (as well as for small negative values

of β) tends to diminish as σm increases. The coverage of Iah(X) at β = 0 also appears

to increase as σ2
m increases (although it seems to remain below the nominal level 1− α).

The same ordering occurs for negative values of β, which is understandable as larger

values of σ2
m correlate with more uncertainty in the bound β ≥ 0, which in turn becomes

reflected in the posterior distribution. Thus, even though we suspect that β ≥ 0, the ad

hoc interval performs reasonably well for some negative values of β as well. Moreover, we
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have lim
β→∞

C(θ) = 1 − α. This can be shown in the same way as in Remark 2.13 below

for σ2
m →∞ by the limits in Eq. (2.9). We noted similar overall behaviour of Iah(X) for

other nominal levels such as 0.80, 0.90 and 0.99.

Remark 2.13. Without recourse to the additional information provided by X2, a bench-

mark confidence interval for θ1 is given by X1± zα/2σ1. This interval arises from Iah(X)

by taking σ2
m → ∞ in (2.2), yielding lim

σ2
m→∞

π(u|x) = φ(u), ∀u ∈ R. Accordingly, one

infers that lim
σ2
m→∞

C(θ) = 1−α, ∀θ ∈ R2, and this is illustrated in Figure 2.4 (for θ1 ≥ θ2

mostly) with the flattening out around the nominal level observed as σ2
m increases. It is

also easy to see this by using the limits in Eq. (2.10), which yield

lim
σ2
m→∞

C(θ) = EZ
[

Φ

(√
σ2

1 + σ2
2

σ1σ2

(σ1zα/2) +
σ1

σ2

Z

)
− Φ

(√
σ2

1 + σ2
2

σ1σ2

(−σ1zα/2) +
σ1

σ2

Z

)]

= EZ
[

Φ

(
σ1

σ2

(
Z +

√
σ2

1 + σ2
2

σ1

zα/2

))
− Φ

(
σ1

σ2

(
Z −

√
σ2

1 + σ2
2

σ1

zα/2

))]
= Φ

(
zα/2

)
− Φ

(
−zα/2

)
=
(

1− α

2

)
− α

2

= 1− α,

making use of the dominated convergence theorem and Lemma 1.10 to evaluate the ex-

pectations.

For X distributed according to model (2.1), we have d = X1−X2 ∼ N(θ1− θ2, σ
2
1 + σ2

2).

The expected length of the ad hoc interval is therefore given by

Eθ[Lah(X)] = Eθ
[
2σ1zα/2

√
V[U |X]

]
. (2.12)

Figure 2.5 presents the expected length of the ad hoc interval as a function of β = θ1−θ2

for σ2
1 = σ2

2 = 1, a 0.95 nominal level and varying σm.
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Figure 2.5 – Expected length of the ad hoc interval (1 − α = 0.95, σ2
1 = σ2

2 = 1) as a
function of β = θ1 − θ2 for varying σm.

Since lim
σ2
m→∞

V[U |x] = 1, we have lim
σ2
m→∞

Eθ[Lah(X)] = 2σ1zα/2. For σ2
1 = 1 and α = 0.05

as in Figure 2.5, there is a flattening out of the expected length around the benchmark

length 2z0.025 ≈ 3.92 as σ2
m increases. Moreover, we do not observe an ordering of the

curves in Figure 2.5 since V[U |x] is not monotone increasing in σ2
m for all d. It is the

case though that V[U |x] is an increasing function of d by Lemma 2.7. Since the family

of distributions for d, which are N(β, σ2
1 + σ2

2), has monotone increasing likelihood ratio

in d with parameter β, it follows from Theorem 1.20 that Eθ[V[U |X]] is increasing in β.

This in turn implies that the expected length of the ad hoc interval is also increasing

in β for all σm ≥ 0. Finally, one can also prove that lim
β→∞

Eθ[Lah(X)] = 2σ1zα/2 which

follows from the property V[U |X] → 1 as d → ∞. This can be understood intuitively

since d follows a normal distribution with mean β, so as β gets large, mass is being

shifted towards larger values of d.
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We also consider the exact credibility (see Definition 1.26) of the ad hoc interval, defined

as P[θ1 ∈ Iah(X)|x], or equivalently

P[U ∈ [l(d), u(d)]|x] =

∫ u(d)

l(d)

π(u|x)du, (2.13)

where l(d) = E[U |x] − zα/2
√

V[U |x] and u(d) = E[U |x] + zα/2
√

V[U |x] , and π(u|x) is

the posterior density given by Eq. (2.2).

Figure 2.6 presents the credibility of the ad hoc interval as a function of d = x1−x2 with

1− α = 0.95, σ2
1 = σ2

2 = 1 and varying values of σm.

Figure 2.6 – Credibility of the ad hoc interval (1− α = 0.95, σ2
1 = σ2

2 = 1) as a function
of d = x1 − x2 for varying σm.
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Examining Figure 2.6, we observe that the credibility flattens out around the nominal

level as σm increases, as was the case for the coverage probability, which is justified here

by the fact that π(u|x)→ φ(u) as σ2
m →∞. Indeed, if the posterior density was that of

a standard normal, exact credibility would be attained. For all values of σm, the exact

credibility is remarkably close to the nominal level, with slightly higher credibility for

positive d. Such closeness was equally observed for other nominal levels (i.e., 0.80, 0.90

and 0.99) not shown here. A theoretical justification of this in terms of a bound on the

discrepancy would be most interesting to establish.

To summarize this subsection, we construct an ad hoc Bayes credible interval for θ1

in a standard way (centered at the posterior mean and extending on either side by

equal amounts) and study its frequentist coverage probability, among other features. We

provide numerical evidence of this interval’s approximate 1 − α credibility, as well as

quite remarkable frequentist coverage close to the nominal credibility.

2.4.2 An ad hoc credible set defined in terms of a spending func-

tion

The ad hoc procedure previously considered creates a credible set which is centered at the

mean of the posterior distribution and which extends on either side of the mean by equal

amounts. If the posterior distribution was normal, then a (1 − α) level interval would

discard α
2
in both tails due to the symmetric nature of the normal distribution. However

as its name indicates, the skew-normal distribution is not symmetric about the mean. It

would therefore be justifiable to consider throwing out α1 in one tail and α2 in the other

tail such that α1 + α2 = α. As above, exact credibility will not be achieved for all x, but

it turns out for practical purposes to be close to the nominal credibility (see Figure 2.10).
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This idea of discarding unequal amounts in the tails is referred to as a spending function

in Ghashim et al. [GMS16], and previously in Marchand & Strawderman [MS13]. We

consider the situation where we discard kα in the left tail and (1 − k)α in the right

tail, where k ≤ 1
2
(k = 1

2
corresponds to the ad hoc interval in Definition 2.10). The

adjustment in this direction with k < 1/2 is motivated by a relatively smaller coverage

for β = θ1 − θ2 closer to 0 (see Figure 2.4).

Definition 2.14. Let E[U |x] and V[U |x] denote respectively the posterior expectation

and variance of U given by Lemma 2.6. The ad hoc Bayes credible interval for θ1 (i.e.,

for σ1U +X1) defined in terms of a spending function is given by

I ′ah(X) = [X1 + l′(X1 −X2), X1 + u′(X1 −X2)], (2.14)

where l′(d) = σ1E[U |x] − zkα σ1

√
V[U |x] and u′(d) = σ1E[U |x] + z(1−k)α σ1

√
V[U |x] ,

with zα = Φ−1 (1− α).

Theorem 2.12 holds for general u(d) and l(d), so Eq. (2.11) holds here for all values

of k. Figure 2.7 presents the frequentist coverage probability of the ad hoc interval for

σ2
1 = σ2

2 = 1, σm = 0, a 0.95 nominal level and varying values of k in the spending

function.
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Figure 2.7 – Frequentist coverage probability of the ad hoc interval (1 − α = 0.95,
σ2

1 = σ2
2 = 1 and σ2

m = 0) as a function of β = θ1 − θ2 for varying values of k in the
spending function.

Similarly to previous results, it is easy to show that lim
β→∞

C(θ) = 1 − α for all k. The

coverage at β = 0 appears to be a decreasing function of k. As shown in Figure 2.8,

it also appears that C(0) ≥ 1 − α for k ≤ 1/4 (the same behaviour was noticed

for some other values of 1 − α not shown here). Moreover, for small values of k,

the minimum coverage is no longer attained at β = 0. It would be interesting to

investigate theoretically if the coverage has a local minimum after the initial peak or

if it decreases monotonically towards the limiting value of 1 − α. If the latter is true,

then the coverage would always remain above the nominal level if it starts above the

nominal values ; that is, if C(θ) > 1 − α for θ1 − θ2 = 0, which would provide a lower

bound for the coverage. Furthermore, there appears to be an ordering of the curves

in terms of k, and it would be interesting to validate whether these curves intersect or not.
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While the minimum coverage is not always attained at β = 0, it can still be interesting to

examine the coverage at this particular value, where θ1 coincides with θ2. Recall that one

of the objectives with the spending function was to increase the coverage for small values

of β ≥ 0. Figure 2.8 presents the coverage at β = 0 of the ad hoc interval as a function

of 1− α, for σ2
1 = σ2

2 = 1, σ2
m = 0 and varying values of k in the spending function.

Figure 2.8 – Coverage at β = 0 of the ad hoc interval (σ2
1 = σ2

2 = 1, σ2
m = 0) as a function

of 1− α with a spending function.

One observes an ordering of the curves, with higher coverage at β = 0 for smaller values

of k. It would be interesting to obtain a theoretical result relating the coverage at β = 0

to the value of k in the spending function.
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Remark 2.15. The length of the credible interval (2.14) is given by

L′ah(x) = σ1

√
V[U |x] (z(1−k)α + zkα).

Minimizing L′ah(x) is equivalent to minimizing f(k) = z(1−k)α + zkα. We observe that f

is monotone decreasing in k for k ≤ 1/2, which is minimized for k = 1/2. The length

of the credible interval (2.14) therefore increases as k strays from 1/2. However, for the

sake of comparison, for α = 0.05, we have f
(

1
2

)
≈ 3.92, f

(
1
3

)
≈ 3.96, f

(
1
4

)
≈ 4.02,

f
(

1
5

)
≈ 4.08 and f

(
1
6

)
≈ 4.13, the latter value representing about a 5% increase in length

only in comparison to k = 1/2.

With d = X1 − X2 distributed as before, the expected length of the credible interval

given by Eq. (2.14) can be expressed as Eθ[L′ah(X)] = Eθ
[
σ1

√
V[U |X] (z(1−k)α + zkα)

]
.

Figure 2.9 presents the expected length of the ad hoc interval as a function of β = θ1−θ2

for σ2
1 = σ2

2 = 1, σ2
m = 0, a 0.95 nominal level and varying values of k.

Figure 2.9 – Expected length of the ad hoc interval (1 − α = 0.95, σ2
1 = σ2

2 = 1 and
σ2
m = 0) as a function of β = θ1 − θ2 for varying values of k in the spending function.

56



As β → ∞, we observe that the expected length goes to the limiting values f(k) given

in Remark 2.15 (σ2
1 = 1 here). We also notice an ordering of the curves as a function

of k, with the expected length increasing for smaller k. Moreover, the expected length

increases in β since Eθ[V[U |x]] is increasing in β. In comparison, the benchmark credible

set X1 ± σ1zα/2 which does not incorporate the additional information has length

2σ1zα/2 ≈ 3.92. The expected length of the credible interval (2.14) is therefore quite

good, especially for smaller values of β.

Figure 2.10 presents the credibility of the ad hoc interval as a function of d = x1−x2 for

σ2
1 = σ2

2 = 1, σ2
m = 0, a 0.95 nominal level and varying values of k.

Figure 2.10 – Credibility of the ad hoc interval (1− α = 0.95, σ2
1 = σ2

2 = 1 and σ2
m = 0)

as a function of d = x1 − x2 for varying values of k in the spending function.

The overall credibility appears to be the best when k = 1/2 and decrease as k decreases.
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That being said, for all values of k plotted here, the credibility remains extremely close

to the nominal level. While there appears to be an ordering of the curves around d = 0, it

does seem that they intersect around d ≈ 4.5 for this particular nominal level. Moreover,

such an ordering appears to depend on α (for α = 0.1 for example, there is only an

ordering for more extreme values of d). For the sake of comparison, Table 2.1 gives an

approximate maximum discrepancy of the credibility for k = 1/4 and varying values of

1− α.

1− α 0.80 0.90 0.95 0.99
Maximum discrepancy 0.0049 0.00065 0.0014 0.0017

Table 2.1 – Approximate maximum credibility discrepancy for the ad hoc interval with
k = 1/4 in the spending function, σ2

1 = σ2
2 = 1 and σ2

m = 0.

While the graphs of coverage appear to maintain a similar appearance for different no-

minal levels, the same cannot be said for the credibility. For instance, while higher than

nominal credibility is achieved for d > 0 in Figure 2.10, the behaviour of the curves

appears to flip for a 0.80 nominal level (see Figure 2.11).
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Figure 2.11 – Credibility of the ad hoc interval (1− α = 0.80, σ2
1 = σ2

2 = 1 and σ2
m = 0)

as a function of d = x1 − x2 for varying values of k in the spending function.

2.5 Concluding remarks

For estimating the suspected larger (θ1) of two normal means (θ1 and θ2), we have studied

the frequentist risk performance of Bayesian point and interval estimators associated with

non-informative prior densities of the form

π(θ1, θ2|m) = 1[m,∞)(θ1 − θ2) , m ∼ N(0, σ2
m) .

Firstly, we establish for all σ2
m > 0 the minimaxity of the Bayesian point estimator

of θ1 under squared error loss and when the supremum risk is taken on θ1 ≥ θ2, thus

extending the previously known result for σ2
m = 0. Secondly, we provide ample evidence
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of satisfactory, or even excellent, frequentist performance of Bayesian credible sets for

the same priors as measured on the set of parameter values θ1 ≥ θ2, with such procedures

capitalizing on the additional information available for θ2. In doing so, we have elicited

how the frequentist probability of coverage varies with the difference β = θ1 − θ2,

as well as vary according to the choice of the hyperparameter σ2
m ranging from the

“no-useful additional information case” (σ2
m → ∞) to the certain constraint θ1 ≥ θ2

(σ2
m = 0). While the focus is for the parameter space θ1 ≥ θ2, the Bayes estimator

nonetheless performs for θ1 < θ2 due to the shifting of the posterior distribution when

there is uncertainty in the constraint. Moreover, we have further illustrated the role of

a spending function in the construction of the Bayesian credible set and how its setting

can give rise to even better frequentist coverage probability. The choice of the value k

in the spending function leads to a compromise between the frequentist coverage and

the length of the ad hoc interval, which renders the question of an optimal value of k

legitimate and not so straightforward to answer.

