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Abstract. We consider subspaces of Morrey spaces defined in terms of var-

ious vanishing properties of functions. Such subspaces were recently used to

describe the closure of C∞0 (Rn) in Morrey norm. We show that these subspaces

are invariant with respect to some classical operators of harmonic analysis, such

as the Hardy-Littlewood maximal operator, singular type operators and Hardy

operators. We also show that the vanishing properties defining those subspaces

are preserved under the action of Riesz potential operators and fractional max-

imal operators.

1. Introduction

Morrey spaces play an important role in the study of local behaviour and

regularity properties of solutions to PDE, including heat equations and Navier-

Stokes equations. We refer to [16, 18, 37, 40, 41] and references therein for further

details. For 1 ≤ p <∞, 0 ≤ λ ≤ n, the classical Morrey space Lp,λ(Rn) consists
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of all locally p-integrable functions f on Rn with finite norm

‖f‖p,λ := sup
x∈Rn, r>0

Mp,λ(f ;x, r)1/p, (1.1)

where

Mp,λ(f ;x, r) :=
1

rλ

∫
B(x,r)

|f(y)|p dy , x ∈ Rn, r > 0. (1.2)

Straightforward calculations show that

‖f(t·)‖Lp,λ(Rn) = t
λ−n
p ‖f‖Lp,λ(Rn) , t > 0,

which implies a modification of the scaling factor in comparison with Lp-spaces.

It is well known that the spaces Lp,λ(Rn) are non-separable if λ > 0 (see [31,

Proposition 3.7] for a proof). The lack of approximation tools for the entire

Morrey space has motivated the introduction of appropriate subspaces, like the

Zorko space ([45]) collecting all Morrey functions for which the translation is

continuous in Morrey norm and vanishing spaces defined in terms of the vanishing

properties (V0), (V∞) and (V ∗) defined below.

The theory of Morrey spaces goes back to Morrey [21] who considered related

integral inequalities in the study of solutions to nonlinear elliptic equations. In the

form of Banach spaces of functions, called thereafter Morrey spaces, the ideas of

Morrey [21] were further developed by Campanato [10] and Peetre [23]. We refer

to the books [2, 14, 27, 39, 40] and the overview [28] for additional references and

basic properties of these spaces and some of their generalizations. A discussion

on Harmonic Analysis in Morrey spaces can be found in [3], [30], [41].
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Many classical operators from Harmonic Analysis such as maximal operators,

singular operators, potential operators and Hardy operators, are known to be

bounded in Morrey spaces. There are many papers in the literature dealing

with this subject, including the case when the spaces and/or the operators have

generalized parameters. We refer to the papers [1, 4, 7, 8, 11, 15, 16, 17, 19, 20,

22, 24, 30, 34, 35, 36, 38].

In this paper we are interested in studying the behavior of those classical oper-

ators in certain subspaces of Morrey spaces. We consider the following subspaces

of Lp,λ(Rn). The class V0L
p,λ(Rn) consists of all those functions f ∈ Lp,λ(Rn)

such that

lim
r→0

sup
x∈Rn

Mp,λ(f ;x, r) = 0. (V0)

Similarly, V∞L
p,λ(Rn) is the set of all f ∈ Lp,λ(Rn) such that

lim
r→∞

sup
x∈Rn

Mp,λ(f ;x, r) = 0. (V∞)

We also consider the set V (∗)Lp,λ(Rn) consisting of all functions f ∈ Lp,λ(Rn)

having the vanishing property

lim
N→∞

AN,p(f) := lim
N→∞

sup
x∈Rn

∫
B(x,1)

|f(y)|p χN(y) dy = 0, (V ∗)

where χN := χRn\B(0,N) , N ∈ N.

The three vanishing classes defined above are closed sets in Lp,λ(Rn) with re-

spect to the norm (1.1). The space V0L
p,λ(Rn), often called in the literature just

by vanishing Morrey space, was already introduced in [12, 42, 43] in connection
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with applications to PDE. The subspaces V∞L
p,λ(Rn) and V (∗)Lp,λ(Rn) were re-

cently introduced in [5, 6] to study the approximation problem by nice functions

in Morrey spaces. Note that V∞L
p,λ(Rn) was independently considered in [44] in

the study of interpolation problems.

