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25 ABSTRACT

26 Genetic structure in biogeographical transition zones can be shaped by several factors 

27 including limited dispersal across barriers, admixture following secondary contact, differential 

28 selection and mating incompatibility. A striking example is found in Northwest France and 

29 Northwest Spain , where the estuarine seaweed Fucus ceranoides L. exhibits sharp, regional 

30 genetic clustering. This pattern has been related to historical population fragmentation and 

31 divergence into distinct glacial refugia, followed by post-glacial expansion and secondary 

32 contact. The contemporary persistence of sharp ancient genetic breaks between nearby 

33 estuaries has been attributed to prior colonization effects (density barriers) but the effect of 

34 oceanographic barriers has not been tested. Here, through a combination of mesoscale 

35 sampling (15 consecutive populations) and population genetic data (mtIGS) in NW France, 

36 we define regional genetic disjunctions similar to those described in NW Iberia. Most 

37 importantly, using high resolution dispersal simulations for Brittany and Iberian populations, 

38 we provide evidence for a central role of contemporary hydrodynamics in maintaining genetic 

39 breaks across these two major biogeographic transition zones. Our findings further show the 

40 importance of a comprehensive understanding of oceanographic regimes in hydrodynamically 

41 complex coastal regions to explain the maintenance of sharp genetic breaks along 

42 continuously populated coastlines.

43

44 INTRODUCTION

45 Fueled by current concerns about the impacts of global change on biodiversity, there is a 

46 renewed interest in understanding the processes affecting a species’ range dynamics as well 

47 as the factors shaping its genetic diversity. Generally, both historical and contemporary 

48 processes are invoked to explain the distribution and phylogeography of a species. Tectonic 

49 events and past climate fluctuations created topographic, environmental and hydrologic 

50 barriers that were key in shaping phylogeographic structure of many plant and animal species. 

51 Of these, the Last Glacial Maximum is probably the most significant and recent historical event 
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52 (e.g., Hewitt, 2000; Barnes et al., 2002; Liang et al., 2017; Neiva et al., 2018). During this time, 

53 ice sheets covered much of current cold and temperate zones of the Northern Hemisphere, 

54 triggering range fragmentation and contractions of entire ecosystems to more southern 

55 latitudes, while during the present interglacial, widespread range shifts and poleward 

56 expansions have occurred.

57 It is predicted that genetic diversity is lowest in recently colonized areas and highest in refugial 

58 areas where long-term persistence was possible (e.g., Hewitt, 1996; Comps et al., 2001; 

59 Hewitt, 2004; Kennedy et al., 2017). However, contemporary demographic processes can 

60 either mask or even erase genetic signatures of population expansions or retreats (Smith et 

61 al., 2011). High levels of gene flow may homogenize genetic diversity among previously 

62 structured populations. On the other hand, nonrandom mating with individuals in close 

63 geographic proximity can generate genetic structuring within a continuous population (Slatkin, 

64 1993). Intrinsic characteristics of the species such as dispersal ability, migration patterns and 

65 changes in population densities can further confound any historical signature (e.g.,Mims et al., 

66 2015; Chust et al., 2016; Assis et al., 2018)

67 Biogeographical transition regions provide a good framework for exploring and understanding 

68 genetic structuring of species through space and time. These are areas of overlap and 

69 segregation between different biotic components, and geographically separated clades often 

70 coincide with these transition zones (Ferro and Morrone, 2014). In the marine realm, 

71 phylogeographic breaks in biogeographical transition regions are generally attributed to 

72 historical processes or contemporary dispersal barriers, such as upwelling phenomena and 

73 currents that may limit along-shore dispersal, environmental differences boosting local 

74 adaptation and/or reproductive strategies maintaining self-recruitment (Gilg and Hilbish, 2003; 

75 Zardi et al., 2007; Selkoe et al., 2010).

76 There are well known biogeographical boundaries in all oceans, some of which are associated 

77 with oceanographic features that generate contemporary barriers to dispersal. For example, 

78 the strong southward-flowing Agulhas Current, which runs about 10 km offshore along most 

79 of South Africa's east and southeast coast, impedes larval dispersal and thus promotes local 
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80 adaptation (Teske et al., 2011; Zardi et al., 2011). Dispersal and gene flow around Point 

81 Conception in southern California are also strongly affected by extensive upwelling of colder 

82 sub-surface waters and by the southward California Current (Wares et al., 2001; Hohenlohe, 

83 2004; Johansson et al., 2015). 

84 Here, we investigated the contribution of contemporary oceanographic connectivity in 

85 maintaining geographically separated genetic clades within a continuously distributed 

86 seaweed species along the biogeographic transition areas of Brittany (northwest France, 

87 Europe) and northwest Iberia (northern Spain, Europe; Fig. 1). These two areas are highly 

88 relevant for studying this question and marine connectivity in general. Both areas delimit the 

89 boundaries between cold‐temperate and warm‐temperate regions (Spalding et al., 2007), they 

90 are refugial zones for numerous species (Provan, 2013) and, over the past decades, they 

91 have undergone significant changes in macroalgae assemblages due to climate change 

92 (Nicastro et al., 2013; Gallon et al., 2014; Assis et al., 2017). 

93 In this study, we use phylogeographic analyses and Lagrangian Particle Simulations 

94 (LPS) coupled with network analyses to evaluate the levels of congruence between dispersal 

95 potential and the patterns of present-day genetic differentiation and diversity in the estuarine 

96 seaweed Fucus ceranoides along these two biogeographic transition zones. This species is 

97 perennial, dioecious and restricted to estuarine intertidal areas. Fucoid seaweeds have no 

98 planktonic dispersal stage and have restricted gamete dispersal (Serrão et al., 1997). 

99 However, adult individuals can achieve long distance gene flow via the rafting of whole or 

100 partially detached thalli with reproductive structures (Thiel and Haye, 2006; McKenzie and 

101 Bellgrove, 2008), a form of population connectivity strongly influenced by hydrodynamic forces 

102 and coastal topography. Currently, F. ceranoides is distributed from northern Portugal to 

103 northern Norway (Lein, 1984) and Iceland (Munda, 1999), covering both past non-glaciated 

104 and glaciated regions of Europe. Previous studies have shown the occurrence of two divergent 

105 genetic lineages in this species between the south and the north of Europe, the 

106 phylogeographic break being localized in Northwest France near the English Channel (Neiva 

107 et al., 2012a; Neiva et al., 2012b). Specifically, the dominant Northwest Iberian haplotypes of 
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108 this species was found in southern Brittany but not after the genetic break in northern Brittany 

109 (Neiva et al., 2010). We discuss three scenarios for the concordance between present-day 

110 oceanographic dispersal barriers and the observed genetic differentiation among F. 