The presentation of these findings leaves open several interesting questions about analy-

tically derived lower bounds on coverage probabilities which bring into play the model

variances, the choice of σ2
m, as well as the spending function setting. It would be par-

ticularly interesting to proceed with an analysis for an unknown variances extension of

model (2.1). Finally, although we have focussed on a relatively simple two-parameter

problem with normal observables, we do believe that the ideas or techniques put forth

can be adapted to a wider range of settings, namely the incorporation of uncertainty

on a parametric restriction and the use of a spending function in the construction of

Bayesian credible sets.

60



CHAPTER 3

Other models

The results in Chapter 2 raise the idea of considering similar problems with other mo-

dels or parametric constraints. This chapter presents two such modifications. Section 3.1

considers the same model for X1 and X2 as in (2.1), but with the differences of means

being doubly-bounded (i.e., bounded above and below). Section 3.2 deals with the same

type of constraint (i.e., µ1 ≥ µ2) as Chapter 2, but the variances of the normally dis-

tributed X1 and X2 are now unknown (but equal). Note that there is no uncertainty in

the parametric bound in this chapter. The focus here is on the ad hoc procedure pre-

sented in Definition 2.10 and on properties of resulting credible intervals. This naturally

entails a posterior analysis of the given model and prior. While we do not concern our-

selves with point estimation for the models in this chapter, it is important to mention

that much work has been done on such problems. We refer the reader to Marchand &

Strawderman [MS04] and van Eeden [vE06] for elements of review.
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3.1 Doubly-bounded constraint

Consider the following model for X = (X1, X2)> and prior :

X1 ∼ N(θ1, σ
2
1), X2 ∼ N(θ2, σ

2
2);

π(θ1, θ2) = 1[−m,m](θ1 − θ2), (3.1)

where X1 and X2 are independently distributed and σ1, σ2,m > 0 are known. The para-

meter space is therefore restricted to the region |θ1 − θ2| ≤ m, and a flat prior is placed

on this restricted parameter space. This parameter space models a situation where it is

believed that the two means θ1 and θ2 are not too different from one another, and the

preciseness of how close they are is determined by the value m.

Lemma 3.1. Under the context of (3.1), the joint posterior density of (θ1, θ2) is given

by

π(θ1, θ2|x) =

1
σ1 σ2

φ
(
θ1−x1
σ1

)
φ
(
θ2−x2
σ2

)
Φ

(
m−(x1−x2)√

σ2
1+σ2

2

)
− Φ

(
−m−(x1−x2)√

σ2
1+σ2

2

)1[−m,m](θ1 − θ2).

Proof. This follows from writing the joint posterior density of (θ1, θ2)> as

π(θ1, θ2|x) =
f(x|θ)π(θ)∫∞

−∞

∫ θ1+m

θ1−m f(x|θ)π(θ)dθ2 dθ1

,

where

f(x|θ)π(θ) =
1

2πσ1σ2

e
− 1

2σ21
(θ1−x1)2

e
− 1

2σ22
(θ2−x2)2

1[−m,m](θ1 − θ2),

and observing that the normalizing constant can be expressed as follows

P[−m ≤ W ≤ m] = Φ

(
m− (x1 − x2)√

σ2
1 + σ2

2

)
− Φ

(
−m− (x1 − x2)√

σ2
1 + σ2

2

)
,

where Y1 ∼ N(x1, σ
2
1) and Y2 ∼ N(x2, σ

2
2) with Y1 and Y2 independent, and setting

W = Y1 − Y2 ∼ N
(
x1 − x2, σ

2
1 + σ2

2

)
.
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Lemma 3.2. Under the model and prior given by (3.1), the marginal posterior density

of θ1 is given by

π(θ1|x) =

1
σ1
φ
(
θ1−x1
σ1

) [
Φ
(
θ1+m−x2

σ2

)
− Φ

(
θ1−m−x2

σ2

)]
Φ

(
m−(x1−x2)√

σ2
1+σ2

2

)
− Φ

(
−m−(x1−x2)√

σ2
1+σ2

2

) , θ1 ∈ R.

Proof. This follows from Lemma 3.1 by integrating out θ2 over the region

θ1 −m ≤ θ2 ≤ θ1 +m.

Remark 3.3. As in Chapter 2, it is useful to consider U = θ1−x1
σ1

and d = x1 − x2.

Lemma 3.2 yields the following representation of the posterior density

π(u|x) =
φ(u)

[
Φ
(
σ1u+d+m

σ2

)
− Φ

(
σ1u+d−m

σ2

)]
Φ

(
m−d√
σ2
1+σ2

2

)
− Φ

(
−m−d√
σ2
1+σ2

2

) , u ∈ R, (3.2)

which one recognizes as the difference of two extended skew-normal densities (such den-

sities appear in van Eeden & Zidek [vEZ04] for instance).

Figure 3.1 presents the posterior density given by (3.2) for d = −1, 0, 1, σ2
1 = σ2

2 = 1 and

varying values of the constraint m.

(a) d = −1 (b) d = 0 (c) d = 1

Figure 3.1 – Posterior density of U for d = −1, 0, 1, σ2
1 = σ2

2 = 1 and varying m.
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Remark 3.4. As m increases, the value of the additional information on the bound of

the difference θ1 − θ2 decreases, and heuristically, as m → ∞, we would expect to get

the same posterior density for θ1 as if we only had information on X1. This is indeed

the case since from (3.2), we have lim
m→∞

π(u|x) = φ(u), which translates to a N(x1, σ
2
1)

posterior for θ1. This behaviour is apparent in Figure 3.1.

One can readily obtain the posterior moment generating function, expectation and va-

riance of U .

Lemma 3.5. Under the context of (3.1) and Remark 3.3, the posterior moment genera-

ting function, expectation and variance of U are given respectively by

MU |x(t) =

e
t2

2

[
Φ

(
σ1t+d+m√
σ2
1+σ2

2

)
− Φ

(
σ1t+d−m√
σ2
1+σ2

2

)]
Φ

(
m−d√
σ2
1+σ2

2

)
− Φ

(
−m−d√
σ2
1+σ2

2

) , (3.3)

E[U |x] =
σ1√

σ2
1 + σ2

2

φ

(
d+m√
σ2
1+σ2

2

)
− φ

(
d−m√
σ2
1+σ2

2

)
Φ

(
m−d√
σ2
1+σ2

2

)
− Φ

(
−m−d√
σ2
1+σ2

2

) , and (3.4)

Var[U |x] =
1

Φ

(
m−d√
σ2
1+σ2

2

)
− Φ

(
−m−d√
σ2
1+σ2

2

) [Φ

(
d+m√
σ2

1 + σ2
2

)
− Φ

(
d−m√
σ2

1 + σ2
2

)

+
σ2

1

(σ2
1 + σ2

2)3/2

{
(d−m)φ

(
d−m√
σ2

1 + σ2
2

)
− (d+m)φ

(
d+m√
σ2

1 + σ2
2

)}]

− σ2
1

σ2
1 + σ2

2

 φ
(

d+m√
σ2
1+σ2

2

)
− φ

(
d−m√
σ2
1+σ2

2

)
Φ

(
m−d√
σ2
1+σ2

2

)
− Φ

(
−m−d√
σ2
1+σ2

2

)


2

. (3.5)
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Proof. The posterior moment generating function can be obtained in a similar way as in

Lemma 2.6, making use of Lemma 1.10 to evaluate the integral. The posterior expectation

and variance follow immediately.

The following result relates to Lemma 3.5.

Lemma 3.6. Let fd be a family of densities on R such that fd(u) = f−d(−u) for all

u, d ∈ R. Then, provided expectations exist, we have

Ed
[
Uk
]

= (−1)kE−d
[
Uk
]
, for k ∈ N+.

Consequently, Ed[U ] is an odd function of d and Vd[U ] is an even function of d.

Proof. We have

Ed
[
Uk
]

=

∫
R
ukfd(u)du =

∫
R
ukf−d(−u)du =

∫
R
(−1)kukf−d(u)du = (−1)kE−d

[
Uk
]
.

One can easily verify that (3.2) belongs to the family of densities defined in Lemma 3.6,

and thus E[U |x] and V[U |x] given in Lemma 3.5 are respectively odd and even functions

of d = x1 − x2.
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(a) Posterior expectation (b) Posterior variance

Figure 3.2 – Posterior expectation and variance of U as a function of d = x1 − x2 for
σ2

1 = σ2
2 = 1 and varying m.

Figure 3.2 presents the posterior expectation and variance of U as a function of d = x1−x2

for σ2
1 = σ2

2 = 1 and varying values of the constraint m. Several observations can be made

from Figure 3.2, perhaps most noticeably the presence of symmetry due to the even and

odd nature of these functions. Further properties are given in Remark 3.8 which make

use of the following lemma.

Lemma 3.7 (Marchand & Sadeghkhani [MS18]). Let X1 ∼ N(θ1, σ
2
1) and X2 ∼ N(θ2, σ

2
2)

be independently distributed with prior π(θ) = 1[−m,m](θ1 − θ2). Then, conditional on

x = (x1, x2), ω1 = θ1− θ2 and ω2 = rθ1 + θ2, where r =
σ2
2

σ2
1
, are independently distributed

with

ω1 ∼ TN(x1 − x2, σ
2
1 + σ2

2, (−m,m)) and ω2 ∼ N(rx1 + x2, 2σ
2
2).

Remark 3.8. Model (3.1) corresponds to the context of Lemma 3.7, which allows one to
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express the posterior expectation of θ1 as follows, which is helpful for heuristic arguments :

E[θ1|x] =
1

1 + r
E[ω1 + ω2|x] =

1

1 + r
E[ω1|x] +

rx1 + x2

1 + r
,

which in turn implies that

E

[
θ1 − x1

σ1

| x
]

=
1

σ1(1 + r)
E[ω1|x] +

x2 − x1

σ1(1 + r)
,

and thus
E[U |x]

d
=

E[ω1|x]

σ1d(1 + r)
− 1

σ1(1 + r)
.

