Rostocker Mathematisches Kolloquium

Heft 59

Stevo Stević Periodic Character of a Difference Equation 3
H.M El-Owaidy; On the Dynamics of 11A.M. Youssef;and A.M. Ahmed
Isma Bouchemakh On the dual König property of the order- 19$x_{n+1}=\left(b x_{n-1}^{2}\right)\left(A+B x_{n-2}\right)^{-1}$interval hypergraph of a new class of poset
Strong Convergence and pseudo Stability for 29
Operators of the ϕ-accretive type in uniformlysmooth Banach Spaces
A Note on Global Asymptotic Stability of a 41
Family of Rational Equations
Stevo Stević;
Ibrahim Yalçinkaya
Bénédicte Alziary;Anti-Maximum Principle for a Schrödinger 51Naziha Besbas
Equation in \mathbb{R}^{N}, with a non radial potential
On the Zeros of an Infinitely Often Differen- 63 tiable Function and their Derivatives
Alexander Meduna; A Note on Iteratively Extendable Strings 71
Roman Lukáś
Zoltán Boros; Finite and conditional completeness properties 75 75
Árpád Száz
Yuguang Xuof generalized ordered sets
Iterative Processes with Random Errors for 87
Fixed Point of Φ-Pseudocontractive Operator
Universität Rostock
Institut für Mathematik 2005

Herausgeber:	Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät Institut für Mathematik
Wissenschaftlicher Beirat:	Hans-Dietrich Gronau Friedrich Liese Peter Tákač Günther Wildenhain
Schriftleitung:	Wolfgang Peters
Herstellung der Druckvorlage:	Susann Dittmer

Zitat-Kurztitel: Rostock. Math. Kolloq. 59 (2005)
ISSN 0138-3248
© Universität Rostock, Institut für Mathematik, D-18051 Rostock

BEZUGSMÖGLICHKEITEN:	Universität Rostock
	Universitätsbibliothek, Schriftentausch
	18051 Rostock
	Tel.: $+49-381-4982281$
	Fax: $+49-381-4982268$
	e-mail: maria.schumacher@ub.uni-rostock.de
	Universität Rostock
	Institut für Mathematik
	18051 Rostock
	Tel.: +49-381-498 6551
	Fax: $+49-381-4986553$
	e-mail: romako@mathematik.uni-rostock.de
	Universitätsdruckerei Rostock

Periodic Character of a Difference Equation

ABSTRACT. In this note we prove that every positive solution of the difference equation

$$
x_{n+1}=\frac{x_{n-1}}{p+x_{n-1}+x_{n}}, \quad n=0,1 \ldots
$$

where $p \in[0, \infty)$ and the initial conditions x_{-1}, x_{0} are positive real numbers, converges to a, not necessarily prime, periodic-two solution. This result confirms Conjecture 7.5.2 in [1] (with $q=1$). Also, we show that the positive solutions of Eq.(1) converge to the corresponding periodic-two solutions geometrically.

KEY WORDS AND PHRASES. Period two solution, difference equation, positive solution, asymptotics

1 Introduction

In this note we consider the periodic character of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}}{p+x_{n-1}+x_{n}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where $p \in[0, \infty)$ and the initial conditions x_{-1}, x_{0} are positive real numbers. In fact we consider the case $p \in(0,1)$ since when $p \geq 1$ the zero equilibrium of Eq.(1) is obviously global attractor of all positive solutions of Eq.(1), see [1, Theorem 7.4.1 (a)]. The case $p=0$ was considered, for example, in [1, p. 61, (ii)].
Our motivation here stems from Conjecture 7.5.2 in [1]:
Conjecture 1 Assume that

$$
p<1
$$

Show that every positive solution of Eq.(1) converges to a, not necessarily prime, periodic-two solution.

Note that when $p<1$ all prime period-two solutions of Eq.(1) are given by

$$
\ldots \phi, 1-p-\phi, \phi, 1-p-\phi, \ldots
$$

with

$$
0 \leq \phi \leq 1-p \quad \text { and } \quad \phi \neq \frac{1-p}{2}
$$

see, [1, p. 134].
Recently there has been a great interest in studying the periodic nature of nonlinear difference equations. For some recent results concerning, among other problems, the periodic nature of scalar nonlinear difference equations see for example, [1, 2], [4]-[9] and references therein.

Our aim in this note is to confirm Conjecture 1. Also, we show that the positive solutions of Eq.(1) converge to the corresponding periodic-two solutions geometrically and we look for their asymptotics.

2 Main results

In this section we prove the main results in this note.
Theorem 1 Consider the difference Eq.(1) where $p \in(0,1)$ and initial conditions x_{-1}, x_{0} are positive real numbers. Then every positive solution of Eq.(1) converges to a, not necessarily prime, periodic-two solution $\left(\rho_{0}, \rho_{1}\right)$, such that $p+\rho_{0}+\rho_{1}=1$. If $p+x_{0}+x_{-1}>1$ the sequences $x_{2 n+i},(i=1,2)$ are decreasing, if $p+x_{0}+x_{-1}<1$ the sequences $x_{2 n+i},(i=1,2)$ are increasing, and if $p+x_{0}+x_{-1}=1$ the sequence x_{n} is a periodic-two solution of Eq.(1).

Proof: By the change of variables $x_{n}=\frac{1}{z_{n}}$, Eq.(1) becomes

$$
\begin{equation*}
z_{n+1}=\frac{z_{n}+z_{n-1}+p z_{n} z_{n-1}}{z_{n}} \tag{2}
\end{equation*}
$$

From (2) we have

$$
\begin{aligned}
z_{n+1}-z_{n-1} & =\frac{z_{n}+z_{n-1}+p z_{n} z_{n-1}-z_{n} z_{n-1}}{z_{n}} \\
& =\frac{z_{n}+z_{n-1}+p z_{n} z_{n-1}-z_{n-1}-z_{n-2}-p z_{n-1} z_{n-2}}{z_{n}} \\
& =\frac{\left(p z_{n-1}+1\right)\left(z_{n}-z_{n-2}\right)}{z_{n}}
\end{aligned}
$$

and consequently

$$
\begin{equation*}
z_{n+1}-z_{n-1}=\left(z_{1}-z_{-1}\right) \prod_{i=1}^{n} \frac{p z_{i-1}+1}{z_{i}} \tag{3}
\end{equation*}
$$

From (3) we obtain that the signum of $z_{n+1}-z_{n-1}$ remains invariant for $n \in \mathbf{N}$ and that the sequences $\left(z_{2 n+i}\right), i=0,1$, are nondecreasing or nonincreasing at the same time which implies that the sequences $\left(x_{2 n+i}\right), i=0,1$, are nonincreasing or nondecreasing at the same time. Since

$$
z_{1}-z_{-1}=\frac{p+x_{0}+x_{-1}-1}{x_{-1}}
$$

we see from (3) that if $p+x_{0}+x_{-1}<1$, then the sequences $\left(x_{2 n+i}\right), i=0,1$ are increasing, if $p+x_{0}+x_{-1}>1$, the sequences $\left(x_{2 n+i}\right), i=0,1$ are decreasing and if $p+x_{0}+x_{-1}=1$, then $\left(x_{-1}, x_{0}, x_{-1}, x_{0}, \ldots\right)$ is a periodic-two solution of Eq.(1).

First suppose that the sequences $\left(x_{2 n+i}\right), i=0,1$ are decreasing, that is $p+x_{0}+x_{-1}>1$. Then there are finite limits

$$
\lim _{n \rightarrow \infty} x_{2 n+i}=\rho_{i}, \quad i=0,1
$$

It is clear that $\left(\rho_{0}, \rho_{1}\right)$ is a two cycle of Eq.(1). Suppose that both of them are equal to zero. Since $\left(x_{2 n+i}\right), i=0,1$ are decreasing from (1) we obtain

$$
\begin{equation*}
p+x_{n-1}+x_{n}>1, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (4) we obtain $p \geq 1$ which is a contradiction. Hence $\left(\rho_{0}, \rho_{1}\right) \neq(0,0)$ and as we mentioned above it is a two cycle of Eq.(1).

Without loss of generality we may assume that $\rho_{1} \neq 0$. Then letting $n \rightarrow \infty$ in the equation

$$
x_{2 n+1}=\frac{x_{2 n-1}}{p+x_{2 n-1}+x_{2 n}}
$$

we obtain the equality $p+\rho_{0}+\rho_{1}=1$.
Now suppose that the sequences $\left(x_{2 n+i}\right), i=0,1$ are increasing, that is $p+x_{0}+x_{-1}<1$. Then there are finite or infinite limits

$$
\lim _{n \rightarrow \infty} x_{2 n+i}=\rho_{i}, i=0,1
$$

By a result of L. Berg [2, p. 1070] all solutions of Eq.(1) are bounded, hence $\rho_{i}<\infty, i=0,1$. On the other hand, since $\left(x_{2 n+i}\right), i=0,1$ are increasing $\rho_{0}>x_{0}>0$ and $\rho_{1}>x_{1}>0$. Similarly as above we obtain that (ρ_{0}, ρ_{1}) is a two cycle of Eq.(1) and $p+\rho_{0}+\rho_{1}=1$.

Finally, for the initial conditions $x_{-1}=x_{0}=(1-p) / 2$, we have $x_{n}=(1-p) / 2, n \geq-1$, which shows that there is a solution which converges to a not prime period-two solution.

Remark 1 Note that the condition $p+x_{0}+x_{-1}>1$, (e.g. condition (4) for $n=0$) implies (4) for all greater n, that is, for $n \geq 1$, moreover the sequence $u_{n}=p+x_{n-1}+x_{n}$ is also decreasing.

Also, the condition $p+x_{0}+x_{-1}<1$ and (1) imply that the sequence $u_{n}=p+x_{n-1}+x_{n}$ is increasing and

$$
p+x_{n-1}+x_{n}<1, \quad n=0,1, \ldots
$$

From this and by Theorem 1 it follows that the distance from the point $\left(x_{n-1}, x_{n}\right)$ to the limit line $p+x+y=1$, i.e.,

$$
d_{n}=\frac{p+x_{n}+x_{n-1}-1}{\sqrt{2}}
$$

also converges monotonously to zero (we use here Hesse's normal form).
For the readers who are interested in this area we leave the following open problem.

Open Problem 1 Let

$$
\ldots, \rho_{0}, 1-p-\rho_{0}, \rho_{0}, 1-p-\rho_{0}, \ldots
$$

be a positive two cycle of Eq.(1). Find the basin of attraction of this two cycle.

The following result gives an estimation of the convergence rate of the positive solutions of Eq.(1).

Theorem 2 Every positive solution of Eq.(1) converges to the corresponding periodictwo solution $\left(\rho_{0}, \rho_{1}\right)$ geometrically, that is, there is an $M>0$ and $q \in(0,1)$ such that

$$
\left|x_{2 n}-\rho_{0}\right|+\left|x_{2 n+1}-\rho_{1}\right| \leq M q^{2 n}, \quad n \geq 0 .
$$

Proof: As we have seen in the proof of Theorem 1, using the change $x_{n}=\frac{1}{z_{n}}$ we obtain

$$
z_{n+1}-z_{n-1}=\frac{\left(p z_{n-1}+1\right)\left(z_{n}-z_{n-2}\right)}{z_{n}}
$$

If we go back to the sequence x_{n} we have

$$
\frac{p+x_{n}+x_{n-1}-1}{x_{n-1}}=\frac{p+x_{n-1}}{x_{n-1}} x_{n} \frac{p+x_{n-1}+x_{n-2}-1}{x_{n-2}}
$$

that is,

$$
d_{n}=\left(p+x_{n-1}\right) \frac{x_{n}}{x_{n-2}} d_{n-1},
$$

where $d_{n}=\frac{p+x_{n}+x_{n-1}-1}{\sqrt{2}}$, and consequently

$$
\begin{equation*}
d_{n}=\left(p+x_{n-1}\right) \frac{x_{n}}{x_{n-2}}\left(p+x_{n-2}\right) \frac{x_{n-1}}{x_{n-3}} d_{n-2} . \tag{5}
\end{equation*}
$$

Let $\varepsilon \in\left(0,\left(1-(1+p)^{2} / 4\right)\right)$. Since the sequences $\left(x_{2 n+i}\right), i=0,1$, are convergent, from (5) we have that for such chosen ε there is an $n_{0} \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|d_{n}\right| \leq\left(\left(p+\rho_{0}\right)\left(1-\rho_{0}\right)+\varepsilon\right)\left|d_{n-2}\right| \leq\left(\left(\frac{1+p}{2}\right)^{2}+\varepsilon\right)\left|d_{n-2}\right| \tag{6}
\end{equation*}
$$

for every $n \geq n_{0}$.
In view of the choice of ε we see that $r=\left(\frac{1+p}{2}\right)^{2}+\varepsilon<1$. From this and (6), using the following equality

$$
\left|d_{2 n+1}\right|=\frac{\left|x_{2 n+1}-\rho_{1}+x_{2 n}-\rho_{0}\right|}{\sqrt{2}}=\frac{\left|x_{2 n+1}-\rho_{1}\right|+\left|x_{2 n}-\rho_{0}\right|}{\sqrt{2}}
$$

we see that for $q=\sqrt{r}$ we can obtain the result easily. Note that in the last equality we have used the fact that the sequences $x_{2 n+i}, i=0,1$, converge monotonously to $\rho_{i}, i=0,1$.

Corollary 1 The distance d_{n} from the point $\left(x_{n-1}, x_{n}\right)$ to the limit line $p+x+y=1$, converges to zero monotonously and geometrically.

3 The case of nonnegative solutions of Eq.(1)

If $x_{-1}=0$ or $x_{0}=0$, from (1) we obtain $x_{2 n-1}=0$ or $x_{2 n}=0$, for all $n \geq 0$. Further, if $x_{-1}=0$ then Eq.(1) becomes

$$
x_{2 n}=\frac{x_{2 n-2}}{p+x_{2 n-2}} .
$$

This is a Riccati equation (see $\left[1\right.$, Section 1.6]) for $x_{2 n}$ with the elementary solution

$$
\begin{equation*}
x_{2 n}=\frac{x_{0}(1-p)}{x_{0}+\left(1-p-x_{0}\right) p^{n}}, \quad n \geq 0 \tag{7}
\end{equation*}
$$

From (7) we see that $\lim _{n \rightarrow \infty} x_{2 n}=1-p$, so far as x_{0} is different from 0 . Similarly we can treat the case $x_{0}=0, x_{-1} \neq 0$. The case $x_{0}=x_{-1}=0$ yields the constant solution $x_{n}=0$ for all $n \geq-1$.

We believe that only these solutions satisfy the condition $\rho_{0} \rho_{1}=0$, where as before $\rho_{i}, i=0,1$ denote the limits $\lim _{n \rightarrow \infty} x_{2 n+i}$. Hence we leave the following conjecture:

Conjecture 1 ([3]) For positive initial values x_{-1} and x_{0} there are no solutions of Eq.(1) such that $\rho_{0} \rho_{1}=0$.

4 Asymptotically two-periodic solutions

Theorem 2 motivated us to study the asymptotics of the solutions of Eq.(1), as well as the corresponding ones for the sequence d_{n}.

Let $u_{n}=x_{2 n-1}$ and $v_{n}=x_{2 n}$, then (1) can be written as the following system

$$
\begin{gather*}
u_{n+1}=\frac{u_{n}}{p+u_{n}+v_{n}} \\
v_{n+1}=\frac{v_{n}}{p+u_{n+1}+v_{n}} . \tag{8}
\end{gather*}
$$

We expect that the asymptotically two-periodic solutions have the following form (see [2, p.1066])

$$
\begin{equation*}
u_{n}=\rho+\sum_{k=1}^{\infty} a_{k} c^{k} t^{n k}, \quad \text { and } \quad v_{n}=1-\rho-p+\sum_{k=1}^{\infty} b_{k} c^{k} t^{n k}, \tag{9}
\end{equation*}
$$

where $t \in(0,1)$ is unknown and c an arbitrary real number.
Substituting (9) into system (8) and comparing the coefficients we obtain

$$
a_{1} t^{n}=a_{1} t^{n+1}+\rho\left(a_{1}+b_{1}\right) t^{n}, \quad \text { and } \quad b_{1} t^{n}=b_{1} t^{n+1}+(1-\rho-p)\left(a_{1} t^{n+1}+b_{1} t^{n}\right)
$$

which implies

$$
\begin{equation*}
(1-t-\rho) a_{1}=\rho b_{1}, \quad \text { and } \quad t(1-\rho-p) a_{1}=(\rho+p-t) b_{1} . \tag{10}
\end{equation*}
$$

This system has a nontrivial solution a_{1}, b_{1} if and only if its determinant vanishes, i.e

$$
\begin{equation*}
t^{2}-(1+p+\rho(1-\rho-p)) t+(1-\rho)(\rho+p)=0 \tag{11}
\end{equation*}
$$

The only solution of (11) with t contained in $(0,1)$ is $t=(1-\rho)(\rho+p)$ and the corresponding solution of system (10) is $a_{1}=\rho, b_{1}=(1-\rho)(1-\rho-p)$ up to a constant factor c which already appears in the series (9). Therefore

$$
\begin{equation*}
u_{n}=\rho+\rho c t^{n}+\mathcal{O}\left(t^{2 n}\right), \quad \text { and } \quad v_{n}=1-\rho-p+(1-\rho)(1-\rho-p) c t^{n}+\mathcal{O}\left(t^{2 n}\right) \tag{12}
\end{equation*}
$$

The asymptotic formulas (12) for u_{n} and v_{n} remain valid in the limit cases $\rho=0$ and $\rho=1-p$, with $t=p$, where they express the asymptotic behaviour of the explicitly known solutions with one vanishing initial value (see Section 3). Note that the asymptotic formulas (12) can also be obtained in the case $u_{n}=x_{2 n}$ and $v_{n}=x_{2 n+1}$. We leave the following conjecture:

Conjecture 2 Let $p \in(0,1)$ and $\left(x_{n}\right)$ be a nonnegative solution of Eq.(1) such that $\left(x_{2 n-1}, x_{2 n}\right) \rightarrow(\rho, 1-\rho-p)$, as $n \rightarrow \infty$. Then
(a) $x_{2 n-1}=\rho+\rho c t^{n}+\mathcal{O}\left(t^{2 n}\right)$;
(b) $x_{2 n}=1-\rho-p+(1-\rho)(1-\rho-p) c t^{n}+\mathcal{O}\left(t^{2 n}\right)$;
where $t=(1-\rho)(\rho+p)$ and the constant c depends on initial values x_{-1} and x_{0}.
If this conjecture is true, then it follows:
Corollary 2 Let $p \in(0,1)$ and $\left(x_{n}\right)$ be a nonnegative solution of Eq.(1) such that $\left(x_{2 n-1}, x_{2 n}\right) \rightarrow(\rho, 1-\rho-p)$, as $n \rightarrow \infty$. Then the distance d_{n} from the point $\left(x_{n-1}, x_{n}\right)$ to the limit line $p+x+y=1$, has the following asymptotics

$$
d_{n}=\frac{c}{\sqrt{2}} e_{n}(1-t)(\sqrt{t})^{n}+\mathcal{O}\left(t^{n}\right)
$$

where $t=(1-\rho)(\rho+p), e_{2 n}=1, e_{2 n+1}=1-\rho$, for $n \geq 0$, and the constant c depends on initial values x_{-1} and x_{0}.

Acknowledgement I would like to express my sincere thanks to Professor Lothar Berg for his helpful suggestions and comments.

References

[1] Kulenović, M. R.S., and Ladas, G. : Dynamics of Second Order Rational Difference Equations. Chapman \& Hall/CRC, (2001)
[2] Berg, L. : On the asymptotics of nonlinear difference equations. Z. Anal. Anwendungen 21, No.4, 1061-1074 (2002)
[3] Berg, L. : Private communication from April 15, 2004
[4] Stević, S. : On the recursive sequence $x_{n+1}=-\frac{1}{x_{n}}+\frac{A}{x_{n-1}}$. Int. J. Math. Math. Sci. 27 (1), 1-6 (2001)
[5] Stević, S. : A global convergence results with applications to periodic solutions. Indian J. Pure Appl. Math. 33 (1), 45-53 (2002)
[6] Stević, S. : On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$. Taiwanese J. Math. 6 (3), 405-414 (2002)
[7] Stević, S. : On the recursive sequence $x_{n+1}=g\left(x_{n}, x_{n-1}\right) /\left(A+x_{n}\right)$. Appl. Math. Lett. 15, 305-308 (2002)
[8] Stević, S. : On the recursive sequence $x_{n+1}=A / \prod_{i=0}^{k} x_{n-i}+1 / \prod_{j=k+2}^{2(k+1)} x_{n-j}$. Taiwanese J. Math. 7 (2), 249-259 (2003)
[9] Stević, S. : On the recursive sequence $x_{n+1}=\alpha_{n}+\frac{x_{n-1}}{x_{n}}$ II. Dynam. Contin. Discrete Impuls. Systems 10 a), 911-917 (2003)
received: March 15, 2004

Author:

Stevo Stević
Mathematical Institute of Serbian Academy of Science
Knez Mihailova 35/I
11000 Beograd
Serbia
e-mail: sstevic@ptt.yu
e-mail: sstevo@matf.bg.ac.yu
H. M. El-Owaidy; A. M. Youssef; and A. M. Ahmed

On the Dynamics of $x_{n+1}=\left(b x_{n-1}^{2}\right)\left(A+B x_{n-2}\right)^{-1}$

ABSTRACT. We investigate the boundedness, the global stability, and the periodic nature of the nonnegative solutions of the equation in the title with nonnegative parameters KEY WORDS AND PHRASES. difference equations, boundedness, global asymptotic stability, semi-cycles

1 Introduction and Preliminaries

In this paper we consider the third order nonlinear rational difference equation

$$
\begin{equation*}
x_{n+1}=\frac{b x_{n-1}^{2}}{A+B x_{n-2}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where the parameters A, B, and b and the initial conditions x_{-2}, x_{-1} and x_{0} are arbitrary non-negative real numbers. We investigate the boundedness, the global stability and the periodic nature of the solutions of the Eq. (1).

Recently there has been a great interest in studying rational [1, 2, 5, 7] and nonrational nonlinear difference equations $[3,5,8,9,10,11,12]$, see also the references therein. Some of the results recently obtained in this field can be applied in studying some mathematical biology models, population dynamic etc., see [3, 4, 12].

Consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, x_{n-2}\right) \tag{2}
\end{equation*}
$$

with $x_{-2}, x_{-1}, x_{0} \in I$ (where I is some interval of real numbers).
The linearized equation of Eq. (2) about an equilibrium \bar{x} is the linear difference equation

$$
\begin{equation*}
y_{n+1}=c_{1} y_{n}+c_{2} y_{n-1}+c_{3} y_{n-2}, \quad n=0,1, \ldots \tag{3}
\end{equation*}
$$

where

$$
c_{1}=\frac{\partial f}{\partial x}(\bar{x}, \bar{x}, \bar{x}), \quad c_{2}=\frac{\partial f}{\partial y}(\bar{x}, \bar{x}, \bar{x}), \quad c_{2}=\frac{\partial f}{\partial z}(\bar{x}, \bar{x}, \bar{x})
$$

The characteristic equation of Eq. (3) is

$$
\begin{equation*}
\lambda^{3}-c_{1} \lambda^{2}-c_{2} \lambda-c_{3}=0 \tag{4}
\end{equation*}
$$

Theorem A ([6, Theorem 1]) (Linearized Stability Theorem) The following statements are true.
a) If all roots of Eq. (4) have modulus less than one, then the equilibrium \bar{x} of Eq. (2) is locally asymptotically stable.
b) If at least one of the roots of Eq. (4) has modulus greater than one, then the equilibrium \bar{x} of Eq. (2) is unstable.

A necessary and sufficient condition for all roots of Eq. (4) to have modulus less than one is the following:

$$
\left|c_{1}+c_{3}\right|<1-c_{2}, \quad\left|c_{1}-3 c_{3}\right|<3+c_{2}, \quad \text { and } \quad c_{3}^{2}-c_{2}-c_{1} c_{3}<1
$$

In this case, the locally asymptotically stable equilibrium \bar{x} is called a sink.
The equilibrium \bar{x} of Eq. (2) is called a saddle point if there exits a root of Eq. (4) with absolute value less than one and a root of Eq. (4) with absolute value greater than one. In particular a saddle point equilibrium is unstable.

2 The case $A B=0$

In this section we shortly discuss the case when one of the parameters in the Eq. (1) is zero, where we have the following two nontrivial cases:

$$
\begin{align*}
x_{n+1}=\frac{b x_{n-1}^{2}}{B x_{n-2}}, \quad n=0,1, \ldots \tag{5}\\
x_{n+1}=\frac{b}{A} x_{n-1}^{2}, \quad n=0,1, \ldots \tag{6}
\end{align*}
$$

In each of the above equations we assume that all parameters in the equations are positive. Equations (5) and (6) are nonlinear third and second order respectively, and the change of variables $x_{n}=e^{y_{n}}$ reduce the equations (5) and (6) to a third and second order linear difference equation respectively, which can be solved. The details we leave to the reader.

On the Dynamics of $x_{n+1}=\left(b x_{n-1}^{2}\right)\left(A+B x_{n-2}\right)^{-1}$

3 Main Results

In this section we investigate the dynamics of Eq. (1) under the assumption that all parameters in Eq. (1) are positive and the initial conditions are nonnegative.
The change of variables $x_{n}=\frac{A}{B} y_{n}$ reduces Eq. (1) to the difference equation

$$
\begin{equation*}
y_{n+1}=\frac{r y_{n-1}^{2}}{1+y_{n-2}}, \quad n=0,1, \ldots \tag{7}
\end{equation*}
$$

where $r=\frac{b}{B}$.
It is easy to see that $\bar{y}_{1}=0$ is always an equilibrium point and when $r>1$ we have also a positive equilibrium point $\bar{y}_{2}=\frac{1}{r-1}$.

3.1 An Oscillation Result

Lemma 1 Assume that $r>1$ and let $\left\{y_{n}\right\}_{n=-2}^{\infty}$ be a solution of Eq. (7) such that either

$$
\begin{equation*}
y_{-2}, y_{0} \geq \overline{y_{2}} \quad \text { and } \quad y_{-1}<\bar{y}_{2} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{-2}, y_{0}<\overline{y_{2}} \quad \text { and } \quad y_{-1} \geq \overline{y_{2}} \tag{9}
\end{equation*}
$$

then $\left\{y_{n}\right\}_{n=-2}^{\infty}$ oscillates about \bar{y}_{2} with semi-cycle of length one.
Proof: We will assume that (8) holds. The case where (9) holds is similar and will be omitted. From (7) we obtain

$$
y_{1}=\frac{r y_{-1}}{1+y_{-2}}<\frac{r \bar{y}_{2}}{1+\bar{y}_{2}}=\bar{y}_{2} \quad \text { and } \quad y_{2}=\frac{r y_{0}}{1+y_{-1}}>\frac{r \bar{y}_{2}}{1+\bar{y}_{2}}=\bar{y}_{2} .
$$

Using induction the result follows.

3.2 Existence of Prime Period-Two Solutions

In this subsection, we show that Eq. (7) has prime period-two solutions.
Theorem 2 Eq. (7) has eventually nonnegative prime period-two solutions if and only if either

$$
\begin{equation*}
y_{-1}=0 \quad \text { and } \quad y_{0}=\frac{1}{r} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{0}=0 \quad \text { and } \quad \frac{y_{-1}^{2}}{1+y_{-2}}=\frac{1}{r^{2}}, \tag{11}
\end{equation*}
$$

the period-two solution must be in the form

$$
\begin{equation*}
\ldots, 0, \frac{1}{r}, 0, \frac{1}{r}, \ldots \tag{12}
\end{equation*}
$$

Proof: Assume that

$$
\ldots, \phi, \psi, \phi, \psi, \ldots
$$

is a nonnegative prime period-two solution of Eq. (7).
Then

$$
\begin{equation*}
\phi=\frac{r \phi^{2}}{1+\psi} \quad \text { and } \quad \psi=\frac{r \psi^{2}}{1+\phi} \tag{13}
\end{equation*}
$$

Hence $\phi-\psi=r\left(\phi^{2}-\psi^{2}\right)$, and consequently

$$
\begin{equation*}
\phi+\psi=\frac{1}{r} \tag{14}
\end{equation*}
$$

From Eqs.(13) and (14) we get the period-two solution in form (12). If $y_{2 k+1}=0$ for some $k \in \mathbf{N}$ then from (7), it follows that $y_{2 n-1}=0, n=0,1, \ldots, y_{2 n}=1 / r, n=1,2, \ldots$, and y_{-2} is arbitrary. If $y_{2 l}=0$ for some $l \in \mathbf{N}$, then $y_{2 n}=0, n=1,2, \ldots, y_{2 n-1}=1 / r, n=1,2, \ldots$, and $\frac{r y_{-1}^{2}}{1+y-2}=y_{1}=\frac{1}{r}$, as desired.

3.3 Local and Global Stability

As we have already noted $\bar{y}_{1}=0$ is always an equilibrium solution of Eq. (7). Furthermore when $r>1$, Eq. (7) also possesses the positive equilibrium $\bar{y}_{2}=\frac{1}{r-1}$.

Theorem 3 Consider Eq. (7). Then the following results hold:
(i) The zero equilibrium point is locally asymptotically stable.
(ii) Assume that $r>1$ then the equilibrium point $\bar{y}_{2}=\frac{1}{r-1}$ is unstable. In particular \bar{y}_{2} is a saddle point.

Proof: The linearized equation associated with Eq. (7) about $\bar{y}_{i}, i=1,2$, has the form

$$
z_{n+1}-\frac{2 r \bar{y}_{i}}{1+\bar{y}_{i}} z_{n-1}+\frac{r \bar{y}_{i}^{2}}{\left(1+\bar{y}_{i}\right)^{2}} z_{n-2}=0 \quad, \quad n=0,1, \ldots .
$$

So the linearized equation of Eq. (7) about $\bar{y}_{1}=0$ is $z_{n+1}=0, n=0,1, \ldots$, and the characteristic equation about $\bar{y}_{1}=0$ is $\lambda^{3}=0$ so proof of (i) follows immediately from Theorem A.

The linearized equation of Eq. (7) about $\bar{y}_{2}=\frac{1}{r-1}$ is $z_{n+1}=2 z_{n-1}-\frac{1}{r} z_{n-2}, \quad n=0,1, \ldots$, and the characteristic equation is

$$
\lambda^{3}-2 \lambda+\frac{1}{r}=0, \quad \text { with } \quad r>1 .
$$

Set

$$
\begin{equation*}
f(\lambda)=\lambda^{3}-2 \lambda+\frac{1}{r} \tag{15}
\end{equation*}
$$

On the Dynamics of $x_{n+1}=\left(b x_{n-1}^{2}\right)\left(A+B x_{n-2}\right)^{-1}$
Then $f(1)=-1+\frac{1}{r}<0$ and $\lim _{\lambda \rightarrow+\infty} f(\lambda)=+\infty$, so $f(\lambda)$ has at least a zero in $(1, \infty)$ and the product of the moduli of the zeros of the function f is $\frac{1}{r}<1$, hence there exists a root in the unit disk. This completes the proof.
Theorem 4 The zero equilibrium point of Eq. (7) is globally asymptotically stable relative to the set

$$
\begin{equation*}
S=[0, \infty) \times[0,1 / r]^{2} \backslash A \tag{16}
\end{equation*}
$$

where

$$
A=\left\{(x, y, z) \mid(y, z)=(0,1 / r) \quad \text { or } \quad\left(y^{2} /(1+x), z\right)=\left(1 / r^{2}, 0\right)\right\}
$$

with $\left(y_{-2}, y_{-1}, y_{0}\right) \in S$.
Proof: By Theorem 3 we know that $\bar{y}_{1}=0$ is locally asymptotically stable equilibrium point of Eq. (7), and so it suffices to show that $\bar{y}_{1}=0$ is a global attractor of Eq. (7) relative to S. So let $\left\{y_{n}\right\}_{n=-2}^{\infty}$ be a solution of Eq. (7), such that $\left(y_{-2}, y_{-1}, y_{0}\right) \in S$. We show that $\lim _{n \rightarrow \infty} y_{n}=0$. We have

$$
\begin{aligned}
y_{1} & =\frac{r y_{-1}^{2}}{1+y_{-2}} \leq r y_{-1}^{2} \leq y_{-1} \leq \frac{1}{r} \\
y_{2} & =\frac{r y_{0}^{2}}{1+y_{-1}} \leq r y_{0}^{2} \leq y_{0} \leq \frac{1}{r} .
\end{aligned}
$$

By induction we obtain

$$
0 \leq y_{n+1}=\frac{r y_{n-1}^{2}}{1+y_{n+2}} \leq r y_{n-1}^{2} \leq y_{n-1} \leq \frac{1}{r}, \quad n=0,1, \ldots
$$

that is, $0 \leq y_{n} \leq \frac{1}{r}, n=-1,0,1, \ldots$, and $\left\{y_{2 n}\right\}_{n=-1}^{\infty}$ and $\left\{y_{2 n-1}\right\}_{n=0}^{\infty}$ are non-increasing and bounded. Hence, there are finite limits

$$
\lim _{n \rightarrow \infty} y_{2 n}=M \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{2 n-1}=L
$$

moreover, in view of (16), we have

$$
\begin{equation*}
M, L \in[0,1 / r) \tag{17}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (7) we obtain

$$
M=\frac{r M^{2}}{1+L} \quad \text { and } \quad L=\frac{r L^{2}}{1+M}
$$

Now, we want to prove that $M=L=0$. We consider the following cases:
(i) If $M=0$ and $L \neq 0$ then $L=\frac{1}{r}$, which is a contradiction to (17).
(ii) If $M \neq 0$ and $L=0$, then $M=\frac{1}{r}$, a contradiction.
(iii) If $M \neq 0$ and $L \neq 0$, then we have

$$
1+L=r M \quad \text { and } \quad 1+M=r L
$$

which implies $L-M=r(M-L)$. Hence $M=L=1 /(r-1)$, which is a contradiction. Thus $L=M=0$, as desired.

