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 25 

Abstract 26 

The objectives of this study were to characterize fluorescence of beverages from berry fruit, 27 

including chokeberry, blackcurrant, raspberry and strawberry, and to develop classification 28 

models based on different types of fluorescence spectra to identify beverages depending on 29 

the fruit species. Total fluorescence spectra (excitation-emission matrices, EEMs) and total 30 

synchronous fluorescence spectra (TSFS) were recorded for a series of commercial berry fruit 31 

beverages. An analysis of EEMs using parallel factor analysis (PARAFAC) revealed four 32 

components characterized by the excitation/emission maxima at 275/326, 319/410, 414/600, 33 

and 360/460 nm, respectively. Based on the spectral profiles, these components were assigned 34 

to various groups of phenolic compounds. Partial least squares discriminant analysis was used 35 

to develop the classification models. The analysis was performed on PARAFAC scores, the 36 

unfolded EEMs (uEEMs), unfolded TSFS (uTSFS), and additionally on conventional 37 

emission spectra (EMS) measured at particular excitation wavelengths and single 38 

synchronous fluorescence spectra (SFS). The classification models with the same average 39 

classification error of 4.86% were obtained for the analysis of both the entire uEEMs and 40 

uTSFS. Among models based on the individual spectra, the lowest error of 4.42% was 41 

obtained for SFS measured at =40 nm, and an error of 7.64% was obtained for EMS 42 

measured at the excitation wavelength of 360 nm. The classification model based on the 43 

PARAFAC scores had the highest error of 15.27%. The present results show good potential of 44 

fluorescence as rapid and reagent-free tool for authenticity evaluation of berry beverages.  45 

 46 

Keywords: Berry fruit beverages; Excitation-emission matrix; Synchronous fluorescence; 47 

PARAFAC; PLS-DA; Classification 48 

 49 
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Introduction 50 

Over the past years the application of spectroscopic techniques has gained increasing attention 51 

in food analysis [1]. The spectra measured using various techniques provide chemical 52 

fingerprints for particular food samples. The unique spectral pattern of a food product 53 

depends on the chemical components present, their interactions, and may be also affected by 54 

the physical properties of the sample. The main advantage of the spectroscopic techniques is 55 

that the analytical information provided by the respective spectra may be obtained by 56 

relatively easy and non-invasive measurements directly on the food samples. The use of 57 

chemometric methods in the analysis of spectral data is necessary due to the limited 58 

selectivity of signals caused by overlapping spectral bands of different food constituents. The 59 

main objectives of using chemometric methods are to identify patterns in the data, classify the 60 

samples, and model the relationships between the spectra and the evaluated properties.  61 

Spectroscopic techniques coupled to chemometrics provide an alternative to conventional 62 

methods in high-throughput determinations of properties of foods, including fruit and fruit-63 

based products [1]. The method most intensively used in the food analysis is the near-infrared 64 

spectroscopy, which nowadays is one of the basic tools in the routine food analysis and 65 

process control. The feasibility of other spectroscopic techniques, including mid infrared, 66 

ultraviolet-visible, Raman, nuclear magnetic resonance and fluorescence, has also been 67 

demonstrated in many studies.  68 

A growing number of studies show that electronic spectroscopy may be a valuable alternative 69 

to vibrational spectroscopic techniques for studying foods. In particular, fluorescence 70 

spectroscopy coupled with multivariate analysis has been successfully used as fingerprinting 71 

techniques in food quality evaluation. In addition to the advantages common to all of the 72 

spectroscopic techniques, fluorescence is more selective and sensitive than absorption 73 
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spectroscopy and is inherently multidimensional, providing more comprehensive information 74 

[2].  75 

Conventionally the sample fluorescence is characterized by the emission and excitation 76 

spectra, which represent the emission intensity as function of the wavelength of the emitted 77 

radiation, measured at constant wavelength of excitation or emission, respectively. However, 78 

food samples usually contain several important fluorophores, thus the measurements of 79 

conventional emission or excitation spectra at a selected excitation or emission wavelength 80 

are not sufficient to characterize all of these fluorophores. A more comprehensive 81 

characterisation of multifluorophoric systems is obtained by synchronous fluorescence 82 

spectroscopy, which represents fluorescence intensity as a function of the simultaneously 83 

scanned emission and excitation wavelengths, usually with a constant offset between the two 84 

(Δλ = λem − λexc) [3]. The profile of a synchronous fluorescence spectrum is thus dependent on 85 

the  value. The synchronous fluorescence spectra (SFS) in comparison with the emission 86 

spectra are characterized by higher selectivity and sensitivity, reduced overlapping of the 87 

spectral bands from different analytes due to the narrowing of their spectral widths, and 88 

reduction of the unwanted contribution of the scattered light [4].   89 

The most comprehensive characterization of multifluorophoric systems is obtained using 90 

multidimensional techniques such as the measurements of total fluorescence spectra (TFS), 91 

also known as an excitation-emission matrices (EEMs), and the measurements of total 92 

synchronous fluorescence spectra (TSFS). The excitation-emission matrix (EEM) is obtained 93 

by recording emission spectra for a series of excitation wavelengths, thus providing 94 

comprehensive characterization of the absorption and fluorescent properties of all of the 95 

emitting components in the sample tested [2]. The total synchronous fluorescence spectrum is 96 

obtained by recording the SFS over the range of Δλ values [5].  97 
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To fully utilize the analytical potential of the unique features of fluorescence, appropriate 98 

chemometric methods are used to analyze the recorded spectral matrices.   99 

A considerable number of minor and trace components of beverages, which belong to 100 

different chemical classes, exhibits detectable fluorescence [2]. Food-relevant fluorescent 101 

compounds include aromatic amino acids, both as individual compounds or present in 102 

proteins, some vitamins, chlorophyll and its derivatives, process-derived compounds, and 103 

some food additives and contaminants. Among these, phenolic compounds are an important 104 

group of natural fluorophores present in beverages of plant origin. Due to the variety of their 105 

structures, these compounds exhibit different properties, and many of them are fluorescent. 106 

Fluorescence has been successfully used to evaluate different aspects of the quality of various 107 

food products, including liquid phenolic-containing products, such as wine, spirit drinks, fruit 108 

juices, olive oil, coffee, and tea [6].   109 

An important group of beverages with high contents of phenolic compounds is the one 110 

produced from berry fruit. These fruit have attracted in recent years an increasing attention 111 

due to their nutritional quality and delicious and unique flavor [7]. The term “berry” in the 112 

pomological nomenclature refers to a diverse group of edible fruit of small size, round, and 113 

usually juicy, characterized by an intense color ranging from red to purple and blue, and taste 114 

from sweet to sour or bitter. This group of fruit is also called “red fruit” or “soft fruit” [8]. Not 115 

all fruit classified as berries in the pomological sense are true berries according to the 116 

botanical definition [9].  117 

Berries are a good source of macro- and micronutrients [10]. They contain high amounts of 118 

dietary fiber (cellulose, hemicellulose, and pectin), vitamins A, C, and E, vitamins of the B 119 

group, and some of the essential micronutrients [8]. Phenolic compounds are an important 120 

bioactive component in berries [7], responsible for the high antioxidative capacity, and due to 121 

perceived effect of berry consumption on the prevention of chronic diseases [11]. Berry fruits 122 
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are consumed in fresh and processed form [8, 12]. In addition to raw fruit, consumption of the 123 

berry beverages may be an important element of a healthy diet. Popular beverages are 124 

obtained, among others, from chokeberry, blackcurrant, strawberry and raspberry.  125 

Authenticity of fruit juices is one of the important aspects of their quality. Fraudulent 126 

practices in the beverage industry include mislabelling of product species and their 127 

geographical origin, dilution with water, and replacement of expensive ingredients with 128 

cheaper substitutes.  129 

The profiles of bioactive compounds in berries are strongly affected by the genotype of fruit – 130 

species and variety within the species [10], and thus have been used in authenticity studies. 131 

For example, the anthocyanin profiles have been used for taxonomy of berry fruit, and also to 132 

determine the authenticity of berry-derived food products [11]. Advanced analytical methods 133 

that were used for authenticity evaluation of berry fruit juices include polyphenolic profiling 134 

using HPLC [13], liquid chromatography quadrupole time-of-flight mass spectrometry [14], 135 

UHPLC-HRMS (Orbitrap) [15] and DNA barcoding method [16]. Non-targeted fluorescence 136 

fingerprinting analysis may be a valuable alternative to the conventional and chemical 137 

profiling methods [1]. So far, fluorescence has been successfully applied for authenticity 138 

testing of various beverages including wine [17-22], ice cider [23], spirit drinks [24, 25], 139 

apple juice [26-28], orange juice [29], coffee [30], and tea [31-33].   140 

The aim of the present paper was to explore the fluorescence of commercial berry beverages, 141 

obtained from chokeberry, blackcurrant, strawberry and raspberry, and to test its usage for the 142 

classification of products originated from different fruit. Different techniques of fluorescence 143 

measurements, including multidimensional total fluorescence spectra and total synchronous 144 

fluorescence spectra, and synchronous fluorescence spectra and emission spectra were 145 

explored and compared.   146 

 147 
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2. Material and methods 148 

 149 

2.1. Berry beverage samples 150 

The studied sample set consisted of juices, nectars and syrups produced from blackcurrant 151 

(Ribes nigrum), chokeberry (Aronia melanocarpa), strawberry (Fragaria × ananassa) and 152 

raspberry (Rubus idaeus). A total of 48 berry products that were available on the Polish 153 

market were evaluated in this study. The studied products included 12 chokeberry beverages: 154 

juices (8), nectars (1), and syrups (3); 12 blackcurrant beverages: juices (5), nectars (6), and 155 

syrups (1); 12 raspberry beverages: juices (8), and syrups (4); and 12 strawberry beverages: 156 

juices (5), nectars (1), and syrups (6).  157 

 158 

2.2. Fluorescence measurements 159 

The fluorescence spectra were recorded using a Fluorolog 3-11 spectrofluorometer (Spex-160 

Jobin Yvon, France). The total fluorescence spectra (excitation-emission matrices, EEMs) 161 

were obtained by recording the emission spectra in the 300-650 nm range with the excitation 162 

in the 270-500 nm range, at 5 nm steps in the excitation wavelength. The TSFS were acquired 163 

by recording the synchronous spectra in the 250-600 nm excitation range with the emission-164 

excitation offsets () in the 10-200 nm range, with a 10 nm step. The individual synchronous 165 

fluorescence spectra present the fluorescence intensity as a function of the excitation 166 

wavelength. The emission and synchronous fluorescence spectra were corrected for the 167 

wavelength-dependent response of the system. 168 

The excitation and emission slit widths were 3 nm. The acquisition interval and the 169 

integration time were maintained at 1 nm and 0.1 s, respectively.  170 
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The undiluted samples were measured directly in a 10 mm fused-silica cuvette applying front 171 

face geometry. To reduce the scattered light effects, the samples were centrifuged before 172 

measurements (14000 rpm for 5 min).  173 

 174 

2.3. Data analysis 175 

Data arrangement 176 

The EEMs were arranged for the numerical analysis into three-way array with the size of 48 × 177 

360 × 47 elements (number of samples × number of emission wavelengths × number of 178 

excitation wavelengths) or held in the unfolded array with the dimensions of 48 × 16 920 179 

elements, given by number of samples × (number of emission wavelength multiplied by 180 

number of excitation wavelengths). The three-way EEMs were unfolded along the sample 181 

mode (Supplementary material, Figure S1). Additionally, individual emission spectra 182 

measured at the particular excitation wavelength in the range of 270–500 nm with 10 nm step 183 

were analyzed.   184 

The recorded TSFS were held in an array with the size of 48 × 20 × 351 elements (number of 185 

samples × number of excitation wavelengths × number of wavelength offsets ). The array was 186 

unfolded for numerical analysis along the sample mode, forming a matrix with the dimensions 187 

of 48 × 7020 elements (number of samples × number of excitation wavelengths multiplied by 188 

number of wavelength offsets) (Supplementary material, Figure S2). Additionally, individual 189 

synchronous fluorescence spectra measured at the particular wavelength offsets () in the 190 

range of 10–200 nm with 10 nm step were analyzed. 191 

 192 

Parallel factor analysis (PARAFAC) 193 

Parallel factor analysis (PARAFAC) was used to decompose the EEMs into the contributions 194 

of the individual fluorescent components [34], (please consult Supplementary material for 195 
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more details about PARAFAC method). Three-way data EEMs array was used in the 196 

PARAFAC analysis. The Rayleigh scattering contributions to the EEMs were removed by 197 

inserting the interpolated values. Non-negativity constraints were applied to the excitation and 198 

emission spectra and the concentrations. The optimal number of components in the 199 

PARAFAC models was chosen based on the explained variance, core consistency diagnostic 200 

(CORCONDIA) and split-half analysis.  201 

 202 

Partial least squares discriminant analysis (PLS-DA) 203 

The PLS-DA was used for the development of classification models for the four classes of 204 

products originated from different fruit, based on fluorescence data [35] (please consult 205 

Supplementary material for more details about PLS-DA method). The separate PLS-DA 206 

models were developed using PARAFAC scores as the X matrix, the entire uEEMs, the entire 207 

uTSFS, individual emission spectra, and individual synchronous fluorescence spectra. The 208 

response matrix (Y) in the PLS-DA analysis was a dummy matrix with four columns 209 

containing class membership information for each of the samples. In particular, the respective 210 

variable was set to 1 for all of the juices originating from a particular fruit and to 0 for the 211 

other juices.  212 

All models were developed for mean-centered data. Additionally, unit vector normalization 213 

was applied at the model optimization step.  214 

 215 

Cross-validation was used to assess the optimal number of components and to estimate the 216 

model performance. This procedure is based on selection of different subsets of the samples, 217 

which are used for model building (training set) and testing (test set). The steps of model 218 

building and testing are repeated several times with different samples subsets, and the same 219 

samples may be used in the training and test sets in different runs. The Venetian-blinds 220 
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variant of cross-validation with 10 data splits was applied, in which every 10
th

 sample was 221 

selected for test set, starting from the first sample to the last. 222 

The optimal number of components was selected as the minimum in the plot of the average 223 

classification error rate as a function of the number of components. The performance of 224 

models was estimated on the basis of the classification error rate, sensitivity and selectivity 225 

for individual classes, and the average classification error rate [35]. The sensitivity of a 226 

particular class was defined as the fraction of the samples that were correctly identified as the 227 

members of that class. The specificity of a particular class was defined as the fraction of 228 

samples of other classes that were correctly rejected by the model. The classification error rate 229 

for a particular class was calculated as the fraction of samples that were classified incorrectly. 230 

The average classification error rate was calculated as the mean value of classification error 231 

rates for the four classes studied. All of these parameters were expressed in percentages.  232 

The Variable Importance in Projection (VIP) was used to identify variables that significantly 233 

contribute to the PLS-DA models [36]. VIP provides a measure of explanation of the variance 234 

of X by each of the variables and, simultaneously, of the correlation of X with Y.  235 

The data analysis was performed using Solo v. 5.0.1 software (Eigenvector Research Inc., 236 

USA).   237 

 238 

3. Results and discussion  239 

3.1. Fluorescence characteristics of berry juices  240 

Total fluorescence spectra, excitation-emission matrices 241 

The TFS (or EEMs) of all of the beverages studied were obtained by recording the emission 242 

spectrum for a series of excitation wavelengths, thus they present the fluorescence intensity as 243 

function of both excitation and emission wavelengths. Figure 1 shows the EEMs of 244 

representative samples in each of the four studied categories of beverages. Similar features are 245 
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present in all of the recorded spectra. Specifically, three emission bands are observed, with 246 

their respective excitation/emission maxima at (I) 276-280/314-338 nm, (II) 310-345/390-455 247 

nm, and (III) 380-465/585-645 nm. The differences in the exact positions of the maxima and 248 

the relative intensities of the particular bands are observed for particular juices. Moreover, a 249 

fourth (IV) emission band is present with the excitation/emission maxima at 386-420/499-250 

560 nm in some of the strawberry beverages only.   251 

Insert Figure 1 252 

 253 

Total synchronous fluorescence spectra 254 

TSFS of the beverages studied were measured by recording the synchronous fluorescence 255 

spectra for the range of  values. The synchronous measurements rely on simultaneous 256 

scanning of the excitation and emission wavelengths with a constant offset  between them. 257 

The single SFS usually presents the fluorescence intensity as function of the excitation 258 

wavelength. Thus, the TSFS present the fluorescence intensity as a function of the excitation 259 

wavelength and the  offset. Figure 2 illustrates the overall characteristics of the TSFS, of 260 

the four representative samples in each of the beverage categories studied. 261 

Insert Figure 2 262 

The TSFS show the narrowing of the bands and the shift of their maxima to shorter 263 

wavelengths compared to the EEMs. The TSFS of all of the beverages studied, similarly to 264 

EEMs, show some common patterns. Three distinct emission zones are present, with varied 265 

exact positions of the maxima and their relative intensity for different beverages. These bands 266 

in TSFS correspond to the respective bands in the TFS. The maxima of these spectral bands 267 

are observed in the following /exc ranges: (I) 43-72/270-282 nm, (II) 66-138/315-351 nm 268 

and (III) 150-190/410-480 nm. An additional emission band (IV) is observed in strawberry 269 

beverages, with the respective maxima at /exc 98-137/360-409 nm.  270 
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 271 

3.2. Exploratory analysis of fluorescence spectra  272 

Parallel factor analysis of total fluorescence spectra  273 

A detailed insight into the EEMs patterns of the beverages studied was obtained by the 274 

