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In order to predict and analyze turbulent transport in tokamaks, it is important to model transport
that arises from microinstabilities. For this task, quasilinear codes have been developed that seek
to calculate particle, angular momentum, and heat fluxes both quickly and accurately. In this
tutorial, we present a derivation of one such code known as QuaLiKiz, a quasilinear gyrokinetic
transport code. The goal of this derivation is to provide a self-contained and complete description
of the underlying physics and mathematics of QuaLiKiz from first principles. This work serves
both as a comprehensive overview of QuaLiKiz specifically as well as an illustration for deriving
quasilinear models in general.

1. Introduction
The development of tractable transport models is crucial to further the study and operation

of tokamaks. Accurately characterizing the particle, angular momentum, and heat transport in
the tokamak core requires the understanding of turbulence driven by microinstabilities, as these
instabilities drive much of the particle, momentum, and heat transport in the core. Integrated
modeling codes seek to predict and simulate tokamak discharges via the inclusion of various
different physics and sources, including from microinstabilities. Nonlinear simulations of the
kinetic equations are the most accurate way to compute the transport from microinstabilities. For
reference, the cost of such a nonlinear simulation is on the order of 104 CPUh to 105 CPUh at a
single radial point, while integrated modeling frameworks require thousands of flux calculations
for every second of a plasma discharge in a large tokamak device (Citrin et al. 2017). Multi-
scale simulations that take into account the interplay of instabilities across wide ranges of time
scales are even more expensive (Waltz et al. 2007; Görler & Jenko 2008; Howard et al. 2016).
Even linear kinetic simulations can prove to be intractable for integrated modeling if not reduced
enough. Thus, it is imperative to develop and refine kinetic models that are both accurate enough
to account for transport from microinstabilities and fast enough to be coupled to an integrated
modeling framework.
QuaLiKiz is a quasilinear gyrokinetic transport model originally based on the linear eigenvalue

code Kinezero. Pieces of the derivation have been published throughout the years including in
Bourdelle (2000), Bourdelle et al. (2002), and Bourdelle et al. (2007). The underlying principles
of the code regarding the variational and action-angle approaches can be traced to Garbet et al.
(1990), and upgrades to the physics including angular momentum transport (Cottier et al. 2014)
and numerical improvements (Citrin et al. 2017) have been made since its original development.
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The goal of QuaLiKiz is to calculate the quasilinear transport that arise from microinstabilities.
The core principle is to linearize the kinetic equations and solve the dispersion relation to find the
complex frequencies for microinstabilities, namely the ion temperature gradient (ITG), electron
temperature gradient (ETG), and trapped electron mode (TEM) instabilities. Upon solving the
linear problem, we then incorporate nonlinear physics to compute particle, angular momentum,
and heat fluxes. We do so via a quasilinear approach by coupling the linear characteristics of
the problem together and using previously performed nonlinear kinetic simulations to saturate
the perturbed state. Thus, while the amplitudes of the modes are set by nonlinear physics, the
key transport features can be constructed from the linear regime. Quasilinear methods have been
shown to be valid in the tokamak core. Moreover, the quasilinear codes are much faster than fully
nonlinear kinetic codes. QuaLiKiz in particular can perform a full computation in ∼ 1 CPUs per
wavenumber (Citrin et al. 2017).
As a gyrokinetic code, QuaLiKiz is well suited to model the core of tokamak devices which

are strongly magnetized. Gyrokinetics is a popular approach to investigate turbulent phenomena
in magnetized plasmas such as those of fusion devices (Brizard & Hahm 2007; Cary & Brizard
2009). Gyrokinetics is well suited in scenarios where the microscopic dynamics are subject to
the gyrokinetic ordering. Essentially, we apply gyrokinetics to situations where we can decouple
the fast gyromotion of the charged particle from the slow drift motion; this can be done when
the time scale of the gyromotion is significantly faster than all other time scales in the system
and when the gyroradius is smaller than almost all other length scales in the system. In such a
scenario, the magnetic moment is conserved, leading to a significant reduction in the complexity
of the dynamics (Stephens et al. 2017). Moreover, gyrokinetics incorporates an ordering where
the modes are anisotropic and flute-like, meaning that the characteristic parallel wavelength of
the mode is large but perpendicular wavelengths can be comparable to the gyroradius. Thus,
gyrokinetics is well suited for theoretical and quantitative investigations of magnetized plasma
microturbulence. As a result, gyrokinetics has been used and applied in a wide variety of systems
(Wan et al. 2005; Rogers et al. 2007; Wang et al. 2008; Pueschel et al. 2011, 2014; Howes et al.
2008, 2011; Told et al. 2015; Navarro et al. 2016; Told et al. 2016). Even beyond tokamaks,
progress is being made in simulating stellarator plasmas in gyrokinetic codes (Jenko & Kendl
2002; Xanthopoulos & Jenko 2007; Mynick et al. 2010; Nunami et al. 2010; Baumgaertel et al.
2011). QuaLiKiz in particular, however, assumes an axisymmetric geometry to simplify the
dynamics, meaning QuaLiKiz is only suitable for tokamaks and not stellarators.
Aside from the well established gyrokinetic approach, the key assumption behind QuaLiKiz is

the quasilinear approximation. In nonlinear simulations, turbulent fluctuations eventually saturate
due to coupling mechanisms between different modes. However, it has been found that the
nonlinear mode structure can resemble the underlying linear mode structure; in particular, the
cross phases between fluctuating quantities in nonlinear simulations are identical to that of linear
simulations (Dannert & Jenko 2005; Jenko et al. 2005). The key parameter that characterizes the
validity of the quasilinear approximation is the Kubo number, defined as the ratio between the
decorrelation time of the potential and the eddy turn-over time (Kubo 1963; Krommes 2002). If
the Kubo number is less than unity and the fluctuations are small compared to the equilibrium
quantities, then the quasilinear approximation is well justified. It has been found that both ETG
and ITG-TEM turbulence both generally exhibit Kubo numbers less than unity (Lin et al. 2008;
Casati et al. 2009; Citrin et al. 2012). In such situations, one also finds that ratios of the particle
and heat fluxes calculated in the linear regime match those calculated in the nonlinear regime
and that the real part of the nonlinear mode frequency resembles that of the linear mode (Merz &
Jenko 2008; Görler & Jenko 2008). This implies that the physics that drives anomalous transport
in the tokamak core can be well described by quasilinear theory (Bourdelle 2015). Moreover,
it has been found that when different instabilities are found in the linear regime, their interplay
can manifest in the nonlinear regime (Merz & Jenko 2010). We also note that while a less than
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unity Kubo number guarantees the validity of the quasilinear approximation, there exist parameter
regimes with a Kubo number close to unity where the quasilinear approximation remains valid
(Ottaviani 1992). Thus, a smaller than unity Kubo number is not a necessary condition.
That the linear mode structure is often retained in nonlinear mode structure motivates a

quasilinear approach where the equilibrium distribution function slowly evolves in comparison
to the time scale of the instability, essentially taking a mean field theory approach. Then, the
linear response is acquired and used to inform the first order nonlinear behavior of the system.
Quasilinear flux ratios are then calculated and each flux is appropriately saturated to the correct
magnitude using a nonlinear saturation rule informed by nonlinear physics. The approach allows
us to exploit the fact that the nonlinear state resembles the linear state to perform flux calculations
without needing to carry out a full nonlinear simulation (Citrin et al. 2012).
However, constructing a quasilinear code instead of a nonlinear code is alone not enough to

increase the speed of calculations. Rather, a litany of approximations and reductions are necessary.
Aside from other typical approximations for gyrokinetic tokamak codes (e.g. nonrelativistic
particles, quasineutrality), QuaLiKiz makes use of the following assumptions:
• Adiabatic invariance. By exploiting the adiabatic invariants of the system, we can formulate

the Vlasov equationwith action-angle variables. This requires that the single-particle Hamiltonian
be slowly varying in time in comparison to the characteristic frequencies of motion. These
frequencies correspond to the cyclotron motion, the bounce-transit motion, and the toroidal drift
and precession.
• Shifted Maxwellian with low Mach number and the 𝛿 𝑓 approximation. QuaLiKiz linearizes

the Vlasov equation by assuming a small perturbation from the shifted Maxwellian. Although we
include the effect of bulk plasma rotation, we operate in the limit that theMach number associated
with the rotation is small.
• Electrostatic fluctuations. The code allows for electrostatic perturbations and an equilibrium

electric field. The absence of magnetic perturbations allows for the exclusive use of Poisson’s
equation while neglecting Ampere’s law, thus simplifying the linear problem. To simplify the
guiding center motion, we require that the equilibrium electrostatic potential is small compared
to the characteristic thermal energy.
• Trapped electron collisions. As an approximation, we utilize a Krook collision operator for

trapped electrons and neglect collisions entirely for passing electrons and all ions.
• Shifted circle geometry with small inverse aspect ratio. We take the geometry to be 𝑠 − 𝛼

model (Connor et al. 1983) to calculate the magnetic drifts and perform integrals over the pitch
angle with ease. The 𝑠 − 𝛼 model gives rise to a radial shift in the concentric flux surfaces called
the Shafranov shift. The effect of this shift is included when calculating the magnetic drifts,
but ignored when considering the bounce-transit motion. Thus, the treatment of guiding center
motion with respect to the geometry is inherently inconsistent. Moreover, the 𝑠 − 𝛼 model is
ad-hoc and does not solve the Grad-Shafranov equation.
• Gaussian eigenfunctions. Instead of using a self-consistent eigenfunction for the electrostatic

modes, QuaLiKiz assumes the modes take the form of a Gaussian with radial extent. The shift
and width of the Gaussian are calculated in the high mode frequency limit as functions of the
mode frequency, and substituted back into the dispersion relation.
• Strong ballooning. The electrostatic modes are assumed to be heavily localized around their

rational flux surface. This allows for a Fourier link between the minor radius 𝑟 and the poloidal
angle \, thus simplifying the calculation. The localization also creates a separation of scales, thus
allowing integrals over the radial extent of the electrostatic modes to be more easily approximated.
The ballooning transformation allows us to instead cast the modes in terms of the poloidal angle;
with the strong ballooning approximation along with a Gaussian ansatz, we acquire a Gaussian
eigenfunction that varies with \ over an infinite domain.
• Strongly passing and strongly trapped particles. Trapped and passing particles are considered
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to be respectively strongly trapped and strongly passing. For trapped particles, this greatly
simplifies the relation between the physical toroidal and poloidal angles and the action angles and
leads to a kinetic bounce average that is similar to the gyro-average. For passing particles, the
strongly passing assumption simplifies the integrals over the pitch angle due to the dominating
parallel velocity.
We note that not all approximations have been explicitly validated against higher-fidelity linear

gyrokinetic models on a case by case basis. Many of these approximations are performed for the
sake of analytic tractability. Of course, there are physical scenarios where the approximations are
well justified. For instance, it is known that the small Mach number approximation is justified for
rotationless or rotating but low Mach number tokamak plasmas (Citrin et al. 2017). Moreover,
the use of QuaLiKiz is restricted to scenarios where electrostatic microturbulence dominates the
driving of anomalous transport, such as in relevant tokamak core scenarios. For high-performance
regimes where electromagnetic (EM) stabilization of ITG instabilities has been identified as a
significant effect, an ad-hoc EM-stabilization model has been introduced (Casson et al. 2020).
We also restrict QuaLiKiz to parameter regimes without strong shaping; in particular, extreme
elongation or spherical tokamak geometries strongly break the 𝑠 − 𝛼 model assumption. Global
effects and up-down asymmetries are not captured by QuaLiKiz, nor any mode that breaks the
even parity of the electrostatic eigenfunction. As QuaLiKiz is under active development, efforts
have been and are constantlymade to relax assumptions and improve approximations as necessary.
For instance, the collision operator has recently been improved in light of discrepancies between
QuaLiKiz predictions and high collisionality TEM regimes (Stephens et al. 2021). Moreover,
verifying the strongly passing approximation is a subject of future work.
The goal of this work is to derive the analytic equations for QuaLiKiz step by step. Although

various overviews of the QuaLiKiz and Kinezero framework have already been published
(Bourdelle 2015; Bourdelle et al. 2016; Citrin et al. 2017), no combination of currently published
works derive the entirety of the model from first principles. We seek to fill this gap by offering
a comprehensive and complete formulation of QuaLiKiz. In particular, we focus this work on
the most complex and uncovered aspect of QuaLiKiz, the derivation and computation of the
linear dispersion relation. Detailed discussions of the nonlinear saturation rule can be found in
Citrin et al. (2012) and Citrin et al. (2017). Meanwhile, validation of QuaLiKiz against nonlinear
gyrokinetic simulations can be found in Cottier et al. (2014), Bourdelle et al. (2016), and Linder
(2016), while validation against experimental results can be found in Bourdelle (2015), Citrin
et al. (2017), Casson et al. (2020), and Marin et al. (2021).
This work will thus serve as a guide for improving upon QuaLiKiz and attaining physical

and mathematical intuition as to its key principles, approximations, and computational methods.
In addition, we also outline the new computational method used to numerically calculate 1-
dimensional and 2-dimensional integrals. Moreover, this sort of work serves as a tutorial for
those seeking to understand the fundamental considerations in the formulation of any quasilinear
tokamak code. While many codes offer comprehensive manuals and describe the key principles
at play, the process of creating such a code from scratch can often appear opaque and unintuitive.
Thus, this derivation also serves as a tutorial for those who seek to understand the physical,
mathematical, and computational aspects of quasilinear modeling in all their gory details.
The paper is organized as follows: Section 2 reviews the action-angle formalism and derives

explicit expressions for the action-angle variables from physical variables. In Section 3, we
linearize the Vlasov equation and expand the perturbed distribution function and electrostatic
potential using a Fourier series to derive the dispersion relation. To solve the dispersion relation,
we must integrate over all of phase space, resulting in a functional that depends on the complex
frequency of the mode. Section 4 examines the ballooning transform and its role in simplifying
the dispersion relation as well as the characteristics of the electrostatic perturbation. Sections 5 - 7
calculate the adiabatic, trapped, and passing parts of the functional, respectively, resulting in a
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reduced expression for the dispersion relation. Section 8 applies these results to the quasilinear
problem to derive expressions for the particle, toroidal angular momentum, and heat fluxes.
Section 9 connects the quasilinear results with nonlinear physics with the use of a saturation rule.
Section 10 explains the method of contour integration used in QuaLiKiz to find the eigenmodes
and the newly implemented numerical integration method based on the Genz andMalik algorithm
(Genz & Malik 1980). Finally, we summarize our work Section 11. We include Appendix A to
serve as a brief explanation of Fried and Conte integrals. In addition, we derive the magnetic
drift velocity in an 𝑠 − 𝛼 equilibrium in Appendix B and briefly discuss the inclusion of trapped
electron collisions in Appendix C. The derivation is performed in SI units, and we set the
Boltzmann constant 𝑘𝐵 = 1 such that our temperatures are in units of energy.

2. Action Angle Variables
We first restrict ourselves to the collisionless Vlasov equation. Since the inclusion of collisions

do not affect the fundamental approach, we examine them later in Appendix C. The Vlasov
equation is

𝜕 𝑓

𝜕𝑡
+ { 𝑓 , 𝐻} = 0, (2.1)

where 𝑓 is the distribution function, 𝐻 is the single particle Hamiltonian, and {·, ·} denotes the
Poisson bracket. Using phase space coordinates, this can be written as

𝜕 𝑓

𝜕𝑡
+ ¤𝒒 · 𝜕 𝑓

𝜕𝒒
+ ¤𝒑 · 𝜕 𝑓

𝜕 𝒑
= 0, (2.2)

where, for a single particle 𝒒 is the position, 𝒑 is the canonicalmomentum, and the time derivatives
are given by Hamilton’s equations of motion. For electromagnetic fields relevant to a tokamak,
the Hamiltonian of a single charged particle is non-trivial. Although this form of the Vlasov
equation and others like it offer an intuitive physical picture, these coordinates can make solving
the system quite cumbersome. QuaLiKiz instead employs an action-angle formalism to simplify
the perturbative analysis. Such a formalism in the context of tokamak physics was first elaborated
by Kaufman (1972) and expanded upon by Mahajan & Chen (1985). The core principle is to
define a canonical transformation,

(𝒒, 𝒑) → (𝜶, 𝑱), (2.3)
for which Hamilton’s equations of motion simplify in the new phase space (𝜶, 𝑱). By restricting
ourselves to a canonical transformation, we preserve the form of Vlasov’s equation. The
coordinates 𝜶 and 𝑱 respectively correspond to the action angles and adiabatic invariants of
our system. It is well known (Goldstein et al. 2001) that Hamilton’s equations of motion then
reduce to

𝜕𝐻

𝜕𝜶
= − ¤𝑱 = 0, (2.4)

𝜕𝐻

𝜕𝑱
= ¤𝜶 = 𝛀, (2.5)

where 𝛀 are the constant angular frequencies associated with each adiabatic invariant and the
time derivatives are written in Newton’s dot notation. At first glance, it may seem that we
have simply shifted the difficulty of the problem to calculating this new canonical transformation
itself. The power of this method comes from analyzing the unperturbed system and then including
electromagnetic fluctuations in the Hamiltonian.
We define the Hamiltonian to be

𝐻 = 𝐻0 + 𝛿ℎ, (2.6)
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where the unperturbed Hamiltonian is simply

𝐻0 =
1
2𝑚

(
𝒑2 − 𝑒𝑨20

)
+ 𝑒Φ. (2.7)

Here, 𝑚 and 𝑒 are respectively the mass and charge of the particle, 𝑨0 is the equilibrium
vector potential, and Φ is the equilibrium electrostatic potential. Since QuaLiKiz operates in the
electrostatic limit, we therefore apply a perturbation 𝛿ℎ such that

𝛿ℎ = 𝑒𝜙, (2.8)

where 𝜙 is the electrostatic perturbation. We then define the action-angle coordinates in reference
to the unperturbed Hamiltonian,

𝜕𝐻0

𝜕𝜶
= 0, (2.9)

𝜕𝐻0

𝜕𝑱
= 𝛀. (2.10)

Hamilton’s equations of motion then become

𝜕𝐻

𝜕𝜶
= − ¤𝑱 = 𝑒

𝜕𝜙

𝜕𝜶
, (2.11)

𝜕𝐻

𝜕𝑱
= ¤𝜶 = 𝛀 + 𝑒

𝜕𝜙

𝜕𝑱
. (2.12)

We note that because the unperturbed Hamiltonian is a function of 𝑱 and not 𝜶, all equilibrium
quantities are also only functions of 𝑱. Furthermore, any function of 𝜶 is periodic with respect
to 𝜶; thus, the perturbed quantities in our system admit a Fourier series expansion. Moreover, it
can be shown that 𝜶, 𝑱 are canonical coordinates even after introducing a perturbation (Mahajan
& Chen 1985). These features will simplify the derivation greatly.
The next task is to define the canonical transformation by specifying the action-angle variables

in terms of the position 𝒓 and the velocity 𝒗 of the particle. The three adiabatic invariants in
a tokamak correspond to the magnetic moment, the longitudinal invariant (also known as the
bounce-transit action), and the poloidal flux. They are defined as follows:

𝐽1 =
𝑚

𝑒
`, (2.13)

𝐽2 =
1
2𝜋

∮
𝑚𝑝 ‖𝑑𝑙 =

1
2𝜋

∮ (
𝑚𝑣 ‖ + 𝑒𝐴‖

)
𝑑𝑙, (2.14)

𝐽3 = 𝑃𝜑 =
𝑚𝑣 ‖𝑅0𝐵

0
𝜑

𝐵
− 𝑒𝜓. (2.15)

Here, ` = 𝑊⊥/𝐵 is the magnetic moment, where 𝑊⊥ = 1
2𝑚𝑣2⊥ is the kinetic energy associated

with the velocity perpendicular to themagnetic field 𝑩. Meanwhile, 𝑣 ‖ and 𝐴‖ are the components
of the velocity and vector potential parallel to the magnetic field, respectively, with 𝑑𝑙 being the
signed differential length along the particle orbit. We also define 𝜓 to be minus the poloidal
magnetic flux normalized to 2𝜋, which is calculated by integrating the flux of the magnetic field
through a disk tangent to the flux surface everywhere:

𝜓 = − 1
2𝜋

∫
𝑆

𝑩 · 𝑑𝑺. (2.16)

The following subsections discuss each of the three adiabatic invariants and define their associated
action angles and angular frequencies. For the remainder of the derivation, we also use the spatial
coordinates 𝒓 = (𝑟, \, 𝜑), where 𝑟 is the minor radial position, \ is the geometric poloidal angle,
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and 𝜑 is the geometric toroidal angle.We use a right-handed coordinate system such that 𝒓×𝜽 = �̂�.
For further references characterizing the action angles 𝜶, we refer the reader to Garbet’s work in
Garbet (2001) and Garbet et al. (1990).

2.1. Magnetic Moment
In the presence of a magnetic field, charged particles gyrate about the field line at the cyclotron

frequency Ω1 = 𝑒𝐵/𝑚. With a strong enough magnetic field, the cylcotron frequency is much
larger than any other characteristic frequency in the plasma. Under such conditions, the magnetic
moment ` is adiabatically conserved (Brizard & Hahm 2007; Stephens et al. 2017), and the
gyromotion can be decoupled from the guiding center motion:

𝑟 = 𝑟𝐺 + 𝜌 cos(𝛼1), (2.17)

\ = \𝐺 + 𝜌

𝑟
sin(𝛼1), (2.18)

𝜑 = 𝜑𝐺 , (2.19)

where 𝛼1 is equivalent to the gyrophase, 𝜌 is the gyroradius, and the subscript “G” refers to the
location of the particle’s guiding center. These guiding center variables obey the guiding center
equations of motion. Ordinarily, the exact invariant associated with the gyromotion depends on
the electrostatic potential. For QuaLiKiz, we assume that the electrostatic field is small compared
to the kinetic energy. Thus, we simply take 𝐽1 to be the ordinary magnetic moment ` = 𝑊⊥/𝐵.
Later in the derivation, we will need to average various functions over the gyrophase 𝛼1 by

integrating over 𝛼1. We therefore consider the general integral

𝑔𝑛1 =

∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋
𝑔(𝒓)𝑒−𝑖𝑛1𝛼1 , (2.20)

where 𝑛1 is an integer. It will be shown that later that factors of 𝑒−𝑖𝑛1𝛼1 arise from taking Fourier
expansions in terms of 𝛼1. We define the Fourier transform of 𝑔 to be

�̃�(𝒌) =
∫

𝑑3𝑟𝑔(𝒓)𝑒𝑖𝒌 ·𝒓 , (2.21)

with the corresponding inverse Fourier transform

𝑔(𝒓) =
∫

𝑑3𝑘

(2𝜋)3
�̃�(𝒌)𝑒−𝑖𝒌 ·𝒓 . (2.22)

We use the Fourier transform to obtain

𝑔𝑛1 =

∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋

∫
𝑑3𝑘

(2𝜋)3
�̃�(𝒌)𝑒−𝑖𝒌 ·𝒓−𝑖𝑛1𝛼1 =

∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋

∫
𝑑3𝑘

(2𝜋)3
�̃�(𝒌)𝑒−𝑖𝒌 ·𝝆−𝑖𝑛1𝛼1𝑒−𝑖𝒌 ·𝑹𝐺 .