111 ceranoides estuarine populations: 1)  Contemporary oceanographic barriers to dispersal are 

112 responsible for the origin, the position and the maintenance (i.e. delaying genetic 

113 homogenization) of the genetic differentiation; 2) Contemporary oceanographic circulation 

114 patterns explain the position, the maintenance but not the origin of the genetic differentiation; 

115 3) Reproductive isolation, in addition to contemporary oceanographic patterns, limits genetic 

116 homogenisation thus contributing to the position and the maintenance of the genetic 

117 differentiation.

118

119 MATERIALS

120 Genetic data

121 The two study areas (NW France and NW Spain) are peninsulas characterized by complex 

122 and variable circulation patterns (Puillat et al., 2004; Varela et al., 2005; Ruiz-Villarreal et al., 

123 2006; Ayata et al., 2011). Because of that, sampling of only a limited number of localities would 

124 be inappropriate. We therefore decided to sample a small number of individuals at as many 

125 sites along the two coastlines as possible, rather than obtaining large numbers of individuals 

126 from a limited number of sites (e.g., Sotka et al., 2004; Teske et al., 2007). This decision was 

127 also supported by the very low genetic diversity within localities for this species (Neiva et al., 

128 2010; 2012b; Neiva et al., 2012a). As a result, two sets of sequences of Fucus ceranoides 

129 were prepared and analyzed separately. The first data set (Data set 1) comprised sequences 

130 of individuals collected in the estuaries of all major rivers between Hennebont (HB, southern 

131 Brittany) and Camarel (CM, northern Brittany) in northwest France (n = 2 from each site; 

132 Table SI1). The second dataset (Data set 2) consisted of sequences previously analysed in 

133 Neiva et al. (Neiva et al., 2010; 2012b; Neiva et al., 2012a) and sampled across northern Iberia 

134 between Viana do Castelo (VIA, northern Portugal) and Porcia (POR, northern Spain). To 
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135 allow a comparison between data sets, a random subsample of 2 individuals from each site 

136 was used for Data set 2. The random subsampling in NW Spain was repeated to ensure 

137 consistency in the results obtained.

138 Sampling was performed in 2014-2015 and conducted with similar criteria for individuals used 

139 in both data sets.  All collection sites were characterized by monospecific belts of F. 

140 ceranoides attached to hard substrata and were exposed to steep salinity fluctuations 

141 throughout the tidal cycle. At each site, 5-10 cm tips of apical vegetative tissue were collected 

142 from individuals sampled in the mid distributional range of the species. Neighboring sites were 

143 at an average proximity of about 50 (±15) and 33 (±17) km for Data sets 1 and 2 respectively. 

144 All samples were individually stored dehydrated in silica-gel crystals until DNA extraction.

145 DNA isolation and sequencing of data set 1

146 To compile Data set 1, genomic DNA was extracted from approximately 10 mg of dried tissue 

147 using the Nucleospin® Multi-96 plant kit (Macherey-Nagel Duren, Germany), according to the 

148 manufacturer’s protocol. Individuals were sequenced for the mitochondrial 23 S/trnK 

149 intergenic spacer (mtIGS, Neiva et al., 2010). Primer sequences and amplification details were 

150 the same as in Neiva et al. (Neiva et al., 2010; 2012b; Neiva et al., 2012a). Amplified fragments 

151 were run in an ABI PRISM 3130xl automated capillary sequencer (Applied Biosystems, 

152 CCMAR Portugal). MtDNA sequences were aligned, proofread and edited in GENEIOUS 3.8 

153 (Drummond et al., 2011).

154 Data analyses

155 For both data sets, haplotype frequencies were estimated using DnaSP 5.0 (Librado and 

156 Rozas, 2009). The relationships among the MtIGS haplotypes were inferred using statistical 

157 parsimony with Tcs v. 1.13 (Clement et al., 2000). Because additional subsampled dataset for 

158 the Iberia provided similar results (Table SI2 and Fig. SI1), only one was used for the 

159 simulations.

160 Dispersal simulations

161 The main oceanographic regions in northwest France  and northwest Iberia (~550km and 

162 ~600km of coastlines, respectively) were identified by coupling Lagrangian Particle 
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163 Simulations (LPS) with network analyses (least cost distance and community algorithm, e.g., 

164 Assis et al., 2015; Klein et al., 2016; Assis et al., 2018). The simulations used daily data of 

165 ocean currents assembled from the Hybrid Coordinate Ocean Model (HYCOM), a resolution 

166 product with a spatial resolution of 0.08º (approx. 6–9 km), forced by wind speed, wind stress, 

167 precipitation and heat flux. This model can resolve oceanic fronts, meandering currents, 

168 filaments and eddies (Chassignet et al., 2007), important mesoscale processes to properly 

169 simulate ocean dispersal (Assis et al., 2015; Klein et al., 2016).

170 Both regions of simulation were gridded to a common spatial resolution of 0.01° (approx. 1km). 

171 A polygon representing global coastlines - OpenStreetMap geographic information (Haklay 

172 and Weber, 2008)- was used to define intertidal source and sink cells. Passive particles 

173 simulating rafts of F. ceranoides adult individuals were released from each gridded cell every 

174 12 hours and allowed to drift for 60 full days; an extreme period for long‐lived rafts of brown 

175 macroalgae (Monteiro et al., 2016; Assis et al., 2018). This approach aimed to capture the 

176 rare, long-distance dispersal events, allowing gene flow at the scales of both regions (Monteiro 

177 et al., 2016; Assis et al., 2018). After the 60 days period, or when ending up on shore, the 

178 particles were removed from the simulation. The geographic position of all particles was 

179 calculated every hour with bilinear interpolation on the ocean velocity fields (with a spatial 

180 resolution of 0.08º), while combining a 4th Order Runge-Kutta adaptive time-step on the path 

181 equations (e.g., Lett et al., 2008; Klein et al., 2016). 

182 The degree of connectivity between all pairs of gridded cells was determined by dividing the 

183 number of unique particles released from cell i that ended up in cell j, by the total number of 

184 particles released from cell i. To account for the inter-annual variability in the ocean data, the 

185 simulations ran independently per year (from January to December), for the most recent 10-

186 year period of data, available in HYCOM (i.e., 2003 to 2012). Asymmetrical connectivity 

187 matrices were determined by averaging the outcomes of the annual simulations. 

188 The connectivity matrices were used in network analyses (i.e., graph theory) to infer the major 

189 oceanographic regions of northwest Iberia and northwest France. To this end, network 

190 percolation removed weak probabilities to a threshold maintaining all cells (nodes) connected 
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191 into a single network (Rozenfeld et al. 2008; Cunha et al., 2017), while maximizing modularity, 

192 which quantified the strength of the backbone structure (or goodness of fit) of the networks 

193 (Newman, 2006). This allowed the removal of surplus connections with unimportant 

194 information. The leading eigenvector algorithm (Newman, 2006) was applied to the percolated 

195 networks to assign a unique membership to the nodes. This approach allowed the detection 

196 of communities in the networks (e.g., Munwes et al., 2010), which in practice translated into a 

197 delineation of oceanographic regions in northwest Iberia and northwest France structured by 

198 connectivity of ocean currents (Assis et al., 2018). The statistical significance of the 

199 membership assignment to the nodes was inferred by testing the proportion of 9999 

200 membership randomizations that retrieved a higher modularity than that observed.

201 Lagrangian Particle Simulations and network analyses were performed in R (R Development 

202 Core Team, 2016) using the packages: data.table (Dowle et al., 2019), dismo (Hijmans et al., 

203 2017), igraph (Kamvar et al., 2014), parallel (Team, 2018), raster (Lamigueiro et al., 2018) 

204 and vegan (Oksanen et al., 2018).

205

206 RESULTS

207 In Data set 1 (NW France), six mtIGS haplotypes were identified in 30 individuals of Fucus 

208 ceranoides in 15 sampled sites. In NW France, the network analyses showed two dominant 

209 haplotypes (A and D) plus three derived ones (B, C and E), each private to one population 

210 (Fig 1a). Haplotype frequency distribution revealed a geographical segregation of the two main 

211 haplotypes. Haplotype 1 was present in individuals from regions R1 and R2 while Haplotype 

212 D was restricted to more northern sites within region R3.

213 Out of 415 sequences retrieved from the GenBank, 52 sequences were randomly selected for 

214 Data set 2 (northwest Iberia). The network showed seven main haplotypes of which two were 

215 shared among six to ten populations and three were shared by two to three populations. The 

216 remaining two haplotypes were private to one single population. In the frequency distribution, 

217 the main haplotype was restricted to region R5 and haplotype F was present only in region 
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218 R4. Haplotype A was present in regions R3 and R1 while haplotype B was confined to region 

219 R2.Dispersal simulations

220 The LPS using HYCOM ocean currents over the 10-year period released 7300 particles per 

221 cell (7.80e106 and 7.88e106 particles in total in northwest France and northwest Iberia, 

222 respectively). Particles drifted for longer distances in northwest Iberia than in northwest France 

223 (up to 431.2 km; Table 1; Fig. SI2). The maximum period of drifting time was also higher in 

224 northwest Iberia (26.7 days), but on average, particles drifted for longer periods in northwest 

225 France (3.61±2.63 days). The maximum probability of connectivity between the pairs of cells 

226 was observed in northwest France (western Britany; 0.721). However, the average cell 

227 probabilities within regions did not vary considerably (Table 1; Fig. SI2).

228 The assignment of oceanographic regions performed by the leading eigenvector algorithm 

229 (network analysis) for northwest France  and northwest Iberia showed significant modularity 

230 values of 0.41 and 0.57 (p-values < 0.001), respectively. The algorithm identified three regions 

231 in northwest France (Fig. 1a), with breaks in Penmarch and Porspoder, and five regions in 

232 northwest Iberia (Fig. 1b), with breaks in Ria de Arousa, Corrubedo, Camelle (northern Costa 

233 da Morte) and Cabo Ortegal (Cariño). The average probability of connectivity within the 

234 oceanographic regions of northwest France (diagonal of Fig. 1d) was 10-fold higher than 

235 between regions, with the exception of those between R1 and R2 (Fig. 1d), which were of the 

236 same order of magnitude. Following a similar pattern, the probabilities of connectivity in 

237 northwest Iberia were 10 to 100-fold higher within regions than between regions (diagonal of 

238 Fig. 1e), with a marked increase as the distance between groups increased.

239

240 DISCUSSION

241 Our results show an overall strong match between oceanographic regions identified 

242 by dispersal simulations and fine-scale genetic discontinuities in the estuarine seaweed Fucus 

243 ceranoides inhabiting north Atlantic shores (Fig. 1).
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244 Predictions of oceanographic transport made with Lagrangian particle simulations are 

245 highly sensitive to the inner spatial and temporal resolution of circulation models (Putman and 

246 He, 2013). While we preserved the raw circulation processes modelled by Hycom at the scales 

247 of days and tens of kilometers, a main limitation may arise if additional oceanographic 

248 processes occurring at smaller scales are important for realistic connectivity events shaping 

249 the genetic structure of F. ceranoides. For instance, circulation models with coarse spatial 

250 resolutions may underestimate drifting times up to a factor of ~2. In the same way, weekly or 

251 even daily temporal time steps may not be a realistic representation of what organisms 

252 continuously experience (Fossette et al., 2012). Regardless of such potential limitations, our 

253 results compared with independent genetic data, as well as additional studies comparing 

254 connectivity estimates with satellite-tracked organisms (e.g., Fossette et al., 2012) suggest 

255 that, overall, particles advected by Hycom data provide a reliable estimate of the main 

256 processes shaping current flow.

257 Previous studies have shown that mtIGS differentiation and contemporary F. 

258 ceranoides genetic structuring in NW Iberia is most likely the result of complex, past range 

259 dynamics (Neiva et al., 2012a). High levels of endemism and diversity highlighted by genetic 

260 analyses of F. ceranoides populations inhabiting this region indicate long-term persistence in 

261 glacial refugia. Despite the refugial role played by NW Iberia, sea level changes associated 

262 with glacial/inter-glacial expansion and melting of ice-sheets had significant effects on near-

263 shore habitats (Chao et al., 2002; Roucoux et al., 2005). The current fine-scale genetic breaks 

264 in Iberian F. ceranoides are the result of past fragmentation and divergence of populations 

265 into distinct refugia (estuarine refugia within regional refugia), followed by expansion and 

266 secondary contact of vicariant phylogroups (Neiva et al., 2012b).

267 In addition to southern European refugia, the ice-free paleo-shores of northwest 

268 France (western Brittany) together with south western Ireland and the English Channel have 

269 been recognized as northern periglacial refugia for several species (Palmaria palmata (Provan 

270 et al., 2005); Celleporella hyalina (Gomez et al., 2007); Fucus serratus (Hoarau et al., 2007); 

271 Neomysis integer (Remerie et al., 2009); Ascophyllum nodosum (Olsen et al., 2010) 

Page 10 of 47

http://mc.manuscriptcentral.com/icesjms

Manuscripts submitted to ICES Journal of Marine Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

272 Potentially, periodic sea level changes associated to Pleistocene glacial/interglacial cycles 

273 could have caused continuous rearrangements of estuaries triggering F. ceranoides 

274 population contraction/expansion dynamics similar to those described for Iberian shores; 

275 these rearrangements could have then eventually led to the sharp genetic differentiation in 

276 Brittany reported here. In the light of these earlier findings and observations the scenario of 

277 contemporary oceanographic barriers being responsible for the origin the genetic 

278 differentiation among F. ceranoides estuarine populations is rejected. Our results point to the 

279 preponderant role of oceanography in determining the position and possibly maintaining the 

280 break between vicariant lineages. This is further supported by previous studies showing 

281 shared haplotypes between Brittany (southern) and Iberia (Neiva et al., 2010; Neiva et al., 

282 2012a; Neiva et al., 2012b).