The subspace V
(∗)

0,∞L
p,λ(Rn), collecting those Morrey functions having all the

vanishing properties (V0), (V∞) and (V ∗), provides an explicit description of the

closure of C∞0 (Rn) in Morrey norm, see [5, Theorem 5.3 and Corollary 5.4].

The boundedness of classical operators in vanishing Morrey spaces at the origin

was already studied in some papers, including the case of generalized parameters,

see [25, 29, 32, 33]. In particular, in [32] it was studied a class of sublinear sin-

gular type operators which includes the Hardy-Littlewood maximal function and

Calderón-Zygmund operators with standard kernels. The boundedness results

in [32] were given in terms of Zygmund-type integral conditions on the function

parameter defining the Morrey space.

Up to authors’ knowledge, the boundedness of classical operators in the van-

ishing Morrey spaces V∞L
p,λ(Rn) and V (∗)Lp,λ(Rn) was not touched so far, apart

some results in [5, Theorem 3.8], [6, Corollary 4.3] where it was observed that

convolution operators with integrable kernels are bounded in those subspaces.

It is the main goal of this paper to show that the vanishing properties defining

these subspaces are preserved under the action of many other operators from

Harmonic Analysis, including maximal, singular, potential and Hardy operators.

One of the key results is the invariance of the space V (∗)Lp,λ(Rn) with respect to

the Hardy-Littlewood maximal operator (cf. Theorem 3.5).
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The paper is organized as follows. After some preliminaries on the operators

under consideration, we give the main results in Section 3. The boundedness

results on the spaces V∞L
p,λ(Rn) and V (∗)Lp,λ(Rn) are given in Sections 3.1 and

3.2, respectively. Section 3.3 is devoted to the study of the invariance of the

smaller subspace V
(∗)

0,∞L
p,λ(Rn). Finally, we discuss additional results in Section 4

for some operators that can be seen as hybrids of potential and Hardy operators.

2. Preliminaries

We use the following notation: B(x, r) is the open ball in Rn centered at x ∈ Rn

and radius r > 0. The (Lebesgue) measure of a measurable set E ⊆ Rn is denoted

by |E| and χE denotes its characteristic function. The measure of the unit ball

in Rn is simply denoted by vn. We use c as a generic positive constant, i.e., a

constant whose value may change with each appearance. The expression A . A

means that A ≤ cB for some independent constant c > 0, and A ≈ B means

A . B . A.

As usual C∞0 (Rn) stands for the class of all complex-valued infinitely differen-

tiable functions on Rn with compact support, and Lp(Rn) denotes the classical

Lebesgue space equipped with the usual norm.

2.1. Some classical operators. The following class of operators was introduced

in [32].

Definition 2.1. Let 1 < p < ∞. A sublinear operator T is called p-admissible

singular type operator if it is bounded in Lp(Rn) and it satisfies a “size condition”



6 A. Ç. ALABALIK, A. ALMEIDA, and S. SAMKO

of the form

χB(x,r)(z)
∣∣T (f χRn\B(x,2r)

)
(z)
∣∣ . χB(x,r)(z)

∫
Rn\B(x,2r)

|f(y)|
|y − z|n

dy

for every x ∈ Rn and r > 0.

An example of p-admissible singular type operators is the Hardy-Littlewood

maximal operator

Mf(x) := sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy, x ∈ Rn.