(2.23)
Here, we have decoupled the gyromotion from the guiding center motion via 𝒓 = 𝑹𝐺 + 𝝆. We
then write

𝒌 · 𝝆 = 𝑘⊥𝜌 cos(𝛼1), (2.24)

where

𝑘⊥ =

���𝒌 − 𝒌 · �̂�
��� ≈ √︃

𝑘2𝑟 + 𝑘2
\
. (2.25)

Because the toroidal magnetic field is much stronger than the poloidal field, we neglect 𝑘𝜑 terms
when computing 𝑘⊥ and approximate it as above. Note that according to our definition of the
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Fourier transform, 𝑘𝑟 and 𝑘 \ are operators in real space such that

𝑘𝑟 → 𝑖
𝜕

𝜕𝑟
, (2.26)

𝑘 \ → 𝑖

𝑟

𝜕

𝜕\
. (2.27)

We may then integrate over 𝛼1 independently, leading to∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋
𝑒−𝑖𝑘⊥𝜌 cos(𝛼1)−𝑖𝑛1𝛼1 = (−𝑖)𝑛1𝐽𝑛1 (𝑘⊥𝜌), (2.28)

where 𝐽𝑛 is the 𝑛th Bessel function of the first kind. Therefore, we finally have that

𝑔𝑛1 =

∫
𝑑3𝑘

(2𝜋)3
(−𝑖)𝑛1𝐽𝑛1 (𝑘⊥𝜌)�̃�(𝒌)𝑒−𝑖𝒌 ·𝑹𝐺 = (−𝑖)𝑛1

(
𝐽𝑛1 (𝑘⊥𝜌) · 𝑔

)
(𝑹𝐺). (2.29)

As a shorthand, we treat the Bessel function in real space as a differential operator that acts on
𝑔, after which we evaluate the resulting function at the guiding center. The Bessel function is
simply a scalar function in Fourier space instead of a differential operator. The case of 𝑛1 = 0
corresponds to the well known gyro-average. After completing the gyro-average, all functions
are evaluated at the guiding center. Thus, we drop the subscript “G" for convenience and treat
all spatial variables as those corresponding to the guiding center. The adiabatic invariants 𝐽2 and
𝐽3 are explicitly calculated within the guiding center framework where we hold ` constant and
ignore the cyclotron motion.

2.2. Longitudinal Invariant
To calculate 𝐽2, we consider the guiding center particle motion along a magnetic field line;

such a particle completes bounce-transit orbits with frequency Ω2. This is the bounce frequency
for trapped particles and the transit frequency for passing particles. Here, we neglect excursions
from the field line due to various guiding center drifts by holding 𝑟 constant. For an extended
treatment of bounce-transit motion, see Brizard (2011) and Stephens et al. (2020).
Assuming that the equilibrium electrostatic potential is small, the guiding center velocity

parallel to the magnetic field is ��𝑣 ‖ �� = √︂
2
𝑚
(𝐸 − `𝐵), (2.30)

where 𝐸 is the total kinetic energy of the particle. As an approximation, we take the typical
equilibrium magnetic field to be of the form

𝑩 = 𝐵𝜑 (𝑟, \)�̂� + 𝐵\ (𝑟, \)𝜽 =
1

1 + 𝑟/𝑅0 cos(\)

(
𝐵0𝜑 (𝑟)�̂� + 𝐵0\ (𝑟)𝜽

)
, (2.31)

where 𝑅0 is the major radius. This corresponds to the magnetic field in a circular-cross section
tokamak without any Shafranov shift. Defining the inverse aspect ratio 𝜖 = 𝑟/𝑅0, we recognize
that this circular equilibrium is the small 𝜖 limit of a more general axisymmetric equilibrium.
QuaLiKiz is thus well suited to machines where the aspect ratio of the device is ∼ 3 or larger.
Devices which smaller aspect ratios such as spherical tokamaks, however, cannot be reliably
simulated in QuaLiKiz.
A particle is considered trapped if it reflects at a bounce angle \𝑏 , which requires

`𝐵0 (𝑟)
𝐸

> 1 − 𝜖 . (2.32)

Otherwise, the particle is considered passing since it will simply continue traveling along the
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magnetic field line without reflecting. We rewrite 𝑣 ‖ to be

𝑣 ‖ =

√︂
2𝑇
𝑚

𝜖 ‖
√︁
b
√︁
1 − _𝑏(𝑟, \). (2.33)

Here, b = 𝐸/𝑇 where 𝑇 is the temperature and 𝜖 ‖ = ±1 determines the sign of the parallel
velocity. We also define

_ =
`𝐵 (𝑟, \ = 0)

𝐸
=

𝑣2⊥
𝑣2𝑏(𝑟, \)

, (2.34)

𝑏(𝑟, \) = 𝐵(𝑟, \)
𝐵(𝑟, \ = 0) . (2.35)

It is clear then that _ is a pitch angle parameter and determines whether the particle is trapped or
passing.
The bounce-transit frequency is defined as

|Ω2 | =
2𝜋
𝑇2

, (2.36)

where

𝑇2 =

∮
𝑑\�� 𝑑\
𝑑𝑡

�� . (2.37)

We note that one full poloidal orbit for trapped particles includes both the forward motion, where
\ goes from −\𝑏 to \𝑏 , and the backward motion, where \ goes from \𝑏 to −\𝑏 . For passing
particles, the poloidal orbit only includes one full pass where \ goes from −𝜋 to 𝜋. The sign
of the transit frequency for passing particles is aligned with that of the parallel velocity and
is thus determined by 𝜖 ‖ , while the bounce frequency is always positive for trapped particles.
Assuming that 𝐵𝜑 � 𝐵\ , then �̂�, the direction of the magnetic field, is approximately �̂�. We
again emphasize that this approximation breaks down for devices such as spherical tokamaks.
Therefore, we write

𝑣 ‖ = 𝒗 · �̂� ≈ ¤𝜑 (𝑅0 + 𝑟 cos(\)) ≈ 𝑞𝑅0 ¤\, (2.38)

where we have taken the toroidal field to lie mostly in the toroidal direction to make the above
approximation. Here, we have defined the safety factor

𝑞(𝑟) = 𝑑𝜑

𝑑\
≈

𝑟𝐵𝜑

𝑅0𝐵\

. (2.39)

The safety factor describes how many times a magnetic field line wraps around toroidally per
poloidal turn. The magnitude of the bounce-transit frequency is then

|Ω2 | =
√︂
2𝑇
𝑚

√
b

𝑞𝑅0
Ω2 (𝑟, _), (2.40)

where we define

Ω2 (𝑟, _) =
2𝜋∮

𝑑\ 1√
1−_𝑏 (𝑟 , \)

. (2.41)

Note that for passing particles, we take the sign of the transit frequency to be the sign of the
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parallel velocity and multiply by 𝜖 ‖ accordingly. We then calculate Ω2 in the small 𝜖 limit to

Ω2 ≈


𝜋
√
𝜖

2
√
2K(^)

if 0 6 ^ < 1 (trapped),

𝜋^
√
𝜖

√
2K

(
^−1

) if 1 < ^ < ∞ (passing).
(2.42)

Here,K is the complete elliptic integral of the first kind and ^ is a trapped parameter defined such
that

_ = 1 − 2𝜖^2. (2.43)
In the small 𝜖 limit, 0 6 ^ < 1 for trapped particles and 1 < ^ < ∞ for passing particles. We also
calculate the bounce-transit action to be

𝐽2 ≈


8𝑚𝑞𝑅0

√︁
𝐸/𝑚

√
𝜖

𝜋

(
E (^) −

(
1 − ^2

)
K (^)

)
if 0 6 ^ < 1 (trapped),

4𝑚𝑞𝑅0
√︁
𝐸/𝑚

√
𝜖

𝜋
^E

(
^−1

)
+ 𝑒Φ𝑡 if 1 < ^ < ∞ (passing),

(2.44)

where E is the complete elliptic integral of the second kind andΦ𝑡 is the toroidal flux normalized
by 2𝜋. The flux term is absent for trapped particles since the closed line integral of 𝐴‖ is zero for
trapped orbits.
Calculating the angular variable 𝛼2 requires the explicit equation of motion

𝑑𝛼2

𝑑𝑡
= Ω2. (2.45)

This is of course the definition of 𝛼2 such that it is conjugate to the action variable 𝐽2. To find an
explicit expression for 𝛼2 in terms of the poloidal angle \, we make use of the chain rule,

𝑑𝛼2

𝑑𝑡
=

𝑑𝛼2

𝑑\
¤\ =

𝑑𝛼2

𝑑\

𝑣 ‖
𝑞𝑅0

= Ω2. (2.46)

We emphasize that Ω2 is not dependent on 𝛼2 or \. Thus, this differential equation can be
integrated using elliptic functions, leading to an expression of 𝛼2 in terms of \. We use the
convention that 𝛼2 (\ = 0) = 0, leading to

𝛼2 =

∫ \

0
𝑑\ ′

𝑞𝑅0Ω2

𝑣 ‖
=

∫ \

𝑑\ ′
𝑞𝑅0Ω2√︁

2𝑇/𝑚𝜖 ‖
√
b
√
1 − _𝑏

. (2.47)

For trapped particles, we must keep in mind that 𝜖 ‖ switches sign after the particle bounces. The
integral can then be simplified in the small 𝜖 limit, leading to

𝛼2 ≈


𝜋

2

F
(
sin−1

[
^ sin

(
\
2
) ]
, ^

)
K (^) if 0 6 ^ < 1 (trapped),

𝜋
F

(
\
2 , ^

−1)
K

(
^−1

) if 1 < ^ < ∞ (passing),

(2.48)

where F is the incomplete elliptic integral of the first kind. Essentially, the integral takes the same
form as when calculating Ω2, the primary difference being that we integrate up to arbitrary \

rather than up to the bounce angle \𝑏 for trapped particles or up to 𝜋 for passing particles.
Finally, let 𝐺

(
𝜖 ‖ , \

)
be a quantity that varies over the bounce-transit orbit along the field line.

It is often of interest to time average 𝐺 over the orbit; we define the bounce-transit average
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𝐺

(
𝜖 ‖ , \

)〉
to be

〈
𝐺

(
𝜖 ‖ , \

)〉
=
1
𝑇2

∮
𝑑\�� 𝑑\
𝑑𝑡

��𝐺 (
𝜖 ‖ , \

)
=

∮
𝑑\

𝐺( 𝜖‖ , \)√
1−_𝑏∮

𝑑\ 1√
1−_𝑏

. (2.49)

For passing particles, the average is explicitly∮
𝑑\

𝐺
(
𝜖 ‖ , \

)
√
1 − _𝑏

=

∫ 𝜋

−𝜋
𝑑\

𝐺
(
𝜖 ‖ , \

)
√
1 − _𝑏

, (2.50)

while for trapped particles the average is instead∮
𝑑\

𝐺
(
𝜖 ‖ , \

)
√
1 − _𝑏

=

∫ \𝑏

−\𝑏
𝑑\

𝐺
(
𝜖 ‖ , \

)
+ 𝐺

(
−𝜖 ‖ , \

)
√
1 − _𝑏

. (2.51)

Note that because the line integral must be closed, a sum over 𝜖 ‖ must be performed for trapped
particles so that quantities such as 𝑣 ‖ average to 0.
In this discussion so far, we have neglected any magnetic drifts and excursions from the field

line. We include such effects in the next section, as they characterize the third adiabatic invariant
— the poloidal flux.

2.3. Poloidal Flux
In an axisymmetric equilibrium, the canonical toroidal momentum, 𝑃𝜑 , is conserved since no

external quantities depend explicitly on the toroidal angle 𝜑. From guiding center theory, we can
write the canonical toroidal momentum as

𝑃𝜑 =
𝑚𝑣 ‖𝑅0𝐵

0
𝜑

𝐵
− 𝑒𝜓. (2.52)

This is an exact invariant of the system. We construct 𝐽3 such that it approximates 𝑃𝜑 provided
that the poloidal flux term dominates. For typical parameters in a tokamak plasma this is indeed
the case, since

(
𝑃𝜑 + 𝑒𝜓

)
/(𝑒𝜓) ∼

√
𝑚𝑇/(𝑒𝐵𝑅0). Inputting JET-like parameters, 𝑇 = 5 keV,

𝑚 = 𝑚𝐷 , 𝐵 = 3 T, 𝑅0 = 3 m, then
√
𝑚𝑇/(𝑒𝐵𝑅0) ∼ 10−3, making this a very reasonable

approximation. We therefore write
𝐽3 = −𝑒𝜓. (2.53)

To calculate the poloidal flux, we utilize Stoke’s theorem; the surface integral of 𝑩 simply becomes
a closed line integral of 𝑨 to find

𝐴𝜑 (𝑟, \) =
1

1 + 𝜖 cos(\)

∫ 𝑟

𝐵\ (𝑟 ′, \) (1 + 𝑟 ′/𝑅0 cos(\))𝑑𝑟 ′ =
∫ 𝑟

𝐵0
\
(𝑟 ′)𝑑𝑟 ′

1 + 𝜖 cos (\) . (2.54)

Thus, we obtain

𝐽3 = −𝑒𝜓 = − 1
2𝜋

∫ 2𝜋

0
𝑒(1 + 𝜖 cos(\))𝐴𝜑𝑑𝜑 = 𝑒

∫ 𝑟

𝑅0𝐵
0
\ (𝑟

′)𝑑𝑟 ′. (2.55)

We see then that 𝐽3 is purely a function of 𝑟 such that

𝑑𝐽3

𝑑𝑟
≈ − 𝑒𝑟𝐵

𝑞
. (2.56)

We next calculate Ω3, which is the toroidal precession frequency for trapped particles and
the toroidal rotation frequency for passing particles. Along the bounce-transit orbit, guiding
center drifts cause radial excursions from the magnetic field line. In addition, passing particles
wind around the magnetic field line toroidally due to the lack of any bounce point. To calculate
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this frequency, we need to first calculate deviations from the field line orbit, noting that radial
excursions from the field line are of the order of the gyroradius. To aid in the calculation, we
exploit the exact conservation of the canonical toroidal momentum:

𝜓 = �̄� +
𝑚𝐵0𝜑𝑅0𝑣 ‖

𝑒𝐵
= �̄� + 𝜓1. (2.57)

Here, �̄� corresponds to the reference magnetic flux surface defined to be

�̄� = −
𝑃𝜑

𝑒
(2.58)

and 𝜓1 is the deviation from that flux surface. Recall that the field line orbit assumed that

𝑑\

𝑑𝑡
≈

𝑣 ‖
𝑞𝑅0

, (2.59)

wherewe hold 𝑟 and thus𝜓 fixed. Since the exact field line-following orbit breaks 𝑃𝜑 conservation,
we need to include deviations from the field line caused by conservation of 𝑃𝜑 along with guiding
center drifts in order to consistently expand the guiding center equation of motion with respect
to the gyroradius.
The guiding center equation of motion is

𝑑𝑥

𝑑𝑡
=

(
𝑣 ‖ �̂� + 𝒗𝐷

)
· ∇𝑥, (2.60)

where 𝑥 is any spatial coordinate and 𝒗𝐷 are the guiding center drifts. We then expand the guiding
center equation of motion for variables 𝜓, \, and 𝜑 and find that

𝑑𝜓

𝑑𝑡
≈ (𝒗𝐷 · ∇𝜓) | �̄� , (2.61)

𝑑\

𝑑𝑡
≈

(
𝑣 ‖
𝑞𝑅0

)����
�̄�

+ 𝑑

𝑑𝜓

(
𝑣 ‖
𝑞𝑅0

)����
�̄�

𝜓1 + (𝒗𝐷 · ∇\) | �̄� , (2.62)

𝑑𝜑

𝑑𝑡
≈

(
𝑣 ‖
𝑞𝑅0

𝑑𝜑

𝑑\

)
+ 𝑑

𝑑𝜓

(
𝑣 ‖
𝑞𝑅0

𝑑𝜑

𝑑\

)����
�̄�

𝜓1 + (𝒗𝐷 · ∇𝜑) | �̄� . (2.63)

We take the 𝒗𝐷 to be the the sum of the classical curvature, grad-𝐵, and 𝐸-cross-𝐵 drifts:

𝒗𝐷 =
�̂�

𝑒𝐵

(
𝑚𝑣2‖𝒌 + `∇𝐵 + 𝑒∇Φ

)
, (2.64)

where �̂� is the curvature vector defined such that

�̂� × 𝒌 = ∇ × �̂� −
(
�̂� · ∇ × �̂�

)
�̂�. (2.65)

We can simplify the equation of motion in the toroidal direction by noting that

𝑑

𝑑𝜓

(
𝑣 ‖
𝑞𝑅0

𝑑𝜑

𝑑\

)
𝜓1 =

𝑑

𝑑𝜓

(
𝑣 ‖
𝑞𝑅0

)
𝑑𝜑

𝑑\
𝜓1 +

𝑑

𝑑𝜓

(
𝑑𝜑

𝑑\

)
𝑣 ‖
𝑞𝑅0

𝜓1

=
𝑑𝜑

𝑑\

𝑑\

𝑑𝑡
+ 𝑑

𝑑𝜓

(
𝑑𝜑

𝑑\

)
𝑣 ‖
𝑞𝑅0

𝜓1 −
𝑑𝜑

𝑑\

𝑣 ‖
𝑞𝑅0

− 𝑑𝜑

𝑑\
(𝒗𝐷 · ∇\) ,

(2.66)

where we used the equation of motion in the poloidal direction. Substituting this in and evaluating
𝑑𝜑

𝑑\
, we obtain

¤𝜑 =
𝑑

𝑑𝜓

(
𝑞

1 + 𝜖 cos (\)

)
𝜓1

𝑣 ‖
𝑞𝑅0

+ 𝒗𝐷 · ∇𝜑 − 𝑞

1 + 𝜖 cos (\) 𝒗𝐷 · ∇\ + 𝑞

1 + 𝜖 cos (\)
𝑑\

𝑑𝑡
, (2.67)



Quasilinear gyrokinetic theory: A derivation of QuaLiKiz 13

where we evaluate all radial coordinates at 𝑟 such that

𝜓 (𝑟) = �̄�. (2.68)

Finally, we take the bounce-transit average of ¤𝜑 and find that

Ω3 = 〈 ¤𝜑〉 = 〈𝜔𝑑〉 + 𝜖𝑞(𝑟)Ω2 = Ω𝑑 + 𝜖𝑞(𝑟)Ω2. (2.69)

Here, 𝜖 is 0 for trapped particles and 1 for passing particles,Ω𝑑 is the frequency purely due to the
guiding center drifts, and 𝜔𝑑 is associated with the instantaneous deviation from the magnetic
field line. The extra term for passing particles is due to the toroidal rotation from following the
field line in a complete poloidal turn. This parallel velocity dependent term is absent for trapped
particles since their average toroidal position does not change as a result of a complete field
line-following bounce. We approximate 𝜔𝑑 as

𝜔𝑑 ≈ 𝑑𝑞

𝑑𝜓

𝜓1𝑣 ‖
𝑞

+ 𝒗𝐷 · ∇𝜑 − 𝑞𝒗𝐷 · ∇\. (2.70)

The poloidal component of the magnetic drift dominates, thus we ignore the toroidal component.
Using the 𝑠 − 𝛼 equilibrium, we calculate the guiding center drift in Appendix B. Thus, Ω3 is
computed with a finite Shafranov shift. The poloidal component of the guiding center drift is

𝒗𝐷 · ∇\ ≈ − 𝑚

𝑒𝐵𝑟𝑅0

(
𝑣2‖ +

𝑣2⊥
2

) (
cos (\) − 𝛼𝑀 sin2 (\)

)
− 𝐸𝑟

𝑟𝐵
, (2.71)

where 𝐸𝑟 is the radial electric field. We also define 𝛼𝑀 such that

𝛼𝑀 = −𝑞2𝛽 𝑅0
𝑃

𝑑𝑃

𝑑𝑟
. (2.72)

Here, 𝛽 = 2`0𝑃/𝐵2 with `0 being the vacuum permeability. The 𝐸-cross-𝐵 drift can be separated
from the magnetic drifts, so that we obtain

𝒗𝐷,𝐵 · ∇\ ≈ −
𝑣𝐷,𝐵

𝑟

(
cos (\) − 𝛼𝑀 sin2 (\)

)
, (2.73)

where 𝑣𝐷,𝐵 characterizes the magnetic drifts and can be written as

𝑣𝐷,𝐵 =
𝑚

𝑒𝐵𝑅0

(
𝑣2‖ +

𝑣2⊥
2

)
=

b𝑇

𝑒𝐵𝑅0
(2 − _𝑏) , (2.74)

where the magnetic shear is

𝑠 =
𝑟

𝑞

𝑑𝑞

𝑑𝑟
. (2.75)

We can therefore rewrite Ω𝑑 as

Ω𝑑 =
𝑞

𝑟

𝑇b

𝑒𝐵𝑅0

〈
(2 − _𝑏)

(
cos(\) − 𝛼𝑀 sin2 (\)

)
+ 2𝑠

𝜖
(1 − _𝑏)

〉
+

〈
𝑞𝐸𝑟

𝑟𝐵

〉
= 𝜔𝑑0b𝐹𝑑 (^) + 𝜔𝐸 ,

(2.76)
where 𝐹 = 𝐹𝑑 (^) is the bounce-transit averaged term, 𝜔𝑑0 is characteristic of the magnetic
precession frequency and defined to be

𝜔𝑑0 =
𝑞𝑇

𝑟𝑒𝐵𝑅0
, (2.77)

and 𝜔𝐸 corresponds to the 𝐸-cross-𝐵 velocity. We explicitly carry out the bounce-transit average
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by rewriting the _𝑏 terms in terms of ^ and \ and find that

𝐹𝑑 (^) ≈



− 1 + 2E (^)
K (^) + 4𝑠

(
^2 − 1 + E (^)

K (^)

)
− 4𝛼𝑀

3

(
1 − ^2 −

(
1 − 2^2

) E (^)
K (^)

)
if 0 6 ^ < 1 (trapped),

−
(
2^2 − 1

)
+ 2^2

E
(
^−1

)
K

(
^−1

) + 4𝑠^2 E (
^−1

)
K

(
^−1

)
− 4𝛼𝑀

3
^2

((
2^2 − 1

) E (
^−1

)
K

(
^−1

) − 2^2 + 2) if 1 < ^ < ∞ (passing).

(2.78)
Rather than calculating 𝛼3 explicitly, it suffices to write its generic integral form. We also

include the various oscillating quantities associated with the precession motion. In general, we
have

𝜓 = �̄� + �̃�, (2.79)
𝜑 = 𝛼3 + 𝑞(𝑟)\̃ + �̃�, (2.80)
\ = 𝜖𝛼2 + \̃ . (2.81)

Here, �̃� represents the excursion from the reference flux surface �̄� during the poloidal orbit.
Meanwhile, �̃� is the difference in toroidal precession between a circular geometry and a more
general equilibrium magnetic field. Later, we will use 𝑟 instead of �̃� with the understanding that
𝜓 (𝑟) = �̃�. Meanwhile, \̃ is associated with the oscillatory poloidal motion. We define these
quantities as

�̃� =

∫ 𝛼2 𝑑𝛼′
2

Ω2
𝒗𝐷 · ∇𝜓 = 𝜓1 (2.82)

\̃ =

∫ 𝛼2

𝑑𝛼′
2

(
1
Ω2

𝑑\

𝑑𝑡
− 𝜖

)
, (2.83)

�̃� =
𝑑𝑞

𝑑𝜓
\̃�̃� +

∫ 𝛼2 𝑑𝛼′
2

Ω2

(
𝜖
𝑑𝑞

𝑑𝜓
�̃�Ω2 + 𝒗𝐷 · ∇𝜑 − 𝑑𝑞

𝑑𝜓
\̃𝒗𝐷 · ∇𝜓 − 𝑞𝒗𝐷 · ∇\ −Ω𝑑

)
. (2.84)

(2.85)

This guarantees that
𝑑𝛼3

𝑑𝑡
= Ω𝑑 + 𝜖𝑞Ω2. (2.86)

Note that in the above, 𝑞 and 𝑑𝑞/𝑑𝜓 are evaluated at 𝑟 and thus are time independent. Having
characterized action-angle coordinates, we can proceed to solving the Vlasov equation using these
coordinates.

3. The Vlasov Equation
To begin, we write the Vlasov equation in action-angle variables:

𝑑𝑓

𝑑𝑡
=

𝜕 𝑓

𝜕𝑡
+ ¤𝜶 · 𝜕 𝑓

𝜕𝜶
+ ¤𝑱 · 𝜕 𝑓

𝜕𝑱
= 0. (3.1)
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We remind ourselves that Hamilton’s equations of motion in these coordinates are

¤𝑱 = −𝜕𝐻

𝜕𝜶
= −𝑒 𝜕𝜙

𝜕𝜶
, (3.2)

¤𝜶 =
𝜕𝐻

𝜕𝑱
= 𝑒

𝜕𝜙

𝜕𝑱
+𝛀, (3.3)

We later generalize the above equation with a Krook-style operator to add collisions for trapped
electrons in Appendix C, but for now we work in the collisionless limit. The next step is to
linearize the system by assuming the distribution function is composed of an equilibrium part
𝑓0 = 𝑓0 (𝑱) and a perturbed part 𝛿 𝑓 = 𝛿 𝑓 (𝜶, 𝑱, 𝑡). Dropping any quadratic perturbative terms,
we obtain

𝜕𝛿 𝑓

𝜕𝑡
+𝛀 · 𝜕𝛿 𝑓

𝜕𝜶
− 𝑒

𝜕𝜙

𝜕𝜶
· 𝜕 𝑓0
𝜕𝑱

= 0. (3.4)

As stated earlier, any perturbative functions we consider must be periodic in the angular variables
𝜶. Therefore, we utilize a discrete Fourier transform in 𝛿 𝑓 and 𝜙:

𝛿 𝑓 =
∑︁
𝒏

𝑓𝒏 (𝑱)𝑒𝑖 (𝒏·𝜶−𝜔𝑡) , (3.5)

𝜙 =
∑︁
𝒏

𝜙𝒏 (𝑱)𝑒𝑖 (𝒏·𝜶−𝜔𝑡) . (3.6)

To extract the physical quantity, we take the real part of the Fourier series. Here, 𝒏 corresponds
to the mode number of the Fourier term and 𝜔 is the complex frequency of oscillation. We
decompose the complex frequency as 𝜔 = 𝜔𝑟 + 𝑖𝛾, where 𝜔𝑟 is the real frequency and 𝛾 is the
growth rate. Note that in QuaLiKiz, we only consider unstable modes with 𝛾 > 0 and ignore stable
modes; although this does not change the fundamental approach, it does afford us some slight
computational simplicity since we do not have to search for solutions in the entire complex plane.
As an ansatz, we treat 𝜔 = 𝜔𝑛3 to be dependent on 𝑛3 only, not 𝑛1 and 𝑛2. To consistently solve
the dispersion relation, we will eventually need to sum over 𝑛1 and 𝑛2. The individual Fourier
components can be calculated from the physical quantity via

𝑓𝒏 =

∫
𝑑3𝛼

(2𝜋)3
𝛿 𝑓 (𝑡 = 0)𝑒−𝑖𝒏·𝜶, (3.7)

𝜙𝒏 =

∫
𝑑3𝛼

(2𝜋)3
𝜙(𝑡 = 0)𝑒−𝑖𝒏·𝜶, (3.8)

where we integrate each angular variable from 0 to 2𝜋.
To proceed, we assume the equilibrium distribution is a shifted Maxwellian:

𝑓0 (𝑱) = 𝑛0

( 𝑚

2𝜋𝑇

)3/2
exp

(
−𝑚 (𝒗 −𝑼)2

2𝑇

)
= 𝑛0

( 𝑚

2𝜋𝑇

)3/2
exp

(
−𝐻0 + 𝑒Φ + 𝑚𝒗 ·𝑼 − 𝑚𝑈2

2
𝑇

)
.

(3.9)
Here, 𝑛0 is the equilibrium number density, 𝑇 is the temperature, and𝑼 is the equilibrium plasma
rotation velocity. In general, 𝑛0, 𝑇 and 𝑼 will vary with position and therefore depend on 𝑱. By
only considering toroidal rotation, we make the approximation

𝑈𝜑 �̂� ≈ 𝑈‖ �̂�, (3.10)

which allows us to write

𝑈2 ≈ 𝑈2‖ , (3.11)

𝒗 ·𝑼 ≈ 𝑣 ‖𝑈‖ . (3.12)
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We also take into account gradients of the parallel rotation velocity. Due to the presence of
rotation, we also include the radial electric field as well as its gradient. We use the natural
frequency parameter for the electric field shear 𝛾𝐸 defined as

𝛾𝐸 = − 1
𝐵

𝑑𝐸𝑟

𝑑𝑟
. (3.13)

This will allow us to Taylor expand the characteristic 𝐸-cross-𝐵 frequency such that

𝜔𝐸 ≈ 𝜔𝐸0 + 𝜔′
𝐸𝑥, (3.14)

where we expand about the radial distance 𝑥 = 0 and 𝜕𝑟𝜔𝐸 = 𝜔′
𝐸
is related to the radial electric

shear.
Additionally, in QuaLiKiz we ignore terms that go as the square of fluctuating quantities. Since

we assume a small Mach number as well as a small derivative in the parallel velocity, we thus
assume that

𝑚𝑈‖

����𝜕𝑣 ‖𝜕𝑱

���� � 𝝎∗. (3.15)

This term is responsible for turbulent acceleration and arises from the presence of rotation in the
equilibrium distribution function. We expect this term to be negligible for non-impurities in the
low Mach number limit and will thus neglect it as an approximation (Garbet et al. 2013).
Substituting the above expressions as well as the Fourier series into the linearized Vlasov

equation, we isolate each term mode by mode due to completeness and orthogonality of the
Fourier series to find 𝑓𝒏 in terms of 𝜙𝒏. The result is

𝑓𝒏 =
𝑒𝜙𝒏𝒏 · 𝜕 𝑓0

𝜕𝑱

𝒏 ·𝛀 − 𝜔
=

𝑓0

𝑇

𝑒𝜙𝒏𝒏 · (𝝎∗ + 𝝎𝐸 −𝛀)
𝒏 ·𝛀 − 𝜔

, (3.16)

where the diamagnetic frequency 𝝎∗ is

𝝎∗ = 𝑇

(
1
𝑛0

𝜕𝑛0

𝜕𝑱
+

(
b − 3
2
−
𝑈‖

𝑣2
𝑇

(
2𝑣 ‖ −𝑈‖

)) 1
𝑇

𝜕𝑇

𝜕𝑱

)
+
2
(
𝑣 ‖ −𝑈‖

)
𝑣2
𝑇

𝜕𝑈‖
𝜕𝑱

, (3.17)

where the thermal velocity is 𝑣𝑇 =
√︁
2𝑇/𝑚 and the frequency associated with the 𝐸-cross-𝐵 drift

is

𝝎𝐸 =
𝑒

𝑇

𝑑Φ

𝑑𝑱
. (3.18)

We then rewrite the equation to be

𝑓𝒏 = − 𝑒𝜙𝒏

𝑇
𝑓0

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

)
, (3.19)

where it is now clear that there is an adiabatic part and a frequency dependent part of the equation.
The next step to solving the dispersion relation is to use Poisson’s equation,

∇2𝜙 =
∑︁
𝑠

− 𝑒𝑠𝑛𝑠

𝜖0
, (3.20)

where the 𝑠 subscript labels the particle species and 𝜖0 is the vacuum permittivity. In the
earlier parts of the derivation, we had suppressed the subscript for various quantities (e.g.
𝑚,𝑇, 𝑛0, 𝑓0, 𝛿 𝑓 , . . .); we include the subscript for the time being. The total number density 𝑛𝑠 is

𝑛𝑠 =

∫
𝑑3𝑣 𝑓𝑠 . (3.21)
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The perturbed electrostatic potential is calculated using the perturbed number density

𝛿𝑛𝑠 =

∫
𝑑3𝑣𝛿 𝑓𝑠 . (3.22)

We obtain the perturbed charge density by then multiplying the perturbed number density by the
charge of the species. To enforce quasineutrality, we take the sum of the total charge density to
be null and require that

_𝐷 �
���� 𝜙∇𝜙 ���� , (3.23)

where _𝐷 is the Debye length. Because we are interested in length scales much longer than
the Debye length, the Laplacian term in Poisson’s equation is negligible. The quasineutrality
constraint then becomes ∑︁

𝑠

∫
𝑑3𝑣𝑒𝑠𝛿 𝑓𝑠 = 0. (3.24)

Since 𝜙 = 𝜙(𝒓) is independent of velocity, if we multiply both sides of the above equation by 𝜙∗,
the complex conjugate of 𝜙, we can simply move it inside the integral. We then integrate over
space, resulting in ∑︁

𝑠

∫
𝑑3𝑟𝑑3𝑣𝑒𝑠𝜙

∗𝛿 𝑓𝑠 = 0. (3.25)

By multiplying by the electrostatic potential and integrating, we have recast the differential
equation via a weak formulation using the variational method(Samain 1970; Garbet et al. 1990;
Garbet 2001; Nguyen et al. 2008). Instead of solving for the exact function 𝜙 or 𝛿 𝑓 that satisfies
Poisson’s equation, we can simply approximate 𝜙 and 𝛿 𝑓 with a suitable function and focus on
the dispersion relation itself. Typically, when the Laplacian is kept, the differential equation is
put into the weak formulation by integrating the Laplacian term by parts; this technique is well
established in other fields such as finite element analysis (Johnson 1991).
We next substitute in the Fourier expansions and the expression relating 𝜙𝒏 and 𝑓𝒏. The result

is∑︁
𝑠

∑︁
𝒏,𝒏′

∫
𝑑3𝑟𝑑3𝑣

𝑒2𝑠𝜙𝒏𝜙
∗
𝒏′

𝑇𝑠
𝑓0,𝑠

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

)
𝑒𝑖 (𝒏−𝒏

′) ·𝜶𝑒−𝑖 (𝜔−(𝜔′)∗)𝑡 = 0. (3.26)

To simplify this integral, we first perform the change of variables (𝒓, 𝒗) → (𝒓, 𝒑); the Jacobian
of this transformation is simply 𝑚−1

𝑠 . We then perform the change of variables (𝒓, 𝒑) → (𝜶, 𝑱);
the Jacobian of this particular transformation is 1 because this is guaranteed to be a canonical
transformation. We therefore obtain∑︁

𝑠

∑︁
𝒏,𝒏′

∫
𝑑3𝛼𝑑3𝐽

𝑒2𝑠𝜙𝒏𝜙
∗
𝒏′

𝑚𝑠𝑇𝑠
𝑓0,𝑠

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

)
𝑒𝑖 (𝒏−𝒏

′) ·𝜶𝑒−𝑖 (𝜔−(𝜔′)∗)𝑡 = 0. (3.27)

We note that the exponential terms are 𝜶 dependent. We then use orthogonality of the Fourier
series to find that ∑︁

𝑠

∑︁
𝑛1 ,𝑛2

∫
𝑑3𝐽

𝑒2𝑠 |𝜙𝒏 |2

𝑚𝑠𝑇𝑠
𝑓0,𝑠

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

)
= 0. (3.28)

Because we developed the Fourier series such that 𝜔 only depends on the mode number 𝑛3, we
can solve for each value of 𝑛3 individually while summing over 𝑛1 and 𝑛2. While the summation
arising from this convention seems to make the problem more difficult at first glance, we shall
see later it allows for a variety of simplifications. Moreover, the integrand is now completely
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independent of 𝜶. As such, we integrate over the action angles again and transform back to
conventional variables, leading to∑︁

𝑠

∑︁
𝑛1 ,𝑛2

∫
𝑑3𝑟𝑑3𝑣

𝑒2𝑠 |𝜙𝒏 |2

𝑇𝑠
𝑓0,𝑠

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

)
= 0. (3.29)

Even though the integrand is a function of only 𝑱, the parameters in the integrand are more
naturally expressed in terms of other coordinates such as the minor radius and the pitch angle
parameter. Thus, further coordinate transformations to simplify this expression are inevitable. As
such, they are most easily carried out when starting from the typical configuration space variables
(𝒓, 𝒗) .
For ease of notation, we split up the dispersion relation as follows:∑︁

𝑠

L0,𝑠 − Lpassing,𝑠 − Ltrapped,𝑠 = 0. (3.30)

Here, L0 is the portion of the integral that is simply multiplied by 1, which we call the adiabatic
part. Lpassing is the portion of the integral that is frequency dependent and integrated over the
part of velocity space that encompasses passing particles, while Ltrapped consists of the trapped
particles instead.
To proceed with solving the dispersion relation, we must first calculate |𝜙𝒏 |2. This requires a

3-dimensional integral over 𝑑3𝛼 as shown in Eq. (3.8). Once that is done, we then proceed to
calculate the integral in the dispersion relation itself for the adiabatic part, trapped part, and passing
part separately. Although our expression appears to be a 6-dimensional integral, we can utilize a
number of symmetries, transformations, and approximations to simplify the form down to at most
2-dimensional integrals. Although integrals of higher dimension can be in principle calculated
numerically, the curse of dimensionality renders such integrals computationally expensive. Thus,
a reduction to two dimensions affords us a great deal of speed at the cost of some amount of
accuracy.

4. Ballooning Representation
Before integrating |𝜙𝒏 |2 with respect to the action angles, we review key results regarding the

ballooning representation. Because 𝜙(𝑟, \, 𝜑) must be periodic in \ and 𝜑, we may expand 𝜙 as
a Fourier series,

𝜙(𝑟, \, 𝜑) =
∑︁
𝑚,𝑛

𝜙𝑚,𝑛 (𝑟 − 𝑟0)𝑒𝑖 (𝑚\+𝑛𝜑) . (4.1)

Here, 𝑟0 is the location of the resonant flux surface for each given 𝑚 and 𝑛; in other words,
𝑞(𝑟0) = −𝑚/𝑛. We take these modes to be localized around the resonant flux surface. These
modes are often radially localized such that the distance between any two adjacent resonant
rational flux surfaces is much longer than the characteristic length scale of the plasma equilibrium.
If that condition holds, then all modes 𝜙𝑚,𝑛 all have nearly identical radial envelopes where each
radial profile is centered on their corresponding reference flux surface (Connor et al. 1979). These
flux surfaces are all rational flux surfaces since 𝑚 and 𝑛 are integers. Meanwhile, the general
ballooning representation of 𝜙 is

𝜙(𝑟, \, 𝜑) =
∑︁
𝑝

∑︁
𝑛

𝜙𝑛 (\ + 2𝑝𝜋, \0)𝑒𝑖𝑛(𝜑−𝑞 (𝑟 ) (\−\0+2𝑝𝜋)) , (4.2)

where \0 is the ballooning angle and 𝑝 denotes the various harmonics. Here,we have approximated
the potential by separating it into a quickly varying eikonal and a slowly varying envelope.This
representation ultimately comes from the fact that the instabilities in question are strongly
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anisotropic and flute-like where 𝑘 ‖ � 𝑘⊥. In absence of toroidal rotation, the ballooning angle
is typically taken to be zero since the most unstable modes are localized around \𝑏 = 0. In the
presence of finite toroidal rotation and an equilibrium electrostatic potential, the ballooning angle
is shifted away from zero (Bourdelle et al. 2016). However, it is known that the shift due to rotation
is typically on the order of 10−1 in the tokamak core (Candy et al. 2004). Although up-down
asymmetries and global effects can lead to an effective nonzero ballooning angle not necessarily
close to zero, QuaLiKiz does not take into account global effects nor up-down asymmetries. For
the rest of the derivation, we therefore take the ballooning angle to be zero as an approximation.
This is equivalent to assuming that the envelope is radially independent. Moreover, if the profile
is heavily localized around \ = 0, we can use the strong ballooning approximation and ignore all
harmonics except for 𝑝 = 0, leading to

𝜙(𝑟, \, 𝜑) =
∑︁
𝑛

𝜙𝑛 (\)𝑒𝑖𝑛(𝜑−𝑞 (𝑟 ) \) . (4.3)

It is important to note that the decomposition in terms of 𝜙𝑚,𝑛 describes how the same radial
profile is localized about adjacent flux surfaces. Meanwhile, the decomposition in terms of 𝜙𝑛

describes how the linear eigenmode balloons along the field line. This can be seen more explicitly
if one considers that

𝑩 · ∇𝜓 = 0, (4.4)
𝑩 · ∇ (𝜑 − 𝑞\) = 0, (4.5)

𝑩 · ∇\ ≠ 0, (4.6)

indicating that with the above set of variables that \ indicates the location on any given field
line. Because the magnetic curvature is unfavorable on the low field side of the tokamak when
one considers the interplay between the curvature vector and the pressure gradient for normal
tokamak profiles, we expect fluctuations to peak about \ = 0. We can demonstrate a direct link
between 𝜙𝑚,𝑛 and 𝜙𝑛 by calculating the Fourier components of 𝜙, leading to∫ 𝜋

−𝜋

𝑑𝜑

2𝜋

∫ 𝜋

−𝜋

𝑑\

2𝜋
𝜙(𝑟, \, 𝜑)𝑒−𝑖𝑛𝜑−𝑖𝑚\ = 𝜙𝑚,𝑛 (𝑟 − 𝑟0) =

∫ 𝜋

−𝜋

𝑑\

2𝜋
𝜙𝑛 (\)𝑒−𝑖 \ (𝑛𝑞 (𝑟 )+𝑚) . (4.7)

We then make two approximations. First, we Taylor expand the term in the eikonal around the
reference flux surface,

𝑛𝑞(𝑟) + 𝑚 = 𝑛𝑞0 +
𝑟 − 𝑟0

𝑑
+ 𝑚 =

𝑟 − 𝑟0

𝑑
=

𝑥

𝑑
+ 𝑟

𝑑
, (4.8)

where 𝑞0 = 𝑞(𝑟0), the radial difference between different rational flux surfaces is defined as,
1
𝑛𝑑

=
𝑑𝑞

𝑑𝑟

����
𝑟=𝑟0

, (4.9)

and 𝑥 is defined as
𝑥 = 𝑟 − 𝑟0, (4.10)

where we ignore second derivatives of the safety factor. After doing so, we find that

𝜙𝑚,𝑛 (𝑟 − 𝑟0) ≈
∫ 𝜋

−𝜋

𝑑\

2𝜋
𝜙𝑛 (\)𝑒−𝑖

\ (𝑟−𝑟0)
𝑑 . (4.11)

Second, we invoke the strong ballooning approximation by treating 𝜙𝑛 as heavily localized around
\ = 0; this allows us to integrate from −∞ to∞ instead of from −𝜋 to 𝜋. The result is

𝜙𝑚,𝑛 (𝑟 − 𝑟0) ≈
∫ ∞

−∞

𝑑\

2𝜋
𝜙𝑛 (\)𝑒−𝑖

\ (𝑟−𝑟0)
𝑑 . (4.12)
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Comparing it with our previous definition of the Fourier transform, we find that 𝜙𝑛 (\) is simply
the Fourier transform of 𝜙𝑚,𝑛 (𝑟), with 𝑘𝑟 = \/𝑑. The transformation is given by

𝜙𝑛 (\) =
∫ ∞

−∞

𝑑𝑟

|𝑑 | 𝜙𝑚,𝑛 (𝑟 − 𝑟0)𝑒𝑖
\ (𝑟−𝑟0 )

𝑑 . (4.13)

We are now in a position to integrate over the action angles to fully calculate 𝜙𝒏. The procedure
to integrate over 𝛼1 has already been discussed in Section 2, with the relevant result being
Eq. (2.29). We therefore only need to discuss in detail the integrations over 𝛼2 and 𝛼3 while
treating all variables within the guiding center framework. Trapped particle motion and passing
particle motion differ such that the two cases must be handled separately.

4.1. Trapped
For deeply trapped particles, the equations for the action variables simplify to

𝑟 = 𝑟 + 𝛿𝑏 cos(𝛼2), (4.14)
\ = \𝑏 sin(𝛼2), (4.15)
𝜑 = 𝛼3 + 𝑞(𝑟)\𝑏 sin(𝛼2) + �̃�. (4.16)

Here, we define the banana width 𝛿𝑏 as

𝛿𝑏 =
𝑞𝜌
√
𝜖
. (4.17)

While more exact expressions for the bounce motion can be given using Jacobi elliptic functions,
we use the above equations for all trapped particles as an approximation. We first integrate over
𝛼2, once again utilizing the Fourier transform,∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛2𝛼2 =

∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋

∫
𝑑3𝑘

(2𝜋)3
𝜙(𝒌)𝑒−𝑖𝒌 ·𝒓−𝑖𝑛2𝛼2 . (4.18)

We then proceed in fashion similar to the gyro-average derivation in Section 2 by noting that
𝒌 · 𝒓 = 𝒌 · 𝒓 + 𝑘𝑟 𝛿𝑏 cos(𝛼2). The result is∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛2𝛼2 =

∫
𝑑3𝑘

(2𝜋)3
(−𝑖)𝑛2𝐽𝑛2 (𝑘𝑟 𝛿𝑏)𝜙(𝒌)𝑒−𝑖𝒌 ·𝒓 . (4.19)

In essence, we obtain a bounce average over the banana width (Depret et al. 2000). We note that
this in particular is a rather crude approximation. The particularities of the bounce motion such as
the bounce angle and the radial excursion technically depend on the pitch angle of the particle; we
are in essence smearing this out by taking a representative trapped particle such that the banana
width is constant. The averaging procedure is also approximate as we only take into account the
radial deviation. As seen in Biglari & Chen (1986), we would normally obtain a \ dependence in
the argument of the Bessel function; the 𝑘𝑟 term manifests as the Fourier link established earlier.
As a result, trapped particles have two Bessel operators acting on the potential corresponding to
the gyromotion and the banana orbit respectively.
We now proceed to the integration over 𝛼3, for now leaving the Bessel functions aside and

evaluating the position at 𝒓 = 𝒓. In doing so, we must be aware that for trapped particles \̄ = 0;
that is, the variation of \ only comes from the bounce orbit which we averaged over. We also
ignore �̃� for the same reason. Moreover, because we assume the modes to have an identical radial
envelope, we are free to keep only one of the poloidal harmonics as there is an effective decay in
the other poloidal harmonics. Making the strong assumption that the actual radial envelope can be
approximated in this way, we pick𝑚0 = −𝑛3𝑞0, as this forces any \ dependence we approximately
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neglected in the eikonal to vanish. Thus, we obtain∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛3𝛼3 =

∑︁
𝑛

∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙𝑚0 ,𝑛 (𝑟 − 𝑟0)𝑒𝑖 (𝑛𝛼3−𝑛3𝛼3) = 𝜙𝑚0 ,𝑛3 (𝑟 − 𝑟0). (4.20)

To compensate for choosing only one poloidal harmonic, when we later perform the integrals
required for the dispersion relation, we extend the radial limits of integration to −∞ < 𝑟 < ∞.
Essentially, because the mode structure corresponding to different flux surfaces does not change,
integrating over a finite domain while retaining the sum over all harmonics is equivalent to
taking one harmonic and integrating over an infinite domain (Garbet et al. 1990). Aside from the
Bessel functions, nothing in the trapped part of the dispersion relation is dependent on \ = 𝑘𝑟 𝑑.
Therefore, we are free to take the amplitude squared of the averaged potential to obtain

|𝜙𝒏 |2 =
��𝐽𝑛1 (𝑘⊥𝜌)𝐽𝑛2 (𝛿𝑏𝑘𝑟 ) · 𝜙𝑚0 ,𝑛3

��2 (𝑟 − 𝑟0) =
��𝐽𝑛1 (𝑘⊥𝜌)𝐽𝑛2 (𝛿𝑏𝑘𝑟 ) · 𝜙𝑚0 ,𝑛3

��2 (𝑥), (4.21)

where we evaluate the function at 𝑥 = 𝑟 − 𝑟0.