283 The persistent integrity of the sharp, fine-scale genetic discontinuities at secondary 

284 contact zones can have a number of non-exclusive explanations. Previous studies assessing 

285 this fine-scale phylogeographic structure within F. ceranoides in NW Iberia have highlighted 

286 that contemporary dispersal between established populations is effectively too low to erase 

287 historical divergence stemming from past fragmentation processes (Neiva et al., 2012b). In 

288 this instance, sporadic inter-estuarine dispersal and density barriers have been invoked as the 

289 main driver of limited connectivity. 

290 Although post-glacial range expansion shows that F. ceranoides can effectively drift 

291 across large spatial scales (Neiva et al., 2012a), dispersal among colonized estuaries is 

292 expected to be limited. F. ceranoides is dioecious, and therefore prerequisites for successful 

293 long-distance, inter-estuarine colonization are dispersal of fertile male and female fronds and 

294 synchronous gamete release to produce zygotes at the new location. In addition, coastal 

295 topography and estuarine morphology can curb circulation patterns, retention times and, 

296 consequently, connectivity through drifting (Muhlin et al., 2008; Nicastro et al., 2008; Pardo et 

297 al., 2019). The sheltered nature of estuarine habitats can significantly limit gamete dispersal 

298 and the intrinsic features of geomorphology of each estuary can modulate circulation velocity 

299 and intensity (Day et al., 1989). It has been suggested that pronounced meander curvatures 
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300 contribute to reduced dispersal efficiency and the variable patterns of gene flow between 

301 coastal and estuarine habitats (Zardi et al., 2013).    

302 Density barrier effects are usually particularly marked in species such as F. ceranoides 

303 characterized by rapid population growth and consequent habitat saturation. The dense, 

304 monospecific F. ceranoides canopies typical of European northern Atlantic estuaries act as a 

305 demographic buffer against numerically rare inter-estuarine immigrants favoring the 

306 conservation of pre-existing genetic structure.

307 Clearly, the abundance of estuaries and their proximity strongly suggest that distance 

308 can be excluded from the list of determinants maintaining F. ceranoides genetic breaks along 

309 these shores. In NW Iberia, the mean distance between populations inhabiting neighboring 

310 estuaries is not significantly different than that between bordering populations across 

311 phylogeographic breaks (Neiva et al., 2012b). Similar distributional patterns can be found in 

312 Brittany where several edge populations are spatially closer to populations across regional 

313 genetic disjunctions than they are to their adjacent population within the same genetic clade. 

314 While some studies carried out between cold- and warm-temperate marine ecosystems  along 

315 the northwest coast of France have invoked distinct mesoscale hydrographic features as 

316 drivers of genetic patterns (Goldson et al., 2001; Jolly et al., 2005; Couceiro et al., 2013; 

317 Almeida et al., 2017), others have highlighted lack of evidence for the role of hydrodynamics 

318 as dispersal determinants for the observed genetic discontinuities along NW Iberian shores 

319 (Neiva et al., 2012b). The latter works have also stressed the difficulties to track drifters’ 

320 movements at a scale relevant for the organism to estimate migration rates among estuaries 

321 and phylogroups. In NW Iberia, circulation dynamics are complex with high seasonal variability 

322 and lack of persistent oceanographic patterns (Ruiz-Villarreal et al., 2006; Alvarez et al., 

323 2009). Here, through the use of large scale, dispersal simulations we reveal several 

324 oceanographic regions matching haplotype segregation. Our findings add important evidence 

325 to previous conclusions and support the scenario of key, mesoscale oceanographic processes 

326 having a determinant role in explaining the position of the observed high levels of regional 

327 genetic divergence.   We also hypothesized that mesoscale oceanographic dispersal barriers 
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328 are key to the maintenance of inter-estaurine genetic differentiation.   In a neutral model of 

329 secondary contact following allopatric differntiation, signs of secondary intergradation are 

330 generally observed around oceanographic barriers (Woodruff, 1973; Barton and Hewitt, 1985; 

331 Bierne et al., 2011). Admixed nuclear background has only been reported between two 

332 neighboring F. ceranoides Iberian populations (Neiva et al., 2012b), indicating that individuals 

333 belonging to distinct phylogroups can interbreed. However, no signs of hybridization have 

334 been observed in other Iberian or French populations. The geographically restricted and 

335 limited lineage admixture suggests that other factors may be at play in maintaining fine-scale 

336 genetic differentiation. In particular, incipient reproductive isolation (pre- or post-zygotic) can 

337 depress gene flow between divergent phylogroups (e.g., Tellier et al., 2011). Under this 

338 scenario, limited dispersal across oceanographic barriers explains the position of the genetic 

339 discontinuity while the delay in homogenisation is mainly explained by endogenous 

340 components of reproductive isolation. Future studies assessing spatial and temporal 

341 reproductive dynamics of distinct F. ceranoides lineages will be crucial to provide a direct 

342 testing of this hypothesis.

343 Conclusions

344 Our study highlights the need to combine evidence from multiple sources for a comprehensive 

345 understanding of ecological and evolutionary mechanisms linked to phylogeographic breaks. 

346 These conclusions are of great significance for other organisms with sporadic and spatially 

347 limited dispersal, helping clarify the apparent inconsistency of extensive and sharp genetic 

348 differentiation in geographically restricted regions. In addition to theoretical evolutionary 

349 relevance, the identification of contemporary dynamics contributing to the maintenance of 

350 significant units of intraspecific biodiversity is critical for efficient approaches of management 

351 and conservation efforts.
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590 FIGURE LEGEND

591 Fig. 1. Haplotype distribution of Fucus ceranoides in the coastlines of (a) Northwester France  

592 and (panel b) Northwest Iberia. The colors along coastlines (a, b) depict the different 

593 oceanographic regions (R) identified in network analysis. A pairwise matrix of directional 

594 connectivity between oceanographic regions identified in (d) western Brittany and (e) 

595 northwest Iberia. Matrix header colors according to the oceanographic regions depicted in the 

596 top panels a and b. Haplotype frequency and differentiation degree in (f) western Brittany and 

597 (g) northwest Iberia. Note that there is no correspondence of haplotypes between the two 

598 panels (i.e., each dataset was treated separately).

599

600 TABLES

601 Table 1. Maximum and average distances (km), drifting time (days) and probabilities produced 

602 by the particles connecting different cells for the lagrangian particle simulations running in 

603 Northwest France and Northwest Spain.. 

604

Distance (km) Time (days) Probability

Region Maximum Mean (±SD) Maximum Mean (±SD) Maximum Mean (±SD)

W Brittany 382.6 62.6±54.6 24.6 3.61±2.63 0.721 0.004±0.020

NW Iberia 431.2 105.9±90.8 26.7 2.09±1.81 0.607 0.004±0.021

605
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25 ABSTRACT

26 Genetic structure in biogeographical transition zones can be shaped by several factors 

27 including limited dispersal across barriers, admixture following secondary contact, differential 

28 selection and mating incompatibility. A striking example is found in Northwest France and 

29 Northwest Spain , where the estuarine seaweed Fucus ceranoides L. exhibits sharp, regional 

30 genetic clustering. This pattern has been related to historical population fragmentation and 

31 divergence into distinct glacial refugia, followed by post-glacial expansion and secondary 

32 contact. The contemporary persistence of sharp ancient genetic breaks between nearby 

33 estuaries has been attributed to prior colonization effects (density barriers) but the effect of 

34 oceanographic barriers has not been tested. Here, through a combination of mesoscale 

35 sampling (15 consecutive populations) and population genetic data (mtIGS) in NW France, 

36 we define regional genetic disjunctions similar to those described in NW Iberia. Most 

37 importantly, using high resolution dispersal simulations for Brittany and Iberian populations, 

38 we provide evidence for a central role of contemporary hydrodynamics in maintaining genetic 

39 breaks across these two major biogeographic transition zones. Our findings further show the 

40 importance of a comprehensive understanding of oceanographic regimes in hydrodynamically 

41 complex coastal regions to explain the maintenance of sharp genetic breaks along 

42 continuously populated coastlines.

43

44 INTRODUCTION

45 Fueled by current concerns about the impacts of global change on biodiversity, there is a 

46 renewed interest in understanding the processes affecting a species’ range dynamics as well 

47 as the factors shaping its genetic diversity. Generally, both historical and contemporary 

48 processes are invoked to explain the distribution and phylogeography of a species. Tectonic 

49 events and past climate fluctuations created topographic, environmental and hydrologic 

50 barriers that were key in shaping phylogeographic structure of many plant and animal species. 

51 Of these, the Last Glacial Maximum is probably the most significant and recent historical event 
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52 (e.g., Hewitt, 2000; Barnes et al., 2002; Liang et al., 2017; Neiva et al., 2018). During this time, 

53 ice sheets covered much of current cold and temperate zones of the Northern Hemisphere, 

54 triggering range fragmentation and contractions of entire ecosystems to more southern 

55 latitudes, while during the present interglacial, widespread range shifts and poleward 

56 expansions have occurred.

57 It is predicted that genetic diversity is lowest in recently colonized areas and highest in refugial 

58 areas where long-term persistence was possible (e.g., Hewitt, 1996; Comps et al., 2001; 

59 Hewitt, 2004; Kennedy et al., 2017). However, contemporary demographic processes can 

60 either mask or even erase genetic signatures of population expansions or retreats (Smith et 

61 al., 2011). High levels of gene flow may homogenize genetic diversity among previously 

62 structured populations. On the other hand, nonrandom mating with individuals in close 

63 geographic proximity can generate genetic structuring within a continuous population (Slatkin, 

64 1993). Intrinsic characteristics of the species such as dispersal ability, migration patterns and 

65 changes in population densities can further confound any historical signature (e.g.,Mims et al., 

66 2015; Chust et al., 2016; Assis et al., 2018)

67 Biogeographical transition regions provide a good framework for exploring and understanding 

68 genetic structuring of species through space and time. These are areas of overlap and 

69 segregation between different biotic components, and geographically separated clades often 

70 coincide with these transition zones (Ferro and Morrone, 2014). In the marine realm, 

71 phylogeographic breaks in biogeographical transition regions are generally attributed to 

72 historical processes or contemporary dispersal barriers, such as upwelling phenomena and 

73 currents that may limit along-shore dispersal, environmental differences boosting local 

74 adaptation and/or reproductive strategies maintaining self-recruitment (Gilg and Hilbish, 2003; 

75 Zardi et al., 2007; Selkoe et al., 2010).

76 There are well known biogeographical boundaries in all oceans, some of which are associated 

77 with oceanographic features that generate contemporary barriers to dispersal. For example, 

78 the strong southward-flowing Agulhas Current, which runs about 10 km offshore along most 

79 of South Africa's east and southeast coast, impedes larval dispersal and thus promotes local 
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80 adaptation (Teske et al., 2011; Zardi et al., 2011). Dispersal and gene flow around Point 

81 Conception in southern California are also strongly affected by extensive upwelling of colder 

82 sub-surface waters and by the southward California Current (Wares et al., 2001; Hohenlohe, 

83 2004; Johansson et al., 2015). 

84 Here, we investigated the contribution of contemporary oceanographic connectivity in 

85 maintaining geographically separated genetic clades within a continuously distributed 

86 seaweed species along the biogeographic transition areas of Brittany (northwest France, 

87 Europe) and northwest Iberia (northern Spain, Europe; Fig. 1). These two areas are highly 

88 relevant for studying this question and marine connectivity in general. Both areas delimit the 

89 boundaries between cold‐temperate and warm‐temperate regions (Spalding et al., 2007), they 

90 are refugial zones for numerous species (Provan, 2013) and, over the past decades, they 

91 have undergone significant changes in macroalgae assemblages due to climate change 

92 (Nicastro et al., 2013; Gallon et al., 2014; Assis et al., 2017). 

93 In this study, we use phylogeographic analyses and Lagrangian Particle Simulations 

94 (LPS) coupled with network analyses to evaluate the levels of congruence between dispersal 

95 potential and the patterns of present-day genetic differentiation and diversity in the estuarine 

96 seaweed Fucus ceranoides along these two biogeographic transition zones. This species is 

97 perennial, dioecious and restricted to estuarine intertidal areas. Fucoid seaweeds have no 

98 planktonic dispersal stage and have restricted gamete dispersal (Serrão et al., 1997). 

99 However, adult individuals can achieve long distance gene flow via the rafting of whole or 

100 partially detached thalli with reproductive structures (Thiel and Haye, 2006; McKenzie and 

101 Bellgrove, 2008), a form of population connectivity strongly influenced by hydrodynamic forces 

102 and coastal topography. Currently, F. ceranoides is distributed from northern Portugal to 

103 northern Norway (Lein, 1984) and Iceland (Munda, 1999), covering both past non-glaciated 

104 and glaciated regions of Europe. Previous studies have shown the occurrence of two divergent 

105 genetic lineages in this species between the south and the North north of Europe, the 

106 phylogeographic break being localized in Northwest France near the English Channel (Neiva 

107 et al., 2012a; Neiva et al., 2012b). Specifically, the dominant Northwest Iberian haplotypes of 
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108 this species was found in southern Brittany but not after the genetic break in northern Brittany 

109 (Neiva et al., 2010). We discuss three scenarios for the concordance between present-day 

110 oceanographic dispersal barriers and the observed genetic differentiation among F. 

111 ceranoides estuarine populations: 1)  Contemporary oceanographic barriers to dispersal are 

112 responsible for the origin, the position and the maintenance (i.e. delaying genetic 

113 homogenization) of the genetic differentiation; 2) Contemporary oceanographic circulation 

114 patterns explain the position, the maintenance but not the origin of the genetic differentiation; 

115 3) Reproductive isolation, in addition to contemporary oceanographic patterns, limits genetic 

116 homogenisation thus contributing to the position and the maintenance of the genetic 

117 differentiation.

118

119 MATERIALS

120 Genetic data

121 The two study areas (NW France and NW Spain) are peninsulas characterized by complex 

122 and variable circulation patterns (Puillat et al., 2004; Varela et al., 2005; Ruiz-Villarreal et al., 

123 2006; Ayata et al., 2011). Because of that, sampling of only a limited number of localities would 

124 be inappropriate. We therefore decided to sample a small number of individuals at as many 

125 sites along the two coastlines as possible, rather than obtaining large numbers of individuals 

126 from a limited number of sites (e.g., Sotka et al., 2004; Teske et al., 2007). This decision was 

127 also supported by the very low genetic diversity within localities for this species (Neiva et al., 

128 2010; 2012b; Neiva et al., 2012a). As a result, two sets of sequences of Fucus ceranoides 

129 were prepared and analyzed separately. The first data set (Data set 1) comprised sequences 

130 of individuals collected in the estuaries of all major rivers between Hennebont (HB, southern 

131 Brittany) and Camarel (CM, northern Brittany) in northwest France (n = 2 from each site; 

132 Table SI1). The second dataset (Data set 2) consisted of sequences previously analysed in 

133 Neiva et al. (Neiva et al., 2010; 2012b; Neiva et al., 2012a) and sampled across northern Iberia 

134 between Viana do Castelo (VIA, northern Portugal) and Porcia (POR, northern Spain). To 
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135 allow a comparison between data sets, a random subsample of 2 individuals from each site 

136 was used for Data set 2. The random subsampling in NW Spain was repeated to ensure 

137 consistency in the results obtained.

138 Sampling was performed in 2014-2015 and conducted with similar criteria for individuals used 

139 in both data sets.  All collection sites were characterized by monospecific belts of F. 

140 ceranoides attached to hard substrata and were exposed to steep salinity fluctuations 

141 throughout the tidal cycle. At each site, 5-10 cm tips of apical vegetative tissue were collected 

142 from individuals sampled in the mid distributional range of the species. Neighboring sites were 

143 at an average proximity of about 50 (±15) and 33 (±17) km for Data sets 1 and 2 respectively. 

144 All samples were individually stored dehydrated in silica-gel crystals until DNA extraction.

145 DNA isolation and sequencing of data set 1

146 To compile Data set 1, genomic DNA was extracted from approximately 10 mg of dried tissue 

147 using the Nucleospin® Multi-96 plant kit (Macherey-Nagel Duren, Germany), according to the 

148 manufacturer’s protocol. Individuals were sequenced for the mitochondrial 23 S/trnK 

149 intergenic spacer (mtIGS, Neiva et al., 2010). Primer sequences and amplification details were 

150 the same as in Neiva et al. (Neiva et al., 2010; 2012b; Neiva et al., 2012a). Amplified fragments 

151 were run in an ABI PRISM 3130xl automated capillary sequencer (Applied Biosystems, 

152 CCMAR Portugal). MtDNA sequences were aligned, proofread and edited in GENEIOUS 3.8 

153 (Drummond et al., 2011).

154 Data analyses

155 For both data sets, haplotype frequencies were estimated using DnaSP 5.0 (Librado and 

156 Rozas, 2009). The relationships among the MtIGS haplotypes were inferred using statistical 

157 parsimony with Tcs v. 1.13 (Clement et al., 2000). Because additional subsampled dataset for 

158 the Iberia provided similar results (Table SI2 and Fig. SI1), only one was used for the 

159 simulations.

160 Dispersal simulations

161 The main oceanographic regions in northwest France  and northwest Iberia (~550km and 

162 ~600km of coastlines, respectively) were identified by coupling Lagrangian Particle 
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163 Simulations (LPS) with network analyses - least cost and community algorithms (least cost 

164 distance and community algorithm, e.g., Assis et al., 2015; Klein et al., 2016; Assis et al., 

165 2018). The simulations used daily data of ocean currents assembled from the Hybrid 

166 Coordinate Ocean Model (HYCOM), a high-resolution product with a spatial resolution of 0.08º 

167 (approx. 6–9 km),  forced by wind speed, wind stress, precipitation and heat flux. This model 

168 can resolve oceanic fronts, meandering currents, filaments and eddies (Chassignet et al., 

169 2007), important mesoscale processes to properly simulate ocean dispersal (Assis et al., 

170 2015; Klein et al., 2016).

171 Both regions of simulation were gridded to a common spatial resolution of 0.01° (approx. 1km). 

172 A polygon representing global coastlines - OpenStreetMap geographic information (Haklay 

173 and Weber, 2008)- was used to define intertidal source and sink cells. Passive particles 

174 simulating rafts of F. ceranoides adult individuals were released from each gridded cell every 

175 12 hours and allowed to drift for 60 full days; an extreme period for long‐lived rafts of brown 

176 macroalgae (Monteiro et al., 2016; Assis et al., 2018). This approach aimed to capture the 

177 rare, long-distance dispersal events, allowing gene flow at the scales of both regions (Monteiro 

178 et al., 2016; Assis et al., 2018). After the 60 days period, or when ending up on shore, the 

179 particles were removed from the simulation. The geographic position of all particles was 

180 calculated every hour with bilinear interpolation on the ocean velocity fields (with a spatial 

181 resolution of 0.08º), while combining a 4th Order Runge-Kutta adaptive time-step on the path 

182 equations (e.g., Lett et al., 2008; Klein et al., 2016). 

183 The degree of connectivity between all pairs of gridded cells was determined by dividing the 

184 number of unique particles released from cell i that ended up in cell j, by the total number of 

185 particles released from cell i. To account for the inter-annual variability in the ocean data, the 

186 simulations ran independently per year (from January to December), for the most recent 10-

187 year period of data, available in HYCOM (i.e., 2003 to 2012). Asymmetrical connectivity 

188 matrices were determined by averaging the outcomes of the annual simulations. 

189 The connectivity matrices were used in network analyses (i.e., graph theory) to infer the major 

190 oceanographic regions of northwest Iberia and northwest France. To this end, network 
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191 percolation removed weak probabilities to a threshold maintaining all cells (nodes) connected 

192 into a single network (Rozenfeld et al. 2008; Cunha et al., 2017), while maximizing modularity, 

193 which quantified the strength of the backbone structure (or goodness of fit) of the networks 

194 (Newman, 2006). This allowed the removal of surplus connections with unimportant 

195 information. The leading eigenvector algorithm (Newman, 2006) was applied to the percolated 

196 networks to assign a unique membership to the nodes. This approach allowed the detection 

197 of communities in the networks (e.g., Munwes et al., 2010), which in practice translated into a 

198 delineation of oceanographic regions in northwest Iberia and northwest France structured by 

199 connectivity of ocean currents (Assis et al., 2018). The statistical significance of the 

200 membership assignment to the nodes was inferred by testing the proportion of 9999 

201 membership randomizations that retrieved a higher modularity than that observed.