E[ω1|x] can be obtained from (1.1), and since E[ω1|x] ∈ [−m,m], it follows that

lim
d→±∞

E[U |x]

d
= − 1

σ1(1 + r)
.

From Figure 3.2, one also notices that for all m, E[U |x] appears to be a monotone

decreasing function of d. Moreover, the magnitude of E[U |x] appears to increase for all

d as m decreases.

Heuristically, if x1 � x2 or x2 � x1, then |d| is large and under the assumption of our

model that |θ1− θ2| ≤ m, as long as m is not too large, the data appears to contradict the

model. We would therefore center all posterior belief on the boundary |θ1 − θ2| = m. If

x1 � x2, we would believe that θ1 − θ2 = m and conversely if x2 � x1, we would center

our belief on the boundary θ1 − θ2 = −m. Moreover, as d→∞, ω1 converges to a point

mass at m, and thus for large d, we have

E[U |x] ≈ m

σ1(1 + r)
− d

σ1(1 + r)
.

Similarly, as d→ −∞, ω1 converges to −m, and hence for small d, we have

E[U |x] ≈ − m

σ1(1 + r)
− d

σ1(1 + r)
.
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Such a behaviour can be noticed in Figure 3.2. For instance, for σ2
1 = σ2

2 = 1 and large d,

we have E[U |x] ≈ m
2
− d

2
, which matches the slopes of the curves appearing to approach −1

2
.

The same type of reasoning can be made for the posterior variance. By the independence

of ω1 and ω2 in Lemma 3.7, we have

V[U |x] =
1

σ2
1

V[θ1|x] =
1

σ2
1

V

[
ω1 + ω2

1 + r
| x
]

=
1

σ2
1(1 + r)2

(
V[ω1|x] + 2σ2

2

)
,

where V[ω1|x] can be obtained from (1.2).

Further inference on the behaviour of the posterior variance can be derived from the

following lemma.

Lemma 3.9 (Chen [Che13] ; also Chen et al. [CvEZ10]). Let X be a continuous random

variable with log-concave cdf F (x) on the interval C. Then V[X|X ∈ A] ≤ V[X|X ∈ B]

for any intervals A ⊂ B ⊂ C.

It is well known that normal distributions have log-concave cdfs, and thus from

Lemma 3.9, we have that V[ω1|x] (and consequently V[U |x]) is increasing in m. This is

apparent in Figure 3.2. Moreover, due to the posterior distribution of ω1 converging to

a point mass as d → ±∞, we also obtain that lim
d→±∞

V[U |x] =
2σ2

2

σ2
1(1+r)2

= 2r
(1+r)2

. This

coincides with the limiting behaviour observed in Figure 3.2 where the variance tends

towards 1
2
(r = 1). One also observes that V[ω1|x] is decreasing in |d|.

With expressions for E[U |x] and V[U |x], we can construct the ad hoc credible set pre-

sented in Chapter 2 and given by Definition 2.10. Figure 3.3 displays the bounds of the

ad hoc interval for U as a function of d = x1 − x2 for 1 − α = 0.95, σ2
1 = σ2

2 = 1 and

varying values of m. With the symmetry of the posterior expectation and variance of U ,
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one is not surprised by the symmetry in Figure 3.3. There appears to be critical values

of d where the upper, and lower, bounds intersect for all m. Graphically, those values

appear to be d∗1 ≈ −1.15 and d∗2 ≈ 1.15 respectively for 1− α = 0.95.

Figure 3.3 – Ad hoc interval for U (1−α = 0.95, σ2
1 = σ2

2 = 1) as a function of d = x1−x2

for varying values of m.

Figure 3.4 presents the credibility of the ad hoc interval (again given by (2.13) but with

the posterior density, expectation and variance being those corresponding to the doubly-

bounded constraint) as a function of d = x1 − x2 for 1− α = 0.95 and σ2
1 = σ2

2 = 1.
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Figure 3.4 – Credibility of the ad hoc interval (1− α = 0.95, σ2
1 = σ2

2 = 1) as a function
of d = x1 − x2 for varying values of m.

From Figure 3.4, we observe that the exact credibility fluctuates around the nominal

0.95 level, attaining both lower and higher than nominal values. The credibility is

nonetheless quite close to the nominal level. An interesting feature is that d = 0 appears

to correspond to either a local mininum or maximum, depending on the value of m.

The credibility is also symmetric about d = 0, which is again not surprising due to the

symmetric nature of the constraint.

While Eq. (2.11) for the coverage probability given in Theorem 2.12 holds for the model

(3.1), we were not successful in obtaining graphs of such coverage. It would be interesting

to study the frequentist properties of the ad hoc interval under this doubly-bounded

constraint, in a manner similar to what was done in Chapter 2 for the lower-bounded
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constraint. It would also be of interest to extend this section to include uncertainty on

the value m of the constraint.

