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Summary 
Mires and peatlands play a large role in the global carbon cycle, covering only 3 percent of the 

world’s terrestrial surface, but storing about 20 percent of the earth’s total terrestrial carbon. 

However, over the last century, mires and peatlands have undergone severe degradation due to 

artificial drainage and deforestation to make way for agricultural exploitation. Nevertheless, the 

restoration of drained peatlands has gained much importance over the last three decades, 

mostly due to a better recognition of the multiple ecosystem services they provide such as car-

bon storage, habitat provision, and water flow regulation. As wetlands, mires and peatlands are 

heavily dependent on high water tables, as water-saturated conditions make it favorable for peat 

formation. Furthermore, peat-forming species of plants and mosses, depend on water tables at 

or near the surface. As such, site hydrology is vital for the maintenance of near-natural fens and 

the hydrological restoration (eg. rewetting) of drained fens is a pre-requisite for ecosystem re-

covery. Hydrological processes are closely linked to soil hydrophysical properties and as such 

investigations of both water dynamics and soil properties are vital for understanding ecosystem 

restoration success. Additionally, the effects of meteorological variables such as rainfall and tem-

perature as controls on water table dynamics need to be assessed, especially in the face of recent 

European droughts and anticipated peatland vulnerability from climate change. The simplest res-

toration measure in place is rewetting either by blocking drainage ditches for inland peatlands 

or removing dikes for coastal peatlands to allow the re-establishment of hydrological connectiv-

ity with the sea. Given that the hydrology of minerotrophic peatlands (fens) remains understud-

ied, especially in the temperate regions of mainland Europe, this dissertation aims to unravel the 

relationship of different environmental factors (environmental controls) with water-table dy-

namics in temperate fen peatlands to better inform sustainable management decisions. The spe-

cific research objectives are (1) to evaluate how long-term rewetting of drained fen peatland 

alters the response of the water table to precipitation (2) to quantify how such rewetting 

measures change the way meteorological factors (such as air temperature and relative humidity) 

drive water table dynamics and (3) to investigate whether soil surface microtopography controls 

hydrophysical properties of peat which has implications for overall hydrological processes in 

peatlands.      

In a pair of percolation fens (1 rewetted and 1 drained site), multiple regression analysis between 

the rate of water table response to precipitation and precipitation intensity revealed that 

groundwater table in the rewetted fen has more than two times lower rate of response to pre-

cipitation events of a given intensity, compared to that of the drained fen, even after statistically 

adjusting for antecedent groundwater levels. Thus, the rewetted fen delivers a better hydrolog-

ical buffer function against heavy precipitation events. It was found that for the depths at which 

the groundwater interacts with incoming precipitation, the peat of the rewetted fen has a higher 

specific yield (higher water storage capacity) causing groundwater to rise slower compared to 

the response at the drained fen. A period of 20 years of rewetting was sufficient to form a new 

layer of organic material with a substantial fraction of macropores providing storage capacity. 

Long-term rewetting has the potential to create favorable conditions (decreasing decomposi-

tion rates) for new peat accumulation, thereby altering water table response.  

Within the same pair of percolation fens, a different approach (multiple regression on time se-

ries, adjusted for seasonal effects), revealed that meteorological factors such as temperature, 

precipitation and relative humidity control water table dynamics. It was found that a 1-degree 
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rise in daily maximum air temperature causes a drop of about 4 mm in the water table in the 

drained and degraded fen but only a drop of around 2 mm at the rewetted fen, principally 

through evapotranspiration. This was the case, even though the rewetted site showed almost 

two times higher dry-day evapotranspiration compared to the drained site. Higher minimum rel-

ative humidity limits evapotranspiration and thus causes a rise in the water table at both sites. 

Precipitation contributes to recharge, causing the water table to rise almost six times higher at 

the drained site than at the rewetted site. The differential impacts of meteorological conditions 

on water table dynamics can be attributed to (1) a difference in soil properties and (2) a differ-

ence in vegetation which act as surface controls. 

In a rewetted coastal flood mire (non-tidal) located at the Baltic sea coast, it was found that the 

peat in the upper horizon with its very low saturated hydraulic conductivity (Ks) which is two or 

three orders of magnitude smaller than the underlying mineral layer, acts as a hydrological bar-

rier to infiltration. Analysis of variograms revealed that soil organic matter content (SOM), Ks , 

and soil surface microtopography are all spatially auto-correlated within 100, 87, and 53 m. Biva-

riate Moran’s I revealed a positive but weak spatial correlation between SOM and Ks and a mod-

erately strong negative spatial correlation between SOM and soil surface microtopography. A 

map of soil organic matter content, generated by using simple Kriging method, predicts higher 

SOM in the center of the ecosystem, at lower elevations and lower SOM at the edges of the 

study area, at higher elevations. Local depressions in the center of the ecosystem provide a wet-

ter and therefore more anaerobic environment, thereby decreasing carbon mineralization rates 

and enabling peat accumulation. The low hydraulic conductivity of the degraded peat along with 

the presence of lower micro-elevations in the center of the ecosystem is likely to increase the 

residence time of coastal floodwaters and thus may enhance (new) peat accumulation. 

This cumulative dissertation underlines the importance of management regime (eg. long-re-

wetting), meteorological factors, and surface controls (eg. vegetation, microtopography, soil 

properties) for peatland restoration. Continuous monitoring of water-table and vegetation de-

velopment in rewetted fen peatlands is advisable to ensure long-term success especially under 

climate change conditions and associated drought and dry spell events.
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1. Introduction 

1.1. Background 

Mires and peatlands have a large role in the global carbon cycle (Zhong et al., 2020). They are 

high carbon ecosystems and depending on how they are managed, can be sources or sinks of 

greenhouse gases (Günther et al., 2020; Joosten et al., 2016; Rydin & Jeglum, 2013). Although 

peatlands cover only 3 percent of the world’s land surface, they store approximately 20 percent 

of the global total soil organic carbon stock (Leifeld et al., 2019; Leifeld & Menichetti, 2018; Schar-

lemann et al., 2014) or two times that of global forest biomass (Humpenoeder et al., 2020).  Other 

than their role in the carbon cycle, peatlands provide multiple ecosystem services (often with 

trade-offs). These include provisioning services (eg. Fuel, fiber, food, freshwater), regulating ser-

vices (eg. climate and water regulation, water purification, erosion protection), cultural services 

(eg. recreational and educational services), as well as supporting services such as biodiversity, 

soil formation, and nutrient cycling (Bonn et al., 2016; Kimmel & Mander, 2010). However, over 

the last century, mires and peatlands have undergone extensive degradation due to artificial 

drainage to make way for agriculture and forestry. Other than drainage, peatlands face addi-

tional vulnerability from climate change (Hugelius et al., 2020; Qiu et al., 2020) with massive car-

bon banks being responsive to prolonged warming (Hopple et al., 2020). Much of the wide-

spread drying of the European peatlands have been additionally attributed to climatic drivers  

(Swindles et al., 2019). 

Between 1850 and 2015 temperate and boreal regions lost about 27 million ha and tropical re-

gions 25 million ha of natural peatlands (Leifeld et al., 2019). It has been estimated that about 10 

percent of global peatlands have been altered from long-term carbon sinks into sources 

(Joosten, 2010) for agriculture and forestry. In the 1960s, the global peatland biome changed 

from a net sink to a net source of greenhouse gas derived from the soil (Leifeld et al., 2019). If 

only Northern Peatlands are considered, at present, they have been found to have a net cooling 

effect on the climate. While it is uncertain whether they will continue to function as a net sink 

(Gallego-Sala et al., 2018), continued permafrost thaw may turn them into net sources of carbon 

(Hugelius et al., 2020). In terms of hydrological processes, peatland evapotranspiration has been 

shown to substantially exceed forest ET across the boreal region, and as the climate warms fur-

ther, an increase in these differences is expected (Helbig, Waddington, Alekseychik, Amiro, Au-

rela, Barr, Black, Blanken et al., 2020).  

Over the last two decades, there have been increasing efforts to restore the hydrological func-

tionalities of drained and degraded peatlands (Menberu et al., 2016). Rewetting of drained peat-

lands either by ditch-blocking (for non-coastal peatlands) or by removal of dikes (for coastal 

fens) is an effective measure towards restoring the pre-existing hydrological regime (high water 

tables), which is crucial for peat-forming vegetation and peat accumulation (Lamers et al., 2015). 

As such peatland protection and restoration have been recognized as vital measures for climate 

change mitigation (Humpenoeder et al., 2020; Intergovernmental Panel on Climate Change, 
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2019; Leifeld & Menichetti, 2018) as well as “nature-based solutions” to achieve key EU sustaina-

bility objectives (Tanneberger, Appulo et al., 2020). Additionally, boreal peatlands,  have recently 

been recognized for their biophysical climate mitigation (cooling effect) potential during the 

growing season compared for forests (Helbig, Waddington, Alekseychik, Amiro, Aurela, Barr, 

Black, Carey et al., 2020). Although rewetting may lead to methane emissions, prompt rewetting 

of drained peatlands reduces overall climate warming through the avoidance of CO2 emissions 

(Günther et al., 2020; Nugent et al., 2019). The water table of a peatland is of pivotal importance 

as it drives ecosystem changes through changes to its biotic and abiotic components. 

1.2. Peatland hydrology: Basic concepts 

Peat is decaying organic matter that accumulates under water-saturated conditions. Peat for-

mation thus occurs in areas where hydrological inputs exceed hydrological outputs and where 

there is a slow rate of decomposition. Peatlands Classification of peatland types is generally done 

according to two important factors which are sources of nutrients and sources of water. Bogs 

are ombrotrophic peatlands and are dependent on precipitation for water and nutrient supply 

whereas fens are minerotrophic peatlands and rely on groundwater for water and nutrients. As 

a result, Bogs are highly acidic with a pH less than 4 and are low in calcium and magnesium. Fens 

are less acidic and tend to be base-rich (Holden, 2006). There are several other ways of classifying 

mires and peatlands as well as sub-classifying bogs and fens which have been elaborated by 

Joosten et al. (2017). It is helpful to understand the different inputs and outputs and storage 

components in a peatland. 

In terms of hydrological inputs precipitation is a major pathway through which recharge occurs. 

It is a general rule of thumb that bogs occur only in areas where there is over 600 mm of annual 

precipitation. In many blanket bogs in the Northern Hemisphere precipitation over 1500 mm is 

required depending on evapotranspiration rates as well as topography. However, fens may re-

quire less rainfall as they are dominated by groundwater. Groundwater inflow thus is another 

input to the water balance of a peatland. Subsurface springs may deliver water to fen complexes. 

Flooding in addition may be a source of water for valley floodplains. In tropical and temperate 

climate, peatlands are usually dependent on more than one source for water, while in arid re-

gions, groundwater is the only substantial water component (Holden, 2006).  

In terms of stores, water level data are the simplest to collect and usually the only data available. 

Peatlands in their natural state have water levels close to the surface. Thus, they have excess 

water that influences soil properties and the occurrence and distribution of flora.  Peatlands 

function as a large store of water. Even above the water table, peat can hold a large volume of 

water (in the unsaturated zone). Even a small quantity of rainfall can be sufficient to raise the 

water table. Rainfall intensity is the dominant control upon the rate of rise. Variations in the wa-

ter table elevation can substantially alter the ground surface level in peatlands. This is a particular 

issue in drained peatlands (Holden, 2006). In many peatlands, water is stored on the peat surface 

in what is known as peat pools (Whitfield et al., 2009). These pools form intricate networks rang-

ing in size from localized systems to large complexes covering regional landscapes (Glaser, 1999). 

In terms of losses, evapotranspiration is the principal way in which water is lost peatlands (Baird 

et al., 2004; Malloy & Price, 2014).  At the scale of the ecosystem, the energy, water, and gas 

exchange processes are coupled strongly (Petrone et al., 2003). The evapotranspiration will be 
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further discussed in section 1.4. Another component of water loss is runoff which includes both 

surface as well as subsurface flow. Peatland hydrological function within a catchment may vary 

over time and depend on the depth of the water table. Once a run-off threshold is crossed, there 

can be a change in a peatland’s hydrological function – from transmission to run-off generation 

(Goodbrand et al., 2019).  

One of the first experiments to examine the effects of drainage on the hydrological response of 

peatland catchments were Conway and Millar (1960). They reported results from four small peat 

catchments and concluded that peat drainage or burning causes increased sensitivity of runoff 

response to storm rainfall with higher and earlier peak flows. However, a study by Burke (1967) 

found that runoff was quicker from the undrained part of the bog with the water table very close 

to the surface while in the drained bog the water table was about half-a-meter deep causing 

runoff from the catchment to be slower. Similar results were reported by Baden and Eggelsmann 

(1968). McDonald (1973), stated that the results from Conway and Millar and Burke, while 

seemed to be in direct contrast, were not in fact so, due to the lack of comparability. The peat 

studied by Burke (1967) was more Sphagnum-rich and therefore had higher hydraulic conductiv-

ities than that of the more decomposed peat studied by Conway and Millar (1960). Thus McDon-

ald concluded that drainage of one peat type will have a different effect on the runoff-rainfall 

relationship than drainage of another peat type. Another big difference between the sites, as  

Robinson (1980) and Robinson (1985) pointed out, was the drainage depths and densities which 

are very important for runoff generation. Holden et al. (2004, Table 1) summarize the differential 

hydrological effects of peatland drainage found by different studies on temporary storage, flood 

peak and annual runoff along with the catchment size, different processes they measured and 

discussed and point out how effects are complex and depend on local site conditions.  

1.3. Water-table as the master variable for peatland restoration 

The long-term development of peatland ecosystems is regulated by a complex network of inter-

acting feedbacks among plant ecology, soil biogeochemistry, and groundwater and soil hydrol-

ogy (Morris et al., 2011). Just as the natural flow regime of a river is the master variable for river 

systems (Sofi et al., 2020), water-table can be considered to be the master variable for peatland 

functionality. Peatlands are sensitive to hydrological changes that result from land-use changes 

or climate change (Holden et al., 2004). Even small alterations to the water table can substan-

tially affect peatland biodiversity (Maltby, 1997). The climate sensitivity of methane emissions 

from northern peatlands have been shown to be mediated by seasonal hydrologic dynamics 

(Feng et al., 2020).  Hydrological properties such as available water capacity characteristics are 

important for the survival of peat-forming species and strongly depend on the depth of the wa-

ter-table (Price, 2003).  

The substrate in peatlands is the peat, which consists of semi-decomposed plant material (Lind-

say & Andersen, 2016). In other terms, peat is soil containing more than 30 percent organic mat-

ter (on a dry mass basis, Joosten & Clarke, 2002). Peat formation occurs when decomposition 

rates are lower than primary production (Moore, 1989). Organic matter needs large quantities 
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of oxygen for aerobic decomposition to take place (Lindsay & Andersen, 2016). In natural or re-

wetted peatlands, the decomposition rate is very slow, as the water table is at or near the surface 

(waterlogging conditions). As oxygen diffuses through water 10,000 times slower than it does 

through air, within the waterlogged mass of decomposing plant material, the supply of oxygen 

gets rapidly depleted (Clymo, 1983). Anaerobic decomposition is much slower than aerobic de-

composition and in the presence of a steady supply of fresh organic material produced by peat-

forming plants, there is an accumulation of the peat (Lindsay & Andersen, 2016). Maintaining 

high water tables is not only important for limiting decomposition and consequent soil carbon 

mineralization, but also for the survival of peat-forming plants (Timmermann et al., 2006). With-

out a constant supply of organic material into the resource pool, peat formation will halt quickly.  

The maintenance of high water tables in peatlands is important for other reasons as well. By 

observing the different processes which occur following artificial drainage, the role of water ta-

bles in peatland functionality can be better understood. As mentioned earlier, water-saturated 

conditions prevent high rates of decomposition and enable a peat accumulating system and pre-

serving peat depth (Schulte et al., 2019). Conversely, lowering the water table, for example by 

drainage, exposes the peat to an oxygen-rich environment. As such, aerobic decomposition oc-

curs at a rapid pace, degrading the peat and starting a cascade of different hydrophysical and 

biogeochemical processes. As aerobic decomposition continues, carbon dioxide and nitrous ox-

ide are released from the system further contributing to global climate forcing (Liu et al., 2019; 

Liu, Wrage-Mönnig et al., 2020). The carbon mineralization process causes the peat to become 

more consolidated and compacted, and as such the hydrophysical properties of peat change. In 

the absence of high water tables, the peat shrinks and land subsidence occurs, with a surface 

elevation declining from 0.5 to 4 meters over 50 years (Hooijer et al., 2012; Pronger et al., 2014). 