4.2. Passing
We now calculate 𝜙𝒏 for passing particles. Instead of utilizing the poloidal harmonics, it is

more useful to use the ballooning representation directly. Substituting in the expression for 𝛼3
and then integrating over 𝛼3 leads to∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛3𝛼3 =

∑︁
𝑛

∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙𝑛 (\ (𝛼2))𝑒𝑖𝑛(𝛼3+�̃�−𝑞 (𝑟 )𝛼2+(𝑞 (𝑟 )−𝑞 (𝑟 )) \̃)−𝑖𝑛3𝛼3 . (4.22)

Here, \ is taken to be a function of 𝛼2. It is crucial that we recognize not all the safety factors in
the eikonal are evaluated at the same point. We have both 𝑞(𝑟) = 𝑞(𝑟 + 𝑟) and 𝑞(𝑟). The term
𝑞(𝑟) − 𝑞(𝑟) can be Taylor expanded about 𝑟0:

𝑞(𝑟) − 𝑞(𝑟) ≈ 𝑞0 +
𝑟 − 𝑟0

𝑛𝑑
− 𝑞0 −

𝑟 − 𝑟0

𝑛𝑑
=
𝑟 − 𝑟

𝑛𝑑
=

𝑟

𝑛𝑑
. (4.23)

Carrying out the integral then gives us∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛3𝛼3 = 𝜙𝑛3 (\ (𝛼2))𝑒

𝑖𝑛3 ( �̃�−𝑞 (𝑟 )𝛼2− 𝑟
𝑛3𝑑

\̃)
. (4.24)

We now multiply by 𝑒−𝑖𝑛2𝛼2 and integrate with respect to 𝛼2. The eikonal can be simplified if we
only keep 𝑛2 = 𝑚0 = −𝑛𝑞0,

𝑖

(
𝑛3�̃� − 𝑛3𝑞(𝑟)𝛼2 −

𝑟

𝑑
\̃ − 𝑚0𝛼2

)
= 𝑖

(
𝑛3�̃� − 𝑥

𝑑
𝛼2 −

𝑟

𝑑

(
𝛼2 + \̃)

) )
= 𝑖

(
𝑛3�̃� − 𝑥

𝑑
𝛼2 −

𝑟

𝑑
\ (𝛼2)

)
,

(4.25)
where we have used

− 𝑛3𝑞(𝑟)𝛼2 − 𝑚0𝛼2 ≈ −𝑛3𝑞0𝛼2 −
𝑟 − 𝑟0

𝑑
𝛼2 − 𝑚0𝛼2 = −𝑟 − 𝑟0

𝑑
𝛼2 = − 𝑥

𝑑
𝛼2 −

𝑟

𝑑
𝛼2 (4.26)

and the expression 𝛼2 = \ − \̃. We then obtain∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋
𝜙𝑛3 (\ (𝛼2))𝑒𝑖(𝑛3 �̃�−

𝑥
𝑑
𝛼2− 𝑟

𝑑
\ (𝛼2)) ≈

∫ ∞

−∞

𝑑𝛼2

2𝜋
𝜙𝑛3 (\ (𝛼2))𝑒𝑖(𝑛3 �̃�−

𝑟
𝑑
\ (𝛼2))𝑒−𝑖 𝑥𝑑 𝛼2 , (4.27)

where we have invoked the strong ballooning approximation. We can see that this is simply an
inverse Fourier transform going from 𝛼2 to 𝑥. Thus, we write that

𝜙𝒏 = 𝜙𝑛1 ,𝑚0 ,𝑛3 =

(
𝐽𝑛1 (𝑘⊥𝜌) · F −1

(
𝜙𝑛3 (\ (𝛼2))𝑒𝑖(𝑛3 �̃�−

𝑟
𝑑
\ (𝛼2))

))
(𝑥), (4.28)
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where F −1 inverts the Fourier transform as described above with respect to 𝛼2. While the �̃�
dependence can be approximately ignored in a circular geometry, the 𝑟\ (𝛼2) dependence in the
eikonal must be kept.
We shall see that the mode numbers 𝑛1 and 𝑛2 do not appear explicitly in the final expression.

For convenience, we thus write 𝑛3 = 𝑛 and identify it as the toroidal mode number.

4.3. Gaussian Eigenfunction

We now introduce the functional form of the potential. We use the ansatz that the poloidal
harmonic structure is a shifted Gaussian:

𝜙𝑚0 ,𝑛 (𝑥) ∼ 𝜙0𝑒
− (𝑥−𝑥0)2

2𝑤2 . (4.29)

This Gaussian corresponds to the lowest-order eigenfunction from the corresponding ballooning
equation; the higher-order terms utilize the Hermite polynomials and are neglected here. This
Gaussian has a complex width 𝑤 and shift 𝑥0. In the limit of no rotation, 𝑥0 = 0 and the
Gaussian is centered about 𝑥 = 0. An asymmetry in the eigenfunction about the origin is required
to produce quasilinear angular momentum flux. We also note that we restrict ourselves to up-
down symmetric geometries, thereby neglecting intrinsic momentum transport (Ball et al. 2014).
Moreover, even in the absence of rotation, a Gaussian eigenfunction cannot describe modes with
odd parity in the electrostatic eigenfunction. Although ETG, ITG, and TEM instabilities often
have even parity in the electrostatic potential in the absence of rotation, these modes can have
odd parity eigenfunctions at strongly driving gradients such as in the pedestal (Pueschel et al.
2019). In addition, electromagnetic modes such as the microtearing mode do not have even
parity electrostatic potentials (Smith et al. 2011), not to mention that the parallel vector potential
would need to be described. Thus, full incorporation of electromagnetic modes and odd parity
electrostatic modes would require a generalization of the Gaussian eigenfunction assumption and
thus the use of th aforementioned higher-order terms using the Hermite polynomials. Allowing
more general geometry, relaxing the eigenfunction ansatz, and including electromagnetic modes
would allow for additional mechanisms related to the generation of angular momentum flux.
Although the amplitude 𝜙0 cannot be obtained from quasilinear theory, it factors out of the
dispersion relation and does not affect the linearmode frequency calculation. Setting the amplitude
will be necessary to calculate the quasilinear fluxes and requires the use of a saturation rule, which
is detailed in Section 9.
To obtain expressions for 𝑤 and 𝑥0, we move into the high-frequency fluid limit. The original

derivation can be found in Cottier et al. (2014) and an extensive, revised derivation can be found
in Citrin et al. (2017); here, we shall only discuss the basic principle. We consider the dispersion
relation

𝐷 (𝜔) =
∑︁
𝑠

∫
𝑑3𝑣

𝑓0𝑒
2
𝑠

𝑇𝑠

(
1 − 𝐽20,𝑠

𝜔 − 𝑛𝜔𝐸 − 𝑛𝜔∗,𝑠
𝜔 − 𝑛𝜔𝐸 − 𝑘 ‖𝑣 ‖ − 𝑛𝜔𝑑,𝑠

)
𝜙𝑚0 ,𝑛 (𝑥). (4.30)

This is the local dispersion relation obtained if we consider the strong form of Poisson’s equation
rather than the weak form; we do not multiply by 𝜙∗ and integrate over space. The Bessel function
is such that 𝐽0,𝑠 = 𝐽0 (𝑘⊥𝜌𝑠) 𝐽0

(
𝑘𝑟 𝛿𝑏,𝑠

)
for trapped particles and 𝐽0,𝑠 = 𝐽0 (𝑘⊥𝜌𝑠) for passing

particles. Meanwhile, we define the parallel wave number as 𝑘 ‖ = (𝑘 \ 𝑠𝑥) /(𝑞𝑅0). The local drift
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frequency 𝜔𝑑,𝑠 is

𝜔𝑑,𝑠 =



𝜔𝑑0,𝑠b

(
−1 + 2E (^)

K (^) + 4𝑠
(
^2 − 1 + E (^)

K (^)

)
− 4𝛼𝑀

3

(
1 − ^2 −

(
1 − 2^2

) E (^)
K (^)

))
if trapped,

𝜔𝑑0,𝑠b (2 − _𝑏) (cos (\) + (𝑠\ − 𝛼𝑀 sin (\)) sin (\)) if passing.

(4.31)

The passing form of the drift frequency is due to the radial structure of the eigenfunction as
covered in Section 7. We also note the Fourier link in the passing drift frequency that \2 → 𝑘2𝑟 𝑑

2.
To proceed, we take 𝜔 = 𝜔 − 𝑛𝜔𝐸 to be larger than 𝑘 ‖𝑣 ‖ and 𝜔𝑑0,𝑠 , and for trapped particles
we approximate 𝑘 ‖𝑣 ‖ ≈ 0. We also take 𝛿𝑏,𝑒 � 𝛿𝑏,𝑖 and 𝜌𝑒 � 𝜌𝑖 , where the “e” subscript is for
electrons and the “i” subscript is for ions, to obtain

𝐷 (𝜔) =
[
𝑛𝑒

𝑇𝑒

(
1 −

〈(
1 −

𝑛𝜔∗,𝑒
𝜔

) (
1 +

𝑛𝜔𝑑,𝑒

𝜔
+
𝑛2𝜔2

𝑑,𝑒

𝜔2

)〉
𝑡

)
+

∑︁
𝑖

𝑛𝑖𝑍𝑖

𝑇𝑖

(
1 −

〈(
1 −

𝑛𝜔∗,𝑖
𝜔

) (
1 +

𝑛𝜔𝑑,𝑖

𝜔
+
𝑛2𝜔2

𝑑,𝑖

𝜔2

) (
1 −

𝑘2𝑟𝛿
2
𝑏,𝑖

2

) (
1 −

𝑘2
\
𝜌2
𝑖

2

)〉
𝑡

−
〈(
1 −

𝑛𝜔∗,𝑖
𝜔

) (
1 +

𝑛𝜔𝑑,𝑖

𝜔
+
𝑘 ‖𝑣 ‖
𝜔

+
(
𝑛𝜔𝑑,𝑖

𝜔
+
𝑘 ‖𝑣 ‖
𝜔

)2)
×

(
1 −

𝑘2
\
𝜌2
𝑖

2
−

𝑘2𝑟 𝜌
2
𝑖

2

)〉
𝑝

)]
𝜙𝑚0 ,𝑛 (𝑥),

(4.32)

where 𝑍𝑖 is the proton number of the ion species. We define the averages over velocity space as

〈𝑔 (𝒗)〉𝑡 =
∫
trapped

𝑑3𝑣 𝑓0𝑔 (𝒗) , (4.33)

〈𝑔 (𝒗)〉𝑝 =

∫
passing

𝑑3𝑣 𝑓0𝑔 (𝒗) . (4.34)

To do the \ dependent terms, this is a differential equation. We approximate the differential
operators on 𝜙 in the limit of small mode shift 𝑥0, leading to

𝜕2𝜙

𝜕𝑥2
=

(
𝑥2

𝑤4
− 2𝑥0𝑥

𝑤4
− 1
𝑤2

)
𝜙. (4.35)

Next, we carry out the integrals both analytically and numerically as appropriate and multiply
the dispersion relation by 𝜔3 to obtain a modified dispersion relation,

𝜔3𝐷 (𝜔) = 𝐷0 (𝜔) + 𝐷1 (𝜔) 𝑥 + 𝐷2 (𝜔) 𝑥2 = 0. (4.36)

Here, we separate terms proportional to 𝑥0, 𝑥1, and 𝑥2. With three equations we can solve for the
three unknowns (𝜔0, 𝑤, 𝑥0). We then find the solution 𝜔0 such that

𝐷0 (𝜔0) = 0. (4.37)

Having found this zeroth-order solution, we then find 𝑥 and 𝑤 such that

𝐷1 (𝜔0) = 0, (4.38)
𝐷2 (𝜔0) = 0. (4.39)
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We do not cite the full solution here and direct the reader to Citrin et al. (2017) for a complete
derivation. Now that we have characterized 𝜙𝒏 by calculating 𝑥0 and 𝑤, we move to the dispersion
relation itself, beginning with the adiabatic term.

5. Adiabatic Functional
We first examine the adiabatic part of the functional, as it is the simplest to treat. It takes the

form

L0 =
∑︁
𝑛1 ,𝑛2

∫
𝑑3𝑟𝑑3𝑣

𝑒2 |𝜙𝒏 |2

𝑇
𝑓0. (5.1)

Here, we have suppressed the subscript 𝑠 as we will be working with each species independently.
We first define a new function 𝜙𝑛 = 𝜙𝑛 (𝛼1, 𝛼2, 𝑱) such that

𝜙𝑛 =

∫ 𝜋

−𝜋

𝑑𝛼3

2𝜋
𝜙(𝒓)𝑒−𝑖𝑛𝛼3 =

∑︁
𝑛1 ,𝑛2

𝜙𝒏𝑒
𝑖 (𝑛1𝛼1+𝑛2𝛼2) . (5.2)

We then note due to the orthogonality of the Fourier series that∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋

∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋
|𝜙𝑛 |2 =

∑︁
𝑛1 ,𝑛2

|𝜙𝒏 |2 . (5.3)

Thus, it is more convenient to switch back to action-angle coordinates for an intermediate
calculation:

L0 =
∑︁
𝑛1 ,𝑛2

∫
𝑑3𝛼𝑑3𝐽

𝑒2 |𝜙𝒏 |2

𝑚𝑇
𝑓0 =

∑︁
𝑛1 ,𝑛2

∫
4𝜋2𝑑𝛼3𝑑3𝐽

𝑒2 |𝜙𝒏 |2

𝑚𝑇
𝑓0 =

∫
4𝜋2𝑑𝛼3𝑑3𝐽

𝑒2 |𝜙𝑛 |2

𝑚𝑇
𝑓0.

(5.4)
This then simplifies to

L0 =
∫
4𝜋2𝑑𝛼3𝑑3𝐽

𝑒2

𝑚𝑇
𝑓0

∫ 𝜋

−𝜋

𝑑𝛼1

2𝜋

∫ 𝜋

−𝜋

𝑑𝛼2

2𝜋
|𝜙𝑛 |2 =

∫
𝑑3𝑟𝑑3𝑣

𝑒2 |𝜙𝑛 |2

𝑇
𝑓0. (5.5)

The velocity space integration is straightforward,

L0 =
∫

𝑑3𝑟𝑑3𝑣
𝑒2 |𝜙𝑛 |2

𝑇
𝑓0 =

∫
𝑑3𝑟

𝑒2𝑛0 |𝜙𝑛 |2

𝑇
, (5.6)

so all that is left is the spatial integration. Because we use toroidal coordinates, the differential
volume element is

𝑑3𝑟 = 𝑟𝑅0 (1 + 𝜖 cos (\)) 𝑑𝑟𝑑\𝑑𝜑. (5.7)
We proceed to calculating 𝜙𝑛 using the poloidal harmonic expansion as detailed in Section 4,

𝜙(𝑟, \, 𝜑) =
∑︁
𝑚,𝑛

𝜙𝑚,𝑛 (𝑟 − 𝑟0)𝑒𝑖 (𝑚\+𝑛𝜑) . (5.8)

When we examined the trapped Fourier modes, we already calculated 𝜙𝑛. We simply need to
generalize it for passing particles as well, resulting in

𝜙𝑛 =
∑︁
𝑚

𝜙𝑚,𝑛 (𝑟 − 𝑟0)𝑒𝑖 (𝑚\+𝑛𝑞 (𝑟 ) \̃+𝑛�̃�) . (5.9)

As before, we only keep the poloidal harmonic corresponding to 𝑚0 = −𝑛𝑞0 and expand the
limits of integration for 𝑟 to compensate. The result is

|𝜙𝑛 |2 =
��𝜙𝑚0 ,𝑛 (𝑟 − 𝑟0)

��2 . (5.10)
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Because the integrand in the adiabatic functional now only depends on 𝑟, the integral simplifies
to

L0 =
∫ ∞

−∞
(2𝜋𝑅0) 2𝜋𝑟𝑑𝑟

𝑒2𝑛0

𝑇

��𝜙𝑚0 ,𝑛 (𝑟 − 𝑟0)
��2 ≈ ∫

𝑑𝑥𝑅0𝑟0 (2𝜋)2
𝑒2𝑛0

𝑇

��𝜙𝑚0 ,𝑛 (𝑥)
��2 . (5.11)

Here, we make use of the localization approximation which transforms the factor of 𝑟 in the
integrand into 𝑟0. Due to the Gaussian structure of 𝜙𝑚0 ,𝑛, this integral is easily performed and we
find that

L0 = 4𝜋2𝑅0𝑟0 |𝜙0 |2 |𝑤 |2 exp
(
Im (𝑥0)2

Re
(
𝑤2

) ) √︂
𝜋

Re
(
𝑤2

) . (5.12)

Now that we have calculated the adiabatic functional, we next calculate the trapped functional.

6. Trapped Functional
The trapped part of the dispersion relation reads

Ltrapped =
∑︁
𝑛1 ,𝑛2

∫
𝑑3𝑟𝑑3𝑣

𝑒2

𝑇
𝑓0

( 𝒏 · 𝝎∗ + 𝒏 · 𝝎𝐸 − 𝜔

𝒏 ·𝛀 − 𝜔

)
|𝜙𝒏 |2. (6.1)

We emphasize that although this aspect of the derivation is collisionless, QuaLiKiz includes
collisions for trapped electrons. Strictly speaking, this section concerns trapped ions. Themajority
of the derivation remains the same for trapped electrons, the key difference being that the eventual
integral over the particle energy cannot be analytically simplified.
The first step is to determine the appropriate variables to integrate over. For the spatial variables,

we use once again use toroidal coordinates,

𝑑3𝑟 = 𝑅0𝑟 (1 + 𝜖 cos (\)) 𝑑𝑟𝑑\𝑑𝜑. (6.2)

For velocity space, we use the variables
(
𝑣, _, 𝑣𝜙

)
which correspond to the speed 𝑣, pitch angle

parameter _, and cylindrical velocity phase 𝑣𝜙 . The result is

𝑑3𝑣 =
∑︁
𝜖‖

𝑣2
𝑏

2
√
1 − _𝑏

𝑑𝑣𝑑_𝑑𝑣𝜙 , (6.3)

where the sum over 𝜖 ‖ accounts for both possible signs of the parallel velocity. Because the
integrand is independent of 𝜑 or 𝑣𝜙 , we obtain

𝑑3𝑟𝑑3𝑣 =
∑︁
𝜖‖

2𝜋2𝑅0𝑟 (1 + 𝜖 cos (\)) 𝑑𝑟𝑑\𝑣2 𝑏
√
1 − _𝑏

𝑑𝑣𝑑_. (6.4)

It is important to note that the limits of integration depend on the order of integration. For a
given \, the pitch angle parameter _ for a trapped particle is bounded by

1 − 𝜖

1 + 𝜖
6 _ 6

1 + 𝜖 cos (\)
1 + 𝜖

. (6.5)

The lower bound corresponds to the trapped-passing boundary,while the upper bound corresponds
to a particle that has 𝑣 ‖ = 0 at a given angle \. We can, however, exchange the order of integration
as follows: ∫ 2𝜋

0
𝑑\

∫ 1+𝜖 cos(\ )
1+𝜖

1−𝜖
1+𝜖

𝑑_ 𝑓 (\, _) =
∫ 1

1−𝜖
1+𝜖

𝑑_

∫ \𝑏

−\𝑏
𝑑\ 𝑓 (\, _). (6.6)
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We recall that the definition of a bounce average is

〈
𝐺 (𝜖 ‖ , \)

〉
=

∫ \𝑏

−\𝑏
𝑑\

𝐺( 𝜖‖ , \)+𝐺(−𝜖‖ , \)√
1−_𝑏∫ \𝑏

−\𝑏
2𝑑\√
1−_𝑏

=
∑︁
𝜖‖

Ω2

2𝜋

∫ \𝑏

−\𝑏
𝑑\

𝐺
(
𝜖 ‖ , \

)
√
1 − _𝑏

. (6.7)

By exchanging our limits of integration and integrating over \ first, part of the trapped functional
simplifies to become a bounce average.
Next, we approximate the equilibrium distribution function assuming theMach number𝑈‖ / 𝑐𝑠

is small, where 𝑐𝑠 =
√︁
𝑇/𝑚 is the sound speed. We thus note that high rotation tokamaks will

break the assumed ordering in QuaLiKiz. In addition, even if the electron and ion species each
have low Mach number, care must be taken with regards to heavy impurities, as the larger mass
can lead to a higher Mach number for the same rotation velocity and temperature (Citrin et al.
2017). Using the low Mach number ordering, the distribution function then simplifies to

𝑓0 ≈ 𝑛0

( 𝑚

2𝜋𝑇

)3/2
𝑒−b

(
1 +
2𝑣 ‖𝑈‖

𝑣2
𝑇

+
𝑈2‖

𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))

. (6.8)

Moreover, because |Ω1 | , |Ω2 | � |𝜔 |, we can approximate this integral by truncating the sum at
𝑛1 = 𝑛2 = 0. We also perform a change of variables from 𝑣 to b to obtain

Ltrapped =
∫

𝑑𝑟𝑑_𝑑b (2𝜋)2 𝑛0𝑒
2

𝑇

𝑅0𝑟√
𝜋

√
b𝑒−b

Ω2

×

〈
(𝒏 · 𝝎∗ + 𝒏 · 𝝎𝐸 − 𝜔)

(
1 + 2𝑣‖𝑈‖

𝑣2
𝑇

+
𝑈2‖
𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))〉

𝑛Ω3 − 𝜔

��𝜙0,0,𝑛��2 .
(6.9)

The Bessel functions from the gyromotion and the banana motion are implicit in 𝜙0,0,𝑛. We next
simplify the partial derivatives with respect to 𝑱. Because 𝑛1 = 𝑛2 = 0, we only keep the partial
derivative with respect to 𝐽3. Knowing that 𝐽3 = 𝐽3 (𝑟), we perform a change in variables from
𝐽3 to 𝑟 and find that

𝜕𝑔

𝜕𝐽3
=

𝜕𝑔

𝜕𝑟

𝑑𝑟

𝑑𝐽3
≈ −𝑅0𝜔𝑑0

𝑇

𝜕𝑔

𝜕𝑟
, (6.10)

where 𝑔 is a generic scalar function. We then define the following normalized gradients:

𝐴𝑛 = −𝑅0

𝑛

𝑑𝑛

𝑑𝑟
, (6.11)

𝐴𝑇 = −𝑅0

𝑇

𝑑𝑇

𝑑𝑟
, (6.12)

𝐴𝑈 = −𝑅0

𝑣𝑇

𝑑𝑈‖
𝑑𝑟

. (6.13)

To perform the bounce average, we note that only 𝑣 ‖ is dependent on \.We perform the calculation
explicitly to find that 〈

𝑣 ‖
〉
=

〈
𝑣3‖

〉
= 0, (6.14)〈

𝑣2‖

〉
=
4𝐸𝜖
𝑚

(
E (^) −

(
1 − ^2

)
K (^)

)
K (^) = 𝑣2𝑇 b𝐻 (^) , (6.15)

where we define

𝐻 (^) =
2𝜖

(
E (^) −

(
1 − ^2

)
K (^)

)
K (^) . (6.16)
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To simplify our expressions, we also fold 𝒏 · 𝝎𝐸 into the mode frequency such that

𝜔 = 𝜔 − 𝒏 · 𝝎𝐸 ≈ 𝜔 − 𝑛𝜔𝐸 ≈ 𝜔 − 𝑛𝜔𝐸0 − 𝑛𝜔′
𝐸𝑥, (6.17)

where, as discussed earlier, we Taylor expand 𝜔𝐸 about 𝑥 = 0 and 𝜕𝑟𝜔𝐸 = 𝜔′
𝐸
is related to the

radial electric shear. Rather than including 𝑥 fully, we instead approximate the term by averaging
it over the Gaussian eigenfunctions:

〈𝑥〉𝑟 =

∫ ∞
−∞ 𝑑𝑥

��𝜙𝑚0 ,𝑛 (𝑥)
��2 𝑥∫ ∞

−∞ 𝑑𝑥
��𝜙𝑚0 ,𝑛 (𝑥)

��2 = Re (𝑥0) +
Im (𝑥0) Im

(
𝑤2

)
Re

(
𝑤2

) . (6.18)

We then obtain
𝜔 ≈ 𝜔 − 𝑛𝜔𝐸0 − 𝑛𝜔′

𝐸 〈𝑥〉𝑟 . (6.19)
Ignoring all terms that are order cubic or higher with the Mach number, we then find that〈
(𝒏 · 𝝎∗ + 𝒏 · 𝝎𝐸 − 𝜔)

(
1 +
2𝑣 ‖𝑈‖

𝑣2
𝑇

+
𝑈2‖

𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))〉

= 𝑛𝜔𝑑0

(
A𝑡 + B𝑡b + C𝑡b

2
)
, (6.20)

where

A𝑡 =

(
1 −

𝑈2‖

𝑣2
𝑇

) (
𝐴𝑛 −

3
2
𝐴𝑇 − 𝑧2𝐹𝑑 (^)

)
−
𝑈‖
𝑣𝑇

(
2𝐴𝑈 −

𝑈‖
𝑣𝑇

𝐴𝑇

)
, (6.21)

B𝑡 =

(
1 −

𝑈2‖

𝑣2
𝑇

)
𝐴𝑇 + 4𝐴𝑈

𝑈‖
𝑣𝑇

𝐻 (^) +
𝑈2‖

𝑣2
𝑇

𝐻 (^)
(
2𝐴𝑛 − 7𝐴𝑇 − 2𝑧2𝐹𝑑 (^)

)
≈

(
1 −

𝑈2‖

𝑣2
𝑇

)
𝐴𝑇 + 4𝐴𝑈

𝑈‖
𝑣𝑇

𝐻 (^) , (6.22)

C𝑡 = 2𝐴𝑇

𝑈2‖

𝑣2
𝑇

𝐻 (^) ≈ 0. (6.23)

Here, we have defined

𝑧2 =
𝜔

𝑛𝜔𝑑0𝐹𝑑 (^) . (6.24)

Moreover, we take note that 𝐻 (^) ∼ O (𝜖); since the inverse aspect ratio 𝜖 is small, we can safely
ignore all terms proportional to𝑈2‖𝐻 (^) /𝑣2

𝑇
.