It is well know that the maximal operator controls various other important

operators of harmonic analysis. This is the case of the sharp maximal function

M ]f(x) := sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)− fB(x,t)| dy, (2.1)

with fB = 1
|B|

∫
B
f(z)dz. By straightforward calculations, we have

(M ]f)(x) ≤ 2(Mf)(x), x ∈ Rn. (2.2)

The class above includes also singular integral operators S, defined by

Sf(x) :=

∫
Rn
K(x, y)f(y) dy := lim

ε→0

∫
|x−y|>ε

K(x, y)f(y) dy, (2.3)

which are bounded in Lp(Rn) and whose kernel satisfies

|K(x, y)| . |x− y|−n, for all x 6= y. (2.4)

This is the case of Calderón-Zygmund operators with “standard kernels” (cf. [13,

p. 99]).
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Other examples of p-admissible singular type operators are the multidimen-

sional Hardy operators H and H, defined by

Hf(x) :=
1

|x|n

∫
|y|<|x|

f(y) dy and Hf(x) :=

∫
|y|>|x|

f(y)

|y|n
dy.

Using that |x−y| < 2|x| in the integral defining H, we get the pointwise estimate

H
(
|f |
)
(x) ≤ 2nvnMf(x), x ∈ Rn. (2.5)

We shall consider more general Hardy type operators, Hα and Hα, 0 ≤ α < n,

defined for appropriate functions f by

Hαf(x) := |x|α−n
∫
|y|<|x|

f(y) dy and Hαf(x) := |x|α
∫
|y|>|x|

f(y)

|y|n
dy.

It can be easily shown that the operator Hα is now dominated by the fractional

maximal operator

Mαf(x) := sup
t>0

1

|B(x, t)|1−αn

∫
B(x,t)

|f(y)|dy, x ∈ Rn,

which in turn can be estimated by the Riesz potential operator

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn.

More precisely, for 0 < α < n there holds

∣∣Hαf(x)
∣∣ ≤ vn 2n−α

(
Mαf

)
(x) ≤ 2n−α Iα

(
|f |
)
(x), x ∈ Rn. (2.6)

The Hardy operator Hα is also dominated by the Riesz potential operator. The

pointwise estimate below should be known, but since we did not find a reference

in the literature we take the opportunity to give a simple proof of it.
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Lemma 2.2. If 0 < α < n, then we have

∣∣Hαf(x)
∣∣ ≤ 2n−α Iα

(
|f |
)
(x) , x ∈ Rn. (2.7)

Proof. The inequality follows from the estimate

|x|α

|y|n
≤ 2n−α

|x− y|n−α
, for |y| > |x|.

Putting t = |x|
|y| and x′ = x

|x| , y
′ = y

|y| , the latter is equivalent to

tα ≤ 2n−α
( |y|
|x− y|

)n−α
or tα ≤ 2n−α

|tx′ − y′|n−α

which is a consequence of having t < 1 and |tx′ − y′| ≤ 2. �

2.2. Pointwise estimates for modulars. The estimates given in the next two

lemmas are taken from [32, Theorems 4.1 and 4.3].

Lemma 2.3. Let 1 < p < ∞ and 0 ≤ λ < n. If T is a p-admissible sublinear

singular type operator, then

Mp,λ(Tf ;x, r) . rn−λ
(∫ ∞

r

t
λ−n
p
−1
(
Mp,λ(f ;x, t)

) 1
p dt
)p

with the implicit constant independent of x ∈ Rn, r > 0 and f ∈ Lploc(Rn).

Although the previous lemma is formulated for functions f in Lploc(Rn), the

finiteness of the right-hand side implies that the function f must have already

some prescribed behaviour at infinity which, together with the size condition,

ensures the well-posedness of the operator T .
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Remark 2.4. The estimate given in Lemma 2.3 implies that p-admissible sublinear

singular type operators are bounded on Lp,λ(Rn) and also on the vanishing space

V0L
p,λ(Rn), with 1 < p < ∞ and 0 ≤ λ < n (cf. [32]). In particular, all

the operators M , M ], S, H and H are bounded on both spaces Lp,λ(Rn) and

V0L
p,λ(Rn).

Lemma 2.5. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n and 0 ≤ λ, µ < n.

Then

Mq,µ(Iαf ;x, r) . rn−µ
(∫ ∞

r

t
λ
p
−n
q
−1
(
Mp,λ(f ;x, t)

) 1
p dt
)q

with the implicit constant not depending on x ∈ Rn, r > 0 and f ∈ Lploc(Rn).

Remark 2.6. The estimate given in Lemma 2.5 implies a Sobolev-Spanne result

on the Lp,λ → Lq,µ- boundedness of Iα, under the additional assumptions 0 ≤

λ < n−αp and λ/p = µ/q. Moreover, the same estimate was used in [32] to show

that the Riesz potential operator Iα, and consequently the fractional maximal

operator Mα, are also bounded from the vanishing space V0L
p,λ(Rn) into the

vanishing space V0L
q,µ(Rn).

3. Main results

In this section we show that both subspaces V∞L
p,λ(Rn) and V (∗)Lp,λ(Rn) are

invariant with respect to the operators mentioned above. Since the boundedness

of such operators is already known in the whole Morrey space, we only have to

show that the corresponding vanishing properties are preserved under the action

of those operators.
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3.1. Preservation of the property (V∞).

Theorem 3.1. Let 1 < p <∞ and 0 ≤ λ < n. Then any p-admissible sublinear

singular type operator T is bounded in V∞L
p,λ(Rn).

Proof. The proof is based on the modular estimate given in Lemma 2.3. Let f ∈

V∞L
p,λ(Rn). For any ε > 0 there exists R = R(ε) > 0 such that Mp,λ(f ;x, t) < ε

for every t ≥ R and all x ∈ Rn. Thus for r ≥ R we have

Mp,λ(Tf ;x, r) . ε rn−λ
(∫ ∞

r

t
λ−n
p
−1dt

)p
. ε

with the implicit constants independent of x and r. This shows that

lim
r→∞

sup
x∈Rn

Mp,λ(Tf ;x, r) = 0

and hence Tf ∈ V∞Lp,λ(Rn). �

Corollary 3.2. If 1 < p <∞ and 0 ≤ λ < n, then the operators M , M ], H, H

and S are bounded in V∞L
p,λ(Rn).

In the sequel Tα, 0 < α < n, stands for any of the operators Iα, Mα, Hα and

Hα above.

Theorem 3.3. Let 0 < α < n, 1 < p < n/α, 0 ≤ λ < n− αp, 1/q = 1/p− α/n

and λ/p = µ/q. Then Tα is bounded from V∞L
p,λ(Rn) into V∞L

q,µ(Rn).

Proof. Since Iα is bounded from Lp,λ(Rn) into Lq,µ(Rn) (this is a well known

result by Spanne and published in [23]), the same norm inequalities also hold

for the operators Mα, Hα and Hα in virtue of the estimates (2.6) and (2.7).
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Moreover, by the same estimates, the preservation of the vanishing property at

infinity by the maximal and the Hardy operators follows from the corresponding

preservation by the action of the Riesz potential operator. Hence, it remains to

show that

sup
x∈Rn

Mp,λ(f ;x, r)→ 0 ⇒ sup
x∈Rn

Mq,µ(Iαf ;x, r)→ 0 as r →∞.

This can be done as in the proof of Theorem 3.1, but now using the modular

estimate given in Lemma 2.5 instead of that in Lemma 2.3. Nevertheless, we

write the proof in slightly different terms by applying the Lebesgue dominated

convergence theorem. For any x ∈ Rn and r > 0, we have

Mq,µ(Iαf ;x, r) . rn−µ
(∫ ∞

r

t
λ
p
−n
q
−1
(
Mp,λ(f ;x, t)

) 1
p dt
)q

=
(∫ ∞

1

s
λ
p
−n
q
−1
(
Mp,λ(f ;x, rs)

) 1
p ds

)q
. (3.1)

Since the implicit constant does not depend on x ∈ Rn and r > 0, and the

integrand has admits an integrable dominant (note that f ∈ Lp,λ(Rn) and λ/p <

n/q), then the right-hand side of (3.1) tends to 0 as r → ∞ (uniformly on x).

This gives the desired result. �

Theorem 3.4. Let 0 < α < n, 0 ≤ λ < n, 1 < p < (n − λ)/α and 1/q =

1/p− α/(n− λ). Then Tα is bounded from V∞L
p,λ(Rn) into V∞L

q,λ(Rn).

Proof. As in the proof of Theorem 3.3 we only have to prove the statement for the

Riesz potential operator. The Lp,λ → Lq,λ- boundedness of Iα is well known (cf.

[1]). To show the preservation of the vanishing property at infinity we make use
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of the pointwise estimate of the Riesz potential operator in terms of the maximal

function. It is known that there exists c > 0 such that

|Iαf(x)| ≤ c
(
Mf(x)

) p
q ‖f‖

1− p
q

p,λ (3.2)

for all f ∈ Lp,λ(Rn) and x ∈ Rn (see, for instance, [9], [2, Chapter 7]). From (3.2)

we get

Mq,λ

(
Iαf ;x, r

)
. ‖f‖q−pp,λ Mp,λ

(
Mf ;x, r

)
for r > 0 and x ∈ Rn. If f ∈ V∞Lp,λ(Rn) thenMf ∈ V∞Lp,λ(Rn) by Corollary 3.2.

Consequently, we have Iαf ∈ V∞Lq,λ(Rn) taking into account the previous esti-

mate. �

3.2. Preservation of the property (V ∗). First we show that the space V (∗)Lp,λ(Rn)

is invariant under the action of the Hardy-Littlewood maximal operator.

Theorem 3.5. Let 1 < p <∞ and 0 ≤ λ < n. Then the maximal operator M is

bounded in V (∗)Lp,λ(Rn).

Proof. Since M is bounded in Lp,λ(Rn) (cf. [11]) we only have to show that it

preserves the vanishing property (V ∗), that is

lim
N→∞

AN,p(f) = 0 ⇒ lim
N→∞

AN,p(Mf) = 0.

Given x ∈ Rn and N ∈ N, we split f into

f = f1 + f2, with f1 := f χΩx,N/2 , f2 = f χRn\Ωx,N/2 ,
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where, for short, we use the notation

Ωx,N := B(x, 2) ∩
(
Rn \B(0, N)

)
.

Since M is sublinear, we have

AN,p(Mf) . AN,p(Mf1) +AN,p(Mf2). (3.3)

We show next that both quantities in the right-hand side of (3.3) tend to zero

as N →∞. The boundedness of M in Lp(Rn) gives

∫
B(x,1)

(
M(f1)(y)

)p
χN(y) dy ≤

∫
Rn

(
M(f1)(y)

)p
dy

.
∫
Rn
|f1(y)|pdy

=

∫
Ωx,N/2

|f(y)|p dy (3.4)

with the implicit constant independent of x, N and f . Since f ∈ V (∗)Lp,λ(Rn),

the right hand side above tends to zero uniformly on x as N →∞ (note that the

property (V ∗) does not depend on the particular value of the radius taken in the

balls centered at x, cf. [5, Lemma 3.4]). Therefore, limN→∞AN,p(Mf1) = 0.

Now we deal with the second term in the sum in (3.3). Let ε > 0 be arbitrary.

Then there exists t1 > 1 such that tλ−n < ε for all t ≥ t1. For such fixed t1, we

have ∫
B(x,1)

(
M(f2)(y)

)p
χN(y) dy . I1(x,N) + I2(x,N)

where

I1(x,N) :=

∫
B(x,1)

χN(y) sup
0<t<t1

[
1

|B(y, t)|

∫
B(y,t)

|f(z)|χRn\Ωx,N/2(z) dz

]p
dy



14 A. Ç. ALABALIK, A. ALMEIDA, and S. SAMKO

and

I2(x,N) :=

∫
B(x,1)

χN(y) sup
t≥t1

[
1

|B(y, t)|

∫
B(y,t)

|f(z)|χRn\Ωx,N/2(z) dz

]p
dy.

First we estimate I2(x,N). By Hölder’s inequality we have

1

|B(y, t)|

∫
B(y,t)

|f(z)| dz ≤ 1

|B(y, t)|1/p
‖f‖Lp(B(y,t)).