Finally, we draw attention to a few point estimation results which relate to this problem

and can be found in the literature. For instance, the rotation technique described in

Chapter 1 (and the corresponding Lemma 1.38) apply to this doubly-bounded contraint

model, which implies that finding estimators that dominate a benchmark estimator under

squared error loss is reduced to a univariate problem. Such a univariate result can be found

in van Eeden & Zidek [vEZ01] among others, where a generalized Bayes estimator of θ1

with respect to a flat prior on the restricted parameter space is shown to dominate the

unrestricted MLE X1. Marchand & Perron [MP01] also provide estimators that dominate

the MLE of θ1 under squared error loss and in this regard permit extensions to the

multivariate case with X1 ∼ Nd(θ1, σ
2
1Id), X2 ∼ Nd(θ2, σ

2
2Id) and ‖θ1 − θ2‖ ≤ m.

3.2 Unknown but equal variances

This section considers the following model for X = (X1, X2)> and prior :

X11, ..., X1n1 i.i.d. N(µ1, σ
2), X21, ..., X2n2 i.i.d. N(µ2, σ

2);

π(µ1, µ2, σ) =
1

σ
1{µ1≥µ2}(µ1, µ2)1(0,∞)(σ), (3.6)

where X1 and X2 are independently distributed and σ > 0 is now unknown. This corres-

ponds to a situation where we have two independent samples from normal distributions

with means µ1 and µ2, and it is known that there is an ordering of the means (i.e.,

µ1 ≥ µ2). Note that we can reduce this problem to the sufficient statistics of sample
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means and variances, namely

x̄1 =
1

n1

n1∑
i=1

x1i, x̄2 =
1

n2

n2∑
i=1

x2i, s
2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x̄1)2, s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x̄2)2.

Definition 3.10. T has a Student t-distribution with shape parameter α > 0, location

parameter µ ∈ R and scale parameter σ > 0 when it has density on R given by

fα,µ,σ(t) =
Γ
(
α+1

2

)
σ(απ)1/2Γ

(
α
2

) (1 +
(t− µ)2

ασ2

)−(α+1
2 )

.

We denote such a distribution T ∼ t(α, µ, σ2). We also denote the cdf of such a distribu-

tion as Fα,µ,σ(·).

Theorem 3.11. Under the context of (3.6), the marginal posterior distribution of µ1 is

given by

µ1|x ∝ fα1,x̄1,σ1(µ1) · Fα2,x̄2,σ2(µ1), (3.7)

where α1 = n1 + n2 − 3, σ2
1 =

(n1−1)s21+(n2−1)s22
n1(n1+n2−3)

, α2 = n1 + n2 − 2 and

σ2
2 =

(n1−1)s21+(n2−1)s22+n1(x̄1−µ1)2

n2(n1+n2−2)
.

Proof. The joint posterior density of (µ1, µ2, σ
2) is given by

π(µ1, µ2, σ
2|x) =

f(x1|µ1, σ
2)f(x2|µ2, σ

2)π(µ1, µ2, σ
2)∫∞

−∞

∫ µ1
−∞

∫∞
0
f(x1|µ1, σ2)f(x2|µ2, σ2)π(µ1, µ2, σ2)dσ2dµ2dµ1

,

where

f(xj|µj, σ2) =

nj∏
i=1

1√
2πσ2

e−
(xji−µj)

2

2σ2 =
1

(2πσ2)nj/2
e−

(nj−1)s2j

2σ2 e−
nj

2σ2
(x̄j−µj)2 .

With the transformation (µ1, µ2, σ
2)

T→
(
µ1, µ2, φ = 1

σ2

)
, we can write

π(µ1, µ2, φ|x) ∝ 1

(2π)
n1+n2

2

· φ
n1+n2−1

2
−1 · e−

φ
2 [(n1−1)s21+(n2−1)s22+n1(x̄1−µ1)2+n2(x̄2−µ2)2]

· 1{µ1≥µ2}(µ1, µ2)1(0,∞)(φ).
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The joint posterior density of (µ1, µ2) is then obtained as follows by integrating out φ :

π(µ1, µ2|x) ∝
∫ ∞

0

φα̃−1 · e−β̃φ1{µ1≥µ2}(µ1, µ2)dφ,

where

α̃ =
n1 + n2 − 1

2
, and

β̃ =
(n1 − 1)s2

1 + (n2 − 1)s2
2 + n1(x̄1 − µ1)2 + n2(x̄2 − µ2)2

2
.