With increased effective stress, larger pores in the peat structure are the first to collapse as they 

are the least supported (Strack et al., 2008) and as such macroporosity decreases. Larger pores 

or macropores are responsible for transmitting most flow (Baird, 1997), and thus a reduction in 

macroporosity decreases saturated hydraulic conductivity (Whittington & Price, 2006). Changes 

to hydraulic properties of peat can affect the hydrology of peatlands (Whittington & Price, 2006) 

As porosity is related to bulk density, a decrease in porosity increases bulk density. The reduction 

in pore size associated with greater bulk density has implications for water storage changes since 

peat that is more densely packed has lower specific yield and thus lower water storage capacity 

(Liu & Lennartz, 2019a; Liu, Price et al., 2020). Changes in such hydrophysical properties following 

drainage can increase water table fluctuations at a given site (Menberu et al., 2016; Whittington 

& Price, 2006). An increase in water-table fluctuation and can provide a positive feedback loop 

that could intensify further peat degradation, altering the dynamics of carbon cycling (Whitting-

ton & Price, 2006). The depth of the water table also determines the vulnerability of the peatland 

to peat fires and thus can provide further feedback into the climate system (Kettridge et al., 2015; 

Turetsky et al., 2015). The water table in peatlands has been shown to control chemical dynamics 

as well such as dissolved organic carbon transport   (Strack et al., 2008; Webster & McLaughlin, 

2010). The chemical composition of the peat substrate can also be influenced by even subtle 

changes to long-term water table position (Hribljan, 2012).  
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The different pathways through which changes occur in a peatland elaborates why the water-

table can be considered as the master variable. While active changes to the management regime 

such as rewetting drained areas, can bring about desired changes for peatland restoration, other 

factors can have a large influence on water table dynamics. For the purpose of this dissertation, 

I will refer to the drivers as environmental controls. For the sustainable restoration and manage-

ment of drained peatlands, a better understanding of the different drivers of water-table dynam-

ics and associated processes (eg: evapotranspiration) is vital.  

1.4. What drives water table dynamics and related hydrological processes? 

While the water-table dynamics in a peatland drives several different ecosystem processes di-

rectly or indirectly, the water-table itself is driven by different biotic and abiotic factors. These 

may include environmental controls such as meteorological conditions, hydrogeological setting 

(Bourgault et al., 2019), microtopography, vegetation (Malhotra et al., 2016; Shi et al., 2015), local 

microclimatic conditions, soil properties (Taufik et al., 2019) amongst others.  

Precipitation is a major source of groundwater recharge in peatlands. Incident rainfall infiltrates 

the peat surface and ultimately replenished the water table. As recharge occurs, the water table 

rises as a response. The magnitude of response of the water table to rainfall depends on several 

factors. These include initial depth of the water-table, interception by vegetation, soil hydrophys-

ical properties (eg: specific yield), landscape position, and surface topography (Ferone & Devito, 

2004; Meyboom, 1966), and hydrogeological setting (Bourgault et al., 2019), among others.   

While precipitation is the primary way in which groundwater recharge takes place, evapotran-

spiration is the primary way through which discharge occurs in low-lying wetlands (Malloy & 

Price, 2014). Evapotranspiration is a complex ecohydrological process and is the product of evap-

oration from soil and water intercepted by the canopy, and transpiration from leaves (Ramirez 

& Harmsen, 2011). If the water storage capacity remains constant, higher evapotranspiration re-

sults in the lowering of the water table. The water table level has been found sometimes to be 

controlled almost entirely by evapotranspiration, especially during dry periods (Holden, 2006). 

Different meteorological factors affect evapotranspiration (Allen et al., 1998) and hence the wa-

ter table. Higher temperature can lead to higher rates of evaporation because as temperature 

increases, the amount of energy required for evaporation decreases. Transpiration rates also in-

crease with increasing temperatures in the absence of water stress (Will et al., 2013). Higher hu-

midity decreases both evaporation and transpiration as it is easier for water to evaporate into 

dryer air than to wetter air (Ahmad, Hörmann et al., 2020; Shaw et al., 2010). Higher wind can 

facilitate evaporation and transpiration as the air around will be moved and more saturated air 

within proximity will be replaced by dryer air (Allen et al., 1998).  

The microtopography of an ecosystem can also influence the water table in a wetland (Bruland 

& Richardson, 2005; Cresto-Aleina et al., 2015; Malhotra et al., 2016). This can include vegetational 

microforms such as hummocks, flats or hollows, or even small scale variations in the soil surface 

elevation, often consisting of local depressions and mounds. Microtopography development in 

peatlands includes feedbacks with vegetation and the water table depth (Malhotra et al., 2016). 

Varying peat accumulation rates of different species and species distribution is maintained by 



Introduction 
 

Hydrological processes in fen peatlands    16 
 

spatial differences in the moisture regime which in turn is related to the water table depth (see 

Figure 1.1).  

 

Figure 1.1 The association between microtopography and wetness in wetland soils. Adapted from Bruland 
and Richardson (2005). 

While high water tables can influence soil properties, the reverse is also true. Soils such as peat 

with high soil organic matter can store a large amount of water, because of high pore volume, 

which also means that effective porosity (also known as specific yield) is high. The high water 

storage capacity of peat soil means that even if a large volume of water is removed from or 

added to the system, the water level will not rise or fall as much as it would in soils with low 

water holding capacity. As such, soil hydrophysical properties is an important factor influencing 

water table dynamics in peatlands. 

1.5. Hydrology of fen as an understudied area 

While there have been numerous studies in wetland hydrology, efforts to understand the hydrol-

ogy of mires and peatlands have increased only slowly over the last few decades. Additionally, 

most hydrology studies have focused on bogs rather than fens. Even those which have focused 

on fens have done so for boreal fen peatlands, rather than temperate ones. As such, much re-

mains to be understood regarding hydrological processes in temperate fen peatlands (see Fig-

ure 1.2).   

According to a bibliometric analysis by van Bellen and Larivière (2020), in the early 1990s about 

half of the articles on peatlands were based on boreal-arctic sites. According to them, hydrol-

ogy research was highly concentrated geographically, with about 46 percent of the sites lo-

cated in Canada and the USA, with the UK accounting for 14 percent. A literature search in SCO-

PUS with the terms (1)“peatland” AND “bog” and “hydrology” OR “peatland” AND “bog” and 

“water” (2) “peatland” AND “fen” and “hydrology” OR “peatland” AND “fen” and “water” 

reveals that fen hydrological research has only recently caught up with the numbers of studies 

published in bog hydrology.  
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Figure 1.2 Trends in peatland hydrological research. 

More specifically, the effect of long-term (>20 years) rewetting on fen peatland hydrology and 

how such changes in management regime may modulate the different environmental controls 

on the water table is lacking, mostly due to lack of data.      

1.6. General research objectives and approach 

The general research objective of this study is to unravel the relationship of different environ-

mental factors (environmental controls) with water-table dynamics in temperate fen peatlands 

to better inform sustainable management decisions. The specific research objectives are (1) to 

evaluate how long-term rewetting of drained fen peatland alters the response of the water table 

to precipitation (2) to quantify how such rewetting measures change the way meteorological 

factors (such as air temperature and relative humidity) drive water table dynamics and (3) to 

investigate whether soil surface microtopography controls hydrophysical properties of peat 

which has implications for overall hydrological processes in peatlands. The studies which address 

(1) and (2) were carried out in two inland fens (1 drained and 1 rewetted), while the research 

which addresses (3) was carried out in a rewetted coastal fen. This study has been conducted 

under the interdisciplinary project WETSCAPES, which aims to develop scientific principles for 

sustainable management of fen peatlands, particularly those which underwent drainage and was 

later rewetted. The WETSCAPES approach has been described in detail by Jurasinski et al. (2020).  

1.7. Structure of this dissertation 

This work is a cumulative dissertation and is divided into 5 chapters. Chapter One (the current 

chapter) sets the background against which the research work contained in this dissertation has 

been carried out. This includes introducing the reader to the importance of mires and peatlands 

for their role in ecosystem service delivery, giving a brief idea of why and how the water-table in 

a peatland is the main driver of ecosystem processes and environmental change, and what envi-

ronmental controls drive water-table dynamics through different hydrological processes. The 

chapter also briefly describes the main aims and specific objectives.  
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Chapter Two investigates the effects of long-term rewetting on peatland water table dynamics. 

It evaluates how the response of the water-table to rainfall events relates to the hydrophysical 

properties of peat. This chapter has been published as an original research article titled “Long-

term rewetting of degraded peatlands restores hydrological buffer function” in Science of the 

Total Environment (Ahmad, Liu, Günther et al., 2020).  

Chapter Three analyzes how precipitation along with other meteorological factors such as rela-

tive humidity and air temperature act as controls over the water-table. It investigates how the 

existing management regime may modify the effects of such controls by comparing a rewetted 

fen with a drained fen. This chapter has been submitted to the Special Issue “Observing, model-

ing and understanding processes in natural and managed Peatlands” by Frontier in Earth Science, 

to be published as an original research article titled “Meteorological controls on water table 

dynamics in fen peatlands depend on management regimes” (Ahmad, Liu, Alam et al., 2020 ; 

under review). 

Chapter Four presents a spatial analysis of soil properties such as saturated hydraulic conductiv-

ity and soil organic matter and elucidates how soil surface microtopography is associated with 

such properties a coastal fen. Heterogeneity of soil properties is presented along with how they 

are spatially auto-correlated. This chapter has been published as an original research article in 

Mires and Peat with the title “Spatial heterogeneity of soil properties in relation to microtopog-

raphy in a non-tidal rewetted coastal mire” (Ahmad, Liu, Beyer et al., 2020). 

Chapter Five provides a concluding discussion of the overall dissertation. Through a composite 

schematic diagram, it synthesizes the novel contribution of the dissertation to a better under-

standing of fen peatland hydrology. It goes beyond the results and discussions of Chapters 2-4 

and sheds light on a multitude of implications for fen peatland restoration and management.  

The readers should note that to keep the coherence in the dissertation format, the original arti-

cles which make up Chapters Two and Four, and the submitted manuscript which makes up 

Chapter three, have been reformatted, in terms of the numbers of columns and the figure num-

bering and placement, and coherent spelling (American Standard English). The contents of these 

studies remain the same.   
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Abstract 
Precipitation is a key factor affecting shallow water table fluctuations. Although the literature 

on shallow aquifers is vast, groundwater response to precipitation in peatlands has received little 

attention so far. Characterizing groundwater response to precipitation events in differently man-

aged peatlands can give insight into ecohydrological processes. In this study we determined the 

groundwater table response rate following precipitation events at a drained and a rewetted fen 

to characterize the effect of rewetting on hydrological buffer capacity. Multiple regression anal-

ysis revealed that the groundwater table at the rewetted fen has more than two times lower 

rate of response to precipitation events than that of the drained fen, even after adjusting for 

antecedent groundwater levels. Thus, the rewetted fen delivers a better hydrological buffer 

function against heavy precipitation events than the drained fen. We found that for the depths 

at which the groundwater interacts with incoming precipitation, the peat of the rewetted fen 

has a higher specific yield causing groundwater to rise slower compared to the response at the 

drained fen. A period of 20 years of rewetting was sufficient to form a new layer of organic ma-

terial with a significant fraction of macropores providing storage capacity. Long-term rewetting 

has the potential to create favorable conditions for new peat accumulation, thereby altering wa-

ter table response. Our study has implications for evaluating the success of restoration measures 

with respect to hydrological functions of percolation fens. 

Keywords: Hydrological restoration; Groundwater response; Percolation fens; Soil physical 

properties 
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Graphical Abstract 

 

Highlights 

 Groundwater response to rainfall can be used to evaluate hydrological functioning. 

 The rewetted fen responds at a slower rate to precipitation than the drained one. 

 Long-term rewetting can restore water storage capacity of the upper soil horizon. 
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2.1. Introduction 

Mire and peatland ecosystems play a significant role in the global carbon cycle as they are 

sources or sinks of greenhouse gases (GHG), depending on how they are managed (Günther et 

al., 2020; Joosten et al., 2016; Leifeld et al., 2019; Rydin & Jeglum, 2013). Although, peatlands 

cover a small portion of the Earth's land surface (around 3%), they store about 20% of the global 

total soil organic carbon stock (Joosten et al., 2016; Leifeld & Menichetti, 2018; Scharlemann et 

al., 2014). However, at present artificial drainage of about 10% of global peatlands have changed 

them from long-term carbon sinks into sources (Joosten, 2010). Conservation of high-carbon 

ecosystems such as peatlands will have immediate positive impact in terms of emission reduc-

tions (Intergovernmental Panel on Climate Change, 2019) and emission avoidance through peat-

land restoration has been recognized as climate change mitigation strategy (Leifeld & Meni-

chetti, 2018; Wilson et al., 2016). 

Peatlands may provide other ecosystem functions and services besides carbon storage, such as 

the hydrological buffer function (Lennartz & Liu, 2019). In a catchment or river basin, peatlands 

may transform heavy rainfall events into a smooth discharge curve depending on their hydraulic 

properties and connectivity. Crucial in this context is the specific yield, which is defined as the 

fraction of the peat volume that drains instantaneously as the water table descends and as such 

it determines the water storage capacity of the peat body (Heliotis, 1989). 

Artificial drainage of peatlands causes the water table to drop and subsequent collapse and de-

composition of the peat alters hydro-physical properties such as pore structure, hydraulic con-

ductivity (Ivanov, 1981; Liu et al., 2016; Price, 2003; Rezanezhad et al., 2016; Zeitz & Velty, 2002) 

and soil organic matter content (Heller & Zeitz, 2012). Peatland drainage will also change the 

vegetation composition (Schrautzer et al., 2013), overall biodiversity (Maltby, 1997), water chem-

istry (Holden et al., 2004) and hydrological processes (Holden et al., 2006; Holden & Burt, 2003)). 

In peatlands, the survival of peat-forming plant species and the necessary high and stable water 

tables depend on hydrological properties of the peat (Menberu et al., 2016; Price, 2003). 

In recent years there have been increasing efforts towards the restoration of hydrological func-

tions of degraded peatlands by rewetting through blocking old drainage networks (Kotowski et 

al., 2016; Lamers et al., 2015), as rewetting can minimize further degradation or even create fa-

vorable hydrological conditions for the new formation of peat (Menberu et al., 2016; Mrotzek et 

al., 2020; Niedermeier & Robinson, 2007). However, to date the restoration of peatland hydro-

logical functions is not sufficiently understood. Price et al.'s (2003) paper provides an overview 

of how hydrological processes differ in abandoned and in restored peatlands. A study by  Men-

beru et al. (2016) evaluated the restoration of peatland hydrology in 24 different peatlands. 

The degradation of peat subsequent to drainage decreases the hydraulic conductivity (Ivanov, 

1981; Liu & Lennartz, 2019a; Price, 2003), which refers to the ability of soil to transmit water 

(Amoozegar & Warrick, 1986). A lower hydraulic conductivity would decrease the flow of water 

to and through the peat matrix, reducing the connectivity of a peatland to adjacent mineral soils 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0255
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and within the landscape as a whole. Likewise, macroporosity decreases dramatically upon drain-

age, lowering the ability of the peat body to store water (Liu & Lennartz, 2019a). Such changes 

in peat properties can affect the response of the water table to precipitation with possible con-

sequences for discharge (Menberu et al., 2016). 

Analysis of water table response to rainfall is an effective means to understand restoration suc-

cess as it gives insight into physical properties of peat such as bulk density or even specific stor-

age capacity of peatlands. While there have been numerous studies on water table response to 

precipitation conducted in shallow and deep aquifers (Cai & Ofterdinger, 2016; Zhang et al., 

2017), such analyses have been limited in peatlands (Bourgault et al., 2019; Heliotis & DeWitt, 

1987; Romanov, 1968; van der Schaaf, 1999). There have been several studies on water table 

dynamics and on the impact of restoration measures on-site hydrology in bogs (D'Acunha et al., 

2018; Green et al., 2017; Holden et al., 2006; Holden et al., 2011; Howie et al., 2009; Ruseckas & 

Grigaliūnas, 2008). For example, the study by  Holden et al. (2011), found that after 7 years of 

rewetting by ditch blocking in a blanket bog, the hydrological changes caused by 40 years of 

drainage were not entirely reversed. Nevertheless, they did find some evidence of a slow recov-

ery as indicated by water table responses to rainfall events and seasonality of water table varia-

bility. However, there has been a lack of studies on the effects of rewetting on water table dy-

namics in temperate peatlands, especially in percolation fens. 

Percolation fens are minerotrophic peatlands that depend on a large supply of water that is 

evenly distributed throughout the year. As such, they depend on large catchment areas and are 

commonly found in river valleys or as part of valley mire systems. Valley mire systems typically 

consist of spring mires at the edges, wide percolation mires and strips of flood mires along the 

course of the river (Succow & Joosten, 2001; Tiemeyer et al., 2006). In their natural state, perco-

lation fens are characterized by a high and stable water table, which results in only slightly de-

composed peat with high hydraulic conductivity causing water to percolate through the whole 

peat body (Joosten et al., 2017; Joosten & Clarke, 2002; Lindsay, 2016). The German federal state 

of Mecklenburg-Western Pomerania has the highest density of fens in Germany, accounting for 

12% of the total land area, of which one third are percolation fens (Koch & Jurasinski, 2015; Zauft 

et al., 2010). These are mostly located along river valleys which are remains of melt water chan-

nels of the last glaciation, where permanent groundwater flow from adjacent moraines caused 

paludification (Koch & Jurasinski, 2015; Succow & Joosten, 2001), a process through which or-

ganic matter is accumulated over time resulting from increasing soil moisture and colonization 

of peat forming species (Lavoie et al., 2005). 

The understanding of hydrological restoration of temperate peatlands through long-term (> 

20 years) rewetting is limited. This is especially true for percolation fens. The objective of this 

study was to evaluate the restoration of hydrological functions in peatlands by comparing a re-

wetted (PW) and a drained percolation fen (PD). We aimed at determining the groundwater ta-

ble response rate following precipitation events at both sites, taking into account the effect of 

antecedent groundwater levels. Furthermore, we wanted to test the predictive power of se-

lected soil physical properties for restoration success and hydrological buffer capacity. 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0030
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2.2. Materials and methods 

2.2.1. Study sites 

The two study sites are 8 km apart and are located in the Federal State of Mecklenburg-Vor-

pommern, Germany and together belong to the largest connected fen complex in northeastern 

Germany (Jurasinski et al., 2020). One site is a drained percolation fen (PD), while the other has 

been rewetted 23 years ago (PW), but was formerly drained for decades (Figure 2.1). They are 

typical percolation fens, which formed in meltwater channels left by the retreating ice after the 

last glacial period. PD is a fairly homogenous grassland, consisting mainly of Ranunculus repens L. 

and Deschampsia cespitosa (L.) P. Beauv. with some Holcus lanatus L. and Poa trivialis L., while 

PW is more diverse with a mosaic of several dominant stands that developed after rewetting. 

The studied plot is dominated by Carex acutiformis Ehrh., with few occurrences of Epilobium hir-

sutum L. PW was drained since c. 1750, and drainage was much intensified in c. 1970 for high 

intensity pasture management. In 1997, the site was rewetted as a part of the state peatland 

conservation program and the EU-LIFE program. Today, PW can be considered to be a near-nat-

ural percolation fen, part of a larger valley mire system (Tiemeyer et al., 2006). The relevant site 

characteristics have been summarized in Figure 2.2. 

 
Figure 2.1 Location of the study sites: drained (PD) and rewetted (PW) percolation fens (Basemap: , 2020, 
Underlying relief:  GeoPortal.MV, 2020). Red dot on inset map shows the study locations with respect to 
the national boundary of Germany (Country maps:  Eurostat, 2020). 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0245
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Figure 2.2 Summary characteristics of the study sites, modified after  Jurasinski et al. (2020). 

2.2.2 Hydrological data registration and analysis 

As part of the WETSCAPES project (Jurasinski et al., 2020), one water level logger (SEBA hy-

drometrie Dipper-PT) was installed for each site and data was registered every 15 min. Weather 

stations were also installed at each site, which registered precipitation (YOUNG Tipping Bucket 

Rain Gauge), among other meteorological variables, every 10 min. 

For our analysis we used data from 30 September 2017 till 9 June 2019 for PW and till 24 July 2019 

for PD. All data were merged together and temporal scales were matched to 30-minute intervals 

employing the R statistical computing software (R Core Team, 2019). A user-defined function 

was developed with which precipitation events and their respective duration were calculated 

using a moving temporal window of 6 h for which summation of precipitation and duration 

would halt if rainfall stopped for 30 min. Using cross-correlation functions, no significant lags 

were found between precipitation and water table rise within the time intervals for either site, 

indicating an immediate reaction. The response rate was calculated as the rise in water table 

divided by the time it took to rise. Precipitation intensity (rate of precipitation) was calculated 

by dividing the precipitation event size by the duration of the event. All calculations were done 

for time periods when the water level was below the soil surface. This is because when water 

table is above the surface, any response to rainfall would not reflect the physical properties of 

the peat. Bivariate relationships such as those between precipitation intensities and groundwa-

ter response rates were investigated using scatterplots and Pearson correlations. Multiple linear 

regression analyses were computed separately for PD and PW with response rate as the depend-

ent variable and precipitation intensity and antecedent groundwater level as the independent 

variables. 
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2.3. Soil dry bulk density and specific yield determination 

In order to corroborate the results from groundwater table response analysis, we dug out one 

undisturbed soil column (20 cm in diameter) per site in July (PW) and August of 2017 (PD) and 

stored them at −17 °C. The uppermost 43 cm (PD) and 55 cm (PW) of the soil column were cut 

into contiguous 0.5 cm slices at −4 °C using the DAMOCLES device (Joosten & Klerk, 2007). The 

slices were volumetrically subsampled for analyses of bulk density and organic matter content. 

Subsamples of 6 cm3 were weighed for bulk density and ignited at 550 °C to measure the loss of 

organic matter. For PD, since the water table drops beyond a depth of 43 cm, additional sampling 

of soil cores was carried out at the depths of 50, 70 and 100 cm to determine bulk density. 

 

Bulk density data (first 2 cm not considered because of potential disturbance and thick roots) 

was converted to specific yield using a pedotransfer function (specific yield = 0.003 × bulk den-

sity-1.40) developed by  Liu, Price et al. (2020) for peat soils (see Figure 2.3) . Specific yield is the 

fraction of the peat volume that drains instantaneously as the water table descends and as such 

it determines the water storage capacity of the peat body (Heliotis, 1989). Following Thompson 

and Waddington (2013), Liu, Price et al. (2020) calculated specific yield as the difference between 

total porosity and volumetric water content at −10 cm water pressure head. Note that values of 

specific yield are more sensitive to bulk density if bulk density is lower than 0.2 g cm−3. 

 
Figure 2.3 Pedotransfer function to convert bulk density of peat to specific yield (Liu, Price et al., 2020). 
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Additionally, the precipitation event size to groundwater response ratio (PPT/RSP) was calcu-

lated for each site and compared with the specific yield values derived from the pedotransfer 

function. PPT/RSP is a good indicator of specific storage capacity and has been used as a proxy 

for specific yield in several studies (Ahmad, Hörmann et al., 2020; Chin, 2008; Heliotis, 1989; Van 

Gaalen et al., 2013; Zhang et al., 2017), the central assumption being that all of the input from 

rainfall contributes to the water table rise. Yet, this assumption may not hold true in cases where 

the unsaturated zone retains a substantial volume of water. Therefore, the values of PPT/RSP 

are only an indication of specific yield. 

 

A summary of the materials and methods used in the study is provided in Table 2.1 

Table 2.1 Summary of the materials and methods used in the study. 

Variable/data Instrument/tool Date Description/use/analysis 

Water level 

SEBA hydrometrie 

Dipper –PT 

(one, per site) 

30 September 

2017 till 9 

June 2019 

(PW) and till 

24 July 2019 

for (PD) 

Data was registered every 15 min. 

Response rate calculated rise in groundwater ta-

ble during precipitation event divided by dura-

tion of the rise. 

Rainfall 
YOUNG Tipping 

Bucket Rain Gauge 

30 September 

2017 till 9 

June 2019 

(PW) and till 

24 July 2019 

for (PD) 

Data registered every 10 min. Timesteps of water 

table and rainfall were matched to 30 min inter-

vals. Precipitation event size calculated using a 

user defined function in R, by summing up pre-

cipitation for as long as there is rain. The mo-

ment rainfall stops, the summing stops marking 

the end of an event. Precipitation intensity was 

calculated as precipitation event size divided by 

duration 

Soil samples 

1 undisturbed soil 

column per site; 

DAMOCLES soil cut-

ting apparatus 

(Joosten & Klerk, 

2007). 

July 2017 

(PW); August 

2017 (PD) 

Undisturbed soil columns stored at −17 °C. Upper 

42 cm (PD) and 55 cm (PW), were cut at 0.5 cm 

slices at −4 °C. The slices were subsampled volu-

metrically for analysis of bulk density. 

Specific yield 

calculation 

Pedotransfer func-

tion to transform 

peat bulk density 

to specific yield 

(Liu, Price et al., 

2020) 

– Specific yield = 0.003 × bulk density-1.40 
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Table 2.2 Mean and confidence intervals [lower limit, upper limit] of different hydrological variables. ‘N’ 
denotes the sample size, which is the number of precipitation events. 

Site Precipitation 

event size 

(mm) 

Precipitation 

intensity 

(mm/h) 

Water table 

response 

(mm) 

Water table re-

sponse rate 

(mm/h) 

Antecedent ground-

water level 

(mm) 

N 

PD 
3.57 

[2.90, 4.25] 

0.27 

[0.22, 0.32] 

41.08 

[29.69, 52.48] 

3.36 

[2.25, 4.48] 

−281.4 

[−318.7, −244.3] 
181 

PW 
5.03 

[2.70, 7.35] 

0.39 

[0.23, 0.56] 

37.13 

[23.11, 51.14] 

3.07 

[1.97, 4.16] 

−155.7 

[−179.1, −132.2] 
51 

 

2.3. Results 

2.3.1. Hydrographs, water table characteristics and precipitation events 

The annual average water table at PW for the year 2018 was −39 mm while it was −367 mm at 

PD. From the hydrographs of water table and precipitation (Figure 2.4), we can observe that 

water table responds immediately to precipitation in both sites. For both sites, seasonality of 

precipitation as well as groundwater table can be observed, with low water tables in spring and 

summer and high water tables in autumn and winter. Although PD is a drained site, the water 

table rises near or even over the surface several times during the year, especially at the end of 

2017. This can be attributed to the exceptionally wet conditions of the year 2017 with a total an-

nual precipitation anomaly of +187 mm, relative to the long-term average (1981 to 2010; Jurasin-

ski et al., 2020). However, over the course of the following year, the groundwater table fell to a 

maximum depth of −800 mm in PD which can be attributed to the exceptionally dry year of 2018, 

with a total annual precipitation anomaly of −126 mm. Such a lack of precipitation input also 

caused a drop in the water level, even at PW, where water levels of up to 300 mm below the 

peat surface, were recorded. 
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Figure 2.4 Water level (1st y-axis, green line) and precipitation (2nd y-axis, blue spikes) for (A) Drained 
(PD) and (B) Rewetted (PW) fens. The dotted red line indicates the peat surfaces. In total 181 and 51 pre-
cipitation events were identified for PD and PW, respectively. Summary statistics of groundwater level 
and precipitation are shown in Table 2.2. 

2.3.2. Bivariate relationships between hydrological variables 

Simple linear regression analysis between the groundwater table response and precipitation 

event size (Figure SM 2.1) reveals that for each unit increase of rainfall event size, groundwater 

table rises by about 12 mm (R2 = 0.50) at PD. For PW, 1 mm increase in rainfall event size causes 

a half as large increase of about 6 mm groundwater table (R2 = 0.92). The much lower R-squared 

value for PD shows that the response is less predictable than for PW. 

 

Simple linear regression between groundwater response rate and precipitation intensity reveals 

significantly strong linear correlations for both PD (R2 = 0.71) and PW (R2 = 0.93). The response 

rate is much faster at PD than at PW (Figure 2.5). At PD, each unit increase in precipitation inten-

sity results in a corresponding increase of 17.9 units in response rate; at PW, the corresponding 

increase in groundwater response rate is only 6.3 units. The difference in response can be related 

to a difference in hydrophysical properties of the peat. The water table immediately before the 

start of the precipitation event, which we refer to as antecedent groundwater level, should be 

taken into account using multiple linear regression models. 

(B) 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#f0025
https://www.sciencedirect.com/science/article/pii/S0048969720351007#f0025
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Figure 2.5 Groundwater level (GW) response rate and precipitation event intensity at drained (PD, 
light green) and rewetted (PW, dark green) fen. Shaded areas represent the 95% confidence in-
tervals. 

There is a rather weak linear relationship between the antecedent groundwater level and the 

response rate for both sites (Figure SM 2.2). Contrary to our expectation that the response rate 

would be more pronounced at shallower depths, it appears to be marginally higher at deeper 

depths. 

2.3.3. Water table response to combined effects of precipitation intensity and an-
tecedent groundwater level 

After accounting for antecedent groundwater level, every unit increase in precipitation inten-

sity increases the rate of groundwater response by 6 units at PW and by 17 units at PD (Table 

2.3). Thus, the groundwater table response at PD is more than two times more sensitive to pre-

cipitation intensity than at PW. 

Table 2.3 Results of multiple regressions with groundwater response rate (mm/h) as the dependent vari-
able at PW and PD. 

Sites Regression terms Estimate Std. error t value Pr(>|t|) 

PW 

Intercept −0.365 0.287 −1.271 0.210 

Antecedent water table (mm) −0.006 0.002 −3.967 <0.001⁎⁎⁎ 

Precipitation intensity (mm/h) 6.228 0.227 27.448 <0.001⁎⁎⁎ 

Residual standard error: 0.942 on 48 degrees of freedom; Multiple R-squared: 0.944|Adjusted R-squared: 
0.942|F-statistic: 404 on 2 and 48 DF|p-value: < 0.001. 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#tf0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#tf0005


Long-term rewetting of degraded peatlands restores hydrological buffer function 
 

Hydrological processes in fen peatlands    30 
 

Sites Regression terms Estimate Std. error t value Pr(>|t|) 

PD 

Intercept −2.623 0.473 −5.548 <0.001⁎⁎⁎ 

Antecedent water table (mm) −0.005 0.001 −3.868 <0.001⁎⁎⁎ 

Precipitation intensity (mm/h) 17.389 0.832 20.895 <0.001⁎⁎⁎ 

Residual standard error: 3.958 on 178 degrees of freedom; Multiple R-squared: 0.730|Adjusted R-
squared: 0.733|F-statistic: 244.8 on 2 and 178 DF|p-value: < 0.001. 

⁎⁎⁎p < 0.001. 

2.3.4. Physical properties of peat 

At PD bulk density shows a sharp increase from a minimum of 0.04 g cm−3 at 2.5 cm depth to a 

maximum of 0.23 g cm−3 at a depth of only 6.5 cm. Below 6.5 cm depth the bulk density steadily 

decreases with depth. In contrast, at PW, BD values reaches as high as the maximum BD of PD 

at a much larger depth, around 20 cm below the peat surface. However, bulk density at PW peaks 

off at 0.35 g cm−3, at a depth of 27 cm, then starts to decrease, first sharply and then more grad-

ually (Figure 2.6). 

Applying the pedotransfer function, both sites show sharply decreasing estimated specific yield 

(SY) down to a certain depth, after which there is gradual increase. In the topsoil, PW has much 

higher SY than PD: The mean SY at 0–10 cm depth is 0.06 for PD and 0.21 for PW, and for 10–

20 cm depth 0.04 for PD and 0.07 for PW (Table 2.4). For the depth range of water table fluctu-

ations (upper 800 mm for PD and upper 300 mm for PW), PD has significantly lower SY than PW 

(mean ± SEM: 0.06 ± 0.00 vs. mean ± SEM: 0.09 ± 0.01; tested with Welch-corrected two-sam-

ple t-test, p-value < 0.01). Note that the values of specific yield are more sensitive to bulk density 

when it is below 0.2 g cm−3. 

The precipitation event size to water level response ratio (PPT/RSP) is a good indicator of specific 

storage capacity, but has also been used as a proxy for specific yield in several studies (Ahmad 

et al., 2020; Chin, 2008; Heliotis, 1989; Van Gaalen et al., 2013; Zhang et al., 2017). The PPT/RSP 

ratio over depth shows a good agreement with specific yield, as derived from the bulk density 

data, especially for PD and for shallower depths, indicating that our application of the pedotrans-

fer function was successful in terms of reasonably estimating specific yield. The graph for PW 

shows a decreasing trend in the PPT/RSP ratio for the limited range it covers, which is in agree-

ment with the specific yield graph (Ahmad, Hörmann et al., 2020; Chin, 2008; Heliotis, 1989; Van 

Gaalen et al., 2013; Zhang et al., 2017). The PPT/RSP ratio over depth shows a good agreement 

with specific yield, as derived from the bulk density data, especially for PD and for shallower 

depths, indicating that our application of the pedotransfer function was successful in terms of 

reasonably estimating specific yield. The graph for PW shows a decreasing trend in the PPT/RSP 

ratio for the limited range it covers, which is in agreement with the specific yield graph. 

https://www.sciencedirect.com/science/article/pii/S0048969720351007#tf0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#tf0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#tf0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0005
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0035
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0065
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0315
https://www.sciencedirect.com/science/article/pii/S0048969720351007#bb0335
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Figure 2.6 Depth profiles of peat dry bulk density, specific yield (determined from bulk density), and the 
ratio of precipitation event size to water table response height (PPT/RSP) for (A) PD (B) PW. PPT/RSP was 
smoothed using locally estimated scatterplot smoothing (loess) function, with the shaded areas showing 
confidence intervals. 

Table 2.4 Average estimated specific yield per depth class. 

SITE PD PW 

Depth (cm) Mean SD Mean SD 

0–10 0.06 0.07 0.21 0.07 

10–20 0.04 0.01 0.07 0.05 

20–30 0.06 0.02 0.02 0.00 

30–40 0.07 0.00 0.05 0.02 

40+ 0.08 0.04 0.09 0.03 

(B) 

(A) 
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2.4. Discussion 

Our study found evidence that rewetting of a previously drained and degraded percolation fen 
may alter the physical response of the groundwater table to precipitation, increasing the hydro-
logical buffer function of the peatland. Similar to our finding, the rise in water table in reaction 
to precipitation during storm events, was larger in a drained than in a rewetted blanket bog site 
(Holden et al., 2011). Another study conducted in a blanket bog catchment showed that drainage 
of peat resulted in a greater sensitivity to rainfall with flashier hydrographs than control catch-
ments (Holden et al., 2006). 
 
The slower response rate of the groundwater table to precipitation at the rewetted fen (PW) 
compared to the drained fen (PD) may be attributed to a difference in physical properties such 
as bulk density and specific yield. The long-term drainage at PD caused oxidation of organic mat-
ter and shrinkage of peat above the water table and compression below it (Kennedy & Price, 
2004; Oleszczuk & Brandyk, 2008), which led to a decrease in the void ratio, and an increase in 
bulk density and thereby a shift in pore size distribution. In the absence of water-saturated con-
ditions, aerobic decomposition and humification resulted in the degradation of soil structure and 
a decrease in water storage and water transmission (Kechavarzi et al., 2010). These processes 
led to the degraded peat in the upper horizons to have higher bulk density and a lower specific 
yield, compared to the peat in PW. At PW, soil properties changed because (1) the peat swelled 
up after rewetting and (2) new porous material (“proto-peat”) accumulated over the 20 years 
since rewetting (Mrotzek et al., 2020). 
 
The water storage capacity of peat is determined by its specific yield (Heliotis, 1989). At PW, the 
newly accumulated peat in the upper horizons has a much higher specific yield and therefore can 
store much more water than at PD. As a result, it requires a larger precipitation input to raise the 
groundwater level by the same height at PW, compared to PD. A positive feedback loop may 
establish in which the large storage capacity of the newly accumulated material buffers the wa-
ter table response, creating conditions that are favorable for continued accumulation of poorly 
decomposed, coarse materials that help to maintain a large storage capacity (see  Joosten & 
Clarke, 2002, p. 28). 
 
Michaelis et al. (2020), who studied macroscopic and microscopic remains in the same peat cores 
from PD and PW, concluded that rewetting in PW had led to the establishment of an accumulat-
ing ecosystem (“proto-peat” formation). A mass-balance study on the same two study sites 
by  Mrotzek et al. (2020) found that 11 cm of peat corresponding to 4.5 kg m−2 of organic matter, 
had accumulated over the 20 years since rewetting. As expected, the drained site PD had a much 
lower mean water table position than the rewetted site PW (−367 mm vs. +39 mm from the peat 
surface, respectively). 
 
The drained fen (PD) has a less predictable groundwater table response to precipitation than the 
rewetted fen (PW), as indicated by the lower R-squared value of the regression model for PD. In 
other words, while in PW, precipitation intensity can explain more than 90% of the variation in 
groundwater table response rate, in PD, it alone explains only 71%. Particularly in PD, factors 
other than just rainfall likely play a distinct role as well, in determining water table dynamics. 
Among these factors is a differentiated specific yield over depth. 

The pedotransfer function to convert peat bulk density to specific yield worked reasonably well. 
It is consistent with the PPT/RSP values, which has been shown to be a good indicator of specific 
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yield (Ahmad, Hörmann et al., 2020; Heliotis, 1989; Holden et al., 2011; Van Gaalen et al., 2013). 
Any disagreement between the estimated specific yield values and the values of PPT/RSP for the 
same depths can be explained by variable initial conditions at the onset of a precipitation 
event.  Heliotis (1989) in a study of forested peatland states that such variable conditions include, 
among other factors, antecedent soil moisture content and changes in biomass - affecting evap-
otranspiration and rainfall interception - through the growing season. As such, PW with taller 
vegetation may have marginally higher evapotranspiration and rainfall interception than PD, 
where vegetation is shorter. However, we do not expect vegetation at the study sites to play a 
major role in modifying the effect of precipitation on groundwater response. 
 
The general tendency of decreasing specific yield with depth is in agreement with other studies 
(Ahmad, Hörmann et al., 2020; Bourgault et al., 2017; Heliotis, 1989; Menberu et al., 2016). While 
our specific yield estimates range from about 0.01 to 0.41 for the rewetted site (PW),  Heliotis 
(1989) estimated a specific yield within a range of 0.05 to 0.7. Similarly,  Menberu et al. (2016) 
found a higher mean specific yield of 0.14 within 20 cm of the peat surface, which decreased to 
0.09 beyond 20 cm depth. 
 
While our method of using hydrological monitoring data to analyze groundwater response to 
precipitation provides a fast and simple way to assess restoration success of fens, at least in 
terms of the physical properties in the upper horizons of the peat body, several limitations exist. 
First, we assumed any effect of evapotranspiration on the groundwater response to be negligi-
ble within the temporal scale of precipitation events. Second, as we had only two monitoring 
wells at only two sites, care must be taken in drawing generalized conclusions, particularly con-
cerning other sites with different drainage histories or land-use. Although more monitoring wells 
could have benefitted the study, water levels measured in an observation well are representative 
of an area of at least several tens of square meters (Maréchal et al., 2006). A “before-after-con-
trol” approach, such as the one used by  Menberu et al. (2016) on boreal peatland restoration, 
would have allowed a true assessment of the hydrological buffer functions at the restored site. 
However, assessing the effects of restoration over longer time frames (decades) would require 
long-term water level monitoring, which is generally lacking for (temperate) fens (cf.  Bechtold 
et al., 2014). 
 

2.5. Conclusions 

The rate of groundwater response to precipitation event intensity is more than two times slower 
in the rewetted than in the drained fen. This finding is consistent with our hypothesis. We con-
clude that long-term rewetting of drained and degraded peatlands has the potential to alter the 
physical response of groundwater table to precipitation events and improve hydrological buff-
ering. We attribute such a change to the restoration of physical properties of the peat body, 
especially at the upper soil horizon, which increases the water storage capacity of the peat (as 
evidenced by the estimated specific yield), and decreases groundwater response. The mecha-
nisms by which macroporosity and water storage are restored are either by new peat accumula-
tion (due to favorable conditions), or by swelling caused by water saturation, or both. Other 
studies confirm that new organic material (“proto-peat”) has been accumulating in the same fen 
since rewetting. Our approach provides a fast and simple way to utilize hydrological monitoring 
data to understand physical properties of peat, which is especially useful in the absence of soil 
data. Future research should make use of long-term hydrological data in a similar way to analyze 
restoration success, especially when the data can be divided into pre-rewetting and post-re-
wetting periods. 
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Supplementary Material to Chapter 2 

  

 

Figure SM 2.1 Groundwater table (GWT) response and precipitation event size in drained (PD) and 
rewetted (PW) fen. Shaded areas represent the 95 % confidence intervals. 

 

  

Figure SM 2.2 Groundwater (GW) response rate and antecedent groundwater level in (A) drained (PD) 
and (B) rewetted (PW) fen. Shaded areas represent the 95 % confidence intervals. 
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Abstract 

Fens belong to the most threatened ecosystems in Europe. Maintaining a high water table 

through rewetting is an effective measure to rehabilitate many of their ecosystem functions. 

However, the impact of meteorological conditions such as relative humidity, precipitation, and 

air temperature on water tables is still unclear for rewetted fens. Here, we quantify the impact 

of meteorological factors on water table dynamics in a drained and a rewetted fen, using multi-

ple time-series regression with data from continuous high-resolution (temporal) water level 

monitoring and weather stations. We find that a 1-degree rise in daily maximum air temperature 

causes a drop of about 4 mm in the water table in the drained and degraded fen but only a drop 

of around 2 mm at the rewetted fen, principally through evapotranspiration. Furthermore, 

higher minimum relative humidity limits evapotranspiration and thus causes a rise in the water 

table at both sites. Precipitation contributes to recharge, causing the water table to rise almost 

six times higher at the drained site than at the rewetted site. We attribute the differential influ-

ence of meteorological conditions on water table dynamics to (1) differences in vegetation which 

act as surface controls and (2) differences in soil properties. Our study underlines the importance 

of meteorological factors and surface controls for peatland restoration. Continuous monitoring 

of water-table and vegetation development in rewetted fen peatlands is advisable to ensure 

long-term success especially under climate change conditions and associated drought and dry 

spell events. 

Keywords: peatland hydrology, peatland restoration, evapotranspiration, peatland hydromete-

orology, diurnal groundwater fluctuation, climate change 
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3.1. Introduction 

Over the past century, about 90% of minerotrophic peatlands (fens; groundwater-fed peatlands) 

in Central Europe have been degraded through artificial drainage and deforestation (Joosten & 

Couwenberg, 2001). As a result, fens have been recognized as one of the most threatened eco-

systems in Europe (Schrautzer et al., 2007). Maintenance of water table at or near the peat sur-

face prevents carbon mineralization, allows peat accumulation (Michaelis et al., 2020; Mrotzek 

et al., 2020), and improves ecosystem functions such as hydrological buffering, water purifica-

tion, erosion protection and climate regulation (Ahmad, Liu, Günther et al., 2020; Günther et al., 

2020; Kimmel & Mander, 2010; Lennartz & Liu, 2019). Therefore, restoration of degraded peat-

lands is an important climate change mitigation measure, as peatlands store much of the global 

terrestrial carbon stock. Although hydrological restoration of peatlands has been implemented 

throughout Europe and North America (Lamers et al., 2015), rewetted peatlands are under pres-

sure from climate change (Levison et al., 2014). Shifting in precipitation patterns and increasing 

evapotranspiration resulting from global warming may further degrade peatlands (Helbig, Wad-

dington, Alekseychik, Amiro, Aurela, Barr, Black, Blanken et al., 2020; Nijp et al., 2015; Tarnocai, 

2009). However, the impact of a changing climate on peatland ecohydrology through extreme 

weather events such as droughts, heatwaves and dry spells is likely not uniform over different 

spatial scales and climatic zones. Part of this variability is due to a variation in local meteorologi-

cal conditions and differences in land management.  

Meteorological factors may affect the water-table in peatlands through several processes. Heavy 

precipitation can serve as a hydrological input in the peatland water balance through recharge 

(Cooper et al., 2019; Ferone & Devito, 2004; Menberu et al., 2016), while high temperatures can 

increase evapotranspiration (Bridgham et al., 1999). Humidity can also modify the effect of tem-

perature on evapotranspiration because it is easier for water to evaporate into drier air than into 

more saturated air (Ahmad, Hörmann et al., 2020; Chattopadhyay et al., 2009; Shaw et al., 2010). 

The effect of meteorological parameters on water table fluctuation may also be modified by mi-

crotopography, vegetation, soil properties and land management (Baldocchi et al., 2004; Dunne 

et al., 1991). Peat soils are highly heterogeneous porous media (Ahmad, Liu, Beyer et al., 2020; 

Liu, Price et al., 2020; Rezanezhad et al., 2016) with hydraulic conductivities that may vary over 

two orders of magnitudes within the same peat horizon (Liu & Lennartz, 2019a). Peat pore struc-

tures are highly diverse (McCarter et al., 2020) while peat properties often exhibit anisotropy 

(Wang et al., 2020). The spatial differences in soil properties can cause different responses of the 

water table to precipitation at different locations within a peatland. Furthermore, peatland re-

wetting can alter the prevailing vegetation structure and composition (Malhotra et al., 2016; 

Schrautzer et al., 2013), which can further modify the interactions between meteorological fac-

tors and water table. For example, the relationship between temperature and water loss may be 

modulated by stands of dominant vegetation, with high evapotranspirative demand (Bridgham 

et al., 1999).  

The majority of published studies on the link between peatland ecohydrological processes and 

meteorological conditions so far focus on bogs (ombrotrophic peatlands or rainfed mires; Bour-

gault et al., 2019; Philippov & Yurchenko, 2019; Price, 1996; Ruseckas & Grigaliūnas, 2008), while 



Meteorological controls on water table dynamics in fen peatlands depend on management regimes 
 

Hydrological processes in fen peatlands    38 
 

similar studies on fens are sparse. Therefore, meteorological effects on water table dynamics in 

fens, especially with a focus on different management measures (such as rewetting or artificial 

drainage), are understudied. To address these shortcomings, we (1) investigate how on-site me-

teorological conditions act as controls over water-table dynamics (2) unravel the underlying 

mechanisms involved and (3) evaluate how these hydrological controls differ over different man-

agement regimes. To this end, we characterize water table dynamics, estimate the effect of daily 

rainfall, relative humidity and temperature on the water-table and quantify rain-free day actual 

evapotranspiration at a drained fen and a rewetted fen in North-east Germany.   

3.2. Methods 

3.2.1. Study Sites 

The two study sites (drained fen, PD and rewetted fen, PW) are located in the federal state of 

Mecklenburg-Vorpommern, Germany (Figure 3.1). They are 8 km apart and together belong to 

one of the largest connected fen complexes in northeastern Germany (Jurasinski et al., 2020). 

According to the hydrogenetic mire classification system (Joosten et al., 2017; Succow & Joosten, 

2001), they are ‘percolation fens’ which are minerotrophic peatlands that depend on a large sup-

ply of water that is distributed evenly throughout the year. Percolation fens are often located 

along river valleys which are remains of meltwater channels of the last glaciation, where perma-

nent groundwater flow from adjacent moraines caused paludification (Koch & Jurasinski, 2015). 

Both sites were drained before 1750. In PW, land drainage was intensified around 1970 for high-

intensity pasture management. In 1997, the site PW was rewetted as a part of the state peatland 

conservation program and the EU-LIFE program, while PD remains drained.  

 

 

 
Figure 3.1 (A) The study sites include a drained fen and a rewetted fen in Mecklenburg-Vorpommern. (B) 
The study plots at PD (upper panel) and PW (lower panel). The weather station at PD appears on the left 
of the photo, while at PW it appears on the right.  Photo: Haojie Liu (PD) and Michael Franz (PW). 

PD can be considered to be a fairly homogenous grassland, with a dominance of Ranunculus re-

pens L. and Deschampsia cespitosa (L.) P. Beauv. with some Holcus lanatus L. and Poa trivialis L. 

PW is much more diverse with a mosaic of several dominant stands that established after re-

wetting. The studied plot in PW is dominated by Carex acutiformis Ehrh., with few occurrences 

PD 

PW 

(A) 

(B) 
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of Epilobium hirsutum L. In recent times, PW can be considered to feature near-natural percola-

tion fen vegetation and is part of a larger valley mire system (Tiemeyer et al., 2006). The relevant 

site characteristics have been described by Jurasinski et al. (2020) and by Ahmad, Liu, Günther et 

al. (2020). 

3.2.2. Data acquisition and analyses 

As part of the WETSCAPES project, described by Jurasinski et al. (2020), one water level logger 

(SEBA hydrometrie Dipper-PT) was installed for each site and data was registered every 15 min. 

Weather stations were also installed at each site, which recorded precipitation (Rain Collector 

#07852, Davis Instruments), relative humidity and temperature (KPK 1/5-ME, Galltec Mess- und 

Regeltechnik GmbH and MELA Sensortechnik GmbH) every 10 min using an automated data log-

ger CR300 from Campbell Scientific. 

All data were merged and temporal scales were matched to 30-minute intervals. All data analyses 

were carried out using the R version 4.0.3 (R Core Team, 2019). For our analysis, we used data 

from 22 September 2017 through 19 August 2020 (2.9 years) for both sites. The dataset was ag-

gregated to daily resolution by calculating daily precipitation sums and averaging all other varia-

bles. Multiple linear regressions were carried out using the “lm” function in R, by setting water 

table as the dependent variable, and minimum relative humidity, maximum air temperature and 

total precipitation as the independent variables. Seasonality was statistically adjusted for by us-

ing dummy/indicator variables of each month (11 months in total) with January as the reference 

month. This approach is commonly used to control for seasonality or periodicity (Hyndman et 

al., 2020 - Chapter 5.4; Maki et al., 1978; Hylleberg et al., 1993). The summary statistics of the key 

variables are provided in Table 3.1. 

Table 3.1 Mean values of daily water level and meteorological variables for PD and PW. The square brack-
ets contain the lower and upper confidence intervals. 

Variables PD  PW 

Mean Daily Water Level (mm) -277.96 [-292.75, -263.18] 2.88 [-3.71, 9.46] 

Maximum Daily Air Temperature (°C) 13.70 [13.19, 14.20] 14.59 [14.09, 15.09] 

Minimum Daily Relative Humidity (%) 65.47 [64.31, 66.62] 64.10 [62.92, 65.27] 

Daily precipitation (mm) 1.28 [1.09, 1.47] 1.54 [1.31, 1.76] 

3.2.3. Evapotranspiration and specific yield determination 

To further investigate the underlying processes of how temperature and humidity impact water-

table dynamics, rain-free day evapotranspiration (ET) from May to October was estimated for 

both sites using the Hays method (Hays, 2003), which is a modification of the White method 

(White, 1932). For ecosystems with shallow water tables, groundwater use by vegetation 

through evapotranspiration (ET) can be estimated by analyzing water table fluctuation which is 

relatively simple to implement  (Ahmad, Hörmann et al., 2020; Mazur et al., 2014; Mould et al., 

2010). Water level fluctuation methods can be useful to apply in wetland ecosystems for estimat-

ing ET especially because it integrates several factors, including the growth-cycle of plants, the 

plant types, and moisture availability which are generally missing from micrometeorological 
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methods of ET determination (Lautz, 2008; Mazur et al., 2014). The equation for ET determina-

tion is as follows: 

𝑬𝑻 = [(𝑯𝟏 − 𝑳) +
(𝑯𝟐−𝑳)

𝑻𝟏
× 𝑻𝟐] × 𝑺𝒚                 (3.1) 

where, ET = evapotranspiration rate (mm/day);  H1 = highest groundwater level (mm) on an ob-

served day (usually early morning), H2 = highest groundwater level on the day after the observed 

day (mm), L = lowest groundwater level (mm) on an observed day (usually evening), Tl = time 

between L and H2 (rising period), T2 = time between H1 and L (drawdown period), Sy = mean 

specific yield  (dimensionless) for the observed diurnal groundwater fluctuation (see an example 

of diurnal groundwater fluctuation in Figure 3.2 with respective equation parameters being la-

belled accordingly).  

The daily water uptake by plants is calculated as the water level difference between the 

low L and the high H1 of the given day. This period of groundwater level fall (T2) is the ‘draw-

down period’ which includes water uptake by plants and net groundwater inflow. The second 

component of the equation is then added, which quantifies the latent water rise caused by in-

flow during the drawdown period. A key assumption is that ET is zero during this time (Hays, 

2003; Mould et al., 2010). Evapotranspiration was estimated using the dataset with a 30-minute 

resolution. A user-defined function was developed in R to determine evapotranspiration accord-

ing to equation (3.1), which calculates H1 as the maximum water level of a given day, L as the 

minimum water level of the given day and H2 as the maximum water level of the following day. 

If the values of T1 and T2 did not add up to 24 hours for a given diurnal groundwater fluctuation, 

the values of ET were corrected to represent 24 hours. The function was applied only to days 

with diurnal fluctuation in the absence of rainfall in both study sites, evaluated using a graphical 

method. In total, daily ET could be determined for the same 55 days for PD and PW. The Shapiro-

Wilk test showed that the differences of ET between the PD and PW are normally distributed 

(W=0.96; p-value=0.108). Thus, statistical testing was done using paired t-test, pairing the ET val-

ues of the sites by the same day.  

 
Figure 3.2 An example of diurnal groundwater fluctuation (DGF) on a rain-free day at PD. 



Meteorological controls on water table dynamics in fen peatlands depend on management regimes 
 

Hydrological processes in fen peatlands    41 
 

Specific yield, which is the amount of water that would drain from a unit of soil if the water table 

would drop by a unit height (Childs, 1969), is a required parameter to determine ET when using 

the diurnal groundwater fluctuation method (see above). To determine specific yield we used 

the following equation according to Dolan et al. (1984) and Ahmad, Hörmann et al. (2020): 

𝑺𝒚 =
𝑷𝒓𝒆

∆𝑮𝑾𝑳
                              (3.2) 

where, Sy = specific yield, Pre = quantity of precipitation in mm, during the rainfall event, ∆GWL = 

change in groundwater level which is the difference between the water level at the start of the 

precipitation event and the water level at the end of the event.  

Pre and ∆GWL were calculated using a user-defined function following Ahmad, Hörmann et al. 

(2020) and Ahmad, Liu, Günther et al. (2020). The function estimates the quantity of precipitation 

during precipitation events (in mm) and the respective event duration (in h) using a temporal 

moving window of 6 h.  Summation of precipitation quantity and event duration stopped if pre-

cipitation ceased for 30 minutes. The initial and final water levels were recorded, and the differ-

ence (∆GWL) was calculated for each event. The specific yield was plotted against the mean wa-

ter level (determined as the mean of the initial and the final water level for each precipitation 

event, Figure 3.3). All events with water levels above the peat surface and all negative values of 

∆GWL (indicating declining water levels despite ongoing precipitation) were removed. Values 

which did not fall between 0 and 1 were also removed as they violate the definition of specific 

yield. The effect of antecedent soil moisture was assumed to be negligible. A certain rainfall in-

tensity is required for initiating a water table response. We filtered PD to only include rainfall 

events of at least 0.33 mm h-1 intensity. We reduced the threshold for PW to be able to include 

more events, since PW, being a rewetted site, has water level at the surface for most of the year. 

Thus, events with intensities of at least 0.1 mm h-1 were included for PW. The final number of 

rainfall events for PD is 73 and for PW is 65. Lowess smoothing function (“loess”, R Core Team, 

2019) was used to determine the specific yield for a given mean water level which is indicative of 

peat depth. The mean specific yield for a given diurnal fluctuation was plugged into the ET equa-

tion (3.1) depending on the mean water level for the diurnal fluctuation.  
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Figure 3.3 Specific yield determined as the precipitation event size (mm) to groundwater table response 
ratio (Pre: ∆GWL) according to mean water level for (A) PD and (B) PW. The solid lines represent the loess 
smoothing function and the shaded area represents the 95% confidence interval. 

3.3. Results 

3.2.4. Water table characteristics and meteorological conditions 

Both sites show a clear seasonality in water tables as well as in meteorological factors (Figure 5 

and 6). The water level at the drained fen (PD), is below the peat surface for most of the year, 

with a substantial drop from the middle of spring to the end of summer for all 3 observed years. 

Even at the rewetted fen (PW), the water table receded substantially to about -300 mm in the 

summers of 2018 and 2019. Receding water tables at both sites occur at times of rising daily mean 

air temperatures and an absence of substantial rainfall (Figure 3.4 and Figure 3.5). The 

exceptionally dry late autumn and early winter seasons of 2018 and 2019, caused water levels to 

stay well below the peat surface at PD. For PD, the maximum daily rainfall (43 mm) occurred in 

October 2017 and for PD in July 2018 (46 mm). Autumn and winter seasons are characterized by 

high daily minimum humidity.  

(A) (B) 

PD PW 
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Figure 3.4 Daily time-series of (A) water level (B) precipitation (C) minimum relative humidity (D) 
mean air temperature at PD 

 
 Figure 3.5 Daily time-series of (A) water level (B) precipitation (C) minimum relative humidity (D) 
mean air temperature at PW. 
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3.2.5. The effect of meteorological factors on water-table 

The water table at both sites shows an immediate response to rainfall. At PD, for each degree 

Celsius increase in daily maximum temperature, the water level falls by about 4 mm. For each 

unit increase in daily minimum relative humidity, the water table rises by more than 2 mm. A unit 

rise in precipitation induces water level to rise by about 6 mm. All meteorological regression 

terms are significant. The model helps to significantly explain more than 66 percent of the varia-

tion in the water level at PD. 

At PW, one unit rise in daily maximum air temperature causes the water level to drop by about 2 

mm, which is almost half the drop in water level at PD. One unit increase in relative humidity only 

marginally increases the water level by around 0.8 mm. One millimeter increase in daily precipi-

tation induces only a 1.4 mm increase in the water level, an effect which is substantially lower 

than at PD. This model explains around 60 percent of the variation in water level at PW. A graph-

ical representation of the estimated coefficients is provided in Supplementary Material (Figure 

SM 3.1). 

Table 3.2 Multiple linear regression of water level at PD and PW. 

Sites Regression Terms Estimated Coefficients Std. Error t value Pr(>|t|)  

PD Intercept -252.68 36.63 -6.87 1.09 x 10-11 *** 

 January (reference)  

 February 37.89 21.79 1.74 0.082355 
. 

 March 48.57 21.80 2.23 0.026126 * 

 April -12.35 24.98 -0.49 0.621190  

 May -188.81 25.82 -7.31 5.16x10-13 *** 

 June -277.77 29.24 -9.50 < 2x10-16 *** 

 July -293.00 28.66 -10.22 < 2x10-16 *** 

 August -372.92 31.11 -11.99 < 2x10-16 *** 

 September -377.70 26.45 -14.28 < 2x10-16 *** 

 October -167.10 23.38 -7.15 1.65x10-12 *** 

 November -120.35 21.33 -5.64 2.16x10-8 *** 

 December -50.99 20.89 -2.44 0.014811 * 

 Daily Max. Air Temp. (oC) -3.89 1.10 -3.55 0.000397 *** 

 Daily Min. Rel. Humidity (%) 2.46 0.38 6.51 1.13x10-10 *** 

 Daily Precipitation (mm) 6.15 1.44 4.26 2.26x10-5 *** 

Residual standard error: 142.3 on 1048 degrees of freedom | Multiple R-squared:  0.669 | Adjusted R-squared:  0.665 | 

F-statistic: 151.2 on 14 and 1048 DF  | p-value: < 2.2x10-16 
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Sites Regression Terms Estimated Coefficients Std. Error t value Pr(>|t|)  

PW Intercept 27.00 17.68 1.53 0.126963  

 January (reference)  

 February 12.49 10.73 1.16 0.244983 
 

 March 15.44 10.79 1.43 0.152687  

 April 14.58 12.46 1.17 0.242180  

 May -11.07 13.00 -0.85 0.394619  

 June -67.88 14.82 -4.58 5.17x10-6 *** 

 July -108.52 14.59 -7.44 2.12x10-13 *** 

 August -166.94 15.78 -10.58 < 2x10-16 *** 

 September -175.80 13.83 -12.71 < 2x10-16 *** 

 October -72.98 11.68 -6.25 5.94x10-10 *** 

 November -36.59 10.45 -3.49 0.000513 *** 

 December -6.27 10.27 -0.61 0.541946  

 Daily Max. Air Temp. (oC) -2.20 0.59 -3.75 0.000184 *** 

 Daily Min. Rel. Humidity (%) 0.82 0.18 4.58 5.26x10-6 *** 

 Daily Precipitation (mm) 1.40 0.62 2.27 0.023242 * 

Residual standard error: 69.85 on 1048 degrees of freedom | Multiple R-squared:  0.593 | Adjusted R-squared:  

0.598 | F-statistic: 111.4 on 14 and 1048 DF  | p-value: < 2.2x10-16 

Signif. codes:   <0.001***,   <0.01** , <0.05*, <0.1 . 

3.2.6. Actual evapotranspiration and specific yield during rain-free days 

Daily evapotranspiration (ET) for 55 rain-free days was estimated for PD and PW. Mean ET at PD 

was 1.96 mm d-1 (minimum-maximum: 0.70 mm d-1 - 4.11 mm d-1), while at PW mean ET was much 

higher (4.79 mm d-1, minimum-maximum: 2.16 mm d-1 - 8.73 mm d-1). Paired t-test reveals that ET 

at PW was significantly higher than at PD for the same days (mean difference = 2.82 mm d-1 [95% 

CI= 2.29 and 3.34], Figure 3.6A). Evapotranspiration at both sites differed over the months, with 

PW showing higher evapotranspiration compared to PD, for any given month (Figure 3.6B). 
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Figure 3.6 (A) Violin plots of ET with mean and error bars (95% confidence interval). The red dotted line 
connects the two means (of PD and PW). The violin shapes show the distribution of the data for each site. 
(B) Evapotranspiration for both sites according to months (in panels).  

The average (median) specific yield values with which ET values were estimated were signifi-

cantly higher at PW (0.284) than at PD (0.229, Wilcoxon rank-sum test with continuity correction, 

W= 1074, p-value = 0.008). Furthermore, the average (median) fluctuation (calculated as the dif-

ference between H1 and H2) for these days was significantly higher at PD (10 mm) compared to 

PW (8.4 mm, Wilcoxon rank-sum test with continuity correction, W=1850, p-value= 0.044).   

3.4. Discussion 

According to our data, precipitation, air temperature and humidity seem to affect the water ta-

ble (significantly) at different magnitudes, depending on the drainage status of the fen, while 

the direction of the relationship between the meteorological variables and water levels were 

according to expectations. This was the case even though the local meteorological conditions at 

both the drained and rewetted fens were comparable.  

Precipitation had a positive effect on water levels at both sites. This is not astonishing, since it is 

the primary way of groundwater recharge (Wittenberg et al., 2019). After infiltration at the peat 

surface, the water percolates through micro- and macropores and subsequently raises the water 

level (Heliotis & DeWitt, 1987). However, the magnitude of water table response at PD is more 

almost six times higher than at PW. In our recent study (Ahmad, Liu, Günther et al., 2020), we 

investigated the rate of water table rise as a response to discrete rainfall events at the same sites 

and also found that the water table response at PD is much higher than at PW. We attribute 

these differential effects to a difference in the specific storage capacity of the peat. 

Daily minimum relative humidity had a positive effect on the water level. Higher humidity means 

that air with high water vapor can only store a low quantity of additional water and as such evap-

otranspiration becomes limited (Shaw et al., 2010). In other words, it is easier for water to evap-

orate into drier air, than into wetter air (Chattopadhyay et al., 2009). Thus, in the absence of high 

(B) (A) 
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rates of evapotranspiration, the water level fluctuation is less pronounced. The higher the air 

temperature, the more water vapor it can hold and thus more water can evaporate (Kirschbaum 

& McMillan, 2018; Shaw et al., 2010). Furthermore, stomatal conductance increases with rising 

temperatures (Urban et al., 2017) and as a result, transpiration rates increase (especially when 

there is no water stress). Water loss through evapotranspiration causes the water level to drop 

and as such we find a negative relation between air temperature and water levels.  

Although the meteorological conditions are comparable at the two sites, evapotranspiration at 

PW was, on average, twice as high as at PD. Therefore temperature and relative humidity cannot 

explain the differential effects at the two sites. A likely explanation of the differential effects of 

meteorological factors can be derived from understanding the difference in soil properties. The 

specific yield (averaged over the days for which ET was calculated) of peat at PD was significantly 

lower than that of PW, while the diurnal fluctuation at PD was significantly higher than at PW 

(although the ET derived at PD was significantly lower than at PW). This means that one unit 

change in the water-level at PD corresponds to a much lower volume of water than what the 

same unit drop or rise corresponds to in PW. Therefore, the higher impact of temperature and 

humidity on the water table at PD could, in part, be due to the lower storage capacity of the 

degraded fen peat. 

Another explanation, however, could be the difference in vegetation as it has been shown to 

influence evapotranspiration rates (Jimenez-Rodriguez et al., 2019). The vegetation at PD is 

much shorter (around 20 cm in height) and mostly comprised of grasses, while the vegetation at 

PW is dominated by taller sedges (Carex acutiformis), around 1 m in height (see Schwieger et al., 

2020). Schwieger et al. (2020) quantified plant production in both these sites and report a much 

higher plant biomass production at PW (aboveground: 346 g m-2 y-1; belowground: 199 g m-2 y-1) 

than at PD (aboveground: 80 g m-2 y-1; belowground: 43 g m-2 y-1). Such substantially higher plant 

biomass not only helps to explain the much higher ET at PW but could also explain why PW shows 

less sensitivity to changes in relative humidity and air temperature. The taller vegetation and 

much higher biomass in PW likely create a below-canopy microclimate that is much different than 

the above canopy meteorological conditions. For example, a tall and dense canopy can provide 

substantial shade and cause a cooling effect at the soil surface (dissipation of incident solar radi-

ation, see Huryna et al., 2014). Additionally, it can also decrease the escape of water vapor to the 

atmosphere, increasing humidity under the canopy. As such, values of relative humidity and air 

temperature registered by the weather station at the study areas (especially at PW) placed 

above the canopy may not accurately reflect the values closer to the soil surface (below-canopy). 

Therefore, the vegetation at PW likely acts as a surface control, thereby modulating the magni-

tude at which above canopy temperature and humidity affect water table dynamics. Such effect 

modification is likely to be lacking in PD as its vegetation is much shorter and biomass production 

much lower.      

Other than differences in vegetation as a cause for differences in ET, the depth to water table 

can also provide additional explanation. During the study period, PD had a mean daily water level 

of around -30 cm while for PW the mean daily water level is nearly 0 cm (at the surface). Several 

studies show that high ET rates generally occur in sites with shallow water tables, and lower ET 
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rates in sites with deep water tables (Cooper et al., 2006; Duell, 1988; Nichols, 1994; Zhang & 

Schilling, 2006).  

While we were successful at quantifying the relationship between meteorological conditions and 

water table dynamics, several limitations need to be considered. As we had only two monitoring 

wells at only two sites, care must be taken in generalizing conclusions, particularly for fens with 

different drainage histories or with a different hydrological regime and/or vegetation. Although 

the study could have benefitted from a higher number of monitoring wells, water levels meas-

ured in an observation well are representative of an area of at least several tens of square meters 

(Maréchal et al., 2006). For a better understanding of the effect of rewetting or management 

regimes, a “before-after-control” approach could be more appropriate (see Menberu et al., 

2016). However, such long-term monitoring of hydrometeorological parameters is especially rare 

for temperate fen peatlands (Ahmad, Liu, Günther et al., 2020; Bechtold et al., 2014). A final lim-

itation is that our weather stations were located above the plant canopy, and thus were unable 

to capture below-canopy microclimatic differences. Future research projects involved in collect-

ing data on meteorological parameters can benefit from the installation of microclimate sensors 

below the canopy that are now readily available at competitive costs (Lembrechts et al., 2020). 

Our results underline the importance of meteorological effects on water table dynamics in fens 

and how such controls can be modified by the prevailing vegetation characteristics and soil prop-

erties, which in turn are influenced by management decisions. Our findings have implications for 

prompt and effective rewetting of drained and degraded peatlands. Degraded fen peatlands, 

because of their low water storage capacity are likely to be more vulnerable to temperature ex-

tremes which can cause water-tables to rapidly decline, thereby further amplifying the process 

of peat degradation and carbon mineralization. Therefore, delays in peatland rewetting are likely 

to result in additional efforts and resources being required to restore ecosystem functions. The 

longer we wait with rewetting, the harder it will be to achieve water levels continuously fluctu-

ating around the peat surface. For rewetted fens, continuous monitoring is advisable to ensure 

long-term success especially under a changing climate and associated heatwaves and dry spell 

events. 
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Supplementary Material to Chapter 3 

 

Figure SM 3.1 The differential effects of meteorological factors on the water level at PD and PW, as indi-
cated by the estimated coefficients and their respective 95% confidence intervals (detailed regression re-
sults are provided in Table 2. A variable is significant if the mean and confidence interval does not overlap 
with zero. A negative estimated coefficient indicates a negative effect, while positive values indicate a 
positive effect on the water level. 
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Abstract 

Over the past century, mires and peatlands have faced a wide range of degradation by artificial 

drainage, making them one of the most threatened ecosystems in Europe. However, restoration 

of drained peatlands has gained much importance over the last three decades, mostly due to the 

multiple ecosystem services they provide such as carbon storage, habitat provision and water 

flow regulation. Although there has been an increased focus on such ecosystems, spatial re-

search on hydrophysical soil properties following rewetting in coastal mires is lacking. Therefore, 

the objectives of the study were to understand the spatial structures of hydrophysical properties 

of organic soils and spatial patterns of organic matter accumulation in relation to soil surface 

microtopography. Soil organic matter content (SOM) and hydraulic conductivity (Ks) of topsoils 

(0–28 cm), along with soil textures of the underlying mineral substrate, were investigated in a 

rewetted nontidal coastal flood mire (Baltic Sea). The results indicate that the organic horizon 

with its relatively low Ks acts as a hydrological barrier to infiltration. Soil organic matter content 

(SOM), Ks and soil surface microtopography are all spatially auto-correlated within 100, 87 and 

53 m, respectively. Bivariate Moran’s I revealed a positive but weak spatial correlation between 

SOM and Ks and a moderately strong negative spatial correlation between SOM and soil surface 

microtopography. A map of SOM was generated using simple kriging, which predicts higher SOM 

in the center of the ecosystem, at lower elevations; and lower SOM at the edges of the study 

area, at higher elevations. Local depressions in the center of the ecosystem provide a wetter and 

therefore more anaerobic environment, thereby decreasing carbon mineralization rates and en-

abling peat accumulation. The low hydraulic conductivity of the degraded peat in the presence 

of lower micro-elevations in the center of the ecosystem is likely to increase the residence time 

of floodwater and thus may enhance (new) peat accumulation. Thus, we conclude that, for the 

restoration of non-tidal coastal mires where flooding events are not as frequent, Ks and soil sur-

face microtopography are even more important factors to consider than for tidal systems.  

 

Keywords: hydraulic conductivity, peatland, restoration, soil organic matter, spatial variability 
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4.1. Introduction  

Mires and peatlands account for only 3 % of the global land surface (Yu et al., 2010), primarily 

occurring in boreal and temperate regions, with a smaller proportion in the tropics. Neverthe-

less, they may store of up to 644 Gt of carbon (Dargie et al., 2017; Page et al., 2011; Yu et al., 2010) 

or about 21 % of the global total soil organic carbon stock of 3000 Gt (Leifeld & Menichetti, 2018; 

Scharlemann et al., 2014). Carbon sequestration and greenhouse gas emissions avoidance 

through peatland restoration have been recognized as climate change mitigation strategies. Fur-

thermore, at present, human activities are either draining or mining about 12 % of global peat-

lands (Joosten, 2010), thereby changing them from long-term carbons sinks into sources (Leifeld 

& Menichetti, 2018) by accelerating the carbon mineralization process of soil organic matter 

(Brandyk et al., 2002). 

 
Mires and peatlands that are located in low-lying coastal areas are of particular interest, as 

coastal wetlands sustain the highest rates of carbon sequestration per unit area of all ecosys-

tems (Rogers et al., 2019). In low-lying coastal areas, peatlands form by the accumulation of or-

ganic material over millennia and are often regarded as the interface between the land and the 

sea. While there is a large uncertainty in terms of the total land area of coastal peatlands (Hen-

man & Poulter, 2008), analysis by Chmura et al. (2003) reveal that saline wetland soils (including 

salt marshes and mangrove swamps) store more than 10,000 Tg of carbon. Nevertheless, coastal 

peatlands face additional threats from climate change as rising global sea levels may drive future 

releases of stored carbon (Henman & Poulter, 2008; Whittle & Gallego-Sala, 2016).  

 

Drainage of peatlands can alter hydro-physical properties of peat soils such as soil organic matter 

content (Heller & Zeitz, 2012), pore structure and hydraulic conductivity (Liu et al., 2016; Re-

zanezhad et al., 2016; Zeitz & Velty, 2002) and consequently may alter hydrological processes 

(Holden et al., 2006; Holden & Burt, 2003) as well as change water chemistry (Holden et al., 2004) 

and vegetation composition (Schrautzer et al., 2013). As hydraulic properties control soil mois-

ture, they in turn drive carbon and nitrogen dynamics (Kluge et al., 2008). For example, under 

water-saturated conditions, the low oxygen available limits microbial activity and CO2 fluxes 

(Säurich et al., 2019). Denitrification is limited by water availability while nitrification is limited by 

aeration (Säurich et al., 2019). Thus, when there is a lack of soil moisture, aeration of the peat 

and subsequent mineralization and nitrification of organic nitrogen releases large amounts of 

nitrates (Holden et al., 2004; Tiemeyer & Kahle, 2014).  

 

Soil surface microtopography, which is the micro-elevation of the surface of the soil (Z. Li & Z. 

Chen, 2012), can have a large influence on flow processes at the soil surface (Fox et al., 1998; van 

der Ploeg et al., 2012). Microtopographic variation translates into differences in hydrology within 

a wetland, with topsoil and vegetation being drier at higher elevations than in depressions be-

cause of increased distance from the water table (Benscoter et al., 2005). Therefore, microto-

pography can give a good insight into the wetness of a given area, influenced by both ground-

water and surface water dynamics, and thus can be associated with spatial patterns in soil or-

ganic matter content (SOM). For example, Zheng et al. (2019) showed that there is less SOM at 
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higher elevations because it decomposes faster under aerobic conditions than under anaerobic 

conditions.  

 

Soil organic matter content and bulk density are generally negatively correlated both in mineral 

soils (Adams, 1973; Liu & Lennartz, 2019a; Perie & Ouimet, 2008; Rawls, 2004) and in organic soils 

(Adams, 1973; Liu & Lennartz, 2019a; Perie & Ouimet, 2008). Additionally, SOM and total porosity 

are positively correlated (Grover & Baldock, 2013; Kechavarzi et al., 2010; Lennartz & Liu, 2019). 

Furthermore, SOM and Ks have been found to be positively correlated according to Zare et al. 

(2010), Nath and Krishna (2014) and Zhang et al. (2018) for mineral soils and by Boelter (1969) 

and Liu and Lennartz (2019a) for peat soils. 

 

Although it is well acknowledged that physical soil properties and hydraulic parameters have 

spatial dependencies (Bevington et al., 2016), our understanding of spatial variability of hydro-

physical properties of organic soils is limited compared to that of mineral soils (Lewis et al., 2012). 

There is a wealth of studies which predict mineral soil properties as part of the digital soil map-

ping literature (Ma et al., 2019), some of which focus on peat (Minasny et al., 2019), although 

most of these studies focus on much larger scales (e.g. subnational, national, regional, global) 

than that of the present study. Digital mapping methodology combines field observations with 

factors that are known to affect soil properties. For example, Rudiyanto et al. (2018) utilized dig-

ital elevation models, geographical information and radar images, along with machine learning 

models, to derive spatial prediction functions and map peat thickness on an island in Indonesia. 

Kriging methods have also been used in several studies to predict peat thickness (Altdorff et al., 

2016; Beilman et al., 2008) and volume (Jaenicke et al., 2008).  

 

Microtopography is known to affect soil hydrophysical properties in mire ecosystems. A study 

conducted by Baird et al. (2016) found clear patterns in Ks between adjacent hummocks and hol-

lows (microforms) at 0.5 metre depth in a raised bog. Morris et al. (2019) also explored the effect 

of microforms on Ks (vertical and horizontal), and collected samples from hummocks and lawns 

in a raised bog. They found a strong independent influence of microhabitat on log-transformed 

vertical Ks. Similarly, Branham and Strack (2014) found Ks to be higher in hummocks than in the 

hollows at the surface of a Sphagnum-dominated fen and bog. Such relationships between mi-

crotopography and soil hydrophysical properties have been generally explored in raised and 

blanket bogs with little to no focus on other mire systems. Thus, there is a gap in our understand-

ing of such relationships in degraded coastal mires following rewetting.  

 

Therefore, the objectives of our study are to (1) understand spatial structures of hydrophysical 

properties of organic soils, (2) investigate spatial patterns of organic matter accumulation in re-

lation to microtopography, and (3) understand the role of the organic horizon with respect to 

underlying mineral soil with respect to hydrological connectivity, in a coastal flood mire. We also 

use spatial measurements of hydrophysical properties (Ks and SOM) and soil surface microeleva-

tion to make spatial predictions, which has not been done in coastal mires. 
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4.2. Methods 

4.2.1. Study site  
The study site lies in the north-eastern German federal state of Mecklenburg-Western Pomerania 

which is home to around 3000 km2 of peatlands (13 % of the total land area of the state; Tiemeyer 

et al., 2006). The study site is part of a non-tidal coastal flood mire known as "Karrendorfer Wie-

sen" and is located (54.1576° N, 13.3860° E) between Greifswald and Stralsund, on a peninsula in 

the Baltic Sea (Figure 4.1). Karrendorfer Wiesen has an area of approximately 3.5 km2 and is a 

part of the 400 km2 of coastal peatlands covering the state (Jurasinski et al., 2018). It is charac-

terized by weakly undulating ground moraine, which was flooded during postglacial transgres-

sions. Currently it lies within the natural flooding zone of the “Nordmecklenburgschen Bodden” 

(Bernhardt & Koch, 2003). The study site was drained in 1820. In 1850, a dike system was con-

structed and the area was used intensively as cropland and pasture. The height of the dike was 

increased between 1971 and 1974. The dike blocked the flow of seawater flooding to the mires, 

reducing soil salinity; and the accomplished drainage lowered the water table, accelerating or-

ganic matter mineralization. However, in the early 1990s the area lost its importance as pasture 

due to a small number of landowners coupled with the poor condition of the old dike system 

(Lampe & Wolrab, 1996). Thus, in 1993 the old dikes were removed and a new dike system was 

built so as to reinitiate natural flooding dynamics on part of the area (Beyer et al., 2019). Currently 

this area is used as a low-intensity pasture (Bernhardt & Koch, 2003; Beyer et al., 2019). Karren-

dorfer Wiesen is recognised as a “National Natural Heritage” by the Federal Government of Ger-

many, and is therefore protected for nature conservation. It is also an important coastal bird 

sanctuary (Janssen et al., 2019).  

 

The coastal mire is represented by a mosaic of micro-elevational changes consisting of marly till 

and sandy soils, and interspersed low-lying areas (Bernhardt & Koch, 2003) consisting of fen gley 

soils with 13–28 cm of peat (Janssen et al., 2019). Peat is an organic soil which is composed of 

partially decomposed plants (Kelly et al., 2017). According to Rydin and Jeglum (2006) there is 

no general agreement on how to define peat using organic matter content and its defining range 

may vary from 20 % to 80 % organic matter by weight. For this reason, coupled with the fact that 

there is high variance of the percentage of organic matter found in our samples, throughout this 

article we refer to the soils of this coastal mire as “organic soil” or “peat”. The pH of the soil 

ranges from 4.4 to 6.1 depending on the depth. The soils have a bulk density of around 0.57 g cm-

3 with a total porosity of 0.71 cm3 cm-3 (Liu & Lennartz, 2019b).  

 

According to vegetation data collected by Beyer et al. (2019), the study site is characterized by 

salt marsh species. Agrostis stolonifera is the most dominant species followed by Alopecurus ge-

niculatus and Juncus gerardii. Elymus repens, Triglochin martima, Deschampsia cespitosa, Trifolium 

repens and Trifolium hybridum occur sporadically while Spergularia salina, Poa pratensis, Poten-

tilla anserina, Aster tripolium and Plantago maritima appear less often throughout the study area.  
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Figure 4.1. Location of the study area “Karrendorfer Wiesen”. The white dots on the map show the loca-
tions where soil samples were collected. 

 

4.2.2. Soil sample collection and saturated hydraulic conductivity determination  
The sampling frame covers an area of 6000 m2 (200 × 30 m). For determining soil organic matter 

content (SOM), soil samples at a depth of about 15 cm were collected using a gouge auger every 

10 meters at 80 points. Prior to soil sample collection, at the same depth, in situ saturated hy-

draulic conductivity (Ks) was measured using a direct-push piezometer with falling head which 

has been used for peat soils in previous studies (Mustamo et al., 2016; Postila et al., 2015; Ron-

kanen et al., 2005; Saarinen et al., 2013). This device is particularly useful for our study area be-

cause laboratory based Ks measurements would require the collection of large amounts of un-

disturbed soil which is not possible given the protection status of the Karrendorfer Wiesen. 

Other field methods for measuring Ks such as the piezometer slug test would require extensive 
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installation of piezometer pipes, which is again not feasible given the protection status of the 

study site. However, Ks could be measured at only 39 points, as it was not possible to penetrate 

the soil surface at all locations using the device.  

 

The direct-push piezometer (see Figure 4.2) is inserted into the soil at the desired depth slowly 

and without any twisting motion to avoid potential smearing. Additionally, a tripod with a clip is 

used to hold the device in place. Afterwards, water collected from the field site is poured into 

the reservoir. The hydraulic head is noted after which the control valve at the base of the reser-

voir is released to allow the water to flow through the pipe. At the tip of the piezometer, there 

is a meshed opening (the screen) on two sides with a diameter of 2 cm. It is here that the pie-

zometer water comes into contact with the soil. The falling head is timed and recorded. Due to 

loss of head in the piezometer the method allows for accurate Ks measurements below 0.002 m 

s-1  (Ronkanen et al., 2005). Prior to carrying out fieldwork, several in situ measurements of Ks 

using the direct-push piezometer were compared to several laboratory measurements using a 

constant-head upward-flow permeameter (Liu et al., 2016) on undisturbed soil samples collected 

from the same locations (see Figure SM 4.1). Results from both methods are statistically similar.  

  
Figure 4.2 A schematic diagram of a direct-push piezometer with falling head (adapted from Ronkanen & 
Klove, 2005). Height from the centre of the outlet screen = 265 cm; r (inner radius of the reservoir) = 4.0 
cm; length and diameter of the outlet screen = 1.2 cm; H = water level from outflow point of piezometer; 
H0 = the initial water level in the reservoir, h = water level in the container at a time point t. The tip of the 
device is sharp and connected smoothly to the body of the device to avoid compression of soil when 
inserting into the ground.  
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The rate of the outflow (q) at the piezometer screen/outlet at any time (t) is proportional to the 

hydraulic conductivity (K) of the soil and to the unrecovered head difference (H - h) (Hvorslev, 

1951; Mustamo et al., 2016), so that: 

 

𝑞(𝑡) =  πr2 𝜕ℎ

𝜕𝑡
= 𝐹𝐾 (𝐻 − ℎ)     (4.1) 

 

where r = radius of the piezometer reservoir (m), H = water level from outflow point of 

piezometer (m), h = water level in the reservoir (m), F = 9 (dimensionless), shape factor 

calculated according to equation provided in Akanegbu (2013), t = time (s). 

 

From Equation 4.1 the following equation may be derived: 

 

𝑙𝑛 (
ℎ−𝐻

𝐻0−𝐻
) = − 

𝐹𝐾

πr2 𝑡              (4.2) 

 

A plot of the left-hand side of Equation 4.2 against time represents a straight line on a semi-

logarithmic graph. Therefore, K can be calculated from the slope of this straight line. 

 

Due to the shallow depth of peat (13 – 28 cm), it is important to understand the role of the 

underlying mineral horizon in terms of groundwater flow. Therefore, further soil samples were 

collected from three locations (B2, B9, and B20; see Figure 4.1) at depths of 20-40 cm, 40-60 cm, 

and 60-80 cm for textural analysis. 

4.2.3. Laboratory analysis  

Soil organic matter content (SOM) was determined by loss-on-ignition according to DIN 18128 

(DIN 2002) and expressed as weight percent (%w/w). Advantages of this method are (1) a large 

number of samples can be run simultaneously and (2) equipment cost is low (De Vos et al., 2005). 

Another prominent method of determining SOM is the Walkley-Black acid digestion method. 

However, for soils with high organic matter content this method may result in inaccuracies due 

to incomplete oxidation of organic carbon in the sample (Lefèvre et al., 2017).  

 

Additionally, particle size distribution (soil texture) from locations B2, B9 and B20 and three 

depths of the mineral horizons (20–40, 40–60 and 60–80 cm) was determined using the sieving 

and sedimentation method according to DIN ISO 11277 (DIN ISO, 2002). Prior to soil texture anal-

ysis, all samples were tested for carbonates by using 10 % HCl which did not result in any fizzing 

indicating a lack of significant amounts of carbonates. SEDIMAT 4-12 (UGT), which works on the 

basis of the KÖHN analysis to DIN ISO 11277, was used to determine the three silt fractions 

(coarse, medium, fine) and one clay fraction. The remaining sand fractions were further sepa-

rated using sieves with mesh sizes of 63 μm, 200 μm, and 630 μm.  
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4.2.4. Elevation data and geostatistical analysis  

All sampling locations and corresponding soil surface elevations were recorded using a high pre-

cision GNSS receiver (Leica Viva GS08 plus) which uses real-time kinematic positioning. ArcMap 

10.5.1 was used to analyze spatial data. Using the Geostatistical Wizard, accessed through Geo-

statistical Analyst extension, empirical variograms of Ks (log-transformed), SOM and soil surface 

microtopography (SSM) were generated. Empirical variograms of Ks (log-transformed) and SSM 

were fitted with Gaussian models, while the variogram of SOM was fitted with a “Stable” model 

with parameter = 1.898. These variograms were then utilized to generate prediction maps using 

“simple kriging” method. For calculation of partial sill and nugget, weighted least squares was 

used. The models and the parameters are described in the Results section (see Table 4.3).  

 

A “leave-one-out” method was used for cross-validation. Each data location is removed, one at 

a time, and the associated data value is predicted. The predicted and actual values at the location 

of a removed point are then compared and this procedure is repeated for a second point, a third 

and so on. All the measured and predicted values were compared using scatterplots and quan-

tile-quantile plots. Plots of predicted versus observed values of all three variables (Ks, SOM, and 

SSM) are provided in Figure SM 4.2. The maps of prediction standard errors for all three kriged 

variables are presented in Figure SM 4.3.  

 

For understanding the association between observed SOM and Ks and between SOM and SSM, 

in addition to calculating the conventional Pearson correlation, bivariate Moran’s I was com-

puted using GeoDa version 1.12, as it is more suitable for variables with spatial dependencies. Lee 

(2017) states that bivariate spatial dependence refers to circumstances in which observational 

units in close proximity hold shared information in terms of their bivariate association, and this 

violates the assumption of independent sampling. Thus, the shared information spuriously 

strengthens or weakens the nature of correlation between the two variables under investiga-

tion, thereby making any conventional statistical inferences considerably questionable.  

 

Moran’s I is a well-known indicator of spatial autocorrelation. Moran’s I values range from -1 to 

1. A ‘0’ value indicates no spatial autocorrelation (i.e. perfect spatial randomness). A ‘-1’ suggests 

perfect negative spatial autocorrelation or clustering of dissimilar values (i.e. perfect dispersion) 

while +1 indicates perfect clustering of similar values or, in other words, high values or low values 

cluster together (Tu & Xia, 2008). Similar to the univariate Moran’s I, the bivariate Moran’s I can 

help to understand spatial dependencies but it helps to assess such relationships between two 

variables instead of one. The bivariate Moran’s I can be visualized as the slope in a scatterplot of 

the spatially lagged values of one variable (e.g. soil organic matter) on the second variable (e.g. 

soil surface microtopography). If the slope of this scatterplot is significantly different from zero, 

then there is a bivariate spatial relationship between the two variables (Sridharan et al., 2007). 

The test is based on an assumption of constant mean and a constant variance (Anselin, 2019). 
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4.3. Results  

4.3.1. Hydrophysical soil properties and soil surface microtopography  

The Ks values of investigated soils ranged from 5.56 × 10-9 m s-1 to 4.64 × 10-7 m s-1, and had the 

highest coefficient of variation (CV) = 199.99 %, while the soil organic matter content (SOM) var-

ied from 1.36 to 59.29 wt% with a CV of 56.65 %. SSM had a very low CV of around 24 % and ranged 

from 223 cm to 918 cm above mean sea level (Table 4.1). 

  

Table 4.1 Summary statistics for hydraulic conductivity (Ks), soil organic matter (SOM) and soil surface 
microtopography (SSM). 

Soil variables Mean SD CV (%) Minimum Maximum n 

Ks (m s-1) 4.17 x 10-8 8.33 x 10-8 199.99 5.56 x 10-9 4.64 x 10-7 39 

SOM (%w/w) 21.36 12.10 56.65 1.36 59.29 80 

SSM (m above MSL*) 0.57 0.14 24.56 0.22 0.92 80 

*MSL = mean sea level. 

4.3.2. Soil texture of the underlying mineral horizon  

Soil texture analysis of the mineral soils underlying the peat horizon (0–20 cm) at three locations 

reveals that for almost all the locations and all depths, the soil can be classified as sandy loam 

(following USDA) and as medium loamy sand according to German soil textural classification 

(Eckelmann et al., 2006). Table 4.2 provides the detailed results of the texture analysis.  

 

Table 4.2 Soil texture classes according to German classification (Eckelmann et al., 2006). The English 
terms for the German soil classes were used after Bormann (2007).  

Location Depth (cm) Clay Silt Sand 
Soil Texture Class 

(Germany) 

B2 20-40 6.80 37.57 55.63 medium silty sand 

 40-60 9.26 33.44 57.30 medium loamy sand 

 60-80 16.65 28.85 54.50 highly loamy sand 

B9 20-40 12.67 36.25 51.08 highly loamy sand 

 40-60 5.59 24.70 69.70 slightly loamy sand 

 60-80 10.36 23.95 65.69 medium loamy sand 

B20 20-40 10.01 27.94 62.04 medium loamy sand 

 40-60 11.14 27.31 61.55 medium loamy sand 

 60-80 8.87 20.89 70.24 medium loamy sand 
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4.3.3. Spatial structure of hydro-physical soil properties and surface microtopog-
raphy  

Variograms provide a measure of the spatial dependence of soil properties. Both soil properties 

as well as SSM can be observed to be spatially dependent. While log (Ks) follows a Gaussian curve 

(R2 = 84.85), SOM follows a Stable model with a parameter of 1.898 (R2 = 90.93). The semivari-

ance of log (Ks) increases initially and then levels out at a lag distance of 87 m while SOM levels 

off at a slightly higher lag distance of 100 m (see Figure 4.3). Therefore, beyond these separation 

distances the hydro-physical soil properties under investigation are not auto-correlated. Soil sur-

face microtopography (SSM) follows a Gaussian curve (R2 = 93.64), with the semivariance in-

creasing until the range of 53 m and afterwards levels out.  

 

 

    

Figure 4.3 Empirical variogram (+) and 
modelled variogram (—) of (A) Satu-
rated hydraulic conductivity (m s-1, 
log-transformed), (B) Soil organic 
matter content (% w/w) and (C) Soil 
surface microtopography (m above 
mean sea level). 
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The nugget to sill ratio (NSR) of 57.3 %, 55.2 % for Ks and SOM, respectively, indicates only a mod-

erate spatial autocorrelation (following Cambardella et al., 1994) for both soil properties. How-

ever, for SSM, a NSR of about 13 % indicates strong spatial autocorrelation (Table 4.3). Thus, SSM 

is more strongly autocorrelated than Ks and SOM.  

 
Table 4.3. Variogram models and parameters for SOM and log(Ks). 
 

Soil Properties Model 
Nugget 

(C0) 
Sill 

(C0+C) 
Partial Sill (C) 

 
C0/ C0+C 

(%) 
Range 

(m) 
R2 
(%) 

Log(Ks) Gaussian 0.775 1.352 0.577 57.322 87 84.85 

SOM 
Stable  
(Parameter= 
1.898) 

0.698 1.264 0.566 55.222 100 90.93 

SSM Gaussian 0.139 1.067 0.928 13.027 53 93.64 

 
Ideally, at zero separation distance (h) the variance should also be zero. However, many soil 

properties have non-zero variances as h tends to zero (Trangmar et al., 1985). The variance at 

zero lag distance is called the nugget effect which represents the local variation occurring at 

scales finer than the sampling interval, such as those due to sampling error, fine-scale spatial 

variability and the measurement error. Log (Ks) has a slightly higher nugget effect (0.775) com-

pared to that of SOM (0.698), while SSM has a much smaller nugget effect (0.139) indicating 

much lower errors and lower fine-scale spatial variability.  

4.3.4. Spatial heterogeneity of hydraulic conductivity, SOM and soil surface mi-
crotopography  

There is a general tendency for Ks to increase in the direction of the sea, with no clear tendencies 

closer to the inland water bodies (Figure 4.4A). However, the plot of predicted Ks versus ob-

served Ks shows that predictions of Ks have substantial errors, especially in comparison to the 

plots of SOM and SSM (see Figure SM4.2). It can be observed that there is higher SOM closer to 

the center, while much lower SOM at the West and South East ends of the study area (Figure 

4.4B). The SSM map shows the highest elevation class (0.76–0.92 m) at the edges (West and 

South East of the map) and the lowest elevation classes (0.22–0.37 m) at or around the center 

(Figure 4.4C). Therefore, the spatial distribution of SOM can be described by the spatial variation 

in microtopography in the study area. This can be further illustrated by the bivariate association 

between the two variables (see Figure 4.5), discussed in the next subsection.  
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Figure 4.4 Contour maps showing spatial distribution of (A) Ks (m s-1) (B) SOM (%w/w) (C) SSM (in me-
tres above mean sea level). 

4.3.5. Bivariate spatial dependencies  

A significantly moderate and positive Pearson correlation was obtained between log(Ks) and 

SOM (r = 0.53, p = 0.0008). In terms of bivariate spatial autocorrelation between the two varia-

bles, a positive Moran’s I was found (Moran’s I = 0.1440) which, although low, is still significant 

(pseudo-p = 0.02, permutations = 999, z = 2.1870).  

 

A negative spatial autocorrelation (Moran’s I = -0.2993) between SOM and SSM were found to 

be significant (pseudo p-value = 0.001, permutations = 999, z = -5.67, weights generated using 

Queen’s contiguity; see Figure 5). This means that both SOM and SSM are significantly and neg-

atively spatially autocorrelated - a decrease in soil surface elevation is associated with an increase 

in SOM across space. The possible underlying mechanism behind this is discussed in the following 

section. 
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Figure 4.5 Bivariate Moran’s I showing the spatial relationship between observed soil surface microto-
pography (micro-elevation) and observed soil organic matter content (lagged). 
 

4.4. Discussion 

Compared to mineral soils, organic soils of coastal flood mires are less studied, especially in rela-

tion to space and microtopography. Our study investigates existing spatial structures and pat-

terns of soil hydrophysical properties such as SOM and Ks and how microtopography may affect 

such properties. Understanding spatial patterns of the accumulation of SOM and distribution of 

Ks and how they are modified by surface microtopography in such mire ecosystems are of par-

ticular interest since formation of peat and maintaining hydrological connectivity are prerequi-

sites for the effective restoration of mire and peatland ecosystems.  

 

Analysis of SOM of the topsoil (organic horizon) reveals that the coastal flood mire has a mean 

SOM of 21.4 % (SD = 12.1 %), ranging from 14 % to around 60 %, with a CV of 57 % which is indicative 

of a very high variation following Warrick (1980) and Paz Ferreiro et al. (2016). For mineral soils, 

Bernardi et al. (2017) reports a substantially lower CV for SOM, of around 15 %, while Paz Ferreiro 

et al. (2016) reports CV ranging from 27 % to 40 % (depending on soil depth and land use). For 

peat soils of a drained wetland located in the Qinghai-Tibet plateau of China, Bai et al. (2010) 

reports a CV of 9 % for soil organic carbon which is a substantially lower variation than that of the 

current study. Land use can also have an effect on the variation of soil organic matter in peat 

soils with CV ranging between 109 % in arable peat, 68 % in woodland peat, 45 % in grassland peat 

and 38 % in moorland peat according to a study carried out in south-west England (Glendell et al., 

2014).  

 

For the organic horizon of the study site, the mean Ks is 4 × 10-8 m s-1 (SD = 8 × 10-8 m s-1) with a 

minimum of 6 × 10-9 m s-1 to a maximum of 5 × 10-7 m s-1. Our values of Ks are very low, about 2 to 

4 orders of magnitude lower than that estimated by van Dijk et al. (2017) for peat sediments in a 

coastal wetland of the Netherlands (around 7 × 10-5 m s-1). Ks shows a very high variation, with a 
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CV of about 200 percent which is consistent with values reported for peat soils (CV = 282 %, cal-

culated from a meta-analytical study by Liu & Lennartz, 2019a).  

 

Soil organic matter content and Ks (log-transformed) were found to be significantly and posi-

tively correlated, but only moderately (r = 0.53, p = 0.0008). A positive correlation as such is con-

sistent with the results of several other studies, including those for mineral soils (Hur et al., 2009; 

Nath & Krishna, 2014; Zare et al., 2010) as well as for organic soils (Lennartz & Liu, 2019; Liu & 

Lennartz, 2019a). Macroporosity is a major factor controlling Ks (Liu et al., 2016). Liu and Lennartz 

(2019a)found that macroporosity is higher in peat with high organic matter content than in soils 

with low organic matter content.  

 

In terms of spatial dependencies in our study, Ks and SOM are spatially autocorrelated with each 

other with a significant and positive Moran’s I (Moran’s I = 0.1440, p = 0.02), suggesting non-

randomness in their overall spatial pattern. Both Ks and SOM show moderate spatial autocorre-

lation as defined by Cambardella et al. (1994), with a range of about 87 m for Ks and 100 m for 

SOM. For mineral soils Zeleke and Bing (2005) report a much lower spatial range of about 50 m 

for Ks and 43 m for organic carbon. Paz Ferreiro et al. (2016) investigated the spatial variability of 

mineral soil properties according to different land uses and depth, and also found much lower 

spatial ranges with a minimum of around 12 m to a maximum of about 60 m, depending on land 

use and soil depth. However, the predicted map of Ks should be interpreted with caution, as the 

plot of predicted values against observed values show poor prediction performance which may 

be attributable to (1) small sample size (n = 39) and (2) large sample intervals (10 m). This was 

not the case for the prediction of SOM, which performed much better, while SSM prediction 

performed the best among all three variables. This may be an indication that Ks follows spatial 

patterns at much smaller scales than SOM and SSM in coastal mires as it has also been observed 

from the variograms (Figure 4.3). Although a sampling interval of 10 m allowed us to have larger 

spatial coverage, it may have resulted in an increased nugget effect especially for the prediction 

of Ks. Follow-up studies should incorporate nested sampling of different interval lengths, to un-

derstand multiple scales at which soil physical properties and soil surface microtopography in-

teract in coastal mires.  

 

A key finding of our research is that SOM and soil-surface microtopography (SSM, micro-eleva-

tion) are significantly negatively autocorrelated (Moran’s I = 0.2993, p = 0.001), which can also 

be visually observed by comparing the kriged map of SOM with the map of SSM. The SOM map 

predicts higher organic matter content in the center of the ecosystem at lower elevations, while 

at the edges of the study area, at higher elevations, SOM decreases. Local depressions in the 

center of the ecosystem provide a wetter and therefore a more anaerobic environment as oxy-

gen diffuses 10,000 times slower through water than it does through air and in the presence of 

waterlogged decomposing plant material the supply of oxygen is rapidly depleted (Clymo, 1983; 

Lindsay & Andersen, 2016). Thus, under anaerobic conditions, carbon mineralization rate de-

creases, enabling the accumulation of organic matter, as has been confirmed by a multitude of 

studies (Aerts & Ludwig, 1997; Benavides, 2015; Blodau et al., 2004; Kettunen et al., 1999; Öquist 

& Sundh, 1998; Yavitt et al., 1997). However, unlike our study, most of these studies were based 
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on laboratory experiments and not on field research. We may therefore generalize that SSM is 

an important feature to take into account while planning restoration measures especially when 

there is lack of water table monitoring with high spatial resolution and when addressing coastal 

mires with low Ks, located at the Baltic Sea coast - where soils are not subjected to significant 

tidal flooding.  

 

For almost all three locations and for all depths (of the underlying mineral horizons), the soil can 

be characterized as sandy loam (USDA classification) which, according to Schaap et al. (2001), 

has an average Ks of about 4 × 10-6ms-1 (SD = 5 × 10-7 ms-1). Therefore, even the maximum in situ 

Ks (5 × 10-8 m s-1) of the organic horizon is two orders of magnitude lower than that of the under-

lying mineral horizon, which is an indication that the organic horizon with its relatively low hy-

draulic conductivity acts as a hydrological barrier, at least in terms of infiltration. This finding is 

consistent with a study carried out on a different Baltic coastal peatland which found that the 

peat layer has Ks ranging from 1 × 10-6 to 1 × 10-8 m s-1 which is one to two orders of magnitude 

lower than that of the underlying mineral soil with a Ks of 2 × 10-5 to 6 × 10-5 m s-1 (Ibenthal, 2019). 

This brings to the fore the question of whether the organic soil or peat horizon of other coastal 

wetlands which developed under similar conditions also acts as a hydrological barrier.  

 

In terms of rewetting, it is therefore useful to know locations with higher microelevations be-

cause these are potential hotspots for faster degradation rates as flooding or rainfall events may 

lead to water accumulating in areas of low micro-elevation only, through overland flow or inflow 

through the existing creek system. Furthermore, during rainfall events which lead to a rise in 

groundwater level, areas with lower elevations will become saturated first, and only afterwards 

the water table may reach higher elevations. In situations where restoration projects utilize wa-

ter level monitoring wells, data on micro-elevation may inform locations where installations 

should be set up. In addition, the low hydraulic conductivity of the degraded peat in the presence 

of lower micro-elevations in the center of the ecosystem is likely to increase the residence time 

of floodwater and thus may enable (new) peat accumulation. Thus, we conclude that for the 

restoration of non-tidal coastal mires, where flooding events are not as frequent, Ks and SSM are 

even more important factors to consider than for tidal systems. Extensive research in such un-

der-studied and complex ecosystems is required in order to better understand the underlying 

mechanisms of peat formation following dike removal (rewetting). 
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Supplementary Material to Chapter 4 

 

Figure SM 4.1 Comparison of Ks log-transformed values between field measurements using direct-push 
piezometer and laboratory measurements using constant-head upward-flow permeameter.  

 

 

 

 

 

 

 

 

 

 

 

Figure SM 4.2 Plot of predicted versus measured val-
ues of (A) log-transformedKs (ms-1), (B) SOM, 
(C)SSM.  
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Figure SM 4.3 Contour Map of Prediction Standard Error of (A) Ks, log-transformed (m s-1) (B) SOM 
(%w/w) (C) SSM (in metres above mean sea level) 
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5. Concluding Discussion 

Abstract 

This concluding chapter focuses on how artificial drainage of fen peatlands lead to mineralization 

and degradation and how rewetting can rehabilitate certain ecosystem functions. The im-

portance of peatlands in light of the ecosystem services these deliver are revisited. Furthermore, 

I discuss how such management regimes may lead to changes that have implications for hydro-

logical processes, namely water table dynamics which is a key variable which further control mul-

tiple ecosystem processes. The chapter further synthesizes how different environmental factors 

such as meteorological variables and microtopography act as controls on the water table and 

thus are important to monitor for effective peatland monitoring and restoration. The under-

standing of such relationships is vital, especially under the new climate regime. With increasing 

climate stress (eg: extreme heat and drought events), more efforts may be required for effective 

rewetting. Original contributions to a better understanding of peatland hydrology to sustainably 

restore fen peatland ecosystems and their functions are identified. 

5.1. Introduction 

Drainage of peatlands leads to carbon mineralization and peat degradation making carbon sinks 

into sources. Rewetting of drained peatlands can be an effective way for the restoration of peat 

ecosystems, as it results in raising the water table and thus provides anaerobic conditions re-

quired for peat accumulation. As such restoration of peatlands is a nature-based solution to mit-

igate climate change. Over the last decade, there has been global attention on the importance 

of peatlands, not only for climate regulation but also for other ecosystem services they provide. 

Such awareness of the array of valued ecosystem services that peatlands provide has resulted in 

the enactment of national and international conventions and national policies aimed at protect-

ing peatland habitats, biodiversity, and carbon stocks. Additionally, there are initiatives in place 

to rehabilitate and restore peatland ecosystem functions (Page & Baird, 2016).    

The United Nations Convention on Biological Diversity (CBD) and the UN Framework Convention 

on Climate Change (UNFCCC), adopted at the Rio Earth Summit in 1992, are the most relevant 

and far-reaching international conventions for peatlands. The CBD addresses the conservation 

of key ecosystems and protection of habitats and species and as such peatlands are prominent 

on the CBD lists of targets. The Ultimate objective of the UNFCCC is the stabilization of green-

house gas (GHG) concentration, and therefore the restoration of degraded peatlands has signif-

icance for national GHG accounting. At the international level, the Ramsar Convention (1971) fa-

cilitates the conservation and wise use of all types of wetlands, and within Europe, the EU Habi-

tats and Species Directive (1992) specifically include the mention of peatland ecosystems as pri-

ority areas for conservation and restoration where ecosystems have been changed through hu-

man interventions (Page & Baird, 2016).  

As disturbed and degraded peatlands do not provide the same ecosystem services, financial re-

sources are being spent especially in the EU for setting up appropriate restoration measures. 

From 1993 to 2015, the EU-LIFE nature program invested around Euros 170 Million in 80 projects, 
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aiming to restore over 913 km2 of peatlands in Western Europe, mostly in protected sites part of 

the Natura 2000 EU network. This represents less than 2% of the total remaining area of peat-

lands in Western Europe, most of which have been impacted by human activities to some extent 

(Andersen et al., 2017). 

Actions for the restoration of peatlands require sound science and an improved understanding 

of ecosystem processes. Such process understandings also need to be ecosystem specific. 

Knowledge of bog hydrology for example cannot be transferred to fens, as they are quite differ-

ent from each other not only in the source of water but also in their characteristic vegetation. In 

the same way, what works for boreal peatlands, may not be directly transferrable for temperate 

peatlands. Within a type of peatland, for instance, fens, there can also be substantial differences. 

Coastal fens may function differently than percolation fens, while the same is likely to be true for 

alder fens.  As we increase the knowledge pool of peatland science, the relevant legislations also 

need to be updated. In terms of technical knowledge for peatland restoration, updating the sci-

ence is particularly crucial especially with increasing vulnerability from climate change.  

While the hydrology of bogs and other peatlands in the boreal region have been studied quite 

well, the understanding of fen hydrology in the temperate region has been vastly overlooked. 

For the restoration of any peatland, the water-table is a master variable, having an influence on 

a multitude of ecosystem structures and functions and thus the understanding of water-table 

dynamics is of utmost importance. Therefore, any factor which controls and/or provides feed-

back to water-table dynamics and related hydrological processes needs to be investigated, and 

their relationships need to be quantified. Field experiments have shown that fens rather than 

bogs, are more sensitive to warming, water table drawdown, and carbon loss (Bridgham et al., 

1995; Bridgham et al., 2008; Wu & Roulet, 2014).  

Therefore this doctoral dissertation has investigated the different environmental controls, such 

as the management regime, meteorological conditions and soil surface microtopography, on wa-

ter-table dynamics and relevant soil properties. 

5.2. Methodological considerations and limitations 

The three Chapters (2-4) include methodologies that were carefully selected. Often traditional 

methods used for mineral soils or on soils, not within a protected area, do not work for peat soils 

or is not feasible. For example, in the study of heavy precipitation and the response of the water-

table to precipitation events, I had first tried to apply the method called master recession curve 

and episodic recharge developed over the last decade with the most updated method was re-

cently published by Nimmo and Perkins (2018). As recharge response of water-tables to rainfall 

events that are observed in a hydrograph is often underestimated, as the recession continues 

even during a rainfall event. As such the master recession curve method addresses this underes-

timation by constructive a master recession curve, which gives the information of where the wa-

ter table would have been in the absence of rainfall. However, the application of their method 

was not successful for the study sites and performed very poorly. A decision was made not to 

use it, and a conclusion was reached that the lack of performance of the method was because 

(1) the method was developed for mineral soils and aquifers and not for wetlands (2) water-table 
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of rewetted peatlands are often above the peat surface, and as such the method is not applica-

ble. Therefore, a simpler technique was developed with the assumption that any recession of 

groundwater during heavy rainfall is negligible. This technique has been described in Chapter 2 

(section 2.2. Methods). 

The choice of the methods in chapter 3 (regarding quantifying meteorological effects on the 

water-table), was a difficult decision. Although there is no fixed rule regarding the minimum ob-

servations required for seasonal time-series analysis (Hyndman & Kostenko, 2007), in the ab-

sence of long-term data, it was not possible to effectively use Seasonal Autoregressive Inte-

grated Moving Average with eXogenous variable (SARIMAX) Modelling. As such, we resorted to 

applying the simpler statistical method, multiple regression with months as dummy variables to 

control for seasonality. For understanding the underlying mechanisms of how temperature and 

humidity affect the water-table, we quantified evapotranspiration. There were two main options 

that were considered at first. One was the Penman-Monteith (see Howell & Evett, 2004), and the 

other was evapotranspiration determination based on diurnal groundwater fluctuation (Hays, 

2003). The diurnal fluctuation method was selected, as it reflects actual ecosystem processes 

and includes the use of data on the water-table and calculates actual evapotranspiration rather 

than potential evapotranspiration, which is what the Penman-Monteith equation determines. 

The method used for measuring the saturated hydraulic conductivity of the peat in the coastal 

fen (Chapter 4), was the only viable option which was available. The rewetted coastal fen is a 

protected area, which is also an important habitat for some bird species. As a result, the tradi-

tional method of collecting undisturbed soil samples extensively was not ideal. The other option 

of drilling boreholes all over the peatland, to conduct sludge tests for determining hydraulic con-

ductivity was also something which is not practical. Therefore, direct-push piezometers were 

used to determine field hydraulic conductivity. Although the aim was to determine hydraulic con-

ductivity at 80 points, it was possible only for 39 points, because the surface was too hard to be 

penetrated with the device. It must be noted that the device was originally developed to be used 

in bogs, not fens, and works better in soils with low compaction, and high hydraulic conductivity.   
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5.3. Contribution to hydrological process understanding 

 

Figure 5.1 How rewetting degraded fens can alter the effect of environmental controls on hydrological 
processes. 

As mentioned in the first chapter, hydrological processes in fen ecosystems have been largely 

overlooked, with bogs having received much more attention. This is particularly true for temper-

ate fen peatlands. According to Holden (2005), “The hydrology of peatlands is fundamental to 

their development and decay” (p. 2892). Hydrological processes in peatlands influence gas dif-

fusion rates, redox status, nutrient cycling and availability as well as species diversity and com-

position. It drives carbon sequestration and release processes and thus understanding hydrolog-

ical processes in fen peatlands is vital for water resource management.  

This doctoral research has contributed to a better understanding of hydrological processes in 

fen peatlands by investigating and quantifying (1) how precipitation drives groundwater table 

response and (2) quantifying the effect of temperature and humidity on water table dynamics 

through evapotranspiration and how such effects may vary depending on the drainage status of 

the fen and (3) how microtopography and soil hydrophysical properties relate to each other over 

space. Figure 5.1 synthesizes the main results that were found throughout the course of this 

doctoral research. Drained or diked fen peatlands undergo peat degradation processes; as the 
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peat is in contact with oxygen, it becomes oxidized and carbon mineralization process occurs. In 

the absence of high water levels, the peat shrinks, the surface subsides and the peat becomes 

more compact (high bulk density). These processes lead to lower numbers of macropores and 

thus lower water storage capacity. After there is a change in the water management regime, by 

ditch blocking or by dike removal (coastal fen) and consequent rewetting, hydrological connec-

tivity with nearby water bodies or the sea is established. Rewetting causes the average water 

table to increase. A higher water table ensures anaerobic conditions which cause the decompo-

sition rate of organic matter to decrease drastically. The vegetation in the ecosystem may un-

dergo succession and different species composition may occur. In the presence of saturated con-

ditions and fresh inputs of organic matter from above and below-ground biomass, new peat can 

accumulate, as long as the accumulation rate is higher than the decomposition rate. New peat 

formation has implications for how the water table physically reacts to rainfall events. The new 

peat will have higher macroporosity, while the higher water table can cause the previously 

shrunk peat to swell up. As a result the bulk density decreases and the specific yield increases. 

This means that it takes more water to be added to the rewetted fen peatland to have the same 

rise in the water-table compared to its drained pair. Thus the water table response (and the re-

sponse rate) is much lower in peatlands with rewetted status. 

The restoration of high water storage capacity also means that it would take a higher rate of 

evapotranspiration for the water table do recede a certain vertical distance, than it would in peat 

with very low water storage. Thus, meteorological controls on the water table is modulated by 

changes to the soil physical properties. A change in vegetation through ecological succession 

may also cause a difference in the water table dynamics. Certain species or vegetation with 

higher leaf area and/or biomass is likely to have higher evapotranspiration rates (Jimenez-Rodri-

guez et al., 2019). This has implications for the water table. However, even with high evapotran-

spiration, if the water storage capacity is high enough, and if there is a constant supply of water, 

then the water table will not be as sensitive to temperature and humidity (evapotranspiration) 

as it otherwise would have been (if water storage capacity was limited). In addition, the vegeta-

tion can act as a buffer between the water table and local meteorological controls such as rain-

fall, temperature, and humidity. Rainfall may be intercepted by vegetation and cause a difference 

in how much it contributes to a rise in the water table. The canopy of the vegetation can also 

create a microclimate that is quite different from its surroundings or above canopy weather and 

thus disentangle to some extent, how “external” meteorological conditions namely tempera-

ture and humidity control evapotranspiration and thus the water level. Thus, changes to vegeta-

tion following rewetting may modify how the water-table in a fen reacts to meteorological vari-

ables (different from the below-canopy microclimate). 

In coastal fens, similar mechanisms are in place and in addition, flooding by the sea is what the 

peatland depends on for high water levels and peat accumulating conditions. In peatlands lo-

cated within non-tidal coastal systems, seasonal flooding is vital. By studying the spatial struc-

tures and patterns of soil organic matter and soil surface microtopography (microelevation), it 

was found that soils at higher microelevation have lower organic matter content while soils lo-

cated at local depressions have higher organic matter content. During coastal flooding, water 

enters the coastal fen and flows first to areas with lower elevation. Higher elevations are sub-

jected to aeration, while depressions are wetter and therefore anaerobic, an ideal condition for 

peat formation. The same is true when it rains; the water stays longer in lower elevations and 

can flow from mounds to depressions. A similar effect of microtopography is also expected for 
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non-coastal peatlands as well. For the coastal fen, a very low Ks was found for the peat horizon, 

while the underlying mineral horizon was determined to have saturated hydraulic conductivity 

of two orders of magnitude. Thus, the highly compact peat horizon may slow down the rate at 

which flood or rainwater infiltrates through the peat surface. While this is an interesting glimpse 

into understanding vertical hydrological connectivity, subsurface horizontal connectivity still re-

mains unexplored in coastal fen peatlands.  

A variable that was not within the direct scope of the doctoral work is biotic agents. How do 

biotic agents affect soil properties and thus hydrology? In the coastal fen, grazing by cattle (a 

common practice for coastal fen/salt marsh) may have an impact on biomass available for peat 

formation, biogeochemical processes, and compaction. Such biogenic compaction by cattle may 

be one explanation of why a low correlation between SOM and saturated hydraulic conductivity 

was found. Research in this area needs to be expanded, to get a better and holistic view of the 

complexity in coastal fen hydrology and development. 

The collection of the research carried out as part of the doctoral thesis, was unified by the con-

cept of “environmental controls” i.e. those environmental factors which drive other dynamics 

which in this case – is the water table dynamics. As mentioned earlier precipitation, air tempera-

ture, relative humidity, soil properties, and surface microtopography – along with the water man-

agement regimes - can be considered as environmental controls on the water-table. While this is 

the case, it must be noted that the water table itself acts as a control over other ecosystem 

properties and processes – thus establishing a feedback mechanism and giving rise to complexity 

and emergence  (see Odum, 1977).  For a better understanding of hydrological feedbacks in 

northern peatlands, Waddington et al. (2015) describe and combines several feedbacks into one 

conceptual model.  

5.4. Implications for fen restoration and future directions 

For the effective restoration and management of fen peatlands, decision-makers and practition-

ers need to be updated with the latest science. This is particularly true during a time when global 

environmental change (including climate change) is occurring at an unprecedented rate. Thus, 

this collection of research provides important estimates of a decrease in the water table as a 

response to a rise in temperature. Therefore it may be expected that with rising temperatures, 

more effort must be put into rewetting interventions. Therefore, immediate action is required 

to rewet degraded fens. Peatland rewetting projects throughout Europe must re-evaluate 

whether the current strategies are working, especially during dry spells and drought episodes as 

rapid recession of water tables make peatlands more vulnerable to carbon mineralization and 

peat degradation. For such evaluations, long-term monitoring of water-level and meteorological 

conditions are required from local levels to regional scales, and thus monitoring networks should 

be established and maintained. Such efforts should go beyond hydrometerological parameters, 

and include long-term vegetation and below-canopy microclimate monitoring. Developing rela-

tionships between above-canopy weather and below-canopy microclimate over time and over 

the course of vegetation development is vital for restoration and management planning.  

As chapter 4 showed, peatlands can be highly heterogeneous in their soil properties and their 

microsurface elevation. Such variations have effects on the water-table elevation and thus all 

other processes which depend on high water-levels. Therefore, it is important to place several 

water level monitoring wells within the same peatland; specific locations can be informed by the 
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soil surface microtopography. In other words, monitoring wells should cover both high micro-

elevations as well as low depressions, to enable a better assessment of water-saturated condi-

tions within the peatland. Current rewetting efforts may not sufficiently address the wetness 

required at both mounds and hollows. Furthermore, lateral hydrological connectivity between 

the sea and adjacent coastal fens and between adjacent rivers and inland peatlands should be 

better understood. This is particularly important during dry spells because in the absence of suf-

ficient rainfall, the peatlands have to depend on inflows from adjacent water sources. Such as-

pects should also be considered where paludiculture is being implemented following rewetting, 

as paludiculture is being increasingly recognized as a sustainable and promising landuse option 

(Tanneberger, Schröder et al., 2020). 

Existing data with high temporal resolution on peatland water levels, local weather, and soil 

characteristics should be compiled to enable country-wide peatland hydrological assessments 

especially in terms of vulnerability to climate change. Where data on soil characteristics are miss-

ing, water-level and precipitation data will help assess hydrological functioning and therefore 

soil hydrophysical properties such as the average specific yield, as shown in Chapters 2 and 3. 

While such monitoring measures are in place, more resources must be invested in extensive re-

wetting of drained peatlands, starting with the most degraded peatlands (cf. Liu, Wrage-Mönnig 

et al., 2020).   
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