Substituting the above into the integrand, we obtain

Ltrapped =
∫

𝑑𝑟𝑑_𝑑b (2𝜋)2 𝑛0𝑒
2

𝑇

𝑅0𝑟√
𝜋

√
b𝑒−b

Ω2

��𝜙0,0,𝑛��2 A𝑡 + B𝑡b

𝐹𝑑 (^)
(
b − 𝑧2

) . (6.25)

Due to the localization of the mode, we evaluate any functions of 𝑟 at 𝑟0 in the above expression
aside from the electrostatic potential. We then rewrite the trapped functional as

Ltrapped =
∫

𝑑𝑟𝑑_𝑑b (2𝜋)2 𝑛0𝑒
2

𝑇

𝑅0𝑟0√
𝜋

√
b𝑒−b

Ω2

��𝐽0 (𝑘⊥𝜌) 𝐽0 (𝑘𝑟 𝛿𝑏) · 𝜙𝑚0 ,𝑛

��2 A𝑡 + B𝑡b

𝐹𝑑 (^)
(
b − 𝑧2

) .
(6.26)

The gyromotion and bounce motion appear in two separate Bessel functions. Since the only
explicit radial dependence is contained in the electrostatic potential, we can change variables
using Plancherel’s theorem to integrate over 𝑘𝑟 ,∫ ∞

−∞
𝑑𝑥 𝑓 (𝑥)𝑔(𝑥)∗ =

∫ ∞

−∞

𝑑𝑘𝑟

2𝜋
𝑓 (𝑘𝑟 )�̂�(𝑘𝑟 )∗. (6.27)
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After transforming to Fourier space, we treat the Bessel functions as normal scalar functions
instead of differential operators. We next note that the Bessel functions are dependent on velocity
through the gyroradius and banana width,

𝜌 =
𝑣⊥
Ω1

, (6.28)

𝛿𝑏 ≈ 𝑞
√
𝜖
𝜌. (6.29)

We approximate this energy dependence by averaging each Bessel function separately over
velocity space using a Maxwellian distribution. Doing so allows us to retain finite Larmor radius
and finite banana width effects while also making the energy and pitch angle integration tractable.
We find that ∫

𝑑3𝑣𝐽0 (𝑘⊥𝜌)2 𝑓0∫
𝑑3𝑣 𝑓0

= 𝑒−
𝑘2⊥𝜌2th
2 𝐼0

(
𝑘2⊥𝜌

2
th
2

)
= Γ0 (𝑘⊥𝜌th) , (6.30)

where 𝐼0 is a modified Bessel function of the first kind and the characteristic thermal gyroradius
𝜌th is defined as

𝜌th =

√︁
2𝑇/𝑚
Ω1

. (6.31)

Similarly, for the average over the banana orbit we obtain∫
𝑑3𝑣𝐽0 (𝑘⊥𝜌)2 𝑓0∫

𝑑3𝑣 𝑓0
= 𝑒−

𝑘2⊥ 𝛿2
𝑏,th
2 𝐼0

(
𝑘2⊥𝛿

2
𝑏,th

2

)
= Γ0

(
𝑘⊥𝛿𝑏,th

)
, (6.32)

where the thermal banana width is

𝛿𝑏,th =
𝑞
√
𝜖
𝜌th. (6.33)

Note that 𝑘2⊥ is written as

𝑘2⊥ = 𝑘2𝑟 + 𝑘2\ = 𝑘2𝑟 +
𝑛2𝑞20

𝑟20
, (6.34)

where we have evaluate 𝑘 \ at 𝑟0. That 𝑘2\ = 𝑛2𝑞2/𝑟2 comes from differentiating with respect
to \ in the ballooning expansion due to the eikonal term. Because the 𝑘𝑟 dependence is now
completely separable from the ^ and b dependence, we write the trapped functional as

Ltrapped =
∫

𝑑_𝑑b (2𝜋)2 𝑛0𝑒
2

𝑇

𝑅0𝑟0√
𝜋

√
b𝑒−b

Ω2

A𝑡 + B𝑡b

𝐹𝑑 (^)
(
b − 𝑧2

)
×

∫ ∞

−∞

𝑑𝑘𝑟

2𝜋
Γ0 (𝑘⊥𝜌th) Γ0

(
𝑘𝑟𝛿𝑏,th

) ��𝑑𝜙𝑛 (𝑘𝑟 𝑑)
��2 , (6.35)

where 𝜙𝑛 is computed using a Fourier transform:

𝜙𝑛 (𝑘𝑟 𝑑) =
√
2𝜋𝑤𝜙0𝑒−

𝑘2𝑟 𝑤
2

2 𝑒𝑖𝑘𝑟 𝑥0 . (6.36)

We next simplify the integral over b, which is of the form∫ ∞

0
𝑑b

√
b

√
𝜋

A𝑡 + Bb

b − 𝑧2
𝑒−b =

∫ ∞

−∞
𝑑𝑢

𝑢2
√
𝜋

A𝑡 + B𝑡𝑢
2

(𝑢 + 𝑧) (𝑢 − 𝑧) 𝑒
−𝑢2 , (6.37)

where we performed the change of variables b = 𝑢2. Using the plasma dispersion function detailed
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in Appendix A, this simplifies to∫ ∞

−∞
𝑑𝑢

𝑢2
√
𝜋

A𝑡 + B𝑡𝑢
2

(𝑢 + 𝑧) (𝑢 − 𝑧) 𝑒
−𝑢2 = A𝑡𝐺2 (𝑧,−𝑧)+B𝑡𝐺4 (𝑧,−𝑧) =

A𝑡𝑍2 (𝑧) + B𝑡𝑍4 (𝑧)
𝑧

, (6.38)

where the final simplification is made using the fact that 𝑍2𝑛 is an even function for 𝑛 > 0.
Meanwhile, we rewrite the integration over _ with a change in variables,

𝑑_

Ω2
= 4 𝑓𝑡K (^) ^𝑑^, (6.39)

where we utilize the transformation
_ ≈ 1 − 2𝜖^2 (6.40)

and define the flux surface averaged trapped particle fraction

𝑓𝑡 =
2
√
2𝜖
𝜋

. (6.41)

Thus, the trapped functional simplifies to

Ltrapped = (2𝜋)3 𝑒
2𝑛0

𝑇
𝑟0𝑅0 𝑓𝑡 〈I𝑡 〉 b ,^

〈
Γ0 (𝑘⊥𝜌th) Γ0

(
𝑘𝑟𝛿𝑏,th

) ��𝑑𝜙 (𝑘𝑟 𝑑)
��2〉

𝑘𝑟
, (6.42)

where

〈I𝑡 〉 b ,^ =
2
𝜋

∫ 1

0
𝑑^
K (^) ^
𝑧𝐹𝑑 (^) (A𝑡𝑍2 (𝑧) + B𝑡𝑍4 (𝑧)) (6.43)

and 〈
Γ0 (𝑘⊥𝜌th) Γ0

(
𝑘𝑟 𝛿𝑏,th

) ��𝑑𝜙 (𝑘𝑟 𝑑)
��2〉

𝑘𝑟
=

∫ ∞

−∞

𝑑𝑘𝑟

2𝜋
Γ0 (𝑘⊥𝜌th) Γ0

(
𝑘𝑟 𝛿𝑏,th

) ��𝑑𝜙 (𝑘𝑟 𝑑)
��2 .
(6.44)

The remaining integrals are to be calculated numerically, where we note that 𝑧 is a function of both
𝜔 and ^. Thus, the trapped functional is the product of two separate 1-dimensional integrals, one
of which is 𝜔 independent; we therefore characterize the trapped functional as a 1-dimensional
integral that must be calculated numerically. Now that we have simplified the expression for the
trapped functional, we turn to calculating the passing functional.

7. Passing Functional
The passing part of the dispersion relation reads

Lpassing =
∑︁
𝑛1 ,𝑛2

∫
𝑑3𝑟𝑑3𝑣

𝑒2

𝑇
𝑓0

( 𝒏 · 𝝎∗ + 𝒏 · 𝝎𝐸 − 𝜔

𝒏 ·𝛀 − 𝜔

)
|𝜙𝒏 |2. (7.1)

We reuse many of the same arguments in Section 6 regarding changes in variables and
approximating the equilibrium distribution function. One key difference is that instead of the
bounce average, we use the transit average

〈
𝐺

(
𝜖 ‖ , \

)〉
=

∫ 𝜋

−𝜋 𝑑\
𝐺( 𝜖‖ , \)√
1−_𝑏∫ 𝜋

−𝜋
𝑑\√
1−_𝑏

=
Ω2

2𝜋

∫ 𝜋

−𝜋
𝑑\

𝐺
(
𝜖 ‖ , \

)
√
1 − _𝑏

. (7.2)

We note here that the bounce angle \𝑏 is set to 𝜋 and that we do not perform a sum over 𝜖 ‖ to
compute the transit average. Moreover, the integration bounds for _ are such that

0 6 _ 6
1 − 𝜖

1 + 𝜖
. (7.3)
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These bounds hold regardless of whether we integrate over \ before or after integrating over
_. Since they are independent of \, the order of integration of the two variables can be freely
interchanged. As in the trapped case, we only keep 𝑛1 = 0 since |Ω1 | � |𝜔|. As discussed in
Section 4, 𝑛2 refers to the poloidal harmonic. We keep only 𝑛2 = 𝑚0 and use the approximation
that

𝑚0 + 𝑛𝑞 (𝑟) ≈ 𝑥

𝑑
. (7.4)

In the resonant denominator we then obtain

𝑛Ω3 + 𝑚0Ω2 − 𝜔 ≈ 𝑛𝜔𝑑0b𝐹 + 𝑥

𝑑
Ω2 + 𝑛𝜔𝐸0 + 𝑛𝜔′

𝐸𝑥 − 𝜔, (7.5)

where we also expand 𝜔𝐸 about 𝑥 = 0. The passing functional is then

Lpassing =
∑︁
𝜖‖

∫
𝑑𝑟𝑑_𝑑b (2𝜋)2 𝑛0𝑒

2

𝑇

𝑅0𝑟√
𝜋

√
b𝑒−b

Ω2

×

〈(
𝒏 · 𝝎∗ + 𝑛𝜔𝐸0 + 𝑛𝜔′

𝐸
𝑥 − 𝜔

) (
1 + 2𝑣‖𝑈‖

𝑣2
𝑇

+
𝑈2‖
𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))〉

𝑛𝜔𝑑0b𝐹 + 𝑥
𝑑
Ω2 + 𝑛𝜔𝐸0 + 𝑛𝜔′

𝐸
𝑥 − 𝜔

��𝜙0,𝑚0 ,𝑛��2 .
(7.6)

Here, we have evaluated all functions at 𝑟 = 𝑟0 except for the terms proportional to 𝑥 in the
resonant denominator and numerator. These terms must be kept if we wish to take into account
the effects of the poloidal motion as well as the radial electric field shear. We now evaluate the
integration over 𝑟 while leaving aside the term proportional to 𝑥 in the numerator.
To proceed, we use Plancherel’s theorem to integrate over 𝛼2 instead of 𝑟,∫ ∞

−∞
𝑑𝑟 𝑓 (𝑟)𝑔(𝑟)∗ =

∫ ∞

−∞

𝑑𝛼2

2𝜋
|𝑑 | 𝑓 (𝛼2)�̂�(𝛼2)∗. (7.7)

For convenience, we compute the radial integral in isolation and relabel variables,∫ ∞

−∞
𝑑𝑟

1
𝑎 𝑥
𝑑
− 𝑏

��𝜙0,𝑚0 ,𝑛��2 = ∫ ∞

−∞

𝑑𝛼2

2𝜋
|𝑑 | F

(
𝜙0,𝑚0 ,𝑛

𝑎 𝑥
𝑑
− 𝑏

)
F

(
𝜙0,𝑚0 ,𝑛

)∗
. (7.8)

We calculated in Section 4 that

F
(
𝜙0,𝑚0 ,𝑛

)
= 𝐽0 (𝑘⊥ (𝛼2)𝜌)𝜙𝑛 (\ (𝛼2))𝑒𝑖𝑛�̃� (𝛼2)−𝑖

𝑟 (𝛼2 )
𝑑

\ (𝛼2) . (7.9)

We note that 𝑘⊥ is defined such that

𝑘⊥ (𝛼2)2 =
\ (𝛼2)2

𝑑2
+
𝑛2𝑞20

𝑟20
. (7.10)

We next use the convolution theorem to calculate the other Fourier transform,

F
(
𝜙0,𝑚0 ,𝑛

𝑎 𝑥
𝑑
− 𝑏

)
=
1
2𝜋

F
(
𝜙0,𝑚0 ,𝑛

)
∗ F

(
1

𝑎 𝑥
𝑑
− 𝑏

)
. (7.11)

Computing the Fourier transform of both functions and performing the convolution, we find that

F
(
𝜙0,𝑚0 ,𝑛

1
1 + 𝑎 𝑥

𝑑
− 𝑏

)
=

∫ ∞

−∞
𝑑𝛼′
2
𝑖

|𝑎 |Θ
(
𝛼2 − 𝛼′

2
𝑎

)
𝐽0 (𝑘⊥ (𝛼′

2)𝜌)𝜙𝑛 (\ (𝛼′
2))

× 𝑒
−𝑖𝑏
𝑎 (𝛼′

2−𝛼2)𝑒𝑖𝑛�̃� (𝛼′
2)−𝑖

𝑟 (𝛼2 )
𝑑

\ (𝛼′
2) ,

(7.12)

where Θ is the Heaviside step function. Here, we have assumed that Im (𝑏) > 0. This is justified
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since 𝑏 ∼ 𝜔 and we are only interested in positive growth rates. Combining the results, we obtain
for the passing integral 𝐼𝑝,𝑟 that

𝐼𝑝,𝑟 =

∫
𝑑𝑟

1
𝑎 𝑥
𝑑
− 𝑏

��𝜙0,𝑚0 ,𝑛��2 = ∫
𝑑𝛼2𝑑𝛼

′
2

2𝜋
𝑖 |𝑑 |
|𝑎 | Θ

(
𝛼2 − 𝛼′

2
𝑎

)
𝐽∗0 (𝑘⊥ (𝛼2)𝜌)𝐽0 (𝑘⊥ (𝛼

′
2)𝜌)

× 𝜙𝑛 (\ (𝛼2))∗𝜙𝑛 (\ (𝛼′
2))𝑒

Λ(𝛼2)−Λ(𝛼′
2) ,

(7.13)

where

Λ(𝛼2) = 𝑖

(
𝑏

𝑎
𝛼2 − 𝑛�̃� (𝛼2) +

𝑟 (𝛼2)
𝑑

\ (𝛼2)
)
. (7.14)

We then substitute in

𝑎 = Ω2 + 𝑛𝑑𝜔′
𝐸 , (7.15)

𝑏 = 𝜔 − 𝑛𝜔𝑑0b𝐹 − 𝑛𝜔𝐸0 (7.16)

and rewrite the eikonal term to obtain

Λ(𝛼2) = 𝑖

(
𝜔 − 𝑛𝜔𝑑0b𝐹 − 𝑛𝜔𝐸0

Ω2 + 𝑛𝑑𝜔′
𝐸

𝛼2 − 𝑛�̃� (𝛼2) +
𝑟 (𝛼2)
𝑑

\ (𝛼2)
)
. (7.17)

It is important to recognize the physical importance of Λ. In the ballooning representation, we
encoded a certain particle trajectory in the eikonal that differs from the magnetic drift trajectory.
The function Λ encapsulates the phase difference between these two trajectories.
Before proceeding, we must recognize that integrating over 𝛼2 and 𝛼′

2 is inconvenient. The
function 𝜙𝑛 has Gaussian structure in \, but not in 𝛼2. Thus, the next goal is to write the integrand
in terms of \ and \ ′. First, we introduce new variables,

\+ =
\ + \ ′

2
, (7.18)

\− = \ − \ ′. (7.19)

We next Taylor expand the terms in the exponential around \+ to find that

Λ(𝛼2) − Λ(𝛼′
2) ≈ \−

𝑑𝛼2

𝑑\
(\ = \+) Λ′ (\ = \+) , (7.20)

where Λ′ denotes the derivative of Λ with respect to 𝛼2. Due to the rapidly varying phase in the
exponential, the factor of 𝑖𝜔 ∼ −𝛾 in the exponential, and the Gaussian integrand, we ignore
higher order terms to obtain the dominant contribution. From the equations listed in Section 2,
we find

𝑑

𝑑𝛼2

(
𝑛�̃� − 𝑟

𝑑
\

)
=

𝑛

Ω2

(
𝒗𝐷 · ∇𝜑 − 𝑞𝒗𝐷 · ∇\ − \

𝑑𝑞

𝑑𝜓
𝒗𝐷 · ∇𝜓 −Ω𝑑

)
. (7.21)

The leading terms can be computed explicitly in much the same manner as when calculating the
magnetic precession frequency,

Ω𝑑 = 𝒗𝐷 · ∇𝜑 − 𝑞𝒗𝐷 · ∇\ − \
𝑑𝑞

𝑑𝜓
𝒗𝐷 · ∇𝜓

= 𝜔𝑑0b (2 − _𝑏)
(
cos (\) +

(
𝑠\ − 𝛼𝑀 sin (\) sin2 (\)

))
+ 𝑞𝐸𝑟

𝑟𝐵
.

(7.22)

Although somewhat similar to the magnetic drift frequency proper, there are two key differences.
Firstly, the magnetic shear term is different and proportional to \ sin (\). Secondly, this frequency
is explicitly \ dependent and no bounce-transit average is performed. In carrying out the
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calculation the bounce-averaged magnetic drift terms partially cancel; for sufficiently small radial
electric field shear we obtain

Λ (𝛼2) − Λ
(
𝛼′
2
)
≈ −𝑖\−

(
𝑛Ω𝑑 (\+) − 𝜔

Ω2 + 𝑛𝑑𝜔′
𝐸

)
, (7.23)

where

𝑛Ω𝑑 ≈ 𝑛𝜔𝑑0b (2 − _𝑏)
(
cos (\) +

(
𝑠\ − 𝛼𝑀 sin (\) sin2 (\)

))
+ 𝑛𝜔𝐸0. (7.24)

We next change the variables of integration from 𝛼2, 𝛼
′
2 to \, \

′ using

𝑑\

𝑑𝛼2
=

√
1 − _𝑏

Ω2
. (7.25)

The integral then becomes

𝐼𝑝,𝑟 =

∫
𝑑\𝑑\ ′

2𝜋
𝑖 |𝑑 |��Ω2 + 𝑛𝑑𝜔′

𝐸

��Θ (
\−

Ω2 + 𝑛𝑑𝜔′
𝐸

)
𝐽0𝜙𝑛 (\)∗𝐽 ′0𝜙𝑛 (\ ′)

× Ω2√︁
1 − _𝑏(\)

Ω2√︁
1 − _𝑏(\ ′)

𝑒
−𝑖 \−

Ω2√
1−_𝑏 (\+)

(
𝑛Ω𝑑 (\+)−𝜔
Ω2+𝑛𝑑𝜔′

𝐸

)
,

(7.26)

where the Bessel functions are evaluated in terms of \ and \ ′. We now substitute in an expression
for 𝜙𝑛 in terms of a Fourier transform to obtain

𝐼𝑝,𝑟 =

∫
𝑑\𝑑\ ′𝑑𝑥𝑑𝑥 ′

2𝜋
𝑖Ω22��Ω2 + 𝑛𝑑𝜔′

𝐸

�� |𝑑 |Θ
(

\−
Ω2 + 𝑛𝑑𝜔′

𝐸

)
𝐽0𝜙

∗
𝑚0 ,𝑛

(𝑥)𝐽 ′0𝜙𝑚0 ,𝑛 (𝑥 ′)

× 𝑒
−𝑖 \−

Ω2√
1−_𝑏 (\+)

(
𝑛Ω𝑑 (\+)−𝜔
Ω2+𝑛𝑑𝜔′

𝐸

)
𝑒−𝑖

\𝑥
𝑑 𝑒𝑖

\′𝑥′
𝑑√︁

1 − _𝑏 (\)
√︁
1 − _𝑏 (\ ′)

.