Making use of the property
∫∞

0
xα−1e−βxdx = Γ(α)

βα
, we obtain the following expression

for the marginal posterior density of µ1 :

π(µ1|x) ∝
∫ µ1

−∞
β̃−α̃dµ2

∝
(
D

2

)−(n1+n2−1
2 ) ∫ µ1

−∞

(
1 +

(µ2 − x̄2)2

(n1 + n2 − 2) D
n2(n1+n2−2)

)−( (n1+n2−2)+1
2

)
dµ2,

(3.8)

where D = (n1 − 1)s2
1 + (n2 − 1)s2

2 + n1(x̄1 − µ1)2. We recognize in (3.8) the cdf of a

Student t-distribution with parameters α2 = n1 + n2 − 2, µ2 = x̄2 and σ2
2 = D

n2(n1+n2−2)
.

Setting E = (n1 − 1)s2
1 + (n2 − 1)s2

2, (3.8) becomes

π(µ1|x) ∝
(
E + n1(x̄1 − µ1)2

)−(n1+n2−2
2 ) · P

[
t(α2, x̄2, σ

2
2) ≤ µ1

]
∝
(

1 +
(µ1 − x̄1)2

E/n1

)−( (n1+n2−3)+1
2

)
· P
[
t(α2, x̄2, σ

2
2) ≤ µ1

]
. (3.9)

Finally, we recognize the first part of (3.9) as the density of a Student t-distribution with

parameters α1 = n1 + n2 − 3, µ1 = x̄1 and σ2
1 = E

n1(n1+n2−3)
.

The density given by (3.7) can be called a skew-Student distribution, similarly to the

skew-normal distribution in Definition 1.8, but where all distributions involved are

Student t-distributions instead of normal. This is mentioned by Azzalini [Azz14] (also

see Sadeghkani & Ahmed [SA20]).
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One difficulty arising with the skew-Student distribution is the calculation of the norma-

lization constant. This requires computing an integral of the form∫ ∞
−∞

fα1,x̄1,σ1(µ1) · Fα2,x̄2,σ2(µ1)dµ1, (3.10)

where the parameters of the Student t-distributions are as previously defined. Defi-

ning random variables U ∼ t(α1, x̄1, σ
2
1) and V ∼ t(α2, x̄2, σ

2
2), (3.10) is equivalent to

P [U ≤ V ] = P [U − V ≤ 0], which is the cdf at zero of U − V . This brings into play the

distribution of U − V . In general, the distribution of sums or differences of random va-

riables can be obtained through convolutions, but this will require numerical evaluation.

As opposed to Chapter 2 and Section 3.1, we do not obtain explicit expressions for the

posterior expectation and variance of µ1, quantities which are used in the construction of

the ad hoc credible set. We therefore have only obtained numerical results, an example

of which is given in Figure 3.5.

Figure 3.5 – Posterior density of µ1 for n1 = n2 = 20, x1 = 7, x2 = 5 and s1 = s2 = 2.
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For the choice of parameters in Figure 3.5, we have E[µ1|x] ≈ 7.012 and V[µ1|x] ≈ 0.212,

which yield an ad hoc interval (of the same form as Definition 2.10) for µ1 of approxi-

mately [6.110, 7.913] for 1− α = 0.95.

While the analysis in this section has been limited, it has nonetheless illustrated another

situation where the ad hoc procedure can be used, although relying on numerical evalua-

tions of the posterior expectation and variance. It also demonstrates that even though

this procedure is easy to implement in theory (and was seemingly easy to compute in

Chapter 2 and Section 3.1), it can have its challenges depending on the model.
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CONCLUSION

This work concerns the estimation of one of two normal means when there exists a

constraint bounding and relating the difference of the two means. Chapter 1 presents

some preliminary definitions and theory which relate to results in Chapters 2 and 3.

The main part of this work is found in Chapter 2 where interest lies in estimating the

suspected larger of two normal means. In this chapter, uncertainty is introduced in the

parametric constraint in the form of a hierarchical prior. Point estimation results are

obtained, yielding a class of minimax Bayes estimators which dominate the unrestricted

MLE. The focus then shifts to the construction of an ad hoc credible interval for θ1 and

frequentist properties of this interval are studied, notably the closeness of its frequentist

coverage probability to the nominal credibility. In Section 2.4.2, a spending function

is incorporated and its impact is studied, in particular regarding improved frequentist

coverage probability. Finally, Chapter 3 presents two modifications to the model in

Chapter 2. Section 3.1 modifies the parametric constraint and doubly bounds the

difference of the normal means. Section 3.2 considers the same type of constraint as in

Chapter 2, but now for a model with unknown (but equal) variances. In both sections,

we proceed with a posterior analysis and discuss the ad hoc credible interval.

There are numerous avenues that would be of interest to pursue related to this work. First
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of all, the uncertainty in the parametric constraint, as well as the idea of the spending

function, can be included in other models and for different types of constraints. This work

considers an ad hoc credible interval, but one could also consider other types of credible

sets, such as an HPD or equal-tailed interval for instance, and conduct comparisons

between them. Furthermore, it would be of interest to obtain further analytic results

relating to some of the topics presented, notably a lower bound for the frequentist coverage

probability of the ad hoc interval. Finally, the point estimation results relating to risk

under squared error loss in Chapter 2 can seemingly relate to risks of predictive density

estimation under Kullback-Leibler loss.
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