PARAFAC analysis. The EEMs fulfill the trilinearity conditions; every fluorophore has 275 

unique excitation and emission spectral profiles independent of the changes in the other two 276 

modes, thus PARAFAC may be used for their analysis. The objective of this analysis was to 277 

resolve the EEMs into the contributions of the individual fluorophores.  278 

Based on the value of explained variance (97.9%), core consistency value (46) and analysis of 279 

both the residuals and the loadings, an optimal PARAFAC model for all beverages studied 280 

was identified as having four components. The excitation and emission loadings of these four 281 

fluorescent components and their respective relative contributions are presented in Figure 3.  282 

Insert Figure 3 283 

These PARAFAC components had their maxima at the following excitation/emission 284 

wavelength pairs: 275/326 nm (component 1), 319/410 nm (component 2), 414/600 nm 285 

(component 3), and 360/460 nm (component 4). A tentative assignment of the PARAFAC 286 

components is based on the literature data. The native fluorescence of berry beverages may 287 

originate from several groups of chemical compounds; phenolic compounds being an 288 

important group. The phenolics present in berry product include anthocyanins, phenolic acids, 289 

tannins, and flavonoids. Berries also contain vitamins A, E, and the B group vitamins, which 290 

are all fluorescent [10].  291 

The first PARAFAC component with its excitation/emission maxima at 275/326 nm may be 292 

ascribed to hydroxybenzoic acids and catechins. The fluorescence of hydroxybenzoic acids 293 

found in red fruit juices (gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, 294 

vanillic acid, and syringic acid) were reported in the excitation maximum range of 260-290 295 
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nm and the emission maximum range of 340-360 nm [13]. The emission of catechin and 296 

epicatechin was reported at 280 nm in excitation and at 325 nm in emission [13].  297 

The second component with the excitation/emission maxima at 319/410 nm may correspond 298 

to hydroxycinnamic acids that show fluorescence with the excitation maximum of 310-340 299 

nm and the emission maximum ranging from 420 to 455 nm [13]. The major 300 

hydroxycinnamic acids found in berries are ferulic, caffeic and p-coumaric acids and 301 

caffeoylquinic esters [11]. Blackcurrant has high contents of p-coumaric acid and caffeic acid 302 

[12]. Ellagic acid that is the dominant acid in strawberries and raspberries shows absorption 303 

maxima at 253 and 366 nm, and the fluorescence maximum at 425 nm. It is present in either 304 

the free form or esterified to glucose in hydrolysable ellagitannins [12].  305 

The third component had its excitation/emission maxima at 414/600 nm and may be 306 

tentatively ascribed to anthocyanins. Berries are particularly rich in anthocyanins, which are 307 

responsible for their characteristic colors [11]. The anthocyanin composition of berries 308 

depends on the species and varieties [10]. The dominant anthocyanins in the four studied fruit 309 

are: delphinidin-3-rutinoside – in blackcurrant, cyanidin-3-galactoside – in chokeberry, 310 

cyanidin-3-sophoroside – in raspberry, and pelargonidin-3-glucoside – in strawberry. 311 

Anthocyanins are weakly fluorescent in solution, however, aggregation or complexation to 312 

other molecules can induce significant fluorescence of the resulting anthocyanin-derived 313 

complexes [37]. The orange to red fluorescence of anthocyanins was reported in the emission 314 

wavelength range from 595 to 630 nm [38].   315 

The forth PARAFAC component exhibited an excitation spectrum with its maximum at 360 316 

nm and emission with its maximum at 460 nm. This fluorescence may originate in quercetin 317 

and kaempferol, flavonols that are particularly abundant in berry fruit [10]. Kaempferol 318 

fluorescence was reported at the excitation/emission maxima of 365/445-450 nm [38]. The 319 

emission maximum for quercetin was reported at 400-420 nm, with the excitation at 260-262 320 
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nm [18] or at 480 nm with the excitation at 427 nm in tartrate buffer (pH=7) and 13% ethanol 321 

[19]. Another study found that quercetin fluorescence was pH-dependent, with dual emissions 322 

observed in aqueous solutions (pH=5), with the maxima at 455 nm and 521 nm, attributed to 323 

the normal and the tautomeric form, respectively [39].   324 

According to Sádecká et al. [40] the PARAFAC component observed in brandy with the 325 

maxima at 390/482 nm in excitation and emission was ascribed to coumarins, tannins, phenols 326 

and flavonols. Note that both hydrolysable and condensed tannins are found in berry fruit. 327 

Therefore, it rather seems that hydrolysable tannins should contribute more to the forth 328 