3.4 Existence of Unbounded Solutions

In this subsection we show that when $r>1$ Eq. (7) possesses unbounded solutions.
Theorem 5 Assume that $r>1$. Then Eq. (7) possesses unbounded solution. In particular, every solution of Eq. (7) which oscillate about the equilibrium $\bar{y}_{2}=\frac{1}{r-1}$ with semi-cycle of length one is unbounded.

Proof: We prove that every solution $\left\{y_{n}\right\}_{n=-2}^{\infty}$. of Eq. (7) which oscillates with semi-cycles of length one is unbounded (see Lemma 1 for the existence of such solutions). Let $r>1$ and without loss of generality that $\left\{y_{n}\right\}_{n=-2}^{\infty}$ is such that

$$
y_{2 n-1}<\bar{y}_{2} \quad \text { and } \quad y_{2 n}>\bar{y}_{2} \quad \text { for } n \geq 0
$$

Then

$$
y_{2 n+2}=\frac{r y_{2 n}^{2}}{1+y_{2 n-1}}>\frac{r y_{2 n}^{2}}{1+\frac{1}{r-1}}=(r-1) y_{2 n}^{2}>y_{2 n} .
$$

and

$$
y_{2 n+3}=\frac{r y_{2 n+1}^{2}}{1+y_{2 n-2}}<\frac{r y_{2 n+1}^{2}}{1+\frac{1}{r-1}}=(r-1) y_{2 n+1}^{2}<y_{2 n+1}
$$

from which it follows that there are $\lim _{n \rightarrow \infty} y_{2 n}=M$ and $\lim _{n \rightarrow \infty} y_{2 n+1}=m \in\left[0, \bar{y}_{2}\right)$. If $M=\infty$, there is nothing to prove. Hence, assume that $M<\infty$. As in the proof of Theorem 3 we can see that $m \neq 0$ and $M<\infty$ is impossible. If $m=0$ and $M<\infty$ then $M=\frac{1}{r}<\frac{1}{r-1}=\bar{y}_{2}$, a contradiction. Hence $M=\infty$, from which the result follows.

Acknowledgement We would like to express our sincere thanks to Professor Lothar Berg and Professor Stevo Stević for their helpful suggestions and comments, which improved the paper.

References

[1] Amleh, A. M., Ladas, G., and Kirk, V. : On the Dynamics of $x_{n+1}=\frac{a+b x_{n-1}}{A+B x_{n-2}}$. Math. Sci. Res. Hot-Line 5, 1-15 (2002)
[2] Berg, L. : On the asymptotics of nonlinear difference equations. Z. Anal. Anwendungen 21, No.4, 1061-1074 (2002)
[3] Cushing, J. M., and Kuang, Y. : Global stability in a nonlinear difference delay equation model of flour beetle population growth. J. Differ. Equations Appl. 2, 31-37 (1996)
[4] Grove, E. A., Kent, C. M., Ladas, G., and Valicenti, S. : Global stability in some population models. Proceedings of the Fourth International Conference on Difference Equations and ApplicationsAugust 27-31, 1998, Poznan, Poland, Gordon and Breach, Amsterdam, 149-176 (2000)
[5] Kocic, V.L., and Ladas, G. : Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic publisher, Dordyecht 1993
[6] Kalubušić, S., and Kulenović, M.R.S. : Asymptotic behavior of certain third order rational difference equations. Rad. Mat 11, 79-101 (2002)
[7] Kulenović, M. R. S., and Ladas, G. : Dynamics of Second Order Rational Difference Equations. CHAPMAN \& HALL/CRC 2002
[8] Stević, S. : A generalization of the Copson's theorem concerning sequences which satisfy a linear inequality. Indian J. Math. 43 (3), 277-282 (2001)
[9] Stević, S. : On the recursive sequence $x_{n+1}=g\left(x_{n}, x_{n-1}\right) /\left(A+x_{n}\right)$,. Appl. Math. Lett. 15, 305-308 (2002)
[10] Stević, S. : On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$.. Taiwanese J. Math. 6 (3), 405-414 (2002)
[11] Stević, S. : On the recursive sequence $x_{n+1}=\frac{\alpha+\beta x_{n-1}}{1+g\left(x_{n}\right)}$. Indian J. Pure Appl. Math. 33 (12), 1767-1774 (2002)
[12] Stević, S. : Asymptotic behaviour of a nonlinear difference equation. Indian J. Pure Appl. Math. 34 (12), 1681-1689 (2003)
received: June 24, 2004

Authors:

H.M El-Owaidy	A.M. Youssef
Mathematics Department	Mathematics Department
Faculty of Science	Faculty of Science
Al-Azhar University	Al-Azhar University
Nasr City	Nasr City
Cairo 11884	Cairo 11884
Egypt	Egypt
	e-mail: amr_youssef@hotmail.com

A.M. Ahmed

Mathematics Department
Faculty of Science
Al-Azhar University
Nasr City
Cairo 11884
Egypt
e-mail: ahmedelkb@yahoo.com

On the dual König property of the order-interval hypergraph of a new class of poset

Abstract

Let P be a finite poset. We consider the hypergraph $\mathcal{H}(P)$ whose vertices are the elements of P and whose edges are the maximal intervals of P. It is known that $\mathcal{H}(P)$ has the König and dual König properties for the class of series-parallel posets. Here we introduce a new class which contains series-parallel posets and for which the dual König property is satisfied. For the class of N -free posets, again a generalization of series-parallel posets, we give a counterexample to see that the König property is not satisfied.

1 Introduction

Let P be a finite poset. A subset I of P of the form $I=\{v \in P: p \leq v \leq q\}$ (denoted $[p, q]$) is called an interval. It is maximal if p (resp. q) is a minimal (resp. maximal) element of P. Denote by $\mathcal{I}(P)$ the family of maximal intervals of P. The hypergraph $\mathcal{H}(P)=(P, \mathcal{I}(P))$, briefly denoted $\mathcal{H}=(P, \mathcal{I})$, whose vertices are the elements of P and whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P. The line-graph $L(\mathcal{H})$ of \mathcal{H} is a graph whose vertices are points e_{1}, \ldots, e_{m} representing the edges I_{1}, \ldots, I_{m} of \mathcal{H}, the vertices e_{i}, e_{j} being adjacent iff $I_{i} \cap I_{j} \neq \emptyset$. The dual \mathcal{H}^{*} of the order-interval hypergraph \mathcal{H} is a hypergraph whose vertices e_{1}, \ldots, e_{m} correspond to intervals of P and whose edges are $X_{i}=\left\{e_{j}: x_{i} \in I_{j}\right\}$.

Let α, ν, τ and ρ be the independence, matching, edge-covering and vertex-covering number of a hypergraph \mathcal{H}, respectively. \mathcal{H} has the König property if $\nu(\mathcal{H})=\tau(\mathcal{H})$ and it has the dual König property if $\nu\left(\mathcal{H}^{*}\right)=\tau\left(\mathcal{H}^{*}\right)$, i.e $\alpha(\mathcal{H})=\rho(\mathcal{H})$ since $\alpha(\mathcal{H})=\nu\left(\mathcal{H}^{*}\right)$ and $\rho(\mathcal{H})=\tau\left(\mathcal{H}^{*}\right)$. This class of hypergraphs has been studied intensively in the past and one finds interesting results from an algorithmic point of view as well as min-max relations [2]-[6], [9].

[^0]A poset P is said to be a series-parallel poset, if it can be constructed from singletons using only two operations: disjoint sum and linear sum. It may be characterized by the fact that it does not contain the poset N of Figure 3 as an induced subposet [13], [14].

Let P be a finite poset. The graph $G_{P}=\left(P, E_{P}\right)$, with $x y \in E_{P}$ if $x<y$ or $y<x$ is the comparability graph of the poset $P . G=(V, E)$ is a comparability graph if there is a poset P such that $G \sim G_{P}$.

It is known that the cographs, i.e. graphs without an induced path of length 4 , are comparability graphs of series-parallel posets [7]. The cographs belong to the class of distancehereditary graphs, which has been studied in graph theory [7]. A possible definition of a distance-hereditary graph is as follows: G is a distance-hereditary graph iff G has no induced gem, house, hole (cycle of length at least 4) and domino (see Figure 1).

house

hole

domino

Figure 1

We investigate a class of posets that contains the series-parallel posets and whose members have comparability graphs which are distance-hereditary graphs or generalizations of them. A poset P is in the class \mathcal{Q} (resp. \mathcal{Q}^{\prime}) if it has no induced subposet isomorphic to P_{1}, P_{2}, P_{3} (resp. $P_{1}, P_{2}, P_{3}, P_{4}$) of Figure 2 and their duals, where P_{3} has n vertices, $n \geq 6$. Obviously the class \mathcal{Q}^{\prime} is included in \mathcal{Q}. We prove that if P is in \mathcal{Q}, then $\mathcal{H}(P)$ has the dual König property.

Figure 2

We characterize the comparability graphs of the class of posets in \mathcal{Q}^{\prime} in terms of four forbidden subgraphs.

Proposition 1 Let G be the comparability graph of the poset P. Then G contains no induced gem, house, domino and even hole if and only if $P \in \mathcal{Q}^{\prime}$.

Proof: We prove this result in four steps.
Step 1. The graph G contains no induced gem if and only if P contains neither P_{1} nor P_{1}^{*} as an induced subposet. Indeed, assume that P has an induced P_{1} (resp. P_{1}^{*}) and let x, y, z, t, u be the elements of P_{1} such that $x<y<z>t>x$ and $t<u$ (resp. $t>u$). We immediately deduce a gem with edges $x y, x z, x t, x u, y z, z t$ and $t u$ (resp. $z y, z x, z t, z u$, $y x, x t$ and $t u$) of G. Conversely, suppose that the graph G has an induced gem whose edges are $x y, x z, x t, x u, y z, z t$ and $t u$. The subgraph of G induced by $\{x, y, z\}$ (resp. $\{x, z, t\}$) is a triangle, hence x, y, z (resp. $x, z, t)$ form a chain of P. As $y t \notin E$, we obtain only six possibilities: $z<y<x>t>z$ or $x<y<z>t>x$ or $y, t<z<x$ or $t, y<x<z$ or $x<z<y, t$ or $z<x<y, t$. In virtue of the existence of the triangle induced by $\{x, u, t\}$, we infer that the first case gives $z<y<x>t>u, z$, the second $z>y>x<t<z, u$, the third $t<u<x>z>t, y$, the fifth $t>u>x<z<y$, t, without another comparability relation, and the fourth and sixth lead to a contradiction. Hence, we have obtained in each case either P_{1} or P_{1}^{*}.

Step 2. The graph G contains no induced house if and only if P contains no P_{2} as an induced subposet. Indeed, assume that P has an induced P_{2} and let x, y, z, t, u be the elements of P_{2} such that $x<y<z>t<u>x$. We immediately deduce a house with edges $x y, y z, x z, z t$, $t u$ and $u x$ of G. Conversely, suppose that G has an induced house whose edges are $x y, y z$, $x z, z t, t u$ and $u x$. Since $x y \in E$, the elements x and y are comparable. First, assume that $x<y$. As $y z \in E$, we have $y<z$ or $z<y$. In fact $z<y$ leads to a contradiction. To see this, note that if $z<y$ holds, then $z<x<y$ or $x<z<y$. In the first case, from $u x \in E$, we deduce $u>x$, i.e. $u>z$, or $u<x$, i.e. $u<y$, both impossible since $u z$ and $u y$ are not edges of E. In the second case, $z t \in E$ implies $z<t$, i.e., $x<t$ or $z>t$, i.e. $t<y$, both impossible since $x t$ and $t y$ are not edges of E. Hence $z<y$ is impossible. From $t z \in E$ and $y t \notin E$, we obtain $x<y<z>t$ and these are the only comparability relations. As $t u \in E$ and $u z \notin E$, we deduce $t<u$. Finally, the only possibility for the relation between x and u is $x<u$. Hence, P_{2} is obtained as an induced subposet. Adopting the same argument for $y<x$, we obtain P_{2} as an induced subposet with the ordering $y<x<z>t<u>y$.

Step 3. It is easy to see that G contains no induced even hole if and only if P does not contain a P_{3} as an induced subposet.

Step 4. The graph G contains no induced domino if and only if P contains no P_{4} as an induced subposet. Indeed, assume that P has an induced P_{4} and let x, y, z, t, u, v be elements of P_{4} such that $x<t, u$ and $y<t, u, v$ and $z<u, v$. We immediately deduce a domino with edges $x t, t y, y v, v z, z u, u x$ and $u y$ of G. Conversely, suppose that G has an induced domino
whose edges are $x t, t y, y v, v z, z u, u x$ and $u y$. Hence, $u x, u y, u z \in E$ and $x y, y z, x z \notin E$ lead to $x, y, z<u$ or $u<x, y, z$ with $x\|y, y\| z$ and $x \| z$. We consider only the first possibility because the other may be settled by duality. From $y t \in E$ (resp. $y v \in E$) and $u t \notin E$ (resp. $u v \notin E$), we obtain $y<t$ (resp. $y<v$). For the remaining edges $x t$ and $z v$, we have only the possibilities $x<t$ and $z<v$. Obviously, there are no other comparability relations between these elements.

By Proposition 1, the comparability graph of a poset in \mathcal{Q}^{\prime} is a distance-hereditary graph, because the comparability graph of any poset cannot contain an odd hole: Each transitive orientation of an odd hole contains two consecutive arcs $x y$ and $y z$ which imply the chord $x z$.

In order to prove the dual König property of $\mathcal{H}(P)$ when P is in the class \mathcal{Q}, let us introduce two observations. We recall that the vertices of the line-graph $L\left(\mathcal{H}^{*}(P)\right)$ are the points of P and two vertices are adjacent iff they belong to the same interval of P.

Observation 1 Assume that P has no induced subposet isomorphic to P_{1} and P_{1}^{*}. Let $u, v, w \in P$ with $u \| v$. If there exist two intervals I and I^{\prime} such that $u, v \in I$ and $v, w \in I^{\prime}$, then $u \in I^{\prime}$.

Proof: Let $I=[p, q]$ and $I^{\prime}=\left[p^{\prime}, q^{\prime}\right]$. If $u \notin I^{\prime}$, then $u \nless q^{\prime}$ or $p^{\prime} \nless u$. In the first case, the poset induced by $\left\{p, u, v, q, q^{\prime}\right\}$ and P_{1} are isomorphic. In the second case, the poset induced by $\left\{p, p^{\prime}, u, v, q\right\}$ and P_{1}^{*} are isomorphic, both impossible.

By Observation 1, one can say that the existence of two edges $u v$ and $v w$ of the line-graph $L\left(\mathcal{H}^{*}(P)\right)$ with the above mentioned properties enables us to affirm that $u w$ is an edge, too.

Observation 2 Assume that P has no induced subposet isomorphic to P_{1}, P_{1}^{*} and P_{3}. Let the 'zig zag' $u_{1}<u_{2}>u_{3}<\cdots>u_{i-1}<u_{i}$, be given by i elements of P, linking u_{1} to u_{i}, where i is even, $i \geq 6$. If u_{1} and u_{i} belong to the same interval of P, then there exists at least another comparability relation between u_{1}, \ldots, u_{i}, different from $u_{1}<u_{i}$ and $u_{i}<u_{1}$.

Proof: If $u_{1}>u_{i}$, then $u_{1}>u_{i-1}$. If $u_{1} \| u_{i}$, then from Observation $1, u_{i}, u_{2} \in I_{1}$, where I_{1} is the interval containing u_{1} and u_{2}. If $u_{1}<u_{i}$, then there exists at least another comparability relation between u_{1}, \ldots, u_{i}, different from $u_{1}<u_{i}$ and $u_{i}<u_{1}$, because otherwise the poset induced by $\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$ and P_{3} would be isomorphic.

Theorem 1 Let $\mathcal{H}(P)$ be the order-interval hypergraph of a poset P of the class \mathcal{Q}. Then the line-graph $L\left(\mathcal{H}^{*}(P)\right)$ is perfect.

Proof: It is enough to verify that the line-graph $L\left(\mathcal{H}^{*}(P)\right)$ is a Meyniel graph, i.e. each cycle of odd length at least 5 has at least two chords. Meyniel [11] proved the perfectness of Meyniel graphs.

Let $\mathcal{C}=\left(a_{1}, \ldots, a_{k}\right)$ be a cycle of odd length $k, k \geq 5$. Let us denote by $I_{i}=\left[p_{i}, q_{i}\right]$ the interval of P containing both a_{i} and a_{i+1} and by $I=[p, q]$ the interval of P containing both a_{1} and a_{k}.

Case 1. $a_{1} \| a_{2}$. From Observation 1, we have $a_{1} a_{3} \in I_{2}$ and $a_{2} a_{k} \in I$.
Case 2. $a_{1}<a_{2}$. We distinguish three subcases:
Case 2.1. $a_{2} \| a_{3}$. From Observation 1, we have $a_{1}, a_{3} \in I_{1}$ and $a_{2}, a_{4} \in I_{3}$.
Case 2.2. $a_{2}<a_{3}$. We immediately deduce the existence of the chord $a_{1} a_{3}$ of \mathcal{C}. Let us determine another chord.

Case 2.2.1. $a_{3}<a_{4}$ or $a_{3} \| a_{4}$. Then $a_{2} a_{4}$ is a chord of \mathcal{C}. Indeed, $a_{3}<a_{4}$ implies $a_{2}<a_{4}$ and from Observation 1, $a_{3} \| a_{4}$ leads to $a_{2}, a_{4} \in I_{2}$.

Case 2.2.2. $a_{3}>a_{4}$. Then $a_{3} a_{5}$ is a chord of \mathcal{C} if $a_{4}>a_{5}$ or $a_{4} \| a_{5}$. Indeed, $a_{4}>a_{5}$ implies $a_{3}>a_{5}$ and from Observation 1, $a_{4} \| a_{5}$ leads to $a_{3}, a_{5} \in I_{3}$.

Now let $a_{4}<a_{5}$. In the case $k=5$, we have three possibilities: If $a_{1}>a_{5}$ or $a_{1} \| a_{5}$, then $a_{2} a_{5}$ is a chord of \mathcal{C}. Indeed, $a_{1}>a_{5}$ implies $a_{2}>a_{5}$ and from Observation 1, $a_{1} \| a_{5}$ leads to $a_{2}, a_{5} \in I_{1}$. If $a_{1}<a_{5}$, then we must have another comparability relation between the elements $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, i.e. the existence of a new chord, because otherwise the poset induced by $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and P_{2} would be isomorphic. In the case $k>5$, consider the 'zig zag' $a_{1}<a_{3}>a_{4}<a_{5}>\cdots>a_{i-1}<a_{i}$ linking a_{1} to a_{i} where i is a maximum odd integer, $5 \leq i \leq k$. If $i=k$, i.e a_{1}, a_{i} are in the same interval of P, we use Observation 2 to affirm the existence of the second chord. If $i<k$, we have again three possibilities:

If $a_{i+1}>a_{i}$ or $a_{i+1} \| a_{i}$, then $a_{i-1} a_{i+1}$ is a chord of \mathcal{C}. Indeed, $a_{i}<a_{i+1}$ implies $a_{i+1}>a_{i-1}$ and from Observation 1, $a_{i} \| a_{i+1}$ leads to $a_{i-1}, a_{i+1} \in I_{i-1}$. If $a_{i+1}<a_{i}$, the cases $a_{i+1}>a_{i+2}$ and $a_{i+1} \| a_{i+2}$ give a new chord $a_{i} a_{i+2}$ since $a_{i+2}<a_{i+1}$ implies $a_{i+2}<a_{i}$ and from Observation 1, $a_{i+1} \| a_{i+2}$ implies $a_{i}, a_{i+2} \in I_{i}$.

Case 2.3. $a_{2}>a_{3}$. We distinguish three subcases:
Case 2.3.1. $a_{3} \| a_{4}$. From Observation $1, a_{2}, a_{4} \in I_{2}$ and $a_{3} a_{5} \in I_{4}$.
Case 2.3.2. $a_{3}>a_{4}$. Then $a_{2} a_{4}$ is a chord of \mathcal{C} since $a_{4}<a_{3}<a_{2}$. Now, if $a_{4}>a_{5}$ or $a_{4} \| a_{5}$, we deduce the chord $a_{3} a_{5}$ since $a_{4}>a_{5}$ implies $a_{3}>a_{5}$ and from Observation 1, $a_{4} \| a_{5}$ implies $a_{3}, a_{5} \in I_{3}$. If $a_{4}<a_{5}$, then the corresponding part of this case in Case 2.2.2. remains valid here by considering the 'zig zag' $a_{1}<a_{2}>a_{4}<a_{5}>\cdots>a_{i-1}<a_{i}$.

Case 2.3.3. $a_{3}<a_{4}$. If $a_{4}<a_{5}$, then $a_{3}<a_{5}$, i.e. $a_{3} a_{5}$ is a chord of \mathcal{C}. For obtaining the second chord, we continue as in Case 2.2.2 (from the same situation $a_{4}<a_{5}$). Here the 'zig zag' is $a_{1}<a_{2}>a_{3}<a_{5}>a_{6}<\cdots>a_{i-1}<a_{i}$. If $a_{4} \| a_{5}$, then from Observation 1, we have on the one hand $a_{3}, a_{5} \in I_{3}$. On the other hand $a_{1}, a_{4} \in I$ if $k=5$ and $a_{4}, a_{6} \in I_{5}$
otherwise. If $a_{4}>a_{5}$ and $k=5$, then either $a_{5}<a_{1}$ (resp. $a_{1}<a_{5}$) or $a_{1} \| a_{5}$. If $a_{5}<a_{1}$ (resp. $a_{1}<a_{5}$), not only $a_{5}<a_{2}$ (resp. $a_{1}<a_{4}$), i.e. $a_{2} a_{5}$ (resp. $a_{1} a_{4}$) is a chord of \mathcal{C} but again, it must exist another comparability relation between elements a_{1}, \ldots, a_{5} because otherwise, the poset induced by these elements and P_{2} would be isomorphic. If $a_{1} \| a_{5}$, we have by Observation $1, a_{2}, a_{5} \in I_{1}$ and $a_{1}, a_{4} \in I_{4}$, hence $a_{2} a_{5}$ and $a_{1} a_{4}$ are chords of \mathcal{C}.
If $a_{4}>a_{5}$ and $k>5$, consider the 'zig zag' $a_{1}<a_{2}>a_{3}<\cdots<a_{i-1}>a_{i}$, where i is a maximum odd integer, $5 \leq i<k$.
If $i=k$, we have either, $a_{1}>a_{i}$ (resp. $a_{1}<a_{i}$) or $a_{1} \| a_{i}$. If $a_{1}>a_{i}$ (resp. $a_{1}<a_{i}$), $a_{2} a_{i}$ (resp. $a_{1} a_{i-1}$) is a chord of \mathcal{C}. Moreover there exists another comparability relation between elements a_{2}, \ldots, a_{i} (resp. a_{1}, \ldots, a_{i-1}) because otherwise the poset induced by these elements and P_{3} would be isomorphic. If $a_{1} \| a_{i}$, by Observation $1, a_{1}, a_{i-1} \in I_{i-1}$ and $a_{2}, a_{i} \in I_{1}$. If $i<k$, we have three subcases:

Case 2.3.3.1. $a_{i+1} \| a_{i}$. Then from Observation $1, a_{i-1}, a_{i+1} \in I_{i-1}$ and $a_{i}, a_{i+2} \in I_{i+1}$.
Case 2.3.3.2. $a_{i+1}<a_{i}$. We immediately deduce $a_{i+1}<a_{i-1}$, i.e. the chord $a_{i-1} a_{i+1}$ of \mathcal{C}. If $a_{i+1}>a_{i+2}$, then $a_{i} a_{i+2}$ is a chord of \mathcal{C}. If $a_{i+1} \| a_{i+2}$, then from Observation $1, a_{i} a_{i+2} \in I_{i}$. If $a_{i+1}<a_{i+2}$, we continue as in Case 2.2.2. with the zig zag' $a_{1}<a_{2}>\cdots<a_{i-1}>a_{i+1}<$ a_{i+2}.

Case 2.3.3.3. $a_{i+1}>a_{i}$. If $a_{i+1}<a_{i+2}$, then $a_{i}<a_{i+2}$ and hence $a_{i} a_{i+2}$ is a chord of \mathcal{C}. In the case $k=i+2$, we have either $a_{1}<a_{i+2}$ which leads to the existence of another comparability relation between the elements $a_{1}, \ldots, a_{i}, a_{i+2}$, i.e. a new chord, since otherwise the poset induced by these elements and P_{3} would be isomorphic, or $a_{1}>a_{i+2}$ or $a_{1} \| a_{i+2}$. These last possibilities give the chord $a_{1} a_{i+1}$ of \mathcal{C} because $a_{i+2}<a_{1}$ implies $a_{i+1}<a_{1}$ and from Observation 1, $a_{1} \| a_{i+2}$ implies $a_{1}, a_{i+1} \in I_{i+1}$.
In the case $i+2<k$, we consider the 'zig zag' $a_{1}<a_{2}>\cdots<a_{i-1}>a_{i}<a_{i+2}$ and we continue as in Case 2.2.2. by substituting the elements $a_{3}, \ldots, a_{i-2}, a_{i-1}, a_{i}$ by $a_{2}, \ldots, a_{i-1}, a_{i}, a_{i+2}$, respectively.
If $a_{i+1} \| a_{i+2}$, then from Observation 1, $a_{i}, a_{i+2} \in I_{i}$ and $a_{1}, a_{i+1} \in I$ (resp. $a_{i+1}, a_{i+3} \in I_{i+2}$) if $k=i+2$ (resp. $k>i+2$).
Case 3. $a_{2}<a_{1}$. By duality, this case is similar to Case 2.
Finally, we have obtained in each case at least two chords of \mathcal{C} and the proof is complete.
Let $\mathcal{H}=\left(E_{1}, \ldots, E_{m}\right)$ be a hypergraph. We say that \mathcal{H} has the Helly property or is a Helly hypergraph if every intersecting family of \mathcal{H} is a star, i.e. for $J \subset\{1, \ldots, m\}, E_{i} \cap E_{j} \neq \emptyset$, for $i, j \in J$, implies $\cap_{j \in J} E_{j} \neq \emptyset$. A good characterization of a Helly hypergraph, due to Berge and Duchet [1], is given by the following property:

For any three vertices a_{1}, a_{2}, a_{3} the family of edges containing at least two of the vertices a_{i}
has a non-empty intersection.
Theorem 2 Let $\mathcal{H}(P)$ be the order-interval hypergraph of a poset P which has no induced subposet isomorphic to P_{1} and P_{1}^{*}. Then $\mathcal{H}^{*}(P)$ is a Helly hypergraph.

Proof: In the class of order-interval hypergraphs of posets, $\mathcal{H}^{*}(P)$ is a Helly hypergraph if and only if $\mathcal{H}(P)$ is a Helly hypergraph [5]. Consequently, we can verify this property for the hypergraph $\mathcal{H}(P)$.

Let $\mathcal{I}=\left\{I_{1}, \ldots, I_{m}\right\}$ be the family of maximal intervals of P. We suppose that there exist three vertices a_{1}, a_{2}, a_{3} of P such that $\cap_{j \in J} I_{j}=\emptyset$ where $J=\left\{j:\left|I_{j} \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \geq 2\right\}$. Hence, $|J| \geq 3$ and there exists three edges, say w.l.o.g $I_{1}=\left[p_{1}, q_{1}\right], I_{2}=\left[p_{2}, q_{2}\right], I_{3}=\left[p_{3}, q_{3}\right]$, such that:

$$
\begin{array}{lll}
a_{2}, a_{3} \in I_{1} & \text { and } & a_{1} \notin I_{1} \\
a_{1}, a_{3} \in I_{2} & \text { and } & a_{2} \notin I_{2} \\
a_{1}, a_{2} \in I_{3} & \text { and } & a_{3} \notin I_{3}
\end{array}
$$

From Observation 1, we have $a_{1} \in I_{1}$ if $a_{1} \| a_{2}$, and $a_{2} \in I_{2}$ if $a_{1}<a_{2}$ and $a_{2} \| a_{3}$. If $a_{1}<a_{2}$ and $a_{2}<a_{3}$, we have immediately $a_{2} \in I_{2}$. Again, we obtain $a_{3} \in I_{3}$, if $a_{1}<a_{2}$ and $a_{3}<a_{2}$. Indeed, we must have $a_{1} \| a_{3}$ because $a_{1}<a_{3}$ (resp. $a_{3}<a_{1}$) implies $p_{3}<a_{1}<a_{3}<a_{2}<q_{3}$ (resp. $p_{1}<a_{3}<a_{1}<a_{2}<q_{1}$), i.e. $a_{3} \in I_{3}$ (resp. $a_{1} \in I_{1}$). Moreover, $p_{2} \neq p_{3}$, because otherwise $p_{3}=p_{2}<a_{3}<a_{2}<q_{3}$ and hence, $a_{3} \in I_{3}$. Consequently, the poset induced by $\left\{p_{2}, p_{3}, a_{1}, a_{3}, a_{2}\right\}$ and P_{1}^{*} are isomorphic. By duality, the remaining case, namely $a_{2}<a_{1}$, leads to a contradiction as well.

A hypergraph \mathcal{H} is said to be normal if every partial hypergraph \mathcal{H}^{\prime} has the coloured edge property, i.e. it is possible to colour the edges of \mathcal{H}^{\prime} with $\triangle\left(\mathcal{H}^{\prime}\right)$ colours, where $\triangle\left(\mathcal{H}^{\prime}\right)$ represents the maximum degree of \mathcal{H}^{\prime}. Several sufficient conditions exist for a hypergraph to have the König property [1]. One of them is its normality. A hypergraph \mathcal{H} is normal iff it satisfies the Helly property and the line-graph $L(\mathcal{H})$ is a perfect graph. This characterization enables us to derive the following corollary.

Corollary 3 Let $\mathcal{H}(P)$ be the order-interval hypergraph of a poset P of the class \mathcal{Q}. Then every subhypergraph of $\mathcal{H}(P)$ has the dual König property.

Proof: By Theorem 1 and Theorem $2, \mathcal{H}^{*}(P)$ is normal and consequently every partial hypergraph is again normal. As the dual of a partial hypergraph of $\mathcal{H}^{*}(P)$ is a subhypergraph of $\mathcal{H}(P)$, we deduce that every subhypergraph of $\mathcal{H}(P)$ has the dual König property.