(7.27)

We then make the following substitutions

𝑥+ =
𝑥 + 𝑥 ′

2
, (7.28)

𝑥− = 𝑥 − 𝑥 ′, (7.29)

𝑘+ =
\+
|𝑑 | , (7.30)

𝑘− =
\−
|𝑑 | , (7.31)

𝑑\𝑑\ ′𝑑𝑥𝑑𝑥 ′ = 𝑑𝑘+𝑑𝑘−𝑑𝑥+𝑑𝑥− |𝑑 |2 , (7.32)
\ ′𝑥 ′

𝑑
− \𝑥

𝑑
= (−𝑘−𝑥+ − 𝑘+𝑥−)

|𝑑 |
𝑑
, (7.33)
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to obtain

𝐼𝑝,𝑟 =

∫
𝑑𝑘+𝑑𝑘−𝑑𝑥+𝑑𝑥−

2𝜋

𝑖 |𝑑 |
(
Ω2

)2
|Ω2 + 𝑛𝑑𝜔′

𝐸
|Θ

(
𝑘−

Ω2 + 𝑛𝑑𝜔′
𝐸

)
𝐽0𝜙

∗
𝑚0 ,𝑛

(
𝑥+ +

𝑥−
2

)
𝐽 ′0𝜙𝑚0 ,𝑛

(
𝑥+ −

𝑥−
2

)
×
exp

(
−𝑖𝑘− |𝑑 |Ω2√
1−_𝑏 (𝑘+ |𝑑 |)

(
𝑛Ω𝑑 (𝑘+ |𝑑 |)−𝜔

Ω2+𝑛𝑑𝜔′
𝐸

))
𝑒−𝑖 (𝑘−𝑥++𝑘+𝑥−)

|𝑑 |
𝑑√︂

1 − _𝑏

(
𝑘+ |𝑑 | + 𝑘− |𝑑 |

2

)√︂
1 − _𝑏

(
𝑘+ |𝑑 | − 𝑘− |𝑑 |

2

) .
(7.34)

At first glance, it seems like we have only made the derivation more difficult. We are now
performing a 4-dimensional integration over variables which do not have a convenient Gaussian
structure. Fortunately, this simplifies. First, we notice that the integration over 𝑘− can be done via
an integration by parts procedure. In general, for a complex parameter 𝑐 we obtain∫ 𝑏

𝑎

𝑑𝑠𝑔 (𝑠) 𝑒𝑖𝑐𝑠 =
∫ 𝑏

𝑎

𝑑𝑠
1
𝑖𝑘

(
𝑑

𝑑𝑠

(
𝑔 (𝑠) 𝑒𝑖𝑐𝑠

)
− 𝑑𝑔

𝑑𝑠
𝑒𝑖𝑐𝑠

)
=

𝑔 (𝑠) 𝑒𝑖𝑐𝑠
𝑖𝑐

����𝑏
𝑎

−
∫ 𝑏

𝑎

𝑑𝑠
1

(𝑖𝑐)2

(
𝑑

𝑑𝑠

(
𝑑𝑔

𝑑𝑠
𝑒𝑖𝑐𝑠

)
− 𝑑2𝑔

𝑑𝑠2
𝑒𝑖𝑐𝑠

)
.

≈
𝑁∑︁

𝑚=0

(−1)𝑚

(𝑖𝑐)𝑚+1

[
𝑑𝑚𝑔

𝑑𝑠𝑚
(𝑏) − 𝑑𝑚𝑔

𝑑𝑠𝑚
(𝑎)

]
.

(7.35)

This is the asymptotic expansion for sufficiently large 𝑐. We apply a similar expansion to the
integral over 𝑘− and keep only the first term. Because Im (𝜔) > 0 and the integrand contains a
Heaviside step function, the first term is guaranteed to converge. Note that we would normally
need to apply the method of steepest descent to properly approximate the integral; however, this
requires that the term in the exponential have a saddle point somewhere in the complex plane. Due
to our previous approximation, the term in the exponential is monotonic in 𝑘−, thus the method
of steepest descent is not necessary for our purposes. We find then that∫ ∞

−∞
𝑑𝑘−

𝑖 |𝑑 |��Ω2 + 𝑛𝑑𝜔′
𝐸

��𝑔 (𝑘−) 𝑒−𝑖𝑘− |𝑑 |
𝑑 exp

(
−𝑖𝑘− |𝑑 |Ω2√︁
1 − _𝑏(𝑘+ |𝑑 |)

(
𝑛Ω𝑑 (𝑘+ |𝑑 |) − 𝜔

Ω2 + 𝑛𝑑𝜔′
𝐸

))
≈ 𝑔(0)

Ω2√
1−_𝑏 (𝑘+ |𝑑 |)

(
𝑛Ω𝑑 (𝑘+ |𝑑 |) − 𝜔

)
+Ω2

𝑥+
𝑑
+ 𝑛𝜔′

𝐸
𝑥+

.

(7.36)

For convenience, we next replace all instances of 𝑘+ |𝑑 | with 𝑘+𝑑; this is allowed since Ω𝑑 and 𝑏
are even functions and the bounds of integration are symmetric. We obtain

𝐼𝑝,𝑟 ≈
∫

𝑑𝑘+𝑑𝑥+𝑑𝑥−
2𝜋

Ω2𝑒
−𝑖𝑘+𝑥−√︁

1 − _𝑏 (𝑘+𝑑)
𝐽0 (𝜌𝑘⊥)2 𝜙𝑚0,𝑛

(
𝑥+ + 𝑥−

2
)∗
𝜙𝑚0,𝑛

(
𝑥+ − 𝑥−

2
)

𝑛Ω𝑑 (𝑘+𝑑) +
(
Ω2
Ω2

𝑥+
𝑑
+ 𝑛

𝜔′
𝐸

Ω2
𝑥+

) √︁
1 − _𝑏 (𝑘+𝑑) − 𝜔

,

(7.37)
where

𝑘2⊥ = 𝑘2+ +
𝑛2𝑞20

𝑟20
. (7.38)
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As with the trapped functional, we separately average over the Bessel functions,∫
𝑑3𝑣𝐽0 (𝑘⊥𝜌)2 𝑓0∫

𝑑3𝑣 𝑓0
= Γ0 (𝑘⊥𝜌th) . (7.39)

We next carry out the integral over 𝑥− by identifying it as the inverse Fourier transform of the
product of two Gaussians, leading to

𝐼𝑝,𝑟 =

∫
𝑑𝑥+𝑑𝑘+√

𝜋

Ω2√︁
1 − _𝑏 (𝑘+𝑑)

Γ0 (𝑘⊥𝜌th)
√︂
Im(𝑤2)2
Re(𝑤2) + Re

(
𝑤2

)
𝑒−𝜌

2
∗ 𝑒−𝑘

2
∗ exp

(
Im(𝑥0)2

Re(𝑤2)

)
𝑛Ω𝑑 (𝑘+𝑑) +

(
Ω2
Ω2

𝑥+
𝑑
+ 𝑛

𝜔′
𝐸

Ω2
𝑥+

) √︁
1 − _𝑏 (𝑘+𝑑) − 𝜔

,

(7.40)

where

𝜌∗ =
𝑥+ + 𝑘+Im

(
𝑤2

)
− Re (𝑥0)√︃

Re
(
𝑤2

) , (7.41)

𝑘∗ =
𝑘+Re

(
𝑤2

)
+ Im (𝑥0)√︃

Re
(
𝑤2

) . (7.42)

It is more convenient to numerically integrate this over 𝑘∗ and 𝜌∗ to take advantage of the explicit
Gaussian structure. Because the Jacobian of this variable transformation is 1, the change of
variables is easily carried out. In addition, we approximate the _ dependent terms by averaging
over the pitch angle parameter. We also use the extremely-passing particle limit, where \ ≈ 𝛼2.
We then obtain

𝐼𝑝,𝑟 ≈
∫ ∞

−∞

∫ ∞

−∞

𝑑𝜌∗𝑑𝑘∗√
𝜋

Γ0 (𝑘⊥𝜌th)
√︂
Im(𝑤2)2
Re(𝑤2) + Re

(
𝑤2

)
𝑒−𝜌

2
∗ 𝑒−𝑘

2
∗ exp

(
Im(𝑥0)2

Re(𝑤2)

)
𝑛𝜔𝑑0b𝐹𝑝 (𝑘+𝑑) + 𝜖 ‖

√
b
𝑥+
𝑑

√
2𝑇 /𝑚
𝑞𝑅0

− 𝜔

, (7.43)

where

𝜔 = 𝜔 − 𝑛𝜔𝐸0 − 𝑛𝜔′
𝐸𝑥+, (7.44)

and

𝐹𝑝 (𝑘+𝑑) =
4
3
(cos (𝑘+𝑑) + (𝑠𝑘+𝑑 − 𝛼𝑀 sin (𝑘+𝑑)) sin (𝑘+𝑑)) . (7.45)

We note here that the factor of 4/3 comes from taking the pitch angle average of 2 − _𝑏 in the
small 𝜖 limit. This approximation can be improved by considering higher-order 𝜖 terms, although
this is not done in the current formulation of QuaLiKiz (QuaLiKiz version 2.8.1).
We now address terms in the numerator of the original integrand that are proportional to 𝑥;

these terms arise from the radial electric field shear. In principle, their inclusion can be treated
fully consistently by using the appropriate Fourier transforms as well as the convolution theorem
in much the same way we did before. However, as a crude approximation, we simply map 𝑥 → 𝑥+
in the numerator as is effectively done in the denominator.
Next, we address the integration over _ and b in the full passing functional. Once these integrals



Quasilinear gyrokinetic theory: A derivation of QuaLiKiz 35

are calculated, we fold them into the integration over 𝜌∗ and 𝑘∗. We wish to compute

𝐼𝑝,𝐸 =
∑︁
𝜖‖

∫
𝑑_𝑑b (2𝜋)2 𝑛0𝑒

2

𝑇

𝑅0𝑟√
𝜋

√
b𝑒−b

Ω2

〈
(𝒏 · 𝝎∗ − 𝜔)

(
1 + 2𝑣‖𝑈‖

𝑣2
𝑇

+
𝑈2‖
𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))〉

𝑛𝜔𝑑0b𝐹𝑝 (𝑘+𝑑) + 𝜖 ‖
√
b
𝑥+
𝑑

√
2𝑇 /𝑚
𝑞𝑅0

− 𝜔

.

(7.46)
Because we averaged out the pitch angle dependence in the denominator of the integrand, the
pitch angle integration in the numerator is completely separable and only dependent on the inverse
aspect ratio 𝜖 . This is perhaps the largest single approximation used in the passing part of the
dispersion; it is necessary to ensure that the numerical integral is 2-dimensional rather than 3-
dimensional. It is of potential interest to study the impact this approximation has. Calculating
a more exact (albeit slower) integral to quantify the exact impact this approximation has on the
resulting solutions and flux calculations is the subject of future work.

Since only 𝑣 ‖ terms in the numerator are dependent on _. We also use the fact that

∫ 1−𝜖
1+𝜖

0

𝑑_

2Ω2
= 𝑓𝑝 , (7.47)

where 𝑓𝑝 = 1 − 𝑓𝑡 is the flux surface averaged passing particle fraction. We then compute

∫ 1−𝜖
1+𝜖

0

𝑑_

Ω2

〈
𝑣𝑚‖

〉
= 2 𝑓𝑝𝑣𝑚𝑇 𝜖

𝑚
‖ b

𝑚/2_𝑚, (7.48)

where we define _𝑚 as

_𝑚 =

∫ 1−𝜖
1+𝜖
0 𝑑_

∫ 𝜋

−𝜋
𝑑\

(√
1−_𝑏

)𝑚
√
1−_𝑏∫ 1−𝜖

1+𝜖
0 𝑑_

∫ 𝜋

−𝜋
𝑑\√
1−_𝑏

. (7.49)

We numerically calculate _𝑚 separately from the rest of the dispersion relation since _𝑚 is only
dependent on 𝜖 . Once again ignoring terms order cubic or higher with the Mach number, we find
that

∫ 1−𝜖
1+𝜖

0

𝑑_

Ω2

〈
(𝒏 · 𝝎∗ − 𝜔)

(
1 +
2𝑣 ‖𝑈‖

𝑣2
𝑇

+
𝑈2‖

𝑣2
𝑇

(
2𝑣2‖
𝑣2
𝑇

− 1
))〉

=

2 𝑓𝑝𝑛𝜔𝑑0

(
A𝑝 + B𝑝𝜖 ‖b

1/2 + C𝑝b + D𝑝𝜖 ‖b
3/2 + E𝑝b

2
)
,

(7.50)
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where we define the terms

A𝑝 =

(
1 −

𝑈2‖

𝑣2
𝑇

) (
𝐴𝑛 −

3
2
𝐴𝑇 − 𝑧2𝐹𝑝

)
−
𝑈‖
𝑣𝑇

(
2𝐴𝑈 −

𝑈‖
𝑣𝑇

𝐴𝑇

)
, (7.51)

B𝑝 =

(
𝐴𝑈

(
2 − 6

𝑈2‖

𝑣2
𝑇

)
+𝑈‖

(
2𝐴𝑛 − 5𝐴𝑇 − 2𝑧2𝐹𝑝

))
_1, (7.52)

C𝑝 =

(
1 −

𝑈2‖

𝑣2
𝑇

)
𝐴𝑇 + 4𝐴𝑈

𝑈‖
𝑣𝑇

_2 +
𝑈2‖

𝑣2
𝑇

_2

(
2𝐴𝑛 − 7𝐴𝑇 − 2𝑧2𝐹𝑝

)
, (7.53)

D𝑝 = 2𝐴𝑇

𝑈‖
𝑣𝑇

_1 + 4𝐴𝑈
𝑈2‖

𝑣2
𝑇

_3, (7.54)

E𝑝 = 2𝐴𝑇

𝑈2‖

𝑣2
𝑇

_2, (7.55)

and where

𝑧2 =
𝜔

𝑛𝜔𝑑0𝐹𝑝 (𝑘+𝑑)
. (7.56)

Thus, the integral simplifies to

𝐼𝑝,𝐸 =
∑︁
𝜖‖

2 𝑓𝑝
∫ ∞

0
𝑑b (2𝜋)2 𝑛0𝑒

2

𝑇

𝑅0𝑟0√
𝜋

√︁
b
A𝑝 + B𝑝𝜖 ‖b

1/2 + C𝑝b + D𝑝𝜖 ‖b
3/2 + E𝑝b

2

𝐹𝑝 (𝑘+𝑑)
(
b + 𝜖 ‖

√
b
𝑥+
𝑑

𝑣𝑇
𝑞𝑅0𝐹𝑝 (𝑘+𝑑) − 𝑧2

) .

(7.57)
We then perform a change in variables to 𝑢 =

√
b and note that∑︁

𝜖‖

∫ ∞

0
𝑑b

√︁
b𝑔

(
𝜖 ‖

√︁
b

)
=

∑︁
𝜖‖

∫ ∞

0
𝑑𝑢2𝑢2𝑔

(
𝜖 ‖𝑢

)
=

∫ ∞

−∞
𝑑𝑢2𝑢2𝑔 (𝑢) . (7.58)

The integral then becomes

𝐼𝑝,𝐸 = 4 𝑓𝑝
∫ ∞

−∞
𝑑𝑢 (2𝜋)2 𝑛0𝑒

2

𝑇

𝑅0𝑟0√
𝜋
𝑢2

A𝑝 + B𝑝𝑢 + C𝑝𝑢
2 + D𝑝𝑢

3 + E𝑝𝑢
4

𝐹𝑝 (𝑘+𝑑)
(
𝑢2 + 𝑢

𝑥+
𝑑

𝑣𝑇
𝑞𝑅0𝐹𝑝 (𝑘+𝑑) − 𝑧2

) . (7.59)

To simplify this integral further, we rewrite the denominator as

𝑢2 + 𝑢
𝑥+
𝑑

𝑣𝑇

𝑞𝑅0𝐹𝑝 (𝑘+𝑑)
− 𝑧2 = (𝑢 − 𝑧+) (𝑢 − 𝑧−) , (7.60)

where

𝑧± = −1
2
𝑥+
𝑑

𝑣𝑇

𝑞𝑅0𝐹𝑝 (𝑘+𝑑)
±

√︄(
1
2
𝑥+
𝑑

𝑣𝑇

𝑞𝑅0𝐹𝑝 (𝑘+𝑑)

)2
+ 𝑧2. (7.61)

This allows us to simplify the integral using the plasma dispersion functions defined in Ap-
pendix A, allowing us to obtain

𝐼𝑝,𝐸 = 4 𝑓𝑝 (2𝜋)2
𝑛0𝑒

2

𝑇

𝑅0𝑟0

𝐹𝑝 (𝑘+𝑑)
(
A𝑝𝐺2 + B𝑝𝐺3 + C𝑝𝐺4 + D𝑝𝐺5 + E𝑝𝐺6

)
, (7.62)

where the associated Fried and Conte integrals 𝐺𝑛 = 𝐺𝑛 (𝑧+, 𝑧−) are evaluated at 𝑧+ and 𝑧−.
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Thus, the passing functional simplifies to

Lpassing =
∫ ∞

−∞

∫ ∞

−∞

𝑑𝜌∗𝑑𝑘∗√
𝜋

(2𝜋)3 𝑒
2𝑛0

𝑇
𝑟0𝑅0 𝑓𝑝

〈
I𝑝

〉
b ,_

Γ0 (𝑘⊥𝜌th)

×

√√
Im

(
𝑤2

)2
Re

(
𝑤2

) + Re
(
𝑤2

)
𝑒−𝜌

2
∗ 𝑒−𝑘

2
∗ exp

(
Im (𝑥0)2

Re
(
𝑤2

) )
,

(7.63)

where 〈
I𝑝

〉
b ,_

=
2

𝜋𝐹𝑝 (𝑘+)
(
A𝑝𝐺2 + B𝑝𝐺3 + C𝑝𝐺4 + D𝑝𝐺5 + E𝑝𝐺6

)
. (7.64)

We have now reduced all parts of the dispersion relation to a numerically tractable form. The
adiabatic piece can be calculated analytically, whereas the trapped and passing functionals require
1- and 2-dimensional integrals, respectively. With the dispersion relation in hand, we can proceed
to applying quasilinear theory.

8. Quasilinear Approximation
The core principle of quasilinear theory is to consider the slow time variation of the total

distribution function 𝑓 and the resultant fluxes that attempt to drive the distribution function back
to equilibrium. The validity of the quasilinear approximation depends on the decorrelation time
of the potential being shorter than the eddy turn-over time. The ratio of these two quantities is
known as the Kubo number (Kubo 1963; Krommes 2002). The single particle analogue to this
is that the individual particle must not be trapped in the field; this allows the dynamics to be
characterized as a random walk process, leading to a justification for the quasilinear approach.
These characteristic times have been calculated and compared for both ETG and ITG-TEM
turbulence in various parameter regimes (Lin et al. 2008; Casati et al. 2009; Citrin et al. 2012).
For all cases reported in the aforementioned references, the Kubo number is less than unity, even
for those with normalized gradients of ∼ 20. Well developed turbulence for these tokamak plasma
parameters thus manifest randomwalk processes, and thus driven anomalous transport in the core
is successfully modeled by quasilinear methods.
Moreover, it has been found that quasilinear models are successful in reproducing experimental

results such as temperature profiles within 15% rms error (Kinsey et al. 2008). We acknowledge,
however, that successful quasilinear modeling of the total fluxes is not strictly indicative of
the validity of the quasilinear approximation. For instance, the saturation rule for a quasilinear
model can in principle correct for errors in the unsaturated quasilinear flux calculations. Thus,
validation of quasilinear flux ratios before saturation is an important piece in confirming the use of
the quasilinear approximation. We note that investigating full range of validity for the quasilinear
approximation is an active area of research, and that cases whereby the quasilinear approximation
breaks down have been found (Laval & Pesme 1983; Besse et al. 2011). For QuaLiKiz, we restrict
ourselves to the aforementioned parameter regimes whereby the quasilinear approach has been
thoroughly verified.
To proceed, we first recall the Vlasov equation for a given species (again omitting the species

label):
𝜕 𝑓

𝜕𝑡
+ ¤𝜶 · 𝜕 𝑓

𝜕𝜶
+ ¤𝑱 · 𝜕 𝑓

𝜕𝑱
= 0. (8.1)

When we obtained the dispersion relation, we considered the linear response and neglected terms
that are quadratic in the fluctuations. Moreover, we also assumed 𝑓0 was time independent. To
proceed with the quasilinear approximation, we now suppose that 𝑓0 varies slowly in time on a
time scale longer than that of the linear modes. We may then perform a time average over the
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Vlasov equation such that 〈 𝑓 〉𝑡 = 𝑓0 and the linear response averages to zero. We define the time
average as

〈𝑔 (𝑡)〉𝑡 =
1
𝑇

∫ 𝑇 /2

−𝑇 /2
𝑔 (𝑡 + 𝑡 ′) 𝑑𝑡 ′, (8.2)

where 𝑇 is the time scale associated with the linear modes. The time averaged Vlasov equation
then reads 〈

𝜕 𝑓

𝜕𝑡
+ ¤𝜶 · 𝜕 𝑓

𝜕𝜶
+ ¤𝑱 · 𝜕 𝑓

𝜕𝑱

〉
𝑡

≈ 𝜕 𝑓0

𝜕𝑡
+ 〈{Re(𝛿 𝑓 ),Re(𝑒𝜙)}〉𝑡 = 0. (8.3)

Here, we take the real part of 𝛿 𝑓 or 𝜙 to obtain the physical quantity in accordance with our
convention. To proceed, we rewrite the Poisson bracket as

{Re(𝛿 𝑓 ),Re(𝑒𝜙)} = 𝜕

𝜕𝜶
·
(
Re(𝛿 𝑓 ) 𝜕Re(𝑒𝜙)

𝜕𝑱

)
− 𝜕

𝜕𝑱
·
(
Re(𝛿 𝑓 ) 𝜕Re(𝑒𝜙)

𝜕𝜶

)
. (8.4)

The time average can be simplified by noting that for any two general vectors 𝑨 and 𝑩 we have〈
Re

(
𝑨𝑒−𝑖𝜔𝑡

)
· Re

(
𝑩𝑒−𝑖𝜔𝑡

)〉
𝑡
=
1
2
Re (𝑨 · 𝑩∗) . (8.5)

Due to the Fourier structure of 𝛿 𝑓 and 𝜙, we also note that

𝜕

𝜕𝜶
〈Re (𝛿 𝑓 ) Re (𝑒𝜙)〉𝑡 = 0. (8.6)

Essentially, the 𝜶 dependence disappears after performing the time average. Moreover, taking the
real part of 𝛿 𝑓 and 𝜙 commutes with taking derivatives of real variables. We therefore obtain

𝜕 𝑓0

𝜕𝑡
+ 𝜕

𝜕𝑱
· 𝚪𝑄 = 0, (8.7)

where we define the quasilinear flux 𝚪𝑄 as

𝚪𝑄 =
1
2
Re

(∑︁
𝒏

𝑖𝒏 𝑓𝒏𝑒𝜙
∗
𝒏

)
= −1
2
Im

(∑︁
𝒏

𝒏
𝑒2 |𝜙𝒏 |2

𝑇
𝑓0

(
1 − 𝜔 − 𝒏 · 𝝎∗ − 𝒏 · 𝝎𝐸

𝜔 − 𝒏 ·𝛀

))
. (8.8)

Here, 𝑓𝒏 and 𝜙𝒏 are related via the dispersion relation in the linearized problem. Thus, the
quasilinear flux is computed by substituting in the solution of the dispersion relation including
the found eigenvalues 𝜔, again only considering unstable modes. Modes that lack unstable
solutions do not contribute to the quasilinear flux.
We are now in a position to calculate the flux surface averaged particle, toroidal angular

momentum, and energy fluxes by averaging the Vlasov equation over velocity and space. This
is analogous to calculating the fluid equations by taking moments of the Vlasov equation. The
radial fluxes can be calculated via a change in variables from 𝐽3 to 𝑟 . We find that

𝜕 〈𝑛〉
𝜕𝑡

+ 𝑑Γ

𝑑𝑟
= 0, (8.9)

𝜕
〈
𝑚𝑛𝑅𝑈‖

〉
𝜕𝑡

+ 𝑑Π

𝑑𝑟
= 0, (8.10)

3
2
𝜕 〈𝑝〉
𝜕𝑡

+ 𝑑𝑄

𝑑𝑟
= 0, (8.11)



Quasilinear gyrokinetic theory: A derivation of QuaLiKiz 39

where Γ, Π, and 𝑄𝐸 are the particle, toroidal momentum, and energy fluxes defined as

Γ =
1
4𝜋2𝑑

∫
𝑑3𝑣𝑑3𝑟

1
2
Im

(∑︁
𝒏

𝑛𝑞

𝑟𝐵
𝑓𝒏𝜙

∗
𝒏

)
, (8.12)

Π =
1
4𝜋2𝑑

∫
𝑑3𝑣𝑑3𝑟

𝑚𝑅𝑣 ‖
2
Im

(∑︁
𝒏

𝑛𝑞

𝑟𝐵
𝑓𝒏𝜙

∗
𝒏

)
, (8.13)

𝑄𝐸 =
1
4𝜋2𝑑

∫
𝑑3𝑣𝑑3𝑟

𝑚

(
𝑣2 −𝑈2‖

)
4

Im

(∑︁
𝒏

𝑛𝑞

𝑟𝐵
𝑓𝒏𝜙

∗
𝒏

)
. (8.14)

Here, we can see that the integrations to calculate the particle, toroidal momentum, and energy
fluxes are of the same form to solve the dispersion relation. The particle flux calculation is identical.
Meanwhile, we must take into account an extra factor of 𝑣 ‖ and 𝑣2 for the angular momentum
flux and energy flux integrations, respectively. These changes can be easily accommodated for
without affecting the fundamental approach. For instance, the inclusion of 𝑣2 simply changes
the associated Fried and Conte integral. The physical significance of these fluxes can be further
solidified by examining the perturbed 𝐸-cross-𝐵 velocity. We find that

𝛿𝒗𝐸×𝐵 · 𝒓 = 𝒓 · −∇𝛿𝜙 × 𝑩

𝐵2
≈

∑︁
𝒏

𝑖𝑘 \𝜙𝒏

𝐵
=

∑︁
𝒏

𝑖𝑛𝑞

𝑟𝐵
𝜙𝒏, (8.15)

where we have again used the convention that 𝑘 \ → (𝑖/𝑟) 𝜕\ . We then find that

〈Re (𝛿𝒗𝐸×𝐵 · 𝒓) Re (𝛿 𝑓 )〉𝑡 =
1
2
Re

(∑︁
𝒏

𝑓𝒏

(
𝑖𝑛𝑞

𝑟𝐵
𝜙𝒏

)∗)
=
1
2
Im

(∑︁
𝒏

𝑓𝒏
𝑛𝑞

𝑟𝐵
𝜙∗𝒏

)
. (8.16)

This lets us write the fluxes as

Γ = 〈𝛿 (𝑛) 𝛿𝒗𝐸×𝐵 · 𝒓〉𝑡 ,𝑟 , (8.17)
Π =

〈
𝛿
(
𝑚𝑛𝑅𝑈‖

)
𝛿𝒗𝐸×𝐵 · 𝒓

〉
𝑡 ,𝑟

, (8.18)

𝑄𝐸 = 〈𝛿 (𝑃) 𝛿𝒗𝐸×𝐵 · 𝒓〉𝑡 ,𝑟 . (8.19)

Therefore, the particle, angular momentum, and energy fluxes are simply related to moments of
the perturbed distribution function integrated against the perturbed 𝐸-cross-𝐵 velocity, where
〈. . . 〉𝑡 ,𝑟 denotes a time and spatial average. We also define

𝛿𝑛 =

∫
𝑑3𝑣𝛿 𝑓 , (8.20)

𝛿
(
𝑛𝑚𝑅𝑈‖

)
=

∫
𝑑3𝑣𝑚𝑣 ‖𝛿 𝑓 , (8.21)

𝛿𝑃 =

∫
𝑑3𝑣
1
2
𝑚

(
𝑣2 −𝑈2‖

)
𝛿 𝑓 , (8.22)

where we calculate the particle, angular momentum, and energy fluxes for every species. We note
that the toroidal angular momentum flux is only non-zero in the presence of rotations. The energy
flux calculation can be approximated by noting in the small Mach number limit that

𝛿𝑃 = 𝛿 (𝑛𝑇) = −1
2
𝑚𝑈2‖𝛿𝑛 +

∫
𝑑3𝑣
1
2
𝑚𝑣2 ≈

∫
𝑑3𝑣
1
2
𝑚𝑣2. (8.23)

We also note that often we are concerned with the heat flux 𝑄 relative to the convective energy
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flux 32𝑇Γ (Horton 1984). The heat flux is simply

𝑄 = 𝑄𝐸 − 3𝑇
2
Γ. (8.24)

It is important to note that while wemay obtain quasilinear flux ratios from the above procedure,
we cannot with linear physics alone obtain the physical fluxes. Throughout the derivation, we have
kept the amplitude of the fluctuating potential 𝛿𝜙 arbitrary. The amplitude 𝜙0 can only be obtained
through the use of nonlinear physics by saturating the amplitude. Thus, the complete calculation
of these fluxes must be obtained via a saturation rule obtained from a nonlinear computational
code, in this case from the Gyrokinetic Electromagnetic Numerical Experiment (GENE) (Jenko
et al. 2000). This saturation rule is the topic of the next section.

9. Saturation Rule
To formulate a saturation rule, we introduce the well known mixing length estimate with an

effective diffusivity 𝐷:

𝐷 =
𝛾𝑛〈
𝑘2⊥

〉 �����
max

, (9.1)

where we compute the value of 𝛾𝑛 such that the quantity 𝛾𝑛/
〈
𝑘2⊥

〉
is at its maximum over the linear

spectrum for a given mode. Meanwhile, we average 𝑘2⊥ over the electrostatic mode. We enforce
this mixing length estimate for our various flux calculations by approximating the underlying
process as a random walk (Bourdelle et al. 2007). For instance, we mandate that the particle flux
for a given species must be

Γ𝑠 =
∑︁
𝑛

𝐶NL
𝑆𝑛

𝑅0𝑛0𝑠

𝛾𝑛〈
𝑘2⊥

〉 �����
max

𝑘 \

𝑘 \,max
𝐿𝑠,𝑛,0, (9.2)

where 𝐶NL is a dimensionless constant from nonlinear physics, the form factor 𝑆𝑛 is a mode-
dependent form factor, 𝑘 \,max corresponds to the mode that maximizes 𝛾𝑛/𝑘2⊥, and 𝐿𝑠,𝑛,0 is the
dimensionless integral that actually computes the flux terms. The above expression is only valid
when there is only one mode present in the linear spectrum. We can generalize the expression to
account for the existence of multiple types of linear modes by introducing another form factor 𝑆𝑛′
into the expression and summing over both 𝑛 and 𝑛′, while we compute the maximum 𝛾𝑛/𝑘2⊥ for
a given 𝑛′.
We model 𝐶NL with the use of nonlinear gyrokinetic simulations. We distinguish between ITG

scales, which we define as 𝑘 \ 𝜌𝑠 < 2, and ETG scales, which we define as 𝑘 \ 𝜌𝑠 > 2. Here, 𝜌𝑠 is
the gyroradius of the main ion species such that 𝜌𝑠 =

√︁
𝑇𝑠/𝑚𝑠/Ω1,𝑠 (note that lack of

√
2). The

ITG scales are tuned to the GA-Standard nonlinear ion heat flux computed by GENE, whereas
the ETG scales are tuned to a single-scale nonlinear GENE simulation based on JET parameters
(Citrin et al. 2017). These parameters are current as of QuaLiKiz version 2.8.1 and are subject to
future change depending on updates to the nonlinear physics. The result is

𝐶NL =

{
271/𝑠fac if 𝑘 \ 𝜌𝑠 < 2 (ITG),
122 𝑓multi-scale/𝑠fac if 𝑘 \ 𝜌𝑠 > 2 (ETG).

(9.3)

Here, we have also introduced an ad hoc factor 𝑠fac for the case of low magnetic shear (Citrin
et al. 2012),

𝑠fac =

{
2.5 (1 − |𝑠 |) if |𝑠 | < 0.6,
1 if |𝑠 | > 0.6,

(9.4)
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as well as a multi-scale rule determined from the maximum of the respective spectra,

𝑓multi-scale =
1

1 + exp
(
− 15

(
𝛾ETG, max
𝛾ITG, max

−
√︃

𝑚𝑖

𝑚𝑒

)) , (9.5)

where 𝑚𝑒 and 𝑚𝑖 are the masses of the electron and main ion respectively. Here, the sigmoid
guarantees a smooth transition from a strongly driven ion-scale mode regime and a strongly
driven electron-scale mode regime, since it has been observed that ETG turbulence is suppressed
when the ion-scale instability dominates (Howard et al. 2016; Maeyama et al. 2015).
Lastly, we provide an explicit expression for 𝑘2⊥. In the ITG regime, we need to take into account

contributions to 𝑘2𝑟 that arise from the magnetic shear, the mode structure of the electrostatic
perturbation, and nonlinear effects. Meanwhile, in the ETG regime we assume full isotropization
of the mode such that 𝑘2𝑟 = 𝑘2

\
. The result is〈

𝑘2⊥
〉
=

{
𝑘2\ + (𝑘𝑟−NL + 𝑘𝑟−shear)2 if 𝑘 \ 𝜌𝑠 < 2 (ITG),

2𝑘2\ if 𝑘 \ 𝜌𝑠 > 2 (ETG).
(9.6)

The shear contribution can be calculated analytically as

𝑘𝑟−shear = 𝑘 \ |𝑠 |
√︃〈

\2
〉
=

𝑘 \ 𝑠𝑑√
2Re

(
𝑤2

) √︃Re (𝑤2) + 2Im (𝑥0)2, (9.7)

where we use 〈
\2

〉
=

∫ ∞
−∞ \2

��𝜙 (\)
��2 𝑑\∫ ∞

−∞
��𝜙 (\)

��2 𝑑\ =
𝑑2

2Re
(
𝑤2

) + (
𝑑
Im (𝑥0)
Re

(
𝑤2

) )2 . (9.8)

Meanwhile, the nonlinear contribution has been tuned (Citrin et al. 2012) such that

𝑘𝑟−NL𝜌𝑠 = 0.4𝑒−2 |𝑠 |𝑞−0.5 + 1.5max {𝑘 \ 𝜌𝑠 − 0.2, 0} . (9.9)

Having now fully derived analytic expressions for the dispersion relation and quasilinear fluxes,
we now discuss the numerical implementation of QuaLiKiz.

10. Numerical Implementation
Recall that the dispersion relation is written as∑︁

𝑠

L0,𝑠 − Lpassing,𝑠 − Ltrapped,𝑠 = 0. (10.1)

The trapped and passing functionals discussed in Sections 6 and 7 are both functions of the
complex frequency 𝜔. Solving the dispersion relation is therefore a matter of finding the zeros of
the complex analytic function 𝐷 (𝜔), where

𝐷 (𝜔) =
∑︁
𝑠

L0,𝑠 − Lpassing,𝑠 − Ltrapped,𝑠 . (10.2)

To solve this, we use the Davies method, a numerical technique developed by Davies (1986) to
find the zeros of an analytic function within the complex plane. The strategy takes advantage of
the argument principle in complex analysis, which states that given a meromorphic function 𝑓 (𝑧)
that

1
2𝜋𝑖

∮
𝐶

𝑓 ′ (𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑁 − 𝑃, (10.3)

where 𝑁 and 𝑃 are respectively the number of zeros and poles of 𝑓 (𝑧) contained within the simple
counter-clockwise contour 𝐶. Here, zero multiplicity and pole order are taken into account. For
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our purposes, we assume that 𝑓 (𝑧) has no poles, leading to
1
2𝜋𝑖

∮
𝐶

𝑓 ′ (𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑁. (10.4)

The key of the method is to recognize from Cauchy’s residue theorem that, for integer 𝑛 such that
1 6 𝑛 6 𝑁 , we can calculate the integral 𝑆𝑛 such that

𝑆𝑛 =
1
2𝜋𝑖

∮
𝐶

𝑧𝑛
𝑓 ′ (𝑧)
𝑓 (𝑧) 𝑑𝑧 =

𝑁∑︁
𝑗=1

𝑧𝑛0 𝑗 , (10.5)

where 𝑧0 𝑗 is the 𝑗 th root of 𝑓 (𝑧) (counting repeated roots as separate). We then construct the
polynomial

𝑃𝑁 (𝑧) =
𝑁∏
𝑗=1

(
𝑧 − 𝑧0 𝑗

)
=

𝑁∑︁
𝑗=0

𝐴 𝑗 𝑧
𝑁− 𝑗 , (10.6)

where the coefficients 𝐴 𝑗 can be computed from the relations

𝐴0 = 1, (10.7)
𝑆1 + 𝐴1 = 0, (10.8)

𝑆2 + 𝐴1𝑆1 + 2𝐴2 = 0, (10.9)
𝑆𝑛 + 𝐴1𝑆𝑛−1 + 𝐴2𝑆𝑛−2 + · · · + 𝑛𝐴𝑛 = 0, 𝑛 = 1, 2, . . . , 𝑁, (10.10)

Excluding the trivial 𝐴0 term, this is a linear system of 𝑁 equations. After solving this system,
we can then construct the polynomial 𝑃𝑁 which has zeros that are precisely the solutions of the
dispersion relation. We then extract a zero from the polynomial 𝑃𝑁 using a Newton solver and
then define a new set of coefficients such that

𝑆
(1)
𝑛 = 𝑆𝑛 − 𝑧𝑛01, 𝑛 = 0, 1, . . . , 𝑁 − 1 (10.11)

where 𝑧01 is the first zero found. With this new set of coefficients, we may then construct a new
polynomial 𝑃𝑁−1 (𝑧) and extract another zero. This process is repeated until all zeros are found.
If the contour of integration is a unit circle, then a clever integration by parts results in

𝑆𝑛 = − 𝑛

2𝜋𝑖

∫ 2𝜋

0
𝑑\𝑒𝑖𝑛\ ln

(
𝑒−𝑖𝑁 \ 𝑓

(
𝑒𝑖 \

))
, 𝑛 > 0. (10.12)

The inclusion of 𝑒−𝑖𝑁 \ inside the logarithm is to handle the branch cut of the logarithm, and
can be obtained by using 𝑧−𝑁 𝑓 (𝑧) instead of 𝑓 (𝑧) in the preceding formulas; such a substitution
does not affect the value of 𝑆𝑛 for 𝑛 > 0. For the 𝑛 = 0 case, we simply compute the total change
of the argument of 𝑓

(
𝑒𝑖 \

)
for 0 6 \ 6 2𝜋 while keeping track of any jumps in the argument that

would indicate a full winding. Thus, 𝑆𝑛 can be computed via standard quadrature methods for
1-dimensional integration.
To apply this to the dispersion relation, we make use of a bijective mapping 𝜔 = 𝜔 (𝑧) (to

be determined momentarily). This will allow us to retain the simplifications that come from
integrating around a unit circle. The first step is to define 𝑓 (𝑧) such that

𝑓 (𝑧) = 𝐷 (𝜔 (𝑧)) . (10.13)

Then, we compute 𝑆𝑛 via numerical quadrature, leading to roots 𝑧0𝑛 such that

𝑓 (𝑧0𝑛) = 𝐷 (𝜔 (𝑧0𝑛)) = 0 (10.14)

Because the mapping is bijective, we may then simply apply the mapping onto the roots 𝑧𝑛0 to
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obtain
𝜔0𝑛 = 𝜔 (𝑧0𝑛) , (10.15)

where 𝜔0𝑛 are all the roots within the contour 𝐶 in the complex 𝜔-plane such that

𝐷 (𝜔0𝑛) = 0. (10.16)

The only task remaining is to define a suitable bijective mapping 𝜔 (𝑧). Because QuaLiKiz only
considers unstable modes, we demand that Im (𝜔) > 0 along the entirety of the contour in the
𝑧-plane. We first define the bijective mapping (𝑢, 𝑣) → (𝑥, 𝑦) as

𝑥 (𝑢, 𝑣) = sgn (𝑢𝑣)
𝑣
√
2

√︂
𝑢2 + 𝑣2 −

√︃(
𝑢2 + 𝑣2

) (
𝑢2 + 𝑣2 − 4𝑢2𝑣2

)
, (10.17)

𝑦 (𝑢, 𝑣) = sgn (𝑢𝑣)
𝑢
√
2

√︂
𝑢2 + 𝑣2 −

√︃(
𝑢2 + 𝑣2

) (
𝑢2 + 𝑣2 − 4𝑢2𝑣2

)
. (10.18)

The inverse mapping is given by

𝑢 (𝑥, 𝑦) = 𝑥
√︁
𝑥2 + 𝑦2 − 𝑥2𝑦2√︁

𝑥2 + 𝑦2
, (10.19)

𝑣 (𝑥, 𝑦) = 𝑦
√︁
𝑥2 + 𝑦2 − 𝑥2𝑦2√︁

𝑥2 + 𝑦2
. (10.20)

Since this mapping does not satisfy the Cauchy-Riemann equations, it is merely bijective, not
conformal. This is known as a squircle mapping since it appears to be a square with rounded
edges, and this specific kind was first formulated in Guasti (1992). Denoting 𝜔 = 𝑥 ′ + 𝑖𝑦′ and
𝑧 = 𝑢 + 𝑖𝑣, we modify this mapping such that

𝑥 ′ = 𝑅𝑥 +
𝑟𝑥

𝑎
𝑥 (𝑎𝑢, 𝑎𝑣) , (10.21)

𝑦′ = 𝑅𝑦 +
1
𝑎

(
𝑅𝑦 − 𝜖𝑦

)
𝑦 (𝑎𝑢, 𝑎𝑣) , (10.22)

With 𝐶 being the unit circle in the complex 𝑧-plane, let 𝐶 ′ be the mapped curve in the complex
𝜔-plane. Here,

(
𝑅𝑥 , 𝑅𝑦

)
determines the approximate center𝐶 ′, 𝑟𝑥 and 𝑎 are scaling factors chosen

to manipulate 𝐶 ′ into a rectangular shape, and 𝜖𝑦 is chosen to guarantee that 𝐶 ′ lies above the
real axis. While the mapping is not conformal, it is sufficient for our method, since not only is it
bijective but points interior to 𝐶 are mapped to the interior of 𝐶 ′. Thus, if we make the interior
area of 𝐶 ′ sufficiently large and place it slightly above the real axis in the complex 𝜔-plane, then
we will determine all eigenmodes of interest to us. After the solution frequencies are found, they
are then refined using a standard Newton root-finding method.
While the contour integral and the Newton root-finding are done when QuaLiKiz is used on its

own, when coupled to an integrated modeling suite a slight modification is made to the algorithm.
We assume that the quasilinear transport changes slowly compared to the timescale of evolution
of the plasma equilibrium. A typical transport solver iterates on a time step that is on the order of
. 10−2𝜏𝐸 , where 𝜏𝐸 is the energy confinement time. To speed up the code, QuaLiKiz will often
only use the previous solution as an initial guess for the Newton solver rather than perform the
full contour integral. Since codes like QuaLiKiz are often the bottleneck for the whole integrated
modeling suite, such a speedup is necessary to make the simulation tractably feasible. In practice,
QuaLiKiz will only perform the full contour integral once every ∼ 10 iterations.
Lastly, we discuss the numerical integration scheme currently in use by QuaLiKiz to calculate

the trapped and passing functionals, which require 2-dimensional integrations. Although Qua-
LiKiz used to rely on integration routines provided by the Numerical Algorithms Group (NAG),
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it now uses open source routines based on the Genz and Malik algorithm, dubbed “hcubature”.
This algorithm was originally developed by Genz & Malik (1980); the current implementation is
based on the C++ implementation Johnson (2017). The version of the algorithm in QuaLiKiz has
been ported to Fortran and is slightly modified as a result.
The goal of hcubature is to estimate

𝑰 =

∫ 𝑏1

𝑎1

∫ 𝑏2

𝑎2

· · ·
∫ 𝑏𝑛

𝑎𝑛

𝒇 (𝒙)d𝑛𝑥. (10.23)

Here, 𝑰 is the estimate of the integral, while 𝑎𝑖 and 𝑏𝑖 are respectively the individual components
of the lower and upper bounds of the integral 𝒂 and 𝒃, which are both constant vectors with
dimension 𝑛. Meanwhile, 𝒇 is a vector function of arbitrary dimension, and 𝒙 is the argument
of the function 𝒇 and is of dimension 𝑛. The vectors 𝑰 and 𝒇 are of the same dimension. Thus,
hcubature approximately integrates a vector integrand over a hyperrectangle (or equivalently a
scaled hypercube, hence the name “cubature”). The routine terminates when the global estimate
of the absolute or relative error of the integral reach the desired tolerance and also calculates an
error vector 𝒆 with the same dimensionality as the integrand. While calculating the error vector
is straightforward, incorporating it into the convergence criterion is non-trivial. In general, to
estimate the error, we make a higher order estimate 𝑰0 and a lower order, less accurate estimate
𝑰1 and set the 𝑖th component of 𝝐 to be

𝜖𝑖 = | (𝐼0)𝑖 − (𝐼1)𝑖 | . (10.24)

For simplicity, we first consider a scalar function that we integrate over a hypercube,

𝐼 =

∫ 1

−1

∫ 1

−1
· · ·

∫ 1

−1
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)d𝑛𝑥. (10.25)

We estimate the integral using the following rule,

𝐼 ≈ 𝐼0 =𝑤1 𝑓 (0, 0, . . . , 0) + 𝑤2
∑︁

𝑓 (_2, 0, 0, . . . , 0) + 𝑤3
∑︁

𝑓 (_3, 0, 0, . . . , 0)

+ 𝑤4
∑︁

𝑓 (_4, _4, 0, 0, . . . , 0) + 𝑤5
∑︁

𝑓 (_5, _5, . . . , _5) .
(10.26)

Here, we sum over all possible permutations of coordinates while also allowing for sign changes.
For example, if 𝑓 takes three arguments, then∑︁

𝑓 (_1, 0, 0) = 𝑓 (_1, 0, 0) + 𝑓 (0, _1, 0) + 𝑓 (0, 0, _1)
+ 𝑓 (−_1, 0, 0) + 𝑓 (0,−_1, 0) + 𝑓 (0, 0,−_1) .

(10.27)

Genz and Malik constrain the parameters 𝑤𝑖 and _𝑖 by requiring that the integration be exact for
the functions

𝑓1 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 1,
𝑓2 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥21,

𝑓3 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥41,

𝑓4 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥61,

𝑓5 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥21𝑥
2
2,

𝑓6 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥41𝑥
2
2,

𝑓7 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥21𝑥
2
2𝑥
2
3 .

(10.28)

In addition, they also fix the parameters _3 = _4 to be a specific number, and solve the resulting
nonlinear system of equations. The result can be found in Genz & Malik (1980). To estimate the
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error, we reuse _𝑖 but calculate different weights 𝑤′
𝑖
to make a lower-order estimate,

𝐼 ≈ 𝐼1 = 𝑤′
1 𝑓 (0, 0, . . . , 0) +𝑤

′
2

∑︁
𝑓 (_2, 0, 0, . . . , 0)

+ 𝑤′
3

∑︁
𝑓 (_3, 0, 0, . . . , 0) + 𝑤′

4

∑︁
𝑓 (_4, _4, 0, 0, . . . , 0) .

(10.29)

We calculate the weights with the samemethod as previously discussed and require the integration
be exact for the functions 𝑓1, 𝑓2, 𝑓3, and 𝑓5. By keeping _𝑖 the same, we can estimate the error
with the reuse of function evaluations. The error is taken to be

𝜖 = |𝐼0 − 𝐼1 | . (10.30)

The estimate procedure easily generalizes to that of a hyperrectangle by using linear transforma-
tions. The calculation of 𝐼0, 𝐼1, and 𝝐 can also be extended to the case of vector integrands by
integrating every component simultaneously.
In the case that 𝑛 = 1, the above rule no longer applies. Instead, hcubature uses a 15-point

Kronrod extension of a 7-point Gaussian quadrature rule. For 𝑛-point Gaussian quadrature, we
estimate the integral

𝐼 =

∫ 1

−1
𝑓 (𝑥)d𝑥 ≈

𝑛∑︁
𝑖=1

𝑤′
𝑖 𝑓 (𝑥𝑖). (10.31)

To calculate the weights 𝑤𝑖 and the abscissa 𝑥𝑖 , we require that the integration be exact for all
polynomials up to degree 2𝑛 − 1. It can be shown using Lagrange interpolating polynomials and
the theory of orthogonal polynomials that the abscissa 𝑥𝑖 correspond to the roots of the Legendre
polynomial 𝑃𝑛 and that the weights are

𝑤′
𝑖 =

2(
1 − 𝑥2

𝑖

) 𝑑𝑃𝑛

𝑑𝑥
(𝑥𝑖)2

, (10.32)

where the Legendre polynomials are normalized such that 𝑃𝑛 (1) = 1.
One downside to this method is that the abscissa will in general be completely different for

different order rules. Thus, naively comparing an 𝑛-point rule with an 𝑛 + 1-point rule to estimate
the error is inefficient. Kronrod discovered that for an 𝑛-point Gaussian quadrature rule, one could
add 𝑛+1 abscissa to exactly integrate polynomials up to order 3𝑛+1, reusing the previous abscissa
and computing new weights 𝑤𝑖 . These new nodes correspond to the zeros of Legendre-Stieltjes
polynomials, and their derivation will not be covered here. Thus, the 15-point rule corresponds
to

𝐼 ≈ 𝐼0 =

15∑︁
𝑖=1

𝑤𝑖 𝑓 (𝑥𝑖), (10.33)

the 7-point rule to

𝐼 ≈ 𝐼1 =

7∑︁
𝑖=1

𝑤′
𝑖 𝑓 (𝑥𝑖), (10.34)

and the estimated error
𝜖 = |𝐼0 − 𝐼1 | . (10.35)

Extending this to more general limits of integration simply requires a linear transformation.
Now that we have our integration schemes and error estimation rules for arbitrary 𝑛, we may

proceed to describe the general algorithm. Here, 𝒇 is the vector integrand, 𝒂 and 𝒃 are respectively
the lower and upper bounds of the integrand, 𝜖𝑎 and 𝜖𝑟 are respectively the requested absolute and
relative error tolerances, maxEval is the maximum number of function evaluations to be allowed
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Algorithm 1: hcubature
Input: 𝒇 , 𝒂, 𝒃, 𝜖𝑎, 𝜖𝑟 , maxEval, norm
Output: 𝑰, 𝒆, ifail

1 Initialize eval = 0
2 Create a hyperrectangle from 𝒂, 𝒃
3 Calculate 𝑰0, 𝑰1, 𝝐 in the hyperrectangle
4 Calculate 𝑠, the suggested dimension along which to further discretize, in the
hyperrectangle

5 Update eval to be the number of points evaluated so far
6 𝑰 = 𝑰0, 𝒆 = 𝝐
7 Push hyperrectangle into the binary heap with associated value max𝑖 |𝜖𝑖 | and with stored
values 𝑰0, 𝝐 , 𝑠

8 if converged then exit;
9 else

10 repeat
11 Pop a hyperrectangle from the binary heap
12 Update 𝑰 = 𝑰 − 𝑰0, 𝒆 = 𝒆 − 𝝐 from the popped hyperrectangle
13 Split the hyperrectangle in half along the suggested dimension 𝑠
14 Calculate 𝑰0, 𝑰1, 𝝐 , and 𝑠 for each hyperrectangle
15 Update eval to be the number of points evaluated so far
16 Update 𝑰 = 𝑰 + ∑

𝑰0, 𝒆 = 𝒆 + ∑
𝝐 from the two hyperrectangles

17 Push each hyperrectangle into the binary heap with associated value max𝑖 |𝜖𝑖 | and
with stored values 𝑰0, 𝝐 , 𝑠

18 until converged or eval > maxEval;

by the routine, and norm determines the convergence criterion (in conjunction with the requested
error tolerances). The integer eval keeps track of the total number of function evaluations, the
vectors 𝑰0 and 𝑰1 correspond to the integration estimates for a given hyperrectangle, 𝝐 is the error
estimate for the hyperrectangle, and 𝑠 is the suggested dimension of splitting. As for the output,
𝑰 is the total integration estimate, 𝒆 is the total error, and ifail is an integer denoting whether any
errors occurred while carrying out the procedure or whether the eval reached maxEval before
convergence. Convergence is determined using the global error vector 𝒆.
The algorithm splits the initial hyperrectangle into pieces and stores them in a binary heap.

The heap is sorted according to the largest component of the local error vector, where the root
of the heap corresponds to the region with the largest error. Until the integral converges, we
pop a hyperrectangle from the root of the heap, split it into two regions, evaluate both regions
accordingly, update the global integration and error estimates, and push both regions into the heap.
This guarantees that the split region contributes the greatest to the global error. To determine
which direction to split the hyperrectangle along, we calculate a fourth divided difference using
the same evaluation points,

𝐷𝑖 =
∑︁
𝑗

�� 𝑓 𝑗 (0, 0, . . . , 0,−_2, 0, 0, . . . , 0)
− 2 𝑓 𝑗 (0, 0, . . . , 0) + 𝑓 𝑗 (0, 0, . . . , 0, _2, 0, 0 . . . , 0)

−
_21

_22

[
𝑓 𝑗 (0, 0, . . . , 0,−_1, 0, 0, . . . , 0) − 2 𝑓 𝑗 (0, 0, . . . , 0)

+ 𝑓 𝑗 (0, 0, . . . , 0, _1, 0, 0 . . . , 0)
] ��.

(10.36)
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Here, 𝑖 corresponds to the dimension at which we evaluate the functions at. For example, if 𝑖 = 2,
then

𝐷2 =
∑︁
𝑗

�� 𝑓 𝑗 (0,−_2, 0, 0, . . . , 0) − 2 𝑓 𝑗 (0, 0, . . . , 0) + 𝑓 𝑗 (0, _2, 0, 0 . . . , 0)

−
_21

_22

[
𝑓 𝑗 (0,−_1, 0, 0, . . . , 0) − 2 𝑓 𝑗 (0, 0, . . . , 0) + 𝑓 𝑗 (0, _1, 0, 0 . . . , 0)

] ��. (10.37)

Note that here we take the difference along each component of 𝒇 and sum the absolute value
of each difference. We determine 𝑠, the dimension along which we split the hyperrectangle, by
calculating the maximum component of 𝑫. The coordinate corresponding to the maximum of 𝑫
is the one in which we split the hyperrectangle in half. For the 1-dimensional case using the Gauss-
Kronrod rule, no such calculation is required. We continually split the whole hyperrectangle into
smaller and smaller pieces until convergence is achieved.

11. Conclusions and Outlook
In this work, we derived the linear dispersion relation of quasilinear gyrokinetic transport

code QuaLiKiz from first principles. With the aid of nonlinear simulations, we also extended
the linear physics to a quasilinear regime to calculate particle, toroidal angular momentum, and
heat fluxes. The formulation of QuaLiKiz relies upon multiple theoretical principles in fusion
plasma physics. First, we examined single particle motion in a circular magnetic geometry and
identified the adiabatic invariants of motion within a guiding center framework. This allowed us
to characterize electrostatic perturbations to the system with the aid of action-angle variables. We
used this formulation to analyze the linearized Vlasov equation and Poisson’s equation. We then
simplified the resulting dispersion relation using the ballooning representation, an eigenfunction
ansatz, and various approximations. The solution of this dispersion relation is computed using
the Davies method and numerical cubature methods. Finally, upon finding the eigenmodes of the
system, we use the solutions to compute the quasilinear fluxes with the aid of a saturation rule
informed by nonlinear simulations.
This derivation serves not only to help explain the inner workings of themodel, but also to guide

potential improvement in QuaLiKiz. With the formulation finally laid out, it is now clear where
each individual approximation enters the derivation. This will ease future QuaLiKiz development
that aims to extend the underlying physics or relax the various approximations. We reiterate that
QuaLiKiz is only equipped to describe quasilinear transport arising from electrostatic modes
in an axisymmetric, up-down symmetric equilibrium. The geometry cannot be strongly shaped
(such as by strong elongation), global effects are not taken into account, and the Mach number of
the rotation must be sufficiently small. Incorporating electromagnetic modes would also require
a generalization of the Gaussian eigenfunction ansatz. Examples of future work that could extend
the applicability of QuaLiKiz include introducing electromagnetic perturbations, incorporating a
more general magnetic geometry, and amore accurate pitch angle integration for passing particles.
Improvements made to QuaLiKiz will allow for more accurate integrated modeling as well as
further optimization of the code.
An additional goal of this work is to provide an extensive, line-by-line derivation for the sake of

demonstrating how such a model can be formulated in principle. Explicitly drawing uponmultiple
theoretical principles, such as the action-angle variable formalism, helps to illustrate the utility of
these principles and their physical motivation. It is also useful to lay out the various mathematical
and numerical techniques necessary in a model such as this, since many such tricks, methods, or
approximations are often crucial in making a problem computationally tractable. We hope that
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this work will function not just as a tutorial for understanding and improving QuaLiKiz, but also
further development in quasilinear fusion codes in general.
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Appendix A. Fried and Conte Integrals
The Fried and Conte integral, also known as the plasma dispersion function, is utilized

frequently in kinetic plasma physics. It is defined as

𝑍 (𝑥) =


1√
𝜋

∫ ∞
−∞ 𝑑𝑣 𝑒−𝑣

2

𝑣−𝑥 , if Im(𝑥) > 0,

P 1√
𝜋

∫ ∞
−∞ 𝑑𝑣 𝑒−𝑣

2

𝑣−𝑥 +
√
𝜋𝑖𝑒−𝑥

2
, if Im(𝑥) = 0,

1√
𝜋

∫ ∞
−∞ 𝑑𝑣 𝑒−𝑣

2

𝑣−𝑥 + 2
√
𝜋𝑖𝑒−𝑥

2
, if Im(𝑥) < 0,

(A 1)

where the case Im(𝑥) 6 0 is calculated by analytically continuing the integral defined for 𝑥 > 0.
When solving the Vlasov equation as an initial value problem in time, a Laplace transform is
implied when obtaining this integral. To apply the Laplace transform correctly for the case of
stable modes, wemust analytically continue the function. Luckily, since we only consider unstable
modes, we are free to restrict ourselves instead to the related function

𝑍0 (𝑥) =
1
√
𝜋

∫ ∞

−∞
𝑑𝑣

𝑒−𝑣
2

𝑣 − 𝑥
. (A 2)

If Im(𝑥) = 0, we take the Cauchy principle value of 𝑍0.
In carrying out the calculation, we define a generalization of the plasma dispersion function

defined as

𝑍𝑚 (𝑥) =
1
√
𝜋

∫ ∞

−∞
𝑑𝑣

𝑣𝑚𝑒−𝑣
2

𝑥 − 𝑣
, (A 3)

where 𝑚 is a nonnegative integer. It can be shown that these associated Fried and Conte integrals
can be written in terms of 𝑍0 (𝑥):

𝑍𝑚 (𝑥) =

𝑥𝑚𝑍0 (𝑥) + 1√

𝜋

∑𝑚−1
2

𝑘=0 𝑥
2𝑘Γ(𝑚2 − 𝑘), if m odd,

𝑥𝑚𝑍0 (𝑥) + 1√
𝜋

∑𝑚
2 −1
𝑘=0 𝑥2𝑘+1Γ(𝑚−1

2 − 𝑘), if m even,
(A 4)

where Γ(𝑥) is the gamma function. For integer 𝑛 we note that 𝑍2𝑛+1 (𝑥) is an even function and
𝑍2𝑛 (𝑥) is odd. The first few of these associated Fried and Conte integrals are

𝑍1 (𝑥) = 1 + 𝑥𝑍0 (𝑥), (A 5)

𝑍2 (𝑥) = 𝑥 + 𝑥2𝑍0 (𝑥), (A 6)

𝑍3 (𝑥) =
1
2
+ 𝑥2 + 𝑥3𝑍0 (𝑥), (A 7)

𝑍4 (𝑥) =
𝑥

2
+ 𝑥3 + 𝑥4𝑍0 (𝑥). (A 8)
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We also define a further generalization of the Fried and Conte integral as described in Gürcan
(2014):

𝐺𝑚 (𝑥1, 𝑥2) =
1
√
𝜋

∫ ∞

−∞
𝑑𝑣

𝑣𝑚𝑒−𝑣
2

(𝑣 − 𝑥1) (𝑣 − 𝑥2)
(A 9)

Through partial fraction decomposition, we can rewrite this as

𝐺𝑚 (𝑥1, 𝑥2) =
1
√
𝜋

∫ ∞

−∞
𝑑𝑣

(
1

𝑣 − 𝑥1
+ 𝑥2

(𝑣 − 𝑥1) (𝑣 − 𝑥2)

)
𝑣𝑚−1𝑒−𝑣

2
= 𝑍𝑚−1 (𝑥1) + 𝑥2𝐺𝑚−1 (𝑥1, 𝑥2).

(A 10)
Because 𝐺𝑚 (𝑥1, 𝑥2) = 𝐺𝑚 (𝑥2, 𝑥1), we obtain

𝐺𝑚 (𝑥1, 𝑥2) = 𝑍𝑚−1 (𝑥1) + 𝑥2𝐺𝑚−1 (𝑥1, 𝑥2) = 𝐺𝑚 (𝑥2, 𝑥1) = 𝑍𝑚−1 (𝑥2) + 𝑥1𝐺𝑚−1 (𝑥1, 𝑥2), (A 11)

which allows us to write

𝐺𝑚 (𝑥1, 𝑥2) =
𝑍𝑚 (𝑥1) − 𝑍𝑚 (𝑥2)

𝑥1 − 𝑥2
. (A 12)

Note that 𝐺𝑚 (𝑥1, 𝑥2) = 𝐺𝑚 (−𝑥1,−𝑥2).

Appendix B. Derivation of the Magnetic Drift Velocity
The goal of this section is to calculate the magnetic drift velocity 𝒗𝐷,𝐵 in the 𝑠−𝛼 equilibrium

by including a finite Shafranov shift. We define the right-handed coordinate system (𝑟, \, 𝜑) using
Cartesian coordinates and include the Shafranov shift explicitly:

𝑥 = (𝑅0 + 𝑟 cos(\) + Δ(𝑟)) cos(𝜑), (B 1)
𝑦 = (𝑅0 + 𝑟 cos(\) + Δ(𝑟)) sin(𝜑), (B 2)
𝑧 = 𝑟 sin(\). (B 3)

Here, Δ is the outward radial shift of the circular flux surface’s center. The coordinate system
(𝑟, \, 𝜑) is right-handed but not orthogonal, so we must specify the metric coefficients. They are

𝑔𝑟𝑟 = 1 + (Δ′)2 + 2Δ′ cos (\) , (B 4)
𝑔𝑟 \ = 𝑔\𝑟 = −Δ′𝑟 sin (\) , (B 5)

𝑔\ \ = 𝑟2, (B 6)

𝑔𝜑𝜑 = (𝑅0 + 𝑟 cos (\) + Δ)2 , (B 7)
𝑔𝑟 𝜑 = 𝑔𝜑𝑟 = 𝑔\𝜑 = 𝑔𝜑\ = 0, (B 8)

where Δ′ = 𝜕𝑟Δ. This leads to the Jacobian

𝐽 =
√
𝑔 =

1
∇𝑟 · (∇\ × ∇𝜑) = 𝑟 (𝑅0 + 𝑟 cos (\) + Δ) (1 + Δ′ cos (\)) . (B 9)

We next define a magnetic field for the 𝑠 − 𝛼 equilibrium. As an approximation, we ignore the
poloidal magnetic field and only consider the toroidal magnetic. Thus, the magnetic field is

𝑩 ≈ 𝐵0𝑅0∇𝜑. (B 10)

This guarantees that the magnetic field strength is

𝐵 =
𝐵0𝑅0

𝑅0 + 𝑟 cos (\) + Δ
=

𝐵0𝑅0

𝑅
, (B 11)

where 𝑅 = 𝑅 (𝑟, \). It is well known that one can obtain an approximate expression for Δ′ from
the Grad-Shafranov equation to lowest-order in 𝜖 (Connor et al. 1983; Candy 2009; Linder 2016).
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The expression is

Δ′ ≈ −𝛼𝑀 = 𝑞2𝛽
𝑅0

𝑃

𝑑𝑃

𝑑𝑟
. (B 12)

The next step is to calculate the magnetic drift velocity,

𝒗𝐷,𝐵 =
𝑚

𝑒𝐵

(
𝑣2‖ +

𝑣2⊥
2

)
𝑩 × ∇𝐵

𝐵2
+
𝑚𝑣2‖
𝑒𝐵

𝛽

2𝑝
𝑩 × ∇𝑝

𝐵
. (B 13)

The first term is the sum of the grad-𝐵 drift as well as the dominant component of the curvature
drift. The second term is the portion of the curvature drift that arises from considering the lowest-
order MHD equilibrium. Since QuaLiKiz is applied in the regime where 𝛼𝑀 is small, we ignore
the second term entirely; this is equivalent to assuming that the magnetic field is approximately
curl-free. Taking note that we are not using an orthogonal coordinate system, we find that the
relevant cross product is

(𝑩 × ∇𝐵) = 𝑅0𝐵0

(
𝜕𝐵

𝜕𝑟
∇𝜑 × ∇𝑟 + 𝜕𝐵

𝜕\
∇𝜑 × ∇\

)
. (B 14)

We can evaluate each component of the expression to obtain

(𝑩 × ∇𝐵) · ∇𝑟 = 𝑅0𝐵0
𝜕𝐵

𝜕\
∇𝑟 · (∇𝜑 × ∇\) = −𝑅0𝐵0

𝐽

𝜕𝐵

𝜕\
= − 𝐵2 sin (\)

𝑅 (1 + Δ′ cos (\)) , (B 15)

(𝑩 × ∇𝐵) · ∇\ = 𝑅0𝐵0
𝜕𝐵

𝜕𝑟
∇\ · (∇𝜑 × ∇𝑟) = 𝑅0𝐵0

𝐽

𝜕𝐵

𝜕𝑟
= − 𝐵2 (cos (\) + Δ′)

𝑅𝑟 (1 + Δ′ cos (\)) , (B 16)

(𝑩 × ∇𝐵) · ∇𝜑 = 0. (B 17)

We then use the approximation

1
𝑅0 (1 + Δ′ cos (\)) ≈ 1

𝑅0
(1 − Δ′ cos (\)) (B 18)

and substitute in Δ′ = −𝛼𝑀 to obtain to lowest-order

𝒗𝐷 · ∇𝑟 ≈ −𝑣𝐷,𝐵 sin (\) , (B 19)

𝒗𝐷 · ∇\ ≈ −
𝑣𝐷,𝐵

𝑟

(
cos (\) − 𝛼𝑀 sin2 (\)

)
, (B 20)

𝒗𝐷 · ∇𝜑 ≈ 0, (B 21)

where we define the characteristic magnetic drift speed to be

𝑣𝐷,𝐵 =
𝑚

𝑒𝐵𝑅0

(
𝑣2‖ +

𝑣2⊥
2

)
. (B 22)

Appendix C. Collisions
The main sections of this work only consider the collisionless Vlasov equation. In actuality,

QuaLiKiz implements a Krook-type collision operator for trapped electrons. To account for its
inclusion, we modify the Vlasov equation to

𝜕𝛿 𝑓𝑠

𝜕𝑡
+𝛀 · 𝜕𝛿 𝑓𝑠

𝜕𝜶
− 𝑒𝑠

𝜕𝜙

𝜕𝜶
· 𝜕 𝑓0𝑠
𝜕𝑱

= −a
(
𝛿 𝑓𝑠 +

𝑒𝜙

𝑇𝑠
𝑓0𝑠

)
, (C 1)

where a is the collision frequency. Note that the 𝑒𝑠𝜙 𝑓0𝑠/𝑇𝑠 term accounts for the adiabatic
response from the electrostatic perturbation. We only include this term for electron-ion collisions
as ion-ion collisions and electron-electron collisions would produce only a small correction. Thus,
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we drop the “s” in favor of “e” and take 𝑒𝑠 → −𝑒. Substituting in our Fourier expressions for 𝛿 𝑓
and 𝜙, we find that

𝑓𝒏 =
𝑓0𝑒

𝑇𝑒

−𝑒𝜙𝒏 (𝒏 · 𝝎∗ − 𝒏 ·𝛀 − a)
𝒏 ·𝛀 − 𝜔 − 𝑖a

=
𝑒𝜙𝒏

𝑇𝑒
𝑓0𝑒

(
1 − 𝜔 − 𝒏 · 𝝎∗

𝜔 + 𝑖a − 𝒏 ·𝛀

)
. (C 2)

Therefore, we can simply substitute 𝜔 → 𝜔 + 𝑖a in the denominator of the resonant term to
capture the effect of this collision operator. The drawback is that we lose the ability to simplify
the functional. In QuaLiKiz, we take the collisional frequency to be

a𝑒 (b, _, 𝜖) = a𝑒𝑖 (b)−3/2 𝑍eff
𝜖

(1 − 2𝜖 − _)2
0.111𝛿 + 1.31
11.79𝛿 + 1 , (C 3)

a𝑒𝑖 is the electron-ion Coulomb collision frequency, 𝑍eff is the effective charge of the ion species
interacting with the electrons, and the parameter 𝛿 is defined as

𝛿 = 12.0
(

|𝜔 | 𝜖
a𝑒𝑖𝑍𝑒 𝑓 𝑓

)3/2
. (C 4)

The explicit definition of a𝑒𝑖 is

a𝑒𝑖 =
𝑒4_𝑒

4𝜋𝜖20 (2𝑇𝑒)
3/2 𝑚1/2𝑒

, (C 5)

where _𝑒 is the Coulomb logarithm relevant for electron collisions. Details for this collision
operator can be found in Romanelli et al. (2007). The numerical values as well as the derivation
of 𝛿 were originally calculated in Kotschenreuther et al. (1995) and then modified for QuaLiKiz’s
purposes. Because a is a function non-trivial of b, we cannot simplify the functional using this
collision operator using Fried and Conte integrals, and the integration over the energy must be
done numerically. The inability to simplify the b integration results in 2-dimensional integral.
That aside, all other aspects of the trapped functional derivation remain intact.
We note this specific form of the collision operator is modified in comparison to the one

found in Romanelli et al. (2007). It was found that the previous form of the collision operator
led to incorrect predictions for density profiles when used in QuaLiKiz (coupled to integrated
modeling suites) in highly collisional regimes. In response, numerical parameters in the Krook
operator were tuned to linear simulations in GENE. In doing so, we keep unchanged the generic
dependence and numerical parameters derived from fundamental principles unchanged (Stephens
et al. 2021).
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