Hence

I2(x,N) ≤
∫
B(x,1)

sup
t≥t1

1

|B(y, t)|

∫
B(y,t)

|f(z)|pdz dy . sup
t≥t1

1

tn−λ
‖f‖pp,λ ≤ ε ‖f‖pp,λ.

As regards I1(x,N) we have two different cases to be analysed for z ∈ B(y, t) and

z /∈ Ωx,N/2. If z ∈ B(0, N/2) then t > |z − y| ≥ |y| − |z| > N/2. Thus there is

no contribution to the supremum on t ∈ (0, t1) for N ≥ 2t1. If z /∈ B(x, 2) then

t > |z− y| ≥ |z− x| − |y− x| ≥ 1. Hence it remains to handle I1(x,N) when the

supremum is taken over all t ∈ (1, t1). For such values of t we have

t−n
∫
B(y,t)

|f(z)|χRn\Ωx,N/2(z) dz ≤
∫
B(y,t1)

|f(z)| dz =

∫
B(0,t1)

|f(y − z)| dz.

Using this, the Minkowski’s inequality and a simple change of variables, we get

I1(x,N) ≤
∫
B(x,1)

χN(y)

[∫
Rn
χB(0,t1)(z) |f(y − z)| dz

]p
dy

≤

(∫
Rn
χB(0,t1)(z)

[
sup
v∈Rn

∫
B(v,1)

|f(u)|p χN−|z|(u) du

]1/p

dz

)p

=:

(∫
Rn
gN(z) dz

)p
with the interpretation

χa := 1 if a ≤ 0 and χa := χRn\B(0,a) if a > 0.
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This gives an uniform bound for I1(x,N). Since f ∈ Lp,λ(Rn) and gN(z) has an

integrable majorant (depending on t1), an application of the Lebesgue conver-

gence theorem shows that
∫
Rn gN(z) dz → 0 as N →∞, which implies that

I1(x,N)→ 0 uniformly on x, as N →∞.

The proof is complete. �

Theorem 3.6. Let 1 < p < ∞ and 0 ≤ λ < n. Then the operators M ], H and

H are bounded in V (∗)Lp,λ(Rn).

Proof. The boundedness of M ] and H in V (∗)Lp,λ(Rn) is a consequence of Theo-

rem 3.5 and inequalities (2.2), (2.5). The case of the Hardy operator H requires

a different approach since it can not be estimated by the maximal function. Ob-

serving that

lim
|z|→∞

Hf(z) = 0,

then for any ε > 0 there exists Nε ∈ N such that |Hf(y)| ≤ (ε/vn)1/p for all

|y| ≥ Nε. Therefore

∫
Rn

∣∣Hf(y)
∣∣pχB(x,1)∩{y:|y|>N}(y) dy ≤ ε/vn

∫
Rn
χB(x,1)∩{y:|y|>N}(y) dy ≤ ε

for all N ≥ Nε, uniformly on x ∈ Rn. This shows that AN,p
(
Hf
)
→ 0 as

N →∞. �

Remark 3.7. As regards the preservation of the property (V ∗) by the action of

the Hardy operator H, one can formulate a stronger result. Indeed, as we can see
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from the proof above, H is bounded from the whole space Morrey Lp,λ(Rn) into

V (∗)Lp,λ(Rn).

As in Section 3.1 suppose again that Tα, 0 < α < n, denotes any of the

operators Iα, Mα, Hα and Hα.

Theorem 3.8. Let 0 < α < n, 0 ≤ λ < n, 1 < p < (n − λ)/α and 1/q =

1/p− α/(n− λ). Then Tα is bounded from V (∗)Lp,λ(Rn) into V (∗)Lq,λ(Rn).

Proof. By (3.2) we get

AN,q
(
Iαf

)
. ‖f‖q−pp,λ AN,p(Mf)

with the implicit constant independent of f and N ∈ N. If f ∈ V (∗)Lp,λ(Rn)

then Mf ∈ V (∗)Lp,λ(Rn) by Theorem 3.5. Consequently, we also have Iαf ∈

V (∗)Lq,λ(Rn) by the previous estimate. �

3.3. Invariance of the closure of C∞0 (Rn). As shown in [5], the subspace

V
(∗)

0,∞L
p,λ(Rn) := V0L

p,λ(Rn) ∩ V∞Lp,λ(Rn) ∩ V (∗)Lp,λ(Rn)

coincides with the closure of the class C∞0 (Rn) in Morrey norm. Note that this

closure plays an important role in harmonic analysis on Morrey spaces since its

dual provides a predual space for Morrey spaces (cf. [2, 3, 31, 41]). Moreover (cf.

[5]), we have the strict embeddings

V
(∗)

0,∞L
p,λ(Rn) $ V0L

p,λ(Rn) ∩ V∞Lp,λ(Rn) $ V0L
p,λ(Rn) $ Lp,λ(Rn).
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The next corollaries are immediate consequences of the results obtained in Sec-

tions 3.1, 3.2 and the already known corresponding boundedness in the vanishing

space V0L
p,λ(Rn).

Corollary 3.9. Let 1 < p < ∞ and 0 ≤ λ < n. Then the operators M , M ], H

and H are bounded in V
(∗)

0,∞L
p,λ(Rn).

Corollary 3.10. Let 0 < α < n, 0 ≤ λ < n, 1 < p < (n − λ)/α and 1/q =

1/p− α/(n− λ). Then Tα is bounded from V
(∗)

0,∞L
p,λ(Rn) into V

(∗)
0,∞L

q,λ(Rn).

We end this section with a further result for singular integral operators S

defined by (2.3), with the kernel satisfying (2.4). One knows that S is bounded

in V0L
p,λ(Rn), for 1 < p < ∞ and 0 ≤ λ < n (cf. [32, Theorem 5.1]). On the

other hand, we have seen that S is also bounded in V∞L
p,λ(Rn) (cf. Corollary 3.2).

Unfortunately, we do not know whether S preserves the vanishing property (V ∗).

Nevertheless, we have the following result:

Theorem 3.11. Let 1 < p < ∞ and 0 ≤ λ < n. Then S is bounded from

V
(∗)

0,∞L
p,λ(Rn) into itself.

Proof. For bounded compactly supported functions f , there holds

|Sf(y)| ≤ c

|y|n
(3.5)

for sufficiently large |y|, with c > 0 not depending on y. In fact, suppose that

supp f ⊂ B(0,M). We have

|y − z| ≥ |y| −M ≥ |y|
2

for |z| ≤M and |y| ≥ 2M.
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Hence (3.5) follows thanks to the size condition (2.4).

Let now f ∈ V (∗)
0,∞L

p,λ(Rn). Then there exists a sequence (fk) ⊂ C∞0 (Rn) such

that fk → f in Lp,λ(Rn) as k →∞. By the continuity of S in Lp,λ(Rn), we get

Sf = S( lim
k→∞

fk) = lim
k→∞

(Sfk).

Thus we have Sf ∈ V (∗)
0,∞L

p,λ(Rn) since this subspace is closed in Lp,λ(Rn). �

4. Additional results

In this section we consider the following hybrids of Hardy and potential oper-

ators:

Kβf(x) :=
1

|x|β

∫
|y|<|x|

f(y)

|x− y|n−β
dy

and

Kβf(x) :=

∫
|y|>|x|

f(y)

|y|β|x− y|n−β
dy

(with 0 < β ≤ n). As observed in [26], Kβ and Kβ are integral operators bounded

in Lp(Rn), 1 < p <∞, with the corresponding kernels satisfying the size condition

(2.4). Consequently, by Theorem 3.1 we have the following result:

Theorem 4.1. Let 1 < p <∞, 0 ≤ λ < n and 0 < β ≤ n. Then both operators

Kβ and Kβ are bounded on V∞L
p,λ(Rn).
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