PARAFAC component. These compounds are derivatives of gallic and ellagic acids that have 329 

been found in strawberries and raspberries, and are less common in other berry fruit [12]. The 330 

fluorescence maximum of tannins was reported at 500 nm, with the excitation rage of 360-380 331 

nm [38].   332 

Condensed tannins are oligomers or polymers, usually of catechin and epicatechin [11]. In 333 

berry fruit, the largest quantity of condensed tannins with a high degree of polymerization is 334 

found in chokeberry [12].   335 

Figures 3c and 3d show the contributions of each of the four PARAFAC components to the 336 

EEMs of the individual juices. The great variability of spectral properties within particular 337 

classes of beverages originating from the same fruit is observed. At the same time, there are 338 

some differences between different classes. The chokeberry and blackcurrant juices had 339 

generally lower contribution of component 1 as compared to the raspberry products. At the 340 

same time, strawberry beverages show an intermediate contribution of this component. All of 341 

the juices presented a similar contribution of the component 2. The chokeberry, blackcurrant, 342 

and raspberry juices were characterized by a similar contribution of the component 3, while 343 

the strawberry juice had the highest contribution of that component. Some chokeberry 344 

products had very low or zero contribution of component 4, blackcurrant and raspberry 345 
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showed low - to - intermediate contribution while strawberry products had the highest 346 

contribution of that component. The PARAFAC scores provided some discrimination among 347 

the juices according to their origin. Some discrimination of beverages was observed in the 348 

planes defined by the first and the second, and the third and the fourth components. The 349 

strawberry beverages were discriminated from the other three groups of juices in the plane 350 

that was defined by the third and the fourth components.  351 

 352 

3.3. Multivariate classification models 353 

The PLS-DA method was applied for discriminating the beverage samples into the four 354 

categories. The analyses were performed separately on the PARAFAC scores, on the entire 355 

uEEMs, entire uTSFS, and on the individual SFS and EMS. Raw and normalized spectral data 356 

were analysed. The characteristics of the resulting classification models are presented in Table 357 

1.  358 

Insert Table 1 359 

 360 

PARAFAC-PLS-DA 361 

The PLS-DA model based on the PARAFAC scores was characterized by the relatively high 362 

classification error of 15.27%. The errors for the individual classes ranged from 6.94% for 363 

chokeberry to 27.77% for blackcurrant. The highest sensitivity and specificity were thus 364 

obtained for chokeberry and strawberry beverages. 365 

 366 

uEEMs-PLS-DA 367 

The PLS-DA analysis of uEEMs led to the considerably better classification results. The 368 

average classification error was 4.86%. Perfect classification was obtained for the strawberry 369 
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beverages. The other classes were classified with similar error values of 6.94% for the 370 

chokeberry and raspberry beverages and 5.55% for blackcurrant.  371 

The Variable Importance in Projection (VIP) was used to identify the spectral ranges that 372 

significantly contribute to the discrimination between the classes of beverages.  373 

Insert Figure 4 374 

Figures 4 shows the respective VIP plots for each of the classes studied. The VIP provides a 375 

measure of the significance of variables in a discrimination model. The variables that are 376 

characterized by the VIP values higher than unity, contribute significantly to the 377 

discrimination between the classes studied. The analysis of the respective VIP plots revealed 378 

that the emission spectra measured at lower excitation wavelengths contribute significantly to 379 

the discrimination of all of the classes. For chokeberry and strawberry the contribution of the 380 

emission spectra measured in the excitation wavelength range of about 300-380 nm is also 381 

important.  382 

 383 

uTSFS-PLS-DA 384 

In the next step the uTSFS were analysed. The average classification error for this model was 385 

the same as that for the uEEMs-PLS-DA model, Table 1. However, the classification 386 

performance for individual classes was different. The best classification results were obtained 387 

for chokeberry and strawberry beverages, while higher errors were obtained for blackcurrant 388 

and raspberry classes. 389 

Insert Figure 5 390 

Figure 5 shows the respective VIP plots for the uTSFS-PLS-DA model for each of the classes 391 

studied. Several spectral bands contribute to the discrimination of particular classes. A 392 

significant contribution of SFS in the  range of 20 to 40 nm was observed for all of the 393 
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classes studied. Moreover, SFS for  between 60 and 100 nm also contribute significantly to 394 

the classification.  395 

 396 

Individual EMS-PLS-DA 397 

To test the usability of conventional emission spectra in beverage discrimination, PLS-DA 398 

models were developed using the individual emission spectra measured at the excitation 399 

wavelength range from 270 to 500 nm. The spectral data recorded every 10 nm were all 400 

tested. The models with the lowest average classification errors were obtained in the analysis 401 

of the normalized spectra. The main characteristics (classification errors and the number of 402 

latent variables) for the PLS-DA model are shown in Figure 6A for the individual normalized 403 

emission spectra.  404 

Insert Figure 6 405 

The classification performance of the tested PLS-DA models depended on the analyzed 406 

emission spectra. Generally, the models with lower classification errors were obtained for the 407 

spectra recorded as the lower excitation wavelengths. The classification errors below 10% 408 

were obtained for the emission spectra measured at the excitation wavelengths of 360, 340, 409 

and 290 nm. The model for the emission spectra recorded at the excitation wavelength of 360 410 

nm had the best performance. This model was characterized by the average classification 411 

error of 7.64%, Table 1. Two classes – chokeberry and blackcurrant beverages – were 412 

classified with the same low error value of 2.8%; while the two other classes – raspberry and 413 

strawberry – with the relatively high error of 12.5%.   414 

 415 

Individual SFS-PLS-DA 416 

A series of PLS-DA models were developed for the SFS measured for  from 10 to 200 nm 417 

with 10 nm step to test the potential of the individual SFS for the beverage classification. The 418 
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characteristics of the models for the raw SFS are presented in Figure 6B. The lowest average 419 

classification errors were obtained for the SFS measured at the  values below 40 nm. The 420 

best classification results were obtained for the SFS obtained at  = 40 nm. The average 421 

error rate for this model was a little lower than that for the model based on the entire uTSFS. 422 

Among the individual classes, the best classification results were obtained for blackcurrant 423 

(1.39% error); the classification performance was similar for chokeberry and strawberry with 424 

the same error rate of 4.17%. The highest error of 6.94% was obtained for raspberry 425 

beverages.  426 

 427 

Comparison of the classification models   428 

Based on the present results, we may conclude that PLS-DA analysis of uEEMs and uTSFS 429 

provided similar overall classification performance. Both measurement techniques provided 430 

comprehensive characterization of the samples studied, and contained similar analytical 431 

information. On the other hand, EEMs may have some advantages in explorative studies. 432 

Thanks to their trilinear structure, the use of PARAFAC analysis allows the extraction of 433 

unique spectral profiles of the fluorescent components, facilitating or extending the 434 

possibilities of interpretation. TSFS techniques may have same advantages in practical 435 

applications, like elimination of Rayleigh scattering and simplified data analysis.   436 

Interestingly, very similar overall classification results were obtained for the analysis of 437 

uTSFS and SFS ( = 40 nm). Due to the simultaneous scanning of excitation and emission 438 

monochromators, even a single synchronous fluorescence spectrum provides information 439 

about all of the fluorescent components present in a sample. However, as apparent in our 440 

results, Figure 6, the choice of  affects the classification results quite markedly. Generally, 441 

the lower  values should provide better resolution of bands from different fluorophores due 442 

to their narrowing. However, the optimal  value for the particular compounds is defined by 443 
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their Stokes shift, thus different fluorophores have their maxima at different  values. Based 444 

on the results of this study and other published results, we conclude that an optimal value of 445 

 should be selected empirically for a particular system and problem studied.   446 

The classification performance of models based on the individual EMS was lower as 447 

compared to the entire uEEMs, uTSFS and single SFS. This is due to the inherent 448 

characteristics of this type of spectrum, which contain overlapping signals originating from 449 

those particular fluorophores, which are excited at the selected wavelength. Thus, in a single 450 

EMS, part of the analytical information may be lost in a multifluorophoric system. Similarly, 451 

poorer classification results for the analysis of individual EMS as compared to the uEEMs-452 

PCA-LDA and SFS-PCA-LDA results were obtained recently in the classification of brandy 453 

according to the region of production [40].   454 

The lowest classification performance was presently obtained in the PARAFAC-PLS-DA 455 

model. These results may be due to the some limitations of this model. The analysis of all of 456 

the EEMs resulted in a model with four components, each of those most probably 457 

representing a group of fluorescent components with a similar spectral profile, rather than an 458 

individual chemical compound. Thus, although PARAFAC  decomposition provided valuable 459 

insights into the spectral interpretation and identification of fluorophores, some of the 460 

information important for the sample differentiation and classification was lost.   461 

 462 

4. Conclusions 463 

The EEMs and TSFS provide the overall characteristics of the natural fluorescence of berry 464 

fruit juices. The analysis of the EEMs using PARAFAC extracted four fluorescent 465 

components and revealed some differences among the fluorescence of the beverages obtained 466 

from different fruit. The beverages originated from different fruit were successfully classified 467 

on the basis of their fluorescence using the PLS-DA method. Good PLS-DA results were 468 
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obtained for both the analysis of unfolded matrices obtained using multidimensional 469 

fluorescence techniques as well as for individual SFS and conventional EMS. The optimal 470 

parameters should be carefully selected for the discrimination purposes, namely exc for EMS 471 

and  for the SFS measurements, as they significantly affected the model performance. This 472 

selection may be important for the potential practical applications, for fluorescence screening 473 

of juices for authenticity. 474 

The presented results show usability of fluorescence for identifying the berry species used to 475 

prepare berry beverages. These results may be potentially useful for the development of rapid 476 

and reagent-free methods for authenticity testing of berry beverages.  477 
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 600 

Table caption 601 

Table 1. Characteristics of the classification models, and cross-validation results: average 602 

classification error, classification errors, sensitivity and specificity for the four classes in the 603 

classification models: chokeberry, blackcurrant, raspberry and strawberry beverages.  604 

 605 

Figures captions 606 

Figure 1. Excitation-emission matrices  of juices from different berry fruit: A) chokeberry, B) 607 

blackcurrant, C) strawberry and D) raspberry. 608 

 609 

Figure 2. Total synchronous fluorescence spectra of juices from different berry fruit: A) 610 

chokeberry, B) blackcurrant, C) strawberry and D) raspberry. The spectra for the same 611 

samples are presented as those in Figure 1. 612 

 613 

Figure 3. Results of PARAFAC of EEMs: A) excitation profiles, B) emission profiles, C) 614 

scores on component 1 vs component 2 and D) scores on component 3 vs component 4.  615 

 616 

Figure 4. Variables in the projection for the uEEMs-PLS-DA model (normalized) for each of 617 

the classes: A) chokeberry, B) blackcurrant, C) strawberry, and D) raspberry. 618 

 619 

Figure 5. Variables in the projection for the uTSFS-PLS-DA model (normalized) for each of 620 

the classes: A) chokeberry, B) blackcurrant, C) strawberry, and D) raspberry. 621 

 622 
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Figure 6. Classification error for the PLS-DA classification models based on A) single 623 

(normalized) emission spectra, and B) single synchronous fluorescence spectra. The numbers 624 

represent number of latent variables for PLS-DA models. 625 

626 
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 627 

Table 1. Characteristics of the classification models, and cross-validation results: average 628 

classification error, classification errors, sensitivity and specificity for the four classes in the 629 

classification models: chokeberry, blackcurrant, raspberry and strawberry beverages.  630 

Parameter Class PARAFAC-PLS-

DA1 

uEEMs-PLS-

DA2 

uTSFS-PLS-

DA3 

EM-PLS-

DA4 

SFS-PLS-

DA5 

Number of latent 

variables 

 

 3 7 7 7 8 

Average classification  

error (%)  

 15.27 4.86 4.86 7.64 4.42 

Classification error Chokeberry 6.94 6.94 1.39 2.8 4.17 

(%) Blackcurrant 27.77 5.55 6.94 2.8 1.39 

 Raspberry 18.05 6.94 8.33 12.5 6.94 

 Strawberry 

 

8.33 0.00 2.78 12.5 4.17 

Sensitivity Chokeberry 91.7 91.7 100 100 91.7 

(%) Blackcurrant 83.3 91.7 91.7 100 100 

 Raspberry 75.0 91.7 91.7 83.3 91.7 

 Strawberry 

 

91.7 100 100 91.7 91.7 

Specificity Chokeberry 94.4 94.4 97.2 94.4 100 

(%) Blackcurrant 61.1 97.2 94.4 94.4 97.2 

 Raspberry 88.9 94.4 91.7 91.7 94.4 

 Strawberry 91.7 100 94.4 83.3 100 

1 – PARAFAC model with 4 components, 2 – normalized uEEMs,  3 – normalized  uTSFS, 4 – normalized emission spectra 631 

measured at 360 nm excitation wavelength, 5 – synchronous fluorescence spectra recorded at =40 nm. 632 

633 
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Figure 1.  640 
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Figure 2.  648 
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Figure 3.  657 
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Figure 4. 666 
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Figure 5.  673 
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A)         B) 676 

 677 

Figure 6.  678 
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 684 

Highlights 685 

Fluorescence of chokeberry, blackcurrant, raspberry and strawberry beverages characterized 686 

Partial least squares – discriminant analysis (PLS-DA) applied to fluorescence data 687 

Beverages classified according to the fruit species with the average error below 5% 688 

Performance of various fluorescence techniques compared  689 
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