
Improving Explicit Model Checking

for Petri Nets

Dissertation

to obtain the academic degree of

Doktor-Ingenieur (Dr.-Ing.)

of the Faculty of Computer Science and Electrical Engineering

at the University of Rostock

submitted by

Dipl.-Inf. Torsten Liebke

born on October 9, 1985 in Rostock

Rostock, December 11, 2020

https://doi.org/10.18453/rosdok_id00003271

First reviewer: Prof. Dr. rer. nat. habil. Karsten Wolf
University of Rostock, Germany

Second reviewer: Prof. Jirí Srba, PhD
University of Aalborg, Denmark

Date of submission: December 11, 2020

Date of defense: September 15, 2021

Dieses Werk ist lizenziert unter einer
Creative Commons Namensnennung 4.0 International Lizenz.

Acknowledgments

First of all, my sincerest thanks go to my supervisor Karsten Wolf for giving
me the opportunity to work on my dissertation. I also thank him for his
trust and support throughout all stages of this work in so many di�erent
ways. This thesis would have not been possible without him. The endless
discussions on model checking shaped this work.
In addition, I would like to thank the second reviewer, who was unknown
at the time of printing. Second, it is my pleasure to thank Jirí Srba for
agreeing to review my thesis and for hosting me Aalborg a couple of years
back. The ongoing competition between TAPAAL and LoLA in the yearly
model checking contest has been a driving force in my work.
Third, I am grateful to Christian Rosenke for always helping out, reading
drafts of this thesis and taking the time to give me insightful comments.
I also want to thank all my friends for distracting me when I get stuck at
work.
A very special thanks goes to my partner Angelika for her tremendous sup-
port and motivation during this time.
Finally, I want to say a big thank-you to my parents, my brother, and my
grandparents, who supported me throughout my whole life and made this
possible in the �rst place.
Thank you all!

3

Abstract

Model checking is the automated veri�cation that systematically checks if a
given behavioral property holds for a given model of a system. For modeling,
analyzing, and verifying systems with mathematical rigor, formal methods
are used, which can be considered as applied mathematics. We use Petri nets
and temporal logic as formalisms to describe a system and its behavior in a
mathematically precise and unambiguous manner.
Explicit state space veri�cation explores all possible states of a system one
by one to prove or disprove the given property. The problem is that the
state space usually grows exponentially fast with the size of the model. This
is called the state explosion problem and handling it, is a main challenge
in model checking today. Although the number of states can be enormous,
modern techniques have accomplished the successful veri�cation of large in-
dustrial systems due to the greatly reduced size of state spaces. Nevertheless,
these techniques are often not powerful enough for some very large and com-
plex systems that we see today. Thus, it is still important to come up with
re�ned or even new methods to reduce the number of states that have to be
explored.
The contributions of this thesis are concerned with the improvement of model
checking e�ciency both in theory and in practice.
At �rst, we present two new reduction techniques that can be used in a
portfolio setting, which means that several methods run in parallel and the
fastest successful method determines the runtime. In the category of scalable
models, there is usually a parameter to scale over the structure or over the
resources of the model. To verify a property in the latter category, it is
sometimes su�cient to consider the model with very limited resources. We
propose a technique utilizing this idea that considerably reduces the state
space. The second reduction technique that we introduce is based on the
counterexample guided abstraction re�nement (CEGAR) method, which, so
far, could only be used for reachability problems. We demonstrate that our
CEGAR approach works for a whole class of temporal logic formulas.
For our second contribution, we provide certain supplementary strength re-

4

ductions, that is, techniques that complement the model checking process.
More precisely, we introduce formula simpli�cations based on structural
methods and propose quick checks for the fast veri�cation of certain neces-
sary or su�cient conditions of the input formula. Furthermore, we introduce
a new and faster algorithm to compute con�icting transitions.
The third and �nal contribution of this thesis is all about stubborn sets,
a dialect of partial order reduction. In fact, in LTL model checking, the
formula is represented by an automaton. We use the rather unexplored idea
to utilize all available information from this automaton in order to compute
smaller stubborn sets. In addition, we propose specialized stubborn sets for
simple and frequently occurring CTL formulas.
When possible, we implemented the proposed algorithms as a proof-of-concept
in our explicit model checker LoLA and validated them with the benchmark
provided by the annual model checking contest. This includes all but two
methods, when implementation was hampered by an internal incompatibility
with the architecture of LoLA. Our experiments show that all implemented
techniques increase the model checking e�ciency.

5

Zusammenfassung

Model Checking ist die automatisierte systematische Überprüfung, ob eine
gegebene Verhaltenseigenschaft für ein gegebenes Modell eines Systems er-
füllt ist. Zur Modellierung, Analyse und Veri�kation von Systemen mit math-
ematischer Rigorosität werden formale Methoden verwendet, die als ange-
wandte Mathematik betrachtet werden können. Wir verwenden Petrinetze
und temporale Logik als Formalismen, um ein System und sein Verhalten
mathematisch präzise und eindeutig zu beschreiben.
Explizite Zustandsraumveri�kation untersucht nacheinander alle möglichen
Zustände eines Systems, um die gegebene Eigenschaft zu beweisen oder zu
widerlegen. Das Problem ist, dass der Zustandsraum in der Regel expo-
nentiell schnell mit der Gröÿe des Modells wächst. Dies wird als das Zu-
standsexplosionsproblem bezeichnet und der Umgang damit ist heutzutage
eine der gröÿten Herausforderungen beim Model Checking. Obwohl die An-
zahl der Zustände riesig sein kann, haben moderne Techniken die Veri�ka-
tion groÿer industrieller Systeme ermöglicht. Diese Techniken reduzieren
die Gröÿe des Zustandsraums erheblich und ermöglichen so die erfolgreiche
Veri�kation gröÿerer Systeme. Dennoch sind sie für einige sehr groÿe und
komplexe Systeme, die wir heutzutage sehen, oft nicht leistungsfähig genug.
Daher ist es nach wie vor wichtig, verbesserte oder sogar neue Methoden zu
entwickeln, um die Anzahl der zu untersuchenden Zustände zu reduzieren.
Die Beiträge dieser Arbeit beschäftigten sich mit der Verbesserung der Ef-
�zienz des Model Checkings sowohl in der Theorie als auch in der Praxis.
Zunächst stellen wir zwei neue Reduktionstechniken vor, die in einer Port-
folioumgebung eingesetzt werden können, d.h. dass mehrere Methoden par-
allel laufen und die schnellste erfolgreiche Methode die Laufzeit bestimmt.
In der Kategorie der skalierbaren Modelle gibt es normalerweise einen Pa-
rameter, der über die Struktur oder über die Ressourcen des Modells skaliert
werden kann. Um eine Eigenschaft in dieser Kategorie zu veri�zieren, ist
es manchmal ausreichend, das Modell mit sehr begrenzten Ressourcen zu
betrachten. Wir schlagen eine Technik vor, die diese Idee nutzt und den
Zustandsraum erheblich reduziert. Die zweite Reduktionstechnik, die wir

6

vorstellen, basiert auf der CEGAR-Methode (Counterexample Guided Ab-
straction Re�nement), die bisher nur bei Erreichbarkeitsproblemen eingesetzt
werden konnte. Wir zeigen, dass unser CEGAR-Ansatz für eine ganze Klasse
von Formeln der temporalen Logik funktioniert.
Unser zweiter Beitrag stellt zusätzliche Stärkereduzierung zur Verfügung,
d.h. Techniken, die das Model Checking ergänzen. Genauer gesagt führen
wir Formelvereinfachungen ein, die auf strukturellen Methoden basieren, und
schlagen Quick Checks zur schnellen Überprüfung bestimmter notwendiger
oder hinreichender Bedingungen der Eingabeformel vor. Darüber hinaus
führen wir einen neuen und schnelleren Algorithmus zur Berechnung von
Kon�ikt-Transitionen ein.
Im dritten und letzten Beitrag dieser Arbeit geht es um sture Mengen, einem
Dialekt der Partial Order Reduction. Beim LTL Model Checking wird die
Eingabeformel durch einen Automaten dargestellt. Wir verwenden die eher
unerforschte Idee, alle verfügbaren Informationen aus diesem Automaten zu
nutzen, um kleinere sture Mengen zu berechnen. Darüber hinaus schlagen wir
spezielle sture Mengen für einfache und häu�g vorkommende CTL Formeln
vor.
Wenn möglich, haben wir die vorgestellten Algorithmen als Proof-of-Concept
in unserem expliziten Model Checker LoLA implementiert und dann mit dem
Benchmark des jährlichen Model Checking Contests validiert. Dies schlieÿt
alle Methoden bis auf zwei ein, bei denen die Implementierung durch eine
interne Inkompatibilität mit der Architektur von LoLA erschwert wurde.
Unsere Experimente zeigen, dass alle implementierten Techniken die E�zienz
des Model Checkings erhöhen.

7

Contents

I Introduction and preliminaries 11

1 About this thesis 13
1.1 Motivation . 13
1.2 Research goal . 16
1.3 Contributions . 17
1.4 Outline . 21

2 Systems 23
2.1 Basic mathematical notions 24
2.2 Labeled transition system . 26
2.3 Place/transition nets . 28

3 Speci�cation 37
3.1 Basics . 37
3.2 Computational tree logic∗ . 39
3.3 Linear time temporal logic . 44
3.4 Computational tree logic . 45
3.5 ACTL∗ and ECTL∗ . 46

4 Model checking 47
4.1 Complexity . 48
4.2 Explicit model checking . 49
4.3 CTL model checking . 50
4.4 LTL model checking . 54

II Reduction techniques 60

5 Veri�cation with under-approximation 62
5.1 Motivational example . 63
5.2 The theory of under-approximation 64
5.3 Heuristics . 67

8

5.4 Implementation . 69
5.5 Experimental validation . 70
5.6 Discussion . 71

6 Linear algebra for �nite-single-path formulas 73
6.1 CEGAR for reachability analysis 75
6.2 Basics . 80
6.3 Solving (EX)kφ . 82
6.4 Solving E (φ U ψ) . 83
6.5 Solving �nite-single-path CTL formulas 87
6.6 Solving EG φ partially . 91
6.7 Quick checks . 93
6.8 Discussion . 95

III Supplementary strength reduction 96

7 Acceleration of enabledness-updates 98
7.1 Motivational example . 99
7.2 Preprocessing decreasing and increasing transitions 101
7.3 The former computation of the decrease-increase-graph 104
7.4 Accelerated computation of the decrease-increase-graph . . . 106
7.5 Experimental validation . 109
7.6 Discussion . 111

8 Formula simpli�cation 113
8.1 Formula simpli�cation . 114
8.2 Experimental validation . 117
8.3 Discussion . 117

IV Partial order reduction 119

9 The stubborn set method 121
9.1 Motivational example . 122
9.2 Principles . 122
9.3 Property preservation . 126
9.4 Using DI(N) for stubborn set computations 127

10 Automata-based partial order reduction for LTL 129
10.1 Updated principles . 130
10.2 Automata-based stubborn sets for LTL 134

9

10.3 Comparison . 137
10.4 Discussion . 141

11 Stubborn sets for special CTL formulas 143
11.1 EFφ, AGφ . 145
11.2 EGφ, AFφ . 146
11.3 E (φUψ), A (φRψ) . 146
11.4 EGEFφ, AFAGφ . 147
11.5 EFEGφ, AGAFφ . 148
11.6 EFAGφ, EFAGEFφ, AGEFφ, AGEFAGφ 150
11.7 Formulas starting with EX and AX 150
11.8 Boolean combinations . 151
11.9 Single-path formulas . 152
11.10 Experimental validation . 154
11.11 Discussion . 157

V Conclusions 159

12 Conclusion 160
12.1 Compatibility . 162
12.2 Open problems and future work 163

Bibliography 166

Abbreviations 183

List of symbols 184

Index 186

10

Part I

Introduction and preliminaries

11

In this part, we work out the area this thesis is concerned with. We �rst moti-
vate the need for model checking, which means to verify systems with respect
to a given speci�cation. To this end, we present di�erent formal frameworks
to model systems and introduce temporal logic as a formal method for spec-
i�cations. To do model checking, we combine the formal system models and
the speci�cation. The question is whether a given speci�cation holds in a
given system.
The remainder of this part is organized as follows. In the next Chapter 1,
we motivate the research area we are interested in, state our research goal,
and present the contributions we made in this area. We continue in Chap-
ter 2 and Chapter 3 with the presentation of formal frameworks for systems
and speci�cations. Finally, in Chapter 4 we describe the model checking
algorithms we use for veri�cation.

12

Chapter 1

About this thesis

Model checking [19, 21, 39, 104] is an established formal method to verify
aspects of a given system. Over the years many di�erent methods have been
developed, which allow the use of model checking for industrial systems.
Even today model checking is still a diverse and active �eld of research.
In addition, there are sophisticated veri�cation tools [34, 122, 142] available,
which are still being actively developed. A general introduction to model
checking and a description of the involved methods is given by Clarke et
al. in [24] and by Baier and Katoen in [15]. In this chapter, we identify
performance enhancement of model checking as an important and interesting
research problem that we are going to address in this thesis.
The remainder of this chapter is organized as follows. In the next Section 1.1,
we motivate the topic and introduce the abstract model checking process.
Section 1.2 formulates the research goal of this thesis. We continue in Sec-
tion 1.3 with a summary of our contributions to the research goal. Section 1.4
concludes this chapter with an outline of this thesis.

1.1 Motivation

Reactive and distributed systems, in the following only called systems, are
part of nearly every aspect of today's life � they are ubiquitous. Such systems
are used in software and hardware designs, including e-commerce, medical
instruments, and hardware circuits, further they are used in protocols, busi-
ness processes, biochemical behavior, and many other processes (as further
reference see the list of models in the model checking contest (MCC) [68]).
At the same time, such systems are becoming more and more complex, and
thus the error-proneness is increasing. In 2017, software testing company
Tricents analyzed 606 software failures at 314 companies [125]. The report

13

revealed that these software bugs caused USD 1.7 trillion in �nancial losses
and a�ected 3.6 billion people.
The only possibility to guarantee the correctness of a system is to use for-
mal methods. Because a formal investigation of the original system is usu-
ally impossible, it has to be translated into an abstract model that can be
used to mathematically prove its correctness. The abstract model has to
cover all important aspects of the original system that are relevant to ver-
ify a given speci�cation. In this thesis, systems are represented by Petri
nets [100, 101, 106]. Petri nets are an established formal method for model-
ing and verifying asynchronous, concurrent and distributed systems as the
MCC shows and they are used in various industries [146]. The wide use
of Petri nets has two reasons. First, they have a straightforward graphical
representation enabling the modeling of various systems. Second, Petri nets
have a strong mathematical foundation which allows a rigorous analyses and
veri�cation process.
Although formal methods are expensive, time-consuming, and require ex-
perts, they are the only way to actually verify aspects of a given system,
which testing can never thoroughly achieve. Therefore, we have to cope
somehow with the drawback that formal methods are usually not scaling
well with the increasing size of the system under investigation.
Model checking is the fully automated veri�cation of the question whether
a given system meets a given speci�cation. For this, the speci�cation has
to be formalized in some logical formalism, e.g., propositional or temporal
logic [20,40,103]. Temporal logic, for instance, can rigorously assert how the
behavior of the system evolves over time.
The mathematical representation of the system and the speci�cation, namely
the model and the logical formula, are both the input to the model checker.
The model checker then tries to prove that the model meets the logical for-
mula. The result is either �yes� (positive), �no� (negative), or �unknown�.
If the veri�cation fails, the model checker produces an error trace which basi-
cally represents a counterexample for the investigated speci�cation. Usually,
a simulation of the counterexample helps the operator of the model checker
to redesign the system, re�ne the model, or rephrase the logical formula.
After the input is modi�ed, the model checking algorithm is applied again.
This basic model checking procedure is illustrated in Figure 1.1.
The model checker can return �unknown� in several cases. First, the amount
of time or memory used for the veri�cation was not enough. Second, an in-
complete method was used that provides a de�nitive result in some cases and
an inde�nite result in other cases. For example, over- or under-approximation
techniques are in general incomplete methods [23].
In today's model checkers, the veri�cation problem, as such, is generally re-

14

system abstract model

redesign re�ne

simulate
counter-
example

check
model

rephrase

logical
formula

formalize
speci�-
cation

no

yes

unknown

Figure 1.1: Model checking process.

duced to a graph search problem. In this, the nodes of the graph represent
the states of the system and the edges represent possible transitions between
states. The goal is then to �nd undesired states, i.e., bugs. The behavior
that the state space usually grows exponentially with the size of the model
is called the state explosion problem [26] and handling it, is a main challenge
in model checking today. But even though the number of global states can
be enormous, modern techniques have accomplished the veri�cation of large
industrial systems. These techniques are among others compact representa-
tion [12], symmetry [110], abstraction [85], model reduction [4, 5, 8, 92], and
partial order reduction [49, 97, 127].
Although these techniques greatly reduce the size of the state space, and

15

thus enable the successful veri�cation of bigger systems, they are simply not
powerful enough for the large and complex systems, we often see today. Thus,
it is important to come up with new methods or to improve and tune existing
ones.
Next to developing new methods on a theoretical level, it is important to
implement these methods in a state of the art model checker, too. One such
tool is LoLA [142], developed by Karsten Wolf. LoLA is still maintained
and further developed by our research group. The successful use in case
studies [33,44,61,116,118], as well as the many victories and podium places
at the annual MCC [66�68] show that LoLA is a very powerful tool. In order
to solve larger veri�cation problems, it is important to continuously develop
and improve LoLA and model checking e�ciency in general.

1.2 Research goal

While the scienti�c �ndings and their practical applications have made re-
markable progress over the years, performance of model checking in general
is still insu�cient. There are still large industrial systems which are far from
approachable by veri�cation. With the globalization and the digitization of
the world, systems become more and more complex and harder to verify. This
leads us to the central research question that we investigate in this thesis:

How can model checking e�ciency be improved in order to verify
larger systems?

This question can be speci�ed to the precise challenges:

1. Model simpli�cation. How can a given model be reduced, changed, or
extended such that it has a smaller state space?

2. Speci�cation simpli�cation. How can a given speci�cation be reduced
to an equivalent but simpler one?

3. State space reduction. How can a given state space be pruned without
leaving out relevant areas?

4. State space exploration. How can state space exploration be acceler-
ated?

5. Alternative reduction techniques. Which other techniques can be used
to speed up model checking?

6. Performance enhancement of LoLA. How can the model checking per-
formance of LoLA be increased?

16

As a research goal of this thesis, we want to investigate the challenges de-
scribed above. There are many other challenges in this area, however, they
will not be the focus of this thesis.

1.3 Contributions

We made several contributions to handle the speci�c challenges and to reach
our research goal. Some of the contributions touch several challenges at
once. The results presented here are published in the journal articles [67,82],
(submitted [81]) and in the workshop and conference papers [68,76�80]. This
thesis summarizes and extends these results by making the following four
main contributions.

Contribution 1: reduction techniques

In general, there is a whole range of di�erent approaches available for the
veri�cation of systems. To bene�t from the wide range of di�erent meth-
ods [144], it is worth using a portfolio approach [145]. This means that
several methods run in parallel and the fastest one determines the result.
As a �rst contribution, we present two new alternative reduction techniques
that can be used in a portfolio setting. Furthermore, we present a collec-
tion of necessary or su�cient conditions, called quick checks, for a range of
speci�cations.

� Veri�cation with under-approximation (published in [80] (and submit-
ted [81])). Scalable models usually scale either over the structure or the
resources (players, components, . . .) of the model. To verify speci�cations
for resource scaling models, it is su�cient to consider the model with limited
resources. As a consequence, the initial state and thus the model is simpli-
�ed and the state space is reduced. We propose a su�cient test utilizing an
under-approximation [89] to simplify the initial state in the aforementioned
way.

� CEGAR for �nite-single-paths formulas (published in [78] and [82]).
Counterexample guided abstraction re�nement (CEGAR) [23] is a structural
approach that can be used in addition to the actual state space search. This
method is especially good for the veri�cation of negative results, meaning
that the speci�cation does not hold in the system. CEGAR was only known
to work for reachability analysis [140]. This thesis contributes a CEGAR
approach for temporal logic formulas to reduce the state space.

17

In particular, in earlier work [78], we proposed a veri�cation technique for
computational tree logic (CTL) [20] formula E (φUψ). For this, we use the
Petri net state equation [91] with CEGAR. As a side product, we showed
that (EX)kφ formulas can be solved with CEGAR, too. We use these two
approaches as building bricks to solve the entire class of �nite-single-path
formulas [82]. Such formulas can be veri�ed by a limited linear path through
the state space providing either a witness or a counterexample.

� Quick checks (published in [79]). For the veri�cation of some complex
speci�cations C, it is enough to verify simpler speci�cations that serve as
a necessary or su�cient condition for the validity of C. We introduce such
necessary or su�cient conditions, called quick checks, for a range of speci�-
cations. These quick checks serve as alternative reduction techniques and are
based on structural methods [144] which require less space than the actual
veri�cation.

Contribution 2: supplementary strength reduction

This contribution is dedicated to supplementary strength reduction tech-
niques. In particular, we introduce a method to speed up state space ex-
ploration. Furthermore, we present a collection of techniques to simplify the
speci�cation. These techniques support the actual veri�cation.

� Accelerating the state space computation (published in [77]). Many
challenges in model checking reduce to searching the state space. Therefore,
this is a time critical operation deserving elaborate speed up e�orts in every
detail. To compute the state space requires for every state to compute its
successor. This is usually done by testing every action of the model for its
activation in the given state. To speed up this computation it is su�cient
to focus the activation test to a limited set of actions. We introduce a new
algorithm to compute these information.

� Simplifying the speci�cation (published in [79]). Speci�cation simpli�ca-
tion can drastically decrease the computation power needed for model check-
ing, since a simpler speci�cation is usually easier to verify [7]. We introduce
embedded place invariants and traps to �nd properties of the speci�cation
which are invariantly true or false. Such properties can be veri�ed without
model checking since they will always stay true or false. If such a property is
part of a more complex speci�cation, only the other parts have to be veri�ed
using model checking. To further simplify the speci�cation, tautologies can

18

be used. Many of them are well known in the literature [71], but not all of
them are commonly known.

Contribution 3: partial order reduction

This contribution is solely concerned with state space reduction. To this
end, we use one of the most powerful reduction techniques, namely partial
order reduction (POR) [49, 97, 127]. POR is based on the observation that
concurrent and independent running processes contribute extensively to the
state explosion problem, while having only little in�uence on the preservation
of the speci�cation of individual processes. This thesis extends the reduction
e�ciency for partial order reduction in the area of temporal logic in the
following two aspects.

� Automata-based POR (published in [76]). In conventional linear time
temporal logic (LTL) [103] model checking [134] with POR the state space
is �rst reduced, and then, together with an automaton B representing the
(negated) formula, a product automaton is built. The actual veri�cation
takes then place in the product automaton. We use a rather unexplored
idea to �rst build the product automaton with the original state space, and
then reduce the product automaton with the additional information available
from B. With the additional information available from B, we propose a new
Automata-based POR, which is a generalization and extension of the ideas
presented in [64] and [75]. With our new method, we are able to weaken
or drop several requirements involved in conventional POR and are able to
reach a better reduction e�ciency.

� POR for special CTL formulas (published in [79]). In the CTL [20]
category of recent model checking contests [66�68], less problems have been
solved than in the reachability and LTL categories. Hence, improving CTL
model checking technology deserves particular attention. We propose to re-
lieve a generic explicit CTL model checker [139]. This is done by designing
specialized routines that cover a large set of simple and frequently occur-
ring formula types. The generic CTL model checker is then only applied
to formulas that do not fall into any special case. A veri�cation technique
dedicated to just one class C of simple CTL queries may use a better partial
order reduction: we only need to preserve C rather than whole CTL.

19

Part II Reduction techniques

Part III Supplementary strength reduction

Part IV Partial order reduction

State
exploration

10

11

Alternative
techniques

5

6

Preprocessing7Speci�cation8

Simulation6

Model5

Counter
example6

Model
checker

Figure 1.2: Interrelation of the results and its chapters in the context of the
model checking procedure.

Contribution 4: Performance enhancement of LoLA

As a proof-of-concept, most algorithms presented in this thesis are imple-
mented in the free open source tool LoLA [142]. Experimental validations
using the MCC as benchmark show in all cases a substantial increase in the
model checking e�ciency. The veri�cation with under-approximation ap-
plied to resource scaling models is able to solve 12.8 % of all queries. The
new algorithm for accelerating the state space computation is two orders
of magnitude faster than the old algorithm. Simplifying the speci�cation

20

could solve 15.1 % of all CTL formulas directly in the initial state. In addi-
tion, 1.2 % of the CTL formulas where solved by quick checks. The use of
POR in special CTL formulas has resulted in over 50 % of previously unan-
swered queries being successfully solved. LoLA is available for download at
http://service-technology.org/tools/.

1.4 Outline

The aforementioned list of Contributions 1 to 3 sketches an outline for the
remainder of this thesis which is illustrated in Figure 1.2. Contribution 4:
Performance enhancement of LoLA is presented directly in the corresponding
chapters after the introduction of the theory.

Part I continues with a review of formal methods and model checking al-
gorithms from the literature. In particular, Chapter 2 and Chapter 3 intro-
duce the formalisms and speci�cations that we are using for model checking.
Chapter 4 presents explicit model checking and describes the algorithms we
apply.

Part II is dedicated to Contribution 1: reduction techniques. It introduces
reduction techniques for a portfolio approach. In Chapter 5, we present a
veri�cation technique for models whose size scales over the existing resources.
The technique is based on an under-approximation. Chapter 6 introduces
the �rst extension of a structural CEGAR method to temporal logic. We
describe how the Petri net state equation in combination with CEGAR can
be used to solve �nite-single-path formulas. Furthermore, we introduce quick
checks based on structural methods that can be run in parallel to the actual
veri�cation.

Part III presents Contribution 2: supplementary strength reduction. Chap-
ter 7 introduces a new technique to speed up the computation of enabledness
and disabledness information that we use to build the state space. Chapter 8
introduces a range of speci�cation simpli�cations.

Part IV is concerned with Contribution 3: partial order reduction. Chap-
ter 9 recalls the partial order reduction from the literature. We describe the
involved principles and state which combination of principles preserve which
property classes. Chapter 10 introduces a new Automata-based partial order
reduction for LTL. In Chapter 11, we present stubborn sets for simple and
frequently occurring CTL formulas.

21

http://service-technology.org/tools/

Part V concludes this thesis. Chapter 12 addresses some �nal selected
topics that we believe deserve some remarks. It summarizes this thesis, com-
pares the identi�ed research challenges with the contributions we made and
discusses the compatibility and combined use of the introduced techniques.
Finally, we identify open problems and future work.

22

Chapter 2

Systems

A dynamic process is a series of activities that interact to produce a result
and changes and progresses constantly. A distributed system is a cohesive
structure of interacting or interrelated processes or components that are at
di�erent locations. The components communicate and coordinate their ac-
tions by passing messages to one another. Every System is described by its
boundaries, de�ned by its structure and purpose, and expressed through its
functioning. Systems and dynamic processes occur everywhere. They are
ubiquitous in nature, society, technology, and other areas. Biochemical reac-
tions are examples for dynamic processes in nature. A voting protocol can
be seen as a system in the society. And a hardware circuit is a system in the
technology �eld.
To verify such systems and dynamic processes it is not practicable to use them
directly since they tend to be very large. Therefore, abstract views, called
formal models, of these systems and dynamic processes are built. Formal
models abstract away uninteresting parts and focus solely on the things that
should be veri�ed. As a consequence, formal models are smaller than the
original system or dynamic process.
In the thesis, we will be primarily concerned with distributed systems and
their behavior over time. A distributed system, compared to a sequential
one, involves more than one process. These processes can usually be tracked
in terms of quantities that change over time. This brings us to the main
abstraction tool in system modeling, which is the concept of state. A state
represents all quantities of a system at a certain instant of time. It is basically
a snapshot of the system.
Depending on the domain of the quantities of a state, systems can be distin-
guished. In discrete systems all quantities of the system range over countable
domains. As an example, consider the arrival times of trains at a station,
e.g., 10:12, 10:24, 11:48. Whereas in continuous systems all quantities range

23

over dense domains. An example would be the amount of water that �ows
over a dam. Hybrid systems are comprised of discrete and continuous quan-
tities. States that contain time as a speci�c variable are real-time system. If
the timescale of a real-time system is discrete, as well as all other quantities,
then the real-time system belongs to the category of discrete systems. On
the other hand, if the timescale is dense, as well as all other quantities, then
it belongs to the continuous systems. Otherwise, it falls in the category of
hybrid systems.
Discrete systems have typically a countable number of states. Whereas con-
tinuous and hybrid systems usually have an uncountable number of states.
This makes them not suitable for explicit state space veri�cation (states are
generated and evaluated one by one), because explicit models depend on the
enumeration of states. Since one of our research goals is the performance
enhancement of the model checker LoLA and because LoLA is an explicit
model checker, we disregard continues and hybrid systems and focus solely
upon discrete systems in the remainder.
In this chapter, we work out the area of systems this thesis is concerned with.
We introduce basic formalisms for modeling the structure and behavior of a
system. More information regarding systems in the �eld of model checking
can be found in [15,24].
The rest of this chapter is organized as follows. Before we give a formal
introduction into systems, we brie�y recall some basic mathematical concepts
in Section 2.1. We continue in Section 2.2 with the introduction of labeled
transition systems which are closely related to graphs. The main formalism of
this thesis, the place/transition nets, are introduced in Section 2.3. Arguing
over place/transition nets can be traced back to labeled transition systems.

2.1 Basic mathematical notions

In this section, we recall basic notion of mathematics and computer science
and introduce concepts that we use in the remainder of this thesis. As refer-
ence for the following de�nitions see [57,73].

Sets.
Throughout this thesis, N is the set of natural numbers (including 0) and N1

is the set of positive natural numbers (excluding 0). The set of integers is
denoted by Z and the Boolean domain with the elements {true, false} is de-
noted by B. In �gures and algorithms, we use {tt,ff} instead of {true, false}.
Let M be a �nite set. For the cardinality of M , we write |M | to denote the
number of elements x ∈M that occur in M . The power set of M is denoted
by 2M . It is the set of all subsets of M .

24

Relations and mappings.
Let X and Y be some sets. A binary relation rel over X and Y is a subset
of the Cartesian product X × Y , where the Cartesian product X × Y :=
{(x, y)|x ∈ X, y ∈ Y }, with its elements called ordered pairs. The inverse of
rel is the binary relation rel−1 = {(y, x)|(x, y) ∈ rel} ⊆ Y ×X.
A mapping f , also called function, is a right-unique relation over X and Y ,
that is, with (x, y), (x, z) ∈ f =⇒ y = z. To distinguish functions f from
other relations we write f : x→ y.

Multiset.
Let X be some set. Then, a mapping f : X → N1 can be interpreted as a
multiset over X. The number f(x) is the multiplicity of x ∈ X in f and
states, how often an element x occurs in f . We may denote a concrete �nite
multiset f by enumerating each element x that occurs in f . For example, for
a multiset f with f(x1) = 2 and f(x2) = 1, for all x ∈ X \ {x1, x2} we write
f(x1, x1, x2).

In this thesis, we use multisets to describe states of a system.

Alphabet, word, sequence, language.
An alphabet W is a �nite non-empty set of elements. A �nite word w over
W , also called sequence, is a �nite string of elements of W . The empty word
is denoted by ε and non-empty sequences are written as the concatenation
of their elements. We denote the length of w by |w|, i.e., if w = w1 . . . wn,
then |w| = n. Further, we denote with

� W n the set of all words with length n over W ;

� W ∗ := ∪i∈NW i the set of all words over W ;

� W+ := W ∗ \ {ε} the set of all non-empty words over W .

A language over W is a subset L of W ∗.

Many challenges in the model checking domain can be traced back to graphs
and graph algorithms. Therefore, we recall also basic graph notions from the
literature in this section. As reference for the following de�nition see [10].

Graph, subgraph.
A directed graph G = (V,E) consists of a �nite set V of vertices (or nodes)
and a set E ⊆ V × V of directed edges (or arcs). A graph G′ = (V ′, E ′) is a
subgraph of G, written as G′ ⊆ G, if V ′ ⊆ V and E ′ ⊆ E.

In this thesis, we are only concerned with directed graphs and therefore, we
skip undirected graphs.

25

2.2 Labeled transition system

In Chapter 1, we introduced the concept of state. That is, a state repre-
sents a snapshot of the system at a particular instant of time. To describe
the dynamics of a system requires the next building brick, the concept of a
state change. State changes are assumed to occur instantaneously at discrete
points of time. Therefore, it possible to abstract away the explicit notion of
continuous time with gradual change.
State changes in a system occur due to events or actions. The mathematical
association of original state, occurred event, and new state are captured by
a transition relation. The evolution of a system is then de�ned as a �nite
or in�nite sequence of states, where each state is obtained from the previous
state by an event as determined in the transition relation. The most general
notion to describe discrete systems, using the concepts of state and event, is
a labeled transition system. As reference for the following de�nitions see [50].

De�nition 2.2.1 (Labeled transition system (LTS)).
A labeled transition system TS = (S,A,→, s0) consists of:

� a �nite set S of states;

� a �nite set A of actions;

� a relation →⊆ S × A× S of transitions, also called events;

� an initial state s0 ∈ S.

An example for a labeled transition system with TS = (S,A,→, s0) can be
seen in Figure 2.1. TS consists of

� S = {s0, s1, s2};
� A = {a, b, c, d};
� →= {(s0, a, s1), (s1, b, s0), (s1, c, s2), (s2, d, s0)};
� initial state s0.

An LTS models the behavior of systems. It also represents a class of automata
with an initial state but no end state. The transition relation → denotes
possible state changes. If (s, a, s′) is an element of the transition relation,
then the system can move from state s to s′ by performing action a. In the
remainder of the thesis, we denote (s, a, s′) ∈→ as s

a−→ s′. If s
a−→ s′ for

some action a, then s′ is an immediate successor of s, and s is an immediate
predecessor of s′. In an unlabeled transition system the transition relation is
de�ned without actions, →⊆ S × S.

26

s0

s2

s1
a

b
cd

Figure 2.1: An example labeled transition system.

De�nition 2.2.2 (Terminal state).
Let TS = (S,A,→, s0) be an LTS. A state s ∈ S is a terminal state if and
only if there is no s′ ∈ S such that s

a−→ s′ with a ∈ A.

Terminal states, thus, have no successor states. In Chapter 6, we use termi-
nal states for the veri�cation of some speci�cations. We continue with the
formalization of the behavior of an LTS.

De�nition 2.2.3 (Path).
Let TS = (S,A,→, s0) be an LTS and s, s′ ∈ S two states. A �nite path of
length n from s to s′ is sequence of n actions s1

a1−→ s′1s2
a2−→ s′2 . . . sn

an−→ s′n
such that s = s1, s

′ = s′n and s′i = si+1 for i = 1, . . . , n, denoted by s1
a1−→

s2
a2−→ . . . sn

an−→ sn+1. If n = 0, then the path is empty and s = s′ = s1. An
in�nite path is a sequence s1, s2, s3, . . . such that si

a1−→ si+1 for each i ∈ N,
yields the in�nite path s1

a1−→ s2
a2−→ s3

In some cases, we require that a �nite path ending in a terminal state s is
in�nite. In such a cases, s will be repeated inde�nitely with s

τ−→ s where τ
is special action denoting an invisible internal action.

De�nition 2.2.4 (Maximal path).
A maximal path is either a �nite path that ends in a terminal state, or an
in�nite path.

Paths(s) denotes the set of maximal paths.

De�nition 2.2.5 (Acyclic, cyclic).
Let TS = (S,A,→, s0) be an LTS. A path π = s1

a1−→ s2
a2−→ . . . sn

an−→ sn+1 in
TS is acyclic if si ̸= sj for all i ̸= j with i, j ∈ {1, . . . , n + 1}. Otherwise π
is cyclic. If TS contains no cyclic path starting from s0, then TS is acyclic.

Using paths, we are able de�ne the notion of reachable.

27

De�nition 2.2.6 (Reachable).
Let TS = (S,A,→, s0) be an LTS, ε the empty sequence of actions, w a
sequence of actions, and a an action. Further, let A∗ be the set of all possible
strings using A, including the empty set. We de�ne the reachability relation
−→∗ ⊆ S × A∗ × S by the inductive scheme using the following axiom and
rule:

s
ε−→∗s

s1
w−→∗s2 s2

a−→∗s3

s1
wa−→∗s3

We say that s′ is reachable from s denoted by s −→∗s′ if and only if there is a
sequence w of actions holding s

w−→∗s′. For better readability, we often write
s

w−→ s′ instead of s
w−→∗s′.

For the veri�cation of some speci�cations, e.g., liveness [109], certain struc-
tures can be used.

De�nition 2.2.7 (SCC, TSCC).
Let TS = (S,A,→, s0) be an LTS. A strongly connected component (SCC)
is a maximal set of states M of TS such that s, s′ ∈ M implies s −→∗s′. A
terminal strongly connected component (TSCC) is an SCC from which no
other SCC is reachable.

The example LTS from Figure 2.1 has only one TSCC which consists of all
states. Every state is reachable from any other state.
We are also able to analyze the behavior and the structure of labeled transi-
tion systems using graph terms.

Lemma 2.2.1 (LTS as graph). For every LTS there is a directed graph where
nodes are interpreted as states, and edges are interpreted as state changes
triggered by actions in the edge labels.

The graph terms from Section 2.1 can be, thus, lifted to labeled transition
systems. In the remainder of this thesis, we will use this to apply graph
algorithms on labeled transition systems.

2.3 Place/transition nets

The main formalism used in this thesis for modeling the structure and the
behavior of a system are place/transition nets. Place/transition nets are
the same as classical (low-level) Petri nets [101], and also known as vector
addition systems [63]. Place/transition nets are an established formalism for
modeling, analyzing, and verifying distributed systems and their features.
The global state of a distributed system is described in a place/transition

28

net as a collection of local states. Examples for such systems are hardware
circuits, resources, protocols, control �ow, and many more. As reference for
an introduction of Petri nets the reader is referred to [100,106].

De�nition 2.3.1 (Place/transition net).
A place/transition net (P/T net) N = (P, T, F,W,m0) consists of

� a �nite set of places P ;

� a �nite set of transitions T such that P ∩ T = ∅;
� a set of arcs F ⊆ (P × T) ∪ (T × P);

� a weight function W : (P × T) ∪ (T × P) → N such that W (x, y) = 0
if and only if (x, y) /∈ F ;

� an initial marking m0 : P → N.

A P/T net can be seen as a (�nite) bipartite directed graph with the node set
unifying places and transitions. Weights W and markings such as m0 re�ect
to the dynamic of P/T nets which is to be introduced later. The graphically
representation of a place is a circle and the one of a transition is a box.
Weighted arcs are graphically represented as weight-labeled edges. If an arc
weight is one, then it is usually omitted in the graphical representation.
The structural environment of a place or transition is covered by the notion
of preset and post-set of a node.

De�nition 2.3.2 (Preset, post-set).
For a node x ∈ P ∪ T of a P/T net N , •x = {y | (y, x) ∈ F} is the preset
of x and x• = {y | (x, y) ∈ F} is the post-set of x. This extends to sets of
nodes: if X ⊆ P ∪ T , then •X =

⋃︁
x∈X

•x and X• =
⋃︁
x∈X x

• are the pre-
respectively post-set of X.

As an example for presets and post-sets consider Figure 2.2. The transition t2
has the preset •t2 = {p1, p2, p3} and the post-set t2• = {p4, p5}. The post-set
of the set {p1, p2} is {p1, p2}• = p1

• ∪ p2• = {t1, t2}.
Another structural environment notion are con�ict transitions. Intuitively,
transitions may be in con�ict if they share a place in their presets. In [38]
Desel and Esparza extended this observation toward a decomposition of a
P/T net into its con�ict clusters.

De�nition 2.3.3 (Con�ict cluster).
Let x ∈ P ∪ T be a node of a P/T net N = (P, T, F,W,m0). The con�ict
cluster of x, denoted [x], is the minimal set of nodes such that:

� x ∈ [x];

29

p1

p2

p3

t1

t2

p4

p5

Figure 2.2: Presets and post-sets.

� If p ∈ P and p ∈ [x], then p• ⊆ [x];

� If t ∈ T and t ∈ [x], then •t ⊆ [x].

So far, a P/T net N represents only a static structure. The dynamic behavior
is introduced by a notion of states and state changes. States of P/T nets are
markings m : P → N. A marking of N can be viewed as a distribution of
resources over (a subset of) the places of N . The resources are called tokens.

De�nition 2.3.4 (Marking).
A marking m of a P/T net N = (P, T, F,W,m0) is a mapping m : P → N.

In a given state of a P/T net N , that is, for a marking m, each place p ∈ P
of N , is assigned its number m(p) of tokens. Graphically, m is depicted by
putting m(p) black dots on every place p. Tokens are used in P/T nets to
simulate the dynamic and concurrent activities of systems.

De�nition 2.3.5 (Vector notation for markings).
Let N = (P, T, F,W,m0) be a P/T net and m be a marking. We call m =
(m(p1),m(p2), . . . ,m(pn)) with p ∈ P, n = |P | the vector notation for m.

In this thesis, we use the traditional vector notation or the earlier introduced
multiset notation to describe markings. For example consider a P/T net with
3 places and a marking m where the �rst place has 1 token, the second place
has 2 tokens, and the last place is empty. The traditional vector notation
would then be m = (1, 2, 0) and the multiset notation m = (p1, p2, p2).
An example P/T net N = (P, T, F,W,m0) with a non-empty initial marking,
can be seen in Figure 2.3. N consists of:

� P = {p1, p2, p3, p4};
� T = {t1, t2, t3, t4, t5};
� F = {(p1, t1), (p2, t2), (p2, t3), (p3, t4), (p4, t5),

(t1, p2), (t2, p1), (t3, p3), (t4, p4), (t5, p3)};

30

� W = {((p1, t1), 1), ((p2, t2), 1), ((p2, t3), 1), ((p3, t4), 1), ((p4, t5), 1);
((t1, p2), 1), ((t2, p1), 1), ((t3, p3), 1), ((t4, p4), 1), ((t5, p3), 1)};

� m0 = (1, 0, 0, 0).

p1

t1

t2

p2 t3 p3

t4

t5

p4

Figure 2.3: A P/T net with initial marking m0 = (1, 0, 0, 0).

With the marking notion de�ned, we are now able to carry on with the
introduction of state changes. To this end, we need to know which transitions
are enabled.

De�nition 2.3.6 (Enabledness).
Let N = (P, T, F,W,m0) be a P/T net. A transition t ∈ T is enabled in
marking m if, for all p ∈ •t it holds that W (p, t) ≤ m(p).

In P/T nets, enabled transitions can trigger the events that cause a state
change. In fact, once a transition t is enabled in marking m, it can �re and
by doing so, consume W (p, t) tokens from each place p ∈ •t and produce
W (t, p′) tokens on each place p′ ∈ t•. This results in a new marking which is
the successor of m. We formalize this behavior of a P/T net in the following
transition rule.

De�nition 2.3.7 (Transition rule of a P/T net).
Let N = (P, T, F,W,m0) be a P/T net and t ∈ T a transition of N . If t is
enabled in marking m, t can �re, producing a new marking m′ where, for all
p ∈ P , m′(p) = m(p)−W (p, t)+W (t, p). Then, m′ is the successor marking
of m with respect to the �ring of t. The transition rule de�nes a relation →
on the markings where m

t−→ m′ denotes that �ring t changes marking m into
m′. We also say that m′ is reachable via transition t from m.

A transition would be disabled in markings where not all tokens that will
be consumed are available in the respective places. The absence of tokens
is the only way to disable transitions. In the example P/T net in Fig-
ure 2.4a, it is easy to see that both transitions t1 and t2 are enabled in

31

p1

p2

p3

t1

t2

p4

p5

2

3

3

2

(a) Marking m0 = (3, 1, 4, 0, 1).

p1

p2

p3

t1

t2

p4

p5

2

3

3

2

(b) Marking m1 = (2, 0, 1, 1, 3).

Figure 2.4: The �ring of t2 in m0 yields the successor marking m1.

marking m0 = (3, 1, 4, 0, 1). The �ring of t2 in m0 yields the successor mark-
ing m1 = (2, 0, 1, 1, 3), as depicted in Figure 2.4b. After �ring t2 only t1
remains enabled in m1. The transition t2 is disabled because one token is
missing on p2 and three tokens are missing on p3.
The transition rule can be extended to transition sequences.

De�nition 2.3.8 (Transition sequence (reachability)).
Let N = (P, T, F,W,m0) be a P/T net and m,m′ two markings. A transition
sequence is de�ned by the following inductive scheme: m

ε−→ m, for the empty

sequence ε, and m
wt−→ m′ for a sequence w ∈ T ∗ and a transition t ∈ T if

and only if there is a marking m1 such that m
w−→ m1 and m1

t−→ m′. Marking
m′ is reachable from marking m if and only if there is a transition sequence
w ∈ T ∗ such that m

w−→ m′.

Using reachability, a P/T net induces the reachability graph, also called the
state space of a P/T net.

De�nition 2.3.9 (Reachability graph).
Let N = (P, T, F,W,m0) be a P/T net. The reachability graph RN = (M,E)
of N has a set of vertices M that comprises all markings that are reachable

by any sequence from the initial marking of N . Every element m
t−→ m′ of

the �ring relation (t ∈ T) de�nes an edge E from m to m′ annotated with t.

The introduced notation for reachability is compatible with the correspond-
ing notion for labeled transition systems. The state space of a P/T net can
also be expressed with an LTS.

De�nition 2.3.10 (P/T net state space).
Let N = (P, T, F,W,m0) be a P/T net and TS = (S,A,→, s0) an LTS.
Further, let w ∈ T ∗ be a sequence and t ∈ T a transition. TS is called the
state space of N if and only if

32

� S = {m|m0
w−→ m};

� A = {T};

� (m, t,m′) ∈→ if and only if m
t−→ m′;

� s0 = m0.

Figure 2.5 shows the reachability graph (state space) of Figure 2.3 using the
multiset notion. The edges of the graph correspond to the transitions, and
the paths correspond to the transition sequences. For example, the marking
(p2) has two outgoing edges, since in (p2) the two transitions t2 and t3 are
enabled. In addition to this, the �gure shows the SCCs of the reachability
graph. There are two SCCs. The �rst one is C1 = {(p1), (p2)} and the second
one is C2 = {(p3), (p4)}, which is also a terminal SCC.

(p1) (p2) (p3) (p4)

t1

t2
t3

t4

t5

C1 = {(p1), (p2)} C2 = {(p3), (p4)}

Figure 2.5: The reachability graph of Figure 2.3 with its (T)SCCs.

Since one of our research goals is state space reduction, we need to de�ne the
size of a state space in order to compare it.

De�nition 2.3.11 (State space size).
The size |RN | of the reachability graph RN = (M,E) of a P/T net N with
initial marking m0 is de�ned as the number of markings reachable from m0

and the number of edges, |M |+ |E|. Given another reachability graph RN ′ =
(M ′, E ′) of P/T net N ′, we say that |RN | ≤ |RN ′ | (RN is smaller than RN ′),
if |M |+ |E| ≤ |M ′|+ |E ′|.

In the remainder of this thesis, we shall use P/T nets as basic formalism.
The decision to focus on P/T nets is due to two reasons. First, as seen
in this section, P/T nets have a strong mathematical foundation enabling
a rigorous analyses and veri�cation process. Second, based on our research
goal to increase the model checking e�ciency of LoLA we focus on P/T nets,
because LoLA works on P/T nets. Further, we use the induced reachability
graph of a P/T net as labeled transition system to analyze the behavior
respectively to work with speci�cations, in the sequel.

33

The size of the reachability graph is usually several times larger than the
underlying P/T net. For example, consider a process with n states and a
system that is composed of m such processes. If the system is executed asyn-
chronously, then the system has nm states. �As the number of state variables
in the system increases, the size of the system state space grows exponen-
tially. This is called the state explosion problem� [26]. Thus, reachability is
the fundamental veri�cation problem in model checking [26,130].

De�nition 2.3.12 (Reachability problem).
Given is a tuple (N,m,m′) consisting of a P/T net N and two markings
m and m′. The question whether m′ ∈ RN(m) is called the reachability
problem.

Lipton has shown that the problem is EXPSPACE-hard [83], which means
it is intractable to solve. It is well known that a necessary condition for
a positive answer to a reachability problem is the feasibility of the state
equation [91].

De�nition 2.3.13 (State equation).
The incidence matrix of a P/T net N is a matrix CN : P × T −→ Z where,
for all p ∈ P, t ∈ T , CN(p, t) = W (t, p) −W (p, t). Let w ∈ T ∗ be a �ring
sequence of N , that is, the sequence of labels on a path from some marking m
to a marking m′ in the labeled transition system corresponding to N . Then
the system of linear equations

m+ CN · ℘(w) = m′

is the Petri net state equation. The vector ℘(w) ful�lling the equation is
called a solution or Parikh vector of w. We denote with |℘(w)(t)| the number
of occurrences of t in the sequence w of the Parikh vector.

Instead of Petri net state equation, we sometimes only say state equation or
P/T state equation. If it is clear form the context, we refer to the incidence
matrix of a P/T net N by C.
The state equation can be used in several situations. The �rst one is to
compute a �nal marking. As an example consider Figure 2.6, it shows on the
left side a P/T net and on the right side the corresponding incidence matrix
CN . Further, let ℘(w) = (1, 0, 2, 1) be a Parikh vector and m = (0, 0, 1) be
the initial marking. Then we can apply the state equation to compute the
�nal marking m′ = (1, 0, 0).
For the next situation, we �rst have to introduce the notion of executable.

34

p1

t1

t2

p2

u1

u2

p3

⎡⎣
t1 t2 u1 u2

p1 1 −1 0 0
p2 −1 1 1 −1
p3 0 0 −1 1

⎤⎦

Figure 2.6: State equation example. The left �gure shows a P/T net and
the right side shows the corresponding incidence matrix.

De�nition 2.3.14 (Executable).
Let N = (P, T, F,W,m0) be a P/T net, m′ a target (�nal) marking, and ℘(w)
a solution vector. If there exist a transition sequence w from m0 to m′ that
contains exactly those transitions in ℘(w), then w is executable in N .

A solution ℘(w) of the state equation can be spurious. That is, ℘(w) is not
necessarily executable in the P/T net N , i.e., there is no transition sequence
that can be executed in N . The reason for this is that the state equation is a
linear algebraic over-approximation of the set of reachable states. However,
the state equation can be used to compute a solution to a �nal marking. If the
state equation provides no solution, then the �nal marking is not reachable.
On the other hand, if it provides a solution that is executable, then the �nal
marking is reachable. We will formalize and use this behavior in Chapter 6
to solve some speci�cations. With the state equation, we are also able to
de�ne two types of invariants: transition invariants (T-invariant), and place
invariants (P-invariant) [74].

De�nition 2.3.15 (T-invariant).
A Parikh vector ℘(w) is a transition invariant, also called T-invariant, if
C · ℘(w) = 0 holds. If the �ring sequence w is executable, we call ℘(w)
realizable.

A realizable T-invariant is a cycle in the state space and will not change the
marking.

De�nition 2.3.16 (P-invariant).
A vector i is a place invariant, also called P-invariant, if i · C = 0 holds.

Instead of i · C = 0, we sometimes use CT i = 0. A place invariant has the
property that the weighted sum of tokens stays the same in each marking m.

Lemma 2.3.1 (Weighted sum of tokens [74]). Let N = (P, T, F,W,m) be
a P/T net. If i is a place invariant, then the equation i(p1)m(p1) + · · · +

35

i(pn)m(pn) = im0 holds for all reachable markings in N with the set of places
{p1, . . . , pn}.

Another property of P/T nets is boundedness.

De�nition 2.3.17 (Bounded P/T net).
A P/T net N = (P, T, F,W,m0) is bounded if it has only a �nite num-
ber of reachable markings, i.e., if the set RN(m0) is �nite. Otherwise, it is
unbounded.

In this thesis, we restrict our analysis to bounded P/T nets. The reason
for this is that bounded P/T nets have a �nite state space. Veri�cation
algorithms for unbounded P/T nets need other algorithms such as the cov-
erability graph [45] to deal with the in�nite state space. Finally, we will
introduce the notion of deadlocks, which is compatible with the notion of
terminal state for LTS.

De�nition 2.3.18 (Deadlock).
Let N = (P, T, F,W,m0) be a P/T net. N has a deadlock if there exist a
reachable marking from m0 in which no transition is enabled.

36

Chapter 3

Speci�cation

In the previous chapter, we introduced and formalized systems. A system is
one of two inputs for the model checker. The other input is the speci�cation,
which we are going to describe and formalize in this chapter. In order to ana-
lyze and verify a given model, we need a precise and unambiguous framework
to state meaningful properties that a model must satisfy. With the knowl-
edge of the meaningful properties, the formal model can be built capturing
those properties. Details that are not meaningful should be abstracted away
to keep the model and therefore the state space as small as possible. The
actual veri�cation then uses the formal model and the speci�ed properties to
reason about whether the model meets the speci�cation.
Speci�cations are usually given in some logical formalism such as tempo-
ral logic. Temporal logic describes the ordering of events in time without
introducing time explicitly. Basically, it extends traditional propositional
logic with operators that refer to the behavior of systems over time. For
example, a speci�cation can ensure that some concurrent system has no
deadlocks. Other examples are safety (something that never happens) and
liveness (something good will eventually happen) properties. Further infor-
mation about speci�cations for model checking can be found in [15,24].
The rest of this chapter is organized as follows. In the next section, we intro-
duce some basic de�nitions. We continue in Section 3.2 with the presentation
of CTL∗. Section 3.3 and 3.4 are concerned with the introduction of LTL and
CTL, respectively. Section 3.5 presents the logic classes ACTL∗ and ECTL∗.

3.1 Basics

The core elements of every speci�cation are atomic propositions.

37

De�nition 3.1.1 (Atomic proposition (in general)).
Let TS = (S,A,→, s0) be an LTS. An atomic proposition α : S → B as-
signs truth values to states of TS. The fact that a state s satis�es atomic
proposition α, that is α(s) = TRUE, is denoted by s |= α.

Basically, we have α1, . . . , αn, n ∈ N atomic propositions and a labeled tran-
sition system whose states are annotated with the values of α1, . . . , αn. Since
we mainly use P/T nets in this thesis, we introduce a de�nition of P/T net
speci�c atomic propositions. To this end, we introduce four atomic proposi-
tion constants. In the sequel, let N = (P, T,W, F,m0) be a P/T net.

� TRUE: evaluates always to true;

� FALSE: evaluates always to false;

� FIREABLE(t) (for t ∈ T): evaluates to true, if t is enabled in a marking
m ∈ RN ;

� DEADLOCK: evaluates to true, if N has a deadlock.

De�nition 3.1.2 (Atomic proposition for P/T nets).
Let N = (P, T, F,W,m0) be a P/T net. An atomic proposition is one of the
constants TRUE, FALSE, FIREABLE(t) (for t ∈ T), DEADLOCK, or an expression
of the shape k1p1 + · · · + knpn ≤ k, for some n ∈ N, k1, . . . , kn, k ∈ Z, and
p1, . . . , pn ∈ P . For a marking m of N , m satis�es proposition k1p1 + · · · +
knpn ≤ k if and only if the term

∑︁n
i=1 kim(pi) actually evaluates to a number

less or equal to k. The fact that a marking m satis�es atomic proposition α
is again denoted by m |= α.

Intuitively, atomic propositions represent simple known facts about states.
Therefore we assume that atomic propositions can be evaluated with negligi-
ble resources. Besides the atomic propositions, the logic consists of Boolean
connectors such as negation, disjunction and conjunction (¬,∨,∧). These el-
ements are used to build more complicated expressions to describe properties
of the system.
Speci�cations are used to describe transition sequences and state changes.
One formalism for describing transition sequences in a system is temporal
logic. Temporal logic extends traditional propositional logic with operators
that refer to the behavior of systems over time. It allows to specify properties
that describe a before-after-relation between states along a path. Before we
introduce a model for expressing properties that involve more than one path,
we recall the traditional de�nition of a directed labeled rooted tree.

De�nition 3.1.3 (Directed labeled rooted tree).
A directed labeled rooted tree is a connected and acyclic directed graph G =
(V,E, v0) in which v0 is the root and each vertex has a label.

38

We use the directed labeled rooted tree to de�ne the computation tree.

De�nition 3.1.4 (Computation tree).
Let TS = (S,A,→, s0) be an LTS. A computation tree G = (V,E, v0) for
TS is a directed labeled rooted tree if and only if:

� every Vertex v ∈ V is labeled with a state s ∈ S;

� the root vertex v0 is labeled with s0;

� every edge e ∈ E is labeled with an action a ∈ A;

� an edge e connects two vertices v, v′ only if the corresponding labels
form a transition relation in →;

� for every vertex v labeled with s, and every transition relation (s, a, s′),
there is an edge labeled with a connecting v with a vertex labeled s′.

The computation tree shows all possible paths starting from the initial state
of an LTS. For example, a property might specify that a faulty state is never
reached, or that something good will eventually happen. If the LTS contains
no cycles, then the size of the computation tree is �nite, otherwise it is
in�nite, because a cycle is unwound over and over again. The six top states
of the computation tree of the LTS from Figure 3.1a are shown in Figure 3.1b.

a, b

s0

b

s2

a

s1t1

t2

t3
t4

t5

(a) LTS.

a, b

s0

a

s1

a, b

s0

b

s2

b

s2

b

s2

t1

t3

t4

t2

t5

t1 t2
t5 t5

(b) Computation tree.

Figure 3.1: LTS and the Computation tree of the LTS.

3.2 Computational tree logic∗

We start with the introduction of the syntax and semantics of the computa-
tional tree logic∗ (CTL∗) de�ned by Emerson and Halpern [40]. CTL∗ allows

39

us to easily de�ne the temporal logics we want to use, because CTL∗ is a
superset of all of them. The syntax of CTL∗ is described by state formulas
and path formulas. The idea is that state formulas being true in a speci�c
state, and path formulas being true along a speci�c path.

De�nition 3.2.1 (Syntax of CTL∗).
For a given set of atomic proposition AP , the temporal logic CTL∗ is induc-
tively de�ned as follows:

� Every φ ∈ AP is a state formula;

� If φ and ψ are state formulas, then ¬φ, (φ∧ ψ), and (φ∨ ψ) are state
formulas;

� Every state formula is a path formula;

� If φ and ψ are path formulas, then ¬φ, (φ ∧ ψ), (φ ∨ ψ), Xφ, Fφ,
Gφ, (φUψ), and (φRψ) are path formulas;

� If φ is a path formula, then Aφ and Eφ are state formulas.

The set of all state formulas generated by these rules form the class of CTL∗

formulas. For a state s of a labeled transition system, L(s) registers the set
of atomic propositions that are valid in s. The semantics of CTL∗ is de�ned
with respect to some labeled transition system.

De�nition 3.2.2 (Semantics of CTL∗).
Let TS be a labeled transition system and α an atomic proposition. Let φ1

and φ2 be state formulas and ψ1 and ψ2 path formulas. State s satis�es CTL
∗

state formula φ1 denoted as s |= φ1 and path π = s0
a0−→ s1

a1−→ . . . satis�es
CTL∗ path formula π denoted as π |= ψ1 if and only if

State formulas

1. s |= α ⇐⇒ α ∈ L(s);
2. s |= ¬φ1 ⇐⇒ s ̸|= φ1;
3. s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 and s |= φ2;
4. s |= φ1 ∨ φ2 ⇐⇒ s |= φ1 or s |= φ2;
5. s |= Aψ1 ⇐⇒ π |= φ1 for all π ∈ Paths(s) starting in s;
6. s |= Eψ1 ⇐⇒ π |= φ1 for some path π ∈ Paths(s) starting in s.

Path formulas

Let πi be the su�x of π starting at si.

40

7. π |= φ1 ⇐⇒ s0 |= φ1;
8. π |= ¬ψ1 ⇐⇒ π ̸|= ψ1;
9. π |= ψ1 ∧ ψ2 ⇐⇒ π |= ψ1 and π |= ψ2;
10. π |= ψ1 ∨ ψ2 ⇐⇒ π |= ψ1 or π |= ψ2;
11. π |= Xψ1 ⇐⇒ π1 |= ψ1;
12. π |= Fψ1 ⇐⇒ there exists a k ≥ 0 such that πk |= ψ1;
13. π |= Gψ1 ⇐⇒ for all i ≥ 0, πi |= ψ1;
14. π |= ψ1 Uψ2 ⇐⇒ there exists a k ≥ 0 such that πk |= ψ2

and for all 0 ≤ j < k, πj |= ψ1;
15. π |= ψ1 Rψ2 ⇐⇒ for all j ≥ 0, if for all i < j, πi ̸|= ψ1,

then πj |= ψ2.
An LTS TS satis�es a state formula if its initial state does and it satis�es a
path formula if all paths starting in the initial state do.

We denote the fact that if a state s of TS satis�es a state formula φ with
(TS, s) |= φ. Similarly, if a path π of TS satis�es a path formula φ we write
(TS, π) |= φ. If it is clear which LTS we are using, we only write s |= φ
respectively π |= φ.
For a better understanding, we also give an informal description for the
quanti�ers and operators. Path quanti�ers are used to describe the branching
structure.

� A requires that all paths have the speci�ed property.

� E requires that there exists at least one path with the speci�ed prop-
erty.

We call A the all or universal path quanti�er and E the existential path
quanti�er. A state s satis�es Aφ, if all paths starting in s satisfy φ. By
analogy, a state s satis�es Eφ, if there exists at least one path starting in s
that satisfy φ. Path quanti�ers are concerned with states, whereas temporal
operators are concerned with properties along a path in the computation tree.
The three temporal operators X,F,G are concerned with a single property:

� X requires that a property holds in the next state of the path.

� F requires that a property holds eventually or in the future in some
state of the path.

� G requires that a property holds in each state (globally or always) of
the path.

The temporal operators R and U combine two properties:

41

� U requires that there is a state s on the path in which the second
property holds, and, in addition, up until s the �rst property must
hold in every previous state on the path.

� R requires that the second property holds at every state along the path
up until and including the �rst state s in which the �rst property holds.
If such an s does not exist, then the second property holds forever. The
�rst property releases the second property.

There is another aspect to consider in the way we have de�ned the semantics
of CTL∗. We de�ned all operators explicitly for a better readability. However,
the Boolean connector ∨, the path quanti�er A, and the temporal operators
F,G, and R can also be de�ned using the following tautologies.

Lemma 3.2.1 (Minimal set of operators [24]). The operators ∨,¬,X,E,U
are su�cient to express any other CTL∗ formula.

� (φ ∨ ψ) ⇐⇒ ¬(¬φ ∧ ¬ψ);
� Aφ ⇐⇒ ¬E (¬φ);
� Fφ ⇐⇒ (TRUEUφ;

� Gφ ⇐⇒ ¬F¬φ;
� φRψ ⇐⇒ ¬(¬φU¬ψ).

Since we mainly focus on P/T nets in this thesis, we also specify how the
semantics of CTL∗ changes when a P/T net is used. This is possible due
to the fact that the reachability graph of a P/T net is an LTS and because
CTL∗ is de�ned with respect to an LTS.

De�nition 3.2.3 (Semantic extension of CTL∗ for P/T nets).
States are replaced by markings and the general-purpose atomic propositions
are replaced by the atomic propositions speci�c to a P/T net.

1. m |= TRUE, m ̸|= FALSE;
2. m |= FIREABLE(t) ⇐⇒ t is enabled in m;
3. m |= DEADLOCK ⇐⇒ there is no enabled transition in m;
4. m |= k1p1 + · · ·+ knpn ≤ k ⇐⇒ k1m(p1) + · · ·+ knm(pn) ≤ k;

In some cases, we want to avoid negations in front of path quanti�ers or
temporal operators. For such cases, we need a CTL∗ formula to be in negation
normal form.

De�nition 3.2.4 (Negation normal form).
A CTL∗ formula is in negation normal form if every negation occurs directly
in front of an atomic propositions.

42

With CTL∗, system relevant properties can be build. For the following ex-
amples, we use several intuitive propositions such as liveness, requirement,
acknowledgment, read and some others that we do not describe further.

1. It is possible to quit a program at any time: GEF quit.
2. The variable x is live: AGEF x.
3. Every request is followed by an acknowledgment: AG (Reg =⇒

AFAck).
4. An error e leads to termination t: G (e =⇒ F t).
5. A variable can not be read while it is written: readUwrite
6. On all path, the system will eventually stabilize: AFG stable.

We introduce several subclasses of CTL∗. We will give a formal de�nition of
the subclasses in the next sections. The subclasses are computational tree
logic (CTL), linear time temporal logic (LTL), universal computational tree
logic∗ (ACTL∗) and existential computational tree logic∗ (ECTL∗). The re-
lations between these subclasses are depicted in Figure 3.2. The intersection
of all classes contains atomic propositions.

CTL∗

ECTL∗ ACTL∗

CTL LTL

Figure 3.2: Temporal logic classes as Venn diagram.

43

3.3 Linear time temporal logic

The �rst class we consider is linear time temporal logic (LTL) [103]. In LTL,
temporal operators are used to describe events along a single computation
path. LTL is CTL∗ without path quanti�ers, except one initial universal
path quanti�er. LTL formulas have the form Aφ, where φ is a path formula,
in which atomic propositions are the only allowed state formulas.

De�nition 3.3.1 (LTL).
An LTL path formula is either:

� If α is an atomic proposition, then α is an LTL formula;

� If φ1 and φ2 are LTL formulas, then ¬φ1, φ1∧φ2, φ1∨φ2, Xφ1, Fφ1,
Gφ1, φ1 Uφ2, and φ1 Rφ2 are LTL formulas.

A labeled transition system satis�es an LTL formula if all paths starting in
the initial state do.

If it is clear from the context hat Aφ is meant to be an LTL formula, then
we omit the universal path quanti�er A and simply write φ.
LTL is used to specify properties such as mutual exclusion algorithms, leader
election protocols, communication channels and many more [15]. There are
two main types of properties that can be expressed with LTL. The �rst type
are safety properties. Safety properties state that something bad will never
happen. This can be expressed as �globally not φ holds� (G¬φ). And the
second type are liveness properties. Liveness properties state that something
good keeps happening. This can be expressed as �globally it holds that even-
tually φ will happen� (GFφ) or as �globally it holds that if φ1 happens then
eventually φ2 will happen� (G(φ1 =⇒ Fφ2)).

De�nition 3.3.2 (Stutter-invariant).
An LTL formula φ is stutter-invariant if for all �nite paths w1, all markings
m and all in�nite paths w2 it holds: w1mw2 |= φ ⇐⇒ w1mmw2 |= φ.

Since LTL formulas describe events along a computation path, LTL formulas
can be stutter-invariant or stutter-sensitive. If duplicating a state in the
computation tree or removing a duplicated state does not change the outcome
of the formula, then the LTL formula is stutter-invariant. Otherwise, the LTL
formula is stutter-sensitive.

Lemma 3.3.1 (Stutter-invariant formulas [99]). If an LTL formula φ does
not contain the X-operator then φ is stutter-invariant.

44

Note, the absence of the X-operator is a su�cient but not a necessary condi-
tion for stutter-invariance. In the following we call the set of LTL formulas
without the X-operator LTL−X. There are properties that cannot be speci-
�ed with LTL such as: from any state it is always possible to get to the reset
state. This property is expressible in CTL∗: AGEF reset but not in LTL.

3.4 Computational tree logic

Another sublogic of CTL∗ is computational tree logic (CTL) [20] also called
the branching time logic. In CTL the temporal operators quantify over all
possible paths from a given state. CTL formulas consist of atomic propo-
sitions, Boolean connectors, and pairs of a path quanti�er combined with
a temporal operator. That is, each path quanti�er must be immediately
succeeded by a temporal operator.

De�nition 3.4.1 (CTL).
CTL is the subset of CTL∗ with the restriction that the syntax of path for-
mulas have the following form:

� If φ1 and φ2 are state formulas, then Xφ1, Fφ1, Gφ1, φ1 Uφ2, and
φ1 Rφ2 are path formulas.

A labeled transition system satis�es a CTL formula if its initial state does.

With this, there are ten basic CTL operators:

� AXφ and EXφ,

� AFφ and EFφ,

� AGφ and EGφ,

� A (φ1 Uφ2) and E (φ1 Uφ2),

� A (φ1 Rφ2) and E (φ1 Rφ2).

However, not all ten basic operators are needed. Some of these operators can
be expressed by others. One possible minimal set of Boolean connectors and
basic CTL operators is {TRUE,¬,∧,EX ,EU,AU} [24]. With this, we can
recreate all other operators via the application of tautologies:

EFφ = E (TRUEUφ);
AXφ = ¬EX (¬φ);
AFφ = ¬EG (¬φ);
AGφ = ¬EF (¬φ);
A (φ1 Uφ2) = ¬E (¬φ2 U (¬φ1 ∧ ¬φ2)) ∧ ¬EG (φ2);
A (φ1 Rφ2) = ¬E (¬φ1 U¬φ2);
E (φ1 Rφ2) = ¬A (¬φ1 U¬φ2).

45

CTL and LTL are both subclasses of CTL∗. There are many formulas that are
only expressible with one or the other. The aforementioned property, from
any state it is always possible to get to the reset state, is not expressible with
LTL, but it can be expressed with CTL: AGEF reset. On the other hand,
the property that a system will eventually stabilize is not expressible with
CTL but with LTL: AFG stable. Both temporal logics also have a common
intersection, where some formulas can be expressed both in LTL and CTL,
respectively. The property that a request can always occur is expressible with
the CTL and LTL formula AG request.

3.5 ACTL∗ and ECTL∗

Two other subclasses of CTL∗ are the universal (ACTL∗) and the exten-
sional (ECTL∗) fragments of CTL∗. These two temporal logics are restricted
to either the all path quanti�er (A) or the existential path quanti�er (E),
respectively.

De�nition 3.5.1 (ACTL∗).
ACTL∗ is the subset of CTL∗ formulas that are in negation normal form and
free of existential path quanti�ers.

De�nition 3.5.2 (ECTL∗).
ECTL∗ is the subset of CTL∗ formulas that are in negation normal form and
free of universal path quanti�ers.

ACTL∗ is a superset of LTL.

46

Chapter 4

Model checking

Model checking [19,21,39,104] answers the question if a given system meets
a given speci�cation. In chapter 1, we have motivated model checking as
�eld of research and have restricted our focus on Petri net model checking.
In this chapter, we introduce formally the model checking problem and the
algorithms we use. The goal of this thesis is to improve model checking
e�ciency. For our newly developed techniques, the algorithms from this
chapter serve as a reference for experimental validation. For model checking
a whole range of di�erent methods have been introduced in the literature
over the years. The methods can be classi�ed into symbolic and explicit
techniques.
Symbolic model checking [14], works with an implicit representation of the
set of reachable states, respectively the set of paths through the transition
system. Symbolic methods usually have the disadvantage that if they are
not able to build a suitable representation of the state space, then they are
not able to answer even the simplest queries. On the other hand, if they are
able to build a suitable representation, then they are able to answer several
queries at once.
Explicit model checking generates and evaluates states and paths one by one.
The �on-the-�y� advantage of this approach is that exploration of state space
can be aborted as soon as the query goal is reached. Of course this can also
be a disadvantage if the query goal is unreachable. Then, we have to explore
the whole state space.
At present, leading Petri net model checkers such as TAPAAL [34] and
LoLA [142] use explicit model checking algorithms. However, ITS-Tools [122]
is making up ground with its symbolic solution engine in recent years.
Several symbolic techniques are based on di�erent types of decision dia-
grams [12] such as binary decision diagrams [96], hierarchical set decision
diagrams [30], interval decision diagrams [124], or multi-core decision dia-

47

grams [133]. Other symbolic techniques are based on automata [9, 42], or
another one uses a Boolean satis�ability problem (SAT) approach [17].
There are also several explicit model checking approaches that di�er from the
method that we are going to introduce in this chapter. They are based for
example on dependency graphs [31,84], coverability graphs [45,63], sweep-line
methods [16], or random walk methods [88,108].
In this work, we do not use any of these explicit approaches due to the
following reasons. Even though dependency graphs have been around for
quite some time, their breakthrough for model checking is rather new [31].
TAPAAL ranked �rst in the CTL category of the MCC 2018 using depen-
dency graphs [66]. Coverability graphs have their strengths in the veri�cation
of unbounded P/T nets. The sweep-line method and the random walk meth-
ods preserve not all properties.
Next to state space model checking algorithms there are also structural meth-
ods that are based on the structure of the P/T net. For example, such meth-
ods are the state equation [140], or the siphon-trap property [94]. There are
many more algorithms and procedures for the veri�cation.
This chapter describes algorithms used for explicit model checking and the
chapter is organized as follows. Section 4.1 formalizes the model checking
problem and states complexity results. Section 4.2 gives a brief overview of
explicit model checking algorithms. Section 4.3 and Section 4.4 sketch, how
exactly the explicit CTL and LTL model checking algorithms work.

4.1 Complexity

Model checking is the automated veri�cation that systematically checks if
a given model of a system holds for a given formal property. The general
model checking procedure is illustrated in Chapter 1, Figure 1.1.

De�nition 4.1.1 (Model checking problem [113]).
Let S range over all labeled transition systems and φ ∈ L a formula where
L is one of the temporal logics CTL∗, LTL, or CTL. The model checking
problem MC for L is the decision problem associated with the language (set)

MC(L) := {(S, φ) |S |= φ}.

This means, for any labeled transition system TS = (S,A,→, s0) and any
φ ∈ L, MC(L) is the problem of deciding whether TS |= φ or not. To
measure the cost of algorithms deciding whether TS |= φ or not, the size of
the inputs are used. The size of |TS| is given by the size of its underlying
graph, that is, the sum |S|+ | → | of the number of nodes and the number of

48

edges. The size of |φ| is the number of symbols in φ. The following theorem
states the complexity of model checking. For basic notions of complexity
theory the reader is referred to [95].

Theorem 4.1.1 (Complexity of model checking). Let φ be a formula of the
respective temporal logic and |φ| the size of φ. Further, let TS be an LTS
and |TS| the size of TS. The model checking problem for

� CTL∗ is PSPACE-complete and can be solved in time O(2|φ||TS|) [22,113];
� LTL is PSPACE-complete and can be solved in time O(2|φ||TS|) [113,115];
� CTL is P-complete and can be solved in time O(|φ||TS|) [22,113].
The CTL∗ and LTL model-checking problem remains computationally hard
and is �probably� not e�ciently solvable. Even in simple cases, with only
one atomic proposition LTL model checking remains PSPACE-complete [37].
Although there is a big di�erence in complexity between LTL/CTL∗ and
CTL, in reality this situation is not so clear-cut as shown in [113] and, thus,
this should not be interpreted as: �CTL model checking is more e�cient than
LTL model checking� [15]. The reason for this is that in real world situations,
|φ| is a rather small and |TS| is usually quite large [113]. This is highlighted
in the MCC, too. In the CTL category of recent model checking contests,
even less problems have been solved than in the LTL category.
In this thesis, we focus on LTL and CTL model checking, because there
are more e�cient techniques available for completely path or state based
formulas.

4.2 Explicit model checking

Explicit model checking explores the reachable states of a system one by one,
starting with the initial state. Together with the corresponding transition
occurrences, these states form a labeled transition system. Exploring a state
means to recursively visit all its immediate successors. As search strategy
depth-�rst search (DFS), breadth �rst search (BFS) or some other search
heuristic such as the one proposed by Jensen et al. in [58] are used. BFS
has the disadvantage that there is no fast BFS-algorithm detecting SCCs.
Therefore, DFS dominates, in case SCCs of the transition system need to
be recognized. Already visited states are stored to avoid exploring a state
multiple times and to ensure termination. To this end, pre�x trees [35] or
similar data structures [60] can be used.
As a reference algorithm in this thesis, we use Tarjan's algorithm [119] that
combines a DFS with the detection of SCCs to build the reachability graph
RN = (M,E) of a P/T net N in time O(|M |+ |E|).

49

4.3 CTL model checking

This section addresses CTL model checking, which means a decision algo-
rithm that checks whether TS |= φ for a given labeled transition system
TS and a given CTL formula φ. In the sequel, we describe how explicit
CTL model checking works. Let N = (P, T, F,W,m) be a P/T net with the
corresponding reachability graph TS and φ a CTL formula.
We consider local model checking [1], that is, we want to evaluate φ just
for the initial marking m0. Other markings are only considered as far as
necessary for determining the value at m0. In global model checking [1],
one would be interested in the value of φ in all reachable markings. In
other words, global model checking procedures �rst compute all states of
a transition system that satisfy φ and then check whether these states are
included in the set of initial states. The advantage of local model checking
is that it directly answers the question whether the initial state satis�es φ.
Vergauwen and Lewi proposed in [139] an explicit local CTL model check-
ing algorithm. This algorithm has the advantage that it is goal-oriented,
which means that only a necessary part of the state space is investigated.
In contrast, the global labeling algorithm introduced in [21] needs to check
a priori all subformulas for all states. In this thesis, we use the algorithm
from Vergauwen and Lewi, called ALMC, as a reference, because we are in-
terested in explicit, local, on-the-�y model checking. Furthermore, it is the
CTL model checking algorithm implemented in LoLA, and serves as a base
for our extensions.

Theorem 4.3.1 (ALMC algorithm [139]). Let N = (P, T, F,W,m) be a
P/T net with reachability graph TS and φ a CTL formula. ALMC(TS, φ) is
correct and runs in time O(|φ||TS|).

We brie�y sketch this algorithm. The following description is based on our
conference paper [79]. The main procedure can be seen in Algorithm 1.
Remember that {TRUE,¬,∧,EX ,EU,AU} is a minimal set of operators to
verify CTL formulas. The remaining CTL operators can be traced back to
the two until operators using tautologies (see Section 3.4).
In CTL all (sub-)formulas concern states. Assume that, attached to every
marking, there is a vector that has an entry for every subformula ϕ of the
given CTL query φ. The value of a single entry can be true, false, or un-
known which are represented by T, F, ?. This vector is used to keep track of
the gathered information to avoid unnecessary computations. The states m
together with the values of each subformula form L(m,ϕ) which represents
the truth value of ϕ in m. To access the value of a subformula in a marking
m, one has to inspect the corresponding value. If it is unknown, a recursive

50

Algorithm 1: CTL model checking: main procedure
Input : P/T net N = (P, T, F,W,m) with reachability graph TS,

CTL formula φ.
Output: TRUE i� (TS,m) |= φ, FALSE i� (TS,m) ̸|= φ.

1 CTL(m,φ)
2 if L(m,φ) ̸=? then return;
3 switch φ do
4 case φ = atomic proposition do compute L(m,φ);
5 case φ = ¬ψ do
6 CTL(m,ψ);
7 if L(m,ψ) then L(m,φ) = F ;
8 else L(m,φ) = T ;

9 case φ = ψ ∧ χ do
10 CTL(m,ψ);
11 if L(m,ψ) then CTL(m,χ); L(m,φ) = L(m,χ);
12 else L(m,φ) = F ;

13 case φ = EXψ do

14 forall m′ : m
t−→ m′ do

15 CTL(m′, ψ);
16 if L(m′, ψ) = T then L(m,φ) = T ; return;

17 L(m,φ) = F ;

18 case φ = AXψ do

19 forall m′ : m
t−→ m′ do

20 CTL(m′, ψ);
21 if L(m′, ψ) = F then L(m,φ) = F ; return;

22 L(m,φ) = T ;

23 case φ = A (ψUχ) do CheckAU(m,ψ, χ);
24 case φ = E (ψUχ) do CheckEU(m,ψ, χ);

procedure is launched to evaluate ϕ in m. If ϕ is an atomic proposition or
a Boolean combination of subformulas, evaluation is trivial. For evaluating
a formula of shape EXφ or AXφ, one needs to proceed to the immediate
successor states and evaluate φ in those states. If the successor marking has
not been visited yet, it is added to the set of visited markings and its vector
of values is initialized.

We continue with the procedures for CheckAU(m,ψ, χ), which is shown in

51

Algorithm 2.

Theorem 4.3.2 (Correctness of CheckAU(m,ψ, χ) [139]). The procedure
CheckAU(m,ψ, χ) is correct if and only if m |= A (ψUχ).

Algorithm 2: CheckAU(m,ψ, χ) procedure
variables: black: set of seen nodes

gray: set of active nodes
white: set of not seen nodes

1 black := gray := ∅; white := V ;
2 CheckAU(m,ψ, χ)
3 white := white\{m}; gray := gray ∪{m};
4 if L(m,A (ψUχ)) = F then exit CheckAU;
5 if L(m,A (ψUχ)) = T then return;
6 CTL(m,χ);
7 if L(m,χ) = T then L(m,A (ψUχ)) := T ; return;
8 L(m,A (ψUχ)) := F ;
9 CTL(m,ψ);

10 if L(m,ψ) = F then exit CheckAU;

11 forall m′ : m
t−→ m′ do

12 if m′ ∈ white then CheckAU(m′, ψ, χ);
13 else if m′ ∈ gray then exit CheckAU;

14 gray := gray\{m}; black := black∪{m};
15 L(m,A (ψUχ)) = T ;

The procedure is called if φ has the shape A (ψUχ). A depth-�rst search is
launched from m, aiming at the detection of a counterexample. The search
proceeds through markings that satisfy ψ, violate χ, and for which A (ψUχ)
is recorded as unknown. Whenever the space of states satisfying these as-
sumptions is left, there is a reaction that does not require continuation of
the search beyond that marking, as follows.
If χ is satis�ed, or A (ψUχ) is recorded as true in any marking m′, the
algorithm backtracks since there cannot be a counterexample path containing
m′. If χ and ψ are violated, or A (ψUχ) is recorded as false, the search is
exited since the search stack forms a counterexample for A (ψUχ) in m. If
a marking m′ is hit on the search stack, a counterexample is found, too (a
path where ψ and not χ hold forever). The depth-�rst search assigns a value
di�erent from unknown to all states visited during the search: For markings
on the search stack (i.e., participating in the counterexample), A (ψUχ) is

52

false, while for states that have been visited but already removed from the
search stack, A (ψUχ) is actually true.
We continue with the remaining procedure for CheckEU(m,ψ, χ) which is
depicted in Algorithm 3.

Theorem 4.3.3 (Correctness of CheckEU(m,ψ, χ) [139]). The procedure
CheckEU(m,ψ, χ) is correct if and only if m |= E (ψUχ).

Algorithm 3: CheckEU(m,ψ, χ) procedure
variables: Tarj: stack of nodes

white: set of not seen nodes
maxdfs ∈ N: maximal DFS number

1 Tarj := empty stack; white:=V ; maxdfs = 0;
2 CheckEU(m,ψ, χ)
3 if L(m,E (ψUχ)) = T then exit CheckEU;
4 if L(m,E (ψUχ)) = F then L(m,E (ψUχ)) := F ; return;
5 CTL(m,χ);
6 if L(m,χ) = T then L(m,E (ψUχ)) := T ; exit CheckEU;
7 CTL(m,ψ);
8 if L(m,ψ) = F then L(m,E (ψUχ)) := F ; return;
9 L(m,E (ψUχ)) := T ; m.dfs = maxdfs; maxdfs += 1;

10 white := white\{m}; push(Tarj,m); m.lowlink := m.dfs;

11 forall m′ : m
t−→ m′ do

12 if m′ ∈ white then
13 CheckEU(m′, ψ, χ);
14 m.lowlink := MIN(m.lowlink, m′.lowlink);

15 else if m′ ∈ Tarj then m.lowlink := MIN(m.lowlink, m′.dfs);

16 if m.lowlink = m.dfs then
17 repeat m′ := pop(Tarj); L(m,E (ψUχ)) = F ; until m = m′

CheckEU(m,ψ, χ) is called if φ has the shape E (ψUχ). A similar depth-
�rst search is launched, aiming at the detection of a witness path. Tar-
jan's algorithm [119] is integrated to detect SCCs during the search. It pro-
ceeds through markings that satisfy ψ, violate χ, and for which E (ψUχ) is
recorded as unknown. If a markingm′ is hit where χ is satis�ed, or E (ψUχ)
is true, a witness is found. In states where ψ and χ are violated, or E (ψUχ)
is known to be false, the algorithm backtracks since there cannot be a witness
path containing such a marking. Again, a value di�erent from unknown is

53

assigned to every marking visited during the search. Markings that are on
the search stack as well as markings that are not on the search stack but
appear in SCCs that have not yet been completely explored, get value true.
An SCC is not yet fully explored if it contains elements that are still on the
search stack. Then, however, a path to the search stack extended by the
remaining portion of the search stack forms a witness. For markings in SCCs
that have been completely explored, E (ψUχ) is false.
We can see that existential and universal until operators are not fully sym-
metric. This is due to the fact that a cycle of markings that satisfy ψ and
violate χ, form a counterexample for universal until but no witness for ex-
istential until. Any SCC with more than one member would contain such
a cycle. Consequently, universal until will never remove markings from the
search stack without closing a whole (singleton) SCC.

Theorem 4.3.4 (Runtime of ALMC [139]). Let N = (P, T, F,W,m) be a
P/T net with reachability graph TS and φ a CTL formula. The overall
runtime of the ALMC algorithm is O(|φ||TS|) where |φ| is the length of φ
(the number of subformulas), and |TS| is the number of markings reachable
from m0.

Since every search assigns values to all visited markings, the overall runtime
of the algorithm is O(|φ||RN |). The dominating factor for complexity is |RN |
due to the state explosion problem.
In the implementation of the algorithm, we use the concept of dynamic pro-
gramming to speed up the computations. This means, we explicitly store the
intermediate results and use the stored values in subsequent queries instead
of calling the subroutine again.

4.4 LTL model checking

This section is concerned with the LTL model checking problem. For a given
labeled transition system TS and LTL formula φ, the problem is to check
whether TS |= φ.
We consider on-the-�y automata-theoretic LTL model checking as originally
suggested by Vardi and Wolper [135]. Since this approach uses Büchi au-
tomata [13], we also brie�y introduce the standard de�nition of Büchi au-
tomata later in this section and outline how they are used in LTL model
checking.
The basic idea of automata-theoretic explicit LTL model checking is to ex-
plore the states of the product automaton of two ω-automata [107], which
accept or reject in�nite inputs. Since ω-automata handle in�nite paths, we

54

denote the accepted language of an ω-automata by Lω. A Büchi automaton
is a special form of an ω-automaton. The �rst automaton of the product
automaton represents the system as a reachability graph TS of a given P/T
net. The second automaton represents the negation of the property under
investigation φ. More precisely, LωTS is the set of all paths that can be exe-
cuted in TS and Lωφ is the set of all paths that satisfy φ. TS satis�es φ if
and only if every path in TS satis�es φ, i.e., LωTS ⊆ Lωφ. We can equivalently
decide whether the intersection of TS and negation of φ is empty:

LωTS ∩ Lω¬φ = ∅. (4.1)

This means, the property φ is veri�ed by TS if the product automaton
rejects every input. Algorithm 4 shows the procedure of on-the-�y automata-
theoretic LTL model checking.

Algorithm 4: LTL model checking algorithm(TS, φ)

Input : P/T net N = (P, T, F,W,m) with reachability graph TS,
LTL formula φ.

Output: TRUE i� (TS,m) |= φ, FALSE i� (TS,m) ̸|= φ.
variables: B¬φ: Büchi automaton of the negated formula φ

B∗: product (Büchi) automaton of TS and B¬φ
1 LTL(TS, φ)
2 Build B¬φ;
3 Build B∗ from TS and B¬φ;
4 if there exist SCC in B∗ that contains elements of every

acceptance set then
5 build counterexample from found SCC;
6 return FALSE;
7 else
8 return TRUE;

Checking whether the product automaton language is empty requires to check
if there is no cycle with elements of every acceptance set. This is done
by computing the SCCs using for example Tarjan's algorithm. Instead of
using Tarjan's algorithm for detecting SCCs, it is also possible to use the
double search algorithm attributed to Kosaraju and �rst published in [114]. A
di�erent approach would be to use nested depth-�rst search [56]. We use SCC
detecting algorithms, since they have on average the best performance [46].

Theorem 4.4.1 (On-the-�y automata-theoretic LTL MC [135]). Let N =
(P, T, F,W,m) be a P/T net with reachability graph TS and φ an LTL for-
mula. The LTL model checking algorithm(TS, φ) is correct and the overall

55

runtime is O(2|φ||TS|) where |φ| is the length of φ (the number of subformu-
las), and |TS| is the number of markings reachable from m0.

The overall running time of the algorithm is O(2|φ||TS|). Just like CTL
model checking, LTL model checking is dominated in its complexity by the
factor |TS| and therefore su�ers from the state explosion problem.
We continue with the introduction of Büchi automaton [13]. As reference for
the following de�nitions see [15, 104].

De�nition 4.4.1 (Büchi automaton).
A Büchi automaton B = (Σ, Q, δ,Q0, QF) consists of

� Σ an alphabet;

� Q a �nite set of states;

� δ : Q× Σ → 2Q a transition function;

� Q0 ⊂ Q a set of initial states;

� QF = {F1, . . . , Fn} with Fi ⊆ Q consisting of �nitely many acceptance
sets.

If the Büchi automaton has only a single initial state q0, we sometimes write
q0 instead of Q0 for better readability. A run through a Büchi automaton is
de�ned as follows.

De�nition 4.4.2 (Run).
A run for σ = Q1Q2 · · · ∈ Σω denotes an in�nite sequence q0q1q2 . . . of states

in B such that q0 ∈ Q0 and qi
Ai−→ qi+1 for all i ≥ 0.

We continue with the acceptance criterion for Büchi automata.

De�nition 4.4.3 (Acceptance criterion for Büchi automata).
A run q0q1q2 . . . is accepting if for every F ∈ QF there exist in�nitely many
j ∈ N with qj ∈ F .

As seen in Equation 4.1 all states of the automaton for TS are accepting.
The following construction transforms a �nite LTS to a Büchi automaton.

De�nition 4.4.4 (LTS to Büchi automaton).
Let TS = (S,A,→, s0) be a labeled transition system, AP a set of atomic
propositions and L : S ×AP → {tt,ff} a labeling function. The correspond-
ing Büchi automaton B = (Σ, Q, δ,Q0, QF) consists of

� Σ = 2AP an alphabet symbol corresponds to AP ;

56

� Q = S;

� (s, a, s′) ∈ δ =

{︄
(s, s′) ∈→ and p ∈ a i� L(s′, p) = tt

∅, otherwise;

� Q0 = {s0};
� QF = S.

Figure 4.1 shows two example Büchi automata with their initial states and
acceptance sets. The arc labels tt,ff ,− represent true, false, everything.

a b c
tt ff

ff

ff

(a) The Büchi automaton represents the
reachability graph TS of a P/T net N with:
Q0 = {a} and QF = {{a, b, c}}.

0 1

−

−

ff

(b) The Büchi automaton repre-
sents the formula φ = FG (¬a)
with respect to TS with:
Q0 = {0} and QF = {{1}}.

Figure 4.1: Büchi automata

Proposition 4.4.2 (Transform LTL to Büchi automaton [134]). For every
LTL formula φ, there exists a Büchi automaton that accepts exactly those
paths which violate φ.

Vardi and Wolper showed in [134] that every LTL formula φ, with size |φ|
which is the number of symbols in φ, can be translated to a Büchi automaton
Bφ, with size |Bφ| ≤ 2|φ|, which accepts exactly those in�nite runs that satisfy
φ.

De�nition 4.4.5 (Product system).
Let B1 = (Σ, Q1, δ1, Q1

0, Q
1
F) and B

2 = (Σ, Q2, δ2, Q2
0, Q

2
F) be two Büchi au-

tomata. Assume that the acceptance set of B2 is F 2 and that B1 represents
the TS which means the acceptance set of B1 is Q1

F . The product system of
B1 and B2 is a Büchi automaton B∗ = (Σ, Q∗, δ∗, Q∗

0, Q
∗
F) and consists of

� Σ = Σ;

� Q∗ = Q1 ×Q2;

� ((q1, q2), a, (q
′
1, q

′
2)) ∈ δ∗ if and only if (q1, a, q

′
1) ∈ δ1 and (q2, a, q

′
2) ∈ δ1;

57

� Q0 = Q1
0 ×Q2

0;

� QF = Q1
F × F 2.

Lemma 4.4.3 (Product system accepts ¬φ). The product automaton repre-
sents a combination of a marking of the reachability graph TS and the state
of the Büchi automaton. It accepts exactly those in�nite paths of TS which
violate property φ.

This means, to verify φ, we check whether there exists a path in the product
automaton that can be executed in the reachability graph. If we have found
such a path, then φ does not hold in the system. Otherwise, the property φ
is satis�ed in the system.

Lemma 4.4.4 (Language of the product system [134]). The language of the
product automaton B∗ is not empty if and only if there is a nontrivial SCC
C in B∗ reachable from the initial state and if C contains elements of every
acceptance set.

Proposition 4.4.5 (Emptiness check [134]). There exists an in�nite path,
realizable in the reachability graph (M,E) of a given P/T net N and accepted
by Büchi automaton B if and only if the product automaton (M,E) ∩B has
an accepting run.

a, 0 b, 0 c, 0

a, 1 b, 1 c, 1

tt

tt

ff

ff

ff

ff

ff
ff

ff

ff

ff

Figure 4.2: Product automaton of Figure 4.1a and 4.1b with
Q0 = {(a, 0)} and QF = {Q, {(a, 1), (b, 1), (c, 1)}}.

Figure 4.2 shows the product automaton of TS and φ from Figure 4.1a
and 4.1b, respectively. We start the exploration of the product automaton in
the initial state (a, 0). We continue with the exploration using DFS. We stop

58

the exploration in the moment, we encounter the nontrivial SCC containing
the nodes (b, 1) and (c, 1). At this point, we have found the counterexample
a(bc)∗ and know that the formula does not hold in the system.
Since we use on-the-�y veri�cation, it is much easier to reject a property than
to prove one. If an LTL formula does not hold, the search can be interrupted
as soon as an accepting SCC is found. If an LTL formula holds, then the
whole product automaton needs to be explored.
This procedure works with any transition system TS and, thus, reduction
techniques such as partial order reduction which we are going to introduce
in Chapter 10 can be used to reduce TS. This means, model checking with
Büchi automata can be combined with other reduction techniques.
Several di�erent other automata types can be used instead of Büchi au-
tomata. For example, Streett [102] and Rabin [2,69] automata are also suit-
able candidates to represent an LTL formula. We use Büchi automata, since
its acceptance criterion is a special case of the parity criterion [90], which in
turn is a special case of both the Rabin and the Streett criterion [6] and we
do not need the more general acceptance behavior.

59

Part II

Reduction techniques

60

Portfolio approach means that several methods run in parallel and the fastest
successful method determines the runtime. To bene�t from the wide range
of di�erent veri�cation methods introduced in Chapter 4, we believe it is
meaningful to use a portfolio approach. Using portfolio approaches opens
new opportunities because we gain room for incomplete methods, which, in
some cases, return a de�nite result more e�ciently but sometimes return
an inde�nite result or do not terminate at all. The chapters in this part
introduce two such methods.
This part is organized as follows. In the next Chapter 5, we propose a
veri�cation technique that is based on the reduction of tokens in the initial
marking of a P/T net. We continue in Chapter 6 with the introduction of a
linear algebraic approach to solve certain formulas.

61

Chapter 5

Veri�cation with

under-approximation

This chapter introduces an incomplete method that complements our port-
folio. This method handles two of our research goals, namely it is a model
simpli�cation and it represents an alternative reduction technique. We have
published this method with its results in [80] (and submitted [81]). The
following chapter is based on these publications.
Model checking is subject to the state explosion problem. If the system is a
P/T net, one possible cause for this problem is the size of the model. Another
reason is the cardinality of the initial marking, i.e., the number of tokens on
the places of the P/T net in the initial state. This chapter focuses on P/T
nets that have a large number of initial tokens. In many models, a scaling
parameter describes how many tokens are in the initial marking. We call
such P/T nets token-scaling models. Token-scaling models are widespread
in several �elds. For example, in biochemistry the tokens represent chemical
or biological entities, such as molecules, and their initial number is subject
to a model parameter. In scheduling problems, tokens stand for available
resources which are variable, to. Another example is an election protocol
where tokens represent voters.
To tackle the state explosion problem on token-scaling models, we introduce
a method for under-approximate model checking. The idea is to simply
reduce the number of tokens in the initial marking, on places which have
more than one token on them. This will essentially reduced the state space.
The question is how this a�ects the result of model checking. If we �nd a
witness path (counterexample) for the property under investigation in the
reduced state space, then this property also holds in the original state space.
Otherwise, the result is inde�nite.
Section 5.1 starts with a motivational example. In Section 5.2, we introduce

62

the theory behind this method. Section 5.3 introduces heuristics to reduce
the initial marking, followed by some implementation remarks in Section 5.4.
Section 5.5 carries out experimental validation which is discussed and con-
cluded in Section 5.6. We also give directions for future research.

5.1 Motivational example

An example token-scaling model of a biochemical process is Angiogenesis [93].
The model describes the formation of new vessels from existing ones. It
consists of 39 places, 64 transitions, and 185 arcs. If the scaling parameter
is set to 25, meaning that every initially marked place has 25 tokens on it,
the state space contains more than 4.3 · 1019 reachable markings.
The RobotManipulation model [65] as seen in Figure 5.1 is an example for
a scheduling problem. The model has several instances due to a scaling
parameter n = 1 . . 10000, which de�nes the number of tokens on several
initially marked places. In fact, the three marked places p_i1, access and
r_stopped get the following number of tokens depending on n: p_i1 = 2·n+1
and access = r_stopped = 2 · n.

initialized

p_i1
3

p_start

2 access

p_relSC p_rel

p_sop

p_moved

p_m

p_move

p_sc

p_intoSC

p_rdy

r_stops

r_end_move

r_moving

r_begin_move

r_active

r_starts

2r_stopped

off

moved

move

initialize

p_started

p_i2

Figure 5.1: RobotManipulation model [65] with n = 1.

The model consists of 15 places, 11 transitions, and 34 arcs. Despite its
simple structure, the size of the state space for n = 10000 is rather large with

63

2.8 · 1033 reachable markings. This happens by the large number of tokens in
the model which end up on places in a huge number of combinations. This
demonstrates that explicit veri�cation of token-scaling models can become
extremely complex.
However, some properties are not really dependent on the actual number of
tokens. An example for this is checking whether there is a reachable marking
where the number of tokens on a certain place is more or less than the number
of tokens on some another place or a given constant.
So, instead of using the actual number of initial tokens, the idea is to reduce
their number on places with more than one token. Afterwards, the usual
model checking techniques to verify the property can be applied. If a witness
path or a counterexample for the property under investigation is found in
the reduced state space, then the property also holds in the original setting.
If not, we simply do not know.
For the RobotManipulation model with n = 5000, consider speci�cation φ
which compares the token cardinality of some places:

φ = EF (p_rel > p_m ∧ p_m > p_rdy).

In other words, φ asks if there is an execution where �nally p_rel has more
tokens then p_m and where p_m has more tokens than p_rdy. With n =
5000 the places access and r_stopped would have 10000 tokens each, and p_i1
another 10001 tokens. With other optimizations switched o�, our veri�cation
tool LoLA, could not verify this property, even after evaluating over 1 billion
states. Using the proposed idea from this chapter, we reduced the number
of tokens to 5 on access, r_stopped and p_i1. With this, LoLA found a
witness path of only 112 transitions, evaluating only 159 markings in total.
Hence, the under-approximation approach resulted in a signi�cant speed up.
However, due to its incomplete nature the new method can only be a valuable
addition to a portfolio.

5.2 The theory of under-approximation

The under-approximation we are proposing is based on a so-called simulation
relation. We recall the classical notion of simulation [89] in order to compare
the behavior of two labeled transition systems, which, in our case, are given
by two P/T nets. Intuitively, an LTS P is simulated by another LTS Q
if P has less or equal behavior then Q. Technically, this is expressed by
a simulation relation Σ between (the states of) P and (the states of) Q
satisfying a certain semantic requirement. More precisely, every transition of
P has to be somehow mimicked by an equally labeled transition of Q.

64

De�nition 5.2.1 (Simulation [89]).
Let P = (S,A,→, s0) and Q = (S ′, A′,→′, s′0) be two labeled transition sys-
tems. A relation Σ ⊆ S×S ′ is called simulation relation where P is simulated
by Q if and only if

� (s0, s
′
0) ∈ Σ;

� for all (s1, s
′
1) ∈ Σ, a ∈ A, and s2 ∈ S with s1

a−→ s2 in P , exists a state
s′2, such that s′1

a−→ s′2 in Q and (s2, s
′
2) ∈ Σ.

If there is a simulation relation Σ between P and Q, then we also say
that Q simulates P , Q is an over-approximation of P , or P is an under-
approximation of Q.

p4

p3

p0

p1

p2 q2

q1

q0

q3

P Q

Figure 5.2: LTS Q simulates LTS P

As an example for simulation consider Figure 5.2. The �gure shows two
labeled transition systems P and Q. Q simulates P using the simulation
relation Σ = {(p0, q0), (p1, q1), (p3, q1), (p2, q2), (p4, q3)}.

Lemma 5.2.1. If P is simulated by Q, then the computation tree of P can
be viewed as a subtree of the computation tree of Q.

From this, we conclude the following.

Lemma 5.2.2. Properties that hold for all branches of the computation tree
of Q, hold for all branches of the computation tree of P as well.

It follows that the simulation relation preserves certain temporal logic frag-
ments. For the following statements, we assume that formulas are in negation
normal form (see De�nition 3.2.4).

Proposition 5.2.3 (Simulation preserves ACTL∗ [51]). Let P and Q be two
LTS with initial states s0 and s

′
0, respectively. If P simulates Q, then

65

� (P, s0) |= φ implies (Q, s′0) |= φ, for any ACTL∗ formula φ;

� (Q, s′0) |= φ implies (P, s0) |= φ, for any ECTL∗ formula φ.

Since negations are absent, we cannot turn a universal path quanti�er into
an existential path quanti�er or vice versa [25]. But, the negation of every
ACTL∗ formula is an ECTL∗ formula and vice versa. The reason for this is
that for all operators we have opportunities to drive negations from the top
of the formula to the bottoms.
Simulation is used to show that some transformation of a labeled transi-
tion system preserves ACTL∗. Using this, we can �nd a counterexample for
ACTL∗ using an equivalent ECTL∗ formula.

Proposition 5.2.4 (Counterexample for ACTL∗). For every ACTL∗ formula
φ there exists an ECTL∗ formula ψ such that ¬φ and ψ are equivalent CTL∗

formulas.

We use this to propose our new idea for the veri�cation of token scaling
models. Places that contain more than a given λ ∈ N of tokens in the initial
marking are simply cut to λ tokens.

De�nition 5.2.2 (Reduced net Nr).
Let N = (P, T, F,W,m0) be a P/T net, n ≤ |P | the number of initially
marked places and I = {p1, . . . , pn} ⊆ P the set of initially marked places.
For a given set of thresholds {λ1, . . . , λn}, a P/T net N r = (P, T, F,W,mr

0)
is called the reduced net, where the initial marking m0 is substituted by the
reduced initial marking mr

0 with

mr
0(pi) = max{1,min{m0(pi), λi}}

for all pi ∈ I and i ∈ {1, . . . , n}.

Now we have all the ingredients together to propose an under-approximation
for token-scaling models.

Theorem 5.2.5 (N simulates N r). If N is a P/T net, with LTS P =
(S,A,→, s0) and N r is the corresponding reduced net, with LTS Q =
(Sr, Ar,→r, sr0), then P simulates Q and (Q, sr0) |= φ implies (P, s0) |= φ,
for all ECTL∗ formulas φ.

Proof. The existence of the simulation together with Proposition 5.2.3 pre-
serves ECTL∗. Since the reduced system Q is an under-approximation, it
holds that the original LTS P is relative to the reduced system an over-
approximation. For over-approximations, it is well known (Proposition 5.2.3)
that the simulation preserves ACTL∗. And with the inversion, which is the
under-approximation, the simulation preserves ECTL∗.

66

Corollary 5.2.6. The approach is able to verify temporal properties in labeled
transition systems that have a witness path or a counterexample.

The reason for this is that for every marking reachable in the reduced net
there exists a reachable marking in the original net.

Proposition 5.2.7. If an ECTL∗ formula φ is true in a reduced net N r,
then φ is also true in the original net N . If an ACTL∗ formula φ is false in
the reduced net N r, then φ is also false in N .

Proof. Follows directly from Corollary 5.2.6.

Corollary 5.2.8. Since LTL is a subset of ACTL∗, the proposition for
ACTL∗ is also true for very LTL formula.

For model checking, we can use this approach with standard model checking
algorithms (see Chapter 4) on the reachability graph and can combine it with
other reduction techniques such as partial order reduction (see Chapter 9).
The method is su�cient for ECTL∗ and reachability, and it is necessary for
ACTL∗ and LTL.

5.3 Heuristics

Finding the optimal threshold for the reduced initial marking of a P/T net
is hard, as two objectives oppose each other. On the one hand, a small
state space is desired and therefore initially marked places should have as
few tokens as possible. On the other hand, less tokens also mean a lesser
probability to still verify the property under investigation. It, thus, is an
optimization problem to exactly �nd the fewest number of tokens, which are
needed to produce the witness path or counterexample, respectively. Since
the solution to this problem is as hard as the original issue, we propose three
heuristics to get a good threshold.
In the sequel, let N = (P, T, F,W,m0) be a P/T net, n ≤ |P | the number
of initially marked places and I = {p1, . . . , pn} ⊆ P the set of initially
marked places. Further, let N r = (P, T, F,W,mr

0) be the reduced net and
Λ = {λ1, . . . , λn} the set of thresholds.
The idea behind the �rst heuristic is to assigns each initially marked place a
constant.

De�nition 5.3.1 (Simple threshold heuristic).
Let x ∈ N be a constant. If all λi = x with λi ∈ Λ and i ∈ {1, . . . , n}, then
the initial marking is computed by the simple threshold heuristic.

67

If a constant is used, then it is also obvious to use a percentage.

De�nition 5.3.2 (Percentage heuristic).
Let x ∈ N be a multiplier. If all λi = m0(pi)/100 · x with λi ∈ Λ and
i ∈ {1, . . . , n}, then the initial marking is computed by the percent heuristic.

The hypothesis for the third heuristic is that at least as many tokens are
needed to satisfy the greatest �constant� of the P/T net, meaning the largest
arc weight, and/or the formula, meaning the largest value of k1p1 + · · · +
knpn ≤ k.

De�nition 5.3.3 (Largest constant heuristic).
Let φ be a formula and x ∈ N a multiplier. Further, let W ∗ be the maximal
arc weight withW ∗ = max{W (f)|f ∈ F} of N . In addition, if φ has the form
k1p1 + · · ·+ knpn ≤ k, then K∗ is the maximal formula constant with K∗ =
max{ki ∈ φ|i ∈ {1, . . . , n}}. Otherwise, K∗ = 0. If all λi = max{W ∗, K∗}·x
with λi ∈ Λ and i ∈ {1, . . . , n}, then the initial marking is computed by the
largest constant heuristic.

The multiplier x is used as an additional bu�er. The size of x is arbitrary
and a suitable value must be determined by experiments.

p1 t1 p2

t2

p3

t3

4

4

(a) Original P/T net.

p1 t1 p2

t2

p3

t3

4

4

(b) Simple threshold, x = 2.

p1 t1 p2

t2

p3

t3

4

4

(c) Largest constant, W ∗ = 4, x = 1.

p1 t1 p2

t2

p3

t3

4

4

(d) Proportional, x = 50 (%).

Figure 5.3: Heuristics for reduced initial markings.

Figure 5.3 shows the di�erent approaches to compute the reduced initial
marking. The original P/T net can be seen in Figure 5.3a. Places p1 and

68

p2 have two respectively six tokens on them. Figure 5.3b shows the simple
threshold approach with x = 2. The result is that the number of tokens on p2
is reduced to two tokens. Place p1 remains unchanged. The white tokens are
the tokens that are removed from the original initial marking. In Figure 5.3c
the largest constant heuristic is used. Since we do not use a formula in this
example, the largest constant is based on the maximum arc weight, which
is in this case four. Four is also the threshold, because the multiplier is one
(x = 1). Only the number of tokens on p2 is reduced to four. The percentage
heuristic, with x = 50 (%), is shown in Figure 5.3d. The token count is
halved on all places.

5.4 Implementation

In the implementation of the under-approximation, we need to re�ect the
reduced tokens also in the atomic propositions of the property under investi-
gation. This requires to adjust the atomic propositions, too. We di�erentiate
between two approaches based on the type of atomic proposition we want to
verify.

� Monotonous method. If a certain atomic proposition is monotonic, mean-
ing it compares the number of tokens to a marking in a way that we always
state that we require the number of tokens to be greater or equal to a cer-
tain threshold, then we could use the original atomic proposition. Thus, the
monotonous method is only applicable for positive comparisons, meaning
that the places appear only with positive factors in the atomic proposition
(∀i : ki · m(pi) it holds that ki ≥ 1). This approach is basically valuable
for FIREABLE(t) predicates which talk about the �reability of a transition t.
Fireability is inherently the comparison of token counts to thresholds which
are the weight of the arcs.

� Shift method. For all token count comparisons, we can use the shift ap-
proach. Here, we re�ect the e�ect of the removed tokens by a modi�ca-
tion of the atomic proposition. Take for example the atomic proposition
2 ·p1+p2 ≥ 7 which involves place p1 with multiplier 2. Then, three removed
tokens mean that the threshold of the remaining tokens need to exceed only
one, 2 ·p1+p2 ≥ 1, in order for the original number of tokens to exceed seven.

69

5.5 Experimental validation

As a proof-of-concept, we implemented the under-approximation method in
our explicit model checker LoLA [142]. For evaluating the method and its
di�erent heuristics, we used the benchmark provided by the MCC 2019 [68].
The benchmark consists of 94 models. Due to the scaling parameter this
results in 1018 model instances. We only consider P/T nets that are not safe
and where the initial marking has removable tokens. We also avoided one
instance with more than 232 tokens. Even though, this instance is well suited
for the under-approximation method due to the enormous token count, we
had to ignore it to avoid an over�ow in LoLA.
As speci�cations, we used the reachability formulas provided in the MCC
2019, too. Although the introduced method works for ACTL∗, ECTL∗,
and LTL formulas, we only present the experimental results for reachabil-
ity queries, which have the form AGφ or EFφ and are part of ACTL∗ or
ECTL∗, respectively. The results for LTL and CTL are similar and so we
simply skip them. For each instance, we have 32 reachability formulas: 16 of
them are concerned with the cardinality of tokens on places, and the other
16 are concerned with the �reability of transitions. All in all, we consider 21
models resulting in 214 instances with 32 formulas for each instance. This
results in a total of 6848 veri�cation runs.
We executed the experiments on our machine Ebro, which has 32 physical
cores running at 2.7 GHz and 1 TB of RAM. The operation system running
on Ebro is CentOS Linux 7 (Core).
We run the new method with partial order reduction (see Chapter 9) in par-
allel against two other methods from the portfolio. Without partial order
reduction the state spaces are simply too large. The two other methods are
the regular state space search and a structural method, named counterex-
ample guided abstraction re�nement (CEGAR) [140]. Both methods are
available for many years, highly optimized, and already pushed to the limits.
Furthermore, for all veri�cation runs formula simpli�cation (see Section 8.1)
was used.
From the 6848 formulas the whole portfolio failed on 122 formulas. 5152
formulas were reachable, meaning they had a de�nite result with a witness
path or counterexample. Remember that these are formulas of the form
EFφ = TRUE or AGφ = FALSE. The remaining 1574 formulas were either
unreachable or trivial. If a formula is unreachable, then our new approach
cannot yield a result. Trivial means that we �nd out that the formula is
reachable or unreachable in the preprocessing using formula simpli�cation.
As seen in Table 5.1, our new method, with the simple threshold set to 5
tokens, and run in parallel to the other two methods, was able to solve 436

70

Heuristic All (5152) Failed (122)
% # %

Simple threshold, x = 5 436 8.5 0 0
Largest constant, x = 2 267 5.2 0 0
Percentage, x = 33 (%) 659 12.8 8 6.5

Table 5.1: Performance of heuristics.

(8.5 %) of the 5152 reachable queries, but it was not able to solve any of
the 122 unsolved ones. For a complementary method in the portfolio 8.5 %
is a solid result. Especially under the consideration that both competing
methods are available for many years, highly optimized, and already pushed
to the limits.
The picture stays more or less the same if we change the threshold to anything
between 1 and 10. The largest constant heuristic does not perform very well
with multiplier 1 or 2, although increasing the multiplier is improving the
performance a little bit. For higher token counts the percentage heuristic is
better suited. The percentage heuristic performs really well with x set to
anything between 10 and 33. With x = 33, the new method could solve 659
(12.8 %) queries. Furthermore, it was even able to solve 8 (6.5 %) additional
queries from the 122 unsolved ones. All in all, the experiments show that the
under-approximation method is a valuable addition to a portfolio.

5.6 Discussion

Token-scaling P/T nets tend to have large state spaces, since they have a
large number of tokens on the initially marked places. Their applications are
widespread, as for instance in biochemical reaction chains [55,93].
We introduced an under-approximation for token-scaling P/T nets, as a
lightweight addition to existing portfolios. It can be used as a su�cient,
respectively necessary quick check, depending on the veri�ed property. More
precisely, the method can be applied to temporal logic formulas that are
reachable, that is, whenever a witness path or a counterexample can be found,
which happens to be reachability, ACTL∗, ECTL∗, and LTL formulas.
The method is compatible with other reduction techniques used in explicit
state space veri�cation, such as partial order reduction [49, 97, 127], or sym-
metry [110]. Furthermore, the under-approximation method complements
overapproximation approaches like the ones based on the state equation [140].
This is convenient since under-approximation gives a de�nite result in exactly
the opposite cases then over-approximation.

71

The experiments show that running the under-approximation method in a
portfolio with other model checking algorithms speeds up the veri�cation
process up to 12.8 %, which, in reverse, gives more time to other aspects
of veri�cation. But not only the runtime is reduced, but also the memory
consumption. In addition to the smaller state space, fewer tokens are used
in the markings, which means that storing a marking requires less memory.
All in all, we dealt with three of our research goals: we simpli�ed the model,
presented an alternative reduction technique, and improved model checking
e�ciency.
The biggest open issue is to �nd the number of required tokens on the initially
marked places, which results in the smallest possible state space that is still
able to verify the property under investigation. To tackle this problem, we
introduced some heuristics that were able to increase the performance. To
�nd better heuristics using structural information of the P/T net and also
information regarding the formula is left for future work. Another question
is, whether it is possible to also prove unreachable queries with a reduced
number of tokens in the initial marking. A solution to this problem would
make the method complete.

72

Chapter 6

Linear algebra for

�nite-single-path formulas

In the previous chapter, we under-approximated the veri�cation of token scal-
ing models. This chapter introduces an over-approximation as another alter-
native reduction technique to extend the portfolio. We have published this
method in [78] and extended it in [82]. The following chapter is based on
those publications.
For our over-approximation approach, we combine the concept of counterex-
ample guided abstraction re�nement (CEGAR) [23] with the Petri net state
equation (see De�nition 2.3.13). The latter an over-approximation of its own,
uses linear algebra to �nd a superset of reachable states. As this contributes
to state space explosion, Wimmel and Wolf proposed to additionally apply
the CEGAR approach in 2012 [140]. Hajdu et al. examined the correct-
ness and completeness of this method in 2014 [54] and extended the method
in 2015 [53] to a broader class of P/T nets. The concept behind CEGAR
combined with the state equation is to reduce the state exploration in the
reachability graph to integer linear programming (ILP) [32]. Because ILP
is NP-complete it only requires polynomial space. The procedure of the
CEGAR idea is that spurious solutions of the state equation are iteratively
analyzed and then constraints are added to the ILP problem to exclude spu-
rious solutions but not real ones.
Because ILP-problems can become infeasible, the CEGAR approach is espe-
cially good for verifying that no state is reachable where a particular property
holds. This makes it a valuable complement to explicit model checking algo-
rithms which are in general good for verifying reachable states that satisfy a
certain property due to the on-the-�y e�ect. Wimmel and Wolf proved the
success of this approach with their proof-of-concept tool named Sara [140].
Up until now, this approach was only able to solve reachability queries of the

73

form EFφ and AGφ. In this chapter, we propose techniques to extend this
approach to several other temporal logic formulas. To the best of our knowl-
edge, this is the �rst time that this approach is used to verify temporal logic
formulas other than reachability. To this end, we propose two techniques to
solve queries of the form E (φUψ) and (EX)kφ with the CEGAR approach
for P/T nets [78]. Using well known tautologies, A (φRψ) and (AX)kφ are
solvable with these techniques as well.
Using our explicit model checker LoLA, we found out in [79] that only 62.3 %
of the E (φUψ)/A (φRψ) formulas from the MCC 2018 [66] were solved.
The reason for this is that the on-the-�y e�ect has no or only a very limited
e�ect for some properties, e.g., if the property φ and ¬ψ hold in the entire
state space, then the search for E (φUψ) needs to explore the entire state
space. For this particular property, the CEGAR approach will terminate very
quickly with a negative result since the ILP-problem is infeasible. That is the
reason that the CEGAR approach is generally good for verifying unreachable
properties.
We use specialized routines for E (φUψ) and (EX)kφ as building bricks
to solve a larger class of CTL formulas, namely the �nite-single-path CTL
formulas [82]. This class is characterized by two conditions: First, these
formulas end in a �nal marking, meaning that no cycles are involved, hence,
they are �nite, and secondly, they have a linear witness. Using tautologies,
we can again check both the existential and the universal �nite-single-path
formulas. We are not able to solve formulas of the form EGφ with our
approach, since the veri�cation of EGφ involves cycles. However, we propose
several su�cient and necessary quick checks to verify such formulas under
certain conditions.
In addition, to support di�erent veri�cation tasks, we present in this chapter a
set of necessary or su�cient �quick checks� for a whole range of CTL formulas.
The quick checks are based on the introduced CEGAR approaches. Thus,
the quick checks can be run in parallel to the actual veri�cation algorithm.
The biggest drawdown is that we can not provide a proof-of-concept. The
reason for this is that there is not enough time available for the considerable
e�ort that an implementation would cost. To implement our extensions, we
�rst have to fully integrate Sara into LoLA which means that we have to
convert Sara's data structures to LoLA's and then we can integrate our ex-
tensions. We want to avoid extending Sara directly since we want to combine
other reduction techniques from LoLA with this approach, e.g., partial order
reduction (see Chapter 9).
The rest of this chapter is organized as follows. For self-containedness, we
give a brief overview of the CEGAR approach for the Petri net state equation
in Section 6.1. Section 6.2 introduces additional basic concepts that we

74

use in the rest of this chapter. We continue in Section 6.3 and Section 6.4
with the introduction of the specialized routines for E (φUψ) and (EX)kφ,
respectively. Section 6.5 proposes a method to solve �nite-single-path CTL
formulas using CEGAR. Section 6.6 is concerned with quick checks for EGφ.
Section 6.7 introduces necessary and su�cient quick checks for a whole range
of CTL formulas. We conclude this chapter in Section 6.8 with a discussion.

6.1 CEGAR for reachability analysis

This section brie�y summarizes the CEGAR approach for the Petri net state
equation given by Wimmel and Wolf [140], as well as the re�ned one by
Hajdu et al. [53, 54].
The idea of abstraction is to omit irrelevant details of systems behavior to
simplify analysis and veri�cation. But if it is too coarse, then veri�cation
might fail, and if it is too �ne, then state space explosion may occur. One
way to a middle ground is to start with an over-approximation and then to
iteratively re�ne the abstraction on spurious counterexamples. This is just
the way of CEGAR as illustrated in Figure 6.1 and explained in the following
paragraphs.

Create
initial

abstraction

Solve
abstract
model

Examine
solution

Re�ne
abstraction

✗ ✓

State
equation

Solution

Not
realizable

?
Add

constraints
Reachability
instance

No
Solution

Realizable

Figure 6.1: CEGAR for reachability analysis.

Create initial abstraction

In the remainder, let N = (P, T, F,W,m) be a P/T net and m′ ∈ RN(m)
be an instance of the reachability problem transformed into a state equation

75

of the form m + C · ℘(w) = m′. Without additional constraints, this is an
over-approximation because every solution to the instance m′ satis�es the
equation, but not vice versa. Here, it serves as the initial abstraction for the
reachability problem.

Solve abstract model

Solving the state equation is an ILP-problem. The objective function f for
the ILP-problem minimizes the length of the �ring sequence that leads from
the initial marking m to the �nal marking m′. This is described by the
Parikh vector f(w) =

∑︁
t∈T |℘(w)(t)|. A solution ℘(w) of the equation is

called realizable, if there is a corresponding �ring sequence that is executable
in N . The feasibility of the ILP-problem is a necessary condition for reach-
ability, but not a su�cient one. We can distinguish between three di�erent
situations:

� If the ILP-problem is infeasible, then the necessary condition is violated
and the �nal marking is not reachable.

� If the ILP-problem has a realizable solution, then the su�cient condi-
tion is satis�ed and the �nal marking is reachable.

� If the ILP-problem has an unrealizable solution, which can be consid-
ered a counterexample, then the abstraction has to be re�ned.

Infeasibility is the reason for the particularity good performance for negative
results, because often the initial abstraction is enough to prove that a �nal
marking is not reachable.

Examine solution

A solution of the state equation is a vector ℘(w) ∈ N|T |. Remember that
every transition t ∈ T �res |℘(w)(t)| times in any sequence from m to m′

that is described by ℘(w). This leaves us with the problem to restore w. We
use the notation of the solution space of the state equation as follows.

Corollary 6.1.1 (Solution space [140]). For a given state equation m+ C ·
℘(w) = m′ of a P/T net N = (P, T, F,W,m), a set of vectors B = {bi ∈
N|T | | 1 ≤ i ≤ j}, j ∈ N is called base vectors if all bi ∈ B are pairwise
incomparable (by standard componentwise comparison for vectors) and a set
of vectors P = {pi ∈ N|T | | 1 ≤ i ≤ k}, k ∈ N is called period vectors if
P forms a basis for the non-negative solution space P ∗ = {

∑︁k
i=1 nipi |ni ∈

N, pi ∈ P} of C · ℘(w) = 0 such that:

76

� for all solutions ℘(w) there are ni ∈ N for 1 ≤ i ≤ k and n ∈ {1, . . . , j}
such that ℘(w) = bn +

∑︁k
i=1 nipi;

� for every solution ℘(w), all vectors of the set ℘(w) + P ∗ are solutions
as well.

Because the state equation is an over-approximation, we have to examine
whether a solution is a realizable solution or a spurious one. The problem
is that a solution does not provide any information regarding the order in
which the transitions have to �re. Furthermore, no information about the
enabledness of transitions is provided. We explore, therefore, a reduced state
space for a sequence w where every transition t can �re at most |℘(w)(t)|
times. If the target marking m′ is reachable in this constraint state space,
then the solution is realizable, which is a su�cient proof for reachability.
Otherwise, the solution is unrealizable. That is, there exists at least one
t ∈ T which has �red less than |℘(w)(t)| times. Thus, the examined solution
is a counterexample and we have to re�ne the abstraction.

For example, assume that for a reachability query in the P/T net depicted in
Figure 6.2 the solution vector is ℘(w) = (0, 1, 1, 1) to reach the �nal marking
mf = (p6). This means, to reach mf , transitions t2, t3, and t4 have to �re
once in a sequence w not speci�ed by ℘(w). The only transition that can �re
in the initial marking is t2. Beginning at the initial marking m = (p1, p3),
we search the reduced the state space where exactly t2, t3, t4 can �re at most
once. However, t3 and t4 are not enabled, neither in m nor after �ring t2.
Thus, the solution ℘(w) = (0, 1, 1, 1) is not realizable. A possible solution to
reach mf would be to �re t2 and afterwards, transfer or borrow tokens to �ll
the scapegoat place p2. This would enable t3, which in turn would enable t4.

p1

t1

p2

t3

p5

t4

p6

p4

t2

p3

Figure 6.2: Unrealizable solution ℘(w) = (0, 1, 1, 1).

77

Re�ne abstraction

To avoid spurious solutions the ILP-problem needs to be solved by a di�er-
ent solution. To enforce the computation of a di�erent solution, a re�ned
abstraction is built. We de�ne two types of constraints, both being linear
inequalities over transitions.

De�nition 6.1.1 (Jump constraints [53, 140]).
Jump constraints have the form |t| < n with n ∈ N and t ∈ T .

The �ring count of transition t is represented by |t|. Using the fact that base
solutions are pairwise incomparable, jump constraints intend to generate a
new base solution.

De�nition 6.1.2 (Increment constraints [53,140]).
Increment constraints have the form

∑︁k
i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,

and ti ∈ T .

Increment constraints are used to get a new non-base (non-minimal) solution,
i.e., T-invariants (see De�nition 2.3.15) are added, since their interleaving
with another sequence w′ may turn w from unrealizable to realizable.

b

Figure 6.3: Solution space (the graphic is from [140]).

Running the CEGAR approach

By adding the two types of constrains to existing solutions, we can control
traversal through the solution space. Every new solution is then checked
whether it is realizable, or if the ILP-problem becomes infeasible. Figure 6.3,
shows the solution space. From the initial solution b there are paths to
any solution which are shown as black dots. The cones represent the linear
solution spaces from a given solution. Solution spaces can intersect each other

78

or even include each other. Increment constraints, which add T-invariants to
a solution, are shown by a normal arrow. Jump constraints, represented by
a dashed arrow line, ensure jumps to an incomparable greater solution.
In the example from Figure 6.2, the solution vector ℘(w) = (0, 1, 1, 1) needs
tokens on place p2. The only way to do this, is to �re t1. Therefore, the
increment constrain |t1| > 0 is added. With this, a new minimal solution
℘(w) = (1, 1, 1, 1) is found, which is realizable. The �ring of t1 in the initial
marking and then t2 enables t3 which in turn enables t4.
The idea is to transfer or borrow tokens from other places. In the example
above, this was done with t1 which could provide extra tokens. Another
approach would be to add T-invariants to the solution. T-invariants have
the property that, after �red completely, they are back in the same marking.
Thus, the marking before and after �ring it is the same one.

p1

t1

t2

p2

u1

u2

p3

Figure 6.4: Borrowing tokens via T-invariants.

As an example consider Figure 6.4. The T-invariant t1t2 is not able to �re
on its own. But it can borrow a token from an intermediate marking of the
T-invariant u1u2. The �ring sequence u1t1t2u2 leads to the same marking
as �ring t1t2. This shows that we can add T-invariants to an unrealizable
solution to transform the solution to a realizable one.
The concept of partial solutions takes care of the organization of the di�erent
solutions provided by the ILP solver.

De�nition 6.1.3 (Partial solutions [140]).
For a P/T net N = (P, T, F,W,m) and a reachability instance m′ ∈ RN(m)
a tuple ps = (Γ, ℘(w), σ, r) is a partial solution to an ILP instance if

� Γ is a set of jump and increment constraints;

� ℘(w) is a minimal solution ful�lling the ILP-problem;

� σ ∈ T ∗ is a maximal �ring sequence, with m
σ−→ and ℘(σ) ≤ ℘(w);

79

� r is the remainder r = ℘(w) − ℘(σ) such that ∀t ∈ T : r(t) > 0 =⇒
¬m σt−→.

The set of jump and increment constraints, together with the state equation
de�nes the ILP-problem. Partial solutions are produced during the exam-
ination of a solution ℘(w) by exploring the reduced state space of N . For
the exploration, a standard model checking algorithm can be used to build
a tree of reachable markings, such that for all transitions t ∈ T it holds that
they only occur |℘(w)(t)| times. Each path to a leaf represents a maximal
�ring sequence of a new partial solution. A maximal �ring sequence means
that no t ∈ r(t) can �re anymore. Partial solutions with an empty remainder
r = 0, are full solutions and they satisfy the reachability problem. If no full
solution exists, then ℘(w) might be realizable by another �ring sequence σ′.
This means, either the addition of a jump constraint to get to a new base so-
lution, or the addition of an increment constraint to get additional tokens for
transitions with r(t) > 0. If all possible partial solutions are explored, and
no full solution is found, then the reachability problem can not be satis�ed.

Theorem 6.1.2 (Reachability of solutions [53,140]). If the reachability prob-
lem has a solution, a realizable solution of the state equation can be reached
by repeatedly expanding the minimal solution with jump and increment con-
straints.

One drawback is that the termination of the introduced approach is not
guaranteed. Thus, the procedure is incomplete [140]. This drawback can
be handled with a portfolio where traditional algorithms are combined with
CEGAR. The method described in this section is subsequently called the
state equation approach.
There are some more details involved in the CEGAR approach, such as
generating constraints, better intermediate markings, optimizations, and dis-
tant T-invariants. More information regarding these concepts can be found
in [53, 54, 140]. For the extensions we are introducing in the next sections,
these details are not relevant.

6.2 Basics

This section formalizes the notion of increasing and decreasing transitions of
a P/T net. A formal sum s = k1x1 + . . . + knxn is an atomic proposition of
P/T nets. Every markingm is associated with the integer vs(m) = k1m(p1)+
. . .+ knm(pn). The �ring rule of P/T nets immediately leads to:

80

De�nition 6.2.1 (Delta of a transition).
Let N = (P, T, F,W,m) be a P/T net and C the corresponding incidence
matrix. If s is a formal sum and t ∈ T a transition, then ∆t,s is de�ned as
∆t,s = k1C(p1, t) + . . .+ knC(pn, t), with p1, . . . , pn ∈ P and k1, . . . , kn ∈ Z.

Lemma 6.2.1. For all markings m where m
t−→ m′ implies vs(m) + ∆t,s =

vs(m
′).

Proof. Follows directly from the Petri net state equation (De�nition 2.3.13).

As we assume the transition system to be �nite, there is only a �nite range
of values that vs(m) can take. We call an integer number k a lower bound for
formal sum s if, for any reachable marking m, vs(m) ≥ k, and upper bound
for s if, for any reachable m, vs(m) ≤ k. There exist several approaches in
Petri net theory for computing bounds. As an example, we can solve the
following optimization problem: s is the objective function (to be minimized
or maximized) and the state equation serves as a side condition. If the
problem yields a solution with non-diverging value for the objective function,
then that value is a lower respectively an upper bound for s.
Based on Lemma 6.2.1, we can identify increasing and decreasing transitions.

De�nition 6.2.2 (Increasing, decreasing).
Let N = (P, T, F,W,m) be a P/T net and s ≤ k an atomic proposition,
where s is a formal sum and k is an integer. Further, let L be a lower bound
and U an upper bound for s. We call transition t ∈ T with respect to the
formal sum s:

1. weakly increasing if and only if ∆t,s < 0,

2. weakly decreasing if and only if ∆t,s > 0,

3. strongly increasing if and only if there is an upper bound U for s where
∆t,s ≤ k − U , or

4. strongly decreasing if and only if there is a lower bound L for s where
∆t,s > k − L.

Increasing transitions have the tendency to turn a false proposition into a true
one, when they �re and decreasing transitions often turn a true proposition
into a false one. For example, let p ≤ 0 be an atomic proposition where p is
the number of tokens on place p in a P/T net. Then all transitions in the
preset of p are strongly decreasing. As another example, consider the P/T
net in Figure 6.5 and the formula φ = EF (2 · p2 + 4 · p3 ≤ 5). It is easy
to see that m0 ̸|= φ. The increasing transition t3 with ∆t3,φ = −4 turns m0

81

into m′ = (1, 0, 1, 1) which satis�es φ with (2 · 0 + 4 · 1 ≤ 5). On the other
hand, the decreasing transition t1with ∆t1,φ = 2 does not lead to a satisfying
marking.

p1

t1

p2

t2

p3

t3

p4

Figure 6.5: Example for ∆t,φ.

The tendency from above is formally supported by:

Lemma 6.2.2. Let N = (P, T, F,W,m0) be a P/T net with reachability

graph RN . Further, let m,m
′ be markings, t ∈ T a transition with m

t−→ m′,
and s ≤ k an atomic proposition with formal sum s and integer k.

1. If s ≤ k is false in m and true in m′ then t is weakly increasing w.r.t. s.

2. If s ≤ k is true in m and false in m′ then t is weakly decreasing w.r.t. s.

3. If t is strongly increasing w.r.t. s ≤ k then s ≤ k is true in m′.

4. If t is strongly decreasing w.r.t. s ≤ k then s ≤ k is false in m′.

Proof. Regarding 1, we have vs(m) > k and vs(m′) ≤ k. By Lemma 6.2.1,
we conclude ∆t,s < 0. Regarding 3, we have vs(m) ≥ L (since L is a lower
bound). Hence, vs(m′) = vs(m) + ∆t,s ≤ L + ∆t,s and, according to De�ni-
tion 6.2.2, vs(m′) ≤ k. Cases 2 and 4 are analog.

6.3 Solving (EX)kφ

The CEGAR approach has been proven able to solve formulas of the form
EFφ and AGφ [140]. This section extends the abilities of CEGAR to solve
(EX)kφ formulas. Let us start with a formal de�nition of (EX)kφ.

De�nition 6.3.1 ((EX)kφ).
If N = (P, T, F,W,m) is a P/T net, φ is an atomic proposition, and k ∈ N1

then m |= (EX)kφ ⇐⇒ ∃w ∈ T k : m
w−→ mk ∧mk |= φ.

This means, there exists a path m
w−→ mk with |w| = k transitions in it and

mk |= φ. For example, if k = 2, then (EX)2φ = EXEXφ ⇐⇒ ∃t1t2 ∈
T 2 : m

t1t2−−→ m2 ∧ m2 |= φ. The idea for (EX)kφ is to solve EFφ with an
additional length constraint. The length constraint ensures that the length
of the solution |℘(w)| to the ILP-problem is equal to k.

82

De�nition 6.3.2 (Length constraint).
Given a P/T net N = (P, T, F,W,m) with state equation m+C ·℘(w) = m′

and k ∈ N1, we call
∑︁

t∈T |℘(w)(t)| = k a length constraint.

The sum of the number of occurrences of all transitions in the solution vector
℘(w) must be exactly k.

Theorem 6.3.1. Let N = (P, T, F,W,m) be a P/T net and (EX)kφ a for-
mula, where φ is an atomic proposition, and k ∈ N1.
If (EX)kφ has a realizable solution, it can be reached by solving EFφ with
the CEGAR approach from [140] with an additional length constraint in the
initial abstraction.

Proof. Based on De�nition 6.3.1, m |= (EX)kφ ⇐⇒ ∃w ∈ T k ∧ m
w−→

m′∧m′ |= φ. The length constraint
∑︁

t∈T |℘(w)(t)| = k from De�nition 6.3.2
ensures that only solutions ℘(w) of the ILP-problem are found, such that the
length of the �ring sequence w is exactly k, and results in the �nal marking
mk |= φ.

6.4 Solving E (φ U ψ)

This section extends CEGAR to solve E (φUψ).

De�nition 6.4.1 (E (φUψ)).
For a P/T net N = (P, T, F,W,m) and two atomic propositions φ, ψ, m |=
E (φUψ) ⇐⇒ ∃w ∈ T ∗ : m

w−→ m′, with ∃i ∈ N ∀j < i : (mj |= φ) ∧ (mi |=
ψ).

This means, in every state along a path w, φ is true until a state is reached
where ψ is true. It is well known that EFψ can be rewritten as E (TRUEUψ).
To solve E (φUψ), we solve EFψ with CEGAR and, along the witness path
for EFψ, we need to keep φ true. To ful�ll these objectives, we introduce
so-called balance constraints. In addition to this, we cut o� exploration paths
in states where both φ and ψ are false.

De�nition 6.4.2 (Balance constraints).
Given is a P/T net N = (P, T, F,W,m), two atomic propositions ψ and
φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ . . . ∧ sn ≤ kn, with n, k1, . . . , kn ∈ N , formal sums
s1, . . . , sn, and Ti = {t ∈ T |∆t,si ̸= 0} a the set of transitions that can change
the value of si. Furthermore, the set Ti,ψ is de�ned as Ti,ψ = {t ∈ Ti|∆t,si >
0∧∆t,ψ < 0} ⊆ Ti and contains the set of decreasing transitions with respect

83

to si, which are at the same time also increasing transitions with respect to

ψ. For every i. let δi=

{︄
0, if Ti,ψ = ∅
max{∆t,si |t ∈ Ti,ψ}, otherwise.

Furthermore, let θi = ki − vsi(m) be the number of tokens that can be con-
sumed from the initial marking while leaving the truth value of si ≤ ki un-
changed. We call

∑︁
t∈Ti ∆t,si ≤ θi + δi balance constraint with respect to si

and m.

Ti contains all weakly/strongly increasing/decreasing transitions with respect
to si. In the remainder, we call θi the o�set.

p1

t1

p2

t2

p3

t3

p4

Figure 6.6: Example for balance constraints.

As an example for balance constraints, consider Figure 6.6 and the formula
φ = E ((p2 > 0)U (p4 > 0)). Note that φ and every other formula of
this form can be rewritten into the required s ≤ k format: E ((−p2 ≤
−1)U (−p4 ≤ −1)). To satisfy φ, we check EF (p4 > 0), while keeping
p2 > 0 true along the path. The minimal solution to the ILP-problem would
be (t2, t3). The sequence m

t2t3−−→ m′ leads to m′ which satis�es p4 > 0. But
after �ring transition t2 which is weakly decreasing with respect to p2 > 0,
a marking (p1, p3) is reached, that does neither satisfy p4 > 0 nor p2 > 0.
Hence, to avoid this spurious solution, we add a balance constraint to the
ILP-problem. The new solution �rstly �res the weakly increasing transition
t1. The sequence m

t1t2t3−−−→ m′ now keeps p2 > 0 true along the path and
results in marking m′ = (p2, p4) |= (p4 > 0).
Balance constraints in general ensure that the sum of all increasing and de-
creasing transitions with respect to a formal sum is smaller than the o�set.
This is based on the initial marking and the maximal arc weight of all tran-
sitions t ∈ Ti,ψ. The idea behind the o�set is to make sure that decreasing
transitions can �re without violating a necessary property, especially when
they attack the support of increasing transitions. As soon as the o�set θi
becomes negative, φ will de�nitely be violated and thus, E (φUψ) takes the
value of ψ. We can detect this case already in the initial marking, before we
compute the balance constraints and then, we can return with a de�nitive
answer directly. The only transitions which are allowed to violate φ are those
in Ti,ψ because they also have the e�ect of turning ψ true. Due to this, such
transitions tend to occur at the end of �ring sequences. That adding balance

84

constraints to the initial abstraction and running CEGAR for EFψ is correct
for E (φUψ) is stated subsequently.

Lemma 6.4.1. Let N = (P, T, F,W,m) be a P/T net, ψ and φ = s0 ≤
k0 ∧ s1 ≤ k1 ∧ . . . ∧ sn ≤ kn two atomic propositions with n, k1, . . . , kn ∈ N ,
s1, . . . , sn formal sums and it holds that m |= φ.
If all balance constraints for φ are added to the ILP-problem for EFψ and
if θi ≥ 0 holds, then it is guaranteed that

1. after executing the entire �ring sequence, which is given as a solution
to the ILP-problem, that ψ is true;

2. a �ring sequence w exists;

3. if w is �red in the right order that φ is true along the path

4. the proposition φ can only be violated, if at all, in the �nal marking,
but there ψ holds.

Proof. Regarding the 3 claim, we know, based on De�nition 6.2.2, that only
increasing/decreasing transitions a�ect si ≤ ki. The o�set θi ensures that
the truth value of si ≤ ki stays unchanged. The balance constraint makes
sure that φ is not violated minus the δi-o�set, which ensures the possibility
of a �ring sequence which does not violate φ along the path, until ψ holds.
If the set Ti,ψ is not empty, the δi-o�set based on the maximum of ∆t,si

ensures that transitions are not ignored in the balance constraint that violate
φ but also turn ψ to true. The additional o�set, which is the maximal arc
weight of the transitions in the set, is enough to make sure that only one
transition is allowed to �re with the e�ect of making φ false and ψ true. We
use the maximum because an arc weight which is not the maximum will have
a smaller e�ect and will not change the outcome. Transitions from the set
Ti,ψ can also �re, if they are �red in a di�erent context, i.e., when they do
not turn φ to false.
And �nally, Theorem 6.1.2 ensures that if the complete sequence w of solution
℘(w) is �red, we get to the �nal marking m′ which satis�es ψ.

The �nal markingm′ is reached after �ring the entire solution ℘(w). Applying
Lemma 6.4.1 only ensures that m′ satis�es ψ, but it does not guarantee that
intermediate markings satisfy φ. The reason for this is that also decreasing
transitions with respect to φ are allowed to �re and can turn φ to false. This
is not a problem if some increasing transitions are �red �rst to balance out
this e�ect. Consequently, in the exploration of a realizable solution, paths
must be cut o� that are not balanced out.

85

Lemma 6.4.2. In the exploration of the solution space, if all sequence w are
cut o� in markings m with m |= ¬φ∧¬ψ, then only partial solutions remain
that can become full solutions.

Proof. Based on De�nition 6.4.1, marking m |= ¬φ∧¬ψ violates the formula
E (φUψ). All paths extending m also violating E (φUψ) and no extension
of the path can turn the property to true.

t1

p1

t2

t3

p3

t4

p2 p4

p5

t5 t6

p6

Figure 6.7: Example for cut o�.

As an example for such a cut o�, consider the P/T net in Figure 6.7 and
the formula E ((p2 + p3 > 0)U (p4 > 0)). The minimal solution of the
ILP-problem is (t1, t2) (dotted lines). After �ring t1, marking m′ = (p1, p6) is
reached which violates (p2+p3 > 0) as well as p4 > 0. Applying Lemma 6.4.2,
the solution is cut o� at m′, because both propositions are violated. There
are also no increasing transitions that can be added to this solution. Hence,
we have to jump to a new base solution, which is (t3, t4) (solid lines). But
this solution is only a partial solution, since neither t3 nor t4 can �re and
both are part of the remainder. At this point, CEGAR would add the T-
invariant (t5, t6) (dashed lines) to the solution. The T-invariant is able to
�borrow� tokens for the transitions in the remainder. With the additional
T-invariant, we have a full solution and we get the path m

t6t3t4t5−−−−→ m′ which

86

keeps (p2 + p3 > 0) true along the path until p4 > 0 holds. Now we have
everything together to introduce the main theorem.

Theorem 6.4.3. Let N = (P, T, F,W,m) be a P/T net, ψ and φ = s0 ≤
k0 ∧ s1 ≤ k1 ∧ . . . ∧ sn ≤ kn two atomic propositions with n, k1, . . . , kn ∈ N ,
s1, . . . , sn formal sums and it holds that m |= φ.
If E (φUψ) has a realizable solution, it can be reached by solving EFψ with
the CEGAR approach, where balance constraints are added to the initial
abstraction for all si, and all paths are cut o� whenever m∗ |= ¬φ ∧ ¬ψ is
reached.

Proof. Theorem 6.1.2 proofs EFψ. We repeatedly add jump and increment
constraints to get to a full solution, such that the �nal marking m′ of this
solution satis�es ψ. Applying Lemma 6.4.1, we only get solutions, such that
after �ring the complete solution ℘(w), ψ holds. Applying Lemma 6.4.1, we
know that a �ring sequence w exists and if w is �red in the right order, it is
ensured together with the use of Lemma 6.4.2 that φ is true along the path
and is only violated, if at all, in the �nal marking, where ψ holds.

6.5 Solving �nite-single-path CTL formulas

Theorems 6.1.2, 6.3.1, and 6.4.3 show approaches to solve the simple and
frequently occurring formulas types EFφ, EXφ, and E (φUψ). With the
following tautologies AXφ, AGφ, and A (φRψ) become solvable, too, be-
cause instead of a witness path, we search for a counterexample.

AXφ = ¬EX (¬φ);
AGφ = ¬EF (¬φ);
A (φ1 Rφ2) = ¬E (¬φ1 U¬φ2).

Thus, six out of ten basic CTL operators (see Section 3.4) are solvable with
these theorems. Having the formulas with the universal path quanti�er, we
also gain more possibilities for LTL formulas, which can now be solved with
the same approaches. All these formula types are solved by a single, �nite
witness path (counterexample).
In the following section, we use these formulas to solve a larger subclass of
CTL with CEGAR. This class is therefore called �nite-single-path formulas.
We have to di�erentiate between existential and universal �nite-single-path
formulas. Both are de�ned inductively.

De�nition 6.5.1 (Existential �nite-single-path formulas).
If φ and ψ are existential �nite-single-path formulas and α is an atomic

87

proposition, then the following formulas are existential �nite-single-path for-
mulas:

� α (the base of the inductive de�nition);

� EFφ;

� EXφ;

� E (αUφ);

� φ ∨ ψ;

� φ ∧ α.

The existentially quanti�ed formulas are paired with universally quanti�ed
formulas (see Section 3.4). These two types of formulas can be reduced to
each other by negation. Hence, they permit the application of the same veri�-
cation methods. Instead of a witness, the class of universal �nite-single-path
formulas is characterized by a counterexample and is de�ned accordingly:

De�nition 6.5.2 (Universal �nite-single-path formulas).
If φ and ψ are universal �nite-single-path formulas and α is an atomic propo-
sition, then the following formulas are universal �nite-single-path formulas:

� α (the base of the inductive de�nition);

� AGφ;

� AXφ;

� A (αRφ);

� φ ∧ ψ;

� φ ∨ α.

Lemma 6.5.1. The negation of an existential �nite-single-path formula is a
universal �nite-single-path formula and vice versa.

Therefore, we may restrict subsequent considerations to existential �nite-
single-path formulas. Universal �nite-single-path formulas can be veri�ed by
checking the corresponding negation.

De�nition 6.5.3 (Initial ILP-problem for existential
�nite-single-path formulas).
Let N = (P, T, F,W,m) be a P/T net with incidence matrix C and φ an
existential �nite-single-path formula that contains i ∈ N CTL operators.
We call the following an ILP-problem for an existential �nite-single-path
formula (ILPφ for short). For all CTL operators in φ add a new set of

88

variables for the Parikh vector ℘(w)i and the product of C ·℘(w)i to the state
equation:

m+ C · ℘(w)1 + . . .+ C · ℘(w)i = m′.

Furthermore, add for all EU-operators balance constraints and for all EX-
operators length constraints based on their corresponding variables.

Lemma 6.5.2. If for a P/T net N = (P, T, F,W,m) and existential �nite-
single-path formula φ the ILPφ is build based on De�nition 6.5.3, then it is
guaranteed that a solution to ILPφ, if �red in the right order, ful�lls φ. If no
such solution exists then m ̸|= φ.

Once we build the initial ILP-problem, we use CEGAR and add jump and
increment constraints until we either �nd a realizable solution or the ILP-
problem becomes infeasible. While trying to realize the solution, it is im-
portant to �rst use all transitions from the �rst Parikh vector ℘(w)1 to keep
the structure of the formula in place. If all transitions from ℘(w)1 are used
in the realization, then we can start trying to realize the rest of the solution
with the transitions from ℘(w)2. For our example this means, ℘(w)1 keeps
α1 true until α2 is reached.

De�nition 6.5.4 (Realization ordering).
Let N = (P, T, F,W,m) be a P/T net, φ an existential �nite-single-path
formula that contains i ∈ N CTL operators, and ILPφ the corresponding
ILP-problem.
If ℘(w)j is used before ℘(w)k with ∀j, k ∈ N : 0 ≤ j < k ≤ i, then the
resulting sequence is a valid realization ordering.

This keeps the structure of φ in place while realizing a solution of ILPφ. We
continue with the introduction of the main theorem of this section.

Theorem 6.5.3. Let N = (P, T, F,W,m) be a P/T net with incidence matrix
C and φ an existential �nite-single-path formula, and ILPφ the corresponding
ILP-problem.
If φ has a realizable solution in the solution space, it can be reached by apply-
ing Theorems 6.1.2, 6.3.1, and 6.4.3 with ILPφ as the initial ILP-problem and
by applying the realization ordering (De�nition 6.5.4) for �nding a realizable
solution.

Proof. We proceed by induction, according to De�nition 6.5.1.

Case α (atomic proposition): In CTL an atomic proposition is satis�ed,
if it holds in the initial marking. Based on De�nition 6.5.3 and the fact that
no CTL operator is present, no product of C ·℘(w) is added to the equation.
It follows that m = m′, which means that the atomic proposition must hold
in the initial marking.

89

Case EFφ: This case can be traced back to Case E (αUφ) using the tau-
tology EFφ ⇐⇒ E (TRUEUφ).

Case EXφ: De�nition 6.5.3 ensures that C ·℘(w) is added to the state equa-
tion and that the length constraint for EXφ is added to ILPφ. A witness
path for EXφ is an existential �nite-single-path to the next marking which
satis�es φ. The path extended by a witness path for φ at the �nal marking
(which exists by induction hypothesis) yields a witness path for EXφ. The-
orem 6.3.1 makes sure that if a realizable solution exists, the witness path for
EXφ is found, and De�nition 6.5.4 ensures that the witness path is added
at the correct position to keep the structure of the formula in place.

Case E (αUφ): This case is similar to the previous one. De�nition 6.5.3
ensures that C · ℘(w) is added to the state equation and that the balance
constraints are added to ILPφ. A witness path for E (αUφ) is an existential
�nite-single-path where α is true in every marking until a marking is reached
where φ holds. Theorem 6.4.3 makes sure that if a realizable solution exists,
the witness path for E (αUφ) is found and De�nition 6.5.4 ensures that
the witness path is added at the correct marking (which exists by induction
hypothesis) to keep the structure of the formula in place.

Case φ ∨ ψ: If φ is satis�ed, then there exists a witness path for φ for which
the induction hypothesis may be applied. Otherwise, there is a witness path
for ψ for which again the induction hypothesis applies. A formula like EX (φ
∨ ψ) can be rewritten to EXφ ∨ EXψ and both sides are veri�ed separately.

Case φ ∧ α: In this case, φ and α must be satis�ed. Since α is an atomic
proposition, only the initial marking of the path is concerned. Hence, the
induction hypothesis applied to φ yields the desired result.

As an example, consider E (α1 U (E (α2 Uφ))) as a formula with nested CTL
operators. The idea is to use for each CTL operator one state equation with
its own set of variables and constraints, and then solve the ILP-problem
consisting of all state equations and constraints.
In our example, the �rst objective would be to solve the left (outer) EU -
formula. That is, we have to reach a marking m′ |= α2, while keeping α1 true
along the path. For this, we have to solve the ILP-problem consisting of the
state equation m+ C · ℘(w)1 = m′ and the balance constraints for α1.
The second objective is to solve the right (inner) EU -formula. Here we
are using the same approach as before, that is, we have to reach a marking
m′′ |= φ, while keeping α2 true along the path. For this, we add a slightly

90

di�erent state equation m′ + C · ℘(w)2 = m′′ to the ILP-problem. In this
state equation, we start with the �nal marking of the �rst state equation,
namely in marking m′. Furthermore, we introduce a new set of variables
℘(w)2 for our second Parikh vector to reach the �nal marking m′′. The
balance constraints to keep α2 true are added as well. With the marking
m′ appearing on both sides, both state equations can be merged into one
equation m+ C · ℘(w)1 + C · ℘(w)2 = m′′.

6.6 Solving EG φ partially

Unfortunately, we are not able to extend this approach to the formula types
EGφ and E (φRψ). Both can have an in�nite witness path. However, we
are still able to verify these formulas in certain cases. In this section, we in-
troduce some quick checks to solve EGφ with CEGAR in speci�c situations.

De�nition 6.6.1 (EGφ).
If N = (P, T, F,W,m) is a bounded P/T net and φ an atomic proposition,
then m |= EGφ ⇐⇒ ∃w ∈ Paths(m) : m

w−→ m′, with ∀i ∈ N : (mi |= φ) .

The de�nition says that the property φ is true along a path w, if at least one
of two conditions is ful�lled. Either there exists an in�nite path containing
a cycle or the path ends in a deadlock. More precise:

1. Either the witness path is in�nite by going through a cycle. Then there
are two �nite sequences w1w2 with m

w1−→ m′ w2−→ m′, where w1 is the
�nite path leading to a marking m′ where w2 is repeated in�nitely.
Each state in both w1 and w2 satis�es φ.

2. Or the witness path w ends in a deadlock, then every state in w in-
cluding the last (deadlock) state must satisfy φ.

If there are deadlocks in the system, then we can create necessary or su�cient
conditions to solve EGφ in both cases. If there are no deadlocks, the only
possibility to satisfy EGφ is, to prove the existence of a path w1 to a cycle
w2 where φ stays true along both w1 and w2. The cycle is basically a T-
invariant and we can reformulate the problem of solving EGφ into solving
the state equation once to reach a marking m′ and �nding a T-invariant that
starts in m′ and keeps φ true. This situation can be formalized as

m
m+C·℘(w1)=m′

−−−−−−−−−→ m′ C·℘(w2)=0−−−−−−→ m′.

However, solving this equation is di�cult because m′ (and ℘(w1)) is not
known in advance. The reason for this is that there can be exponentially

91

many T-invariants which keep φ true in every state and they can potentially
start in several di�erent markings. In addition to this, we would have to solve
the problem of �nding a minimal marking to �re a T-invariant, where minimal
is in regard to the entire token number of the marking. Although, it would
also make no di�erence if minimal is meant in regard to the componentwise
comparison of markings where no more tokens can be removed from places.
To the best of our knowledge there is no polynomial algorithm known for
this problem.
We could use a brute force method to calculate for every possible sequence of
a T-invariant the minimal required markings to �re completely. This means,
all permutations have to be computed. Then, all markings can be compared
and we can search for the minimal markings. The runtime for this approach
would be exponential. All in all, this is not a suitable approach to solve EGφ,
especially in connection with the possibility that there can be exponentially
many T-variants.
But on the bright side, the second part of the equation, the T-invariant, can
be used to build a necessary condition for the veri�cation of EGφ. In fact,
if there are no T-invariants that keep φ true and if there is also no deadlock,
then we know that EGφ cannot be true. To verify this, we can add an
adjusted version of the balance constraint to an according ILP-problem to
�nd suitable T-invariants.

De�nition 6.6.2 (Minimum constraints).
Let N = (P, T, F,W,m) be a P/T net, φ = s0 ≤ k0 ∧ s1 ≤ k1 ∧ . . . ∧ sn ≤ kn
an atomic propositions with k1, . . . , kn, n ∈ N , and s1, . . . , sn formal sums.
Further, let Ti = {t ∈ T |∆t,si ̸= 0} be the set of transitions that can change
the value of si. The set Ti contains all weakly/strongly increasing/decreasing
transitions with respect to si. We call

∑︁
t∈Ti ∆t,si ≤ 0 the minimum constraint

with respect to si.

The minimum constraints ensure that the sum of all increasing and decreasing
transitions is smaller than or equal to zero. Otherwise, the truth value of the
proposition will be changed.

Theorem 6.6.1. Let N = (P, T, F,W,m) be a P/T net, φ = s0 ≤ k0 ∧ s1 ≤
k1 ∧ . . . ∧ sn ≤ kn an atomic propositions with k1, . . . , kn, n ∈ N , s1, . . . , sn
formal sums and it holds that m |= φ.
If N has no deadlocks and if the ILP-problem for �nding a T-invariant,
C · ℘(w) = 0, in addition with the minimum constraints for all si, has no
solution, then m does not satisfy EGφ.

Proof. Based on De�nition 6.6.1, if N has no deadlocks, then the only way
to satisfy EGφ is to �nd a cycle w which keeps φ true in every state. Such a

92

cycle w would represent a T-invariant and, hence, the equation C ·℘(w) = 0
must be ful�lled by w. Applying De�nition 6.6.2, the minimum constraints
ensure that φ remains true in the cycle. If the ILP-problem C · ℘(w) = 0
in addition with the minimum constraints is infeasible, then no T-invariant
exists. It follows that there is also no cycle that keeps φ true. Hence, EGφ
can not be true.

To check the P/T net for the presence of deadlocks seems to be an additional
hurdle, but in many cases this hurdle is easily overcome. There exist, next
to the standard search for deadlocks, supplementary methods that can �nd
deadlocks or their absence quite fast. For example, such methods are based on
the siphon-trap property [94] or on random walks/�nd-path algorithms [108].
In case the P/T net has deadlocks, we can build a su�cient quick-check
to prove EGφ. We use the fact that EGφ is true if the path ends in a
deadlock and every state along the path satis�es φ. In CTL this condition
can be rewritten to E (φU (φ ∧ DEADLOCK)). We already know how to solve
E (φUψ) formulas. Therefore, the only thing left to do is to encode the
DEADLOCK-predicate into the ILP-problem. The DEADLOCK-predicate can be
easily expressed as a conjunction of disjunctions over atomic propositions.

De�nition 6.6.3 (Deadlock constraint).
If N = (P, T, F,W,m) is a P/T net, then⋀︂

t∈T

⋁︂
p∈•t

m′(p) < W (p, t)

is a deadlock constraint for m′.

A deadlock constrain, which describes a deadlock marking m′.

Lemma 6.6.2. Let N = (P, T, F,W,m) be a P/T net with deadlocks. EGφ
holds in m if the ILP-problem for E (φU (φ ∧ DEADLOCK)) has a realizable
solution.

Proof. If N has deadlocks, then according to De�nition 6.6.1 EGφ is true
if a path that satis�es φ in every state ends in a deadlock. Furthermore,
De�nition 6.4.1 states that φ is true until ψ holds and ψ is in this case
(φ ∧ DEADLOCK).

6.7 Quick checks

This section presents a set of necessary or su�cient �quick checks� for a whole
range of CTL formulas. The quick checks are based Petri net structure the-
ory. Such structure theory is for example the Commoner's theorem [27,52]. If

93

it applies, EF DEADLOCK evaluates to false. The conditions of the theorem can
be checked as a satis�ability problem in propositional logic (SAT) [94]. For
the veri�cation of other reachability queries, the state equation approach de-
scribed in this chapter provides a powerful method based on an ILP-problem.
Since structural methods can be traced back to NP-complete problems such
as SAT and ILP, respectively and therefore use only polynomial space, they
can be applied in parallel to state space exploration. In the following, we
introduce several quick checks for some specialized routines. We leave out
the approaches, we presented earlier in this chapter, but we believe these
approaches should always be run in parallel to the actual state space explo-
ration.
Every existentially quanti�ed formula discussed below corresponds to an-
other universally formula. In fact, they can be reduced to each other by
negation and thus, permit the application of the same veri�cation method.
We therefore may restrict subsequent considerations to existentially quanti-
�ed formulas.

� E (φUψ), A (φRψ).
We can employ linear programming for checking a necessary and a su�cient
condition for E (φUψ). A necessary criterion is obviously EFψ, and the
state equation approach can be used for checking this condition. A su�cient
condition is the reachability of ψ using only transitions that are invisible to
φ, in addition to checking φ in the initial marking. This can be checked by
removing all transitions visible for φ from N and applying the state equation
approach to the resulting net.

� EGEFφ, AFAGφ.
We can add a check forEFφ as a necessary condition andAGφ as a su�cient
criterion to a portfolio for EGEFφ. Again, the state equation approach can
be used in order not to take too much memory away from the main search
procedure.

� EFEGφ, AGAFφ.
As in previous cases, AGφ is a su�cient condition for EFEGφ while EFφ
is necessary. The state equation approaches to these properties may be added
to the portfolio for EFEGφ.

� EFAGφ, AGEFφ, EFAGEFφ, AGEFAGφ.
For all these properties, AGφ is a su�cient condition and EFφ is necessary.
Using the state equation approach, we can add these checks to our portfolio.
This way, we have an additional opportunity to answer the query early while
using only a moderate amount of additional memory.

94

6.8 Discussion

In this chapter, we presented an alternative reduction technique. We intro-
duced two methods to solve E (φUψ) respectively (EX)kφ with the CEGAR
approach for Petri nets. The main concept behind them is to add constraints
to the Parikh vector to re�ne solutions until they become realizable or in-
feasible. The specialized routines can be used to solve the whole class of
�nite-single-path formulas. Furthermore, we introduced some quick-checks
for solving EGφ under certain circumstances as well. In addition, we pro-
posed a collection of quick checks based on structural methods that can be
run in parallel to the actual veri�cation. All introduced techniques reduce the
state explosion problem by a guiding search with the intermediate solution
vectors of the re�ned ILP instances.
We point out the search for realizing sequences can also be supported with
partial order reduction (see Chapter 9 and 11).
To the best of our knowledge, this is the �rst extension of CEGAR to tem-
poral logic other than reachability. The question whether CEGAR can be
extended to other classes of temporal logic is open. To solve branching for-
mulas with this approach is rather di�cult because CEGAR is based on
searching a single counterexample.
Another future �eld of research is to look further into the remaining four basic
CTL operators, namely EGφ, E (φRψ), and their universal counterparts.
But this requires to deal with in�nite paths.
Furthermore, we also want to �nd in a systematically way additional quick
checks based on structural methods for other formula types.
As a future work, we want to implement the proposed techniques into our
model checker LoLA [142]. Once implemented, we expect a substantial in-
crease in the veri�cation performance of these formulas. Especially in case
of negative results the procedure will terminate quickly, because the ILP-
problem will become rather fast infeasible. We expect a similar performance
increase as it was the case for the CEGAR approach for reachability analysis.
The performance of LoLA in the reachability category increased from 75 %
to 90 % in the MCC with the introduction of the CEGAR approach.

95

Part III

Supplementary strength reduction

96

The previous part was concerned with reduction techniques. To increase the
e�ciency of model checking, all aspects involved in model checking should
be tuned. This part is dedicated to supplementary strength reduction tech-
niques. These are not reduction techniques per se, but additional methods
that can accelerate the model checking process.
A lot of challenges in model checking reduce to searching the reachability
graph. Therefore, building, browsing and accessing the reachability graph
are time-critical operations deserving elaborate acceleration e�orts in every
detail. One of the critical points while building the state space, is to deter-
mine the neighbors of a state, which reduces to testing whether a transition is
enabled or not [87]. This means, in each state the list of enabled transitions,
which can lead to new states, must be computed. For e�ciency, the aim is
to avoid checking in every state every transition for enabledness. To prevent
this, we only want to update the enabledness information of transitions that
are possibly disabled or enabled whenever a transition t �res. To this end,
before building the state space, we preprocess a data structure DI(N) that
for all given transitions t lists the transitions whose enabling status could
have changed by �ring t. Although saving up much time during the actual
state space exploration, the preprocessing of DI(N) has been an unpleas-
antly costly investment. In Chapter 7, we introduce a new, generally much
faster method to compute DI(N).
In addition, Chapter 8 is going to introduce a range of formula simpli�cation
techniques to speed-up model checking. It is easier and thus more performant
to verify a simpli�ed speci�cation [7].

97

Chapter 7

Acceleration of

enabledness-updates

In this chapter, we are concerned with our research goal of accelerating the
state space exploration. In model checking, the main task is to build the,
possibly reduced, state space of a P/T net N = (P, T, F,W,m0). One of
the critical points while building the state space, is to determine whether a
transition is enabled or not to compute successor states. That is, in each
state the list of enabled transitions, which can lead to new states, must be
computed. Computing the enabledness information for a single transition is
cheap, however, computing it for all transitions in every marking amounts to
a lot of computing resources. And since the state space in real world P/T
nets is usually vast, browsing follow up states has to be fast. Thus, the aim
is to avoid checking in every state every transition for enabledness.
In real world P/T nets, it is noticeable that the impact of �ring a transi-
tion t ∈ T is usually local and does not a�ect the enabledness of all other
transitions. This means, only for some transitions the enabledness actually
changes. Using this insight, we check the enabledness information of all
transitions only once, namely in the initial state. After this, whenever a �red
transition t leads to a new state, we just want to update the enabledness
information of transitions that may have been disabled or enabled by the
�ring of t. To this end, in the preprocessing, before building the state space,
we compute a look-up data structure, called DI(N), which, basically, maps
to every transition a list of possibly disabled/enabled transitions. The ad-
vantage is that most lists of DI(N) are generally shorter than the list of all
transitions. Thus, on average, they are faster to process.
The problem of speeding-up the computation of the state space using en-
abling tests has been studied since 25 years [87, 121]. The problem is con-
nected to the so-called token game, i.e., the �ring of transitions, while simu-

98

lating a Petri net [11]. In [11] a method is described that is based on a notion
called linear enabling functions and the according classi�cation of transitions
into �ve categories. One issue with this approach is that the input Petri
net has to be transformed, and so-called silent and preemptive transitions
have to be added to it. In [87] a method is presented mainly to work in the
context of unfolding algebraic nets [105, 138]. The authors compared their
implementation with the tool LoLA 1.0 [111] and came to the conclusion
that LoLA 1.0 is faster but needs more memory. Since 2010, LoLA 2.0 [142],
the successor of LoLA 1.0 and in the following only called LoLA, uses a
more advanced method, which we describe in Section 7.3. This method per-
forms well in practice, which is highlighted by the benchmark of LoLA at
the yearly MCC [66�68]. However, the overhead is unpleasantly costly and
sometimes the approach needs several minutes or more for certain models at
the benchmark to compute DI(N).
In this chapter, we introduce a new and faster method for preprocessing
DI(N). The key to the performance gain is an indexed graph data structure
and a rigorous reduction of costly copying operations. We have published
this method with its results in [77]. The following chapter is based on this
publication. Our approach is also used to speed up the computation of
con�icting transitions in partial order reduction techniques [49,97,127] which
we are going to introduce in Chapter 9. We will describe the exact procedure
for this speed up computation in Section 9.4.
The remainder of this chapter is organized as follows. Section 7.1 starts
with a motivational example. Section 7.2 introduces concepts to categorize
transitions based on their �ring e�ects on other transitions. We continue
in Section 7.3 with the description of the former computation of DI(N).
Section 7.4 presents our new approach to compute DI(N). Section 7.5 is
dedicated to an experimental validation of the proof-of-concept implemen-
tation, where we compare the former approach with the new one. Finally,
Section 7.6 concludes this chapter with some �nal remarks and a discussion.

7.1 Motivational example

Consider the P/T net N = (P, T, F,W,m0) shown in Figure 7.1. It consists
of n ∈ N transitions and has sequential behavior, meaning that in each
marking, except the last deadlock marking, only one transition is enabled.
In m0 transition t1 is enabled. After �ring t1, we reach a new marking m1. In
a naive approach, all transitions need to be checked for their enabledness in
m1. However, as seen in the �gure, only the enabledness information of t1 and
t2 change in the transition from m0 to m1. Thus, instead of n enabledness

99

checks in each marking, we only need two.

p0

t1

p1

t2 . . .
tn

pn

Figure 7.1: Example for unnecessary enabledness updates.

This is an example for the local impact of �ring a transition t. Usually, it does
not a�ect the enabledness of all transitions. This leads us to the question:
How can the local e�ect of �ring t be described? We �rstly observe that the
neighborhood of t is static. Hence, multiple �ring of t always a�ects the same
neighborhood. In the example illustrated in Figure 7.2, �ring t1 always has
an e�ect on t1 and t2 but never t3.

t1

p1

p4

t2

p2

p3

t3
1

3

3

2

2

1

31

3

1

Figure 7.2: Running example P/T net.

Depending on a given transition t, we, thus, want the list of all transitions
that are a�ected by �ring t. After the enabledness information of all transi-
tions have been computed for the initial marking, we never have to do the
whole job again. Instead, in each marking, we just update this list for tran-
sition that could have been a�ected in their enabledness. For example, in
the initial marking m0 of the P/T net N illustrated in Figure 7.2, only t1
is enabled. As seen in Figure 7.3 which shows the reachability graph of N ,
�ring t1 in m0 leads to marking m1 = (2, 1, 2, 2). Here, we have to update
the enabledness information from t1 and t2, but not from t3.
We use the example P/T net from Figure 7.2 with its reachability graph
shown in Figure 7.3 as a running example in this chapter.

100

4,1,2,0 3,0,3,1 3,3,0,1 2,2,1,2

2,1,2,2 1,0,3,3 1,3,0,3 4,2,1,0

3,2,1,1 4,3,0,0 4,0,3,0 3,1,2,1

1,2,1,3 2,3,0,2 2,0,3,2 1,1,2,3

t1

t2

t1

t1

t1

t1

t1

t1

t2

t1

t2 t3 t2

t3

t2 t3

t3

t2

Figure 7.3: Reachability graph of the example P/T net from Figure 7.2.

7.2 Preprocessing decreasing and

increasing transitions

If a transition t �res, and thereby takes N from marking m to m′, it may,
in the course of this, disable a previously enabled transition t′, if t con-
sumes from a place p ∈ •t ∩ •t′. More precisely, we would like to capture
the situation (i) where both, t and t′, are enabled in m, hence, m(p) ≥
max{W (p, t),W (p, t′)}, and (ii) where t′ is not enabled in m′, anymore,
hence, W (p, t′) > m′(p) = m(p) − W (p, t) + W (t, p). As preprocessing is
unaware of the speci�c markings m and m′, we need to combine (i) and (ii)
for the condition

W (p, t′) > max{W (p, t),W (p, t′)} −W (p, t) +W (t, p).

In such a case, we say that t decreases t′ or that t′ is decreased by t and
denote this as the binary relation t ↘ t′. In the case of W (p, t) ≤ W (p, t′),
the decreasing condition reduces to W (t, p) < W (p, t) and, otherwise, it
simply becomes W (t, p) < W (p, t′). Taking everything together, we get the
following de�nition:

De�nition 7.2.1 (Decreasing transitions).
We call a transition t′ ∈ T decreased by a transition t, if there exists a place
p ∈ •t ∩ •t′ with W (t, p) < W (p, t) and W (t, p) < W (p, t′) and denote this by
t↘ t′.

101

As an example, consider the �ring of t1 in m0 from our running example.
In this case, t1 is decreased by itself, because �ring t1 reduces the number
of tokens on p1 and t1 leaves less tokens on p1 than it needs to �re again.
More precisely, t1 is decreased by itself, because with p1, according to De�-
nition 7.2.1, there exists a place that is in the set •t ∩ •t′ with

1 = W (t1, p1) < W (p1, t1) = 3 and 1 = W (t1, p1) < W (p1, t1) = 3

On the other hand, if m
t−→ m′, it may also happen that a previously disabled

transition t′ becomes enabled in m′, namely if t produces tokens on a place
p ∈ t• ∩ •t′. In this simpler situation, we have

0 < W (p, t′) ≤ m′(p) = m(p)−W (p, t) +W (t, p),

which leads to the following de�nition, right away:

De�nition 7.2.2 (Increasing transitions).
We call a transition t′ ∈ T increased by a transition t, if there exists a place
p ∈ t•∩ •t′ with W (t, p) > W (p, t) and 0 < W (p, t′) and denote this by t↗ t′.

As an example, consider again the �ring of t1 inm0 from our running example.
In this case, t2 is increased by t1, because t1 produces additional tokens
on p4. More precisely, t2 is increased by t1, because with p4, according to
De�nition 7.2.2, there exists a place that is in the set t• ∩ •t′ with

2 = W (t1, p4) > W (p4, t1) = 0 and 0 < W (p4, t2) = 1

By breaking down the concepts of decreasing and increasing to binary rela-
tions, we are able to describe all information as directed graphs.

De�nition 7.2.3 (Decrease and increase graph).
If N is a P/T net with transition set T then we call the directed graph D(N) =
(T,↘) with node set T and arc set ↘ the decrease graph of N and the
directed graph I(N) = (T,↗) with node set T and arc set ↗ the increase
graph of N . The pair of decrease- and increase graph is subsequently denoted
as DI(N).

Let us consider our running example, again, to build the increase graph
I(N) which is depicted in Figure 7.4. As we have seen before, our example
has an arc from t1 to t2 caused by place p4. Furthermore, we see that t2 also
increases t1. This happens according to place p1 being in t2• and in •t1, which
means that t2 produces more tokens on p1 than it consumes. In addition, t2
increases itself, too, also based on p1. The place p2 is responsible for an arc
from t2 to t3. Finally, p3 adds an arc from t3 back to t2.

102

t1 t2 t3

p4

p1

p1

p2

p3

Figure 7.4: Increase graph of the running example.

Using I(N), we can always get a list of candidate transitions that can become
enabled after a �ring. For example, if t3 �res then we have to test t2 for pos-
sible enabledness. However, we also need to know which transitions become
disabled after �ring to remove them from the list of enabled transitions. For
this, we build the decrease graph D(N) analogously. The decrease graph is
shown in Figure 7.5. For example, if t1 �res then we have to evaluate t1 and
t2. Combining the increase and the decrease graph, we get DI(N), the data
structure that solves the problem of updating the list of enabled transitions.

t1 t2 t3
p1

p1 p3, p4 p2

Figure 7.5: Decrease graph of the running example.

Having preprocessed DI(N), building the reachability graph of a net N can

be sped up. In fact, whenever we traverse an edge m
t−→ m′ from a node

m to a new node m′ by �ring a transition t, we have to determine the set
of reachability arcs that are incident to m′. In other words, this means to
compute the set T (m′) of transitions in N that are enabled in m′. However,
as we come from m, we are already in possession of T (m) and, probably,
the di�erence between T (m) and T (m′) is not too big. This is where DI(N)
helps us to make just a few updates of T (m) in order to get T (m′).
We begin with the decrease graph D(N) and obtain the neighborhood d(t)
of t, which consists of all transitions that may become disabled by �ring
t. Secondly, we also compute the neighborhood i(t) of t in I(N) for the
transitions that may become enabled after �ring t. Afterwards, the job of
computing T (m′) reduces to the following update:

T (m′) = T (m)− {t′ ∈ d(t) | ∃p ∈ •t′ : W (p, t′) > m′(p)}
+ {t′ ∈ i(t) | ∀p ∈ •t′ : W (p, t′) ≤ m′(p)}

103

As this update considers only the transitions of d(t) ∪ i(t), which is usually
much smaller than the whole T , investing into the computation of DI(N)
pays out.
However, the MCC benchmark proofs that the preprocessing ofDI(N) can be
a very time consuming preprocess. For some models, preprocessing DI(N)
took several minutes or even several hours. For more details see the ex-
perimental Section 7.5. Before we introduce our new approach to compute
DI(N), we describe the former method.

7.3 The former computation of the

decrease-increase-graph

For any ordering p1, . . . , pn of the places of the P/T net N = (P, T, F,W,m0),
we de�ne for every i ∈ {0, . . . , n} the subnet Ni that, while containing all
transitions T , only consists of the places Pi = {p1, . . . , pi} and the arcs
that go between T and Pi. The former approach to the computation of
DI(N) = DI(Nn) is to start with DI(N0) and then consider the place se-
quence p1, . . . , pn in order to successively obtain DI(Ni) for all i ∈ {1, . . . , n}.
It is easy to see that DI(Ni+1) is just DI(Ni) plus the edges induced by
pi+1. This happens, as the decreasing and the increasing relations between
transitions are de�ned only existentially over the place set. In other words,
if DI(Ni) has a ↘-edge or ↗-edge, respectively, between two transitions
t, t′ then considering an additional place pi+1 cannot revoke the existence of
the place p ∈ {p1, . . . , pi} that justi�ed the aforesaid edge between t, t′. For
that reason, it makes sense to de�ne ↘ (pi+1) and ↗ (pi+1), the edges of
DI(Ni+1) that are additionally introduced by the consideration of p.

De�nition 7.3.1 (Incremental edges).
For all places p ∈ P , the set ↘ (p) = {(t, t′) | W (t, p) < W (p, t),W (t, p) <
W (p, t′)} is called decreasing edges of p and the set ↗ (p) = {(t, t′) |
W (t, p) > W (p, t), 0 < W (p, t′)} is the increasing edges of p.

The set ↗ (p) can be represented in the following way. There are always two
transition sets T 0, T 1 ⊆ T such that ↗ (p) = {(t, t′) | t ∈ T 0, t′ ∈ T 1}. In
fact, T 0 = {t | W (t, p) > W (p, t)} and T 1 = p•. We capture this property in
the following de�nition.

De�nition 7.3.2 (Homogeneous pair).
A pair (T 0, T 1) of transition subsets of T is called ↗-homogeneous if t↗ t′

for all t ∈ T 0 and all t′ ∈ T 1. This is also denoted as T 0 ↗ T 1. Analogously,

104

it is called ↘-homogeneous if t ↘ t′ for all t ∈ T 0 and all t′ ∈ T 1, which is
denoted as T 0 ↘ T 1.

p

t1

t2

t3 t4

t5

(a) Snippet of a P/T net.

T1

t1

t2

t3

T2

t1

t4

t5

(b) Homogeneous pair of the snippet.

Figure 7.6: Example homogeneous pair.

As an example for a homogeneous pair for I(N) consider Figure 7.6. The
left Figure 7.6a illustrates a snippet of a P/T net and the right Figure 7.6b
shows the homogeneous pair (T1, T2) for place p. All blue transitions form
the set T1 and the red transitions form T2. All transitions in T1 are increasing
all transitions in T2, meaning that there is an arc from every transition in T1
to every transition in T2 caused by p. Note that transitions can be in both
sets at the same time like transition t1.
If (T 0, T 1) is exactly the ↗-homogeneous pair of ↗ (p), this is made explicit
by writing T 0 ↗p T

1. The set ↘ (p), in turn, is generally not describable as
a single ↘-homogeneous pair. That is why we fall back on the set

↘̇ (p) = {(t, t′) | W (t, p) < W (p, t), 0 < W (p, t′)}.

As, obviously, ↘ (p) ⊆↘̇ (p), this set is weaker but su�cient for the antici-
pated purpose. Moreover, T 0 = {t | W (t, p) < W (p, t)} and T 1 = •p provide
a ↘̇ -homogeneous pair for T 0 ↘̇ pT

1, which stands for ↘ (p)̇ = {(t, t′) |
t ∈ T 0, t′ ∈ T 1}. In practice, we almost always have ↘ (p) =↘̇ (p), which
justi�es this simpli�cation.
The graphs of every DI(Ni) are represented by a list of homogeneous pairs
each. More precisely, I(Ni) is given by a list of ↗-homogeneous pairs. This
basically corresponds to a compressed adjacency list representation, where
all transitions t1, t2, . . . with the same adjacency list T 1 are together in T 0 =
{t1, t2, . . . } and we get T 0 ↗ T 1.
Therefore, in iteration i + 1, we have to go through all homogeneous pairs
T 0
j ↗ T 1

j of I(Ni) and make updates according to T 0 ↗pi+1
T 1 in order to

105

obtain I(Ni+1). More precisely, in I(Ni+1) every pair T 0
j ↗ T 1

j is replaced
by the new pairs

(T 0
j \ T 0) ↗ T 1

j and (T 0
j ∩ T 0) ↗ (T 1

j ∪ T 1)

unless they are empty.
Equivalently, every graph D(Ni) is implemented as a list of ↘̇ -homogeneous
pairs, which have to be modi�ed according to T 0 ↘̇ pi+1

T 1 for the next step
D(Ni+1).
In our implementation, we use numbers to represent transitions and keep
the pair items T 0

j and T 1
j as ordered lists. This make the computation of

T 0
j \T 0, T 0

j ∩T 0, and T 1
j ∪T 1 linear time operations, which is fairly e�cient.

Nevertheless, we are forced to touch every pair, even though most of them are
probably not intersected by T 0 or T 1. Hence, in worst case, the computation
of DI(N) takes O(|P | · |T |2) time, as, for every place, we need to consider
O(|T |) homogeneous pairs in DI(Ni) and process each of them in linear time
O(|T |).

7.4 Accelerated computation of the

decrease-increase-graph

In our former approach, a lot of time is wasted in updating the adjacency
lists. In every iteration, all lists have to be touched while most of them are
not even relevant and, in case of an actual update, many copying operations
occur. The speed-up idea is to create a more e�cient way of determining the
necessary updates. Moreover, in order to omit unnecessarily copying arrays
around, the actual creation of adjacency lists is postponed until after the
iteration of all places. If we want to build the graph G(N), which is either
I(N) or D(N), our new approach works in three steps:

1. Homogeneous pairs

For a given ordering p1, . . . , pn of the places, we generate the corresponding
list of homogeneous pairs T 0

1 → T 1
1 , T

0
2 → T 1

2 , . . . , where → stands for ↗
in case of the computation of I(N), or for ↘ if D(N) is about to be built.
For that matter, we like to point out that the new computation method of
D(N) does not fall back onto ↘̇ but, instead, processes every place into a
set of possibly more than one homogeneous pair. As the de�nition of these
homogeneous pairs is clear at this point, we do not go into the details of their
computation in this section, however, we provide an example.

106

t1

p1

p4

t2

p2

p3

t3

1
3

3
2

2

1

31

3

1

(a) Running example.

t2 t1 t2

(b) Homogeneous pair for p1.

t1 t2

t2 t3

t3 t2

(c) Remaining homogeneous pairs.

Figure 7.7: Homogeneous pairs of the running example.

In our running example, as seen in Figure 7.7a, we focus on I(N). Accord-
ingly, the green place p1 induces a homogeneous pair depicted in Figure 7.7b
with T1 containing just the transition t2 and the set T2 consists of the tran-
sitions t1 and t2. This is done for all places p ∈ P which leads to several
homogeneous pairs. In our example, this results in four pairs as seen in Fig-
ure 7.7c. In the general setup, we end up with a list of homogeneous pairs
that altogether already describe all arcs of I(N) or D(N).

2. Intermediate directed graph

Iterating through the list of homogeneous pairs, we progressively create an
intermediate directed graph H(N) = (X, Y, Z, θ) on node sets X and Y ,
directed edges Z ⊆ (X×Y)∪(Y ×X), and a partial function θ : T → X. This
graph means to implicitly encode G(N). Every node in x ∈ X represents
a set T 0

x = {t ∈ T | θ(t) = x} of transitions with the same adjacency
list. The adjacency between the di�erent nodes of X is realized indirectly.
More precisely, every x ∈ X de�nes a compressed adjacency list by the
homogeneous pair T 0

x → T 1
x with T 1

x =
⋃︁

(x,y)∈Z
⋃︁

(y,x′)∈Z{t′ | θ(t′) = x′}.
Altogether, every adjacency list of the target graph G(N) is represented by
one node of X.
As an example, consider Figure 7.8. The left Figure 7.8a shows the inter-
mediate graph H(N) of homogeneous pair (T1, T2), T1 = {t1}, T2 = {t2, t3}
based on place p. The right Figure 7.8b shows the computed increase graph
I(N) based on H(N). Note, if two transitions have the same environment

107

t1 t2 t3

p

(a) Intermediate adjacency graph H(N).

t1 t2 | t3
p

p

(b) Increase graph based on H(N).

Figure 7.8: New computation of I(N).

like t2 and t3 then we only need to compute one. For example, if we compute
t2 for I(N) then t3 just needs a pointer to t2.
The e�cient computation ofH(N) works iteratively. We assume that we have
computed the list of homogeneous pairs T 0

1 → T 1
1 , T

0
2 → T 1

2 , . . . , T
0
k → T 1

k

from the list of places. Then we start from an empty graph H0(N) and,
step-by-step, integrate every pair T 0

j+1 → T 1
j+1 into Hj(N) to get Hj+1(N)

and, at the end, H(N) = Hk(N). Accordingly, every partial solution Hj(N)
encodes a graph Gj(N) with all the edges of T 0

1 → T 1
1 , . . . , T

0
j → T 1

j .
Then, when integrating the pair T 0

j+1 → T 1
j+1, we �rstly have to process all

the nodes x1, . . . , xr, x′1, . . . , x
′
s ∈ X where T 0

j+1 properly intersects T 0
xi
, i ∈

{1, . . . , r} or T 1
j+1 properly intersects T 0

x′i
, i ∈ {1, . . . , s}. More precisely, we

have to make copies x̂1, . . . , x̂r, x̂
′
1, . . . , x̂

′
s having the same neighborhoods in

Y as the original nodes. Moreover, we need to rede�ne θ(t) = x̂i for all
t ∈ T 0

j+1 ∩ T 0
xi

and θ(t′) = x̂′i for all t
′ ∈ T 1

j+1 ∩ T 0
x′i
. This is necessary as,

in contrast to the transitions T 0
xi
\ T 0

j+1, all elements of T 0
x̂i

will obtain an
enhanced neighborhood in Gj+1(N), namely T 1

j+1. Similarly, the transitions
of T 0

x̂′i
have to be divided from T 0

x′i
\ T 1

j+1, as only they are neighbors of T 0
j+1.

Up to this point, however, Hj+1(N) still represents Gj(N) as no edge of
T 0
j+1 → T 1

j+1 has been included. To this end, we add a new node x ∈ X and
de�ne θ for T 0

x = T 0
j+1 \ (T 0

x1
∪ · · · ∪ T 0

xr). We also add a new node x′ ∈ X
and de�ne θ for T 0

x′ = T 1
j+1 \ (T 0

x′1
∪ · · · ∪ T 0

x′s
). Moreover, we add a new node

y ∈ Y for the connection T 0
j+1 → T 1

j+1. To implement this homogeneous pair
in Gj+1(N), we, thus, include the edges (x, y) and (x̂i, y), i ∈ {1, . . . , r} into
Hj+1(N) as well as all the edges (y, x′) and (y, x̂′i), i ∈ {1, . . . , s}.
Figure 7.9 shows the new computation of I(N) based on H(N) from the
running example. The left Figure 7.9a shows the intermediate graph H(N)
of all homogeneous pairs shown in Figure 7.7c. The colors represent increas-
ing relations between the transitions. The right Figure 7.8b shows the full
increase graph I(N) based on H(N).

108

p1

t1

p2

t2

p3

t3

p4

(a) Intermediate adjacency graph H(N).

t1 t2 t3

p4

p1

p1

p2

p3

(b) Increase graph based on H(N).

Figure 7.9: New computation of I(N) for the running example.

3. Compressed adjacency list

In the �nal step, we take H(N) and extract the compressed adjacency lists of
G(N) according to the de�nition above. After computing an inverse mapping
of function θ, this is straightforward and does not need further explanation.

The reason that computing H(N) is much faster than our old method, comes
from the fact that �nding the intersected nodes x1, . . . , xr, x′1, . . . , x

′
s does not

work by exhaustive search as before. Instead, we just once iterate through the
elements t of T 0

j+1 and T
1
j+1, respectively, and use θ(t) to get the intersected

set. Moreover, having the intersected sets, we do not split entire transition
arrays but copy only small amounts of edges between X and Y . But while
the computation of H(N) works in O(|P | · |T |) time, the expansion of H(N)
into the compressed form of G(N) can still take O(|P |·|T |2) time in the worst
case. However, that the new approach is usually the better one, even with
the overhead of the subsequent adjacency list extraction, is demonstrated
experimentally in the next section.

7.5 Experimental validation

Both methods discussed in this chapter are implemented in our proof-of-
concept model checker LoLA. For evaluating the methods, we used the bench-
mark provided by the model checking contest 2019 [68]. The benchmark
consists of 94 Petri nets, which result in 1018 instances due to the scaling
parameter of some models. We restrict the benchmark to P/T nets and for
each net, we only consider the largest available instance. If the model scales
over more than one parameter, we choose for every parameter the largest

109

instance. We ignored smaller instances since they have proportionally the
same e�ect as their larger counterparts. For the �FamilyReunion� net we
chose a smaller instance, since the largest instance runs out of memory on
our test machine. Overall, our benchmark consists of exactly 100 models.

Model size Decreased Increased Di�erence
Model |P| |T| |F| Old New Old New Decr. Incr. Both

AirplaneLD-PT-4000 28019 32008 122028 87.9 2.2 49.2 0.5 85.7 48.7 134.4
ASLink-PT-10b 4410 5405 16377 0.1 0.0 1.3 0.0 0.0 1.3 1.3
AutoFlight-PT-96b 7894 7868 18200 0.2 0.0 3.1 0.0 0.2 3.1 3.3
BART-PT-60 8130 12120 97200 7.8 0.1 3.9 0.1 7.7 3.8 11.5
BridgeAndVehicles-PT-
V80P50N50 228 8588 67470 3.2 1.0 0.0 0.1 2.2 -0.1 2.1
CloudDeployment-PT-7b 2271 19752 389666 0.2 38.5 0.6 0.0 -38.3 0.6 -37.7
DatabaseWithMutex-PT-40 12920 12800 156800 0.3 0.1 9.7 0.1 0.2 9.6 9.8
Dekker-PT-200 1000 40400 320400 21.7 1.4 0.2 0.4 20.4 -0.2 20.2
DLC�exbar-PT-8a 3971 32571 129321 126.5 0.0 0.7 0.1 126.5 0.6 127.1
DLC�exbar-PT-8b 47560 76160 216499 9.8 0.4 335.2 0.2 9.4 335.1 344.5
DLCround-PT-13b 5343 8727 24849 0.1 0.0 2.2 0.0 0.1 2.2 2.3
DLCshifumi-PT-6a 3568 25936 101182 61.9 0.0 0.6 0.1 61.9 0.5 62.4
DLCshifumi-PT-6b 44243 66611 182532 8.3 0.3 260.2 0.1 8.0 260.1 268.1
DoubleExponent-PT-200 10604 9998 28194 0.2 0.0 5.5 0.0 0.2 5.5 5.7
DrinkVendingMachine-PT-10 120 111160 1026520 38.0 22.7 6.8 0.1 15.3 6.7 21.9
FamilyReunion-PT-
L00200M0020C010P010G005 143908 134279 411469 36.7 0.5 2450.4 0.5 36.1 2450.0 2486.1
FlexibleBarrier-PT-22b 6478 7469 18797 0.1 0.0 1.8 0.0 0.1 1.7 1.8
GlobalResAllocation-PT-5 102 136662 1226388 1.9 0.7 1.0 0.2 1.2 0.8 2.0
HexagonalGrid-PT-816 3391 6174 24696 0.0 0.0 1.4 0.0 0.0 1.4 1.4
HypertorusGrid-PT-d5k3p2b10 7533 24300 97200 0.2 0.0 15.9 0.1 0.2 15.8 16.0
JoinFreeModules-PT-5000 25001 40001 115002 5.2 0.1 56.9 0.1 5.1 56.8 62.0
NeighborGrid-PT-d5n4m1t35 1024 196608 393216 0.6 0.1 1.9 2.1 0.5 -0.3 0.3
NeoElection-PT-8 10062 22266 129195 2.2 1.4 2.9 0.1 0.8 2.8 3.5
NoC3x3-PT-8B 9140 14577 30726 0.4 0.0 5.3 0.0 0.4 5.2 5.6
PhaseVariation-PT-D30CS100 2702 30977 216835 23.7 0.9 0.8 1.5 22.7 -0.7 22.0
Philosophers-PT-10000 50000 50000 160000 195.2 0.2 143.5 0.1 195.0 143.4 338.4
PhilosophersDyn-PT-20 540 17220 140780 3.8 0.8 1.5 0.4 3.0 1.1 4.2
Railroad-PT-100 1018 10506 62728 1.6 0.3 0.9 0.2 1.4 0.6 2.0
RERS17pb113-PT-9 639 31353 125418 5.6 0.5 1.4 0.3 5.1 1.1 6.2
RERS17pb114-PT-9 1446 151085 604252 107.5 6.2 27.1 4.5 101.2 22.6 123.9
RERS17pb115-PT-9 1399 144369 577414 90.8 7.4 30.4 4.5 83.3 25.9 109.3
RwMutex-PT-r2000w0010 6020 4020 52040 1.2 0.0 1.6 0.0 1.2 1.6 2.8
SafeBus-PT-20 1026 10461 77364 1.0 0.5 0.2 0.3 0.6 -0.1 0.5
SharedMemory-PT-200 40601 80200 320000 2992.3 45.1 3821.9 38.6 2947.2 3783.4 6730.6
TokenRing-PT-50 2601 127551 510204 840.1 1.4 3.1 0.8 838.8 2.3 841.1

Table 7.1: Time comparison in seconds between the former (here called old)
and the new method to compute enabledness and con�icts.

Experiments were executed on a machine with 32 physical cores running at
2.7 GHz and 1 TB of RAM. All computations were done with no time and
memory restrictions. The time was measured with the C++ chrono library
using the high resolution clock. We only show experiments where one of the
methods needed more than one second. Table 7.1 lists the results of our
experiments. It shows that the new method is in almost all cases at least
one order of magnitude faster. Although both methods are asymptotically

110

of the same complexity, it seems that they have di�erent worst case inputs.
Our experiments suggest that the ones that slow down the new approach are
less frequent in practice than those making the former one slow.
In the remainder of this section, we want to take a closer look at the outcome
of our experiments. As Table 7.1 shows for the decreasing computation, both
methods needed less than 1 ms for 29 models. In 7 models the former method
was faster, whereas in 6 of them the di�erence amounted to only a couple
of milliseconds. In the remaining 64 models the new approach was faster.
All in all the new approach needed only 2.86 % of the time compared to the
former method. Even if we leave out the biggest outliers the new approach
still needs less than 10 % of the time.
The picture for the increasing computation is even better. There are 19
models where both methods needed less than 1 ms. In 8 models the former
method was faster, however, in all of these the di�erence was only a couple
of milliseconds. In the remaining 73 models the new method was faster.
Altogether the new approach needed only 0.79 % of the time compared to
the former method. And if we, again, leave out the biggest outliers the new
approach still needs less than 10 % of the time.
There are only three models, where the new method is slower. In two of them,
the di�erence is only a couple of milliseconds. But for the CloudDeployment-
PT-7b model the decrease computation needed more than 38 seconds, while
the former approach needed not even one. We thoroughly investigated this
case, but we could not �nd any useful hints, why this model performs com-
pletely di�erent than the rest. The model has by far not the most places,
transitions, or arcs. Further, the ratio between these three are rather ordi-
nary as well.
However, the general faster computation of the new method makes more
than up for this outlier. All but one model needed less than 45 seconds to
compute DI(N). Furthermore, almost all models needed not even a single
second. The most time is needed for �SharedMemory-PT-200� with 83.6
seconds, however, this is still signi�cantly less time compared to the almost
2 hours the former method needed.

7.6 Discussion

In this chapter, we dealt with our research goal to accelerate the state space
exploration. For this, we have computed the enabledness information of the
transitions in every marking. Doing that in a brute force fashion results in
evaluating the enabledness information for all transitions. Since the state
space usually consists of a large number of markings, reducing the number

111

of enabledness tests deserves particular attention.
To this end, we used the locality of transition �ring. We introduced the no-
tion of increasing and decreasing transitions which are the sets of transitions
that might become disabled or enabled, respectively, if a given transition t
is �red. Together, they form the data structure DI(N). Our main contri-
bution is a new and faster way to compute DI(N). Results show that the
new method is in almost all cases at least one order of magnitude faster than
the former method. In general, the performance of the state exploration in-
creases signi�cantly, because in each marking only a subset of all transitions
have to update their enabledness information. Thus, we have successfully
reached this research goal and with this, we have also improved model check-
ing e�ciency.
The new approach addresses mainly the runtime performance. In the future,
we also plan to use DI(N) for the reduction of memory used to save the
decreasing and increasing transitions for each transition. Storing DI(N)
requires a lot of space, in worst case O(|T 2|). An idea to this end, would be
to utilize the observation that some transitions t and t′ share a signi�cant
amount of transitions that they a�ect, when �ring. Storing DI(N) only for
t and just a pointer for t′ to t would save memory. Finding such suitable
candidate transitions without increasing the runtime signi�cantly is on open
issue.
Another open question is based on the observation that expanding H(N) can
be reduced to matrix multiplication. Using a fast algorithm, like the Strassen
algorithm [117], might improve the performance further.
On the implementation level, two issues remain open. First, the computa-
tion of DI(N) can be paralleled based on con�ict cluster (CC) (see De�-
nition 2.3.3) of a P/T net [144]. CCs can be determined by a union-�nd-
algorithm [120] with e�ectively constant amortized time complexity [144]
which means the e�ort to compute them is negligible. Since all CC are in-
dependent from each other, every CC can be used to build its own part of
DI(N) in parallel. At the end, all parts are merged together. Second, the
intermediate directed graph H(N) is similar to the original P/T net. The
di�erence is that transitions and there connecting edges are missing, if the
transition has no increasing or decreasing e�ect on any transition. Another
di�erence is that the arc weight of an incoming and an outgoing edge between
two nodes is set o� against each other. Therefore, it might be possible for a
model checker to build H(N) directly while reading the P/T net.

112

Chapter 8

Formula simpli�cation

This chapter introduces several smaller formula simpli�cation techniques for
temporal logic formulas. We have published the following techniques with
its results in [79]. The following chapter is based on this publication.
It has already been recognized [7] that formulas should be carefully prepro-
cessed before running a model checking procedure. Because the more atomic
propositions (i.e., the more places and transitions) are used in a given formula
φ, the more behavior is relevant for the validity of φ, and the less e�cient
other reduction techniques like partial order reduction [49, 97, 127], symme-
try [110] or net reduction [4, 8, 92] become. The goal is to �nd techniques
which reduce the size of φ, while preserving its validity. To use such sim-
pli�cation techniques for real applications, they should be easier to compute
than the actual veri�cation based on the state space exploration.
Structural reduction rules simplify the structure of a given model and/or a
given formula. Using such rules to simplify the speci�cation can have the
e�ect that some parts of the state space become irrelevant and thus can be
pruned. Moreover, some subformulas can become invariantly true or false.
Such properties can be replaced in the speci�cation directly with true or false
and therefore simplify the entire formula.
Several approaches were proposed in the literature to �nd such properties.
Y. Thierry-Mieg proposed in [123] structural reduction rules that jointly
reduce a given model and a set of properties expressed as invariants. In [143]
K. Wolf introduced a method for detecting duplicate subformulas in a given
speci�cation. In [7] Bønneland et al. proposed several methods based on
invariants to signi�cantly reduced the size of the formula. We continue this
direction by introducing several approaches to reduce the size of the formula
even further.
We propose embedded place invariants and an algorithm to easily compute
traps [43] for formula reduction. To simplify the speci�cation further, tau-

113

tologies can be used. There exist a whole range of CTL∗ tautologies. Many of
them are well known in the literature [71] but not all of them are commonly
known. In addition, we propose to shift X-operators to the beginning of a
given formula and to use Boolean operators in one or the other direction.

We have implemented all proposed techniques as proof-of-concept in LoLA.
Experiments using the MCC benchmark from 2018 show that all these tech-
niques improve model checking e�ciency.

The remainder of this chapter is organized as follows. Section 8.1 proposes
several ways to simplify the input formula. Section 8.2 is dedicated to an
experimental validation of the proof-of-concept implementation. Section 8.3
concludes the chapter with a discussion.

8.1 Formula simpli�cation

Atomic propositions may turn out to be always true or false, proven by the
infeasibility of a linear program that can be derived from the proposition and
the Petri net state equation (see De�nition 2.3.13). Once a proposition has
been identi�ed as true or false, a whole subformula may become irrelevant
for the speci�cation. In fact, a signi�cant number of formulas can be evalu-
ated without even running a model checker. For other formulas, the model
checking problem may become signi�cantly simpler than the original one. In
the remainder of this section, we have next to the reduction of the formula
size, two other objectives: First, we want to increase the number of situations
where we can apply a special routine, e.g., routines discussed in Chapter 6
and Chapter 11. Second, we want to increase the e�ciency of partial order
reduction that we introduce in Chapter 9 of this thesis. In the remainder,
let N = (P, T, F,W,m) be a P/T net. We propose several ways to simplify
the input formula.

Tautologies

Firstly, there exist many tautologies in temporal logic. Not all of them
are commonly known. This way, an originally complicated formula may
automatically be rewritten to a much simpler query. The formula rewriting
system of LoLA [142] for example currently contains more than 100 rewrite
rules that are based on CTL∗ tautologies.

114

Boolean operators

Some tautologies, such as AG (ψ ∧ χ) ⇐⇒ (AGψ ∧AGχ) can be applied
in both directions. Applying it from right to left decreases the number of
temporal operators. However, the single operator on the left applies to a more
complicated subformula φ = ψ ∧ χ and for φ, more transitions are visible,
meaning that they can change the truth value of φ if they are �red, than for ψ
or χ alone. To have fewer so-called visible transitions in a formula is bene�cial
for partial order reduction. Applying the tautology from left to right is,
thus, meaningful too, to obtain a formula with more temporal operators but
each operating on fewer visible transitions. Then, partial order reduction
potentially works better. Moreover, this way increases the likelihood that
one Boolean operator becomes the root of the subformula tree. In that
case, we can verify the particular subformula on its own possibly with a
specialized routine from Chapter 6 or Chapter 11. Hence, we propose to use
an orientation of tautologies that prefers pushing Boolean operators towards
the root of the formula tree.

X-operators

In model checking, the X-operator is problematic for some reduction tech-
niques, since formulas containing the X-operator are in general not stutter-
invariant (see De�nition 3.3.1). For example, partial order reduction is not
applicable to CTL or LTL formulas containing the X-operator. Therefore,
we try to push X-operators towards the root of the formula tree. To this end,
we apply tautologies. For example, we apply EFEXφ ⇐⇒ EXEFφ from
left to right. This way, we increase the likelihood that we �nally obtain one
of the formulas considered in Section 11.7 which only contain X-operators
at the beginning of the formula. Moreover, we get larger subformulas that
do not contain an X-operator. This can be seen in the example: after the
EX-operator the subformula on the left side contains only φ, whereas the
subformula on the right side contains EFφ. Since CTL preserving partial
order reduction techniques work only on X-free formulas, partial order re-
duction is not applicable to a formula containing an X-operator as a whole.
However, when an X-free subformula of a CTL formula is evaluated on some
level of recursion in the model checking procedure sketched in Section 4.3,
there is no reason not to apply partial order reduction. Hence, the rewriting
strategy improves the applicability of partial order reduction.

115

Traps

When investigating atomic propositions, Frederik Bønneland et al. [7] mainly
employed the Petri net state equation. In quite some situations where the
state equation is not able to prove a proposition to be invariantly true or
false, a trap can help.

De�nition 8.1.1 (Trap).
Let N = (P, T, F,W,m) be a P/T net. The set Q ⊆ P is called trap if
Q• ⊆ •Q.

Hence, a trap is a set Q of places that, if it once contains a token, it always
contains a token. This is formally established by requiring that every transi-
tion that consumes tokens from any place in Q, also produces a token on some
place in Q. For example, consider an atomic proposition k1p1+· · ·+knpn ≥ 1
with n = |P |, pi ∈ P , and all ki being positive for 1 ≤ i ≤ n. If {p1, . . . , pn}
contains a trap that has at least one token in the initial marking, then the
proposition is invariantly true. We show with the following procedure that
detecting a trap in {p1, . . . , pn} is easy. We start with {p1, . . . , pn} and re-
move every place p in t• of some transition t that does not produce tokens on
any p1, . . . , pn. This way, leaves the maximal trap included in {p1, . . . , pn}.
For more information how to use traps for model checking, the reader is
referred to [43].

Embedded place invariants

Sometimes, place invariants (see De�nition 2.3.16) can be used for simplifying
atomic propositions. Place invariants can be found by solving the system of
equations i · C = 0, where C is the incidence matrix of N .

Lemma 8.1.1 (Weighted sum of tokens [74]). Let N = (P, T, F,W,m) be
a P/T net. If i is a place invariant, then the equation i(p1)m(p1) + · · · +
i(pn)m(pn) = im0 holds for all reachable markings in N with the set of places
{p1, . . . , pn}.

A place invariant i assigns a weight i(p) to every place p such that the
weighted sum of tokens remains constant for all reachable markings. We
propose to systematically compute helpful invariants as the solution of a
linear program LP . Consider an atomic proposition of the shape k1p1+ · · ·+
kmpm + l1q1 · · ·+ lnqn op k, where all pj and qj are places, all kj are positive
integers, all lj are negative integers, op ∈ {=, ̸=, <,>,≤,≥}, and k is an
integer. LP looks for the largest possible invariant where the coe�cients are
between 0 and ki (respectively li): Maximize i(p1)+ · · ·+ i(pm)− i(q1)−· · ·−

116

i(qn) where CT i = 0, and 0 ≤ i(pj) ≤ kj (for 1 ≤ j ≤ m), and lj ≤ i(qj) ≤ 0
(for 1 ≤ j ≤ n). If LP is feasible, subtracting the resulting solution from
the atomic proposition may or may not lead to less mentioned places but is
guaranteed not to add places to the formal sum of the proposition.
Now, consider, as an example, the proposition p1 + 2p2 + p3 ≥ 2 and assume
that there is a place invariant that yields the equation p1 + p2 = 1. Then
the atomic proposition can be simpli�ed to p2 + p3 ≥ 1. It is not constant
but does no longer mention p1. Consequently, the set of visible transitions,
meaning transitions that can change the truth value of the inspected formula,
may become smaller since the environment of p1 does no longer need to be
considered as visible (unless transitions still appear in the environment of p2
or p3). With a smaller set of visible transitions, better partial order reduction
may be expected (in particular for the VIS principle, which will be introduced
later in De�nition 9.2.4).

8.2 Experimental validation

We implemented the methods discussed in this chapter in our proof-of-
concept model checker LoLA. For the evaluation of the methods, we used
the benchmark provided by the MCC 2018 [66]. The benchmark consists of
767 P/T nets. We used the formulas provided in the CTL category. For
every net, 32 CTL formulas are provided. This results in 24544 individual
veri�cation problems.
Experiments were executed on a machine with 32 physical cores running at
2.7 GHz and 1 TB of RAM. All computations were done with no time and
memory restrictions.
For 3704 problems (15.1 %), the initial rewriting process yielded a formula
that does not contain any temporal operator. Here, su�ciently many atomic
propositions have been found to be invariantly true or false due to the formula
simpli�cations described in this section and in [7]. Resulting formulas can be
evaluated by just inspecting the initial marking, so no actual run of a model
checker is necessary. This relieves a CTL model checker signi�cantly.

8.3 Discussion

We proposed to relieve the model checking algorithms by providing formula
simpli�cation. We implemented all proposed techniques in our proof-of-
concept model checker LoLA. Experiments show that 15.1 % of all queries
could be solved using the introduced methods. Thus, we successfully handled

117

two of our research challenges: formula simpli�cation and improving model
checking e�ciency.
Designing structural reductions is an active research area, because structural
reduction is a powerful method to reduce the size of the speci�cation (and
the model). One fact that highlights the power of structural reduction tech-
niques is that LoLA (with formula simpli�cation) scored in the reachability
category of the MCC 2019 behind TAPAAL and the same LoLA combined
with the structural reduction techniques of ITS-Tools proposed by Thierry-
Mieg in [123] scored in the MCC 2020 as ITS-LoLA better than TAPAAL.
Therefore, �nding additional structural reductions is ongoing work.

118

Part IV

Partial order reduction

119

This part is solely concerned with partial order reduction (POR) techniques
to tackle the state explosion problem for certain classes of temporal logic.
POR is based on the observation that concurrent and independent running
processes of the model contribute extensively to the state explosion problem,
while having only little in�uence on the property preservation of individual
processes.
There exist several instances of partial order reduction: ample sets [97], per-
sistent sets [49], and stubborn sets [127]. The essence of all of them is, while
building the state space, to compute for every state a subset of transitions,
called aps set, and only �re those transitions to reach other states. This
reduces the state space.
When using partial order reduction there exist several di�erent approaches to
preserve entire classes of properties, such as CTL [48] or LTL [129]. Further-
more, several methods from the literature preserve only certain properties,
e.g., deadlocks [127], reachability [70], or liveness and other standard proper-
ties [109]. For an introduction and an exhaustive overview of POR methods,
the reader is referred to [130].
Partial order reduction appears to be a powerful reduction technique. Our
explicit model checker LoLA [142] solves around 70 % of the queries in the
reachability category of the MCC benchmark without and around 90 % with
partial order reduction techniques. Thus, POR allows to solve 2⁄3 of the 30 %
really hard-to-solve queries. In addition, queries that can be solved without
POR, are usually solved faster and with a smaller memory footprint if POR
is applied. Thus, it makes sense to push the theoretical limits of POR to
reach as good reduction as possible.
The remainder of this part is organized as follows. Chapter 9 recalls the
basic notions of the stubborn set method, which we will use in the following
chapters. Chapter 10 is dedicated to the introduction of new automata-based
stubborn sets for LTL. In chapter 11, we present stubborn sets for special
CTL formulas.

120

Chapter 9

The stubborn set method

For self-containedness, we recall the basic notions of the stubborn set method
from the literature in this chapter. More precisely, we repeat the basic prin-
ciples used for stubborn sets and the selection of principles used for property
preservation. We use these notions in the next two chapters where we in-
troduce our stubborn set approaches for LTL and CTL, respectively. The
chapter is based on our publications [76] and [79].
Partial order reduction is a technique to reduce the state space size of systems,
while preserving certain properties. The stubborn set method [126,127,130]
is an instance of partial order reduction. Other instances of partial order
reduction are ample sets [97] and persistent sets [49]. The essence of all of
them is, while building the state space, to compute for every state a subset
of transitions, called aps set, and only �re those transitions to reach other
states. More precisely, let N be a P/T net and φ a property, the partial
order method aims at producing a subgraph G′ of the reachability graph G
of N such that the evaluation of φ on G′ yields the same value as on G. To
this end, a set aps(m) of transitions is assigned to every marking m, and only
enabled transitions in aps(m) are �red to explore G′.
In the remainder, we are concerned with the stubborn set approach. The
reason for this is that stubborn sets push the theoretical limits to reach �as
good reduction as possible, while ample and persistent sets have favored
straightforward easily implementable conditions and algorithm� [132]. For
more details regarding this subject the reader is referred to [132].
Over the years, a consistent systematic has emerged for presenting stub-
born set methods. There is a list of principles that governs the selection of
stubborn sets. Each principle comes with an algorithmic approach for the
computation of a stubborn set that obeys that principle. Finally, there is a
list of results stating that, if G′ is computed using stubborn sets that meet
some selection of principles, all properties of a certain class of properties are

121

preserved. We only list principles and results that we need for our consid-
erations below. Our focus here is not stubborn set theory as such but LTL
and CTL model checking technology. For this reason, we selected principles
that are more understandable. For stronger results on stubborn sets, the
reader is referred to [48, 70, 130, 132]. We will also completely skip the al-
gorithmic approaches as they are not necessary for our argumentation. For
implementation details, the reader is referred to [137].
In this chapter, we start with a motivating example in Section 9.1. In Sec-
tion 9.2, we formalize and systematize the principles used for stubborn sets.
Section 9.3 is concerned with the selection of principles to preserve certain
classes of properties. In Section 9.4, we show how to use our data structure
DI(N) from Chapter 7 for a faster computation of stubborn sets.

9.1 Motivational example

Let N = (P, T, F,W,m0) be a P/T net with T = {t1, t2} and the reachability
graph TS illustrated in Figure 9.1. We want to check if marking m3 satis�es
some property φ. There are two independent paths t1t2 and t2t1 in TS that
both reachm3. This means, if only the reachability ofm3 counts, then the set
of transitions to explore in m0 can be reduced to either t1 or t2, respectively.
Here we choose t1, which is the blue solid path in Figure 9.1. Since we do
not follow t2, highlighted by the red dashed path, we reach the intermediate
marking m1 but not m2. The exploration continues from m1 with the only
enabled transition t2 and reaches m3. Because m2 is never explored the state
space is reduced.

m0

m1

m3 |= φ?

t1 t2

m2t2 t1

Figure 9.1: Verify property φ in m3 in the reachability graph of N .

9.2 Principles

In this section, let N = (P, T, F,W,m0) be an arbitrary, �xed P/T net with
reachability graph (M,E) and φ a property. The stubborn set method aims
at producing a small subgraph (M ′, E ′) of the reachability graph (M,E),
such that the evaluation of φ on (M ′, E ′) yields the same truth value as on

122

(M,E). In most cases, we assume that there is a path π in (M,E) (e.g., a
witness path or a counterexample) and show that (M ′, E ′) contains a path π′

that is equally �t with respect to φ. We �rst de�ne a mechanism to restrict
the set of transitions in each marking to a so-called stubborn set.

Stubborn set generator.
A function stub :M → 2T is called stubborn set generator and produces the
reduced reachability graph (M ′, E ′) such that (m,m′) ∈ E ′ ⇐⇒ m

t−→ m′

for a transition t ∈ stub(m). M ′ is the set of markings, which can be reached
from the initial marking by only �ring transitions from stub(m) in marking
m.

With this, the stubborn set generator allows us to select any subset of tran-
sitions in any marking without any restrictions. This is certainly not useful
if we want to verify a given property, because a random choice would most
likely not preserve the studied property. The goal is to reduce the state space
as much as possible, while choosing the subset in a way that the property
under investigation is preserved. For this, a set of principles (requirements)
were introduced in the literature. Each requirement has a speci�c purpose
for property preservation. We �rst introduce the principles, before we show
how to preserve properties in the next section.
The �rst principle is commutativity, which is at the heart of all POR methods.

De�nition 9.2.1 (COM: The commutativity principle).
For a stubborn set generator stub : M → 2T and a marking m ∈ M ,
stub(m) ⊆ T satis�es the commutativity principle (COM for short) if, for

all ω ∈ (T\ stub(m))∗ and all t ∈ stub(m), m
ωt−→ m′ implies m

tω−→ m′.

The main purpose of COM is that π′ may execute transitions in another
order than π. The �ring of transitions, outside of the stubborn set, can be
postponed. Figure 9.2 illustrates this situation. After �ring transition t in
marking m and reaching m1, it is still possible to �re ω in m1. In the end,
both paths tω and ωt lead from m to m3.

m m2

m1 m3

ω

t

ω

t

Figure 9.2: Graphical representation of COM.

The next requirement is the key transition principle.

123

De�nition 9.2.2 (KEY: The key transition principle).
For a stubborn set generator stub : M → 2T and a marking m ∈ M ,
stub(m) ⊆ T satis�es the key transition principle (KEY for short) if m
does not enable any transition or it contains a transition t′ (a key transi-
tion) such that, for all ω ∈ (T \ stub(m))∗, m

ω−→ m′ implies that t′ is enabled
in m′.

KEY ensures that there is an enabled transition that can be switched to the
beginning of a transition sequence. The purpose of KEY (in connection with
COM) is that π′ may contain transitions that are not occurring in π. In more
detail, KEY states that there is a transition t′ in the stubborn set which is
enabled before and after �ring a sequence ω outside of the stubborn set. This
is illustrated in Figure 9.3.

m m′ω

t′ t′

Figure 9.3: Graphical representation of KEY.

Before we continue with the next requirement, we introduce the invisibility
property.

De�nition 9.2.3 (Invisibility property).
A transition t is invisible with respect to a formula φ regarding a set of
transitions T ′ ⊆ T , if

(m
ω−→ m′ ∧m tω−→ m′′) =⇒ (m′ |= ϕ ⇐⇒ m′′ |= ϕ)

holds for all atomic propositions ϕ occurring in φ, all markings m ∈M , and
all �nite sequences ω ∈ (T ′)∗. Otherwise, the transition t is called visible
with respect to φ regarding T ′.

Transitions that are able to change the truth value of an atomic proposition
ϕ occurring in φ are visible. Transitions that can not change any ϕ are
invisible. This means, �ring a sequence of invisible transitions will have no
e�ect on the truth value of φ. Using the invisibility property, we are able to
introduce the visibility principle.

De�nition 9.2.4 (VIS: The visibility principle).
For a stubborn set generator stub : M → 2T and a marking m ∈ M ,

124

stub(m) ⊆ T satis�es the visibility principle (VIS(φ) for short) for a property
φ if stub(m) contains only invisible transitions with respect to φ regarding
(T \ stub(m)), or all transitions.

The main purpose of VIS(φ) is that if visible transitions appear in π′, then
they appear in the same order as in π. VIS(φ) ensures the same ordering
of transitions, but it can introduce stuttering (see De�nition 3.3.2). As an
example, consider the property φ = F(p2 > 0) which should hold in the
P/T net of Figure 9.4. Transition t1 can change the truth value of φ. More
precisely, if t1 �res, it produces one token on p2 and with this, φ is satis�ed.
This means, there are two valid stubborn sets inm0. The �rst one is {t2} and
contains only invisible transitions. The second one is {t1, t2}. If we choose
{t2} as stubborn set, we reach the same marking m0 again after �ring t2. We
could now in�nitely often choose t2 as stubborn set. This results in in�nite
stuttering, while we ignore t1 inde�nitely.

p1 t1 p2 p3 t2

Figure 9.4: Example P/T net for the graphical representation of VIS(φ)
and IGN.

To avoid in�nite stuttering, we introduce the non-ignoring principle.

De�nition 9.2.5 (IGN: The non-ignoring principle).
A stubborn set generator stub : M → 2T satis�es the non-ignoring principle
(IGN for short) if every cycle in the reduced reachability graph contains a
marking where all enabled transitions are explored.

IGN is used to ensure that all transitions of π are eventually occurring in
π′. The concept behind IGN is that if a marking m is the start of a cycle
in the reachability graph, then in at least one marking m′ in the cycle all
enabled transitions have to be explored. In other words, stub(m) consists of
all enabled transitions in m′ that can leave the cycle.
The branching principle is concerned with the preservation of the correct
branching structure of a CTL formula.

De�nition 9.2.6 (BRA: The branching principle).
For a stubborn set generator stub :M → 2T and a marking m ∈M , stub(m)
satis�es the branching principle (BRA for short) if stub(m) contains a single
enabled transition, or all enabled transitions of m.

125

BRA is applied to ensure that visible transitions are not swapped with
branches in the state space other than branches that are introduced by con-
currency. The branching principle enables reduction only in markings where
just one (invisible) enabled transition is su�cient to meet all other principles.
The last principle we are considering is state oriented and is called the up-set
principle.

De�nition 9.2.7 (UPS: The up-set principle).
For a marking m and a CTL property φ such that m ̸|= φ, U is an up-set if
every path from m to a marking that satis�es φ contains an element of U .
For a stubborn set generator stub :M → 2T and a marking m ∈M , stub(m)
satis�es the up-set principle with respect to φ if m |= φ or U ⊆ stub(m), for
some up-set U .

The up-set principle is useful in the following situation: Let us consider that
we have a set M of states. Then the up-set principle should preserve M in
the sense that the reduced state space contains elements of M if and only if
the original state space does. For a particular marking m, this means that if
a marking m′ is reachable from m in the full reachability graph, then at least
one transition sequence leading from m to m′′ ∈ M should be part of the
reduced reachability graph. This means, the up-set principle ensures that
the stubborn set at m will always contain a transition of π.
For example, consider the property φ = p < k. If we are in a marking m and
want to reach {m′|m′ |= φ}, then the up-set consists of all transitions in the
post-set of p, because these transitions are the only ones that can reduce the
number of tokens on p to satisfy φ.
There are some more principles, but they are not needed for this thesis.
See [48, 70,130,132] for the details.

9.3 Property preservation

Combining the principles from the previous chapter in a speci�c way, results
in the preservation of certain property classes. In this section, let φ be the
investigated property, N = (P, T, F,W,m0) an arbitrary, �xed P/T net with
reachability graph (M,E), and (M ′, E ′) the reduced reachability graph.
The �rst property we look into is the deadlock property.

Proposition 9.3.1 (Preservation of deadlocks, [127]). If the principles COM
and KEY are satis�ed then (M ′, E ′) contains all deadlocks and at least one
in�nite path of the original reachability graph.

126

The next property we consider are terminal strongly connected components.
For the preservation of TSCCs, we need to avoid in�nite stuttering and there-
fore non-ignoring is needed.

Proposition 9.3.2 (Preservation of TSCCs, [131]). If the principles COM,
KEY, and IGN are satis�ed then (M ′, E ′) contains at least one marking of
every TSCC of the original reachability graph.

For the preservation of an LTL formula φ, we need COM, KEY, IGN, and
the visibility principle. Also, we have to restrict LTL to stutter-invariant
formulas.

Proposition 9.3.3 (Preservation of LTL−X, [97, 130]). Let φ be an LTL
property not using the X-operator. If the principles COM, KEY, IGN, and
VIS(φ) are satis�ed then φ is preserved.

We call the previous proposition the conventional LTL−X POR method.
To preserve a CTL property φ, we add the branching principle to the mix.

Proposition 9.3.4 (Preservation of CTL−X, [48]). Let φ be a CTL property
not using the X-operator. If the principles COM, KEY, IGN, VIS(φ), and
BRA are satis�ed then φ is preserved.

To preserve reachability, we only need COM and the up-set principle. This
is because UPS preserves target markings for (M ′, E ′) if and only if they are
reachable in (M,E).

Proposition 9.3.5 (Preservation of reachability, [70,109]). Let φ be a CTL
formula without temporal operators. If the principles COM and UPS(φ) are
satis�ed then EFφ is preserved.

9.4 Using DI(N) for stubborn set computations

Even though, the focus in this thesis does not lie on implementing stubborn
sets, we still show how to speed up the computation of stubborn sets with
the data structure DI(N) introduced in Chapter 7
In practice, there are basically two methods to compute stubborn sets, al-
though there exist some more theoretical approaches [137]. The deletion
method [128,137] starts with all transitions as stubborn candidate and then
iteratively deletes unnecessary transitions, until the set is minimal. Here,
minimal means that no subset of its enabled transitions, ful�lling all require-
ments, can be the set of enabled transitions of any other possible stubborn
set. The second one is the incremental method [126, 137], which starts with

127

a single transition as stubborn candidate and adds more transitions until a
proper stubborn set is found.
The deletion method has its strength when applied to negative (not reach-
able) formulas, because the resulting state space is in general smaller. On
the other hand, goal-oriented stubborn sets [70] based on the incremental
method tend to perform better in case of positive (reachable) formulas. The
reason for this is that this version of stubborn sets can be computed extremely
fast and thus, many more states can be explored in a certain time [141]. In
addition, the goal-orientation, introduced by UPS steers the state space ex-
ploration towards the witness state faster and produces short witness paths
in many examples. Experiments have shown that the performance of goal-
oriented stubborn sets is in general better than the performance of other
methods [141].
For the computation of goal-oriented incremental stubborn sets, DI(N) can
be used for acceleration. More precisely, to di�erentiate between transitions
in and outside of a stubborn set stub(m) of a marking m, which is necessary
to satisfy the commutative principle, the set of con�icting transitions, de�ned
as {(•t)•} regarding transitions t ∈ stub(m), have to be computed. For this,
the closure or the marking-dependent relation [132] between transitions needs
to be built.

De�nition 9.4.1 (Closure of transitions [136]).
Let N = (P, T, F,W,m0) be a P/T net, t ∈ T a transition, m a marking,
and stub(m) a stubborn set in m.

� If t is enabled in stub(m), then include every so-called con�icting tran-
sition t′ ∈ (•t)• into stub(m) as well.

� If t is disabled in stub(m), then choose pt ∈ •t such that m(pt) <
W (pt, t) and include every t′ ∈ •pt into stub(m) as well.

Note, if more than one pt with m(pt) < W (pt, t) exist, only one is randomly
chosen. The performance does not depend on the choice [136]. The set of
con�icting transitions for a transition t is frequently needed in stubborn set
computations. Every time we add an enabled transition to the stubborn set,
we have to check if there are con�icting transitions. However, the con�icting
transitions can be directly read from DI(N) and therefore, after DI(N) has
been preprocessed, the computational time is greatly reduced.

128

Chapter 10

Automata-based partial order

reduction for LTL

In the previous chapter, we recalled stubborn set theory as an instance of
partial order reduction from the literature. This chapter introduces our new
Büchi automata-based POR for LTL. It is a generalization and extension of
ideas proposed in [64] and [75]. Some remarks in this chapter are inspired
by [64]. We have published this method with its results in [76]. The following
chapter is based on this publication.
In conventional LTL model checking with POR the state space is �rst re-
duced, and then together with the Büchi automaton B of the (negated) for-
mula a product automaton B∗ is built. The actual veri�cation is then carried
out in B∗. In [75] Lehmann et al. proposed to �rst build B∗ with the origi-
nal state space and subsequently reduce B∗ with the additional information
available from B. To the best of our knowledge, the idea of using information
from the Büchi automaton to reduce the state space was �rst presented by
Peled et al. in [98]. However, the idea has received little attention since then.
We propose a new automata-based stubborn set method that uses the addi-
tional information available from B. The main idea is to focus the reduction
of B∗ to the current Büchi state q, i.e., all considerations regarding the for-
mula are done locally around q. This gives rise to the main principle we
use to achieve additional reduction power: all transition sequences, which
do not use transitions from the stubborn set, cannot leave the current Büchi
state. As long as the outgoing formulas from q are not ful�lled, B and thus
B∗ remain in q and it can be reduced. With this, we are able to weaken
or drop several requirements used in conventional LTL POR. Often, Büchi
automata only consist of very few states compared to the number of states of
the system. The formulas in the MCC, although arti�cial, rarely have more
than 5 � 10 Büchi states. This is also consistent with our experience of real

129

world use cases using our model checker LoLA [142].
The remainder of this chapter is organized as follows. Section 10.1 updates
the list of principles. We introduce a new principle and drop or weaken
some existing ones. Section 10.2 continues with the introduction of our new
automata-based stubborn set method. In Section 10.3, we show the e�ective-
ness of the newly introduced method with several examples. We analyze the
reduction power and compare it with the reduction e�ciency of conventional
POR. We conclude this chapter with some remarks regarding related work
and some thoughts on future work in Section 10.4.

10.1 Updated principles

In this chapter, let N = (P, T, F,W,m0) be an arbitrary, �xed P/T net with
reachability graph (M,E), and B = (Q,Q0, δ, λ,QF) be the Büchi automaton
of a negated input LTL formula φ. Remember that Proposition 4.4.2 stated
that φ can be transformed to B and that B accepts exactly those paths which
violate φ. B has at most 2φ states [134].
A stubborn set generator used in conventional LTL−X POR is a function
stub : M → 2T . This means, the state space of a P/T net is reduced �rst
and then the product automaton B∗ is built with the reduced state space.
Compared to this, Lehmann et al. [75] proposed to use B for the stubborn
set generator, too. Therefore, they change the stubborn set generator. Then,
stub : M × Q → 2T . The extra information from B can be used to weaken
some stubborn set requirements. With weaker requirements, we have more
options to choose the respective transition set and thus, the chance of better
reduction. The procedure is to �rst build the product automaton on-the-�y
with the full reachability graph and then to reduce the product automaton
with the additional information available from the Büchi automaton.
However, the stubborn set method from Lehmann et al. was only able to
solve a certain class of Büchi automata, namely elementary Büchi automata.
Elementary Büchi automata consist of a non-branching sequence of states,
which may or may not have self loops and in addition, the last state is a
�nal state. Although there are interesting properties in this class, such as
G (φ =⇒ Fψ), it is still a restriction.
As starting point for our following considerations, we use the stubborn set
generator stub : M × Q → 2T and conventional LTL POR (see proposi-
tion 9.3.3) that uses the principles COM, KEY, IGN, and VIS(φ) to preserve
LTL−X. Our main idea is to restrict the scope of the formula under investi-
gation to the current Büchi state q. All considerations regarding the formula
are done locally around q.

130

q

q1

q2

qh

...

ψ

φ1

φ2

φh

...

χ1

χ2

χn

υ1

υ2

υm

Figure 10.1: The scope of the formula is restricted to the current Büchi
state q, its retarding formula ψ, and its progressing formulas φi, i ∈ [1, h].

To illustrate this, let us consider the Büchi automaton from Figure 10.1.
Assume we are in state q. We restrict the scope of the formula to:

1. the self loop ψ leading from q to q, and

2. the progressing (outgoing) formulas φi, i ∈ [1, h] leading from q to new
Büchi states qi.

When we are in q, we do not care about all the other parts of the formula,
i.e., χj, j ∈ [1, n], and υk, k ∈ [1,m]. This leads us to the main principle for
the reduction. We call it the non-leaving principle:

All transition sequences, which do not use transitions from the
stubborn set, cannot leave the current Büchi state.

Let us formalize this. The formula φ can consist of several atomic subfor-
mulas. Let q ∈ Q be a Büchi state and ψ = λ(q, q) be the formula of the
self loop q → q, which we call the retarding formula. Furthermore, let h
be the number of outgoing arcs from q that are progressing to new Büchi
states, and let φi, i ∈ [1, h] be the formulas of the outgoing arcs, which we
call progressing formulas. Now we are able to formalize the main principle
for the reduction.

De�nition 10.1.1 (NLG: The non-leaving principle).
For a stubborn set generator stub : M × Q → 2T , a marking m ∈ M and
a Büchi state q ∈ Q, stub(m, q) ⊆ T satis�es the non-leaving principle
(NLG for short) if m

ω−→ m
′

=⇒ m
′ ̸|= φi for all i ∈ [1, h] and for all

ω ∈ (T \ stub(m, q))+.

It holds that no transition sequence, from the set of transitions which are
outside of the stubborn set, can satisfy a progressing formula. For example,

131

consider the progressing formula φi = p < 1, which means that place p must
have less than one token on it. Then each transition t that is in the post-set
of p must be part of the stubborn set, since t can remove tokens from p and
thus might change the truth value of φi from false to true.
As long as the outgoing formulas from q are not ful�lled, the Büchi automaton
and thus the product system remain in state q and it can be reduced. With
NLG some requirements from the conventional LTL POR can be weakened
or even dropped, resulting in several advantages of the new stubborn set
method.

Invisibility principle

Since all considerations regarding the formula φ are done locally around
the current Büchi state, all other parts of φ can be ignored. Hence, the
invisibility property can be simpli�ed. In the general version of the property,
the in�uence of atomic subformulas ϕ regarding the result of φ is dependent
on the temporal progression and not further known. This means, the truth
value of ϕ must be preserved in both directions, (m |= ϕ ⇐⇒ m′ |= ϕ).
In the automata-based reduction, nevertheless, all temporal operators are
expressed in the state transitions of B and with this, the in�uence of ϕ
is determined. A satis�ed formula allows a progression to another state q′,
however, it has no in�uence on other state transitions. Thus, we can simplify
the invisibility property to an �uni-directional� implication, (m |= ϕ =⇒
m′ |= ϕ). This means, a transition, which changes ϕ from true to false, is not
allowed, but a transition, which makes ϕ only �more true�, is admissible.

De�nition 10.1.2 (Semi-invisibility property).
A transition t ∈ T is called semi-invisible with respect to an LTL formula φ
regarding a set of transitions T ′ ⊆ T , if

(m
ω−→ m′ ∧m tω−→ m′′) =⇒ (m′ |= ϕ =⇒ m′′ |= ϕ)

holds for all markings m ∈ M , all �nite transition sequences ω ∈ (T ′)∗ and
all atomic subformulas ϕ of φ. Otherwise the transition t is semi-visible with
respect to ϕ regarding T ′.

As a consequence, we can weaken the visibility principle and introduce the
semi-invisibility principle.

De�nition 10.1.3 (S-INV: Semi-invisibility principle).
For a stubborn set generator stub : M × Q → 2T , a marking m ∈ M and a
Büchi state q ∈ Q, stub(m, q) ⊆ T satis�es the semi-invisibility principle (S-
INV for short) for an LTL formula φ, if all enabled transitions t ∈ stub(m, q)

132

are semi-invisible with respect to φ regarding (T \ stub(m, q)), or all transi-
tions t ∈ (T \ stub(m, q)) are semi-invisible with respect to φ regarding the
empty set.

Non-ignoring principle and LTL−X

Since the reduction is only applied within a Büchi state q, stuttering becomes
irrelevant. Finite stuttering within q does not change the accepting behavior,
and in�nite stuttering can always be avoided, if this was possible in the
original product automaton due to the reduction principle. Consequently, the
non-ignoring principle can be dropped. In addition, due to the irrelevance
of stuttering, the restriction to LTL−X can be dropped as well. Our new
method preserves the full class of LTL. Because of the additional information
available from B and because the reduction is only applied to q, we know
if q is transient or not. In fact, transient Büchi states can only appear,
if an atomic proposition is checked without any temporal operators, or as
representatives of X-operators of φ.

Key-transition principle

In accepting states, in�nite stuttering is possible and even desired. However,
it always needs to be ensured that there exists an enabled transition to pro-
long the path to an in�nite path. Hence, KEY has to hold only in accepting
states. If the current Büchi state q is not accepting, then only transition
sequences from the stubborn set can leave q. And since q is not an accepting
state, this implies that we will change the Büchi state at some point in the
future of the considered path. It follows, for non-accepting states that KEY
does not have to hold, because each transition sequence leaving the current
Büchi state contains a transition from the stubborn set. This follows directly
from the non-leaving principle.

To get the advantage of the weakened or dropped requirements, we have to
uphold the main principle, that all transition sequences, which do not use
transitions from the stubborn set, cannot leave the current Büchi state. As
long as the progressing formulas are not satis�ed, we are staying in the same
Büchi state and can reduce further. This is also useful since the Büchi au-
tomaton for the LTL formula is usually very small, compared to the transition
system.

133

10.2 Automata-based stubborn sets for LTL

After we have introduced the main ideas for our new automata-based stub-
born set method for LTL, we can present the main result of this chapter.

Theorem 10.2.1 (Büchi automata-based partial order reduction). Given is
a Büchi automaton B = (Q, qs, δ, λ,QF) and a P/T net N = (P, T, F,W,ms)
with reachable markingsM , let stub :M×Q→ 2T be a stubborn set generator
with the following properties:

1. stub(m, q) satis�es COM;

2. stub(m, q) satis�es S-INV with respect to ψ = λ(q, q);

3. stub(m, q) = T or ∀t ∈ stub(m, q) : m
t−→ m

′
=⇒ m

′ |= ψ;

4. stub(m, q) satis�es NLG;

5. If q ∈ QF , then stub(m, q) satis�es KEY.

There exists an in�nite accepting path in the reduced product system P (see
De�nition 4.4.5), which is generated by stub, if and only if there exists an
in�nite accepting path in the original product system P.

Proof. =⇒: The reduced state space P is a subsystem of the original state
space P . This means, accepting paths in P trivially imply the same accepting
paths in P .
⇐=: Let π ∈ (M × Q)∞ be an in�nite accepting path in P . Assume P has
no in�nite accepting path. We can separate π in π1π2 such that π1 is the
largest pre�x that can be executed in P . Let (m, q) be the last state in π1.
Furthermore, let (mi, qi), i ∈ N be the state sequence in π2 and t0t1 . . . the

sequence of transitions that induce π2 from (m, q) such that m
t0...ti−−−→ mi.

qs −→ (ms, qs) −→ (m, q)⏞ ⏟⏟ ⏞
π1

t0−→ (m0, q0)
t1...ti−−−→ (mi, qi)⏞ ⏟⏟ ⏞
π2

Since (m, q) is the last state in π1, it follows that t0 /∈ stub(m, q). Because
t0 /∈ stub(m, q), requirement 4 (NLG) implies that q = q0. We consider two
cases. First, q is part of the accepting set of B and we do not change the
Büchi state any more. Second, the Büchi state is changed at least once more
on the remaining path.
Case 1: ∀i ∈ N : qi = q:

134

All states in π2 remain in the same Büchi state q, i.e., ∀i ∈ N : qi = q. This
means, q is in the accepting set of B and all markings in π2 satisfying the
retarding formula, i.e., ∀i ∈ N : mi |= ψ.

qs −→ (ms, qs) −→ (m, q)⏞ ⏟⏟ ⏞
π1

t0−→ (m0, q)
t1...ti−−−→ (mi, q)⏞ ⏟⏟ ⏞
π2

We consider two sub-cases. First, we assume that there exists a transition ti
in stub(m, q). And second, we assume that there is no such ti in stub(m, q).
Case 1.1: ∃ti ∈ stub(m, q):
Assume there is a transition ti ∈ stub(m, q). We choose the smallest such

i, which means that m
t0...ti−−−→ mi with ti ∈ stub(m, q) and t0, . . . , ti−1 /∈

stub(m, q). Using requirement 1 (COM), we switch ti to the front of the

path and it holds that m
tit0...ti−1−−−−−→ mi.

qs −→ (ms, qs) −→ (m, q)⏞ ⏟⏟ ⏞
π1

tit0...ti−1−−−−−→ (mi, q)⏞ ⏟⏟ ⏞
π2

The following two cases show that requirement 4 (NLG) implies that all
transitions t0, . . . , ti−1 are satisfying the retarding formula ψ.
Case 1.1.1: ti is semi-invisible with respect to ψ:
Requirement 2 (S-INV) ensures, if ti is semi-invisible regarding ψ, then all
states along the new path tit0 . . . ti−1 are satisfying ψ.
Case 1.1.2: m ̸|= ψ:
Otherwise, requirement 2 (S-INV) states that all transitions t0, . . . , ti−1 are
semi-invisible regarding ψ and together with the fact that requirement 3 en-
sures that ti satis�es ψ, all states along the new path tit0 . . . ti−1 are satisfying
ψ.
In both cases 1.1.1 and 1.1.2 the path π1 is extended by one state and has
an in�nite accepting continuation in P .

qs −→ (ms, qs) −→ (m, q)
ti−→ (m′, q)⏞ ⏟⏟ ⏞

π1

t0...ti−1−−−−→ (mi, q)⏞ ⏟⏟ ⏞
π2

Case 1.2: ∄ti ∈ stub(m, q):
Assume there is no transition ti ∈ stub(m, q). Since q is in the accepting
set of B, requirement 5 (KEY) ensures that there exists a key-transition

t′ ∈ stub(m, q) such that m
t′t0...−−−→ is executable in N .

qs −→ (ms, qs) −→ (m, q)⏞ ⏟⏟ ⏞
π1

t′−→ (m∗, q)
t0...−−→⏞ ⏟⏟ ⏞

π2

135

It follows the same argumentation as in cases 1.1.1 and 1.1.2. The following
two cases show that requirement 4 (NLG) implies that t0, . . . are all satisfying
the retarding formula ψ.
Case 1.2.1: t′ is semi-invisible with respect to ψ:
Requirement 2 (S-INV) ensures, if t′ is semi-invisible regarding ψ, then all
states along the new path t′t0 . . . are satisfying ψ.
Case 1.2.2: m ̸|= ψ:
Otherwise, requirement 2 (S-INV) states that all transitions t0, . . . are semi-
invisible regarding ψ and together with the facts that t′ ∈ stub(m, q) and
that requirement 3 ensures that t′ satis�es ψ, all states along the new path
t′t0 . . . are satisfying ψ.
In both cases 1.2.1 and 1.2.2 the path π1 is extended by one state and has
an in�nite accepting continuation in P .

qs −→ (ms, qs) −→ (m, q)
t′−→ (m′, q)⏞ ⏟⏟ ⏞

π1

t0−→ (m0, q)
...−→⏞ ⏟⏟ ⏞

π2

This construction can now be repeated as often as necessary to get an in�nite
accepting path in P , contradicting the assumption that π1 is the longest
executable pre�x.
Case 2: ∃n ∈ N ∃(mn, qn) : qn ̸= q:
There exists a state (mn, qn) which is leaving the current Büchi state, that
is qn ̸= q. Let qn the �rst such state, then it holds that ∀i < n : qi = q and
mn |= φj, for a j ∈ [1, h]. Requirement 4 (NLG) ensures that there exists
a ti where i ∈ [0, n] with ti ∈ stub(m, q). Using requirement 1 (COM) we
switch ti to the front of the path.

m
tit0...ti−1−−−−−→ mi

ti+1...tn−−−−→ mn

It follows the same argumentation as in cases 1.1.1 and 1.1.2. The follow-
ing two cases show that requirement 4 (NLG) implies that all transitions
t0, . . . , ti−1 are satisfying the retarding formula ψ.
Case 2.1: ti is semi-invisible with respect to ψ:
Requirement 2 (S-INV) ensures, if ti is semi-invisible regarding ψ, then all
states along the new path tit0 . . . ti−1 are satisfying ψ.
Case 2.2: m ̸|= ψ:
Otherwise, requirement 2 (S-INV) states that all transitions t0, . . . , ti−1 are
semi-invisible regarding ψ and together with the fact that requirement 3 en-
sures that ti satis�es ψ, all states along the new path tit0 . . . ti−1 are satisfying
ψ.

Hence, the continuation m
tit0...ti−1−−−−−→ mi

ti+1...tn−−−−→ describes an in�nite accept-
ing path in P with the same sequence of traversed Büchi states, where now at

136

least one more state is executable in P . This construction can be repeated
at most n-times to �nd an in�nite accepting path in which all transitions
t0 . . . tn are executable in P , but possibly in a di�erent order. This in�nite
accepting path leaves q and changes to qn. For the new Büchi state qn we
can apply the construction according to case 1 or case 2 again such that an
executable in�nite accepting path in P is formed. This contradicts the initial
assumption on the choice of π.

10.3 Comparison

This section compares the new automata-based approach with the conven-
tional LTL−X POR. We demonstrate for each weakened requirement po-
tential gains in the reduction. For simplicity, we assume that the di�erent
formulas φi are already negated.
The �rst restriction, we can drop, is the restriction to stuttering invariant
formulas. A model checker using the conventional LTL−X POR cannot apply
it for formulas containing the X-operator. In the benchmark from the 2019
edition of the MCC [68] the X-operator occurred in more than 25 % of the
formulas of the LTL category. These formulas are now accessible by POR
using our new automata-based stubborn set approach.

i1 i2 in

t1 t2 tn

o1 o2 on

. . .

Figure 10.2: A system modeled as P/T net with n concurrent processes.

For the next comparisons, we use the P/T net in Figure 10.2. It models
a system of n ∈ N concurrent processes. Each process has one transition
tj, j ∈ [1, n], one input pre place ij, and one output post-place oj. The state
space consists of 2n markings with 2n2n edges. Note, if one utilizes on-the-
�y strategies for the veri�cation the following �rst two examples have only n

137

states, regardless of whether and which POR method is used. Nevertheless,
we choose these examples due to their simplicity and the fact that they
emphasize the possible reduction power of the new method.
In this section, let B∗ be the corresponding product automaton.

q0 q1

tt tt
n⋀︁
j=1

oj = 1

Figure 10.3: Büchi automaton for LTL formula:

φ1 = F
(︂⋀︁n

j=1 oj = 1
)︂
.

As �rst example, we consider the LTL formula φ1 = F
(︂⋀︁n

j=1 oj = 1
)︂
. The

corresponding Büchi automaton is shown in Figure 10.3. The original visi-
bility property based on De�nition 9.2.3 states that each transition is visible
to φ1, i.e., each transition tj produces a token on oj. This means, there is no
reduction possible. The reduced state space contains 2n markings and is the
same as the original state space. Therefore, B∗ has 2n + 2 reachable states:
the initial state, 2n states in q0, and one state in q1.
However, in the automata-based approach each transition is semi-invisible
in both Büchi states q0 and q1. The reason for this is that based on De�-
nition 10.1.3 (S-INV), we only care for the retarding formula which in this
case is always true. We see here the sizable e�ect of the weakened visibility
principle. In q0 any singleton set {tj} is a valid stubborn set, as long as
oj does not contain a token. Without �ring tj the q0 cannot be left. And
besides this, all other transitions are independent of each other. The reduced
product automaton has only n + 3 reachable states: the initial state, n + 1
chain-shaped states in q0, and one state in q1.
The exponential reduction from 2n+2 to n+3 is based on the restriction of
the visibility.

LTL formula φ2 =
(︂⋀︁n

j=1 oj = 0
)︂
U

(︂
G

(︂⋁︁n
j=1 oj = 1

)︂)︂
is our second exam-

ple and has the corresponding Büchi automaton shown in Figure 10.4. Again,
according to De�nition 9.2.3 each transition in φ2 is visible and, as such, no
reduction can be applied. This leaves B∗ with 2n + 1 reachable states: the
initial state, one state in q0, and 2n − 1 states in q1.
Using the new approach, no reduction is possible in q0 based on the S-INV,
because each transition can leave q0. But in q1 reduction is possible, since all
transitions are semi-invisible. With this, any singleton stubborn set {tj} is

138

q0 q1

n⋀︁
j=1

oj = 0
n⋁︁
j=1

oj = 1

n⋁︁
j=1

oj = 1

Figure 10.4: Büchi automaton for LTL formula:

φ2 =
(︂⋀︁n

j=1 oj = 0
)︂
U

(︂
G

(︂⋁︁n
j=1 oj = 1

)︂)︂
.

valid, as long as oj is empty. The reduced B∗ has only n(n+1)
2

+ 2 reachable

states: the initial state, one state in q0, and
n(n+1)

2
states in q1.

q0 q1

tt tt

i1 = 2 ∧
n⋀︁
i=2

oj = 1

Figure 10.5: Büchi automaton for LTL formula:

φ3 = F
(︂
i1 = 2 ∧

⋀︁n
j=2 oj = 1

)︂
.

Our third example is the LTL formula φ3 = F
(︂
i1 = 2 ∧

⋀︁n
j=2 oj = 1

)︂
and

its corresponding Büchi automaton is illustrated in Figure 10.5. The conven-
tional de�nition of the visibility property states that t1 is invisible to φ3 with
respect to T and all other transitions t2, . . . , tn are visible to φ3 with respect
to the empty set. This means, in the initial state T can be reduced to the
valid stubborn set {t1}. As consequence, the state space is slightly reduced
to 2n−1 + 1 markings. Accordingly, B∗ also reduces to 2n−1 + 2 reachable
states: the initial state, and 2n−1 + 1 states in q0. Note, in q1 no state is
reachable because i1 = 2 can never be satis�ed.
But with the automata-based approach, we can get a substantially better
reduction. Requirement 5 (KEY) states that an enabled transition has to be
part of the stubborn set only in an accepting Büchi state. Since q0 is not
an accepting state, the empty set is a valid stubborn set. Although there
are enabled transitions in the initial state, none of them is able to leave
q0. As mentioned before, the reason is that i1 = 2 can never be satis�ed.
Independent from n, the reduced product automaton always has just two
states: the initial state, and one state in q0.
One thing that should be mentioned is that the reduction power strongly
dependents on the formula and the used Büchi automaton. With some e�ort,

139

q0 q1

tt tt

tt

tt

(a) Unfavorable Büchi automaton.

q0

tt

(b) Favorable Büchi automaton.

Figure 10.6: Büchi automata for LTL formula:
φ4 = false.

we can construct unfavorable Büchi automata where the conventional method
performs equally well or even better than the new method. Figure 10.6a
shows such an unfavorable example for the LTL formula φ4 = false, a formula
that accepts any path. The problem is that it is possible to switch between
the Büchi states in any state of B∗ and therefore no reduction can be applied
based on the retarding formula. Although each transition is invisible and
thus independent of any other transition, we cannot exploit that, here.
With conventional POR, B∗ has a size of 2n+3 states, while B∗ built with the
new approach has 2 · 2n + 1 states. The good news is that this happens only
because the Büchi automaton has been chosen unwisely. The LTL formula φ4

can also be represented with just one Büchi state. For this, we simply remove
one Büchi state from Figure 10.6a to get the equivalent Büchi automaton
shown in Figure 10.6b. With this Büchi automaton, the problem vanishes
and the reduction power is equivalent for both POR methods and leads to
n+ 2 states.

Property/principle Old New

stubborn set generator M → 2T M ×Q→ 2T

X-operator not supported improved: supported
VIS ✓ improved: replaced by weaker

S-INV
IGN ✓ improved: not required
KEY ✓ improved: required only in

accepting states
NLG not required ✓

Table 10.1: Comparison of the conventional LTL POR and the newly
introduced automata-based POR.

140

We conclude with Table 10.1, which summarizes the advantages and dis-
advantages of the conventional LTL−X POR (old) compared to the new
automata-based POR (new) method.

10.4 Discussion

Stubborn sets promise remarkable state space reduction for concurrent sys-
tems. Concurrency is one of the main sources for the state explosion problem,
but it is also the most important factor for commutativity. Therefore, stub-
born sets tackle directly a major source of the state space explosion.
Most POR approaches for LTL focus only on the transition system and ig-
nore additional information from the Büchi automaton. To the best of our
knowledge, there exist just two previous approaches that use this informa-
tion. Peled et al. [98] use the additional information to relax the original
invisibility property to those propositions that lie ahead of the current Büchi
state and Lehmann et al. [75] use it to restrict the invisibility property to
only one proposition at a time, and only for retarding formulas. Further-
more, Lehmann et al. introduced the idea to �rst build B∗ with the original
state space and then reduce B∗, using the additional information from the
Büchi automaton. The drawback of their method is that it only works for
elementary Büchi automata.
Our contribution is a generalization and extension of the ideas presented
by Lehmann et al. [75] and the ideas described in [64]. We introduced a
new semi-invisibility principle, that only has to hold in one direction. In
addition, we introduced a new non-leaving principle for the reduction. As a
consequence, we can weaken or drop some requirements of the conventional
LTL−X POR method. This results in several advantages and increases the
reduction e�ciency.
One drawback of the conventional approach is that it only works on stutter-
invariant formulas, that is, formulas that do not contain theX-operator. Kan
et al. [62] introduced an approach that is able to do POR with theX-operator.
In the process of translating the LTL formula to a Büchi automaton, they use
a heuristic to detect and extend stutter-invariant components of the Büchi
automaton. These components are then used to guide the reduction of the
state space. In contrast, our reduction is only applied within a single Büchi
state and thus, stuttering becomes irrelevant. In fact, �nite stuttering within
a Büchi state does not change the accepting behavior, and in�nite stuttering
can always be avoided, if this was possible in the original product automaton.
This happens due to the NLG principle of the reduction. Therefore, we can
drop the restriction to LTL−X and verify any LTL formula. Lehmann et

141

al. [75] also uses additional information from the Büchi automaton. But their
reduction principle was di�erent and they could not drop the X-operator.
Since stuttering is irrelevant, the non-ignorance principle can be dropped as
well. Furthermore, the key-transition principle can be reduced to states that
are part of the acceptance set.
To summarize, we have weakened or dropped several requirements compared
to other LTL POR methods. Compared to the conventional method the
reduction power can be exponentially better. This is shown by our examples,
e.g., n+3 vs. 2n+2 states, or 2 vs. 2n−1 +2 states. However, the reduction
power depends on the formula, or to be exact, on the corresponding Büchi
automaton.
In future work, we want to extend our new method to other formalisms than
P/T nets. Furthermore, we want to explore whether the new automata-based
approach can be tuned to be always better or at least equally good as the
conventional method. In addition to this, we want to implement our new
method in our proof-of-concept model checker LoLA [142].

142

Chapter 11

Stubborn sets for special CTL

formulas

This chapter introduces stubborn sets for simple and frequently occurring
CTL formulas. We have published the following methods with its results
in [79]. The following chapter is based on this publication. Some of the
choices made in this chapter are justi�ed by empirical evaluations based on
the MCC benchmark.
In recent years, CTL has been the category where most queries were left un-
solved in the yearly model checking contest [66�68]. Consequently, improving
CTL model checking technology deserves particular attention with the aim of
keeping pace with LTL and reachability checking. At present, leading CTL
model checkers such as TAPAAL [34] and LoLA [142] use explicit model
checking algorithms. One of their main technique for alleviating state explo-
sion is the stubborn set method [127]. As shown in Proposition 9.3.4, CTL
preserving POR has severe restrictions: we either �nd, in a given marking, a
singleton set consisting of an invisible transition that satis�es all other con-
ditions for a stubborn set, or we have to �re all transitions enabled in this
marking. This condition is necessary for CTL preservation since otherwise
the position of visible transitions with respect to branching points may not
be preserved which in turn would jeopardize preservation of the branching
time logic CTL.
Many CTL queries have a rather simple structure in the sense that they con-
tain only few temporal operators. In the MCC, this might be an artifact of
the formula generation mechanism. However, we share the same experience
with the users of our tool LoLA. Even if complicated CTL formulas occasion-
ally occur, they are subject to several simpli�cation approaches as we have
seen in Chapter 8). Firstly, there exist many tautologies in temporal logic.
Not all of them are commonly known. This way, an originally complicated

143

formula may automatically be rewritten to a much simpler query [7]. The
formula rewriting system of LoLA currently contains more than 100 rewrite
rules that are based on CTL∗ tautologies. For P/T nets, secondly, linear pro-
gramming techniques employing the Petri net state equation can be applied
to the atomic propositions in the formula [7], sometimes proving them to be
invariantly true or false. This way, whole subformulas of a query may col-
lapse, enabling further rewriting based on tautology. Boolean combinations
of queries can be simpli�ed by checking the subformulas separately (thus
having queries with less visible transitions in each run which propels POR).
Thirdly, complicated queries may be replaced by simpler queries through
modi�cations in the system under investigation. A simple example is the
veri�cation of relaxed soundness [36] for work�ow nets. For every transition
t, we have to show that there is a path to a given �nal place f that includes the
occurrence of t. In CTL, this reads as EF (t occurs ∧EF (f ≥ 0)). Inserting a
fresh post-place p to t, the query can be simpli�ed to EF (p ≥ 0∧f ≥ 0). The
most systematic approach of this kind is LTL model checking as a whole. As
shown in Section 4.4, the explicit veri�cation of an LTL formula φ is done by
modifying the system under investigation, namely to construct the product
system with the Büchi automaton for ¬φ. In the modi�ed system, we only
need to verify ¬GF accepting-state instead of the arbitrarily complicated φ.
We conclude that explicit CTL model checking can be substantially improved
through a special treatment of as many as possible of the most simple queries.
Special treatment means that we apply a speci�c veri�cation procedure to
such queries thus avoiding the application of the generic CTL model checking
routines. This approach has two obvious advantages. Firstly, some of the
queries may permit the use of completely di�erent veri�cation technology.
For example, for properties likeEFφ orAGφ, with φ assumed not to contain
additional temporal operators, we may employ the Petri net state equation
for veri�cation [140]. We used this approach in Chapter 6.7 to supplement
the veri�cation of certain properties with an additional quick check that can
be run in parallel. Secondly, a veri�cation technique dedicated to just one
class C of simple CTL queries may use a better partial order reduction: we
only need to preserve C rather than whole CTL.
In this chapter, we focus on the second item. We identify several classes
of simple CTL queries for which speci�c search routines enable the use of
POR methods better than CTL preserving ones. These POR methods are
already known in some cases. So the actual contribution of this chapter is
to show that the systematic separation of simple queries from general CTL
routines can indeed improve CTL model checking. In all reported cases, we
will be able to drop the very limiting BRA principle that enables reduction
only in markings where just one (invisible) enabled transition is su�cient to

144

meet all the other principles. In addition, less restrictive conditions, i.e., a
smaller set of principles to be met, leads to potentially smaller stubborn sets
and thus to better reduction. We used this approach In the MCC of 2018
where almost 70 % of the CTL queries were transferred to speci�c routines
for simple queries in our tool LoLA. Employing these methods, LoLA could
solve more than 50 % of the queries that could not be solved with the generic
CTL model checking algorithm.
Additionally, we introduce a specialized search routine for the CTL formula
EGEFφ in this chapter. It is preferable to use a routine that is specialized
for a speci�c formula type because, instead of general CTL or LTL, they do
not need to consider every detail of the entire temporal logic. For example,
the check for EGEFφ can be folded into a single depth-�rst search instead
of using the entire recursive CTL model checking algorithm.
The simple problems discussed below appear as pairs of an existentially and
a universally quanti�ed formula. These two formulas can be reduced to each
other by negation. Hence, they permit the application of the same veri�cation
techniques and we may restrict subsequent considerations to existentially
quanti�ed formulas. In the sequel, let φ and ψ be CTL formulas without
temporal operators, and N = (P, T, F,W,m0) be an arbitrary, �xed P/T
net.
The remainder of this chapter is organized as follows. Section 11.1 presents
stubborn set dialects for EFφ and AGφ. We continue in Section 11.2 with
EGφ and AFφ preserving stubborn sets. Section 11.3 describes how to
solve E (φUψ) and A (φRψ) formulas with stubborn sets. Section 11.4
presents a single depth-�rst search for EGEFφ. Section 11.5 is dedicated
to stubborn sets for EFEGφ and AGAFφ. Section 11.6 continues with
stubborn sets for properties tightly related to TSCCs of the reachability
graph. Section 11.7 proposes an approach for handling formulas starting
with the X-operator. Section 11.8 is dedicated to Boolean combinations.
In Section 11.9, we introduce stubborn sets for a larger class of CTL for-
mulas, namely for single-path formulas. We show experimental results in
Section 11.10. Finally, Section 11.11 concludes this chapter with a discussion
and some directions for future research.

11.1 EFφ, AGφ

For the reachability problem EFφ, we may use stubborn set as suggested
by Proposition 9.3.5, or a relaxed version [70]. Both techniques have speci�c
advantages. The �rst method works much better if EFφ is true while the
second method has advantages if EFφ is false. Any of the methods, however,

145

is much more powerful than the CTL−X preserving method.
The ability of LoLA to solve far beyond 90 % of the queries in the reachability
category of the MCC, compared to less than 70 % if only a CTL model checker
is applied to the CTL category, clearly con�rms the conclusion to separate
reachability queries from CTL model checking.

11.2 EGφ, AFφ

The CTL formula AFφ is equivalent to the LTL formula Fφ. The universal
path quanti�er is implicitly present in LTL, too, since a system satis�es an
LTL formula if all its paths do. That is, we may apply automata-based LTL
stubborn sets proposed in Chapter 10, or conventional LTL−X preserving
stubborn sets instead of CTL−X preserving ones. Without the BRA principle,
LTL−X preserving stubborn sets are more powerful. More than 90 % of the
queries in the LTL category are solved by LoLA, compared to less than 70 %
success if CTL−X preserving stubborn sets are applied to all of the CTL
category. Additionally, we may completely drop the IGN principle for visible
transitions.

Lemma 11.2.1. If N is a P/T net and G its reachability graph, then a
reduced reachability graph G′ obeying the principles COM, KEY, and VIS(φ)
preserves EGφ.

We sketch a proof for EGφ.

Proof. If there is no witness path, i.e., an in�nite path where φ permanently
holds, in G, then there cannot be one in G′ which is a subgraph. If there is
an (in�nite) witness path π, then by COM, KEY, and VIS(φ), there is an
in�nite path π′ in G′ such that visible transitions of π′ occur in the same
order as in π. Invisible transitions in π′ do not alter the value of φ. That is,
π′ witnesses EGφ as well since otherwise there would be a pre�x of π where
φ is violated, contradicting the assumption that π is a witness path.

When only COM, KEY, and VIS(φ) need to be established in stubborn set
computation, we can often �nd much smaller stubborn sets and achieve much
better state space reduction.

11.3 E (φUψ), A (φRψ)

To satisfy E (φUψ), we need to use stubborn sets that preserve two proper-
ties: �rst, the reachability of ψ, and second, the non-violation of φ. Combin-
ing the discussion for reachability (EF) and non-violation (EG), we propose

146

the following combination of principles for the stubborn sets to be used:
COM, UPS(ψ), and VIS(φ).

Lemma 11.3.1. If N is a P/T net and G its reachability graph, then a re-
duced reachability graph G′ obeying the principles COM, UPS(ψ), and VIS(φ)
preserves E (φUψ).

We sketch the arguments for correctness of this setting.

Proof. Assume G contains a witness path π. By UPS(ψ), this path contains
a transition that is in the stubborn set used in the initial marking. By COM,
we can shift the �rst such transition to the front of the path. By VIS(φ), this
modi�cation does not change the order of transitions visible for φ. At least
the �rst transition of the modi�ed path can be replayed in G′. By induction,
a witness path in G′ is established.

We obtain a combination of principles where the harmful BRA principle is
absent and VIS can disregard ψ. In addition, the UPS principle preserves a
shortest witness path. This accelerates the positive e�ect of on-the-�y model
checking in all situations where E (φUψ) turns out to be true.

11.4 EGEFφ, AFAGφ

For this pair of formulas, we do not have a dedicated version of stubborn
sets, so we apply CTL preserving stubborn sets for state space reduction.
However, the veri�cation of the pair of temporal operators can be folded into
a single depth-�rst search. We present the approach for EGEFφ. A witness
path π for the EG operator is a maximal path (i.e., in�nite or ending in a
deadlock).
If the path ends in a deadlock, the deadlock marking has to satisfy φ since
this is the only way for φ to be reachable from that marking. If the deadlock
satis�es φ, all markings on the path automatically satisfy EFφ, so this case
can be easily implemented. An in�nite path appears in a model checker as
a cycle that is reachable from m0. For satisfying EGEFφ, it is necessary
and su�cient that, from one of the markings m on the cycle, a marking m′ is
reachable that satis�es φ. Necessity follows immediately from the de�nition
of the semantics of CTL. Su�ciency follows from the fact that m is reachable
from all markings in π, so m′ is reachable as well from all markings in π.
We record, for every marking visited in depth-�rst search, whether a marking
satisfying φ can be reached. To this end, every marking that satis�es φ
itself is marked as �can reach φ�. In addition, whenever depth-�rst search
backtracks from a marking that can reach φ, the predecessor marking is

147

marked as well as �can reach φ�. For detecting cycles, we use the well-known
fact from [56] that every cycle in a state space contains an edge from some
marking m to a marking m′ such that, at some stage of depth-�rst search,
m is the top element of the search stack and m′ is on the search stack as
well (such an edge is called backward edge). During the search, we maintain
information whether or not the search stack contains such m′. If this is the
case while the marking on top of the stack can reach φ, we return true. If
we reach a deadlock satisfying φ, we return true as well. If the search is
completed without having returned true, we return false.

Lemma 11.4.1. The procedure sketched above correctly evaluates EGEFφ.

Proof. If we reach a deadlock satisfying φ, EGEFφ is trivially true. If we
return true in any other situation, we have a marking m on the search stack
that is member of some cycle reachable fromm0. Fromm, the top elementm′

of the stack is reachable and, from m′, a marking satisfying φ can be reached.
Hence, EGEFφ is true. For the other direction, assume that EGEFφ is
true and consider a witness path π for the EG operator. If this is a �nite
path, the �nal marking must be a deadlock satisfying φ. Otherwise, π is
in�nite. The set of markings that are visited in�nitely often in π is strongly
connected, hence contained in an SCC C of the reachability graph. The root
m∗ of C (i.e., the marking of C entered �rst by the search) is member of
some cycle (by strong connectivity). As m∗ is the �rst marking of C entered
by the search, it is target of a backward edge. This is recognized before m∗

is �nally left by depth-�rst search. Depth-�rst search explores all markings
reachable from m∗ before �nally leaving m∗. That is, in the moment we are
about to �nally leave m∗, we know that m∗ is target of a backward edge
and can reach φ. Hence, we return true (if we have not returned true much
earlier).

11.5 EFEGφ, AGAFφ

Before we introduce dedicated stubborn sets for EFEGφ, we present our
veri�cation approach for EFEGφ. We check the property by nested depth-
�rst search. The approach uses ideas from [28, 29, 47, 56] that are concerned
with the similar problem of �nding accepting cycles in Büchi automata.
Outer search proceeds through markings that have already proven not to
be part of a φ-cycle or a φ-deadlock, i.e., a deadlock state in which φ holds.
This includes markings that do not satisfy φ and markings where inner search
has already been run. Inner search proceeds only through φ-markings and
tries to �nd a cycle or a deadlock. By de�nition, EFEGφ holds if and only

148

if a φ-cycle or a φ-deadlock is reachable fromm0. We start with outer search.
Whenever we encounter a fresh φ-marking m, we switch to inner search. If
inner search terminates without having found a cycle or deadlock, we resume
outer search in m.
This procedure is very similar to the general CTL model checking algorithm.
However, we may apply dedicated stubborn sets. In outer search, we dis-
tinguish markings that satisfy φ from markings that do not satisfy φ. If m
does not satisfy φ, we use stubborn sets that satisfy COM and UPS(φ). If
m satis�es φ, we have two correct combinations of principles. We can use
stubborn sets that satisfy COM and UPS(¬φ), or stubborn sets that satisfy
COM, KEY, and VIS(φ). In inner search, we use stubborn sets satisfying
COM, KEY, and VIS(φ).

Lemma 11.5.1. If N is a P/T net and G its reachability graph, then a re-
duced reachability graph G′ graph obeying the principles stated above preserves
EFEGφ.

Proof. Let m∗
1 . . .m

∗
n be a φ-cycle or a φ-deadlock (then: n = 1). Let

m1m2 . . .mk be a path such that m1 has been visited in outer search G′,
and mk = m∗

i , for some i (1 ≤ i ≤ n). Consider �rst the case where all mj

with 1 ≤ j ≤ k satisfy φ. Then inner search from m1 will �nd a φ-cycle or
φ-deadlock since the path

π = m1 . . .
(︁
mk = m∗

im
∗
i+1 . . .m

∗
nm

∗
1 . . .m

∗
i−1

)︁∗
witnesses EGφ and EGφ is preserved by stubborn sets with COM, KEY,
and VIS(φ) (see Section 11.2).
Second, consider the case where m1 does not satisfy φ. Since mk = m∗

i

satis�es φ, the path from m1 to mk contains a transition of the up-set used
in m1, and, by the UPS principle, elements of the stubborn set used in m1.
Applying COM, we obtain an alternative path where the �rst transition is
in the stubborn set used in m1. Its successor meets the same properties in
m1 but with a smaller value for k.
It remains to consider the case where m1 satis�es φ and the �rst case is
not applicable. Then, for at least one q with 2 ≤ q ≤ k, mq violates φ. If
we apply stubborn sets satisfying COM and UPS(¬φ), we argue as in the
second case. This yields a continuation for the witness path in the reduced
reachability graph. If we obey COM, KEY, and VIS(φ) instead, we argue
as follows. If a transition of the stubborn set used in m1 occurs in π, COM
yields a continuation of the path in G′. Otherwise, by VIS(φ), the stubborn
set inm1 contains only invisible transitions . Choose a key transition t′ in the
stubborn set for m1 which is available via KEY. By KEY, t′ is never disabled

149

in π. By COM, all transitions in π can still be executed after having �red t′.
The t′-successor m′ of m1 occurs in G′. The third case is applicable only a
�nite number of times since m′ satis�es φ but there is no φ-cycle reachable
in inner search from m1.

11.6 EFAGφ, EFAGEFφ,

AGEFφ, AGEFAGφ

These properties are tightly related to TSCCs of the reachability graph. For

� EFAGφ, there must exist a TSCC where all markings satisfy φ;

� EFAGEFφ, a TSCC must exist where at least one marking satis�es
φ;

� AGEFφ, every TSCC must contain a marking satisfying φ;

� AGEFAGφ, all markings in all TSCCs must satisfy φ.

By Proposition 9.3.2, stubborn sets obeying COM, KEY, and IGN preserve
access to all TSCCs of the reachability graph. Adding UPS(φ) for AGEFφ
and EFAGEFφ (or UPS(¬φ) for the other two cases) preserves at least
inside the TSCCs the properties under investigation. There are several strate-
gies for implementing UPS in the TSCCs. We can either require it for all
markings (then KEY may be dropped) [112], or enforce a relaxed version of
UPS in all markings (see [70] for details), or we may launch a depth �rst
search using stubborn sets with COM and UPS whenever we encounter a
TSCC in the reduced graph with respect to COM, KEY, and IGN.
The proposed procedure has two advantages. First, we proceed in a sin-
gle depth-�rst search compared to the recursive approach of a CTL model
checker. Second, we can drop the very problematic BRA principle. Being
able to drop the visibility principle as well, the stubborn set method can
achieve substantial reduction even in cases where φ is a property that refers
to a large number of places, and causes many transitions to be visible.

11.7 Formulas starting with EX and AX

This section is concerned with formulas of the shape:

� EXEFφ

� EXEGφ

� EXE (φRψ)

� EXE (φUψ)

150

� EXEGEFφ

� EXEFEGφ

� AXAFφ

� AXAGφ

� AXA (φRψ)

� AXA (φUψ)

� AXAGAFφ

� AXAFAGφ

We explicitly discuss the existentially quanti�ed ones.

Lemma 11.7.1. Veri�cation of the properties stated above can be traced back
to the respective formula without the leading EX-operator, with the addition
to explore all enabled transitions of m0, and not store m0.

This means, whenever m0 is visited during the search, it is treated as a fresh
marking and a stubborn set can be used. Other than this, the same stubborn
set approaches as discussed earlier are applicable.

11.8 Boolean combinations

If a CTL formula is a Boolean combination of subformulas, we may check the
subformulas individually. Doing that, the subformulas often have a smaller
set of visible transitions, so some of the stubborn set principles are stronger
for a subformula than for the whole formula. Some subformulas may contain
the X-operator, so the stubborn set method can be applied at least to the
subformulas not containing the X-operator. Some subformulas may fall into
any of the classes considered above, so their veri�cation may be accelerated.
In a setting with distributed memory, the subformulas can be veri�ed in
parallel. With shared memory, a parallel execution is not necessarily recom-
mendable since the individual veri�cation procedures compete for memory
which may lead to memory exhaustion in all procedures while veri�cation
could have been successful if the whole memory were available for either of
the procedures.
To get the most out of our accelerated procedures in a shared memory setting,
subformulas can be rated according to their simplicity. Then, the simplest
formulas are checked �rst. This way, one gets an increased probability that
the result of the Boolean combination can already be determined (by a true
subformula of a disjunction or a false subformula of a conjunction) before
the procedures for the most complicated formulas have been launched.
Our rating works as follows. The simplest category consists of subformulas
that do not contain temporal operators. They are true, false, or can be
evaluated by just inspecting the initial marking. The second category consists

151

of formulas that contain only X-operators. They can be veri�ed by exploring
the state space to a very limited depth. Then follow categories for the simple
cases studied above. The simplicity of these categories is mainly in�uenced
by our experience concerning their performance in the MCC. Then follow the
categories in the following order LTL−X , CTL−X , LTL, and CTL. For the
last categories, applicability of stubborn sets is the distinguishing feature.

11.9 Single-path formulas

In this section, we discuss a larger class of CTL formulas. We aim to apply
LTL model checking instead of CTL model checking. This way, the BRA
principle may be skipped. Switching to an LTL model checker is actually a
good idea, given the better success rate of our tool LoLA in the LTL category
of the MCC. According to Clarke and Draghicescu [18], removing the path
quanti�ers of a CTL formula yields the only candidate to be an equivalent
LTL formula. But this candidate may or may not turn out to be indeed
equivalent. The ACTL formulas where equivalence can be achieved can be
characterized [86]. We chose to apply the approach to a collection of CTL
formulas that can be more easily be recognized by a rewriting system.
LTL is a linear time temporal logic. That is, a counterexample for an LTL
formula is always a single maximal path of the system. In contrast, CTL
is a branching time temporal logic. This means that the counterexample
is a subtree of the computation tree (see De�nition 3.1.4). For instance, a
witness for EGEFφ consists of a a maximal path where, for each marking
a �nite path to a state satisfying φ branches o�. Even with the observations
made in Section 11.4, the structure remains more complicated than a single
path. However, in several cases, the branching structure collapses into a
single path. Consider EFEGφ. Here, we only need a �nite path to the
�rst state of a φ-cycle or φ-deadlock, extended with the cycle itself. It is
precisely a counterexample for the LTL formula GF¬φ that is obtained
by negating EFEGφ to AGAF¬φ and then dropping the universal path
quanti�ers. In the sequel, we shall exhibit a class of CTL formulas and
de�ne inductively, where this approach is applicable. We call them single-
path formulas. They may contain only existential path quanti�ers or only
universal path quanti�ers. In the next de�nition, let a state predicate be a
CTL formula without any temporal operator.

De�nition 11.9.1 (Existential single-path formula).
If φ and ψ are existential single-path formulas and ω is a state predicate,
then the following formulas are existential single-path formulas:

152

� ω;

� EG ω;

� EFφ;

� E (ωUφ);

� E (φUω);

� φ ∨ ψ;

� φ ∧ ω.

Universal single-path formulas are de�ned accordingly:

De�nition 11.9.2 (Universal single-path formula).
If φ and ψ are universal single-path formulas and ω is a state predicate, then
the following formulas are universal single-path formulas:

� ω;

� AFω;

� AGφ;

� A (ωRφ);

� A (φUω);

� φ ∧ ψ;

� φ ∨ ω.

This class is similar to the class of �nite-single-path formulas form De�-
nition 6.5.1 but are not limited to �nite paths. The class of single-path
formulas covers several cases discussed earlier in this paper. However, the
results above are stronger then the results we shall obtain now, so the sep-
arate treatment is indeed justi�ed. It is easy to see that the negation of an
existential single-path formula is indeed a universal single-path formula and
vice versa. That is, we may restrict subsequent considerations to universal
single-path formulas.
For a universal single-path formula φ, let LTL(φ) be the formula obtained
from φ by removing all path quanti�ers. We claim:

Lemma 11.9.1. Let φ be a universal single-path formula and N a P/T net.
Then N satis�es φ if and only if N satis�es LTL(φ).

Proof. We show that violation of φ implies violation of LTL(φ) and violation
of LTL(φ) implies violation of φ. We proceed by induction, according to
De�nition 11.9.2.

153

Case ω (state predicate): In both CTL and LTL, a state predicate is vio-
lated if it does not hold in the initial marking.
Case AFω: In both CTL and LTL, a counterexample is a maximal path
where all markings violate ω. Since ω is a state predicate, it directly refers
to the markings on the path.
Case A (ωRφ): A counterexample for A (ωRφ) is a �nite path to a mark-
ing where all but the last marking mf violate ω and mf violates φ. As ω is
a state predicate, the intermediate markings as such violate ω. Hence, the
path, extended by a counterexample path for φ at mf , which exists by induc-
tion hypothesis, yields a path that is a counterexample for LTL(A (ωRφ)).
For the other direction, consider a counterexample for LTL(A (ωRφ)). It
must have a su�x serving as a counterexample for LTL(φ). Hence, using
once more the induction hypothesis, the �rst marking of that path violates
φ. The markings that are not part of the considered su�x violate ω, so the
full path is a counterexample for A (ωRφ).
Case A (φUω): A counterexample can either be a maximal path where ω
is violated in every marking, then the argument of Case AFω applies, or a
path where ω is violated until both ω and φ are violated, then the argument
of case A (ωRφ) applies.
Case AGφ: This case can be traced back to Case A (ωRφ) using the tau-
tology AGφ ⇐⇒ A (FALSERφ)).
Case φ ∧ ψ: If φ is violated, there is a counterexample for φ for which the
induction hypothesis may be applied. Otherwise, there is a counterexample
for ψ for which again the induction hypothesis applies.
Case φ ∨ ω: In this case, φ and ω are violated. Since ω is a state predi-
cate, only the initial marking of the path is concerned. Hence, the induction
hypothesis applied to φ yields the desired result.

Using Lemma 11.9.1 the considered fragment of CTL can be veri�ed using
an LTL model checker. As another option, we may use a CTL model checker
but apply LTL preserving stubborn sets. Existential single-path formulas
can be veri�ed by checking their negation.

11.10 Experimental validation

We implemented the methods discussed in this chapter in our proof-of-
concept model checker LoLA (EXEFEG , EXEGEF , and their universal
counterparts are not yet covered by implementation). For evaluating the
methods, we use the benchmark provided by the MCC 2018 [66]. We used
the formulas provided in the CTL category. While the nets of the MCC are

154

contributed by the community, the formulas are actually generated automat-
ically, and are to a certain degree random.

Technique All (24544)
%

Specialized routines 13366 54.5
Formula simpli�cation 3704 15.1
Quick checks 305 1.2
CTL model checker 7169 29.2

Table 11.1: Techniques used to solve CTL formulas.

The benchmark consists of 767 P/T nets. For every net, 32 CTL formulas
are provided. This results in 24544 individual veri�cation problems. For
3704 problems (15.1 %), the initial rewriting process yielded a formula that
does not contain any temporal operator. Here, su�ciently many atomic
propositions have been found to be invariantly true or false due to formula
simpli�cations introduced in Section 8.1 and in [7]. Resulting formulas can be
evaluated by just inspecting the initial marking, so no actual run of a model
checker is necessary. 13366 problems (54.5 %), after rewriting, fall into some
of the categories mentioned in the previous sections of this chapter and an
additional 305 problems (1.2 %) are solved by quick checks from Section 6.7.
All in all, we need to run the generic CTL model checker only for 29.2 % of
the CTL problems in the benchmark.
Although only 1.2 % of the queries were answered by quick checks, it is still
worthwhile to run them, because their cost is insigni�cant. The reason for
this is that there are usually enough CPU cores available for model checking,
but only a limited amount of memory. This means insu�cient memory is
usually the problem. Since structural methods use only polynomial space,
due to their connection to NP-complete problems, it is useful to run quick
checks in parallel to the state space exploration.
For the 13366 problems where application of a special stubborn sets is possi-
ble, we compared the proposed routine with a run of the generic CTL model
checking procedure. To this end, we used 300 seconds of execution time and
unlimited memory for every problem instance. Experiments were executed
on our machine Ebro. It has 32 physical cores running at 2.7GHz and 1 TB
of RAM. Memory over�ow was no issue within the 300 seconds given to each
instance.
Table 11.2 lists the results of our experiments. It shows that specialized
stubborn sets in total are more successful than the CTL model checking pro-
cedure. For the formulas where specialized stubborn sets have been found, we

155

Formula type Count CTL Special Di�erence
% # % # %

EFφ, AGφ 2471 1438 58.2 2300 93.1 862 34.9
EGφ, AFφ 1767 1625 92.0 1670 94.5 45 2.5
E (φRψ), A (φUψ) 168 157 93.5 160 95.2 3 1.8
E (φUψ), A (φRψ) 318 187 58.8 198 62.3 11 3.5
EGEFφ, AFAGφ 385 276 71.7 277 71.9 1 0.3
EFEGφ, AGAFφ 515 340 66.0 431 83.7 91 17.7
EFAGφ, AGEFφ 884 286 32.4 343 38.8 57 6.4
EFAGEFφ and 13 3 23.1 6 46.2 3 23.1
AGEFAGφ
EXEFφ, AXAGφ 353 193 54.7 319 90.4 126 35.7
EXEGφ, AXAFφ 197 177 89.8 178 90.4 1 0.5
EXE (φRψ) and 19 17 89.5 18 94.7 1 5.3
AXA (φUψ)
EXE (φUψ) and 33 20 60.6 24 72.7 4 12.1
AXA (φRψ)
Boolean 5822 4250 73.0 5239 90.0 989 17.0
Single-Path 421 275 65.3 295 70.1 20 4.8
All 13366 9244 69.2 11458 85.7 2214 16.6

Table 11.2: Comparison between CTL model checking procedure (CTL)
and specialized routines (Special).

increased the success rate from 69.2 % to 85.7 %. In other words, specialized
routines are able to solve more than half of the cases where a generic CTL
model checker was not successful. This means that the proposed approach
proved to be e�ective.

The table also shows that success is very unevenly distributed over the various
formula types. The big success of reachability (EFφ) is of course to be
expected and can be quoted to the large portfolio that included search with
very powerful stubborn sets and the state equation approach (see Chapter 6).

In case of EXEGφ, the CTL model checker left only 20 problems open.
That is, there is not much room for improvement. Problems in the MCC
can be separated into the categories �easy enough for everybody�, �too hard
for everybody�, and �battleground�. The �rst category refers to nets with
rather small state space. Here, every approach is able to get a result in
time. In the second category, we have nets with very large state spaces and
dense dependencies between transitions. At least explicit model checkers
that depend on the reduction power of the stubborn set method and other

156

reduction techniques like net reduction [4, 8, 92], have no chance to verify
such systems. This means that progress in model checking mainly refers to
the battleground category. We should aim at covering the problems in this
category as much as possible. Returning to the EXEGφ category, the little
success may very well be due to the fact that only one of the 20 formulas left
open by the CTL model checker actually fell into the battleground category.
Consequently, we do not conclude that the special routine for EXEGφ is
ine�ective as such. Given the fact that we may apply more powerful stubborn
sets, we have reason to believe that the procedure would be more e�ective
on a di�erent benchmark, with more EXEG formulas in the battleground
category.
From the 385 EGEFφ queries, the CTL model checker could solve 261 sat-
is�able and 15 unsatis�able queries. The specialized routine could solve one
more satis�able query. Even though, the performance of the new specialized
routine is not really highlighted by the experiments, we still consider the new
method faster. Almost all queries, namely 103, from the remaining 108 un-
solved queries are unsatis�able. In these cases, both the specialized routine
and the CTL model checker would have to search the entire state space. In
general, we observed that for satis�able queries the new method will answer
faster than the CTL model checker.
In consequence, the large bandwidth of success rates in the di�erent formula
types does not jeopardize the general conclusion in favor of using specialized
routines.

11.11 Discussion

We proposed to relieve the CTL model checker by providing specialized stub-
born sets for a large set of simple CTL queries. Special treatment permits
the use of much more powerful stubborn set dialects. In the benchmark,
specialized stubborn sets are applicable to more than half of the problems.
In the introduction, we argued that a signi�cant percentage of simple queries
has to be expected in practice, too.
With our approach we increased the success rate for simple formulas by
16.6 % in the benchmark. Over half of the simple problems left unsolved
by the CTL model checker can now be solved. The performance demon-
strated here with the MCC benchmark can be repeated in other situations
with meaningful formulas. Thus, with the state space reduction due to the
powerful stubborn sets and the improved model checking e�ciency, we have
successfully managed two of our research goals,
Finding specialized search routines for simple and frequently occurring for-

157

mulas is an open problem. Since specialized routines do not need to consider
every detail to preserve entire temporal logics, they have the potential to
increase the performance of model checking signi�cantly.
O�ering the new methods, LoLA unfortunately does not yet reach the per-
formance of TAPAAL [34], the 2018, 2019, and 2020 winner of the MCC
CTL category. TAPAAL o�ers some techniques that have not yet been used
by LoLA in the MCC. For instance, TAPAAL uses sophisticated net reduc-
tion [4, 8, 92] as another form of preprocessing [34]. LoLA has only recently
added the ability to use net reduction as well. Thus, the upcoming 2021
edition of the MCC might give a better comparison between both tools.
The largest di�erence is the handling of frequently occurring formulas vs.
TAPAAL's usage of dependency graphs [31,41].
An open question is, how to build stubborn sets for formula types that con-
tain di�erent path quanti�ers and which are not related to TSCCs such as
EGAFφ. In general, future work includes �nding in a systematically way
more formula types that permit any improvement in veri�cation. In addi-
tion, some of the ideas of this chapter could be integrated into a CTL model
checker itself. For instance, treating AGEF , or even AGEFAG , in a sin-
gle depth-�rst search should be possible even if that pair of operators occurs
in the middle of a more complex CTL formula. In addition, the proposed
stubborn set dialects may not necessarily be the optimal ones for the re-
spective formula type. Finding alternative stubborn set methods for larger
classes of formulas, we may ultimately be able to have a dedicated dialect of
stubborn sets for every subformula of a CTL query.

158

Part V

Conclusions

159

Chapter 12

Conclusion

The contributions of this thesis are all about the improvement of model
checking e�ciency both in theory and in practice. To this end, we intro-
duced several techniques to improve vital components of the model checking
procedure. Figure 12.1 repeats the model checking procedure from Chapter 1
and highlights our contributions in the corresponding components.

State
exploration

10

11

Alternative
techniques

5

6

Preprocessing7Speci�cation8

Simulation6

Model5

Counter
example6

Model
checker

CEGAR CEGAR CEGAR

under-approximation
quick checks

under-approximation

LTL stubborn sets
CTL stubborn sets

formula
simpli�cation

enabledness
updates

Figure 12.1: Model checking procedure and compatibility of results.

160

We met the research challenges identi�ed in the beginning of this thesis with
the following techniques.

1. Model simpli�cation.
To simplify a P/T net N = (P, T, F,W,m0), previous approaches re-
duced P, T, F,W but not m0. We have shown for the case of token-
scaling models that reducing the number of tokens on the initially
marked places makes sense and results in a signi�cantly smaller state
space.

2. Speci�cation simpli�cation.
We introduced several techniques such as embedded place invariants,
traps and a multitude of tautologies with the e�ect that speci�cations
become essentially shorter without losing any semantics.

3. State space reduction.
For the state space reduction, we introduced new stubborn set dialects.
In case of LTL, our new method relies not only on the reachability graph
but also uses the available information from the given Büchi automa-
ton to generate the stubborn set. For CTL, we focused on frequently
occurring formulas and introduced according dedicated stubborn set
methods.

4. State space exploration.
We described a new and faster preprocessing algorithm for our accel-
eration data structure DI(N). Recall that DI(N) is used to reduce
the number of enabledness tests in each marking, which improve the
computation of the reachability graph.

5. Alternative reduction techniques.
For actual veri�cation, we have advocated a portfolio approach, run-
ning several incomplete but fast techniques in parallel. Each technique
works well for one special input case. This thesis introduced a CEGAR
approach for a set of �nite-single-path formulas. We point out that this
was the �rst time that a CEGAR approach has been used for a class
of temporal logic formulas other than reachability.

In addition, we introduced several quick checks for certain necessary
or su�cient conditions. These quick checks are based on easy to de-
tect structural properties and can therefore run in parallel to other
veri�cation approaches.

6. Performance enhancement of LoLA.
We implemented most of the introduced techniques into our proof-of-
concept model checker LoLA. Using the data from the annual MCC as

161

a benchmark, we demonstrated how well model checking bene�ts from
our improvements. Moreover, each of these implemented techniques is
now a module of LoLA and increases the model checking e�ciency of
this publicly available tool.

In the remaining sections of the thesis, we address some �nal selected topics
that we believe deserve some remarks. Section 12.1 discusses the combined
use of the techniques introduced in this thesis. Finally, Section 12.2 is dedi-
cated to open problems and future work.

12.1 Compatibility

As we have seen, the introduced techniques concern di�erent parts of the
model checking procedure. Consequently, whenever possible, it is reasonable
to combine them to achieve the best possible performance.

Contribution CTL LTL Notes

formula simpli�cation ✓ ✓

under-approximation (✓) ✓ ACTL∗ and ECTL∗

enabledness tests ✓ ✓

CEGAR for FLP formulas (✓) (✓) Only certain formula types
quick checks (✓) (✓) Only certain formula types
LTL stubborn sets (✓) ✓ Only CTL formulas that are LTL formulas
CTL stubborn sets (✓) (✓) Only certain formula types

Table 12.1: Compatibility of contributions regarding CTL and LTL.

Table 12.1 shows the compatibility of the introduced techniques regarding
CTL and LTL. A checkmark in brackets means that the technique is only
applicable to a subset of CTL or LTL, respectively. The speci�c subset can be
found in the description of the respective formula types in the corresponding
chapters.
Due to our experience from the model checking contests and real world use
cases, we found the following rules of thumb for combining the introduced
techniques. Formula simpli�cation and acceleration of enabledness updates
should always be used. The additional runtime in the preprocessing is com-
pensated many times over due to the method advantages. First, a simpli�ed
formula may fall into one of the supported classes for which we have dedi-
cated algorithms. Second, a shorter formula has less visible transitions which
increases the power of stubborn sets. And third, with DI(N) the speed of
state space exploration increases signi�cantly since the number of enabled-
ness tests in each marking is signi�cantly reduced.

162

The under-approximation for token-scaling models should be applied with
care, because it requires a separate state space search. When used in parallel
to other veri�cation techniques, as supposed to, under-approximation should
be killed �rst when memory becomes exhausted. The freed memory can then
be used for the remaining veri�cation tasks.
The CEGAR approach and the quick checks can be run in parallel at all
times. They are based on structural methods and therefore only need lim-
ited memory. Stubborn set methods should also be always applied. The
overhead computation decreases the runtime only marginally but is more
than compensated by the reduced state space which saves both space and
time.
As an example for the compatibility of the introduced techniques, consider a
token-scaling model and the CTL formula φ = E (((AGϕ) ∧ ψ)Uχ) where
ϕ, ψ, χ are atomic propositions. Assume that, due to the introduced formula
simpli�cations, ϕ is invariantly true. Hence, φ = E (((AG TRUE) ∧ ψ)Uχ)
becomes φ = E (ψUχ). With this, φ is now one of the specialized formulas
that can be solved using the CEGAR approach. In addition, we apply in
the state space exploration the introduced dedicated stubborn set dialect
for this formula type. During this exploration, we further use the reduced
enabledness tests provided by DI(N) and which we have preprocessed in
a shorter time with our new method. Furthermore, we can run the under-
approximation method in parallel, since the formula is an ECTL∗ formula
and the model scales over tokens. And �nally, we also apply the necessary
quick check EF (χ), which, if it fails, saves the resources of an entirely useless
veri�cation.
All in all, the introduced techniques support each other or even make each
other possible in the �rst place.

12.2 Open problems and future work

The work in this thesis can be continued and improved in several aspects,
which we wish to lay out in the following listing:

� Veri�cation with under-approximation.
In this approach, we either only get a necessary or only a su�cient
condition for the veri�cation of token-scaling-models. This makes de-
pendent on a witness or a counterexample. We believe that it is possible
to verify properties for token-scaling models with a reduced number of
tokens that do not depend on producing a witness or a counterexample.
This would result in the ability to verify other formula types with this
procedure.

163

� CEGAR for �nite-single-paths formulas.
An open question here is, how to solve the remaining four basic CTL
operators, namely EGφ, E (φRψ), and their universal counterparts.
However, this requires to deal with in�nite paths, which are di�cult
because they do not have a �nal marking. One way to overcome this
issue would be T-invariants. However there are easily exponentially
many T-invariants and even for a single T-invariant x, we would need
to �nd a marking which can execute x. If n is the number of transitions
in x, then there are n markings that can be used as starting point. For
this di�culties, handling in�nite paths remains an open problem.

� Accelerating the state space computation.
In the future, we want to, beside accelerating the computation of
DI(N), also reduce the memory footprint of DI(N). Storing DI(N)
requires a lot of space, in worst case O(|T 2|). An idea to this end would
be to utilize that, in our experience, transitions t and t′ often share an
overlapping environment E. Storing E only for t and a pointer to E for
t′ would save memory. Finding such suitable overlapping environments
without increasing the runtime signi�cantly is an open issue.

� Simplifying the speci�cation.
Often we observe that a speci�cation contains equivalent subformulas.
There are many reasons for this, but one main driver seems to be the
unfolding of colored Petri nets [59] into low-level Petri nets. As future
work, we want to �nd more of these equivalent subformulas and get rid
of them.

� Specialized algorithms and POR dialects for speci�c formula types.
We will continue the work on dedicated algorithms and stubborn set
methods for small classes of properties. Furthermore, we want to �nd
more quick checks. A natural starting point would be frequently occur-
ring LTL formulas such as stabilization (FGφ), immortality (GFφ),
and leads-to-formulas (G (φ =⇒ Fψ)).

� Implementation in LoLA.
In the future, we are going to implement the CEGAR approach for
�nite-single-paths formulas and the automata-based partial order re-
duction into LoLA. While the CEGAR approach for reachability is im-
plemented in an external tool, Sara, which is currently just controlled
by LoLA, extending this approach, requires a rigorous reimplementa-

164

tion of Sara in LoLA, which also means to convert Sara's data structures
into LoLA's. Only then can we integrate our extensions. Conversely,
extending Sara directly, is also not very meaningful, since we want to
utilize stubborn sets from LoLA in the realization of CEGAR.

Model checking is a multifaceted challenge and there are many more possible
further directions for future work.
Another open problem is the question whether and how structural methods
such as traps, siphons, con�ict clusters, linear algebra, and others can support
the state space exploration. Are structural methods able to cut o� certain
parts of the state space or can they be used to guide the search? The CEGAR
approach is a good example for this challenge and it conveys the hope that
even more can be gained from this area.
Moreover, since modern computers represent multi-core architectures, it is
only natural to look for more techniques to run in parallel supporting the
portfolio approach. This also raises the possibility to introduce more incom-
plete methods, which we want to explore more closely, in the future.
Further, we have completely neglected multi-core algorithms. In [3] Barnat
et al. presented multi-core model checking algorithms for LTL and in [72]
Laarman and Wijs showed that the performance of partial order reduction
for LTL can be increased with a multi-core approach. So we see it as an open
question how the presented approaches can bene�t from multi-core machines.
As a �nal remark, notice that in this thesis, we focused solely on P/T nets.
Some of the introduced approaches might be applicable to other formalisms.
For example, the automata-based POR for LTL does not include any speci�c
P/T net theory and is therefore a good candidate for a translation to other
formalisms.

165

Bibliography

[1] H. R. Andersen. Model checking and boolean graphs. Theor. Comput.
Sci., 126(1):3�30, 1994.

[2] T. Babiak, F. Blahoudek, M. Kretínský, and J. Strejcek. E�ective
translation of LTL to deterministic rabin automata: Beyond the (f, g)-
fragment. In D. V. Hung and M. Ogawa, editors, Automated Technology
for Veri�cation and Analysis - 11th International Symposium, ATVA
2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume 8172
of Lecture Notes in Computer Science, pages 24�39. Springer, 2013.

[3] J. Barnat, V. Bloemen, A. Duret-Lutz, A. Laarman, L. Petrucci,
J. van de Pol, and E. Renault. Parallel model checking algorithms
for linear-time temporal logic. In Y. Hamadi and L. Sais, editors,
Handbook of Parallel Constraint Reasoning, pages 457�507. Springer,
2018.

[4] G. Berthelot and Lri-Iie. Checking properties of nets using transfor-
mations. In G. Rozenberg, editor, Advances in Petri Nets 1985, pages
19�40, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[5] G. Berthelot and R. Terrat. Petri nets theory for the correctness of
protocols. In C. A. Sunshine, editor, Protocol Speci�cation, Testing
and Veri�cation, Proceedings of the IFIP WG6.1 Second International
Workshop on Protocol Speci�cation, Testing and Veri�cation, Idyllwild,
CA, USA, 17-20 May, 1982, pages 325�342. North-Holland, 1982.

[6] U. Boker. Why these automata types? In G. Barthe, G. Sutcli�e,
and M. Veanes, editors, LPAR-22. 22nd International Conference on
Logic for Programming, Arti�cial Intelligence and Reasoning, Awassa,
Ethiopia, 16-21 November 2018, volume 57 of EPiC Series in Comput-
ing, pages 143�163. EasyChair, 2018.

[7] F. Bønneland, J. Dyhr, P. G. Jensen, M. Johannsen, and J. Srba.
Simpli�cation of CTL formulae for e�cient model checking of petri

166

nets. In V. Khomenko and O. H. Roux, editors, Application and The-
ory of Petri Nets and Concurrency - 39th International Conference,
PETRI NETS 2018, Bratislava, Slovakia, June 24-29, 2018, Proceed-
ings, volume 10877 of Lecture Notes in Computer Science, pages 143�
163. Springer, 2018.

[8] F. M. Bønneland, J. Dyhr, P. G. Jensen, M. Johannsen, and J. Srba.
Stubborn versus structural reductions for petri nets. J. Log. Algebraic
Methods Program., 102:46�63, 2019.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model-checking. In A. W.
Mazurkiewicz and J. Winkowski, editors, CONCUR '97: Concurrency
Theory, 8th International Conference, Warsaw, Poland, July 1-4, 1997,
Proceedings, volume 1243 of Lecture Notes in Computer Science, pages
135�150. Springer, 1997.

[10] A. Brandstädt. Graphen und Algorithmen. Leitfäden und Monogra-
phien der Informatik. Teubner, 1994.

[11] J. L. Briz and J. M. Colom. Implementation of weighted
place/transition nets based on linear enabling functions. In
Proc. PETRI NETS, LNCS 815, pages 99�118, 1994.

[12] R. E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv., 24(3):293�318, 1992.

[13] J. R. Büchi. On a decision method in restricted second order arith-
metic. International Congress on Logic, Methodology and Philosophy
of Science, pages 1�11, 1962.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In Pro-
ceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS '90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages
428�439. IEEE Computer Society, 1990.

[15] Christel and J. Katoen. Principles of model checking. MIT Press, 2008.

[16] S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method
for state space exploration. In T. Margaria and W. Yi, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 7th In-
ternational Conference, TACAS 2001 Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2001

167

Genova, Italy, April 2-6, 2001, Proceedings, volume 2031 of Lecture
Notes in Computer Science, pages 450�464. Springer, 2001.

[17] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking
using satis�ability solving. Formal Methods Syst. Des., 19(1):7�34,
2001.

[18] E. M. Clarke and I. A. Draghicescu. Expressibility results for linear-
time and branching-time logics. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Linear Time, Branching Time and Par-
tial Order in Logics and Models for Concurrency, School/Workshop,
Noordwijkerhout, The Netherlands, May 30 - June 3, 1988, Proceed-
ings, volume 354 of Lecture Notes in Computer Science, pages 428�437.
Springer, 1988.

[19] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In D. Kozen,
editor, Logics of Programs, Workshop, Yorktown Heights, New York,
USA, May 1981, volume 131 of Lecture Notes in Computer Science,
pages 52�71. Springer, 1981.

[20] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In D. Kozen,
editor, Logics of Programs, Workshop, Yorktown Heights, New York,
USA, May 1981, volume 131 of Lecture Notes in Computer Science,
pages 52�71. Springer, 1981.

[21] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation
of �nite-state concurrent systems using temporal logic speci�cations.
ACM Trans. Program. Lang. Syst., 8(2):244�263, 1986.

[22] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation
of �nite-state concurrent systems using temporal logic speci�cations.
ACM Trans. Program. Lang. Syst., 8(2):244�263, 1986.

[23] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction re�nement. In E. A. Emerson and
A. P. Sistla, editors, Computer Aided Veri�cation, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceed-
ings, volume 1855 of Lecture Notes in Computer Science, pages 154�
169. Springer, 2000.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, 2001.

168

[25] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors. Hand-
book of Model Checking. Springer, 2018.

[26] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking
and the state explosion problem. In B. Meyer and M. Nordio, editors,
Tools for Practical Software Veri�cation, LASER, International Sum-
mer School 2011, Elba Island, Italy, Revised Tutorial Lectures, volume
7682 of Lecture Notes in Computer Science, pages 1�30. Springer, 2011.

[27] F. Commoner. Deadlocks in Petri Nets. Applied Data Research, Inc.,
Wake�eld, Massachusetts, Report CA-7206-2311, 1972.

[28] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
e�cient algorithms for the veri�cation of temporal properties. Formal
Methods Syst. Des., 1(2/3):275�288, 1992.

[29] J. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-�y emptiness
checks for generalized büchi automata. In P. Godefroid, editor, Model
Checking Software, 12th International SPIN Workshop, San Francisco,
CA, USA, August 22-24, 2005, Proceedings, volume 3639 of Lecture
Notes in Computer Science, pages 169�184. Springer, 2005.

[30] J. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to
exploit model structure. In F. Wang, editor, Formal Techniques for
Networked and Distributed Systems - FORTE 2005, 25th IFIP WG
6.1 International Conference, Taipei, Taiwan, October 2-5, 2005, Pro-
ceedings, volume 3731 of Lecture Notes in Computer Science, pages
443�457. Springer, 2005.

[31] A. E. Dalsgaard, S. Enevoldsen, P. Fogh, L. S. Jensen, P. G. Jensen,
T. S. Jepsen, I. Kaufmann, K. G. Larsen, S. M. Nielsen, M. C. Olesen,
S. Pastva, and J. Srba. A distributed �xed-point algorithm for extended
dependency graphs. Fundam. Inform., 161(4):351�381, 2018.

[32] G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction.
Springer-Verlag, Berlin, Heidelberg, 1997.

[33] D. Das, P. P. Chakrabarti, and R. Kumar. Functional veri�cation of
task partitioning for multiprocessor embedded systems. ACM Trans.
Design Autom. Electr. Syst., 12(4):44, 2007.

[34] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller,
and J. Srba. TAPAAL 2.0: Integrated development environment for
timed-arc petri nets. In C. Flanagan and B. König, editors, Tools

169

and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, TACAS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, volume 7214
of Lecture Notes in Computer Science, pages 492�497. Springer, 2012.

[35] R. De La Briandais. File searching using variable length keys. In
Papers Presented at the the March 3-5, 1959, Western Joint Computer
Conference, IRE-AIEE-ACM '59 (Western), page 295�298, New York,
NY, USA, 1959. Association for Computing Machinery.

[36] J. Dehnert and P. Rittgen. Relaxed soundness of business processes. In
K. R. Dittrich, A. Geppert, and M. C. Norrie, editors, Advanced Infor-
mation Systems Engineering, 13th International Conference, CAiSE
2001, Interlaken, Switzerland, June 4-8, 2001, Proceedings, volume
2068 of Lecture Notes in Computer Science, pages 157�170. Springer,
2001.

[37] S. Demri and P. Schnoebelen. The complexity of propositional linear
temporal logics in simple cases. Inf. Comput., 174(1):84�103, 2002.

[38] J. Desel and J. Esparza. Free choice Petri nets. Cambridge tracts
in theoretical computer science 40. Cambridge University Press, Cam-
bridge, 1995.

[39] E. A. Emerson and E. M. Clarke. Characterizing correctness properties
of parallel programs using �xpoints. In J. W. de Bakker and J. van
Leeuwen, editors, Automata, Languages and Programming, 7th Collo-
quium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceed-
ings, volume 85 of Lecture Notes in Computer Science, pages 169�181.
Springer, 1980.

[40] E. A. Emerson and J. Y. Halpern. "sometimes" and "not never" revis-
ited: On branching versus linear time. In J. R. Wright, L. Landwe-
ber, A. J. Demers, and T. Teitelbaum, editors, Conference Record
of the Tenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 1983, pages 127�140. ACM
Press, 1983.

[41] S. Enevoldsen, K. G. Larsen, and J. Srba. Abstract dependency graphs
and their application to model checking. In T. Vojnar and L. Zhang,
editors, Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part

170

of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
Part I, volume 11427 of Lecture Notes in Computer Science, pages
316�333. Springer, 2019.

[42] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. E�cient al-
gorithms for model checking pushdown systems. In E. A. Emerson
and A. P. Sistla, editors, Computer Aided Veri�cation, 12th Interna-
tional Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings, volume 1855 of Lecture Notes in Computer Science, pages
232�247. Springer, 2000.

[43] J. Esparza and S. Melzer. Veri�cation of safety properties using integer
programming: Beyond the state equation. Formal Methods Syst. Des.,
16(2):159�189, 2000.

[44] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf.
Analysis on demand: Instantaneous soundness checking of industrial
business process models. Data Knowl. Eng., 70(5):448�466, 2011.

[45] A. Finkel. The minimal coverability graph for petri nets. In G. Rozen-
berg, editor, Advances in Petri Nets 1993, Papers from the 12th Inter-
national Conference on Applications and Theory of Petri Nets, Gjern,
Denmark, June 1991, volume 674 of Lecture Notes in Computer Sci-
ence, pages 210�243. Springer, 1991.

[46] A. Gaiser and S. Schwoon. Comparison of algorithms for checking
emptiness on büchi automata. In P. Hlinený, V. Matyás, and T. Vojnar,
editors, Annual Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, MEMICS 2009, November 13-15, 2009,
Prestige Hotel, Znojmo, Czech Republic, volume 13 of OASICS. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[47] J. Geldenhuys and A. Valmari. More e�cient on-the-�y LTL veri�ca-
tion with tarjan's algorithm. Theor. Comput. Sci., 345(1):60�82, 2005.

[48] R. Gerth, R. Kuiper, D. A. Peled, and W. Penczek. A partial order
approach to branching time logic model checking. In Third Israel Sym-
posium on Theory of Computing and Systems, ISTCS 1995, Tel Aviv,
Israel, January 4-6, 1995, Proceedings, pages 130�139, 1995.

[49] P. Godefroid and P. Wolper. A partial approach to model checking.
In Proceedings of the Sixth Annual Symposium on Logic in Computer

171

Science (LICS '91), Amsterdam, The Netherlands, July 15-18, 1991,
pages 406�415, 1991.

[50] R. Gorrieri. Process Algebras for Petri Nets : The Alphabetization of
Distributed Systems. Monographs in Theoretical Computer Science.
An EATCS Series. Springer International Publishing, Cham, 2017. 1
Online-Ressource (307 pages).

[51] O. Grumberg and D. E. Long. Model checking and modular veri�cation.
In Proc. CONCUR, LNCS 527, pages 250�265, 1991.

[52] M. H. T. Hack. Analysis of Production Schemata by Petri Nets.
Master's thesis, MIT, Dept. Electrical Engineering� Cambridge, Mass,
1972.

[53] Á. Hajdu, A. Vörös, and T. Bartha. New search strategies for the
Petri net CEGAR approach. In Application and Theory of Petri
Nets and Concurrency - 36th International Conference, PETRI NETS
2015, Brussels, Belgium, June 21-26, 2015, Proceedings, pages 309�
328, 2015.

[54] Á. Hajdu, A. Vörös, T. Bartha, and Z. Mártonka. Extensions to the
CEGAR approach on Petri nets. Acta Cybern., 21(3):401�417, 2014.

[55] M. Heiner. GPPP. https://mcc.lip6.fr/pdf/GPPP-form.pdf, 2016.
Accessed: 2020-08-15.

[56] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth
�rst search. In J. Grégoire, G. J. Holzmann, and D. A. Peled, edi-
tors, The Spin Veri�cation System, Proceedings of a DIMACS Work-
shop, New Brunswick, New Jersey, USA, August, 1996, volume 32 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 23�31. DIMACS/AMS, 1996.

[57] J. E. Hopcroft and J. D. Ullman. Formal languages and their relation to
automata. Addison-Wesley series in computer science and information
processing. Addison-Wesley, 1969.

[58] J. F. Jensen, T. Nielsen, L. K. Oestergaard, and J. Srba. TAPAAL
and reachability analysis of P/T nets. Trans. Petri Nets Other Model.
Concurr., 11:307�318, 2016.

[59] K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

172

https://mcc.lip6.fr/pdf/GPPP-form.pdf

[60] P. G. Jensen, K. G. Larsen, J. Srba, M. G. Sørensen, and J. H.
Taankvist. Memory e�cient data structures for explicit veri�cation
of timed systems. In J. M. Badger and K. Y. Rozier, editors, NASA
Formal Methods - 6th International Symposium, NFM 2014, Houston,
TX, USA, April 29 - May 1, 2014. Proceedings, volume 8430 of Lecture
Notes in Computer Science, pages 307�312. Springer, 2014.

[61] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cuto� detection
in parameterized concurrent programs. In T. Touili, B. Cook, and
P. B. Jackson, editors, Computer Aided Veri�cation, 22nd Interna-
tional Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings, volume 6174 of Lecture Notes in Computer Science, pages
645�659. Springer, 2010.

[62] S. Kan, Z. Huang, Z. Chen, W. Li, and Y. Huang. Partial order reduc-
tion for checking LTL formulae with the next-time operator. J. Log.
Comput., 27(4):1095�1131, 2017.

[63] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147�195, 1969.

[64] C. Koch. Weiterentwicklung von Methoden der Partial Order Reduc-
tion. Master's thesis, Universität Rostock, 2013.

[65] F. Kordon. RobotManipulation. https://mcc.lip6.fr/pdf/

RobotManipulation-form.pdf, 2017. Accessed: 2020-08-15.

[66] F. Kordon and T. L. et al. Complete Results for the 2018 Edition of
the Model Checking Contest. http://mcc.lip6.fr/2018/results.php, 06
2018. Accessed: 2020-08-15.

[67] F. Kordon and T. L. et al. Mcc'2017 - the seventh model checking
contest. Trans. Petri Nets Other Model. Concurr., 13:181�209, 2018.

[68] F. Kordon and T. L. et al. Presentation of the 9th edition of the model
checking contest. In D. Beyer, M. Huisman, F. Kordon, and B. Stef-
fen, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
Part III, volume 11429 of Lecture Notes in Computer Science, pages
50�68. Springer, 2019.

173

https://mcc.lip6.fr/pdf/RobotManipulation-form.pdf
https://mcc.lip6.fr/pdf/RobotManipulation-form.pdf

[69] J. Kretinský and J. Esparza. Deterministic automata for the (f, g)-
fragment of LTL. In P. Madhusudan and S. A. Seshia, editors, Com-
puter Aided Veri�cation - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lec-
ture Notes in Computer Science, pages 7�22. Springer, 2012.

[70] L. M. Kristensen, K. Schmidt, and A. Valmari. Question-guided stub-
born set methods for state properties. Formal Methods Syst. Des.,
29(3):215�251, 2006.

[71] F. Kröger and S. Merz. Temporal Logic and State Systems. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2008.

[72] A. Laarman and A. Wijs. Partial-order reduction for multi-core LTL
model checking. In E. Yahav, editor, Hardware and Software: Veri�-
cation and Testing - 10th International Haifa Veri�cation Conference,
HVC 2014, Haifa, Israel, November 18-20, 2014. Proceedings, volume
8855 of Lecture Notes in Computer Science, pages 267�283. Springer,
2014.

[73] D. Lau. Algebra und Diskrete Mathematik 1 : Grundbegri�e der Math-
ematik, Algebraische Strukturen 1, Lineare Algebra und Analytische
Geometrie, Numerische Algebra. Springer-Lehrbuch. Springer-Verlag
Berlin Heidelberg, Berlin, Heidelberg, zweite, korrigierte und erweit-
erte au�age edition, 2007. Online-Ressource, v.: digital.

[74] K. Lautenbach. Linear algebraic techniques for place/transition nets.
In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Cen-
tral Models and Their Properties, Advances in Petri Nets 1986, Part
I, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19
September 1986, volume 254 of Lecture Notes in Computer Science,
pages 142�167. Springer, 1986.

[75] A. Lehmann, N. Lohmann, and K. Wolf. Stubborn sets for simple
linear time properties. In Application and Theory of Petri Nets - 33rd
International Conference, PETRI NETS 2012, Hamburg, Germany,
June 25-29, 2012. Proceedings, pages 228�247, 2012.

[76] T. Liebke. Büchi-automata guided partial order reduction for LTL. In
M. Köhler-Buÿmeier, E. Kindler, and H. Rölke, editors, Proceedings of
the International Workshop on Petri Nets and Software Engineering co-
located with 41st International Conference on Application and Theory
of Petri Nets and Concurrency (PETRI NETS 2020), Paris, France,

174

June 24, 2020 (due to COVID-19: virtual conference), volume 2651 of
CEUR Workshop Proceedings, pages 147�166. CEUR-WS.org, 2020.

[77] T. Liebke and C. Rosenke. Faster enabledness-updates for the reach-
ability graph computation. In M. Köhler-Buÿmeier, E. Kindler, and
H. Rölke, editors, Proceedings of the International Workshop on Petri
Nets and Software Engineering co-located with 41st International Con-
ference on Application and Theory of Petri Nets and Concurrency
(PETRI NETS 2020), Paris, France, June 24, 2020 (due to COVID-
19: virtual conference), volume 2651 of CEUR Workshop Proceedings,
pages 108�117. CEUR-WS.org, 2020.

[78] T. Liebke and K. Wolf. Solving E (φUψ) using the CEGAR approach.
In D. Moldt, E. Kindler, and M. Wimmer, editors, Proceedings of
the International Workshop on Petri Nets and Software Engineering
(PNSE 2019), co-located with the 40th International Conference on Ap-
plication and Theory of Petri Nets and Concurrency Petri Nets 2019
and the 19th International Conference on Application of Concurrency
to System Design ACSD 2019 and the 1st IEEE International Con-
ference on Process Mining Process Mining 2019, Aachen, Germany,
June 23-28, 2019, volume 2424 of CEUR Workshop Proceedings, pages
47�56. CEUR-WS.org, 2019.

[79] T. Liebke and K. Wolf. Taking some burden o� an explicit CTL model
checker. In S. Donatelli and S. Haar, editors, Application and Theory of
Petri Nets and Concurrency - 40th International Conference, PETRI
NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings, volume
11522 of Lecture Notes in Computer Science, pages 321�341. Springer,
2019.

[80] T. Liebke and K. Wolf. Veri�cation of token-scaling models using
an under-approximation. In M. Köhler-Buÿmeier, E. Kindler, and
H. Rölke, editors, Proceedings of the International Workshop on Petri
Nets and Software Engineering co-located with 41st International Con-
ference on Application and Theory of Petri Nets and Concurrency
(PETRI NETS 2020), Paris, France, June 24, 2020 (due to COVID-
19: virtual conference), volume 2651 of CEUR Workshop Proceedings,
pages 1�9. CEUR-WS.org, 2020.

[81] T. Liebke and K. Wolf. Using approximation for the veri�cation of
token-scaling models. Trans. Petri Nets Other Model. Concurr., 16,
submitted to, invited as an extension for one of the best papers of
PNSE'2020.

175

[82] T. Liebke and K. Wolf. Solving �nite-linear-path CTL-formulas using
the CEGAR approach. Trans. Petri Nets Other Model. Concurr., 15,
to appear.

[83] R. J. Lipton. The reachability problem requires exponential space.
Research Report, 62, 1976.

[84] X. Liu and S. A. Smolka. Simple linear-time algorithms for mini-
mal �xed points (extended abstract). In K. G. Larsen, S. Skyum,
and G. Winskel, editors, Automata, Languages and Programming, 25th
International Colloquium, ICALP'98, Aalborg, Denmark, July 13-17,
1998, Proceedings, volume 1443 of Lecture Notes in Computer Science,
pages 53�66. Springer, 1998.

[85] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Prop-
erty preserving abstractions for the veri�cation of concurrent systems.
Formal Methods Syst. Des., 6(1):11�44, 1995.

[86] M. Maidl. The common fragment of CTL and LTL. In 41st An-
nual Symposium on Foundations of Computer Science, FOCS 2000,
12-14 November 2000, Redondo Beach, California, USA, pages 643�
652. IEEE Computer Society, 2000.

[87] M. Mäkelä. Optimising enabling tests and unfoldings of algebraic sys-
tem nets. In Proc. PETRI NETS, LNCS 2075, pages 283�302, 2001.

[88] M. Mihail and C. H. Papadimitriou. On the random walk method for
protocol testing. In D. L. Dill, editor, Computer Aided Veri�cation, 6th
International Conference, CAV '94, Stanford, California, USA, June
21-23, 1994, Proceedings, volume 818 of Lecture Notes in Computer
Science, pages 132�141. Springer, 1994.

[89] R. Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989.

[90] A. W. Mostowski. Regular expressions for in�nite trees and a stan-
dard form of automata. In A. Skowron, editor, Computation Theory
- Fifth Symposium, Zaborów, Poland, December 3-8, 1984, Proceed-
ings, volume 208 of Lecture Notes in Computer Science, pages 157�168.
Springer, 1984.

[91] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541�580, 1989.

176

[92] T. Murata and J. Koh. Reduction and expansion of live and safe
marked graphs. IEEE Transactions on Circuits and Systems, 27(1):68�
71, 1980.

[93] L. Napione, D. Manini, F. Cordero, A. Horváth, A. Picco, M. D. Pierro,
S. Pavan, M. Sereno, A. Veglio, F. Bussolino, and G. Balbo. On the
use of stochastic petri nets in the analysis of signal transduction path-
ways for angiogenesis process. In P. Degano and R. Gorrieri, editors,
Computational Methods in Systems Biology, 7th International Confer-
ence, CMSB 2009, Bologna, Italy, August 31-September 1, 2009. Pro-
ceedings, volume 5688 of Lecture Notes in Computer Science, pages
281�295. Springer, 2009.

[94] O. Oanea, H. Wimmel, and K. Wolf. New algorithms for deciding the
siphon-trap property. In J. Lilius and W. Penczek, editors, Applica-
tions and Theory of Petri Nets, 31st International Conference, PETRI
NETS 2010, Braga, Portugal, June 21-25, 2010. Proceedings, volume
6128 of Lecture Notes in Computer Science, pages 267�286. Springer,
2010.

[95] C. H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[96] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis
using boolean manipulation. In R. Valette, editor, Application and
Theory of Petri Nets 1994, 15th International Conference, Zaragoza,
Spain, June 20-24, 1994, Proceedings, volume 815 of Lecture Notes in
Computer Science, pages 416�435. Springer, 1994.

[97] D. A. Peled. All from one, one for all: on model checking using represen-
tatives. In Computer Aided Veri�cation, 5th International Conference,
CAV '93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, pages
409�423, 1993.

[98] D. A. Peled, A. Valmari, and I. Kokkarinen. Relaxed visibility enhances
partial order reduction. Formal Methods in System Design, 19(3):275�
289, 2001.

[99] D. A. Peled and T. Wilke. Stutter-invariant temporal properties are ex-
pressible without the next-time operator. Inf. Process. Lett., 63(5):243�
246, 1997.

[100] J. L. Peterson. Petri net theory and the modeling of systems. Prentice-
Hall, Englewood Cli�s, NJ, 1981. X, 290 S., graph. Darst.

177

[101] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universität
Hamburg, 1962.

[102] N. Piterman. From nondeterministic büchi and streett automata to
deterministic parity automata. Log. Methods Comput. Sci., 3(3), 2007.

[103] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pages 46�57. IEEE Computer Society,
1977.

[104] J. Queille and J. Sifakis. Speci�cation and veri�cation of concur-
rent systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari,
editors, International Symposium on Programming, 5th Colloquium,
Torino, Italy, April 6-8, 1982, Proceedings, volume 137 of Lecture Notes
in Computer Science, pages 337�351. Springer, 1982.

[105] W. Reisig. Petri nets and algebraic speci�cations. Theor. Comput.
Sci., 80(1):1�34, 1991.

[106] W. Reisig. Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[107] S. Safra. On the complexity of omega-automata. In 29th Annual Sym-
posium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988, pages 319�327. IEEE Computer Society,
1988.

[108] K. Schmidt. [lola] wird pfad�nder. In J. Desel and A. Oberweis, editors,
6. Workshop Algorithmen und Werkzeuge für Petrinetze (AWPN'99),
Frankfurt, Germany, October 11. - 12., 1999, volume 26 of CEUR
Workshop Proceedings. CEUR-WS.org, 1999.

[109] K. Schmidt. Stubborn sets for standard properties. In S. Donatelli and
H. C. M. Kleijn, editors, Application and Theory of Petri Nets 1999,
20th International Conference, ICATPN '99, Williamsburg, Virginia,
USA, June 21-25, 1999, Proceedings, volume 1639 of Lecture Notes in
Computer Science, pages 46�65. Springer, 1999.

[110] K. Schmidt. How to calculate symmetries of petri nets. Acta Inf.,
36(7):545�590, 2000.

[111] K. Schmidt. Lola: A low level analyser. In Proc. PETRI NETS, LNCS
1825, pages 465�474, 2000.

178

[112] K. Schmidt. Stubborn sets for model checking the EF/AG fragment of
CTL. Fundam. Informaticae, 43(1-4):331�341, 2000.

[113] P. Schnoebelen. The complexity of temporal logic model checking.
In P. Balbiani, N. Suzuki, F. Wolter, and M. Zakharyaschev, editors,
Advances in Modal Logic 4, papers from the fourth conference on "Ad-
vances in Modal logic," held in Toulouse, France, 30 September - 2
October 2002, pages 393�436. King's College Publications, 2002.

[114] M. Sharir. A strong-connectivity algorithm and its applications in data
�ow analysis. Computers & Mathematics with Applications, 7(1):67 �
72, 1981.

[115] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733�749, 1985.

[116] C. Stahl, W. Reisig, and M. Krstic. Hazard detection in a GALS wrap-
per: A case study. In Fifth International Conference on Application
of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St.
Malo, France, pages 234�243. IEEE Computer Society, 2005.

[117] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354�356, 1969.

[118] C. Talcott and D. Dill. The pathway logic assistant. Third International
Workshop on Computational Methods in Systems Biology, 2005.

[119] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J.
Comput., 1(2):146�160, 1972.

[120] R. E. Tarjan. E�ciency of a good but not linear set union algorithm.
J. ACM, 22(2):215�225, 1975.

[121] D. Taubner. On the implementation of petri nets. In Advances in Petri
Nets, LNCS 340, volume 340, pages 418�434, 1987.

[122] Y. Thierry-Mieg. Symbolic model-checking using its-tools. In C. Baier
and C. Tinelli, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS 2015,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9035 of Lecture Notes in Computer Science, pages
231�237. Springer, 2015.

179

[123] Y. Thierry-Mieg. Structural reductions revisited. In R. Janicki,
N. Sidorova, and T. Chatain, editors, Application and Theory of Petri
Nets and Concurrency - 41st International Conference, PETRI NETS
2020, Paris, France, June 24-25, 2020, Proceedings, volume 12152 of
Lecture Notes in Computer Science, pages 303�323. Springer, 2020.

[124] A. A. Tovchigrechko. E�cient symbolic analysis of bounded Petri nets
using interval decision diagrams. PhD thesis, Brandenburg University
of Technology, Cottbus - Senftenberg, Germany, 2008.

[125] Tricentis. Software Fails Watch 5th edition. https:

//www.tricentis.com/wp-content/uploads/2019/01/

Software-Fails-Watch-5th-edition.pdf, 2020.

[126] A. Valmari. Error detection by reduced reachability graph generation.
In 9th International European Workshop on Application and Theory of
Petri Nets, Venice, Italy, June 1988, Proceedings, pages 95�112, 1988.

[127] A. Valmari. Stubborn sets for reduced state space generation. In
G. Rozenberg, editor, Advances in Petri Nets 1990 [10th International
Conference on Applications and Theory of Petri Nets, Bonn, Germany,
June 1989, Proceedings], volume 483 of Lecture Notes in Computer Sci-
ence, pages 491�515. Springer, 1989.

[128] A. Valmari. State space generation: E�ciency and practicality. PhD
thesis, Tampere University Of Technology, 1990.

[129] A. Valmari. A stubborn attack on state explosion. Formal Methods
Syst. Des., 1(4):297�322, 1992.

[130] A. Valmari. The state explosion problem. In W. Reisig and G. Rozen-
berg, editors, Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petri Nets, held
in Dagstuhl, September 1996, volume 1491 of Lecture Notes in Com-
puter Science, pages 429�528. Springer, 1996.

[131] A. Valmari. Stubborn set methods for process algebras. In D. A. Peled,
V. R. Pratt, and G. J. Holzmann, editors, Partial Order Methods in
Veri�cation, Proceedings of a DIMACS Workshop, Princeton, New Jer-
sey, USA, July 24-26, 1996, volume 29 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 213�231. DI-
MACS/AMS, 1996.

180

https://www.tricentis.com/wp-content/uploads/2019/01/Software-Fails-Watch-5th-edition.pdf
https://www.tricentis.com/wp-content/uploads/2019/01/Software-Fails-Watch-5th-edition.pdf
https://www.tricentis.com/wp-content/uploads/2019/01/Software-Fails-Watch-5th-edition.pdf

[132] A. Valmari and H. Hansen. Stubborn set intuition explained. Trans.
Petri Nets Other Model. Concurr., 12:140�165, 2017.

[133] T. van Dijk and J. van de Pol. Sylvan: Multi-core decision diagrams. In
C. Baier and C. Tinelli, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, volume 9035 of Lecture Notes in Computer Science, pages
677�691. Springer, 2015.

[134] M. Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program veri�cation (preliminary report). In Proceedings of
the Symposium on Logic in Computer Science (LICS '86), Cambridge,
Massachusetts, USA, June 16-18, 1986, pages 332�344, 1986.

[135] M. Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program veri�cation (preliminary report). In Proceedings of
the Symposium on Logic in Computer Science (LICS '86), Cambridge,
Massachusetts, USA, June 16-18, 1986, pages 332�344. IEEE Com-
puter Society, 1986.

[136] K. Varpaaniemi. E�cient detection of deadlocks in petri nets. Work-
ingPaper 26, Helsinki University of Technology, 1993.

[137] K. Varpaaniemi. On the Stubborn Set Method in Reduced State Space
Generation. PhD thesis, Helsinki University of Technology, 1998.

[138] J. Vautherin. Parallel systems specitications with coloured petri nets
and algebraic speci�cations. In G. Rozenberg, editor, Advances in Petri
Nets 1987, covers the 7th European Workshop on Applications and The-
ory of Petri Nets, Oxford, UK, June 1986, volume 266 of Lecture Notes
in Computer Science, pages 293�308. