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Abstract

Recently, a large near-infrared spectroscopy data set for mango fruit quality

assessment was made available online. Based on that data, a deep learning

(DL) model outperformed all major chemometrics and machine learning

approaches. However, in earlier studies, the model validation was limited to

the test set from the same data set which was measured with the same instru-

ment on samples from a similar origin. From a DL perspective, once a model

is trained it is expected to generalise well when applied to a new batch of data.

Hence, this study aims to validate the generalisability performance of the

earlier developed DL model related to DM prediction in mango on a different

test set measured in a local laboratory setting, with a different instrument. At

first, the performance of the old DL model was presented. Later, a new DL

model was crafted to cover the seasonal variability related to fruit harvest

season. Finally, a DL model transfer method was performed to use the model

on a new instrument. The direct application of the old DL model led to a

higher error compared to the PLS model. However, the performance of the DL

model was improved drastically when it was tuned to cover the seasonal

variability. The updated DL model performed the best compared to the

implementation of a new PLS model or updating the existing PLS model. A

final root-mean-square error prediction (RMSEP) of 0.518% was reached. This

result supports that, in the availability of large data sets, DL modelling can

outperform chemometrics approaches.
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1 | INTRODUCTION

Rapid prediction of fruit quality is of wide interest to access the ripeness and ‘readiness to eat’ stage of fresh fruit.1–4

Such a rapid prediction of fruit quality relies on decision making at several stages of the fresh fruit supply chain, such
as the best date for harvest and monitoring of fruit during controlled ripening or storage.5,6 Furthermore,
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non-destructive prediction of fruit quality reduces the experimental time and costs as well as it minimises the
food losses along the supply chain.5,6 A popular non-destructive technique for rapid analysis of fresh fruit traits is
Vis–NIR portable spectroscopy.6–8 Vis-NIR spectroscopy explores the interaction of Vis-NIR electromagnetic radiation
and their correlation with several chemical and physical properties of fruit.7,8 Particularly, the visible (Vis) part of
the spectrum explains mainly the fruit skin pigments which in some cases are correlated with of fruit ripeness stage,
while the near-infrared (NIR) part captures the signal related to the chemical components9,10 on the pulp such as
moisture and sugars which are a good proxy for fruit maturity.6,11,12 In some works, Vis-NIR spectroscopy has also been
used to explain physical properties such as firmness which is a good indicator of ripeness levels of fruit such as
avocados.13

Motivated by the reliable performance of portable Vis-NIR spectroscopy to estimate several physicochemical traits
in fruit, several user-friendly low-cost commercial portable spectrometers have appeared in the market.5,6 The portabil-
ity of spectrometers ranges from mobile phone connected pocket spectrometers14 to handheld spectrometers with
embedded computing systems.5,11,12 Apart from the market level readiness of the hardware, the main challenge related
to the distributed calibration of the spectrometer persists.15,16 This is because Vis-NIR spectrometers are highly
dependent on the pre-calibration of the sensors before their deployment in practice.7 At present, in most of the practical
cases, the users must carry out their calibrations based on the application of interest by measuring a few sets of new
samples.5–7 These calibrations also suffer failure when met with samples having unmodeled variability.17–19 For fresh
fruit, the model failure is commonly due to a high biological variability.20,21 Biological variability can be related to
different cultivars, the season of harvest, storage conditions and ripening stages of fruit.5,6,20,21 Hence, a natural solution
to deal with this calibration failure problem is to measure a wide range of samples from different cultivars, seasons of
harvest, storage conditions and ripening stages to calibrate global models.5,6 These global models are expected to work
well in the face of the unseen variability that is expected to be met when predicting a new sample.6 Measurement of
samples covering a wide variability is the first step to achieve global models; however, the second step is to properly
model the data to develop robust models that not only learn the relationship between spectra and the property of
interest but also learn the complex pattern such as the causes for seasonal, cultivar and ripeness related variabilities.22,23

Several authors have widely tried linear, non-linear, global and local modelling approaches to achieve robust models
and have achieved satisfactory performance.6,22,23

A key feature of portable spectroscopy is its wide-scale usage compared to the scientific laboratory-based spectrome-
ters.14,15,24 Such a wide-scale usage has an advantage as it can generate enormous information-rich data sets. Such large
data sets covering a wide variety of samples can allow development of robust models, otherwise limited to the data
generated by a single user. In fruit spectroscopy, such data sets are gaining popularity. For example, recently a mango
data set having 11,691 spectra and reference dry matter (DM) measurements was made publicly available.25 The data
set was explored in several studies with traditional chemometric and machine learning approaches and the
best root-mean-square error prediction (RMSEP) was noted as 0.84%.22,23 Taking advantage of the size of such a
large data set, recently a deep learning model was proposed.26 That DL model outperformed all the earlier linear,
non-linear, local, and global modelling approaches and reached a RMSEP of 0.79% on the same test set reported in
earlier studies. The performance of the DL model was improved by removing remaining outliers and a RMSEP of 0.76%
was reached.

A DL model trained on a large data set as well with the best predictive performance is expected to be used in
practice. For example, users who bought a new portable spectrometer and interested in predicting DM in mango will be
highly interested to use the existing DL model covering wide variability of samples, instead of recalibrating the sensors
from scratch. In earlier works related to DL modelling of the mango data set,26 the main aim was to optimise and reach
a robust DL model which improves on the RMSEP previously reported on the similar data set. In that regard, to have a
fair comparison, the DL model in the earlier study26 was tested on the predefined test set available in the mango data
set, that is, data corresponding to the harvest season from 2018.22,23 However, in a practical scenario, a new user will be
interested in using the DL model in a different instrument compared to the instrument used for measurement of the
mango data set. Hence, currently, it is unclear if the DL model developed in Mishra and Passos26 can be directly used
on a new-instrument or if it requires some form of model adaptation or recalibration before it can be used with the new
instrument. Furthermore, since the DL model was trained on the samples from the harvest of the year 2015, 2016 and
2017, it is important to explore if the model performs well when applied to samples from a new harvest season
measured on a different spectrometer. To the best of our literature search and experience with the development of the
primary DL model,26 this work is the first to validate the mango DL model26 for its use on a new instrument and on
mango samples of harvest from a new season, that is, the year 2020.
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The study has three main aims:

1. To provide independent validation of earlier DL model26 related to mango DM prediction on a new test set measured
in a local laboratory setting with a new spectral instrument.

2. To retrain/optimise the model concerning the season variability to make it robust to seasonal differences.
3. Since the measurements in this study were performed with a different spectrometer, the DL model was updated with

transfer learning (TL)27 to compensate for the instrument differences. The TL approach can be assumed as the
calibration transfer approach for DL models just as calibration transfer between spectrometer is required for
standard chemometric calibrations.28

2 | MATERIALS AND METHODS

2.1 | Data sets

Two data sets were used for modelling and independent testing. The modelling data set was the freely available mango
data set, and the independent testing data set was generated experimentally for this study. More details on data sets are
as follow.

2.1.1 | Open-access mango data set

The first data set has spectral and reference DM measurements on mango from 4 harvest seasons 2015, 2016, 2017 and
2018.25 Data were acquired with a Portable F750 instrument (Felix Instruments, Camas, USA). Drying for DM measure-
ments was performed with an oven dryer. Detailed information on data set can be assessed at previous works,22,23 and
the data can be assessed at Anderson et al.25 At the online data source,25 there are total 11,691 spectra, which are pre-
partitioned as calibration (10,243 from year 2015, 2016 and 2017) and independent test set (1448 from year 2018). The
data spectral range was reduced to 684–990 nm (103 variables) to keep the analysis comparable to earlier work.26

The original data has several outliers in the calibration set, hence, in this study, a more stringent outlier removed
version of data was used as suggested in Mishra and Passos.26 Furthermore, based on the suggestion of this recent
study, prior to any analysis the data were augmented with spectral pre-processing.26 The final data set has 9914 samples
for model training and validation and 1448 samples for an independent test of the model. However, after the data
augmentation suggested in Mishra and Passos,26 the total number of variables were 618 by the stacking of five
pre-processed data blocks to the original absorbance data block. The five different pre-processing's were 1st derivative
and 2nd derivative with Savitzky–Golay29 filter with window size 13 and polynomial order of 2, standard normal variate
(SNV),30 SNV + 1st derivative and SNV + 2nd derivative.

2.1.2 | New mango data set

To perform an independent validation of the DL model proposed in Mishra and Passos,26 and to adapt it for future use
on a new instrument, new mango samples were measured with a new portable spectrometer. The mango samples were
from a new harvest, that is, the year 2020, and have the origin in Brazil. Furthermore, the mangoes were of two
cultivars, that is, ‘Keitt’ and ‘Kent’. A total of 540 (270 ‘Kiett’ and 270 ‘Kent’) mangoes were bought from a local
vendor in The Netherlands. The spectrometer was a F750 spectrometer (Felix Instruments, Camas, USA). The
spectrometer used was a similar but not the same instrument as used for the generation of open mango data set. Since
most fruit were hard green at the time of purchase, to create a wide variation in the ripeness level, the mangoes were
stored in different temperatures, that is, 12�C, 17�C and 23�C at 85% RH (Relative Humidity). The low-temperature
storage hinders the fruit ripening while hot temperature storage accelerates the ripening. 90 ‘Kent’ and 90 ‘Keitt’
mangoes were stored at each temperature level. Mangoes were stored for 1 week in the fruit ripening facilities and
before the experiment day was stored for 1 day in the same temperature condition (23�C at 85% RH) to reduce any
effect of temperature on the spectral measurements. On the day, the experiment took place, the spectral measurements
were performed first and after that, a part of mango fruit was collected from the spot of spectral measurement. The peel
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of the part was removed and later the fresh weight of the fruit's flesh was measured using an electronic balance and
dried in a hot-air oven. After drying, the dried fruit was measured, and the DM was estimated and expressed in %. In
total, 540 spectral and DM reference measurements were generated. The spectra were at first trimmed to match the
spectral range (684–990 nm total 103 variables) as used for the development of DL model. Later, outlier removal was
performed using the T2 and Q statistics plots obtained with the PLS decomposition of spectra with the DM measure-
ments. The outlier's removal was performed interactively by plotting T2 and Q statistics plots and later dropping any
observed outlying samples. Later, the spectral data were augmented as suggested in Mishra and Passos,26 that is, by
pre-processing the same data with five different pre-processing approaches. After outlier removal and data augmenta-
tion, the total remaining samples were 510, each having 618 variables. All data analysis was performed with the
augmented data as needed for the application of the old DL model26 as well due to a improved performance of the
model on the augmented data compared to raw data.26

2.2 | Data modelling

In this study, there were three main directions for data modelling. The first was the direct application of the DL and
PLS26 models developed on the open-access mango data set25 to the new mango data set measured in this study. The first
part aimed to study if the previously developed DL and PLS models26 generalise well to data from a new harvest measured
with a different instrument. The second was the development of new DL and PLS models by combining all the data of the
open-access mango data and testing it on the new mango data set. A key point to note is that in the earlier study, the DL
model was based on data from seasons 2015, 2016 and 2017 and the data from season 2018 was used as independent test
set. In this study, the second part aimed to exploit the full potential of the open-access mango data set, hence, modelling
was performed by combining data from all four seasons, that is, 2015, 2016, 2017 and 2018. The third part was related to
the adaption and update of the DL model to compensate for the differences in the instrument. The third part was
necessary as the primary DL model was made on the open-access mango data where the spectral measurements were
performed with a similar but not the same spectrometer. Hence, it was a classic case of calibration transfer but without
standards as the two spectrometers belongs to different scientific research groups based on different continents. All models
were implemented using the Python (3.6) language and the Tensorflow 2.1 framework.

2.2.1 | Direct application of old models on a new independent test set

In Mishra and Passos,26 DL and PLS models based on open-access mango data set were proposed. The models were
based on the calibration set of the open-access mango data set. Previously, the models were tested on the test set of the
open-access mango data only which corresponds to the mango of the year 2018 harvest. However, in this study to study
their generalisability, the DL and PLS models were tested on the new independent test set measured. The DL model
was applied by defining the model architecture (1D CNN) and loading the pre-saved weights corresponding to the
optimal DL model presented in Mishra and Passos.26 The DL model was applied using the “model.predict()” function
from TensorFlow/Keras. The application of PLS included the multiplication of the regression coefficients with the
spectra from the new independent test set. The PLS was applied using the ‘pls.predict()’ function from the Scikit Learn
library (https://scikit-learn.org/stable/). Prior to model application, data from the independent test set was scaled with
respect to the calibration set of the open-access mango data set. The scaling was performed by estimating the SNV30 for
each variable of the independent test set with respect to the calibration set used for DL model training. In SNV,30 at
first, the means response is subtracted and later divided by the standard deviation. To scale the test data with respect to
the calibration data set, the mean and standard deviation of calibration set were used.

2.2.2 | New deep learning model development

In the DL model presented in Mishra and Passos,26 the modelling was limited to the calibration set as the data from the
year 2018 harvest was used as the test set. However, since this study has a new independent test set, a new DL model can
be made to learn variability related to seasonal differences. This can be achieved by using a calibration set of the
open-access mango data for model training and the data from season 2018 as the validation/tuning set. Modelling in
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such a way should improve the learning process associated to the variability of seasonal differences. Finally, the new DL
model can be tested on the new independent test set measured in this study for a new season and with a new instrument.

To develop the new DL model, the same DL architecture as used in Mishra and Passos26 and first proposed in Cui
and Fearn,31 was implemented. The architecture is composed of a five-layer convolutional neural network. The first
layer of the network was a reshape layer which transform the spectra into a tensor, after that the tensor passes through
a 1D-convolutional layer having a single filter, and later the convoluted signal is passed through three dense layers with
36, 18 and 12 neurons, respectively, and a final linear output layer with a neuron. Three key hyperparameters, that is,
the width of the convolution filter (kernel width), the strength of the L2 regularisation (β) and the batch size, were
optimised using a grid search approach. The grid search approach was used as presented in,26 as it allows to sequen-
tially optimise the hyperparameter and allows understanding the effect of different hyperparameters explored for model
tuning. See Table 1.

Based on the possible combinations, a total 210 models were generated. To find the optimal model, an exploratory
method used in the DL area was used. The hyperparameter that has a higher influence in the solution space is β (see
supporting information for details). Therefore, a best β was chosen by finding the value that shows the smallest over-
fitting (the lower difference between validation and calibration RMSE) while keeping a low validation RMSE. Models
prone to less overfitting tend to generalise better. Once β was found, the combinations of kernel and batch sizes were
explored by analysing the calibration and validation RMSE maps. The strategy was to look for common minima
(or common broader basins of attraction) in both maps to find which models belong in these intersection areas and dis-
criminate between them by choosing the one(s) least affected by overfitting (the lowest difference between the RMSE of
calibration and validation set). The final model was then tested on the new independent test set. As a baseline, a new
PLS model was also developed by combining the calibration and validation sets of the open-access mango data. For PLS
latent variables (LVs) optimisation a 10-fold cross-validation procedure was used The elbow point of the error plot was
used for selecting the LVs.

2.2.3 | Standard free deep calibration transfer

The main difference between the open-access mango data set and the new test set measured in this study was the
different instruments used for spectral measurements. Usually, to use a spectral model with data from a different instru-
ment a calibration transfer step is needed before model application. In the case of DL modelling, calibration transfer
can be performed by fine-tuning the weights of the old DL model using some new samples measured on the new
instrument.26 This recent article explains more broadly the TL approach as used in this study for calibration transfer.27

The calibration transfer with TL is a standard free procedure to transfer DL models between instruments; hence, it does
not require any measurements from the primary instrument and is well suited for this study as the primary instrument
used to generate the open-access mango data was not available. To perform TL, the data generated in this study were
divided into 60%/40% as fine-tune and external test set. The fine-tune set (60%) was used for TL, and later, the updated
model was tested on the external test set (40%). As a baseline, a new PLS model was recalibrated combining the open-
access mango data set and the fine-tune set. Furthermore, a PLS model solely based on the fine-tune data was also set
up to see if updating the old model provided any benefit compared to developing a new PLS model with new data
measured on the new instrument. All model performances were assessed using the RMSE. The RMSEP was used to
access performance of all models.

3 | RESULTS AND DISCUSSION

A summary of DM distributions from different data sets is presented in Figure 1. The calibration set (Figure 1A) of the
open-access mango data set used for the development of the primary DL model presented in Mishra and Passos.26

TABLE 1 Hyperparameters intervals used in the grid search optimisation

Hyperparameter Interval

Batch size 32, 64, 128, 256, 512

Filter sizes 5, 10, 15, 20, 25, 30

L2 regularisation (β) 0.001, 0.003, 0.008, 0.01, 0.015, 0.02, 0.03
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Figure 1B shows the DM distribution of the test set of the open-access mango data set as used for model validation in
Mishra and Passos.26 Figure 1C shows the DM distribution of the independent test set measured in this study. The DM
distribution of the independent test set has most of the samples with low DM (Figure 1C) compared to the DM range of
the open-access mango data (Figure 1A,B). In earlier work, the DL model was tested on the test set of the open-access
mango data set, which included mangoes with on average high DM (Figure 1B) compared to the DM distribution of
calibration set (Figure 1A). Due to such a high DM, the DL model led to systematic higher RMSE on the test set of the
open-access mango data set. In this study, the new measured samples have on average low DM (Figure 1C) compared
to the DM distribution of calibration set (Figure 1A), how were in the similar DM range compared to the
calibration set.

3.1 | Performance of old deep learning and PLS models

The performances of the direct application of the DL and PLS models presented in Mishra and Passos26 are shown in
Figure 2. At first, the performance of DL (Figure 2A) and PLS (Figure 2B) models is presented for the test set of the
open-access mango data set. These results are the same as reported in Mishra and Passos,26 and here presented to have
a baseline comparison of the model with the testing performed on the new independent test set measured in this study.
The DL model performance decreased on the independent test set compared to the earlier results reported for the test
set of the open-access mango data set. The RMSE was increased from 0.787% to 1.053%. The PLS model, which previ-
ously performed worse, showed a lower RMSE of 0.754% on the independent test set. This showed that although the
PLS model did not perform the best in the earlier study, it showed a better generalisation ability on a completely new
test set measured on a completely different instrument. Furthermore, such an inferior performance of DL model shows
that the DL model developed in Mishra and Passos26 was sensitive to the instrument change compared to the PLS
model presented in Mishra and Passos.26 In this study, we considered two hypothesis for the inferior performance of
the DL model on the new test set measured on a new instrument. The first hypothesis was that the new measurements
were performed on different instrument compared to the measurements on which the primary DL model was
developed. The instrument change plays a significant role in NIR spectroscopy and requires a pre-adjustment of the
instrumental differences. The second hypothesis was that in earlier study,26 a random data partition was used for DL
model training. Random data partition can be inefficient in learning the seasonal variability and a better choice could
be to retrain the model by using data from a complete year as the validation set. Both the limitations were dealt with in
this study and the results were as follows.

3.2 | New deep learning model

Based on the open-access mango data set, a new DL model was trained with the calibration set and the test set for
model tuning. Please note that the test set mentioned here was the data from the open-access mango data set and it was
not the independent test set data measured in this study as used for the final evaluation of models. A key difference in
the new model compared to the old model presented in Mishra and Passos,26 was the use of the old test set for model

FIGURE 1 Distribution of dry matter in difference data sets. Open-access mango data set: (A) calibration set and (B) test set. (C) Mango

data set measured in this study
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tuning. Since, the old test set of the open-access mango data set was from a new season of harvest, that is, the year
2018, using it for model tuning can allow the model to better capture the seasonal variabilities. It was hypothesised that
the model tuned to learn seasonal variability could generalise well to a new season data, that is, the year 2020 harvest
data measured in this study.

To reach the new DL model three different hyperparameters were optimised sequentially as explained in
Section 2.2.2. Figure 3 shows the evolution of the mean RMSE of tuning and the difference between the means of RMSE
(calibration and the tuning set) for different β. A β= 0.02 (dashed vertical line in Figure 3) was selected as optimal
because it provides a good compromise between low overfitting (the difference between the mean RMSE of calibration
and tuning set) and as well a low tuning set RMSE compared to other values.The premise for this choice was that less
overfitting leads to better generalisation capacity of the model.