2 N -free posets

Another natural and interesting generalization of series-parallel posets is the class of N free poset. A poset is called N -free iff its Hasse-diagram does not contain the N from

Figure 3 as an induced subgraph [12], i.e. if there do not exist vertices v_{1}, \ldots, v_{4} such that $v_{1} \prec v_{3} \succ v_{2} \prec v_{4}$ and $v_{1} \| v_{4}$.

There is a characterization of series-parallel posets within the class of N -free posets [8]. It states that a poset P is a series-parallel iff P is N -free and does not contain the poset N^{\prime} of Figure 3 as an induced subposet.

Figure 3
Unfortunately, if the poset P is N -free, the König property is not satisfied in general. The poset of Figure 4, gives a counterexample since $\nu\left(\mathcal{H}\left(P_{1}\right)\right)=1$ and $\tau\left(\mathcal{H}\left(P_{1}\right)\right)=2$. Moreover, $\mathcal{H}^{*}(P)$ is not normal. To see this, consider the poset P_{2} of Figure 4. The line-graph $L\left(\mathcal{H}^{*}(P)\right)$ contains an induced odd cycle C_{5} given by the vertices $\{2,3,4,12,13\}$ and hence $L\left(\mathcal{H}^{*}(P)\right)$ is not perfect.

Figure 4

References

[1] Berge, C. : Hypergraphs. North-Holland, Amsterdam, Tokyo (1989)
[2] Bouchemakh, I., and Engel, K. : Interval stability and interval covering property in finite posets. Order 9, 163-175 (1992)
[3] Bouchemakh, I., and Engel, K. : (1992) The order-interval hypergraph of a finite poset and the König property. Discrete Math. 170, 51-61 (1997)
[4] Bouchemakh, I. : On the chromatic number of order-interval hypergraphs. Rostock. Math. Kolloq. 54, 81-89 (2000)
[5] Bouchemakh, I. : On the König and dual König properties of the order-interval hypergraphs of series-parallel posets. Rostock. Math. Kolloq. 56, 3-8 (2002)
[6] Bouchemakh, I. : On the k-independence number in the Boolean lattice. To appear in Rev. Maghreb. Math.
[7] Brandstädt, A., Bang Le, V., and Spinrad, J.P. : Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)
[8] Duffin, R.J. : Topology of series-parallel networks. J. Math. Analysis Appl. 10, 303-318 (1965)
[9] Engel, K. : Interval packing and covering in the Boolean lattice. Comb. Probab. Comput. 5, No.4, 373-384 (1996)
[10] Kaerkes, R., and Möring, R. H. : Vorlesungen über Ordnungen und Netzplantheorie. Schriften zur Informatik und Angewandten Mathematik 45, RWTH Aachen (1978)
[11] Meyniel, H. : The graphs whose odd cycles have at least two chords. In Topics on Perfect Graphs, C. Berge, V. Chvátal, eds., Ann. Discrete Math. 21, 115-119 (1984)
[12] Rival, I. : Optimal linear extensions by interchanging chains. Proc. Amer. Soc. 89, 387-394 (1982)
[13] Summer, D. P. : Graphs indecomposable with respect to the X-join. Discrete Math. 6, 281-298 (1973)
[14] Valdes, J., Tarjan, R.E., and Lawler, E.L. : The recognition of series-parallel digraphs. Siam J. Computing 11, 298-313 (1982)
received: July 15, 2004

Author:

Isma Bouchemakh
U.S.T.H.B., Faculté de Mathématiques

Département de Recherche Opérationnelle
B.P. 32 El-Alia, Bab-Ezzouar

Alger, Algérie

Strong Convergence and pseudo Stability for Operators of the ϕ-accretive type in uniformly smooth Banach Spaces

Abstract

Let X be a uniformly Banach space and let $T: X \rightarrow X$ be a ϕ-strongly quasi-accretive operator. It is proved that, under suitable conditions, the Ishikawa iterative process with errors both converges strongly to the unique zero of T and is pseudo stable. A few related results deal with the convergence and stability of the Ishikawa iterative process with errors to the solutions of the equations $T x=f$ and $x+T x=f$, respectively, when $T: X \rightarrow X$ is ϕ-strongly accretive. Our results extend, improve, and unify the results due to Chidume [2], [3] and Zhou [18].

KEY WORDS AND PHRASES. Ishikawa iterative process with errors, ϕ-strongly quasiaccretive operator, ϕ-strongly accretive operator, stability, uniformly smooth Banach space.

1 Introduction

Let X be a Banach space with norm $\|\cdot\|$ and the dual space X^{*}. The normalized duality mapping $J: X \rightarrow 2^{X^{*}}$ is defined by

$$
J(x)=\left\{f \in X^{*}: \operatorname{Re}\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, \quad x \in X
$$

where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. It is known that if X is uniformly smooth, then J is single valued and is uniformly continuous on any bounded subset of X.

The symbols $D(T), R(T), F(T), N(T)$ stand for the domain, the range, the fixed point set and the kernel of T, respectively, where $N(T)=\{x \in D(T) ; T x=0\}$.

Let $T: D(T) \subseteq X \rightarrow X$ be an operator and I denote the identity mapping on X.

[^1]Definition $1.1 \quad$ (i) T is called to be strongly accretive if there exists a constant $k \in$ $(0,1)$ such that for each $x, y \in D(T)$, there exists $j(x-y) \in J(x-y)$ satisfying

$$
\operatorname{Re}\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2}
$$

(ii) T is said to be ϕ-strongly accretive if there exists a strictly increasing function ϕ : $[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that for each $x, y \in D(T)$, there exists $j(x-y) \in$ $J(x-y)$ satisfying

$$
\operatorname{Re}\langle T x-T y, j(x-y)\rangle \geq \phi(\|x-y\|)\|x-y\| ;
$$

(iii) T is said to be ϕ-strongly quasi-accretive if $N(T) \neq \emptyset$ and if there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that for each $x \in D(T)$ and $y \in N(T)$, there exists $j(x-y) \in J(x-y)$ satisfying

$$
\operatorname{Re}\langle T x, j(x-y)\rangle \geq \phi(\|x-y\|)\|x-y\|
$$

The classes of operators appearing Definition 1.1 have been used and studied by several authors (see, e.g., [1]-[4], [8], [10], [12]-[16], [18]). It is known that the classes of strongly accretive operators and ϕ-strongly accretive operators with a nonempty kernel are proper subclasses of the classes of ϕ-strongly accretive operators and ϕ-strongly quasi-accretive operators, respectively.
Let us recall the following iterative schemes due to Mann [11], Ishikawa [9] and Liu [10], respectively.
Definition 1.2 (i) Let $D(T)$ be a convex subset of X with $D(T)=R(T)$. For any given $x_{0} \in D(T)$, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in $D(T)$ defined by

$$
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}, x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}, n \geq 0
$$

is called the Ishikawa iteration sequence, where $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are sequences in $[0,1]$ satisfying certain conditions;
(ii) If $\beta_{n}=0$ for all $n \geq 0$ in (i), then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in $D(T)$ defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, n \geq 0
$$

is called the Mann iterative sequence;
(iii) For any given $x_{0} \in D(T)$, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in $D(T)$ defined by

$$
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}+v_{n}, x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}+u_{n}, n \geq 0
$$

is called the Ishikawa iteration sequence with errors, where $\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ are sequences in X and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are sequences in $[0,1]$ satisfying suitable conditions;
(iv) If, $\beta_{n}=\left\|v_{n}\right\|=0$ for all $n \geq 0$ in (iii), then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in $D(T)$ now defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}+u_{n}, \quad n \geq 0,
$$

is called the Mann iteration sequence with errors.

It is clear that the Ishikawa and Mann iterative sequences are all special cases of the Ishikawa iterative sequences with errors.

Let $T: X \rightarrow X$ be an operator and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$. Assume that $x_{0} \in X$ and $x_{n+1}=f\left(T, \alpha_{n}, x_{n}\right)$ defines an iteration scheme which produces a sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subset X$. Suppose that, furthermore, that $F(T) \neq \emptyset$ and that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $q \in F(T)$. Let $\left\{y_{n}\right\}_{n=0}^{\infty}$ be any sequence in X and define $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty} \subset[0, \infty)$ by $\varepsilon_{n}=\left\|y_{n+1}-f\left(T, \alpha_{n}, y_{n}\right)\right\|$.

Definition 1.3 (i) The iterative scheme $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by $x_{n+1}=f\left(T, \alpha_{n}, x_{n}\right)$ is called T-stable if $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ implies that $\lim _{n \rightarrow \infty} y_{n}=q$;
(ii) The iterative scheme $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by $x_{n+1}=f\left(T, \alpha_{n}, x_{n}\right)$ is called almost T-stable if $\sum_{n=0}^{\infty} \varepsilon_{n}<\infty$ implies that $\lim _{n \rightarrow \infty} y_{n}=q$;
(iii) The iterative scheme $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by $x_{n+1}=f\left(T, \alpha_{n}, x_{n}\right)$ is called pseudo T-stable if $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\varepsilon_{n}=o\left(\alpha_{n}\right)$ implies that $\lim _{n \rightarrow \infty} y_{n}=q$.

Osilike [16] pointed out that T-stability implies almost T-stability, and the converse does not hold in general. Clearly, an iteration scheme $\left\{x_{n}\right\}_{n=0}^{\infty}$ which is T-stable is pseudo T-stable. In section 2, we shall show that an iteration which is pseudo T-stable may fail to be T-stable.

Several researchers proved that the Mann iterative scheme, Ishikawa iterative scheme, the Mann iterative scheme with errors and Ishikawa iterative scheme with errors can be used to approximate solutions of the equations $T x=f$ and $x+T x=f$, where T is continuous strongly accretive or continuous ϕ-strongly accretive operators (see, e.g. [2]-[4], [12], [15], [18]).

Rhoades [17] obtained that the Mann and Ishikawa iterative schemes may exhibit different behaviors for different classes of nonlinear mappings. Several stability results for certain classes of nonlinear mappings have been established by a few researchers (see, e.g. [5]-[7], [13], [14], [16]). Harder and Hicks [7] revealed the importance of investigating the stability of various iteration schemes for various classes of nonlinear mappings. In [13], [14] and [16], Osilike established the stability and almost stability of certain Mann and Ishikawa iteration procedures for the classes of Lipschitz strongly accretive operators and Lipschitz ϕ-strongly accretive operators in real q-uniformly smooth Banach spaces and real Banach spaces, respectively.

For ϕ-strongly quasi-accretive operators without Lipschitz assumption, the possibility of establishing corresponding stability results has not been explored yet within our knowledge. The aim of this paper is to establish the strong convergence and pseudo stability of the Ishikawa iterative scheme with errors to zeros of ϕ-strongly quasi-accretive operators in uniformly smooth Banach spaces. A few related results deal with the strong convergence and pseudo stability of the Ishikawa iterative scheme with errors to solutions of the equation $T x=f$ and $x+T x=f$, respectively, where $T: X \rightarrow X$ is ϕ-strongly accretive. The convergence results in this paper are generalizations and improvements of the corresponding results due to Chidume [2], [3] and Zhou [18].

We shall make use of the following result.
Lemma 1.1 ([1]) Let X be a Banach space. Then for all $x, y \in X, j(x+y) \in J(x+y)$

$$
\|x+y\|^{2} \leq\|x\|^{2}+2 \operatorname{Re}\langle y, j(x+y)\rangle .
$$

2 Main results

Theorem 2.1 Let X be a uniformly Banach space and let $T: X \rightarrow X$ be a ϕ-strongly quasi-accretive operator. Suppose that the range $(I-T)$ of either or T is bounded and that $S=I-T$. Assume that $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are sequences in $[0,1]$ and $\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ are sequences in X satisfying

$$
\begin{align*}
\lim _{n \rightarrow \infty} \alpha_{n} & =\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0 \tag{2.1}\\
\sum_{n=0}^{\infty} \alpha_{n} & =\infty \tag{2.2}\\
\left\|u_{n}\right\| & =o\left(\alpha_{n}\right) \tag{2.3}
\end{align*}
$$

Suppose that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is the sequence generated from arbitrary $x_{0} \in X$ by

$$
\begin{equation*}
z_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S x_{n}+v_{n}, \quad x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S z_{n}+u_{n}, \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

Then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to the unique zero q of T and it is pseudo ($I-T$)-stable.

Proof: Since T is ϕ-strongly quasi-accretive, it follows that $N(T)$ is a singleton, say, $\{q\}$. It is easy to see that S has a unique fixed point q, and that

$$
\begin{equation*}
\operatorname{Re}\langle S x-q, j(x-q)\rangle \leq\|x-q\|^{2}-\phi(\|x-q\|)\|x-q\|, \quad x \in X . \tag{2.5}
\end{equation*}
$$

Now we show that $R(S)$ is bounded. In fact, if $R(I-T)$ is bounded, so is $R(S)$; if $R(T)$ is bounded, then

$$
\|S x\| \leq\|x-q\|+\|q\|+\|T x\| \leq \phi^{-1}(\|T x\|)+\|q\|+\|T x\|
$$

for all $x \in X$. That is, $R(S)$ is bounded. Using (2.1) and (2.3), we conclude that there exists a nonnegative sequence $\left\{r_{n}\right\}_{n=0}^{\infty}$ such that

$$
\begin{gather*}
\left\|u_{n}\right\|=r_{n} \alpha_{n}, \quad n \geq 0 \tag{2.6}\\
\lim _{n \rightarrow \infty} r_{n}=0 . \tag{2.7}
\end{gather*}
$$

Let $A=\operatorname{diam} R(S)+\left\|x_{0}-q\right\|$ and $B=A+\sup \left\{\left\|v_{n}\right\|: n \geq 0\right\}+\sup \left\{r_{n}: n \geq 0\right\}$. Next we show by induction that

$$
\begin{equation*}
\left\|x_{n}-q\right\| \leq A+\sup \left\{r_{n}: n \geq 0\right\} \leq B, \quad n \geq 0 \tag{2.8}
\end{equation*}
$$

Obviously, (2.8) is true for $n=0$. Suppose that (2.8) is true for some $n \geq 0$. It follows from (2.4) and (2.6) that

$$
\begin{aligned}
\left\|x_{n+1}-q\right\| & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+\alpha_{n}\left\|S z_{n}-q\right\|+\left\|u_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left[A+\sup \left\{r_{n}: n \geq 0\right\}\right]+\alpha_{n} A+\alpha_{n} r_{n} \\
& \leq A+\sup \left\{r_{n}: n \geq 0\right\} .
\end{aligned}
$$

Hence (2.8) is true for all $n \geq 0$.
In view of (2.4) and (2.8), we infer that

$$
\begin{align*}
\left\|z_{n}-q\right\| & \leq\left(1-\beta_{n}\right)\left\|x_{n}-q\right\|+\beta_{n}\left\|S x_{n}-q\right\|+\left\|v_{n}\right\| \\
& \leq\left(1-\beta_{n}\right)\left[A+\sup \left\{r_{n}: n \geq 0\right\}\right]+\beta_{n} A+\left\|v_{n}\right\| \tag{2.9}\\
& \leq B
\end{align*}
$$

for all $n \geq 0$. It follows from Lemma 1.1, (2.4), (2.8) and (2.9) that

$$
\begin{align*}
\left\|z_{n}-q\right\|^{2}= & \left\|\left(1-\beta_{n}\right)\left(x_{n}-q\right)+\beta_{n}\left(S x_{n}-q\right)+v_{n}\right\|^{2} \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n} \operatorname{Re}\left\langle S x_{n}-q, j\left(z_{n}-q\right)\right\rangle \\
& +2 \operatorname{Re}\left\langle v_{n}, j\left(z_{n}-q\right)\right\rangle \tag{2.10}\\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 B^{2} B \beta_{n}+2 B\left\|v_{n}\right\|
\end{align*}
$$

for all $n \geq 0$. Using Lemma 1.1, (2.4)-(2.6) and (2.8)-(2.10), we get that

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2}= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-q\right)+\alpha_{n}\left(S z_{n}-q\right)+u_{n}\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \operatorname{Re}\left\langle S z_{n}-q, j\left(x_{n+1}-q\right)\right\rangle \\
& +2 \operatorname{Re}\left\langle u_{n}, j\left(x_{n+1}-q\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \operatorname{Re}\left\langle S z_{n}-q, j\left(z_{n}-q\right)\right\rangle \\
& +2 \alpha_{n} \operatorname{Re}\left\langle S z_{n}-q, j\left(x_{n+1}-q\right)-j\left(z_{n}-q\right)\right\rangle+2 B\left\|u_{n}\right\| \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}\left[\left\|z_{n}-q\right\|^{2}-\phi\left(\left\|z_{n}-q\right\|\right)\left\|z_{n}-q\right\|\right] \tag{2.11}\\
& +2 \alpha_{n} B\left\|j\left(x_{n+1}-q\right)-j\left(z_{n}-q\right)\right\|+2 B\left\|u_{n}\right\| \\
\leq & {\left[\left(1-\alpha_{n}\right)^{2}+2 \alpha_{n}\left(1-\beta_{n}\right)^{2}\right]\left\|x_{n}-q\right\|^{2}+4 B \alpha_{n} \beta_{n}+4 B^{2} B \alpha_{n}\left\|v_{n}\right\| } \\
& -2 \alpha_{n} \phi\left(\left\|z_{n}-q\right\|\right)\left\|z_{n}-q\right\| \\
& +2 \alpha_{n} B\left\|j\left(x_{n+1}-q\right)-j\left(z_{n}-q\right)\right\|+2 B\left\|u_{n}\right\| \\
\leq & \left\|x_{n}-q\right\|^{2}-2 \alpha_{n} \phi\left(\left\|z_{n}-q\right\|\right)\left\|z_{n}-q\right\|+\alpha_{n} t_{n}
\end{align*}
$$

for all $n \geq 0$, where

$$
t_{n}=B^{2} \beta_{n}+4 B \beta_{n}+4 B\left\|v_{n}\right\|+2 B\left\|j\left(x_{n+1}-q\right)-j\left(z_{n}-q\right)\right\|+2 B r_{n}, \quad n \geq 0
$$

Since j is uniformly continuous on each bounded subset of X and

$$
\begin{aligned}
\left\|x_{n+1}-q-\left(z_{n}-q\right)\right\| & \leq \alpha_{n}\left\|x_{n}-S z_{n}\right\|+\beta_{n}\left\|x_{n}-S x_{n}\right\|+\left\|u_{n}\right\|+\left\|v_{n}\right\| \\
& \leq 2 B\left(\alpha_{n}+\beta_{n}\right)+\left\|u_{n}\right\|+\left\|v_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, it follows that $\lim _{n \rightarrow \infty}\left\|j\left(x_{n+1}-q\right)-j\left(z_{n}-q\right)\right\|=0$. Thus, by (2.1), (2.6) and (2.7) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}=0 \tag{2.12}
\end{equation*}
$$

Put $\inf \left\{\left\|z_{n}-q\right\|: n \geq 0\right\}=r$. We claim that $r=0$. Otherwise $r>0$. Thus (2.12) ensures that there exists a positive integer N such that $t_{n} \leq \phi(r) r$ for all $n \geq N$. From (2.11) we obtain that for all $n \geq N$,

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} & \leq\left\|x_{n}-q\right\|^{2}-2 \alpha_{n} \phi(r) r+\alpha_{n} \phi(r) r \\
& \leq\left\|x_{n}-q\right\|^{2}-\alpha_{n} \phi(r) r
\end{aligned}
$$

which implies that

$$
\phi(r) r \sum_{n=N}^{\infty} \alpha_{n} \leq \sum_{n=N}^{\infty}\left(\left\|x_{n}-q\right\|^{2}-\left\|x_{n+1}-q\right\|^{2}\right)=\left\|x_{N}-q\right\|^{2}
$$

That is, $\sum_{n=0}^{\infty} \alpha_{n}<\infty$ contradicting (2.2). Therefore $r=0$. Thus there exists a subsequence $\left\{\left\|z_{n_{k}}-q\right\|\right\}_{k=0}^{\infty}$ of $\left\{\left\|z_{n}-q\right\|\right\}_{n=0}^{\infty}$ such that $\lim _{k \rightarrow \infty}\left\|z_{n_{k}}-q\right\|=0$. It follows from (2.1), (2.4), (2.6) and (2.7) that

$$
\begin{aligned}
\left\|x_{n_{k}}-q\right\| & \leq\left\|z_{n_{k}}-q\right\|+\beta_{n_{k}}\left\|x_{n_{k}}-S x_{n_{k}}\right\|+\left\|v_{n_{k}}\right\| \\
& \leq\left\|z_{n_{k}}-q\right\|+2 B \beta_{n_{k}}+\left\|v_{n_{k}}\right\| \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. That is,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-q\right\|=0 \tag{2.13}
\end{equation*}
$$

By virtue of (2.1)-(2.3), (2.12) and (2.13), we conclude that for given $\varepsilon>0$, there exists positive numbers k_{0} and $p=n_{k_{0}}$ such that

$$
\begin{align*}
& \left\|x_{p}-q\right\| \leq \varepsilon, \quad \max \left\{\alpha_{n}, \beta_{n}\right\} \leq \frac{\varepsilon}{16 B} \tag{2.14}\\
& \max \left\{\left\|u_{n}\right\|,\left\|v_{n}\right\|\right\} \leq \frac{\varepsilon}{8}, \quad t_{n} \leq \phi\left(\frac{1}{2} \varepsilon\right) \varepsilon, \quad n \geq p
\end{align*}
$$

By induction we show that

$$
\begin{equation*}
\left\|x_{p+m}-q\right\| \leq \varepsilon, \quad m \geq 0 \tag{2.15}
\end{equation*}
$$

Note that (2.14) ensures that (2.15) holds for $m=0$. Suppose that (2.15) holds for some $m \geq 0$. If $\left\|x_{p+m+1}-q\right\|>\varepsilon$, then (2.14), (2.8) and (2.4) yield that

$$
\begin{align*}
\left\|x_{p+m}-q\right\| & \geq\left\|x_{p+m+1}-q\right\|-\alpha_{p+m}\left\|S z_{p+m}-x_{p+m}\right\|-\left\|u_{p+m}\right\| \\
& >\varepsilon-\frac{\varepsilon}{16 B} \cdot 2 B-\frac{\varepsilon}{8}=\frac{3}{4} \varepsilon \tag{2.16}
\end{align*}
$$

and

$$
\begin{align*}
\left\|z_{p+m}-q\right\| & \geq\left\|x_{p+m}-q\right\|-\beta_{p+m}\left\|S x_{p+m}-x_{p+m}\right\|-\left\|v_{p+m}\right\| \\
& >\frac{3}{4} \varepsilon-\frac{\varepsilon}{16 B} \cdot 2 B-\frac{\varepsilon}{8}=\frac{1}{2} \varepsilon . \tag{2.17}
\end{align*}
$$

It follows from (2.11), (2.14), (2.16) and (2.17) that

$$
\begin{aligned}
\varepsilon^{2} & <\left\|x_{p+m+1}-q\right\|^{2} \\
& \leq\left\|x_{p+m}-q\right\|^{2}-2 \alpha_{p+m} \phi\left(\left\|z_{p+m}-q\right\|\right)\left\|z_{p+m}-q\right\|+\alpha_{p+m} t_{p+m} \\
& \leq \varepsilon^{2}-\alpha_{p+m} \phi\left(\frac{1}{2} \varepsilon\right) \varepsilon+\alpha_{p+m} \phi\left(\frac{1}{2} \varepsilon\right) \varepsilon=\varepsilon^{2},
\end{aligned}
$$

which is impossible. Hence $\left\|x_{p+m+1}-q\right\| \leq \varepsilon$. That is, (2.15) holds for all $m \geq 0$. Thus (2.15) yields that $\lim _{n \rightarrow \infty} x_{n}=q$.

Let $\left\{y_{n}\right\}_{n=0}^{\infty}$ be any given sequence in X and define $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}$ by

$$
\begin{gather*}
w_{n}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S y_{n}+v_{n}, \quad n \geq 0 \tag{2.18}\\
\varepsilon_{n}=\left\|y_{n+1}-\left(1-\alpha_{n}\right) y_{n}-\alpha_{n} T w_{n}-u_{n}\right\|, \quad n \geq 0 .
\end{gather*}
$$

Put $p_{n}=y_{n+1}-\left(1-\alpha_{n}\right) y_{n}-\alpha_{n} T w_{n}-u_{n}$. Then

$$
\begin{equation*}
y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} T w_{n}+u_{n}+p_{n}, \quad n \geq 0 . \tag{2.19}
\end{equation*}
$$

Suppose that $\varepsilon_{n}=o\left(\alpha_{n}\right)$. By (2.3), we get that

$$
\left\|u_{n}+p_{n}\right\| \leq\left\|u_{n}\right\|+\varepsilon_{n}=o\left(\alpha_{n}\right),
$$

which implies that $\left\|u_{n}+p_{n}\right\|=o\left(\alpha_{n}\right)$. It follows from the above conclusion that the sequence $\left\{y_{n}\right\}_{n=0}^{\infty}$ defined by (2.18) and (2.19) converges strongly to q. That is, $\left\{x_{n}\right\}_{n=0}^{\infty}$ is pseudo T-stable. This completes the proof.

Theorem 2.2 Let $X,\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty},\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 2.1. Let $T: X \rightarrow X$ be a ϕ-strongly accretive operator and the range of either $(I-T)$ or T be bounded. Suppose that the equation $T x=f$ has a solution for a given $f \in X$ and that $S x=f+x-T x$ for all $x \in X$. Then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated from an arbitrary $x_{0} \in X$ by (2.4) converges strongly to the unique solution of the equation $T x=f$ and it is pseudo S-stable.

Proof: Since T is ϕ-strongly accretive and the equation $T x=f$ has a solution, it follows that the equation $T x=f$ has a unique solution. The rest of the proof is identical the proof of Theorem 2.1 and is therefore omitted. This completes the proof.

Theorem 2.3 Let $X,\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty},\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 2.1. Let $T: X \rightarrow X$ be a ϕ-strongly accretive operator and the range of either $(I+T)$ or T be bounded. Suppose that the equation $x+T x=f$ has a solution for a given $f \in X$ and that $S x=f-T x$ for all $x \in X$. Then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated from an arbitrary $x_{0} \in X$ by (2.4) converges strongly to the unique solution of the equation $x+T x=f$ and it is pseudo S-stable.

Proof: Let $A=I+T$. Then A is ϕ-strongly accretive and the range either A or $(I-A)$ is bounded. Clearly, $x+T x=f$ becomes $A x=f$ and $S x=f-T x=f+x-A x$ for all $x \in X$. Hence Theorem 2.3 follows from Theorem 2.2. This completes the proof.

Remark 2.1 The boundedness of $R(T)$ or $R(I-T)$ in Theorems 2.1 and 2.2 can be replaced by the boundedness of $\left\{T x_{n}\right\}_{n=0}^{\infty}$ and $\left\{T z_{n}\right\}_{n=0}^{\infty}$ or $\left\{x_{n}-T x_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}-T z_{n}\right\}_{n=0}^{\infty}$.

Remark 2.2 The convergence result in Theorem 2.2 extends, improves and unifies Theorems 1 and 2 of [2], Theorems 7 and 8 of [3] and Theorem 1 of [18] in the following ways:
(a) The Mann iterative schemes in $[2,3]$ and the Ishikawa iterative schemes in $[2,3,18]$ are replaced by the more general Ishikawa iterative scheme with errors.
(b) The strongly accretive operators in [2], [3] and [18] are replaced by the more general ϕ-strongly accretive operators;
(c) That T is Lipschitz in [2] is omitted;
(d) The assumptions of $\alpha_{n} \leq \beta_{n}$ in [2], [3], [18], $\sum_{n=0}^{\infty} c_{n} b\left(c_{n}\right)<\infty$ in [2], [3], $\sum_{n=0}^{\infty} \alpha_{n} b\left(\alpha_{n}\right)<$ ∞ in [2], [3] are superfluous;
(e) The boundedness hypotheses of $R(I-T)$ in [2], [18] and $R(T)$ in [3] are replaced by the boundedness of either $R(I-T)$ or $R(T)$;

The following example reveals that the convergence result in Theorem 2.2 extends properly the corresponding results in [2], [3] and [18].

Example 2.1 Let $X=(-\infty, \infty)$ with the usual norm. Then for any $q>1, X$ is real q-uniformly smooth Banach space. Define $T: X \rightarrow X$ by

$$
T x= \begin{cases}x-1, & \text { if } x<-1 \\ x-\sqrt{-x}, & \text { if } x \in[-1,0) \\ x, & \text { if } x \in[0, \infty)\end{cases}
$$

Clearly $R(T)=X, R(I-T)$ is bounded and T is continuous. Note that

$$
\lim _{x \rightarrow 0^{-}} \frac{T x-T 0}{x-0}=\lim _{x \rightarrow 0^{-}}\left(1+\frac{1}{\sqrt{-x}}\right)=\infty
$$

Hence T is not Lipschitz. Take $\phi(t)=\frac{1}{2} t$ for all $t \geq 0$. In order to prove that T is ϕ-strongly accretive, that is,

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq \phi(\| x-y \mid)\|x-y\|, \quad x, y \in X \tag{2.20}
\end{equation*}
$$

We have to consider the following cases.
Case 1. Let $x, y \in(-\infty,-1)$ or $x, y \in[0, \infty)$. Then

$$
\langle T x-T y, j(x-y)\rangle=(x-y)^{2} ;
$$

Case 2. Let $x, y \in[-1,0)$. Then

$$
\langle T x-T y, j(x-y)\rangle=[x-y-(\sqrt{-x}-\sqrt{-y})](x-y)=\left(1+\frac{1}{\sqrt{-x}+\sqrt{-y}}\right)(x-y)^{2}
$$

Case 3. Let $x \in(-\infty,-1), y \in[-1,0)$. Then

$$
\langle T x-T y, j(x-y)\rangle=\left[x-1-(y-\sqrt{-y})(x-y)=(x-y)^{2}+(1-\sqrt{-y})(y-x) ;\right.
$$

Case 4. Let $x \in(-\infty,-1), y \in[0, \infty)$. Then

$$
\langle T x-T y, j(x-y)\rangle=(x-1-y)(x-y)=(x-y)^{2}+(y-x) ;
$$

Case 5. Let $x \in[-1,0), y \in[0, \infty)$. Then

$$
\langle T x-T y, j(x-y)\rangle=(x-\sqrt{-x}-y)(x-y)=(x-y)^{2}+\sqrt{-x}(y-x) .
$$

Therefore (2.20) holds. Since $R(T)=X$, it follows that the equation $T x=f$ has a solution for any $f \in X$. Set

$$
\alpha_{n}=(1+n)^{-\frac{1}{2}}, \quad \beta_{n}=(2+2 n)^{-\frac{1}{2}}, \quad u_{n}=(1+n)^{-1}, \quad v_{n}=(1+n)^{-\frac{1}{3}}, \quad n \geq 0 .
$$

Then all the assumptions of Theorem 2.2 are fulfilled. But Theorems 1 and 2 in [2], Theorems 7 and 8 in [3], and Theorem 1 in [18] are not applicable since $R(T)$ is unbounded, T is not Lischitz, and $\alpha_{n}>\beta_{n}$ for each $n>0$.
Remark 2.3 Theorems 11 and 12 in [3] are special cases of our Theorem 2.3.
Remark 2.4 For $T: X \rightarrow X$ a ϕ-strongly quasi-accretive operator, Theorem 2.1 proves that the Ishikawa iterative scheme with errors considered in Theorem 2.1 is pseudo $(I-T)$ stable. The following example reveals that the iterative scheme is not $(I-T)$-stable.

Example 2.2 Let $X=(-\infty, \infty)$ with the usual norm, $T=I$ and $u_{n}=v_{n}=0$ for all $n \geq 0$. Clearly,

$$
\operatorname{Re}\langle T x-T y, j(x-y)\rangle=\|x-y\|^{2} \geq \phi(\|x-y\|)\|x-y\|, \quad x \in X, y \in N(T)
$$

where $\phi(t)=\frac{1}{2} t$ for all $t \geq 0$. It follows from Theorem 2.1 that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated from an arbitrary $x_{0} \in X$ by

$$
z_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S x_{n}+v_{n}, \quad x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S z_{n}+u_{n}, \quad n \geq 0
$$

converges strongly to the unique zero 0 of T and is pseudo $(I-T)$-stable. Next we prove that it is not pseudo $(I-T)$-stable. Let $y_{n}=\frac{n}{1+n}$ for all $n \geq 0$. Then

$$
\varepsilon_{n}=\left\|y_{n+1}-\left(1-\alpha_{n}\right) y_{n}-\alpha_{n} S w_{n}-u_{n}\right\| \leq\left\|y_{n+1}-y_{n}\right\|+\alpha_{n}\left\|y_{n}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. That is, $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. But, $\lim _{n \rightarrow \infty} y_{n}=1 \notin N(T)=\{0\}$.

References

[1] Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J.S., and Kang, S. M. : Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudocontractive mappings in Banach spaces. J. Math. Anal. Appl. 224, 149-165 (1998)
[2] Chidume, C.E. : Iterative solutions of nonlinear equations with strongly accretive operators. J. Math. Anal. Appl. 192, 502-518 (1995)
[3] Chidume, C. E. : Iterative solutions of nonlinear equations in smooth Banach spaces. Nonlinear Anal. T. M. A. 26, 1823-1834 (1996)
[4] Chidume, C. E., and Osilike, M. O. : Approximation methods for nonlinear operator equations of the m-accretive type. J. Math. Anal. Appl. 189, 225-239 (1995)
[5] Harder, A. M. : Fixed point theory and stability results for fixed point iteration procedure. Ph. D. Thesis, University of Missouri-Rolla 1987
[6] Harder, A. M., and Hicks, T.L. : A stable iteration procedure for nonexpansive mappings. Math. Japonica 33, 687-692 (1988)
[7] Harder, A. M., and Hicks, T. L. : Stability results for fixed point iteration procedures. Math. Japonica 33, 693-706 (1988)
[8] Huang, Z. Y. : Approximating fixed points of ϕ-hemicontractive mappings by the Ishikawa iteration process with errors in uniformly smooth Banach space. Computer Math. Appl. 36, 13-21 (1998)
[9] Ishikawa, S. : Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44, 147-150 (1974)
[10] Liu, L.S. : Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114-125 (1995)
[11] Mann, W. R. : Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506-510 (1953)
[12] Osilike, M. O. : Iterative solution of nonlinear equations of the ϕ-strongly accretive type. J. Math. Anal. Appl. 200, 259-271 (1996)
[13] Osilike, M. O. : Stable iteration procedures for strong pseudocontractions and nonlinear operator equations of the accretive type. J. Math. Anal. Appl. 204, 677-692 (1996)
[14] Osilike, M. O. : Stable iteration procedures for nonlinear pseudocontractive and accretive operator in arbitrary Banach spaces. Indian J. pure appl. Math. 28, 1017-1029 (1997)
[15] Osilike, M. O. : Ishikawa and Mann iteration methods with errors for nonlinear equations of the accretive type. J. Math. Anal. Appl. 213, 91-105 (1997)
[16] Osilike, M. O. : Stability of the Mann and Ishikawa iteration procedures for ϕ-strongly pseudocontractions and nonlinear equations of the ϕ-strongly accretive type. J. Math. Anal. Appl. 227, 319-334 (1998)
[17] Rhoades, B. E. : Comments on two fixed point iteration methods. J. Math. Anal. 56, 741-750 (1976)
[18] Zhou, H. Y. : Iterative solution of nonlinear equations involving strongly accreive operators without the Lipschitz assumption. J. Math. Anal. Appl. 213, 296-307 (1997)
received: January 7, 2005

Authors:

Zeqing Liu

Department of Mathematics
Liaoning Normal University
Dalian, Liaoning
116029 People's Republic of China
e-mail:zeqingliu@sina.com.cn

Jeong Sheok Ume
Department of Applied Mathematics Changwon National University
Changwon 641-773
Korea
e-mail:jsume@sarim.changwon.ac.kr

Shin Min Kang

Department of Mathematics
Gyeongsang National University
Chinju 660-701
Korea
e-mail:smkang@nongae.gsnu.ac.kr

A Note on Global Asymptotic Stability of a Family of Rational Equations

ABSTRACT. In this note we prove that all positive solutions of the difference equations

$$
x_{n+1}=\frac{1+x_{n} \sum_{i=1}^{k} x_{n-i}}{x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}}, \quad n=0,1, \ldots,
$$

where $k \in \mathbf{N}$, converge to the positive equilibrium $\bar{x}=1$. The result generalizes the main theorem in the paper: Li Xianyi and Zhu Deming, Global asymptotic stability in a rational equation, J. Differ. Equations Appl. 9 (9), (2003), 833-839. We present a very short proof of the theorem. Also, we find the asymptotics of some of the positive solutions.

KEY WORDS AND PHRASES. rational difference equation, global asymptotic stability, equilibrium point, positive solution, asymptotics

1 Introduction

In [11], Xianyi and Deming prove that the positive equilibrium of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-1}+1}{x_{n}+x_{n-1}}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

with positive initial values x_{-1}, x_{0}, is globally asymptotically stable.
In [1], Kruse and Nesemann, among other things, proved the following theorem:
Theorem A Consider the difference equation

$$
\begin{equation*}
x_{n+r}=f\left(x_{n+r-1}, \ldots, x_{n}\right), \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

where $r \in \mathbf{N}, f:(0, \infty)^{r} \rightarrow(0, \infty)$ is a continuous function with some unique positive equilibrium \bar{x}. Suppose that there is an $m \in \mathbf{N}$ such that for all solutions (x_{n}) of Eq. (2)

$$
\left(x_{n}-x_{n+m}\right)\left(\frac{\bar{x}^{2}}{x_{n}}-x_{n+m}\right) \leq 0
$$

with equality if and only if $x_{n}=\bar{x}$. Then \bar{x} is globally asymptotically stable.

In this note we consider a family of difference equations of the form

$$
\begin{equation*}
x_{n+1}=\frac{1+x_{n} \sum_{i=1}^{k} x_{n-i}}{x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}}, \quad n=0,1, \ldots \tag{3}
\end{equation*}
$$

where $k \in \mathbf{N}$ and the initial conditions $x_{-k}, x_{-k+1}, \ldots, x_{0}$ are positive numbers. From the equation

$$
\begin{equation*}
\bar{x}=\frac{k \bar{x}^{2}+1}{(k-1) \bar{x}^{2}+2 \bar{x}} \tag{4}
\end{equation*}
$$

we see that $\bar{x}=1$ is a unique positive equilibrium of Eq. (3).
We show that the positive solutions of Eq. (3) have some similar properties with the positive solutions of Eq. (1) and give a very short proof of the following result:

Theorem 1 The positive equilibrium point \bar{x} of Eq. (3) is globally asymptotically stable.
This theorem generalizes the main result in [11], since for $k=1$ Eq. (3) becomes Eq. (1).
For some other globally convergence results and their applications, see, for example, [5, 6, $7,8,9,10]$.

In the last section we find the asymptotics of some solutions of Eq. (1).

2 Some properties of the positive solutions of Eq.

In this section we prove several results concerning the positive solutions of Eq. (3).
Lemma 1 A positive solution $\left(x_{n}\right)_{n=-k}^{\infty}$ of Eq. (3) is eventually equal to 1 if and only if

$$
\begin{equation*}
\left(x_{-1}-1\right)\left(x_{0}-1\right)=0 \tag{5}
\end{equation*}
$$

Proof: Assume that Eq. (5) holds. Then by Eq. (3), it is easy to see that the following conclusion is true: if $x_{-1}=1$ or $x_{0}=1$, then $x_{n}=1$ for $n \geq 1$.
Conversely, assume that $\left(x_{-1}-1\right)\left(x_{0}-1\right) \neq 0$. We show

$$
\begin{equation*}
x_{n} \neq 1 \text { for any } n \geq 1 \tag{6}
\end{equation*}
$$

Let $x_{N}=1$ with minimally chosen $N \geq 1$.
Clearly

$$
1=x_{N}=\frac{1+x_{N-1} \sum_{i=1}^{k} x_{N-1-i}}{x_{N-1}+x_{N-2}+x_{N-1} \sum_{i=2}^{k} x_{N-1-i}}
$$

which implies $\left(1-x_{N-1}\right)\left(1-x_{N-2}\right)=0$ and consequently $x_{N-1}=1$ or $x_{N-2}=1$, a contradiction with the choice of N and the condition $\left(x_{-1}-1\right)\left(x_{0}-1\right) \neq 0$.

Lemma 2 Let $\left(x_{n}\right)_{n=-k}^{\infty}$ be a positive solution of Eq. (3) which is not eventually equal to 1. Then the following statements are true:
(i) $\left(x_{n+1}-x_{n}\right)\left(x_{n}-1\right)<0$ for $n \geq 0$,
(ii) $\left(x_{n+1}-1\right)\left(x_{n}-1\right)\left(x_{n-1}-1\right)>0$ for $n \geq 0$.

Proof: From Eq. (3), we obtain

$$
\begin{equation*}
x_{n+1}-x_{n}=\frac{\left(1-x_{n}\right)\left(1+x_{n}+x_{n} \sum_{i=2}^{k} x_{n-i}\right)}{x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}}, \quad n=0,1,2, \ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}-1=\frac{\left(x_{n}-1\right)\left(x_{n-1}-1\right)}{x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}}, \quad n=0,1,2, \ldots \tag{8}
\end{equation*}
$$

From (7) and (8), inequalities (i) and (ii) follow according to Lemma 1.
Remark 1 From Lemma 2 we see that the signs of $x_{n}-1, n \geq 1$ of a positive solution $\left(x_{n}\right)$ of Eq. (3) are determined by x_{-1} and x_{0}. Hence in the investigation of the semicycle analysis of positive solutions of Eq. (3) we will consider only the terms with the indices greater than or equal to -1 .

A positive semicycle of a solution (x_{n}) of Eq.(3) consists of a "string" of terms $\left\{x_{l}, x_{l+1}\right.$, $\left.\ldots, x_{m}\right\}$, all greater than or equal to \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } \quad l=-1, \quad \text { or } \quad l>-1 \quad \text { and } \quad x_{l-1}<\bar{x}
$$

and

$$
\text { either } m=\infty, \quad \text { or } \quad m<\infty \quad \text { and } \quad x_{m+1}<\bar{x} \text {. }
$$

A negative semicycle of a solution (x_{n}) of Eq. (3) consists of a "string" of terms $\left\{x_{l}, x_{l+1}\right.$, $\left.\ldots, x_{m}\right\}$, all less than to \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } \quad l=-1, \quad \text { or } \quad l>-1 \quad \text { and } \quad x_{l-1} \geq \bar{x}
$$

and

$$
\text { either } m=\infty, \quad \text { or } \quad m<\infty \quad \text { and } \quad x_{m+1} \geq \bar{x} .
$$

The first semicycle of a solution starts with the term x_{-1} and is positive if $x_{-1} \geq \bar{x}$ and negative if $x_{-1}<\bar{x}$.

Lemma 3 For Eq. (3), the following statements are true:
(i) There exists a positive solution with a semicycle of Eq. (3) which has an infinite number of terms and monotonically tends to the positive equilibrium point \bar{x};
(ii) Every negative semicycle of a solution of Eq. (3), except perhaps for the first, has exactly two terms.
(iii) Every positive semicycle of an oscillatory solution of Eq. (3) has exactly one term.

Proof:

(i) If $x_{-1}>1$ and $x_{0}>1$, then by Lemma 2 (ii), it follows that $x_{n}>1, n \geq-1$, i.e. this positive semicycle has infinite number of terms. By Lemma 2 (i), we see that x_{n} is strictly decreasing for $n \geq 0$. Hence, there is finite $\lim _{n \rightarrow \infty} x_{n}=l>0$. From this and (4) it follows that $l=\bar{x}=1$.
(ii) If $x_{s}(s \geq 0)$ is the first term of a negative semicycle, then from Lemma 2 (ii) we have

$$
\left(x_{s+1}-1\right)\left(x_{s}-1\right)\left(x_{s-1}-1\right)>0
$$

and consequently $x_{s+1}<1$.
From this and since

$$
\left(x_{s+2}-1\right)\left(x_{s+1}-1\right)\left(x_{s}-1\right)>0
$$

it follows that $x_{s+2}>1$, from which the result follows.
(iii) If $x_{p}(p \geq 0)$ is the first term of a positive semicycle of an oscillatory solution of Eq. (3), then from the inequality in Lemma 2 (ii) we have

$$
\left(x_{p+1}-1\right)\left(x_{p}-1\right)\left(x_{p-1}-1\right)>0 .
$$

Since $x_{p-1}<1$ it follows that $x_{p+1}<1$, as desired.
From Lemmas 1, 2 and 3 it follows the following corollary.
Corollary 1 Consider Eq. (3). Then a positive solution of Eq. (3) is either eventually equal to 1, or greater than 1 and monotonically tends to 1 , or an oscillatory solution of Eq. (3), such that the positive semicycles of the solution have always one term, and the negative semicycles, disregarding the first one, two terms.

3 Proof of Theorem 1

In this section we prove Theorem 1.
Proof: From (3) we have

$$
\begin{align*}
\frac{1}{x_{n}}-x_{n+1} & =\frac{1}{x_{n}}-\frac{1+x_{n} \sum_{i=1}^{k} x_{n-i}}{x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}} \\
& =\frac{\left(1-x_{n}\right)\left(x_{n-1}\left(1+x_{n}\right)+x_{n} \sum_{i=2}^{k} x_{n-i}\right)}{x_{n}\left(x_{n}+x_{n-1}+x_{n} \sum_{i=2}^{k} x_{n-i}\right)} \tag{9}
\end{align*}
$$

From (7) and (9) we have

$$
\left(x_{n}-x_{n+1}\right)\left(\frac{1}{x_{n}}-x_{n+1}\right) \leq 0, \quad n=0,1, \ldots .
$$

with equality if and only if $x_{n}=1$. From this and by Theorem A, we obtain that the positive equilibrium $\bar{x}=1$ is globally asymptotically stable, as desired.

4 Asymptotics of solutions of Eq. (3)

In this section we find the asymptotics of some solutions of Eq. (3). We use the method described in [3], see also, [2] and [4].

4.1 Asymptotics of nonoscillatory solutions of Eq. (3)

According to Lemma 3 these solutions monotonically tend to 1 as $n \rightarrow \infty$. In order to find the asymptotics we make the ansatz $x_{n}=1+y_{n}$ with $y_{n}=o(1)$. Equation (3) implies

$$
\begin{equation*}
y_{n+1}=\frac{y_{n} y_{n-1}}{k+1+k y_{n}+\sum_{i=1}^{k} y_{n-i}+y_{n} \sum_{i=2}^{k} y_{n-i}} . \tag{10}
\end{equation*}
$$

Note that Eq. (10) can be approximated by the equation

$$
\begin{equation*}
y_{n+1}=\frac{y_{n} y_{n-1}}{k+1} \tag{11}
\end{equation*}
$$

where first we look for positive solutions y_{n} which correspond to the condition $x_{n}>1$ for $n \geq 0$. Taking the logarithm of (11) and making the change $z_{n}=\ln y_{n}$, we obtain

$$
\begin{equation*}
z_{n+1}-z_{n}-z_{n-1}=-\ln (k+1) \tag{12}
\end{equation*}
$$

By standard methods it can be shown that the general solution of Eq. (12) has the form.

$$
z_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+\ln (k+1)
$$

Hence the general solution of Eq. (11) reads

$$
\begin{equation*}
y_{n}=(k+1) e^{c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}} \text {. } \tag{13}
\end{equation*}
$$

For real constants c_{j} this solution is positive, and it satisfies $y_{n}=o(1)$ if $c_{1}<0$. Without loss of generality we may assume that $c_{1}=-1$, which is shown by a suitable shift of n.

This motivated us to make the ansatz

$$
\begin{equation*}
y_{n}=(k+1)\left(e^{-l^{n}}+b \psi_{n}\right), \tag{14}
\end{equation*}
$$

with $\psi_{n}=\exp \left(-a l^{n}\right), a>1$, where $l=(1+\sqrt{5}) / 2$.
Setting (14) into (10) and comparing the coeficients we obtain that $a=1+l^{1-k}$ and $b=1$. Now after a shift of n to $n+k$ in (10) we apply Theorem 2.1 in [3]. Let

$$
\begin{equation*}
\varphi_{n}=(k+1)\left(e^{-l^{n}}+e^{-a l^{n}}\right) \quad \text { and } \quad \psi_{n}=e^{-a l^{n}} \tag{15}
\end{equation*}
$$

where a and l are as above and let

$$
F\left(w_{0}, w_{1}, \ldots, w_{k+1}\right)=\left(k+1+k w_{k}+w_{k-1}+\left(w_{k}+1\right) \sum_{i=0}^{k-2} w_{i}\right) w_{k+1}-w_{k} w_{k-1}
$$

The partial derivatives of the function F are the following

$$
\begin{gathered}
F_{w_{0}}=F_{w_{1}}=\cdots=F_{w_{k-2}}=w_{k+1}\left(w_{k}+1\right) \\
F_{w_{k-1}}=w_{k+1}-w_{k}, \quad F_{w_{k}}=w_{k+1}\left(k+\sum_{i=0}^{k-2} w_{i}\right)-w_{k-1}, \\
F_{w_{k+1}}=k+1+k w_{k}+w_{k-1}+\left(w_{k}+1\right) \sum_{i=0}^{k-2} w_{i} .
\end{gathered}
$$

Hence

$$
\psi_{n+i} F_{w_{i}}\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim \psi_{n+i} \varphi_{n+k+1} \sim(k+1) e^{-l^{n}\left(a l^{i}+l^{k+1}\right)}
$$

for $i=0,1, \ldots, k-2$,

$$
\begin{gathered}
\psi_{n+k-1} F_{w_{k-1}}\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim-\psi_{n+k-1} \varphi_{n+k} \sim-(k+1) e^{-l^{n}\left(a l^{k-1}+l^{k}\right)} \\
\psi_{n+k} F_{w_{k}}\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim-\psi_{n+k} \varphi_{n+k-1} \sim-(k+1) e^{-l^{n}\left(a l^{k}+l^{k-1}\right)}
\end{gathered}
$$

and

$$
\psi_{n+k+1} F_{w_{k+1}}\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim(k+1) \psi_{n+k+1}=(k+1) e^{-l^{n}\left(a l^{k+1}\right)} .
$$

Since $a=1+l^{1-k}$ it is easy to see that

$$
l^{k+1}+1=a l^{k-1}+l^{k}=\min \left\{a l^{i}+l^{k+1},(i=0,1, \ldots, k-2), a l^{k-1}+l^{k}, a l^{k}+l^{k-1}, a l^{k+1}\right\},
$$

where the minimum is attained at the last but two position.
Thus, for $f_{n}=e^{-l^{n}\left(l^{k+1}+1\right)}$ we obtain

$$
\psi_{n+i} F_{w_{i}}\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim A_{i} f_{n}
$$

where $A_{i}=0, i=0,1,2, \ldots, k-2, k, k+1$, and $A_{k-1}=-(k+1)$.
Now we prove that

$$
\begin{equation*}
F\left(\varphi_{n}, \ldots, \varphi_{n+k+1}\right) \sim(k+1)^{2} e^{-\left(l^{k+1}+1+l^{1-k}\right) l^{n}}=o\left(f_{n}\right) . \tag{16}
\end{equation*}
$$

For $w_{i}=\varphi_{n+i}=(k+1) s_{i}, i=0,1, \ldots, k+1$, with $s_{i}=e^{-l^{n+i}}+e^{-a l^{n+i}}$ let $F=(k+1)^{2} G$ with

$$
G\left(s_{0}, s_{1}, \ldots, s_{k+1}\right)=s_{k+1}\left(1+k s_{k}+s_{k-1}+\left(1+(k+1) s_{k}\right) \sum_{i=0}^{k-2} s_{i}\right)-s_{k} s_{k-1} .
$$

It follows

$$
G\left(s_{0}, s_{1}, \ldots, s_{k+1}\right)=s_{k+1}\left(1+s_{0}+s_{1}\right)-s_{k} s_{k-1}+o\left(e^{(L+a) l^{n}}\right)
$$

with $L=l^{k+1}$, since the terms $s_{k+1} s_{k} s_{i}$ with $i \geq 0$, the terms $s_{k+1} s_{i}$ for $i \geq 2$, and the terms $s_{k+1} s_{k}$ for $k \geq 2$ are contained in the remainder term. In the exponents of the terms of the product $s_{k} s_{k-1}$ there appear the factors of $-l^{n}$

$$
\begin{align*}
l^{k}+l^{k-1} & =L, \tag{17}\\
l^{k}+a l^{k-1} & =L+1, \tag{18}\\
a l^{k}+l^{k-1} & =L+l \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
a l^{k}+a l^{k-1}=a L . \tag{20}
\end{equation*}
$$

The corresponding factors concerning the product $s_{k+1}\left(1+s_{0}+s_{1}\right)$ are

$$
\text { (17), (20), (18), } L+a, a L+1, a(L+1),(19), L+a l, a L+l, a(L+l) .
$$

The terms with a number cancel. The smallest term of the remaining ones is $L+a$. Hence (16) is proved.

From all above mentioned the conditions of Theorem 2.1 in [3] are satisfied for $m=k+1$, hence for every $\varepsilon>0$, Eq. (3) has a solution y_{n} in the stripe $\varphi_{n}-\varepsilon \psi_{n} \leq y_{n} \leq \varphi_{n}+\varepsilon \psi_{n}$ for sufficiently large $n_{0}=n_{0}(\varepsilon)$, with φ_{n} and ψ_{n} defined in (15).

4.2 Asymptotics of oscillatory solutions of Eq. (3)

The signs of the terms of a solution of Eq. (11) depend on the initial conditions y_{0} and y_{1}. It can easily be seen that the general nontrivial solution of Eq. (11) can be written as $v_{n} y_{n}$ where y_{n} is the positive solution (13) and v_{n} for $n \geq 0$ one of the four 3 -periodic sequences in Table 1.

$v_{n}^{(i)}$	$v_{0}^{(i)}$	$v_{1}^{(i)}$	$v_{2}^{(i)}$	$v_{3}^{(i)}$	$v_{4}^{(i)}$	$v_{5}^{(i)}$	$v_{6}^{(i)}$	$v_{7}^{(i)}$	$v_{8}^{(i)}$.	.	.
$v_{n}^{(1)}$	1	1	1	1	1	1	1	1	1	.	.	.
$v_{n}^{(2)}$	1	-1	-1	1	-1	-1	1	-1	-1	.	.	.
$v_{n}^{(3)}$	-1	1	-1	-1	1	-1	-1	1	-1	.	.	.
$v_{n}^{(4)}$	-1	-1	1	-1	-1	1	-1	-1	1	.	.	.

Table 1. Values of the sequences $v_{n}^{(i)}, i=1,2,3,4$.

These periodic sequences can be represented as $v_{n}=e^{i \pi t_{n}}$ where t_{n} is one of the solutions with integer values mod 2 of Fibonacci's equation in Table 2.

$t_{n}^{(i)}$	$t_{0}^{(i)}$	$t_{1}^{(i)}$	$t_{2}^{(i)}$	$t_{3}^{(i)}$	$t_{4}^{(i)}$	$t_{5}^{(i)}$	$t_{6}^{(i)}$	$t_{7}^{(i)}$	$t_{8}^{(i)}$.	.	.
$t_{n}^{(1)}$	0	0	0	0	0	0	0	0	0	.	.	.
$t_{n}^{(2)}$	0	1	1	0	1	1	0	1	1	.	.	.
$t_{n}^{(3)}$	1	0	1	1	0	1	1	0	1	.	.	.
$t_{n}^{(4)}$	1	1	0	1	1	0	1	1	0	.	.	.

TABLE 2. $t_{n+1}^{(i)}=t_{n}^{(i)}+t_{n-1}^{(i)}(\bmod 2), i=1,2,3,4$.

With some more effort it can be shown analogously as before that Eq. (10) has also solutions which behave asymptotically like the solutions $v_{n} y_{n}$ of (11). This result matches with Lemma 2 (ii), which is equivalent to $v_{n+1} v_{n} v_{n-1}>0$ for $n \geq 0$, and it also matches with Lemma 3 .

Acknowledgement. We would like to express our sincere thanks to Professor Lothar Berg for giving valuable suggestions during the preparation of this paper.

References

[1] Kruse, N., and Nesemann, T. : Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235, 151-158 (1999)
[2] Berg, L. : On the asymptotics of nonlinear difference equations. Z. Anal. Anwendungen 21, No.4, 1061-1074 (2002)
[3] Berg, L. : Inclusion theorems for non-linear difference equations with applications. J. Differ. Equations Appl. 10 (4), 399-408 (2004)
[4] Berg, L. : Corrections to "Inclusion theorems for non-linear difference equations with applications", from [3]. J. Differ. Equations Appl. 11 (2), 181-182 (2005)
[5] Stević, S. : A generalization of the Copson's theorem concerning sequences which satisfy a linear inequality. Indian J. Math. 43 (3), 277-282 (2001)
[6] Stević, S. : A note on bounded sequences satisfying linear inequality. Indian J. Math. 43 (2), 223-230 (2001)
[7] Stević, S. : On the recursive sequence $x_{n+1}=-\frac{1}{x_{n}}+\frac{A}{x_{n-1}}$. Int. J. Math. Math. Sci. 27 (1), 1-6 (2001)
[8] Stević, S. : A global convergence result. Indian J. Math. 44 (3), 361-368 (2002)
[9] Stević, S. : A global convergence result with applications to periodic solutions. Indian J. Pure Appl. Math. 33 (1), 45-53 (2002)
[10] Stević, S. : On the recursive sequence $x_{n+1}=A / \prod_{i=0}^{k} x_{n-i}+1 / \prod_{j=k+2}^{2(k+1)} x_{n-j}$. Taiwanese J. Math. 7 (2), 249-259 (2003)
[11] Xianyi, L., and Deming, Z. : Global asymptotic stability in a rational equation. J. Diff. Equations Appl. 9, 833-839 (2003)
received: August 10, 2004

Authors:

Cengiz Çinar
Mathematics Department
Faculty of Education
Selcuk University
42090, Konya
Turkey
e-mail: ccinar@selcuk.edu.tr

Ibrahim Yalçinkaya
Mathematics Department
Faculty of Education
Selcuk University
42090, Konya
Turkey
e-mail: iyalcinkaya@selcuk.edu.tr

Stevo Stević
Mathematical Institute of Serbian Academy of Science
Knez Mihailova 35/I
11000 Beograd
Serbia
e-mail: sstevic@ptt.yu
e-mail: sstevo@matf.bg.ac.yu

Anti-Maximum Principle for a Schrödinger Equation in \mathbb{R}^{N}, with a non radial potential

ABSTRACT. Anti-maximum for the Schrödinger equation $-\Delta u+q(x) u-\lambda u=f(x)$ in $L^{2}\left(\mathbb{R}^{N}\right)$ is extended to potentials q non necessarily radial. The anti-maximum is proved in the following form: Let φ_{1} denote the positive eigenfunction associated with the principal eigenvalue λ_{1} of the Schrödinger operator $\mathcal{A}=-\Delta+q(x) \bullet$ in $L^{2}\left(\mathbb{R}^{N}\right)$. Assume the potential $q(x)$ grows fast enough near infinity, and the function f satisfy $f \not \equiv 0$ and $0 \leq f / \varphi_{1} \leq C \equiv$ const a.e. in \mathbb{R}^{N}. Then there exists a positive number δ (depending upon f) such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, the inequality $u \leq-c \varphi_{1}$ holds a.e. in \mathbb{R}^{N}, where c is a positive constant depending upon f and λ.

KEY WORDS. Positive or negative solutions; pointwise bounds; principal eigenvalue; positive eigenfunction; strong maximum and anti-maximum principles

1 Introduction

The anti-maximum for the Dirichlet Laplacian defined in a regular bounded domain $\Omega \subset \mathbb{R}^{N}$ is an important result established first by Ph. Clément and L. A. Peletier [4] and extended to several types of elliptic operators or systems defined in a bounded domain, see e.g. G. Sweers [13], P. Takáć [14],G. Fleckinger et al.[5, 6]. The case of the Schrödinger operator on $\Omega=\mathbb{R}^{N}$ is more difficult. Indeed, for maximum and anti-maximum in unbounded domain the works of B. Alziary and P. Takáč [3], B. Alziary, G. Fleckinger and P. Takáč [1, 2] and Y. Pinchover $[8,9]$ show that, on must always take into account the growth of the solution near the infinity.

We investigate here, anti-maximum for a linear partial differential equation with the Schrödinger operator,

$$
\begin{equation*}
-\Delta u+q(x) u-\lambda u=f(x) \quad \text { in } \quad \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

Here, f is a given function satisfying $0 \leq f \not \equiv 0$ in $\mathbb{R}^{N}(N \geq 1)$, and λ stands for the spectral parameter. As usual, the Schrödinger operator takes the form $\mathcal{A}=-\Delta+q(x) \bullet$ in
$L^{2}\left(\mathbb{R}^{N}\right)$ where Δ and $q(x) \bullet$, respectively, denote the selfadjoint Laplace operator and the pointwise multiplication operator by the potential q in $L^{2}\left(\mathbb{R}^{N}\right)$. Let φ_{1} denote the positive eigenfunction of \mathcal{A} associated with the principal eigenvalue λ_{1}. We recall the definition of φ_{1}-positivity and φ_{1}-negativity.

Definition 1.1 A function $u \in L^{2}\left(\mathbb{R}^{N}\right)$ is called φ_{1}-positive if there exists a constant $c>0$ such that

$$
\begin{equation*}
u \geq c \varphi_{1} \quad \text { almost everywhere in } \mathbb{R}^{N} . \tag{2}
\end{equation*}
$$

Analogously, $u \in L^{2}\left(\mathbb{R}^{N}\right)$ is called φ_{1}-negative if there exists a constant $c>0$ such that

$$
\begin{equation*}
u \leq-c \varphi_{1} \quad \text { almost everywhere in } \mathbb{R}^{N} . \tag{3}
\end{equation*}
$$

To obtain anti-maximun for the Schrödinger operator on $\Omega=\mathbb{R}^{N}$, we need to assume f in the strongly ordered Banach space X introduced in Alziary and Takáč [3]:

$$
\begin{equation*}
X=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): u / \varphi_{1} \in L^{\infty}\left(\mathbb{R}^{N}\right)\right\} \tag{4}
\end{equation*}
$$

endowed with the ordered norm

$$
\begin{equation*}
\|u\|_{X}=\inf \left\{C \in \mathbb{R}:|u| \leq C \varphi_{1} \text { almost everywhere in } \mathbb{R}^{N}\right\} \tag{5}
\end{equation*}
$$

The ordering " \leq " on X is the natural pointwise ordering of functions. This means that X is an ordered Banach space whose positive cone X_{+}has nonempty interior $\stackrel{\circ}{X}_{+}$. Taking $N \geq 2$, The necessity of such a restriction for the Schrödinger operator in $L^{2}\left(\mathbb{R}^{N}\right)$ has been justified in [2, Example 4.1 p. 377]. B. Alziary, G. Fleckinger and P. Takáč construct a counterexample to the anti-maximum principle (3) for a positive, radially symmetric function $f \in L^{2}\left(\mathbb{R}^{N}\right) \backslash X$.