202 Lagrangian Particle Simulations and network analyses were performed in R (R Development 

203 Core Team, 2016) using the packages: data.table (Dowle et al., 2019), dismo (Hijmans et al., 

204 2017), igraph (Kamvar et al., 2014), parallel (Team, 2018), raster (Lamigueiro et al., 2018) 

205 and vegan (Oksanen et al., 2018).

206

207 RESULTS

208 In Data set 1 (NW France), six mtIGS haplotypes were identified in 30 individuals of Fucus 

209 ceranoides in 15 sampled sites. In NW France, the network analyses showed two dominant 

210 haplotypes (A and D) plus three derived ones (B, C and E), each private to one population 

211 (Fig 1a). Haplotype frequency distribution revealed a geographical segregation of the two main 

212 haplotypes. Haplotype 1 was present in individuals from regions R1 and R2 while Haplotype 

213 D was restricted to more northern sites within region R3.

214 Out of 415 sequences retrieved from the GenBank, 52 sequences were randomly selected for 

215 Data set 2 (northwest Iberia). The network showed seven main haplotypes of which two were 

216 shared among six to ten populations and three were shared by two to three populations. The 

217 remaining two haplotypes were private to one single population. In the frequency distribution, 

218 the main haplotype was restricted to region R5 and haplotype F was present only in region 
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219 R4. Haplotype A was present in regions R3 and R1 while haplotype B was confined to region 

220 R2.Dispersal simulations

221 The LPS using HYCOM ocean currents over the 10-year period released 7300 particles per 

222 cell (7.80e106 and 7.88e106 particles in total in northwest France and northwest Iberia, 

223 respectively). Particles drifted for longer distances in northwest Iberia than in northwest France 

224 (up to 431.2 km; Table 1; Fig. SI2). The maximum period of drifting time was also higher in 

225 northwest Iberia (26.7 days), but on average, particles drifted for longer periods in northwest 

226 France (3.61±2.63 days). The maximum probability of connectivity between the pairs of cells 

227 was observed in northwest France (western Britany; 0.721). However, the average cell 

228 probabilities within regions did not vary considerably (Table 1; Fig. SI2).

229 The assignment of oceanographic regions performed by the leading eigenvector algorithm 

230 (network analysis) for northwest France  and northwest Iberia showed significant modularity 

231 values of 0.41 and 0.57 (p-values < 0.001), respectively. The algorithm identified three regions 

232 in northwest France (Fig. 1a), with breaks in Penmarch and Porspoder, and five regions in 

233 northwest Iberia (Fig. 1b), with breaks in Ria de Arousa, Corrubedo, Camelle (northern Costa 

234 da Morte) and Cabo Ortegal (Cariño). The average probability of connectivity within the 

235 oceanographic regions of northwest France (diagonal of Fig. 1d) was 10-fold higher than 

236 between regions, with the exception of those between R1 and R2 (Fig. 1d), which were of the 

237 same order of magnitude. Following a similar pattern, the probabilities of connectivity in 

238 northwest Iberia were 10 to 100-fold higher within regions than between regions (diagonal of 

239 Fig. 1e), with a marked increase as the distance between groups increased.

240

241 DISCUSSION

242 Our results show an overall strong match between oceanographic regions identified 

243 by dispersal simulations and fine-scale genetic discontinuities in the estuarine seaweed Fucus 

244 ceranoides inhabiting north Atlantic shores (Fig. 1).
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245 Predictions of oceanographic transport made with Lagrangian particle simulations are 

246 highly sensitive to the inner spatial and temporal resolution of circulation models (Putman and 

247 He, 2013). While we preserved the raw circulation processes modelled by Hycom at the scales 

248 of days and tens of kilometers, a main limitation may arises if additional oceanographic 

249 processes occurring at smaller scales are important for realistic connectivity events shaping 

250 the genetic structure of F. ceranoides. For instance, circulation models with coarse spatial 

251 resolutions may underestimate drifting times up to a factor of ~2. In the same way, weekly or 

252 even daily temporal time steps may not be a realistic representation of what organisms 

253 continuously experience (Fossette et al., 2012). Regardless of such potential limitations, our 

254 results compared with independent genetic data, as well as additional studies comparing 

255 connectivity estimates with satellite-tracked organisms (e.g., Fossette et al., 2012) suggest 

256 that, overall, particles advected by Hycom data provide a reliable estimate of the main 

257 processes shaping current flow.

258 Previous studies have shown that mtIGS differentiation and contemporary F. 

259 ceranoides genetic structuring in NW Iberia is most likely the result of complex, past range 

260 dynamics (Neiva et al., 2012a). High levels of endemism and diversity highlighted by genetic 

261 analyses of F. ceranoides populations inhabiting this region indicate long-term persistence in 

262 glacial refugia. Despite the refugial role played by NW Iberia, sea level changes associated 

263 with glacial/inter-glacial expansion and melting of ice-sheets had significant effects on near-

264 shore habitats (Chao et al., 2002; Roucoux et al., 2005). The current fine-scale genetic breaks 

265 in Iberian F. ceranoides are the result of past fragmentation and divergence of populations 

266 into distinct refugia (estuarine refugia within regional refugia), followed by expansion and 

267 secondary contact of vicariant phylogroups (Neiva et al., 2012b).

268 In addition to southern European refugia, the ice-free paleo-shores of northwest 

269 France (western Brittany) together with south western Ireland and the English Channel have 

270 been recognized as northern periglacial refugia for several species (Palmaria palmata (Provan 

271 et al., 2005); Celleporella hyalina (Gomez et al., 2007); Fucus serratus (Hoarau et al., 2007); 

272 Neomysis integer (Remerie et al., 2009); Ascophyllum nodosum (Olsen et al., 2010) 
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273 Potentially, periodic sea level changes associated to Pleistocene glacial/interglacial cycles 

274 could have caused continuous rearrangements of estuaries triggering F. ceranoides 

275 population contraction/expansion dynamics similar to those described for Iberian shores; 

276 these rearrangements could have then eventually led to the sharp genetic differentiation in 

277 Brittany reported here. In the light of these earlier findings and observations the scenario of 

278 contemporary oceanographic barriers being responsible for the origin the genetic 

279 differentiation among F. ceranoides estuarine populations is rejected. Our results point to the 

280 preponderant role of oceanography in determining the position and possibly maintaining the 

281 break between vicariant lineages. This is further supported by previous studies showing 

282 shared haplotypes between Brittany (southern) and Iberia (Neiva et al., 2010; Neiva et al., 

283 2012a; Neiva et al., 2012b).

284 The persistent integrity of the sharp, fine-scale genetic discontinuities at secondary 

285 contact zones can have a number of non-exclusive explanations. Previous studies assessing 

286 this fine-scale phylogeographic structure within F. ceranoides in NW Iberia have highlighted 

287 that contemporary dispersal between established populations is effectively too low to erase 

288 historical divergence stemming from past fragmentation processes (Neiva et al., 2012b). In 

289 this instance, sporadic inter-estuarine dispersal and density barriers have been invoked as the 

290 main driver of limited connectivity. 

291 Although post-glacial range expansion shows that F. ceranoides can effectively drift 

292 across large spatial scales (Neiva et al., 2012a), dispersal among colonized estuaries is 

293 expected to be limited. F. ceranoides is dioecious, and therefore prerequisites for successful 

294 long-distance, inter-estuarine colonization are dispersal of fertile male and female fronds and 

295 synchronous gamete release to produce zygotes at the new location. In addition, coastal 

296 topography and estuarine morphology can curb circulation patterns, retention times and, 

297 consequently, connectivity through drifting (Muhlin et al., 2008; Nicastro et al., 2008; Pardo et 

298 al., 2019). The sheltered nature of estuarine habitats can significantly limit gamete dispersal 

299 and the intrinsic features of geomorphology of each estuary can modulate circulation velocity 

300 and intensity (Day et al., 1989). It has been suggested that pronounced meander curvatures 
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301 contribute to reduced dispersal efficiency and the variable patterns of gene flow between 

302 coastal and estuarine habitats (Zardi et al., 2013).    

303 Density barrier effects are usually particularly marked in species such as F. ceranoides 

304 characterized by rapid population growth and consequent habitat saturation. The dense, 

305 monospecific F. ceranoides canopies typical of European northern Atlantic estuaries act as a 

306 demographic buffer against numerically rare inter-estuarine immigrants favoring the 

307 conservation of pre-existing genetic structure.

308 Clearly, the abundance of estuaries and their proximity strongly suggest that distance 

309 can be excluded from the list of determinants maintaining F. ceranoides genetic breaks along 

310 these shores. In NW Iberia, the mean distance between populations inhabiting neighboring 

311 estuaries is not significantly different than that between bordering populations across 

312 phylogeographic breaks (Neiva et al., 2012b). Similar distributional patterns can be found in 

313 Brittany where several edge populations are spatially closer to populations across regional 

314 genetic disjunctions than they are to their adjacent population within the same genetic clade. 

315 While some studies carried out between cold- and warm-temperate marine ecosystems  along 

316 the northwest coast of France have invoked distinct mesoscale hydrographic features as 

317 drivers of genetic patterns (Goldson et al., 2001; Jolly et al., 2005; Couceiro et al., 2013; 

318 Almeida et al., 2017), others have highlighted lack of evidence for the role of hydrodynamics 

319 as dispersal determinants for the observed genetic discontinuities along NW Iberian shores 

320 (Neiva et al., 2012b). The latter works have also stressed the difficulties to track drifters’ 

321 movements at a scale relevant for the organism to estimate migration rates among estuaries 

322 and phylogroups. In NW Iberia, circulation dynamics are complex with high seasonal variability 

323 and lack of persistent oceanographic patterns (Ruiz-Villarreal et al., 2006; Alvarez et al., 

324 2009). Here, through the use of large scale, dispersal simulations we reveal several 

325 oceanographic regions matching haplotype segregation. Our findings add important evidence 

326 to previous conclusions and support the scenario of key, mesoscale oceanographic processes 

327 having a determinant role in explaining the position of the observed high levels of regional 

328 genetic divergence.   We also hypothesized that mesoscale oceanographic dispersal barriers 
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329 are key to the maintenance of inter-estaurine genetic differentiation.   In a neutral model of 

330 secondary contact following allopatric differntiation, signs of secondary intergradation are 

331 generally observed around oceanographic barriers (Woodruff, 1973; Barton and Hewitt, 1985; 

332 Bierne et al., 2011). Admixed nuclear background has only been reported between two 

333 neighboring F. ceranoides Iberian populations (Neiva et al., 2012b), indicating that individuals 

334 belonging to distinct phylogroups can interbreed. However, no signs of hybridization have 

335 been observed in other Iberian or French populations. The geographically restricted and 

336 limited lineage admixture suggests that other factors may be at play in maintaining fine-scale 

337 genetic differentiation. In particular, incipient reproductive isolation (pre- or post-zygotic) can 

338 depress gene flow between divergent phylogroups (e.g., Tellier et al., 2011). Under this 

339 scenario, limited dispersal across oceanographic barriers explains the position of the genetic 

340 discontinuity while the delay in homogenisation is mainly explained by endogenous 

341 components of reproductive isolation. Future studies assessing spatial and temporal 

342 reproductive dynamics of distinct F. ceranoides lineages will be crucial to provide a direct 

343 testing of this hypothesis.

344 Conclusions

345 Our study highlights the need to combine evidence from multiple sources  for a comprehensive 

346 understanding of ecological and evolutionary mechanisms linked to phylogeographic breaks. 

347 These conclusions are of great significance for other organisms with sporadic and spatially 

348 limited dispersal, helping clarify the apparent inconsistency of extensive and sharp genetic 

349 clines differentiation in geographically restricted regions. In addition to theoretical evolutionary 

350 relevance, the identification of contemporary dynamics contributing to the maintenance of 

351 significant units of intraspecific biodiversity is critical for efficient approaches of management 

352 and conservation efforts.
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591 FIGURE LEGEND

592 Fig. 1. Haplotype distribution of Fucus ceranoides in the coastlines of (a) Northwester France  

593 and (panel b) Northwest Iberia. The colors along coastlines (a, b) depict the different 

594 oceanographic regions (R) identified in network analysis. A pairwise matrix of directional 

595 connectivity between oceanographic regions identified in (d) western Brittany and (e) 

596 northwest Iberia. Matrix header colors according to the oceanographic regions depicted in the 

597 top panels a and b. Haplotype frequency and differentiation degree in (f) western Brittany and 

598 (g) northwest Iberia. Note that there is no correspondence of haplotypes between the two 

599 panels (i.e., each dataset was treated separately).

600

601 TABLES

602 Table 1. Maximum and average distances (km), drifting time (days) and probabilities produced 

603 by the particles connecting different cells for the lagrangian particle simulations running in 

604 Northwest France and Northwest Spain.. 

605

Distance (km) Time (days) Probability

Region Maximum Mean (±SD) Maximum Mean (±SD) Maximum Mean (±SD)

W Brittany 382.6 62.6±54.6 24.6 3.61±2.63 0.721 0.004±0.020

NW Iberia 431.2 105.9±90.8 26.7 2.09±1.81 0.607 0.004±0.021

606
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