Once the optimal β= 0.02 was found, the best kernel and batch sizes were explored. Figure 4 shows the RMSE
maps with respect to kernel and batch sizes for the calibration (Figure 4A) and tuning (Figure 4B) sets and for
the difference between both (Figure 4C). The black contour lines on the two first maps show the contour level
corresponding to 1/3 of the scale, and it was used to empirically define basins of attraction. Since there was no
clear one-to-one match between minima in the calibration and tuning maps, we used these criteria to broadly
define the basins of attraction or areas of the hyperparameter space where the model performance tends to be
more consistent. By overlapping/intersecting these maps (see Supplementary Materials for details) we found
8 points/models that were common to both areas (white dots in the figure) and we pick the 3 (in red) with the
lowest tuning-cal RMSE. For the chosen models (2, 3 and 6), their hyperparameters and performance on the
original and new test sets were summarised in Table 2.

FIGURE 2 Model performances, (A) DL model developed in Mishra and Passos26 and tested on the test of the open mango data set.

(B) PLS model developed in Mishra and Passos26 and tested on the test set of the open mango data set. (C) DL model developed for the open-

access mango data26 and tested on the new test set related to the mango harvest of year 2020. (D) PLS model developed for the open-access

mango data26 and tested on the new test set related to the mango harvest of year 2020
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For Model 6, the performance was drastically improved by remodelling using data from the year 2018 as the tuning
data set. A reason could be that this model was able to reach a model by learning information related to season
variability. However, it was unclear what exact information led to such an improvement in the model performance
because NIR technology is a non-specific technique where most of the information is captured as highly overlapping
spectral responses of underlying physicochemical processes. The RMSE was decreased from 1.053% to 0.619% and was
also better than the recalibration of the PLS model, that is, RMSE = 0.68% (Figure 5A). The difference in the RMSEP's
of DL and PLS model may not be of high significance considering the high-uncertainty associated with the NIR
measurements, however, in a practical use the user usually prefers models with lower errors. A key point to note was
that until this stage the reported model accuracies were without any calibration transfer/model adaptation and were

FIGURE 3 Criteria for selecting the strength of the weights regularisation. In black, tuning-cal root-mean-square error (RMSE) and in

red tuning RMSE as a function of regularisation parameter β. The vertical blue dashed line represents the points where the best compromise

between the cal-tuning RMSE and tuning RMSE was found

FIGURE 4 The grid search root-mean-square error (RMSE) plots for exploring the effect of batch and filter size. (A) Calibration set,

(B) tuning set and (C) RMSE calibration minus RMSE tuning set to judge overfitting. The black contours in (a) and (B) indicate 1/3 of the

scale and are used to define basins of attraction in hyperparameter space. From the identified models in these areas, the three models with

lowest tuning-cal (marked as red dots) were identified

TABLE 2 The three models found during the hyperparameters optimisation and their performance on the independent test set

Model number β Batch size Kernel size Test RMSE (%)

2 0.02 64 25 1.053

3 0.02 32 15 0.814

6 0.02 256 15 0.619
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solely based on the open-access mango data measured on the different instrument compared to the one used in this
study. In the next section, the effect of a deep calibration transfer on the model performance was presented. From this
point onward, due to the best performance, Model 6 was used in the following part of study. The hyperparameters of
Model 6 were kernel size = 15, batch size = 256 and β = 0.02.

3.3 | Deep calibration transfer and PLS recalibration

The open-access mango data set was measured on a different instrument compared to the instrument used in this study.
Hence, according to the necessity of chemometrics, a calibration transfer was needed to remove the instrumental
differences before model application. Since the primary instrument was not available, traditional standard-based cali-
bration transfer chemometric approaches cannot be used. In this scenario, a possibility could be to develop a new
calibration with data from the new instrument. The performance of a new PLS calibration (5 LVs) developed using
solely the data of the new instrument was shown in Figure 6C. Additionally, for comparison purposes, another PLS
(7 LVs) model was developed by combining the open-access mango data with some data from the new instrument. The
performance of the updated PLS was shown in Figure 6D. Finally, the new DL model based on open-access mango data
was also updated using some data measured on the new instrument using the TL approach. The TL used in this study
consisted in initializing the first five model layers with pre-trained values (of Model 6) and training these layers using
60% of the new test set (fine-tune set). The final layer of the model was trained from scratch (i.e., ‘He_Normal’ weight
initialisation). This procedure allows for a model that has already learned some important patterns in the original data,
to evolve to encompass the variability on the new data set, in this study, the new season and new instrument related
variability. The final model evaluation was performed by using the retrained model on the remaining 40% of the new
test set.

The updating of the model with TL reached the lowest RMSE = 0.518% (Table 3). The new PLS model developed
solely on the data from the new instrument showed the second lowest RMSE = 0.598%, while the recalibrated PLS
showed the highest RMSE = 0.663% (Table 3). Such a superior performance of the DL model shows that updating the
DL model was needed to compensate for the instrument-specific variability and should be performed in practice when
a DL model must be used in a new instrument. Although in this current study, we do not have access to the primary
Felix F750 equipment used for acquisition of the global mango fruit data set and were not able to show a clear differ-
ence between the response of the two Felix 750 instruments. However, the improvement reached after the TL suggests
that the TL had to compensate for the instrumental differences. Such instrument differences in NIR spectrometer exist
due to several reasons such as the sensitivity of the detector, the light source and many different electric and optic
components used in spectrometers.28

In the earlier part of this study, the performance of TL was showed using a fine-tune set of 60% of data measured on
the new instrument. Those 60% of data were roughly �300 spectral and reference DM measurements. However, in

FIGURE 5 (A) Performance of PLS model recalibrated by combining data from calibration and test set of mango data set and tested on

the new season harvest. Performance of the new DL model developed by treating test set of mango data set as model validation set and

tested on the new season harvest (B) model 6 (see Table 2)
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FIGURE 6 (A) Evolution of cross-validation MSE for development of new PLS model based on data from new harvest, five latent

variables (LVs) were selected, (B) evolution of cross-validation MSE for development of new PLS model based on combining mango data set

and some data from new harvest, seven LVs were selected, (C) PLS model made from new harvest and tested new harvest data, (D) PLS

model combining open-access mango data with some data from new harvest and tested on test set from new harvest and (E) fine-tuned DL

model on test set from new harvest

TABLE 3 A summary of the performance of DL and PLS models after updating with some new data measured on new instrument

DL model (RMSEP DM %) PLS model (RMSEP DM %)

Before transfer learning 0.619 0.754

After transfer learning 0.518 0.663

FIGURE 7 A summary of posterior analysis on the effect of samples size on the RMSEP for transfer learning modelling
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practice, the user could be interested to measure as minimum samples as possible to make TL a profitable and time-
saving task. Therefore, in that regard, a posterior analysis on the effect of the sample size on the performance of the TL
model on the independent test set measured on the new instrument was performed. In Figure 7, it can be noted that
although in this work nearly 300 spectral measurements were used for the TL modelling. However, the reduction in the
RMSEP of TL model stabilised at nearly 150 samples, suggesting that the TL can be performed with a smaller number
of samples.

4 | CONCLUSIONS

This study performed independent validation of a global DL mango NIR model26 with a local experiment on mangoes
of a new season and measured with a different instrument. The primary results showed that a direct application of the
DL model in the new season and new-instrument data performed poorer compared to its performance reported
previously on the test set of open-access mango data set. On the contrary, the PLS model performed better than the DL
model when used on data measured with a new instrument. Such an inferior performance of DL model shows that the
DL model was much more sensitive to the seasonal/instrument change compared to traditional latent variable based
approaches such as PLS. There were two main causes hypothesised for the inferior performance of the DL model. The
first was that the instrument used in this study was different compared to what used to measure the data on which
the primary DL model was developed. The second reason was that the primary model26 was not tuned to cover the sea-
sonal variability. In this study, to cover the seasonal variability, a new DL model was developed using the open-access
mango data set but using the data from the year 2018 season as the tuning set. Later, the new DL model was transferred
to the new instrument in a standard free manner using transfer learning. The DL model reached the lowest
RMSEP = 0.518%, which was better than making a new PLS model or recalibrating the old PLS model. Although, the
difference in the RMSEP's of DL and PLS model may not be of high scientific significance considering the high-
uncertainty associated with the NIR measurements, however, in a practical use, the user usually prefers models with
lower errors. The DL modelling can become a practical tool to perform NIR modelling of fresh fruit property. For
example, the DL model developed in this study can be used on any similar NIR instrument with a basic step of transfer
learning to adjust the model to the local features of the new instrument. DL modelling can increase the scalability and
wider usage of NIR models, especially it can support portable spectroscopy where recalibrating each instrument from
scratch can be impractical. Future studies will include validating and updating the model in future harvest seasons.
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