The validity of (2) for a "sufficiently smooth" solution u to Equation (1) is established in Alziary and Takáč [3, Theorem 2.1, p. 284] for a nonnegative function $f \not \equiv 0$ in $L^{2}\left(\mathbb{R}^{N}\right)$. The inequality (3) is shown in Alziary, Fleckinger and Takáč [1, 2] under considerably more restrictive hypotheses on q and f, since they consider only radially symmetric potentials and they establish the anti-maximum only for f from a Banach space $X^{\alpha, 2}$ that contains "sufficiently smooth" perturbations of radially symmetric functions of X.
In the present work we are able to extend this results to some non radial potential and for $f \in X_{+} \backslash\{0\}$ and $f \in C^{0, \alpha}\left(\mathbb{R}^{N}\right)$. For either (2) or (3) to be valid, it is necessary and sufficient that the potential $q(x)$, which is assumed to be strictly positive and locally bounded, have a superquadratic growth as $|x| \rightarrow \infty$. In particular, $q(x)$ must grow faster than $|x|^{2}$ as $|x| \rightarrow \infty$; the growth like $|x|^{2+\varepsilon}$ with any constant $\varepsilon>0$ is sufficient. Thus, both (2) and (3) are in general false for the harmonic oscillator, i.e., for $q(x)=|x|^{2}$ in \mathbb{R}^{N}; see [1],

Examples 4.1 and 4.2. As it seems to be inevitable in the theory of Schrödinger operators, we assume that $q(x)$ is a "relatively small" perturbation of a radially symmetric function, $q(x)=q_{1}(|x|)+q_{2}(x)$ for $x \in \mathbb{R}^{N}$.
Y. Pinchover in [8, 9] prove the inequalities (2) and (3) for any solution $f \in X_{+} \backslash\{0\}$, but imposing certain growth conditions on the first derivatives of $q(x)$, and assuming the solution u is already in X. Our method combine a comparison result from B. Alziary and P. Takác [3, Theorem 2.2, p. 285] in the exterior domain $\Omega_{R}=\left\{x \in \mathbb{R}^{N}:|x|>R\right\}$, for $0<R<\infty$ and the approach of Y. Pinchover in the proof of [8, theorem 5.3, p.23]. We study the behavior of the principle eigencurve of a certain two parameter eigenvalue problem and prove the anti-maximum principle using a fixed point argument.

This article is organized as follows. In Section 2 we state our main result, Theorem 2.1. There, the inequality (3) for $\lambda_{1}<\lambda<\lambda_{1}+\delta$ is stated for the solution u of (1). In Section 3 we first recall the comparison result we will used and then give the proof of the main result.

2 The Main Result

Notation. We denote by \mathbb{R}^{N} the N-dimensional Euclidean space $(N \geq 2)$ endowed with the inner product $x \cdot y$ and the norm $|x|=(x \cdot x)^{1 / 2}$, for $x, y \in \mathbb{R}^{N}$. We write $\mathbb{R}_{+}=[0, \infty)$ and $\mathbb{R}_{+}^{N}=\left(\mathbb{R}_{+}\right)^{N} \subset \mathbb{R}^{N}$. For a set $M \subset \mathbb{R}^{N}$, we denote by $\partial M(\bar{M}$, and $\stackrel{\circ}{M}$, respectively) the boundary (closure, and interior) of the set M in \mathbb{R}^{N}. We use analogous notation for sets in all Banach spaces.

Given a set $\Omega \subset \mathbb{R}^{N}$ and $1 \leq p \leq \infty$, we use the following standard Banach spaces of functions $f: \Omega \rightarrow \mathbb{R}$ (or \mathbb{C}), see e.g. Gilbarg and Trudinger [7, Chapt. 7]:
$L^{p}(\Omega)$, where Ω is Lebesgue measurable, is the Lebesgue space of all (equivalence classes of) Lebesgue measurable functions $f: \Omega \rightarrow \mathbb{R}$ with the norm

$$
\|f\|_{p} \equiv\|f\|_{L^{p}(\Omega)} \stackrel{\text { def }}{=}\left\{\begin{aligned}
\left(\int_{\Omega}|f(x)|^{p} d x\right)^{1 / p}<\infty & \text { if } 1 \leq p<\infty \\
\underset{x \in \Omega}{\operatorname{esssup}}|f(x)|<\infty & \text { if } p=\infty
\end{aligned}\right.
$$

The space $W^{k, p}(\Omega)$, where $k \geq 1$ is an integer and Ω open in \mathbb{R}^{N}, is the Sobolev space of all functions $f \in L^{p}(\Omega)$ whose all partial derivatives of order $\leq k$ also belong to $L^{p}(\Omega)$. The norm $\|f\|_{k, p} \equiv\|f\|_{W^{k, p}(\Omega)}$ in $W^{k, p}(\Omega)$ is defined in a natural way.

The local Lebesgue and Sobolev spaces $L_{\text {loc }}^{p}(\Omega)$ and $W_{\text {loc }}^{k, p}(\Omega)$ are defined analogously.
The holder spaces $\mathcal{C}^{k, \alpha}\left(\mathbb{R}^{N}\right)$ are defined as the subspaces of $\mathcal{C}^{k}\left(\mathbb{R}^{N}\right)$ consisting of functions whose K-th order partial derivatives are locally Hölder continuous with exponent α.

Finally, for Ω open in $\mathbb{R}^{N}, \mathcal{D}(\Omega)=C_{0}^{\infty}(\Omega)$ is the space of all infinitely many times differentiable functions $f: \Omega \rightarrow \mathbb{R}$ with compact support. It is well-known that $\mathcal{D}\left(\mathbb{R}^{N}\right)$ is a dense linear subspace of both $L^{p}\left(\mathbb{R}^{N}\right)$ and $W^{k, p}\left(\mathbb{R}^{N}\right)$ for $1 \leq p<\infty$.
In order to formulate our hypothesis on the potential $q(x), x \in \mathbb{R}^{N}$, we first introduce the following class of auxiliary functions $Q(r)$ of $r \equiv|x|, R_{0} \leq r<\infty$, for some $R_{0}>0$:

$$
\left\{\begin{array}{l}
Q(r)>0, \quad Q \text { is locally absolutely continuous, } \tag{6}\\
Q^{\prime}(r) \geq 0, \quad \text { and there exists a constant } \beta \text { with } \\
0<\beta<\frac{1}{2} \text { and } \int_{R_{0}}^{\infty} Q(r)^{-\beta} d r<\infty
\end{array}\right.
$$

We assume that the potential q takes the form

$$
q(x)=q_{1}(|x|)+q_{2}(x), \quad x \in \mathbb{R}^{N}
$$

where $q_{1}(r)$ and q_{2} are Lebesgue measurable functions satisfying the following hypothesis, with some auxiliary function $Q(r)$ which obeys (6):
Hypothesis (H1) The potential $q: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is locally essentially bounded, $q(r) \geq$ const $>$ 0 for $r \geq 0$, and there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
c_{1} Q(r) \leq q(r)+\frac{(N-1)(N-3)}{4 r^{2}} \quad \text { for } \quad R_{0} \leq r<\infty \tag{7}
\end{equation*}
$$

(H2) The potential $q_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is locally essentially bounded, $q(x)=q_{1}(|x|)+q_{2}(x) \geq$ const >0 for $r \geq 0$, and there exists a constant $c_{2}>0$ such that

$$
\begin{equation*}
\left|q_{2}(x)\right| \leq c_{2} Q(|x|)^{\frac{1}{2}-\beta} \quad \text { for } x \in \mathbb{R}^{N} \tag{8}
\end{equation*}
$$

Notice that the fraction $(N-1)(N-3) / 4 r^{2}$ in the inequality (7) is not essential and has been added for convenience in later applications; it can be left out.

Next we introduce the quadratic form

$$
\begin{equation*}
(v, w)_{q} \stackrel{\text { def }}{=} \int_{\mathbb{R}^{N}}(\nabla v \cdot \nabla w+q(x) v w) d x \tag{9}
\end{equation*}
$$

defined for every pair

$$
\begin{equation*}
v, w \in V_{q} \stackrel{\text { def }}{=}\left\{f \in L^{2}\left(\mathbb{R}^{N}\right):(f, f)_{q}<\infty\right\} . \tag{10}
\end{equation*}
$$

Notice that V_{q} is a Hilbert space with the inner product $(v, w)_{q}$ and the norm $\|v\|_{V_{q}}=$ $\left((v, v)_{q}\right)^{1 / 2}$. The set $\mathcal{D}\left(\mathbb{R}^{N}\right)$ is a dense linear subspace of V_{q}. By the Lax-Milgram theorem, the Schrödinger operator

$$
\begin{equation*}
\mathcal{A}=-\Delta+q(x) \bullet \quad \text { in } L^{2}\left(\mathbb{R}^{N}\right) \tag{11}
\end{equation*}
$$

is defined to be the selfadjoint operator in $L^{2}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}(\mathcal{A} v) w d x=(v, w)_{q} \quad \text { for all } \quad v, w \in \mathcal{D}\left(\mathbb{R}^{N}\right) \tag{12}
\end{equation*}
$$

We denote by $\mathcal{D}(\mathcal{A})$ its domain. The Banach space $\mathcal{D}(\mathcal{A})$ endowed with the graph norm is compactly embedded into $L^{2}\left(\mathbb{R}^{N}\right)$, by Rellich's theorem combined with $q(x) \rightarrow \infty$ as $|x| \rightarrow \infty$.
It is well-known that \mathcal{A} possesses an infinite sequence of positive eigenvalues, $\lambda_{1}<\lambda_{2}<$ $\cdots \lambda_{n} \cdots$, and the first one, denote by λ_{1}, is given by

$$
\lambda_{1}=\inf \left\{(f, f)_{q}: f \in V_{q} \text { with }\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}=1\right\}, \quad \lambda_{1}>0
$$

The eigenvalue λ_{1} is simple with the eigenspace spanned by an eigenfunction $\varphi_{1} \in \mathcal{D}(\mathcal{A})$ satisfying $\varphi_{1}>0$ throughout \mathbb{R}^{N}. We normalize φ_{1} by the condition $\left\|\varphi_{1}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}=1$. Since $q(x) \equiv q(|x|)$ for $x \in \mathbb{R}^{N}$, we must have also $\varphi_{1}(x) \equiv \varphi_{1}(|x|)$ for $x \in \mathbb{R}^{N}$. Furthermore, if $u \in \mathcal{D}(\mathcal{A})$ and $\mathcal{A} u=f \in L^{2}\left(\mathbb{R}^{N}\right)$ with $f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$ for some p with $2 \leq p<\infty$, then the local L^{p}-regularity theory yields $u \in W_{\text {loc }}^{2, p}\left(\mathbb{R}^{N}\right)$, see Gilbarg and Trudinger [7, Theorem 9.15, p. 241]. In particular, if $p>N$ then $u \in C^{1}\left(\mathbb{R}^{N}\right)$, by the Sobolev imbedding theorem [7, Theorem 7.10, p. 155]. It follows that also $\varphi_{1} \in C^{1}\left(\mathbb{R}^{N}\right)$.
The following theorem about φ_{1}-negativity of u is our main result:
Theorem 2.1 Let the hypotheses (H1) and (H2) be satisfied and q be locally Hölder continuous. Assume that $u \in \mathcal{D}(\mathcal{A}), \mathcal{A} u-\lambda u=f \in L^{2}\left(\mathbb{R}^{N}\right), \lambda \in \mathbb{R}$. Let $f \in X \cap \mathcal{C}^{0, \alpha}\left(\mathbb{R}^{N}\right)$ be a nonnegative function with $f>0$ in some set of positive Lebesgue measure. Then there exists a positive number δ (depending upon f) such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, the inequality

$$
\begin{equation*}
u \leq-c \varphi_{1} \quad \text { in } \mathbb{R}^{N} \tag{13}
\end{equation*}
$$

is valid with a constant $c>0$ (depending upon f and λ).
If we choose $\delta<\lambda_{2}-\lambda_{1}$, for any $\lambda_{1}<\lambda<\lambda_{1}+\delta$, the solution of the equation, $\mathcal{A} u-\lambda u=$ $f \in L^{2}\left(\mathbb{R}^{N}\right)$, always exists and is unique. So it suffices to show the existence of a $\varphi_{1^{-}}$ negative solution for $\lambda_{1}<\lambda<\lambda_{1}+\delta$ as in Y. Pinchover [8, 9]. Y. Pinchover proved that for any $f \in X_{+} \cap \mathcal{C}^{0, \alpha}\left(\mathbb{R}^{N}\right), f \not \equiv 0$, there exists a positive number δ such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, any solution u of X is φ_{1}-negative. Here we prove that $u \in X$. Moreover, his hypothesis on q_{1} is much stronger than ours in that he requires that $\log q_{1}$ be uniformly Lipschitz in \mathbb{R}^{N} and q_{1} itself satisfy $q_{1}^{\prime}(r) \geq 0$ and $\int^{\infty} q_{1}(r)^{-1 / 2} d r<\infty$.

3 Proof of the Main Result

We first recall some comparison result and then prove our theorem.

3.1 Preliminary result

The following theorem, proved by B. Alziary and P. Takáč in [3, Theorem 2.2 p. 285], establish a comparison result for positive solution $u(x)$ and $u_{1}(x)$ of the Schrödinger equation in the exterior domain Ω_{R} with the potentials $q(x)$ and $q_{1}(x)$, respectively, and $f \equiv 0$ in Ω_{R} :

Theorem 3.1 Let the hypotheses (H1) and (H2) be satisfied. Furthermore, fix any constant $R \geq R_{0}$ such that $Q(R)^{\frac{1}{2}+\beta} \geq 2 c_{2} / c_{1}$. Assume that u and u_{1} are two functions of $x \in \mathbb{R}^{N}$ such that u, $u_{1} \in \mathcal{D}(\mathcal{A})$, both u and u_{1} are positive and continuous throughout $\bar{\Omega}_{R}$, for some $R>0$, and the following equations hold in the sense of distributions over Ω_{R},

$$
\begin{align*}
-\Delta u+q(x) u=0 & \text { in } \Omega_{R}, \tag{14}\\
-\Delta u_{1}+q_{1}(|x|) u_{1}=0 & \text { in } \Omega_{R} . \tag{15}
\end{align*}
$$

Then there exists a positive constant γ (depending only upon the potential q) such that:

$$
\begin{equation*}
\gamma^{-1} \frac{m_{u}}{u_{1}(R)} u_{1}(|x|) \leq u(x) \leq \gamma \frac{M_{u}}{u_{1}(R)} u_{1}(|x|) \text { for a.e. } x \in \bar{\Omega}_{R} \tag{16}
\end{equation*}
$$

with

$$
m_{u}=\min _{|x|=R} u(x) \quad \text { and } \quad M_{u}=\max _{|x|=R} u(x) .
$$

3.2 Proof of the Theorem

Since \mathcal{A} has a discrete spectrum, there exists δ_{0} such that $\left(\lambda_{1}, \lambda_{1}+\delta_{0}\right) \cap \sigma(\mathcal{A})=\emptyset$. Therefore, it is enough to show that there exists $\delta \leq \delta_{0}$ such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$ the equation $\mathcal{A} u-\lambda u=f$ admits a negative solution u_{λ}, satifying $-u_{\lambda} \geq c \varphi_{1}$ with a positive constant c. Set $w_{\lambda}=-u_{\lambda}$, the equation becomes

$$
\begin{equation*}
\left(\mathcal{A}+f(x) / w_{\lambda}-\lambda\right) w_{\lambda}=\left(-\Delta+q(x)+f(x) / w_{\lambda}-\lambda\right) w_{\lambda}=0 \text { in } \mathbb{R}^{N} \tag{17}
\end{equation*}
$$

Now, we need to prove that the equation (17) has a positive solution w_{λ}, satisfying $w_{\lambda} \geq c \varphi_{1}$ with a positive constant c.
First, for $\lambda_{1}<\lambda \leq \lambda_{1}+1$, we introduce the following set of functions:

$$
\begin{align*}
Y_{\lambda}=\{u \in \mathcal{D}(\mathcal{A}), & u>0, u(0)=\varphi_{1}(0), \text { and } \tag{18}\\
& \left.\exists V \in \mathcal{C}^{0, \alpha}\left(\mathbb{R}^{N}\right), \quad 0 \leq V \leq 1, \text { s.t. } \quad(\mathcal{A}-\lambda+V) u=0\right\}
\end{align*}
$$

First we prove that Y_{λ} is a nonempty convex compact set.
(i) Y_{λ} is nonempty: Indeed, for $V_{\lambda}=\lambda-\lambda_{1}$, we have $0 \leq V_{\lambda} \leq 1$ and the eigenfunction φ_{1} is solution of the equation $\left(\mathcal{A}-\lambda+V_{\lambda}\right) \varphi_{1}=0$. Therefore $\varphi_{1} \in Y_{\lambda}$.
(ii) Y_{λ} is convex: Let u_{1} and u_{2} be two functions of Y_{λ}. This functions u_{1} and u_{2} satisfy respectively the equations $\left(\mathcal{A}-\lambda+V_{1}\right) u_{1}=0$ and $\left(\mathcal{A}-\lambda+V_{2}\right) u_{2}=0$, with $0 \leq$ $V_{1}, V_{2} \leq 1$. Let $0<t<1$ and denote $u_{t}=t u_{1}+(1-t) u_{2}$. We check easily that u_{t} is solution of $\left(\mathcal{A}-\lambda+V_{t}\right) u_{t}=0$, with $0 \leq t \frac{u_{1}}{u_{t}} V_{1}+\left(1-t \frac{u_{1}}{u_{t}}\right) V_{2} \leq 1$. So $u_{t} \in Y_{\lambda}$.
(iii) Let us prove now that there exists $C>0$ such that

$$
C^{-1} \varphi_{1}(x) \leq u(x) \leq C \varphi_{1}(x) \text { for all } x \in \mathbb{R}^{n}
$$

for every $u \in Y_{\lambda}$ and $\lambda_{1} \leq \lambda \leq \lambda_{1}+1$.
We introduce now ψ_{1} the radial eigenfunction corresponding to the eigenvalue Λ_{1} of the Schrödinger operator $-\Delta+q_{1}(|x|) \bullet$.
Notice that, since $\lambda_{1}<\lambda \leq \lambda_{1}+1$ and $0 \leq V \leq 1$, we have

$$
q-\lambda_{1}-1 \leq q+V-\lambda \leq q-\lambda_{1}+1 .
$$

The potential q goes to $+\infty$ as $|x|$ goes to ∞, so there exists R_{1} such that $0<$ const $<$ $q(x)-\lambda_{1}-1 \leq q(x)+V(x)-\lambda \leq q(x)-\lambda_{1}+1$ for all $|x| \geq R_{1}$. Thus principal eigenvalues corresponding to those potentials on $\Omega_{R_{1}}$ are all positive. We choose R_{1} large enough, so that we could apply theorem 3.1 with the potentials $q(x)-\lambda_{1}+1$ and $q_{1}(|x|)-\Lambda_{1}, q(x)-\lambda_{1}$ and $q_{1}(|x|)-\Lambda_{1}$, or $q(x)-\lambda_{1}-1$ and $q_{1}(|x|)-\Lambda_{1}$.
Let us take any $u \in Y_{\lambda}$. Now we split our proof of (iii) into the cases $x \in \bar{B}_{R_{1}}$ and $x \in \Omega_{R_{1}}$.
Case $x \in \Omega_{R_{1}}$ Denote by \underline{u} and \bar{u} the solutions of the following equations:

$$
\left\{\begin{array}{cl}
-\Delta u+(q+V-\lambda) u=0 & \text { in } \Omega_{R_{1}} \tag{19}\\
-\Delta \underline{u}+\left(q-\lambda_{1}+1\right) \underline{u}=0 & \text { in } \Omega_{R_{1}} \\
-\Delta \bar{u}+\left(q-\lambda_{1}-1\right) \bar{u}=0 & \text { in } \Omega_{R_{1}} \\
\underline{u}(x)=\bar{u}(x)=u(x) & \text { on } \partial \Omega_{R_{1}}
\end{array}\right.
$$

Since $q-\lambda_{1}-1 \leq Q+V-\lambda \leq q-\lambda_{1}+1$, by the weak maximum principle on $\Omega_{R_{1}}$, we have:

$$
\begin{equation*}
\underline{u} \leq u \leq \bar{u} \text { in } \bar{\Omega}_{R_{1}} \tag{20}
\end{equation*}
$$

For the eigenfunctions φ_{1} and ψ_{1}, the following equations hold for all $R>0$,

$$
\left\{\begin{array}{cl}
-\Delta \varphi+\left(q(x)-\lambda_{1}\right) \varphi_{1}=0 & \text { in } \Omega_{R} \tag{21}\\
-\Delta \psi_{1}+\left(q_{1}(|x|)-\Lambda_{1}\right) \psi_{1}=0 & \text { in } \Omega_{R}
\end{array}\right.
$$

So applying the theorem 3.1 on $\Omega_{R_{1}}$ for φ_{1} and ψ_{1}, there exists a positive constant γ, (depending only upon the potential q) such that :

$$
\begin{equation*}
\gamma^{-1} \frac{m_{\varphi_{1}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \leq \varphi(x) \leq \gamma \frac{M_{\varphi_{1}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \text { for a.e. } x \in \bar{\Omega}_{R_{1}} \tag{22}
\end{equation*}
$$

with

$$
m_{\varphi_{1}}=\min _{|x|=R_{1}} \varphi_{1}(x) \quad \text { and } \quad M_{\varphi_{1}}=\max _{|x|=R_{1}} \varphi_{1}(x)
$$

More clearly, there exists a constant $C_{1}>0$ (depending only on q) such that

$$
\begin{equation*}
C_{1}^{-1} \psi_{1}(|x|) \leq \varphi_{1}(x) \leq C_{1} \psi_{1}(|x|) \text { for a.e. } x \in \bar{\Omega}_{R_{1}} . \tag{23}
\end{equation*}
$$

We apply now the theorem 3.1 on $\Omega_{R_{1}}$ for \bar{u} and ψ_{1} and for \underline{u} and ψ_{1}. So there exist two constants $\bar{\gamma}$ and $\underline{\gamma}$ (depending only on q) such that

$$
\begin{equation*}
\bar{\gamma}^{-1} \frac{m_{\bar{u}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \leq \bar{u}(x) \leq \bar{\gamma} \frac{M_{\bar{u}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \text { for a.e. } x \in \bar{\Omega}_{R_{1}}, \tag{24}
\end{equation*}
$$

with

$$
m_{\bar{u}}=\min _{|x|=R_{1}} \bar{u}(x)=\min _{|x|=R_{1}} u(x) \quad \text { and } \quad M_{\bar{u}}=\max _{|x|=R_{1}} \bar{u}(x)=\max _{|x|=R_{1}} u(x),
$$

and

$$
\begin{equation*}
\underline{\gamma}^{-1} \frac{m_{\underline{u}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \leq \underline{u}(x) \leq \underline{\gamma} \frac{M_{\underline{u}}}{\psi_{1}\left(R_{1}\right)} \psi_{1}(|x|) \text { for a.e. } x \in \bar{\Omega}_{R_{1}}, \tag{25}
\end{equation*}
$$

with

$$
m_{\underline{u}}=\min _{|x|=R_{1}} \underline{u}(x)=\min _{|x|=R_{1}} u(x) \quad \text { and } \quad M_{\underline{u}}=\max _{|x|=R_{1}} \underline{u}(x)=\max _{|x|=R_{1}} u(x) .
$$

Combining (20), (23), (24) and (25), we arrive for a.e. $x \in \bar{\Omega}_{R_{1}}$ at

$$
\begin{equation*}
\frac{\underline{\gamma} C_{1}^{-} 1}{\bar{\psi}\left(R_{1}\right)} m_{u} \varphi_{1}(x) \leq u(x) \leq \frac{\bar{\gamma} C_{1}}{\psi\left(R_{1}\right)} M_{u} \varphi_{1}(x), \tag{26}
\end{equation*}
$$

with

$$
m_{u}=\min _{|x|=R_{1}} u(x) \quad \text { and } \quad M_{u}=\max _{|x|=R_{1}} u(x) .
$$

Case $x \in \bar{B}_{R_{1}}$. By the Harnack inequality on $B_{2 R_{1}}$ (see Gilbarg and Trudinger [7, Corollary 9.25 , p.250]), we gate

$$
\sup _{B_{R}} u(x) \leq C_{2} \inf _{B_{R}} u(x) \text { for all } R<2 R_{1} .
$$

with a constant C_{2} depending only on q and R. Then using the condition $u(0)=\varphi_{1}(0)$ for $u \in Y_{\lambda}$, we obtain for $R_{1}<R<2 R_{1}$

$$
\begin{align*}
M_{u} & \leq \sup _{B_{R}} u(x) \leq C_{2} \inf _{B_{R}} u(x) \leq C_{2} \varphi_{1}(0), \tag{27}\\
\varphi_{1}(0) & \leq \sup _{B_{R}} u(x) \leq C_{2} \inf _{B_{R}} u(x) \leq C_{2} m_{u} .
\end{align*}
$$

Then for a.e. $x \in B_{R_{1}}$,

$$
\begin{equation*}
\frac{C_{2}^{-1} \varphi_{1}(0)}{\max _{B_{2 R_{1}}} \varphi_{1}(x)} \varphi_{1}(x) \leq \inf _{B_{R}} u \leq u(x) \leq \sup _{B_{R}} u \leq \frac{C_{2} \varphi_{1}(0)}{\min _{B_{2 R_{1}}} \varphi_{1}(x)} \varphi_{1}(x) . \tag{28}
\end{equation*}
$$

Finally, by (28), (27) and (26), we deduce (iii).
(iv) Y_{λ} is compact in $\mathcal{C}^{0}\left(\mathbb{R}^{N}\right)$: Let $\left(u_{n}\right)_{n \in \mathbb{N}} \in Y_{\lambda}$ be a sequence. By (iii), we know that the functions $\left(u_{n}\right)_{n \in \mathbb{N}}$ are bounded in $L^{\infty}\left(\mathbb{R}^{N}\right)$ and by the regularity theory, we know that they are continuous.
For $R>0$, we denote by $u_{n}^{(R)}$ the restriction of u_{n} to $\bar{B}_{R}(0)$. This restriction satisfy

$$
\begin{equation*}
\left(-\Delta+q+V_{n}-\lambda\right) u_{n}^{(R)}=0 \text { in } B_{R}(0) \tag{29}
\end{equation*}
$$

Using the Schauder estimate it follows that $u_{n}^{(R)} \in \mathcal{C}^{2, \alpha}\left(B_{R}(0)\right)$ and that

$$
\begin{equation*}
\left\|u_{n}^{(R)}\right\|_{2, \alpha} \leq C\left\|u_{n}^{(R)}\right\|_{\infty} \tag{30}
\end{equation*}
$$

where $C=C(N, R, q)$ (see Gilbarg and Trudinger [7, Theorem 6.13, p. 106 and Theorem 6.2 p.90]). By (30) and (iii), we deduce that $\left(u_{n}^{(R)}\right)_{n \in \mathbb{N}}$ and $\left(\nabla u_{n}^{(R)}\right)_{n \in \mathbb{N}}$ are bounded in $\mathcal{C}^{0}\left(B_{R}(0)\right)$. So, using theorem of Ascoli, one can extract a subsequence $\left(u_{n_{k}}^{(R)}\right)$ such that:

$$
\left\{\begin{array}{rll}
u_{n_{k}}^{(R)} & \rightarrow u^{(R)} & \text { strongly in } \mathcal{C}^{0}\left(B_{R}(0)\right), \tag{31}\\
\nabla u_{n_{k}}^{(R)} & \rightarrow \nabla u^{(R)} & \text { strongly in } \mathcal{C}^{0}\left(B_{R}(0)\right), \\
\Delta u_{n_{k}}^{(R)} & \rightarrow \Delta u^{(R)} & \text { strongly in } \mathcal{C}^{0, \alpha^{\prime}}\left(B_{R}(0)\right) \text { for some } 0<\alpha^{\prime}<\alpha .
\end{array}\right.
$$

Then, taking the diagonal subsequence $\left(u_{n_{n}}^{(n)}\right)_{n \in \mathbb{N}}$, we construct a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ wich converge, strongly in $\mathcal{C}^{2, \alpha}\left(B_{R}(0)\right)$ for all $R>0$, to a continuous function u satisfying

$$
C^{-1} \varphi_{1}(x) \leq u(x) \leq C \varphi_{1}(x) \text { for all } x \in \mathbb{R}^{n} .
$$

Thus the subsequence $\left(u_{n_{n}}^{(n)}\right)_{n \in \mathbb{N}}$ converge to u strongly in $\mathcal{C}^{0}\left(\mathbb{R}^{N}\right)$. Indeed, by (iii),

$$
\forall \varepsilon>0, \quad \exists n_{0}>0 \quad \text { such that } \forall x \in \bar{\Omega}_{n_{0}} \quad \forall n \geq n_{0} \quad\left|u_{n_{n}}^{(n)}(x)-u(x)\right| \leq \varepsilon,
$$

and by the strong convergence of $u_{n_{n}}^{n}$ to u in $\mathcal{C}^{0}\left(B_{n_{0}}(0)\right)$,

$$
\exists n_{1}>0 \quad \text { such that } \forall n \geq n_{1}, \quad \forall x \in B_{n_{0}}(0), \quad\left|u_{n_{n}}^{(n)}(x)-u(x)\right| \leq \varepsilon .
$$

To finish the proof of the compactness of Y_{λ}, we have to check that u belongs to Y_{λ}. Since $V_{n_{n}}=\frac{\Delta u_{n n}^{(n)}}{u_{n_{n}}^{(n)}}-q+\lambda$, it follows that $V_{n_{n}} \rightarrow V$ locally in $\mathcal{C}^{0, \alpha}\left(\mathbb{R}^{N}\right)$, where $0 \leq V \leq 1$. Hence u satisfy the equation

$$
(\mathcal{A}-\lambda+V) u=0 \quad \text { in } \mathbb{R}^{N},
$$

and $u \in Y_{\lambda}$.

Now, for every nonzero, nonnegative, bounded function V and any $t>0$, we define the operator \mathcal{A}_{t},

$$
\mathcal{A}_{t}:=-\Delta+q+t V
$$

The potential $q_{t}=q+t V$ has the same properties as q, so the operator \mathcal{A}_{t} has the same properties than \mathcal{A}. This operator \mathcal{A}_{t} possesses an infinite sequence of positive eigenvalues, and the first one, denote by $\lambda_{V}(t)$, is given by

$$
\begin{equation*}
\lambda_{V}(t)=\inf \left\{\int_{\mathbb{R}^{N}}|\nabla u|^{2}+q_{t}(x)|u|^{2} d x: u \in V_{q} \text { with }\|u\|_{L^{2}\left(\mathbb{R}^{N}\right)}=1\right\} \tag{32}
\end{equation*}
$$

The eigenvalue $\lambda_{V}(t)>0$ is simple with the eigenspace spanned by an eigenfunction $\varphi_{V, t} \in$ $\mathcal{D}\left(\mathcal{A}_{t}\right)$ satisfying $\varphi_{V, t}>0$ throughout \mathbb{R}^{N} and $\left\|\varphi_{V, t}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}=1$. The following properties of the curve $\left\{\left(t, \lambda_{V}(t)\right) \mid t>0\right\}$ are easy to check with the characterization (32). The function $\lambda(t)$ is a continuous increasing concave function of t such that $\lambda_{V}(t) \rightarrow \lambda_{1}$ as $t \rightarrow 0$. Furthermore, if $V_{1} \leq V \leq V_{2}$, then

$$
\begin{equation*}
\lambda_{V_{1}}(t) \leq \lambda_{V}(t) \leq \lambda_{V_{2}}(t) \tag{33}
\end{equation*}
$$

Fix $f \in X \cap \mathcal{C}^{0, \alpha}\left(\mathbb{R}^{N}\right), f \geq 0$, by (iii),

$$
\begin{equation*}
V_{1}:=C^{-1} \frac{f}{\varphi_{1}} \leq \frac{f}{u} \leq V_{2}:=C \frac{f}{\varphi_{1}} \tag{34}
\end{equation*}
$$

for every $u \in Y_{\lambda}$ and $\lambda_{1}<\lambda \leq \lambda_{1}+1$.
It follows, from the properties of the function $\lambda_{V}(t)$, that there exists δ_{0}, such that for every $u \in Y_{\lambda}$ with $\lambda_{1}<\lambda \leq \lambda_{1}+\delta_{0}$, there exist a unique t_{λ} and a unique eigenfunction φ of the equation

$$
\mathcal{A}_{t_{\lambda}} \varphi-\lambda \varphi=\left(-\Delta+q+t_{\lambda} \frac{f}{u}-\lambda\right) \varphi=0
$$

wich satisfy $\varphi(0)=\varphi_{1}(0)$. We define then the mapping T_{λ} by $T_{\lambda}(u)=\varphi$.
We prove now that there exists $\delta>0$ (depending only on f) such that for every $\lambda \in$ $\left(\lambda_{1}, \lambda_{1}+\delta\right)$ we have $T_{\lambda}: Y_{\lambda} \rightarrow Y_{\lambda}$. By (34) we know that there exists some $\varepsilon>0$ such that

$$
|t| \leq \varepsilon \quad \Rightarrow \quad t \frac{f}{u} \leq t V_{2} \leq 1
$$

Since the function $\lambda_{V_{1}}(t)$ is invertible, with a continuous inverse, there exists $\delta>0$ such that

$$
0<\lambda_{V_{1}}(t)-\lambda_{1}<\delta \quad \Rightarrow 0<t<\varepsilon
$$

Using (33), $\lambda_{V_{1}}\left(t_{\lambda}\right) \leq \lambda_{V}\left(t_{\lambda}\right)=\lambda$, so if $0<\lambda-\lambda_{1}<\delta$ then $t_{\lambda} \leq \varepsilon$. Thus $T_{\lambda}(u)=\varphi \in Y_{\lambda}$. The mapping T_{λ} is continuous. If a sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \in Y_{\lambda}$ converge to $u \in Y_{\lambda}$ in $\mathcal{C}^{0}\left(\mathbb{R}^{N}\right)$, the corresponding sequence $\left(v_{n}=T_{\lambda}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ converge to $v=T_{\lambda}(u)$ in $\mathcal{C}^{0}\left(\mathbb{R}^{N}\right)$. Indeed, the
sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is in the compact set Y_{λ} and any convergent subsequence clearly converges to $v=T_{\lambda}(u)$.

Applying the Schauder-Tychonoff fixed point theorem to the operator T_{λ}, we conclude that there exist $t_{\lambda}>0$ and $u_{\lambda} \in Y_{\lambda}$ such that u_{λ} is a positive solution of the equation

$$
\left(\mathcal{A}-\lambda+t_{\lambda} \frac{f}{u_{\lambda}}\right) u_{\lambda}=0 \text { in } \mathbb{R}^{N} .
$$

So the function $u=-\frac{u_{\lambda}}{t_{\lambda}}$ is the negative solution of the equation

$$
-\Delta u+q(x) u-\lambda u=f \text { in } \mathbb{R}^{n}
$$

and this function satisfy the φ_{1}-negativity,

$$
u \leq-\frac{C^{-1}}{t_{\lambda}} \varphi_{1}
$$

References

[1] Alziary, B., Fleckinger, J., and Takáč, P. : An extension of maximum and antimaximum principles to a Schrödinger equation in \mathbb{R}^{2}. J. Differential Equations (1999), accepted
[2] Alziary, B., Fleckinger, J., and Takáč, P. : Positivity and negativity of solutions to a Schrödinger equation in \mathbb{R}^{N}. Positivity 5, 359-382 (2001)
[3] Alziary, B., and Takáč, P. : A pointwise lower bound for positive solutions of a Schrödinger equation in \mathbb{R}^{N}. J. Differential Equations 133(2), 280-295 (1997)
[4] Clément, Ph., and Peletier, L. A. : An anti-maximum principle for second order elliptic operators. J. Differential Equations 34, 218-229 (1979)
[5] Fleckinger, J., Gossez, J.-P., Takáč, P., and de Thélin, F. : Existence, nonexistence et principe de l'antimaximum pour le p-laplacien. Comptes Rendus Acad. Sc. Paris, Série I, 321, 731-734 (1995)
[6] Fleckinger, J., Gossez, J.-P., Takáč, P., and de Thélin, F. : Nonexistence of solutions and an anti-maximum principle for cooperative systems with the p-Laplacian. Math. Nachrichten 194, 49-78 (1998)
[7] Gilbarg, D., and Trudinger, N. S. : "Elliptic Partial Differential Equations of Second Order". Springer-Verlag, New York-Berlin-Heidelberg, 1977
[8] Pinchover, Y. : Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations. Math. Ann. 314, 555590 (1999)
[9] Pinchover, Y. : Maximum and anti-maximum principles, in R. Weikard and G. Weinstein, (eds.). Differential Equations and Mathematical Physics, Proceeding of an International Conference, 285-300 (1999)
[10] Protter, M. H., and Weinberger, H. F. : "Maximum Principles in Differential Equations". Springer-Verlag, New York-Berlin-Heidelberg, 1984
[11] Reed, M., and Simon, B. : "Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness". Academic Press, Inc., Boston, 1975
[12] Reed, M., and Simon, B. : "Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators". Academic Press, Inc., Boston, 1978
[13] Sweers, G. : Strong positivity in $C(\bar{\Omega})$ for elliptic systems. Math. Z. 209, 251-271 (1992)
[14] Takáč, P. : An abstract form of maximum and anti-maximum principles of Hopf's type. J. Math. Anal. Appl. 201, 339-364 (1996)
received: April 12, 2005

Authors:

Bénédicte Alziary
CEREMATH and UMR MIP
Université des Sciences Sociales
21 Allée de Brienne,
F-31042 Toulouse Cedex,
France
e-mail: alziary@univ-tlse1.fr

Naziha Besbas
CEREMATH and UMR MIP
Université des Sciences Sociales
21 Allée de Brienne, F-31042 Toulouse Cedex, France

Manfred Krüppel

On the Zeros of an Infinitely Often Differentiable Function and their Derivatives

Abstract

In this paper, we investigate the structure of an infinitely often differentiable real function f defined on the interval $[0,1]$. We show that for such a function the set $\left\{t: \exists n \in \mathbb{N}_{0}: f^{(n)}(t)=0, f^{(n+1)}(t) \neq 0\right\}$ is at most countable, and if f is not a polynomial then the set $\left\{t: f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_{0}\right\}$ has the power \mathbf{c}.

KEY WORDS. C^{∞}-functions, derivatives of higher order, Cantor sets, Theorem of CantorBendixsohn, sets of first category.

In this paper we investigate real functions f on $[0,1]$ which are infinitely often differentiable, where in the endpoints we consider the one-side derivatives. For such a given f we define the sets

$$
\begin{equation*}
E=\left\{t: \exists n \in \mathbb{N}_{0}: f^{(n)}(t)=0\right\} \tag{1}
\end{equation*}
$$

and their complement

$$
\begin{equation*}
D=\left\{t: f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_{0}\right\} \tag{2}
\end{equation*}
$$

i.e. $E \cup D=[0,1]$. Obviously, if f is a polynomial then $E=[0,1]$. But it holds also the conversion:

Theorem 1 ([3], [5]) Let f be an infinitely often differentiable real function over $[0,1]$. If $E=[0,1]$ then f is a polynomial.

Obviously, for a polynomial f the set D from (2) is empty, so that $D=\emptyset$ if and only if f is a polynomial according to Theorem 1. In this paper we investigate the case $D \neq \emptyset$ and prove a general assertion concerning the structure of an infinitely often differentiable real function (Proposition 3). Theorem 1 is an immediately consequence of Proposition 3. The main results of this note are Theorem 6 and 7 which are proved by means of Proposition 3. In order to prove Proposition 3 we need some preparations.

Lemma 2 Every closed set $F \subseteq[0,1]$ has a unique representation as union of three disjoint sets

$$
\begin{equation*}
F=A_{0} \cup B_{0} \cup C_{0} \tag{3}
\end{equation*}
$$

where A_{0} is an open set, B_{0} is a nowhere dense perfect set and C_{0} is at most countable, where A_{0}, B_{0} and C_{0} can be empty.

Proof: We assume that the closed set F is not countable. Then, owing to the Theorem of Cantor-Bendixsohn, cf. [6], p. 55, it is representable in the form

$$
F=P_{0} \cup Q_{0}
$$

where P_{0} is a nonempty perfect set and where Q_{0} is at most countable. If P_{0} is nowhere dense then it follows (3) with $A_{0}=\emptyset, B_{0}=P_{0}$ and $C_{0}=Q_{0}$. Assume that P_{0} is dense in the intervals $\left[a_{n}, b_{n}\right]\left(n \in \mathbb{N}_{0}\right)$ where these intervals are maximal then we put

$$
\begin{equation*}
A_{0}=\bigcup_{n}\left(a_{n}, b_{n}\right) \tag{4}
\end{equation*}
$$

which is an open set with $A_{0} \subseteq P_{0}$ since P_{0} is closed. Consequently, the set $F_{1}=P_{0} \backslash A_{0}$ is nowhere dense and closed, and it holds $A_{0} \cap F_{1}=\emptyset$. If F_{1} is countable then (3) is valid with A_{0} from (4), $B_{0}=\emptyset$ and $C_{0}=F_{1} \cup Q_{0}$. If the closed set F_{1} is not countable then, again by the Theorem of Cantor-Bendixsohn, it is representable as

$$
F_{1}=P_{1} \cup Q_{1}
$$

where P_{1} is a nonempty perfect set and where Q_{1} is at most countable. In this case (3) is valid with A_{0} from (4), $B_{0}=P_{1}$ and $C_{0}=Q_{0} \cup Q_{1}$.

Assume that besides of (3) for F there exist a further representation

$$
\begin{equation*}
F=A_{1} \cup B_{1} \cup C_{1} . \tag{5}
\end{equation*}
$$

If $A_{0} \neq A_{1}$ then we can assume that there exist a point $x_{0} \in A_{0} \backslash A_{1}$. This means that there exist an interval $(\alpha, \beta) \subset A_{0} \backslash A_{1}$. Since $F \backslash A_{1}=B_{1} \cup C_{1}$ is a set of first category and (α, β) is a set of second category by a Theorem of Baire, cf. e.g. [4], the relation $(\alpha, \beta) \subseteq F \backslash A_{1}$ is impossible. This implies that the case $A_{0} \neq A_{1}$ cannot be. In the case $A_{0}=A_{1}$ the set $P=F \backslash A_{0}=F \backslash A_{1}$ is closed. Therefore it holds $B_{0}=B_{1}$ since this set is exactly equal to the set of all points of condensation of P, cf. [6]. Finally, it follows $C_{0}=C_{1}$, too

On the structure of an infinitely often differentiable function we have the

Proposition 3 Let f be an infinitely often differentiable real function over $[0,1]$. Then the set E of all points t for which there exists an integer $n \in \mathbb{N}_{0}$ such that $f^{(n)}(t)=0$ has a unique representation as union of three disjoint sets

$$
\begin{equation*}
E=A \cup B \cup C \tag{6}
\end{equation*}
$$

which have the following form: A is an open set, i.e.

$$
\begin{equation*}
A=\bigcup_{j}\left(\alpha_{j}, \beta_{j}\right) \tag{7}
\end{equation*}
$$

B is the union of at most countably many nowhere dense perfect sets B_{n} with $B_{n} \subseteq B_{n+1}$, and C is at most countable, where A, B and C can be empty. In the case $A \neq \emptyset$ the function f is a polynomial on each interval $\left[\alpha_{j}, \beta_{j}\right]$.

Proof: Obviously, E is the union of the sets $E_{n}=\left\{t: f^{(n)}(t)=0\right\}\left(n \in \mathbb{N}_{0}\right)$, which are closed owing to the continuity of $f^{(n)}$. Hence, according to Lemma 2 for each $n \in \mathbb{N}_{0}$ the set E_{n} is representable as union of three disjoint sets

$$
\begin{equation*}
E_{n}=A_{n} \cup B_{n} \cup C_{n} \tag{8}
\end{equation*}
$$

where A_{n} is an open set, B_{n} is a nowhere dense perfect set and C_{n} is at most countable, where A_{n}, B_{n} and C_{n} can be empty. Hence, for the union E of all E_{n} is representable as (6) where A and B are the union of all A_{n}, B_{n}, respectively, and

$$
C=\bigcup_{n} C_{n} \backslash(A \cup B)
$$

is at most countable. Thus A is an open set which has the form (7) where the components (α_{i}, β_{i}) are pairwise disjoint, and $A \cap C=B \cap C=\emptyset$.

For $t \in A_{n}$ and $t \in B_{n}$ we have $f^{(n+1)}(t)=0$ so that $A_{n} \subseteq A_{n+1}$ and $B_{n} \subseteq B_{n+1}$, respectively. Hence, $A_{n} \cap B_{n}=\emptyset$ for all n implies that $A \cap B=\emptyset$, too.

The sets A_{n}, B_{n} and C_{n} are unique determined according to Lemma 2. This implies the uniqueness of A, B and C in (6).

Finally let be $A \neq \emptyset$. We remember that $A_{m} \subseteq A_{n}$ for $n>m$. Assume that $I_{n}=\left(a_{n}, b_{n}\right)$ and $I_{m}=\left(a_{m}, b_{m}\right)$ are components of A_{n} and A_{m}, respectively, then either $I_{n}=I_{m}$ or $\bar{I}_{n} \cap \bar{I}_{m}=\emptyset$. This follows from the fact that $f^{(n-1)}(t)=c \neq 0$ for $t \in \bar{I}_{n}$ and $f^{(n-1)}(t)=0$ for $t \in \bar{I}_{m}$. Consequently, f is a polynomial on each interval $\left[\alpha_{j}, \beta_{j}\right]$.

Remarks 4 1. In case $E=[0,1]$ we have $A=(0,1), C=\{0,1\}$, and f is a polynomial on $[0,1]$ so that Theorem 1 is a consequence of Proposition 3.
2. In case $A \neq \emptyset$ the endpoints of each component $\left(\alpha_{i}, \beta_{i}\right)$ belong to E. Between two intervals $\left(\alpha_{i}, \beta_{i}\right),\left(\alpha_{j}, \beta_{j}\right)$ of A there exists at least one point $t_{0} \notin E$. If namely $\left(\alpha_{i}, \beta_{j}\right) \subseteq E$ where $\alpha_{i}<\alpha_{j}$ then, owing to Theorem 1, the function f is equal to a polynomial of degree n. Hence, $\left(\alpha_{i}, \beta_{j}\right) \subseteq A_{n}$ which is impossible in view of the unique representation of A_{n} according to Proposition 3.

Let us consider some examples for the different possibilities of the sets E, A, B, C in Proposition 3. Obviously, if f is a polynomial then $E=[0,1], A=(0,1), B=\emptyset$ and $C=\{0,1\}$, but also the case $E=\emptyset$ is possible, e.g. for $f(t)=e^{t}$. For further possibilities let us consider the homogeneous integral-functional equation

$$
\begin{equation*}
\phi(t)=b \int_{a t-a+1}^{a t} \phi(\tau) d \tau \quad\left(b=\frac{a}{a-1}\right) \tag{9}
\end{equation*}
$$

with the real variable t and a parameter $a>1$, cf. [1], [2]. The solutions of (9) were studied for $a=3$ in Wirsching [9], for $a=2$ in Schnabl [7] and Volk [8], and for $a>\frac{3}{2}$ in Wirsching [10]. In [1] it was shown that for $a>1$ equation (9) has a C^{∞}-solution with the support $[0,1]$ which is uniquely determined by the normalization

$$
\begin{equation*}
\int_{0}^{1} \phi(t) d t=1 . \tag{10}
\end{equation*}
$$

In case $a=2$ the solution ϕ has the property $\phi^{(n)}(t)=0$ if and only if $t=\frac{k}{2^{n}}$ with $k \in 0,1, \ldots, 2^{n}$, cf. [2], formula (4.8), so that in this case we have $A=B=\emptyset$ and C is the countable set of all dyadic rational numbers in $[0,1]$. In case $a>2$ the solution ϕ is a polynomial on each component of an open Cantor set G with Lebesgue measure $|G|=1$, and the set of all $t \notin G$ with $\phi^{(n)}(t)=0$ with a certain $n \in \mathbb{N}$ is countable, cf. formula (4.7) in [2]. Hence, in this case we have $A=G$, i.e. $\bar{A}=[0,1], B=\emptyset$ and C is the set of all endpoints of the components of G.

The following example shows that also the case $B \neq \emptyset$ is possible.
Example 5 Let f_{0} be any infinitely often differentiable function over $[0,1]$ with $f_{0}(t)>0$ for $0<t<1$ and $f_{0}^{(k)}(0)=f_{0}^{(k)}(1)=0$ for all $k \in \mathbb{N}_{0}$, e.g.

$$
\begin{equation*}
f_{0}(t)=e^{\frac{1}{t(1-t)}} . \tag{11}
\end{equation*}
$$

For a given nowhere dense perfect set $B_{0} \subseteq[0,1]$ with $0,1 \in B_{0}$ the open complement $G=[0,1] \backslash B_{0}$ is representable as union of pairwise disjoint intervals $\left(a_{j}, b_{j}\right)(j \in \mathbb{N})$. We define a function f by $f(t)=0$ for $t \in B_{0}$ and by

$$
f(t)=c_{j} f_{0}\left(\frac{t-a_{j}}{b_{j}-a_{j}}\right)
$$ for $a_{j}<t<b_{j}$, and

$$
\begin{equation*}
c_{j}=\frac{1}{j M_{j}} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{j}=\max _{k \in\{0, \ldots, j\}} \max _{a_{j}<t<b_{j}} \frac{1}{\left(b_{j}-a_{j}\right)^{k} \min \left(t-a_{j}, b_{j}-t\right)}\left|f_{0}^{(k)}\left(\frac{t-a_{j}}{b_{j}-a_{j}}\right)\right| . \tag{13}
\end{equation*}
$$

The number M_{j} exists in view of the continuity of $f_{0}^{(k)}$ and $f_{0}^{(k+1)}(0)=f_{0}^{(k+1)}(1)=0$ so that $c_{j}>0$ for all j. Consequently, it holds $E_{0}=B_{0}$. Obviously, for $a_{j}<t<b_{j}$ and $k \in \mathbb{N}_{0}$ it holds

$$
\begin{equation*}
f^{(k)}(t)=\frac{c_{j}}{\left(b_{j}-a_{j}\right)^{k}} f_{0}^{(k)}\left(\frac{t-a_{j}}{b_{j}-a_{j}}\right) . \tag{14}
\end{equation*}
$$

We show by induction with respect to k that $f^{(k)}(t)=0$ for $t \in B_{0}$. This is true for $k=0$ according to the definition of f. Assume that this is true for a fixed k. Let $t_{0} \in B_{0}$ and $t_{n} \neq t_{0}$ a sequence which converges to t_{0}. If $t_{n} \in B_{0}$ then

$$
\frac{f^{(k)}\left(t_{n}\right)-f^{(k)}\left(t_{0}\right)}{t_{n}-t_{0}}=0
$$

Hence, it suffices to consider the case that $t_{n} \in[0,1] \backslash B_{0}$ for all $n \in \mathbb{N}$, i.e. $t_{n} \in\left(a_{j_{n}}, b_{j_{n}}\right)$. Obviously, we need to investigate only two cases: 1. the sequence j_{n} is bounded and 2. $j_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The first case is only possible if for $n \geq n_{0}$ all t_{n} belong to the same interval $\left(a_{j}, b_{j}\right)$ and t_{0} is an endpoint of $\left(a_{j}, b_{j}\right)$. Then we have

$$
\lim _{n \rightarrow \infty} \frac{f^{(k)}\left(t_{n}\right)-f^{(k)}\left(t_{0}\right)}{t_{n}-t_{0}}=0
$$

in view of $f_{0}^{(k+1)}(0)=f_{0}^{(k+1)}(1)=0$. In the second case we can choose an integer n_{0} such that $j_{n} \geq k$ for $n \geq n_{0}$. From (14) and $f^{(k)}\left(t_{0}\right)=0$ we obtain

$$
\left|\frac{f^{(k)}\left(t_{n}\right)-f^{(k)}\left(t_{0}\right)}{t_{n}-t_{0}}\right|=\frac{c_{j_{n}}}{\left(b_{j_{n}}-a_{j_{n}}\right)^{k}\left|t_{n}-t_{0}\right|}\left|f_{0}^{(k)}\left(\frac{t_{n}-a_{j_{n}}}{b_{j_{n}}-a_{j_{n}}}\right)\right| .
$$

Since $\left|t_{0}-t_{n}\right| \geq \min \left(t_{n}-a_{j_{n}}, b_{j_{n}}-t_{n}\right)$ we get for $n \geq n_{0}$ in view of (12), (13) and $k \leq j_{n}$ that

$$
\left|\frac{f^{(k)}\left(t_{n}\right)-f^{(k)}\left(t_{0}\right)}{t_{n}-t_{0}}\right| \leq \frac{1}{j_{n}} \rightarrow 0
$$

for $n \rightarrow \infty$. Altogether we obtain $f^{(k+1)}\left(t_{0}\right)=0$. According to Proposition 3 it holds $B_{0} \subseteq B$ so that here we have an example for an infinitely often differentiable function f with $B \neq \emptyset$.

Theorem 6 Let f be an infinitely often differentiable real function over $[0,1]$. Then the set $M=\left\{t: \exists n \in \mathbb{N}_{0}: f^{(n)}(t)=0, f^{(n+1)}(t) \neq 0\right\}$ is at most countable.

Proof: For $n \in \mathbb{N}_{0}$ let M_{n} the set of all points $t \in[0,1]$ with $f^{(n)}(t)=0$ and $f^{(n+1)}(t) \neq 0$. Hence, $M_{n} \subseteq E_{n}$ with the notations of Proposition 3, cf. (8), where A_{n} is an open set. Let (α, β) be a component of A_{n} then f is a polynomial of degree m. Hence, for $n<m$ the number of points $t \in(\alpha, \beta)$ with $f^{(n)}(t)=0$ is finite and for $n \geq m$ there is no point with $f^{(n+1)}(t) \neq 0$. It follows that $M_{n} \cap A_{n}$ is at most countable. For $t \in B_{n}$ we have $f^{(n+1)}(t)=0$ so that $M_{n} \cap B_{n}=\emptyset$, i.e. $M_{n} \subseteq A_{n} \cap C_{n}$. It follows that M is at most countable

Obviously, for a polynomial f the set $D=\left\{t: f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_{0}\right\}$ is empty.
Theorem 7 Let f be an infinitely often differentiable real function over $[0,1]$. If f is not a polynomial then the set $D=\left\{t: f^{(n)}(t) \neq 0, \forall n \in \mathbb{N}_{0}\right\}$ has the power \mathbf{c}.

Proof: Let D be a nonempty set. We apply Proposition 3 with the introduced notations. Obviously, the set D is the complement of E so that $E \subset[0,1]$ since $D \neq \emptyset$. We consider two cases:

1. Assume that there exists an interval $I=(a, b)$ without points of A. Then according to Proposition 3 it holds the disjoint decomposition

$$
I=(I \cap B) \cup(I \cap C) \cup(I \cap D)
$$

where the first and the second set on the right-hand side are sets of first category. Consequently, $I \cap D$ is a set of second category and so D has the power c, cf. [4], 10.12 .
2. Assume that $[0,1] \backslash A$ is nowhere dense in $[0,1]$, i.e. $\bar{A}=[0,1]$ where because of $D \neq \emptyset$ the case $A=(0,1)$ is excluded in view of Remark 4.1. It follows from Proposition 3 that A is the union of countably many open intervals (α_{i}, β_{i}) which are pairwise disjoint, cf. (7). Hence, the set $[0,1] \backslash A$ is a nowhere dense perfect set. Then there exists a continuous increasing function g with $g(0)=0, g(1)=1$ and $g(t)=g_{i}$ for $t \in\left(\alpha_{i}, \beta_{i}\right)$ with $g_{i} \neq g_{j}$ for $i \neq j$ where the countable set $g(A)$ of all g_{i} is dense in $[0,1]$, cf. Cantor's stair function. For the set

$$
A^{*}=\bigcup_{i}\left[\alpha_{i}, \beta_{i}\right]
$$

we have $g\left(A^{*}\right)=g(A)=\left\{g_{i}\right\}$ and the restriction of g to $[0,1] \backslash A^{*}$ is even strictly increasing and has the following property:
(i) The map $g:\left([0,1] \backslash A^{*}\right) \mapsto[0,1] \backslash g\left(A^{*}\right)$ is bijektive.

According to Remark 4 the set D from (2) is a subset of $[0,1] \backslash A^{*}$. Next we show that for all n the sets $g\left(B_{n}\right)$ are nowhere dense. Assume that there exists an n such that $g\left(B_{n}\right)$ is dense in an interval $\left(g_{i}, g_{j}\right)$ with $i \neq j$ then $\left[g_{i}, g_{j}\right] \subseteq g\left(B_{n}\right)$ since $g\left(B_{n}\right)$ is closed in view of the continuity of g. This implies owing to (i) that all points of the set $\left(\alpha_{i}, \beta_{j}\right) \backslash A$ belong to $B_{n} \subseteq E$ which is impossible, cf. Remark 4. Consequently, $g\left(B_{n}\right)$ is nowhere dense so that $g(B)$ is a set of first category. This is true also for the union $g(A) \cup g(B) \cup g(C)$ since $g(A)$ and $g(C)$ are at most countable sets. This implies that $g(D)$ is a set of second category so that it has the power cc, cf. [4]. Since $D \subseteq[0,1] \backslash A^{*}$ it follows from (i) that also the set D has the power \mathbf{c}

References

[1] Berg, L., and Krüppel, M. : On the solution of an integral-functional equation with a parameter. Z. Anal. Anw. 17, 159-181 (1998)
[2] Berg, L., and Krüppel, M. : Cantor sets and integral-functional equations. Z. Anal. Anw. 17, 997-1020 (1998)
[3] Boghossian, A., and Johnson, P. D. : Pointwise conditions for analycity and polynomiality of infinitely differentiable functions. J. Anal. Appl. 140, 301-309 (1989)
[4] Bögel, K., and Tasche, M. : Analysis in normierten Räumen. Akademie-Verlag Berlin, 1974
[5] Gale, D. : Mathematical entertainment. Math. Intell. 13.1, 42 (1991)
[6] Natanson, I.P. : Theorie der Funktionen einer reellen Veränderlichen. AkademieVerlag Berlin, 1969
[7] Schnabl, R. : Über eine C^{∞}-Funktion. In: E. Hlawka (Ed.): Zahlentheoretische Analysis. Lecture Notes in Mathematics 1114, 134-142 (1985)
[8] Volk, W. : Properties of subspaces generated by an infinitely often differentiable function and its translates. Z. Ang. Math. Mech. (ZAMM) 76 Suppl.1, 575-576 (1996)
[9] Wirsching, G. J. : The Dynamical System Generated by the $3 n+1$ Function. Lecture Notes in Mathematics 1681 (1998)
[10] Wirsching, G. J. : Balls in constrained urns and Cantor-like sets. Z. Anal. Anw. 17, 979-996 (1998)
received: May 30, 2005

Author:

Manfred Krüppel
Universität Rostock
Institut für Mathematik
18051 Rostock
Germany
e-mail: manfred.krueppel@uni-rostock.de

A Note on Iteratively Extendable Strings*

Abstract

This scientific note introduces the notion of an iteratively extendable string within a language. It demonstrates that every language that has such an iteratively extendable string z contains infinitely many strings whose length is divisible by the length of z. Some consequences and applications of this result are given.

KEY WORDS. Formal languages, Pumping lemmas, Primes

1 Introduction

Consider a language, L. A string of the form $u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}$ in L, where $v_{1} v_{2} \ldots v_{n}$ is non-empty, is iteratively extendable within L if $u_{0} v_{1}^{m} u_{1} v_{2}^{m} \ldots u_{n-1} v_{n}^{m} u_{n}$ is also in L, for every $m \geq 0$. In this scientific note, we prove that if there exists an iteratively extendable, z, within L, then L contains infinitely many strings whose length is divisible by the length of z. As a consequence of this, L contains infinitely many strings whose length differs from any prime. Thus, if there is a pumping lemma for a language family, such as the pumping lemma for the family of ETOL languages of finite index, then every infinite language in this family contains infinitely many strings whose length differs from any prime.

2 Definitions

This paper assumes that the reader is familiar with the theory of formal languages (see $[1,2,3,5])$. For an alphabet, V, V^{*} represents the free monoid generated by V under the operation of concatenation. The identity of V^{*} is denoted by ε. Set $V^{+}=V^{*}-$ $\{\varepsilon\}$; algebraically, V^{+}is thus the free semigroup generated by V under the operation of concatenation. For $w \in V^{*},|w|$ denotes the length of w.

[^2]Now, we introduce the notion of an iteratively extendable string within a language. Let $L \subseteq V^{*}$. A string $w \in L$ is iteratively extendable within L if $w=u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}$ for some $n \geq 1$, where $u_{i}, v_{j} \in V^{*}, 0 \leq i \leq n, 1 \leq j \leq n,\left|v_{1} v_{2} \ldots v_{n}\right| \geq 1$ and $u_{0} v_{1}^{m} u_{1} v_{2}^{m} \ldots u_{n-1} v_{n}^{m} u_{n} \in L$ for all $m \geq 0$.

3 Results

Theorem 3.1 Let L be a language over an alphabet V. For every iteratively extendable string $z \in L$, there exists an infinite language $L_{z} \subseteq L$ such that for each $x \in L_{z},|x|$ is divisible by $|z|$.

Proof: Let L be a language over an alphabet V. Let z be an iteratively extendable string in L. That is, $z=u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}$ for some $n \geq 1$, where $u_{i}, v_{j} \in V^{*}, 0 \leq i \leq n, 1 \leq j \leq n$, $\left|v_{1} v_{2} \ldots v_{n}\right| \geq 1$ and $u_{0} v_{1}^{m} u_{1} v_{2}^{m} \ldots u_{n-1} v_{n}^{m} u_{n} \in L$ for all $m \geq 0$. Set $L_{z}=\left\{u_{0} v_{1}^{j} u_{1} v_{2}^{j} \ldots u_{n-1} v_{n}^{j} u_{n}\right.$: $j=i .\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+1$ for $\left.i \geq 0\right\}$. Clearly, L_{z} is infinite and $L_{z} \subseteq L$. Consider any string $u_{0} v_{1}^{j} u_{1} v_{2}^{j} \ldots u_{n-1} v_{n}^{j} u_{n} \in L_{z}$ with $j=i .\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+1$ for some $i \geq 0$. Observe that $\left|u_{0} v_{1}^{j} u_{1} v_{2}^{j} \ldots u_{n-1} v_{n}^{j} u_{n}\right|=\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+\left|v_{1}^{j-1}\right|+\left|v_{2}^{j-1}\right|+\ldots+\left|v_{n}^{j-1}\right|=$ $\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+(j-1) \cdot\left|v_{1}\right|+(j-1) \cdot\left|v_{2}\right|+\ldots+(j-1) \cdot\left|v_{n}\right|=\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+$ $(j-1) .\left|v_{1} v_{2} \ldots v_{n}\right|=\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right|+i .\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right| \cdot\left|v_{1} v_{2} \ldots v_{n}\right|=$ $\left|u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}\right| \cdot\left(1+i .\left|v_{1} v_{2} \ldots v_{n}\right|\right)=|z| \cdot\left(1+i .\left|v_{1} v_{2} \ldots v_{n}\right|\right)$. Thus, Theorem 3.1 holds.

Corollary 3.2 Let L be a language and $z \in L$ be iteratively extendable string; then, L contains infinitely many strings whose length is divisible by $|z|$.

To demonstrate some applications of the previous corollary, recall that almost every textbook about formal languages proves that $\left\{a^{n}: n\right.$ is a prime $\}$ is not regular in a rather complex way (c.f. Example 3.2 in [1], Example 8.8 in [2], Example 4.1 .3 in [3], and Example 7.3 .2 in [5]). Notice, however, that Corollary 3.2 immediately implies this result because every infinite regular language contains infinitely many iteratively extendable strings as follows from the regular pumping lemma (see Section 4.1 in [3]). From a broader perspective, if there is a pumping lemma for a language family, then this family contains no infinite language in which the length of every string equals a prime, such as $\left\{a^{n}: n\right.$ is a prime $\}$. To illustrate, consider the pumping lemma for the family of ETOL languages of finite index (see Theorem 3.13 in [4]). That is, let $G=(V, P, S, \Sigma)$ be an ETOL system of index k (for some $k \geq 1$) and let $L(G)$ be infinite. Then, there exist positive integers e and \bar{e} such that, for every string w in $L(G)$ that is longer than e, there exists a positive integer $n \leq 2 k$ such that w can be written in the form $w=u_{0} v_{1} u_{1} v_{2} \ldots u_{n-1} v_{n} u_{n}$ with $\left|v_{i}\right|<\bar{e}$ for $1 \leq i \leq n,\left|v_{1} v_{2} \ldots v_{n}\right| \geq 1$ and for every positive integer m, the string $u_{0} v_{1}^{m} u_{1} v_{2}^{m} \ldots u_{n-1} v_{n}^{m} u_{n} \in L$. By Corollary 3.2 above, this family does not contain any infinite language in which the length of each string equals a prime.

References

[1] Hopcroft, J. E., and Ullman, J. D. : Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, 1979
[2] Martin, J. C. : Introduction to Languages and the Theory of Computation. McGrawHill, New York 1991
[3] Meduna, A. : Automata and Languages: Theory and Applications. Springer, London 2000
[4] Rozenberg, G., and Salomaa, A. : The Mathematical Theory of L Systems. Academic Press, New York 1980
[5] Sudkamp, T. A. : Languages and Machines. Addison-Wesley, Reading 1988
received: March 26, 2003

Authors:

Alexander Meduna
Brno University of Technology,
Faculty of Information Technology,
Department of Information Systems, Božetěchova 2, Brno 61266,
Czech Republic
e-mail: meduna@fit.vutbr.cz

Finite and conditional completeness properties of generalized ordered sets

ABSTRACT. In particular, we show that if X is a set equipped with a transitive relation \leq, then the following completeness properties are equivalent:
(1) $\operatorname{lb}(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$;
(2) $\inf (\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$, $\operatorname{lb}(A) \neq \emptyset$ and $\operatorname{ub}(A) \neq \emptyset$.

Thus, we obtain a substantial generalization of a basic theorem of Garrett Birkhoff which says only that in a conditionally complete lattice every nonempty subset which has a lower bound has a greatest lower bound.

KEY WORDS AND PHRASES. Generalized ordered sets, lower bound and infimum completenesses.

Introduction

Throughout this paper, X will denote an arbitrary set equipped with an arbitrary binary relation \leq. Thus, X may be considered as a generalized ordered set or an ordered set without axioms.

The set X will be called reflexive, transitive, antisymmetric and total if the relation \leq has the corresponding property. If X is total, then for any $x, y \in X$ we have either $x \leq y$ or $y \leq x$. Thus, in particular, X is reflexive.

[^3]For any $A \subset X$, the members of the families

$$
\operatorname{lb}(A)=\{x \in X: \quad \forall a \in A: \quad x \leq a\}
$$

and

$$
\operatorname{ub}(A)=\{x \in X: \quad \forall a \in A: \quad a \leq x\}
$$

are called the lower and upper bounds of A in X, respectively. And the members of the families

$$
\begin{array}{ll}
\min (A)=A \cap \mathrm{lb}(A), & \max (A)=A \cap \mathrm{ub}(A) \\
\inf (A)=\max (\mathrm{lb}(A)), & \sup (A)=\min (\mathrm{ub}(A))
\end{array}
$$

are called the minima, maxima, infima and suprema of A in X, respectively.
First, we show that the following extension of [2, Lemma 2.23, p. 46] is true.
Lemma If X is transitive, and moreover $A_{i} \subset X$ and $\inf \left(A_{i}\right) \neq \emptyset$ for all $i \in I$, then

$$
\mathrm{lb}\left(\bigcup_{i \in I} A_{i}\right)=\mathrm{lb}\left(\bigcup_{i \in I} \inf \left(A_{i}\right)\right) \quad \text { and } \quad \inf \left(\bigcup_{i \in I} A_{i}\right)=\inf \left(\bigcup_{i \in I} \inf \left(A_{i}\right)\right) .
$$

Then, by using this lemma, we show that the following generalization of [1, Theorem 9, p. 115] is also true.

Theorem If X is transitive, then the following completeness properties are equivalent:
(1) $\operatorname{lb}(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$;
(2) $\inf (\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$, $\mathrm{lb}(A) \neq \emptyset$ and $\mathrm{ub}(A) \neq \emptyset$.

Remark If in particular X is partially ordered, then by using the above lemma we also show that the following completeness properties are equivalent:
(1) $\inf (\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
(2) $\inf (A) \neq \emptyset$ for every finite, nonvoid subset A of X.

In this respect, it is noteworthy that to prove a counterpart of the above equivalence for lb instead of inf, the transitivity of the relation \leq is again sufficient.

1 Lower and upper bounds

Concerning lower and upper bounds, we shall only quote here the following simple theorems of [5].

Theorem 1.1 If $A_{i} \subset X$ for all $i \in I$, then

$$
\mathrm{lb}\left(\bigcup_{i \in I} A_{i}\right)=\bigcap_{i \in I} \mathrm{lb}\left(A_{i}\right)
$$

Corollary 1.2 If $A \subset B \subset X$, then $\operatorname{lb}(B) \subset \operatorname{lb}(A)$.

Proof: Note that $\mathrm{lb}(B)=\mathrm{lb}(A \cup B)=\mathrm{lb}(A) \cap \mathrm{lb}(B) \subset \mathrm{lb}(A)$.
Corollary 1.3 If $A \subset X$, then $\operatorname{lb}(A)=\bigcap_{a \in A} \operatorname{lb}(a)$, where $\operatorname{lb}(a)=\operatorname{lb}(\{a\})$.
Theorem 1.4 If $A, B \subset X$, then

$$
A \subset \mathrm{lb}(B) \quad \Longleftrightarrow \quad B \subset \mathrm{ub}(A)
$$

Corollary 1.5 If $A \subset X$, then $A \subset \mathrm{ub}(\mathrm{lb}(A))$.
Proof: Clearly, $\operatorname{lb}(A) \subset \operatorname{lb}(A)$. Hence, by Theorem 1.4, the required inclusion already follows.

Theorem 1.6 If $A \subset X$, then

$$
\min (A)=A \cap \inf (A) \quad \text { and } \quad \inf (A)=\operatorname{lb}(A) \cap \mathrm{ub}(\mathrm{lb}(A)) .
$$

Corollary 1.7 If $A \subset X$, then $\min (A) \subset \inf (A) \subset \operatorname{lb}(A) \subset \operatorname{lb}(\inf (A))$.

Proof: By Theorem 1.6, we have not only $\min (A) \subset \inf (A) \subset \mathrm{lb}(A)$, but also $\inf (A) \subset$ ub ($\mathrm{lb}(A)$. Hence, by Theorem 1.4, the required inclusion already follows.

The importance of reflexivity, totality and antisymmetry will only be illuminated here by the following basic theorems of [6].

Theorem 1.8 If $\Phi=\mathrm{lb}$, min or \inf, then the following assertions are equivalent:
(1) X is reflexive;
(2) $x \in \Phi(x)$ for all $x \in X$.

Theorem 1.9 The following assertions are equivalent:
(1) X is reflexive;
(2) $\min (x) \neq \emptyset$ for all $x \in X$;
(3) $\min (x)=\{x\}$ for all $x \in X$.

Theorem 1.10 The following assertions are equivalent:
(1) X is total;
(2) $\min (\{x, y\}) \neq \emptyset$ for all $x, y \in X$.

Theorem 1.11 If X is reflexive and $\Phi=\min$ or \inf, then the following assertions are equivalent:
(1) X is antisymmetric;
(2) $\operatorname{card}(\Phi(A)) \leq 1$ for all $A \subset X$.

Corollary 1.12 If X is reflexive and antisymmetric, then $\inf (x)=\{x\}$ for all $x \in$ X.

2 The importance of transitivity

Concerning the importance of transitivity, we shall only quote here the following basic theorems of [6]. Hints for the proofs are included only for the reader's convenience.

Theorem 2.1 The following assertions are equivalent:
(1) X is transitive;
(2) $y \in \operatorname{lb}(x)$ and $z \in \operatorname{lb}(y)$ imply $z \in \operatorname{lb}(x)$ for all $x, y, z \in X$;
(3) $B \subset \operatorname{lb}(A)$ and $C \subset \bigcup_{b \in B} \operatorname{lb}(b)$ imply $C \subset 1 b(A)$ for all $A, B \subset X$.

Proof: To prove the less obvious implication $(2) \Longrightarrow(3)$, suppose that (2) and the conditions of (3) hold. If $c \in C$, then since $C \subset \bigcup_{b \in B} \mathrm{ub}(b)$ there exists $b \in B$ such that $c \in \mathrm{lb}(b)$. Moreover, if $a \in A$, then since $b \in B \subset \mathrm{lb}(A)$ we have $b \in \mathrm{lb}(a)$. Hence, by using (2), we can already infer that $c \in \operatorname{lb}(a)$. Now, since $a \in A$ and $c \in C$ were arbitrary, it is clear that $c \in \operatorname{lb}(A)$, and thus $C \subset \mathrm{lb}(A)$. Therefore, (3) also holds.

From the above theorem, it is clear that in particular we also have

Corollary 2.2 If X is transitive, then $x \in \operatorname{lb}(A)$ and $y \in \operatorname{lb}(x)$ imply $y \in \operatorname{lb}(A)$ for all $A \subset X$ and $x, y \in X$.

Theorem 2.3 If X is transitive, then

$$
\operatorname{lb}(x)=\operatorname{lb}(A) \quad \text { for all } \quad A \subset X \quad \text { and } \quad x \in \inf (A) .
$$

Proof: If $x \in \inf (A)$, then by Corollaries 1.7 and 1.2 we have $\mathrm{lb}(A) \subset \operatorname{lb}(\inf (A)) \subset \mathrm{lb}(x)$ even if X is not transitive.

Moreover, if $x \in \inf (A)$, then Corollary 1.7 we also have $x \in \operatorname{lb}(A)$. Hence, by Corollary 2.2 , it is clear $y \in \mathrm{lb}(x)$ implies $y \in \mathrm{lb}(A)$. Therefore, $\mathrm{lb}(x) \subset \mathrm{lb}(A)$ is also true.

Corollary 2.4 If X is transitive, then

$$
\mathrm{lb}(A)=\operatorname{lb}(\inf (A)) \quad \text { for all } \quad A \subset X \quad \text { with } \quad \inf (A) \neq \emptyset
$$

Proof: By Theorems 1.1 and 2.3, it is clear that

$$
\mathrm{lb}(\inf (A))=\bigcap_{x \in \inf (A)} \mathrm{lb}(x)=\bigcap_{x \in \inf (A)} \mathrm{lb}(A)=\mathrm{lb}(A) .
$$

Now, in addition to the results of [6], we can also easily prove the following
Theorem 2.5 If X is transitive and $A_{i} \subset X$ for all $i \in I$, then
(1) $\mathrm{lb}\left(\bigcup_{i \in I} A_{i}\right)=\mathrm{lb}\left(\left(\bigcup_{i \in J} A_{i}\right) \cup\left(\bigcup_{i \in I \backslash J} \inf \left(A_{i}\right)\right)\right)$,
(2) $\inf \left(\bigcup_{i \in I} A_{i}\right)=\inf \left(\left(\bigcup_{i \in J} A_{i}\right) \cup\left(\bigcup_{i \in I \backslash J} \inf \left(A_{i}\right)\right)\right)$,
where $J=\left\{i \in I: \quad \inf \left(A_{i}\right)=\emptyset\right\}$.
Proof: By Theorem 1.1 and Corollary 2.4, we have

$$
\begin{aligned}
& \operatorname{lb}\left(\bigcup_{i \in I} A_{i}\right)=\bigcap_{i \in I} \operatorname{lb}\left(A_{i}\right)= \\
& \left(\bigcap_{i \in J} \operatorname{lb}\left(A_{i}\right)\right) \cap\left(\bigcap_{i \in I \backslash J} \operatorname{lb}\left(A_{i}\right)\right)=\left(\bigcap_{i \in J} \operatorname{lb}\left(A_{i}\right)\right) \cap\left(\bigcap_{i \in I \backslash J} \operatorname{lb}\left(\inf \left(A_{i}\right)\right)\right)= \\
& \operatorname{lb}\left(\bigcup_{i \in J} A_{i}\right) \cap \operatorname{lb}\left(\bigcup_{i \in J} \inf \left(A_{i}\right)\right)=\operatorname{lb}\left(\left(\bigcup_{i \in J} A_{i}\right) \cup\left(\bigcup_{i \in I \backslash J} \inf \left(A_{i}\right)\right)\right) .
\end{aligned}
$$

Hence, by the definition of inf, it is clear that (2) is also true.
From Theorem 2.5, we can at once get the following generalization of the second part of [2, Lemma 2.23, p. 46].

Corollary 2.6 If X is transitive, and moreover $A_{i} \subset X$ and $\inf \left(A_{i}\right) \neq \emptyset$ for all $i \in I$, then
(1) $\mathrm{lb}\left(\bigcup_{i \in I} A_{i}\right)=\operatorname{lb}\left(\bigcup_{i \in I} \inf \left(A_{i}\right)\right)$;
(2) $\inf \left(\bigcup_{i \in I} A_{i}\right)=\inf \left(\bigcup_{i \in I} \inf \left(A_{i}\right)\right)$.

3 Finite lower bound completenesses

Definition 3.1 We say that
(1) X is two-lb-complete if $\operatorname{lb}(\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
(2) X is two-inf-complete if $\inf (\{x, y\}) \neq \emptyset$ for all $x, y \in X$;
(3) X is finitely quasi-lb-complete if $\operatorname{lb}(A) \neq \emptyset$ for all finite, nonvoid subset A of X;
(4) X is finitely quasi-inf-complete if $\inf (A) \neq \emptyset$ for all finite, nonvoid subset A of X.

Remark 3.2 By Corollary 1.7, it is clear that 'two-inf-completeness' implies 'two-lb-completeness', and 'finite quasi-inf-completeness' implies 'finite quasi-lb-completeness'.

Moreover, by using the well-orderedness of the set \mathbb{N} of all natural numbers, we can prove the following

Theorem 3.3 If X is transitive, then the following assertions are equivalent:
(1) X is two-lb-complete;
(2) X is finitely quasi-lb-complete.

Proof: By Definition 3.1, it is clear that $(2) \Longrightarrow(1)$ even if X is not partially ordered.
To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not hold. That is, $\operatorname{lb}(\{x, y\}) \neq \emptyset$ for all $x, y \in X$, and $\operatorname{lb}(A)=\emptyset$ for some finite, nonvoid subset A of X.

Denote by \mathcal{A} the family of all finite, nonvoid subsets A of X such that $\operatorname{lb}(A)=\emptyset$. Then, by the above assumptions, it is clear that $\mathcal{A} \neq \emptyset$ and $\operatorname{card}(A)>2$ for all $A \in \mathcal{A}$. Define

$$
M=\{\operatorname{card}(A): \quad A \in \mathcal{A}\} .
$$

Then, we evidently have $\emptyset \neq M \subset \mathbb{N}$ such that $1 \notin M$ and $2 \notin M$.

Hence, since \mathbb{N} is well-ordered, we can infer that $\min (M) \neq \emptyset$. Therefore, there exists $n \in \min (M)$. This implies that $n \in M$ and $n \in \operatorname{lb}(M)$. Hence, it is clear that $2<n \in \mathbb{N}$ such that $n \leq m$ for all $m \in M$. Moreover, we can also state that there exists $A \in \mathcal{A}$ such that $n=\operatorname{card}(A)$.

Thus, we can choose $a \in A$, and define $B=A \backslash\{a\}$. Then, it is clear that B is a finite nonvoid subset of X such that $k=\operatorname{card}(B)<\operatorname{card}(A)=n$. Therefore, $\operatorname{lb}(B) \neq \emptyset$ also holds. Namely, $\mathrm{lb}(B)=\emptyset$ would imply that $B \in \mathcal{A}$. Hence, we could infer that $k=\operatorname{card}(B) \in M$, and thus $n \leq k$, which would be a contradiction.

Now, we can choose $\beta \in \mathrm{lb}(B)$ and $\gamma \in \operatorname{lb}(\{a, \beta\})$. Then, by Theorem 1.1, it is clear that $\gamma \in \mathrm{lb}(a)$ and $\gamma \in \mathrm{lb}(\beta)$. Hence, by using Corollary 2.2, we can infer that $\gamma \in \mathrm{lb}(B)$. Therefore, by Theorem 1.1, we also have $\gamma \in \mathrm{lb}(a) \cap \mathrm{lb}(B)=\mathrm{lb}(\{a\} \cup B)=\mathrm{lb}(A)$. This contradiction proves that $(1) \Longrightarrow(2)$.

A particular case of the following theorem is usually considered to be quite obvious in the advanced theory of lattices. The proofs given here and in [4, p. 40] show that this attitude cannot be completely justified.

Theorem 3.4 If X is partially ordered, then the following assertions are equivalent:
(1) X is two-inf-complete;
(2) X is finitely quasi-inf-complete.

Proof: By Definition 3.1, it is clear that $(2) \Longrightarrow(1)$ even if X is not partially ordered.
To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not hold. Denote by \mathcal{A} the family of all finite, nonvoid subsets A of X such that $\inf (A)=\emptyset$. Then, by using a similar argument as in the proof of Theorem 3.3, we can see that there exists $A \in \mathcal{A}$ such that by choosing $a \in A$ and defining $B=A \backslash\{a\}$, we already have $\inf (B) \neq \emptyset$.

Now, by Theorem 1.11, it is clear that there exists $x \in X$ such that $\inf (B)=\{x\}$. Moreover, by Corollary 1.12, we also have $\inf (\{a\})=\{a\}$. Hence, by using Corollary 2.6, we can infer that

$$
\inf (A)=\inf (\{a\} \cup B)=\inf (\inf (\{a\}) \cup \inf (B))=\inf (\{a\} \cup\{x\})=\inf (\{a, x\}) .
$$

However, this is already a contradiction. Namely, by $A \in \mathcal{A}$, we have $\inf (A)=\emptyset$. While, by (1), we have $\inf (\{a, x\}) \neq \emptyset$. Therefore, the implication $(1) \Longrightarrow(2)$ is also true.

4 Conditional infimum completenesses

Definition 4.1 We say that

(1) X is pseudo-inf-complete if $\inf (A) \neq \emptyset$ for all $A \subset X$ with $\operatorname{lb}(A) \neq \emptyset$;
(2) X is semi-inf-complete if $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$;
(3) X is almost pseudo-inf-complete if $\inf (A) \neq \emptyset$ for all $A \subset X$ with $\operatorname{lb}(A) \neq \emptyset$ and ub $(A) \neq \emptyset$;
(4) X is almost semi-inf-complete if $\inf (A) \neq \emptyset$ for all $A \subset X$ with $A \neq \emptyset, \operatorname{lb}(A) \neq \emptyset$ and $\mathrm{ub}(A) \neq \emptyset$.

Remark 4.2 Thus, 'pseudo-inf-complete' implies both 'semi-inf-complete' and 'almost pseudo-inf-complete', and 'almost pseudo-inf-complete' implies 'almost-semi-inf-complete'.

Moreover, by using Corollary 2.6, we can also prove the following
Theorem 4.3 If X is transitive and $\mathrm{ub}(X) \neq \emptyset$, then the following assertions are equivalent:
(1) X is two-lb-complete and pseudo-inf-complete;
(2) X is two-inf-complete and almost pseudo-inf-complete.

Proof: By the corresponding definitions, it is clear that $(1) \Longrightarrow(2)$ even if X is not transitive or $\mathrm{ub}(X)=\emptyset$. Moreover, from Remark 3.2 we know that the first part (2) always implies that of (1). Therefore, to prove the converse implication $(2) \Longrightarrow(1)$, we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover $A \subset X$ such that $\operatorname{lb}(A) \neq \emptyset$. If $A=\emptyset$, then by the corresponding definitions it is clear that

$$
\inf (A)=\inf (\emptyset)=\max (\mathrm{lb}(\emptyset))=\max (X)=\mathrm{ub}(X),
$$

and thus $\inf (A) \neq \emptyset$. Therefore, we may assume that $A \neq \emptyset$, i. e., there exists $a \in A$. Define

$$
B=\bigcup_{x \in A} \inf (\{a, x\}) .
$$

Then, by Corollary 2.6, it is clear that

$$
\mathrm{lb}(B)=\mathrm{lb}\left(\bigcup_{x \in A} \inf (\{a, x\})=\mathrm{lb}\left(\bigcup_{x \in A}\{a, x\}\right)=\mathrm{lb}(A) .\right.
$$

Moreover, by using the duals of Theorems 1.1 and Corollary 1.2, and Corollaries 1.7 and 1.5, we can see that

$$
\begin{aligned}
& \operatorname{ub}(B)=\operatorname{ub}\left(\bigcup_{x \in A} \inf (\{a, x\})=\right. \\
& \quad \bigcap_{x \in A} \operatorname{ub}(\inf (\{a, x\})) \supset \bigcap_{x \in A} \operatorname{ub}(\operatorname{lb}(\{a, x\})) \supset \bigcap_{x \in A}\{a, x\} \supset\{a\} .
\end{aligned}
$$

Therefore, $\operatorname{lb}(B) \neq \emptyset$ and $\mathrm{ub}(B) \neq \emptyset$ also hold. Thus, by the almost pseudo-infcompleteness of X, we also have $\inf (B) \neq \emptyset$.

Now, it remains to note that by Corollary 2.6 we also have

$$
\inf (A)=\inf \left(\bigcup_{x \in A}\{a, x\}\right)=\inf \left(\bigcup_{x \in A} \inf (\{a, x\})=\inf (B)\right.
$$

Therefore, $\inf (A) \neq \emptyset$ also holds, and thus X is pseudo-inf-complete.
The following theorem is a generalization of the first part of [1, Theorem 9, p. 115]. Our subsequent sketch of the proof shows that the two and a half line proof given there may only be considered as a hint.

Theorem 4.4 If X is transitive, then the following assertions are equivalent:
(1) X is two-lb-complete and semi-inf-complete;
(2) X is two-inf-complete and almost semi-inf-complete.

Proof: Again, it is clear that $(1) \Longrightarrow(2)$ even if X is not transitive. Moreover, the first part (2) always implies that of (1). Therefore, to prove the converse implication (2) $\Longrightarrow(1)$, we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover $A \subset X$ such that $A \neq \emptyset$ and $\operatorname{lb}(A) \neq \emptyset$. Choose $a \in A$, and define

$$
B=\bigcup_{x \in A} \inf (\{a, x\}) .
$$

Then, it is clear that $\emptyset \neq B \subset X$. Namely, by the two-inf-completeness of X and the definition of B, we evidently have $\emptyset \neq \inf (\{a, a\}) \subset B$.

Moreover, from the proof of Theorem 4.3, we can see that $\operatorname{lb}(B) \neq \emptyset$ and $\mathrm{ub}(B) \neq \emptyset$ also hold. Thus, by the almost semi-inf-completeness of X, we also have $\inf (B) \neq \emptyset$. Now, it remains to note that by the proof of Theorem 4.3, we also have $\inf (A)=\inf (B)$. Therefore, $\inf (A) \neq \emptyset$ also holds, and thus X is semi-inf-complete.

5 Two illustrating examples

Example 5.1 If $X=\{a, b, c\}$ such that we only have

$$
a \leq b, \quad b \leq c, \quad c \leq a \quad \text { and } \quad x \leq x \quad \text { for all } \quad x \in X
$$

then X is total and antisymmetric. Moreover, X is two-inf-complete, but not finitely quasi-lb-complete. Thus, by Remark 3.2, X is also two-lb-complete, but not finitely quasi-inf-complete.

To check that X is not finitely quasi-lb-complete, note that

$$
\mathrm{lb}(a)=\{a, c\}, \quad \mathrm{lb}(b)=\{a, b\}, \quad \mathrm{lb}(b)=\{b, c\}
$$

Therefore, by Corollary 1.3, we have

$$
\operatorname{lb}(X)=\operatorname{lb}(a) \cap \mathrm{lb}(b) \cap \mathrm{lb}(c)=\emptyset,
$$

and thus X is not finitely quasi-lb-complete.
Moreover, we can quite similarly see that

$$
\mathrm{lb}(\{a, b\})=\{a\}, \quad \operatorname{lb}(\{a, c\})=\{c\}, \quad \mathrm{lb}(\{b, c\})=\{b\}
$$

Hence, since by the dual of Theorem 1.8 we have $x \in \max (x)$ for all $x \in X$, it is already clear that

$$
\inf (\{x, y\})=\max (\operatorname{lb}(\{x, y\})) \neq \emptyset
$$

for all $x, y \in X$ with $x \neq y$. Moreover, by Theorem 1.8, we also have $x \in \inf (x)$, and hence $\inf (x) \neq \emptyset$ for all $x \in X$. Therefore, X is two-inf-complete.

Remark 5.2 In addition to Example 5.1 and Corollary 2.4, it is worth noticing that if X is reflexive, antisymmetric and

$$
\mathrm{lb}(A)=\operatorname{lb}(\inf (A))
$$

for all $A \subset X$ with $\operatorname{card}(A)=2$ and $\inf (A) \neq \emptyset$, then X is necessary transitive. Thus, by Theorem 3.4, X is finitely quasi-inf-complete if and only if it is two-inf-complete.

To check the transitivity of X, by Theorem 2.1 it is enough to show only that if $x \in X$,

$$
y \in \operatorname{lb}(x), \quad z \in \operatorname{lb}(y) \quad \text { and } \quad x \neq y
$$

then $z \in \operatorname{lb}(x)$. For this, note if $A=\{x, y\}$, then by Theorem 1.8 and Corollaries 1.3 and 1.5 we have

$$
y \in \mathrm{lb}(x) \cap \mathrm{lb}(y)=\mathrm{lb}(A) \quad \text { and } \quad y \in A \subset \mathrm{ub}(\mathrm{lb}(A)) .
$$

Hence, by Theorems 1.6 and 1.11, it is clear that

$$
y \in \operatorname{lb}(A) \cap \mathrm{ub}(\operatorname{lb}(A))=\inf (A), \quad \text { and thus } \quad\{y\}=\inf (A) .
$$

Now, by using our former assumptions and observations, we can already easily see that

$$
z \in \mathrm{lb}(y)=\mathrm{lb}(\inf (A))=\mathrm{lb}(A)=\mathrm{lb}(x) \cap \mathrm{lb}(y) \subset \mathrm{lb}(x) .
$$

Example 5.3 If $X=\{a, b, c, d\}$ such that we only have

$$
a \leq a, \quad a \leq c, \quad a \leq d, \quad b \leq d, \quad c \leq d,
$$

then X is transitive and antisymmetric. Moreover, X is almost semi-inf-complete, but not semi-inf-complete.

To check this, note that

$$
\begin{array}{llll}
\mathrm{lb}(a)=\{a\}, & \mathrm{lb}(b)=\emptyset, & \mathrm{lb}(c)=\{a\}, & \mathrm{lb}(d)=\{a, b, c\} ; \\
\mathrm{ub}(a)=\{a, c, d\}, & \mathrm{ub}(b)=\{d\}, & \mathrm{ub}(c)=\{d\}, & \mathrm{ub}(d)=\emptyset
\end{array}
$$

Hence, by Theorem 1.6 and the dual of Corollary 1.3, it is clear that

$$
\inf (d)=\mathrm{lb}(d) \cap \mathrm{ub}(\mathrm{lb}(d))=\mathrm{lb}(d) \cap \mathrm{ub}(a) \cap \mathrm{ub}(b) \cap \mathrm{ub}(c)=\emptyset .
$$

Therefore, X is not semi-inf-complete.
Moreover, by Corollary 1.3, it is clear that, for any $A \subset X$,

$$
\operatorname{lb}(A) \neq \emptyset \Longrightarrow A \subset\{a, c, d\} \quad \text { and } \quad \operatorname{ub}(A) \neq \emptyset \Longrightarrow A \subset\{a, b, c\}
$$

Therefore, if $A \neq \emptyset, \operatorname{lb}(A) \neq \emptyset$ and $\mathrm{ub}(A) \neq \emptyset$, then we necessarily have

$$
A=\{a\} \quad \text { or } \quad A=\{c\} \quad \text { or } \quad A=\{a, c\} .
$$

Hence, by Corollary 1.3, it is clear that $\operatorname{lb}(A)=\{a\}$. Moreover, by Theorem 1.6, it is clear that

$$
\inf (A)=\operatorname{lb}(A) \cap \mathrm{ub}(\mathrm{lb}(A))=\operatorname{lb}(a) \cap \mathrm{ub}(a)=\{a\} .
$$

Therefore, X is almost semi-inf-complete.

References

[1] Birkhoff, G. : Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Providence, Rhode Island 1967
[2] Davey, B. A., and Priestley, H. A. : Introduction to Lattices and Order. Cambridge University Press, Cambridge 2002
[3] Boros, Z., and Száz, Á. : Infimum and supremum completeness properties of ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen, 1-6 2004/4
[4] Szász, G. : Introduction to Lattice Theory. Academic Press, Budapest 1963
[5] Száz, Á. : Upper and lower bounds in ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen, 1-11 2004/1
[6] Száz, Á. : The importance of reflexivity, transitivity, antisymmetry and totality in generalized ordered sets. Tech. Rep., Inst. Math., Univ. Debrecen, 1-15 2004/2
received: July 18, 2005

Authors:

Zoltán Boros
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pfi2,
Hungary
e-mail: boros@math.klte.hu

Árpád Száz
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pfi2, Hungary
e-mail: szaz@math.klte.hu

Iterative Processes with Random Errors for Fixed Point of Φ-Pseudocontractive Operator*

Abstract

The purpose of this paper is to introduce Φ-pseudo-contractive operators - a class of operators which is much more general than the important class of strongly pseudocontractive operators and ϕ-strongly pseudocontractive operators, and to study problems of approximating fixed points by Ishikawa and Mann iterative processes with random errors for Φ-pseudocontractive operators. As applications, the iterative approximative methods for the solution of equation with Φ-accretive operator are obtained. The results presented in this paper improve, generalize and unify the corresponding results of Chang [3]-[4], Chidume [5]-[10], Deng [12], Ding [13]-[14], Liu [16], Osilike [18], Xu [19], Zhou [20].

KEY WORDS AND PHRASES. Duality mapping, Mann iteration sequence, Ishikawa iteration sequence, Φ-pseudocontractive operator.

1 Introduction and Preliminaries

Throughout this paper, we assume that X is a real Banach space with dual $X^{*},(\cdot, \cdot)$ denotes the generalized duality pairing. The mapping $J: X \rightarrow 2^{X^{*}}$ defined by

$$
\begin{equation*}
J x=\left\{j \in X^{*}:(x, j)=\|x\|\|j\|,\|j\|=\|x\|\right\}^{[1]} \quad \forall x \in X \tag{1.1}
\end{equation*}
$$

is called the normalized duality mapping.
We recall the following two iterative processes due to Ishikawa [15] and Mann [17], respectively.
(a) Let K be a nonempty convex subset of X, and $T: K \longrightarrow K$ be a mapping. For any given $x_{0} \in K$ the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}, \quad y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}, \quad(n \geq 0)
$$

[^4]is called Ishikawa iteration sequence, where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two real sequences in $[0,1]$ satisfying some conditions.
(b) In particular, if $\beta_{n}=0$ for all $n \geq 0$ in (a), then $\left\{x_{n}\right\}$ defined by
$$
x_{0} \in K, \quad x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \quad(n \geq 0)
$$
is called the Mann iteration sequence.
The consideration of error terms is an important part of any theory of iteration methods. For this reason, Xu [19] introduced the following definitions.
(A) Let K be a nonempty convex subset of X and $T: K \longrightarrow K$ a mapping. For any given $x_{0} \in K$ the sequence $\left\{x_{n}\right\}$ defined by
\[

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} T y_{n}+\gamma_{n} u_{n}, \quad y_{n}=\hat{\alpha}_{n} x_{n}+\hat{\beta}_{n} T x_{n}+\hat{\gamma}_{n} v_{n} \quad(n \geq 0) \tag{1.2}
\end{equation*}
$$

\]

is called Ishikawa iteration sequence with random errors. Here $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two bounded sequences in $K ;\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\hat{\alpha}_{n}\right\},\left\{\hat{\beta}_{n}\right\}$ and $\left\{\hat{\gamma}_{n}\right\}$ are six sequences in $[0,1]$ satisfying

$$
\alpha_{n}+\beta_{n}+\gamma_{n}=\hat{\alpha}_{n}+\hat{\beta}_{n}+\hat{\gamma}_{n}=1, \quad \text { for all } n \geq 0
$$

(B) In particular, if $\hat{\beta}_{n}=\hat{\gamma}_{n}=0$ for all $n \geq 0$ in (A), the $\left\{x_{n}\right\}$ defined by

$$
\begin{equation*}
x_{0} \in K, \quad x_{n+1}=\alpha_{n} x_{n}+\beta_{n} T x_{n}+\gamma_{n} u_{n}, \quad(n \geq 0) \tag{1.3}
\end{equation*}
$$

is called Mann iteration sequence with random errors .

Note that the Ishikawa and Mann iterative processes are all special cases of the Ishikawa and Mann iterative processes with random errors.

Now, we introduce Φ-pseudocontractive operators as follows.
Definition 1.1 Let K be nonempty subset of X. An operator $T: K \rightarrow X$ is said to be Φ-pseudocontractive, if there exists a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ and $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
(T x-T y, j(x-y)) \leq\|x-y\|^{2}-\Phi(\|x-y\|) \quad \forall x, y \in K . \tag{1.4}
\end{equation*}
$$

An operator $A: K \rightarrow X$ is said to be Φ-accretive, if

$$
\begin{equation*}
(A x-A y, j(x-y)) \geq \Phi(\|x-y\|) \quad \forall x, y \in K \tag{1.5}
\end{equation*}
$$

Remark 1.1 Obvious, if a Φ-pseudocontractive operator has a fixed point then it is unique. The pseudocontractive operator is intimately connected with accretive operator [11]. It is easy to verify that the operator T is Φ-pseudoaccretive if and only if $I-T$ is Φ-accretive where I is a identity mapping on X. Hence, the mapping theory for accretive operators is intimately connected with the fixed point theory for pseudocontraction operators.

We like to point out: every ϕ-strongly pseudocontractive operator must be the Φ-pseudocontractive operator with $\Phi:[0, \infty) \rightarrow[0, \infty)$ defined by $\Phi(s)=\phi(s) s$, and every strongly pseudocontractive operator is ϕ-strongly pseudocontractive with $\phi:[0, \infty) \rightarrow[0, \infty)$ defined by $\phi(s)=k s$ where $k \in(0,1)$.

In 1994, Chidume proved a related result that deals with the Ishikawa iterative approximation of the fixed point for the class of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach space. At the same time, he put forth an open problem: It is not known whether or not the Ishikawa iteration method converges for a continuous strongly pseudocontractive mapping. Recently, this open problem has been studied extensively by researchers (see, for example[3-4, 6-10, 12-14, 18-20]) in the case of T is strongly pseudocontractive or ϕ-strongly pseudocontractive operators respectively.

The objective of this paper is to introduce the Φ-pseudocontractive operators - a class of operators which is much more general than the important class of strongly pseudocontractive operators and ϕ-strongly pseudocontractive operators, and to study problems of approximating fixed point by Ishikawa and Mann iterative processes with random errors for Φ-pseudocontractive operators. We will prove that the answer of Chidume's open problem is affirmative if X is an arbitrary Banach space and $T: K \rightarrow K \subset X$ is uniformly continuous Φ-quasicontractive. furthermore, if X is an uniformly smooth Banach space and T may be not continuous, the answer of Chidume's open problem also is affirmative. As applications, the iterative approximation methods for the solution of equation with Φ-accretive operator are obtained. The results presented in this paper improve, generalize and unify results of Chang [3]-[4], Chidume [5]-[10], Deng [12], Ding [13]-[14], Liu [16], Osilike [18], Xu [19], Zhou [20].

The following two Lemmas play crucial roles in the proofs of our main results.
Lemma 1.1 ([4]) If X be a real Banach space then there exists $j(x+y) \in J(x+y)$ such that

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2(y, j(x+y)) \quad \forall x, y \in X . \tag{1.6}
\end{equation*}
$$

Lemma 1.2 ([2](Browder)) X is uniformly smooth(equivalently X^{*} is uniformly convex) Banach space if and only if J is single-valued and uniformly continuous on any bounded subset of X.

2 The Convergence Theorems in Arbitrary Banach Space

If X is an arbitrary real Banach space with dual X^{*}, we can prove following theorems.
Theorem 2.1 Let X be an arbitrary real Banach space with dual X^{*} and $K \subset X$ a nonempty bounded convex subset. Let $T: K \rightarrow K$ be an uniformly continuous Φ pseudocontractive mapping. Suppose the Ishikawa iteration sequence $\left\{x_{n}\right\}$ with random errors be defined by (1.2) with parameters
(i) $\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \hat{\beta}_{n}=\lim _{n \rightarrow \infty} \hat{\gamma}_{n}=0$ and $\sum_{n=0}^{+\infty} \beta_{n}=+\infty$;
(ii) $\gamma_{n}=o\left(\beta_{n}\right)$.

If $F(T) \neq \emptyset$ then for arbitrary $x_{0} \in K,\left\{x_{n}\right\}$ converges strongly to unique fixed point of T.
Proof: From Remark 1.1, we have that $F(T)=\{q\}$. Putting $M=\sup \{\|x\|: x \in K\}+\|q\|$. Since $\left.\left\|y_{n}-x_{n+1}\right\|=\|\left(\hat{\alpha}_{n}-\alpha_{n}\right) x_{n}+\hat{\beta}_{n} T x_{n}+\hat{\gamma}_{n} v_{n}-\beta_{n} T y_{n}-\gamma_{n} u_{n}\right) \| \rightarrow 0($ as $n \rightarrow \infty)$, therefore,

$$
e_{n}:=\left\|T y_{n}-T x_{n+1}\right\| \rightarrow 0(\text { as } n \rightarrow \infty)
$$

by the uniformly continuity of T.
Let $2 \sigma=\inf \left\{\left\|x_{n+1}-q\right\|: n \geq 0\right\}$. If $\sigma>0$, then $\Phi\left(\left\|x_{n+1}-q\right\|\right)>\Phi(\sigma)$ for all $n \geq 0$. From the conditions (i) and (ii) there exists an integer $N_{0}>0$ such that

$$
\begin{equation*}
0 \leq \gamma_{n}, \beta_{n} \leq \frac{1}{6} \quad \text { and } \quad o\left(\beta_{n}\right) \leq \beta_{n} \Phi(\sigma) \quad \forall n \geq N_{0} \tag{2.7}
\end{equation*}
$$

By (1.4), (1.6) and (2.7) we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2}= & \left\|\alpha_{n}\left(x_{n}-q\right)+\beta_{n}\left(T y_{n}-q\right)+\gamma_{n}\left(u_{n}-q\right)\right\|^{2} \\
\leq & \alpha_{n}^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n}\left(T y_{n}-q, j\left(x_{n+1}-q\right)\right) \\
& +2 \gamma_{n}\left(u_{n}-q, j\left(x_{n+1}-q\right)\right) \\
\leq & \alpha_{n}^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n}\left(T y_{n}-T x_{n+1}, j\left(x_{n+1}-q\right)\right) \\
& +2 \beta_{n}\left(T x_{n+1}-q, j\left(x_{n+1}-q\right)\right)+2 M^{2} \gamma_{n} \tag{2.8}\\
\leq & \left(1-\beta_{n}-\gamma_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n}\left\|x_{n+1}-q\right\|^{2} \\
& -2 \beta_{n} \Phi\left(\left\|x_{n+1}-q\right\|\right)+2 M \beta_{n} e_{n}+2 M^{2} \gamma_{n} \\
\leq & \left\|x_{n}-q\right\|^{2}+\frac{3}{2} M^{2} \beta_{n}^{2}+3 M \beta_{n} e_{n}+3 M^{2} \gamma_{n} \\
& -2 \Phi\left(\left\|x_{n+1}-q\right\|\right) \beta_{n} \\
= & \left\|x_{n}-q\right\|^{2}+o\left(\beta_{n}\right)-2 \Phi\left(\left\|x_{n+1}-q\right\|\right) \beta_{n}
\end{align*}
$$

for all $n \geq N_{0}$. It follows from (2.8) that

$$
\left\|x_{n+1}-q\right\|^{2} \leq\left\|x_{n}-q\right\|^{2}+o\left(\beta_{n}\right)-2 \Phi(\sigma) \beta_{n} \leq\left\|x_{n}-q\right\|^{2}+-\Phi(\sigma) \beta_{n}
$$

for all $n \geq N_{0}$. By induction, we obtain

$$
\begin{equation*}
\Phi(\sigma) \sum_{j=N}^{+\infty} \beta_{j} \leq\left\|x_{N}-q\right\|^{2} \leq M^{2} \tag{2.9}
\end{equation*}
$$

(2.9) is in contradiction with $\sum_{j=0}^{+\infty} \beta_{j}=+\infty$. From this contradiction, we get $\sigma=0$. Therefore, there exists a subsequence $\left\{x_{n_{j}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightarrow q$ as $j \rightarrow \infty$. For any given $\varepsilon>0$ there exists an integer $j_{0} \geq N_{0}$ such that $\left\|x_{n_{j}}-q\right\|<\varepsilon$ for all $j \geq j_{0}$. If j_{0} is fixed, we will prove that $\left\|x_{n_{j_{0}}+k}-q\right\|<\varepsilon$ for all integers $k \geq 1$.

The proof is by induction. For $k=1$, suppose $\left\|x_{n_{j_{0}+1}}-q\right\| \geq \varepsilon$. It follows from (2.8) and $\Phi\left(\left\|x_{n_{j_{0}}+1}-q\right\|\right) \geq \Phi(\varepsilon)$ that

$$
\varepsilon^{2} \leq\left\|x_{n_{j_{0}}+1}-q\right\|^{2} \leq\left\|x_{n_{j_{0}}}-q\right\|^{2}+o\left(\beta_{n_{j_{0}}}\right)-2 \beta_{n_{j_{0}}} \Phi(\varepsilon) \leq\left\|x_{n_{j_{0}}}-q\right\|^{2}<\varepsilon^{2} .
$$

It is a contradiction. Hence, $\left\|x_{n_{j_{0}}+1}-q\right\|<\varepsilon$ holds for $k=1$. Assume now that $\left\|x_{n_{j_{0}}+p}-q\right\|<$ ε for some integer $p>1$. We prove $\left\|x_{n_{j_{0}}+p+1}-q\right\|<\varepsilon$. Again, assuming the contrary, Using (2.8), $\Phi\left(\left\|x_{n_{j_{0}}+p+1}-q\right\|\right)>\Phi(\varepsilon)$ and (2.7), as above, it leads to a contradiction as follows

$$
\varepsilon^{2} \leq\left\|x_{n_{j_{0}}+p+1}-q\right\|^{2} \leq\left\|x_{n_{j_{0}}+p}-q\right\|^{2}+o\left(\beta_{n_{j_{0}}+p}\right)-2 \beta_{n_{j_{0}}+p} \Phi(\varepsilon) \leq\left\|x_{n_{j_{0}}+p}-q\right\|^{2}<\varepsilon^{2}
$$

Where $n_{j_{0}}+p \geq n_{j_{0}} \geq j_{0} \geq N_{0}$. Therefore, $\left\|x_{n_{j_{0}}+k}-q\right\|<\varepsilon$ holds for all integers $k \geq 1$, so that $x_{n_{j_{0}+k}} \rightarrow q$ as $k \rightarrow \infty$.
The Proof is completed.
Remark 2.1 Theorem 2.1 improves a number of results (for example, Theorem 3.4 of [7] and Theorem 4 of [11]). A prototype for $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\hat{\alpha}_{n}\right\},\left\{\hat{\beta}_{n}\right\}$ and $\left\{\hat{\gamma}_{n}\right\}$ in Theorem 2.1 is

$$
\alpha_{n}=\frac{n^{2}+3 n+1}{(n+2)^{2}}, \quad \beta_{n}=\frac{1}{n+2}, \quad \gamma_{n}=\frac{1}{(n+2)^{2}}, \quad \hat{\alpha}_{n}=\frac{n+1}{n+3}
$$

and

$$
\hat{\beta}_{n}=\hat{\gamma}_{n}=\frac{1}{n+3} \quad \forall n \geq 0
$$

Theorem 2.2 Let X, K and T be as in Theorem 2.1. If q is a fixed point of T in K and the Mann iteration sequence $\left\{x_{n}\right\}$ is defined by (1.3) with parameters
(i) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{+\infty} \beta_{n}=+\infty$;
(ii) $\gamma_{n}=o\left(\beta_{n}\right)$ then $\left\{x_{n}\right\}$ converges strongly to unique fixed point of T.

Theorem 2.3 Suppose that $K \subset X$ is a nonempty bounded convex subset with $K+K \subseteq$ K and $A: K \rightarrow K$ is an uniformly continuous Φ-accretive operator. For any given $f \in K$ the equation $A x=f$ has unique solution in K.

Proof: We define $S: K \rightarrow K$ by $S x=f+x-A x$ for all $x \in K$. It is easy to see that S is uniformly continuous Φ-pseudocontractive. Clearly, q is a fixed point of S in K if and only if that q is a solution of the equation $A x=f$. It follows from Theorem 2.1 or Theorem 2.2 above that the equation $A x=f$ has unique solution in K.
The proof is completed.

3 The Convergence Theorems in Uniformly Smooth Banach Space

Let X be a real uniformly smooth Banach space. Now we prove the following theorems.
Theorem 3.1 Suppose that $K \subset X$ is a nonempty bounded convex subset and T : $K \rightarrow K$ is a Φ-pseudocontractive operator. If T has a fixed point and the Ishikawa iteration sequence $\left\{x_{n}\right\}$ is defined by (1.2) with parameters
(i) $\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \hat{\beta}_{n}=0$ and $\sum_{n=0}^{+\infty} \beta_{n}=+\infty$;
(ii) $\hat{\gamma}_{n}=o\left(\hat{\beta}_{n}\right)$ and $\gamma_{n}=o\left(\beta_{n}\right)$,
then iteration sequence $\left\{x_{n}\right\}$ converges strongly to unique fixed point of T.
Proof: From Definition 1.1, we know that $F(T)$ is singleton. Setting $F(T)=\{q\}$ and $M=\sup \{\|x\|: x \in K\}+\|q\|$. Since $\left\|\left(y_{n}-q\right)-\left(x_{n+1}-q\right)\right\|=\|\left(\hat{\alpha}_{n}-\alpha_{n}\right) x_{n}+\hat{\beta}_{n} T x_{n}+\hat{\gamma}_{n} v_{n}-$ $\beta_{n} T y_{n}-\gamma_{n} u_{n} \| \rightarrow 0($ as $n \rightarrow \infty)$ and $\left\|\left(y_{n}-q\right)-\left(x_{n}-q\right)\right\|=\left\|\left(\hat{\alpha}_{n}-1\right) x_{n}+\hat{\beta}_{n} T x_{n}+\hat{\gamma}_{n} v_{n}\right\| \rightarrow$ $0($ as $n \rightarrow \infty)$, thus the uniformly continuity of j ensures that

$$
e_{n}:=\left\|j\left(y_{n}-q\right)-j\left(x_{n+1}-q\right)\right\| \rightarrow 0(\text { as } n \rightarrow \infty)
$$

and

$$
s_{n}:=\left\|j\left(y_{n}-q\right)-j\left(x_{n}-q\right)\right\| \rightarrow 0(\text { as } n \rightarrow \infty)
$$

Using (1.4) and (1.6), we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2}= & \left\|\alpha_{n}\left(x_{n}-q\right)+\beta_{n}\left(T y_{n}-q\right)+\gamma_{n}\left(u_{n}-q\right)\right\|^{2} \\
\leq & \left\|\alpha_{n}\left(x_{n}-q\right)\right\|^{2}+2 \beta_{n}\left(T y_{n}-q, j\left(x_{n+1}-q\right)\right) \\
& +2 \gamma_{n}\left(u_{n}-q, j\left(x_{n+1}-q\right)\right) \\
\leq & \left\|\alpha_{n}\left(x_{n}-q\right)\right\|^{2}+2 \beta_{n}\left(T y_{n}-q, j\left(y_{n}-q\right)\right) \\
& +2 \beta_{n}\left(T y_{n}-q, j\left(x_{n+1}-q\right)-j\left(y_{n}-q\right)\right) \\
& +2 M^{2} \gamma_{n} \tag{3.10}\\
\leq & \alpha_{n}^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n}\left\|y_{n}-q\right\|^{2}-2 \beta_{n} \Phi\left(\left\|y_{n}-q\right\|\right) \\
& +2 M \beta_{n} e_{n}+2 M^{2} \gamma_{n} \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \beta_{n}\left\|y_{n}-q\right\|^{2} \\
& -2 \beta_{n} \Phi\left(\left\|y_{n}-q\right\|\right)+o\left(\beta_{n}\right)
\end{align*}
$$

for all $n \geq 0$. Similarly,

$$
\begin{align*}
\left\|y_{n}-q\right\|^{2}= & \left\|\hat{\alpha}_{n}\left(x_{n}-q\right)+\hat{\beta}_{n}\left(T x_{n}-q\right)+\hat{\gamma}_{n}\left(v_{n}-q\right)\right\|^{2} \\
\leq & \left\|\hat{\alpha}_{n}\left(x_{n}-q\right)\right\|^{2}+2 \hat{\beta}_{n}\left(T x_{n}-q, j\left(y_{n}-q\right)\right) \\
& +2 \hat{\gamma}_{n}\left(u_{n}-q, j\left(y_{n}-q\right)\right) \\
\leq & \hat{\alpha}_{n}^{2}\left\|x_{n}-q\right\|^{2}+2 \hat{\beta}_{n}\left(T x_{n}-q, j\left(x_{n}-q\right)\right) \\
& +2 \hat{\beta}_{n}\left(T x_{n}-q, j\left(y_{n}-q\right)-j\left(x_{n}-q\right)\right)+2 M^{2} \hat{\gamma}_{n} \tag{3.11}\\
\leq & \hat{\alpha}_{n}^{2}\left\|x_{n}-q\right\|^{2}+2 \hat{\beta}_{n}\left\|x_{n}-q\right\|^{2}-2 \hat{\beta}_{n} \Phi\left(\left\|x_{n}-q\right\|\right) \\
& +2 M \hat{\beta}_{n} s_{n}+2 M^{2} \hat{\gamma}_{n} \\
\leq & \left\|x_{n}-q\right\|^{2}+M^{2} \hat{\beta}_{n}^{2}+2 M \hat{\beta}_{n} s_{n}+2 M^{2} \hat{\gamma}_{n} \\
\leq & \left\|x_{n}-q\right\|^{2}+o\left(\hat{\beta}_{n}\right)
\end{align*}
$$

for all $n \geq 0$. Substituting (3.11) into (3.10) and simplifying, we obtain

$$
\begin{equation*}
\left\|x_{n+1}-q\right\|^{2} \leq\left\|x_{n}-q\right\|^{2}+o\left(\beta_{n}\right)-2 \beta_{n} \Phi\left(\left\|y_{n}-q\right\|\right) \quad \forall n \geq 0 \tag{3.12}
\end{equation*}
$$

where $o\left(\beta_{n}\right) \geq 0$. Let $2 \sigma=\inf \left\{\left\|y_{n}-q\right\|: n \geq 0\right\}$. If $\sigma>0$, then $\Phi\left(\left\|y_{n}-q\right\|\right)>\Phi(\sigma)>0$ for all $n \geq 0$, and so, there exists an integer $N>0$ such that $o\left(\beta_{n}\right)<\beta_{n} \Phi(\sigma)$ for all $n \geq N$. It follows from (3.12) that

$$
\left\|x_{n+1}-q\right\|^{2} \leq\left\|x_{n}-q\right\|^{2}-\beta_{n} \Phi(\sigma) \quad \forall n \geq N .
$$

By induction, we obtain

$$
\begin{equation*}
\Phi(\sigma) \sum_{j=N}^{+\infty} \beta_{j} \leq\left\|x_{N}-q\right\|^{2} \leq M^{2} \tag{3.13}
\end{equation*}
$$

(3.13) is in contradiction with $\sum_{j=0}^{+\infty} \beta_{j}=+\infty$. It follows from the contradiction that $\sigma=0$. Therefore, there exists a subsequence $\left\{y_{n_{j}}\right\} \subset\left\{y_{n}\right\}$ such that $y_{n_{j}} \rightarrow q$ as $j \rightarrow \infty$. Since $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-q\right\|=\lim _{j \rightarrow \infty} \hat{\alpha}_{n_{j}}\left\|x_{n_{j}}-q\right\| \leq \lim _{j \rightarrow \infty}\left\|y_{n_{j}}-q\right\|+M \lim _{j \rightarrow \infty}\left(\hat{\beta}_{n_{j}}+\hat{\gamma}_{n_{j}}\right)=0$, the subsequence $\left\{x_{n_{j}}\right\}$ converges strongly to q. So, we know that maybe $\left\{x_{n}\right\}$ converges to q and we cannot assure $\left\{x_{n}\right\}$ is not convergent. But, there are other conditions of $\left\{x_{n}\right\}$, such that $\left\{x_{n}\right\}$ converges to q. Since $x_{n_{j}} \rightarrow q$ as $j \rightarrow \infty$, for any given $\varepsilon>0$ there exists an integer $j_{0}>0$ such that $\left\|x_{n_{j}}-q\right\|<\varepsilon$ for all $j \geq j_{0}$, and $2 M\left(\left|\alpha_{n}-\hat{\alpha_{n}}\right|+\beta_{n}+\hat{\beta_{n}}+\gamma_{n}+\hat{\gamma_{n}}\right)<\varepsilon$ and $o\left(\beta_{n}\right) \leq \beta_{n} \Phi(\varepsilon / 2)$ for all $n \geq n_{j_{0}}$. If j_{0} is fixed, we will prove that $\left\|x_{n_{j_{0}}+k}-q\right\|<\varepsilon$ for all integers $k \geq 1$.

The proof is by induction. For $k=1$, suppose $\left\|x_{n_{j_{0}}+1}-q\right\| \geq \varepsilon$. Then, (1.2) implies that $\left\|y_{n_{j_{0}}}-q\right\|>\varepsilon / 2$. In fact, we have
$\varepsilon \leq\left\|x_{n_{j_{0}}+1}-q\right\| \leq\left\|y_{n_{j_{0}}}-q\right\|+M\left(\left|\alpha_{n_{j_{0}}}-\hat{n_{j_{0}}}\right|+\beta_{n_{j_{0}}}+\hat{\beta_{n_{j_{0}}}}+\gamma_{n_{j_{0}}}+{\hat{n_{j_{0}}}}\right)<\left\|y_{n_{j_{0}}}-q\right\|+\varepsilon / 2$.
From $\Phi\left(\left\|y_{n_{j_{0}}}-q\right\|\right)>\Phi(\varepsilon / 2)$ and using (3.12), we obtain

$$
\varepsilon^{2} \leq\left\|x_{n_{j_{0}}+1}-q\right\|^{2} \leq\left\|x_{n_{j_{0}}}-q\right\|^{2}+o\left(\beta_{n_{j_{0}}}\right)-2 \beta_{n_{j_{0}}} \Phi(\varepsilon / 2) \leq\left\|x_{n_{j_{0}}}-q\right\|^{2}<\varepsilon^{2} .
$$

It is a contradiction. So, $\left\|x_{n_{j_{0}}+1}-q\right\|<\varepsilon$ holds for $k=1$. Assume now that $\left\|x_{n_{j_{0}}+p}-q\right\|<\varepsilon$ for some integer $p>1$. We prove $\left\|x_{n_{j_{0}}+p+1}-q\right\|<\varepsilon$. Again, assuming the contrary, as above, it leads to a contradiction. Hence, $\left\|x_{n_{j_{0}}+k}-q\right\|<\varepsilon$ holds for all integers $k \geq 1$, so that $x_{n} \rightarrow q$ as $n \rightarrow \infty$, i.e., $\lim _{k \rightarrow \infty} x_{n_{j_{0}}+k}=q$.
The Proof is completed.
Remark 3.1 Theorem 3.1 gives an affirmative answer to Chidume's open problem when T is Φ-quasicontractive. The corresponding results (see, for example, Theorem 3.3 of [4], Theorem 2 of [5], Theorem 3.1 of [13], Theorem 2 of [16] and Theorem 3.3 of [19]) are all special cases of Theorem 3.1 in the following senses:

1) T may not be continuous, therefore, T may not be Lipschitz, also;
2) T may not be strongly pseudocontractive or ϕ-strongly pseudocontractive;
3) the random errors of iterative processes have been considered appropriately;
4) the condition (iii) of Chidume's Theorem in [5] is dropped.

We like to point out: the iteration parameters $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\hat{\alpha}_{n}\right\},\left\{\hat{\beta}_{n}\right\}$ and $\left\{\hat{\gamma}_{n}\right\}$ in Theorem 3.1 do not depend on any geometric structure of the Banach space X and on any property of the operator T, but, the selection of the parameters is deal with the convergence rate of the iteration. A prototype for $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\hat{\alpha}_{n}\right\},\left\{\hat{\beta}_{n}\right\}$ and $\left\{\hat{\gamma}_{n}\right\}$ in our theorem is

$$
\alpha_{n}=\hat{\alpha}_{n}=\frac{n^{2}+3 n+1}{(n+2)^{2}}, \quad \beta_{n}=\hat{\beta}_{n}=\frac{1}{n+2}
$$

and

$$
\gamma_{n}=\hat{\gamma}_{n}=\frac{1}{(n+2)^{2}} \quad \forall n \geq 0
$$

In the Theorem 3.1, if $\hat{\beta}_{n}=\hat{\gamma}_{n}=0$ for all $n \geq 0$, then we obtain a result that deals with the Mann iterative process with random errors as follows.

Theorem 3.2 Let K be a nonempty bounded convex subset of X and $T: K \rightarrow K \subset X$ a Φ-pseudocontractive operator. If T has a fixed point and the Mann iteration sequence $\left\{x_{n}\right\}$ is defined by (1.3) with parameters
(i) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{+\infty} \beta_{n}=+\infty$;
(ii) $\gamma_{n}=o\left(\beta_{n}\right)$.

Then $\left\{x_{n}\right\}$ converges strongly to unique fixed point of T.

Theorem 3.3 Suppose that $K \subset X$ is a nonempty bounded convex subset with $K+K \subseteq$ K and $A: K \rightarrow K$ is a Φ-accretive operator. For any given $f \in K$ the equation $A x=f$ has unique solution in K.

Proof: We define $S: K \rightarrow K$ by $S x=f+x-A x$ for all $x \in K$. It is easy to see that S is Φ-pseudocontractive. Clearly, q is a fixed point of S if and only if that q is a solution of the equation $A x=f$. It follows from Theorem 2.1 or Theorem 2.2 above that the equation $A x=f$ has an unique solution in K.
The proof is completed.

References

[1] Asplund, E. : Positivity of duality mappings. Bull. Amer. Math. Soc. 73, 200-203 (1967)
[2] Browder, F. E. : Nonlinear operations and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math. 18, No. 2 (1976)
[3] Chang, S. S. : On chidume's open questions and approximation solutions of multivalued strongly accretive mapping equations in Banach spaces. J. Math. Anal. Appl. 216, 94-111 (1997)
[4] Chang, S. S., Cho, Y. J., Lee, B. S., and Kang, S. M. : Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudocontractive mappings in Banach spaces. J. Math. Anal. Appl. 224, 149-165 (1998)
[5] Chidume, C. E. : Approximation of fixed points of strongly pseudocontractive mappings. Proc. Amer. Math. Soc. 120, 545-551 (1994)
[6] Chidume, C. E. : Iterative solutions of nonlinear equations in smooth Banach spaces. Nonlinear Anal. 26, N0:11, 1823-1834 (1996)
[7] Chidume, C.E., and Osilike, M. O. : Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces. Numer. Funct. Optim. 15, No. 7-8, 779-790 (1994)
[8] Chidume, C.E., and Moore : The solution by iteration of nonlinear equations in uniformly smooth Banach spaces. J. Math. Anal. Appl. 215, 132-146 (1997)
[9] Chidume, C. E. : Global iteration schemes for strongly pseudocontractive maps. Proc. Amer. Math. Soc. 126, 2641-2649 (1998)
[10] Chidume, C.E. : Convergence theorems for strongly pseudocontractive and strongly accretive maps. J. Math. Anal. Appl. 228, 254-264 (1998)
[11] Chidume, C.E. : A generalized steepest descent approximation for the zeros of maccretive operators. J. Math. Anal. Appl. 236, 48-73 (1999)
[12] Deng, L., and Ding, X.P. : Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces. Nonlinear Anal. TMA. 24, 981-987 (1995)
[13] Ding, X. P. : Iterative process with random errors to locally strictly pseudo-contractive maps in Banach spaces. Computers Math. Applic. Vol. 32 , No. 10, 91-97(1996)
[14] Ding, X. P. : Iterative process with random errors to nonlinear Φ - strongly accretive operator equations in arbitrary Banach spaces. Computers Math. Applic. Vol. 33, No. 8, 75-82 (1997)
[15] Ishikawa, S. : Fixed point and iteration of a nonexpansive mapping in a Banach spaces. Proc. Amer. Math. Soc. 73, 65-71 (1976)
[16] Liu, L.S. : Ishikawa and Mann iterative process with random errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114-125 (1995)
[17] Mann, W. R. : Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506-510 (1953)
[18] Osilike, M. O. : Iterative solutions of nonlinear ϕ-strongly accretive operator equations in arbitrary Banach spaces. Nonlinear Analysis 36, 1-9 (1999)
[19] Xu, Y. G. : Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224, 91-101 (1998)
[20] Zhou, H. : Some convergence theorems for the Ishikawa iterative sequences of certain nonlinear operators in uniformly smooth Banach spaces. Acta. Math. Sinica. 40, 751758 (1997)
received: July 19, 2005

Author:

Yuguang Xu
Department of Mathematics Kunming College
Kunshi Road No:2, Kunming 650031
People's Republic of China
e-mail: mathxu5329@163.com

Hinweise für Autoren

Um die redaktionelle Bearbeitung und die Herstellung der Druckvorlage zu erleichtern, bitten wir die Autoren, sich betreffs der Form der Manuskripte an den in Rostock. Math. Kolloq. veröffentlichten Beiträgen zu orientieren.
Insbesondere beachte man:

1. Manuskripte sollten grundsätzlich in deutscher oder englischer Sprache abgefasst sein und als ${ }^{A} T_{E}$ - Manuskripte eingesandt werden. Dabei sollten selbst definierte Befehle vermieden werden.
2. Zur inhaltlichen Einordnung der Arbeit sind 1-2 Klassifizierungsnummern (AMSSubject Classification) anzugeben.
3. Literaturzitate sind im Text durch laufende Nummern (vgl. [3], [4]; [7, 8, 10]) zu kennzeichnen und am Schluss der Arbeit unter der Zwischenüberschrift Literatur bzw. References zusammenzustellen. Hierbei ist die durch die nachfolgenden Beispiele veranschaulichte Form einzuhalten.
[3] Zariski, O., and Samuel, P.: Commutative Algebra. Princeton 1958
[4] Steinitz, E.: Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167-309 (1920)
[8] Gnedenko, B.W.: Über die Arbeiten von C.F. Gauß zur Wahrscheinlichkeitsrechnung. In: Reichardt, H. (Ed.): C.F. Gauß, Gedenkband anläßlich des 100. Todestages. S. 193-204, Leipzig 1957

Die Angaben erfolgen in Originalsprache; bei kyrillischen Buchstaben sollte die (bibliothekarische) Transliteration verwendet werden.
4. Die aktuelle, vollständige Adresse des Autors sollte enthalten: Vornamen Name / Institution / Struktureinheit / Straße Hausnummer / Postleitzahl Ort / Land / e-mailAdresse.

Es besteht die Möglichkeit, mit dem Satzsystem $\mathbf{E T}_{\mathbf{E}} \mathbf{X}$ erstellte Manuskripte per e-mail an folgende Adresse zu schicken:

```
romako @ uni-rostock.de
```


[^0]: ${ }^{1}$ This work is partially supported by a grant of the DAAD

[^1]: ${ }^{1}$ This research was financially supported by Changwon National University in 2004

[^2]: *Acknowledgement. This work was supported by GACR grant GA201/04/0441 and GACR grant GA102/05/H050.

[^3]: ${ }^{1}$ The research of the first author has been supported by the grant OTKA T-043080 and the János Bolyai Scholarship of the Hungarian Academy of Sciences.

[^4]: *This work is supported by the Foundation of Yunnan Sci. Tech. Commission of P. R. China (No.2002A0058M)

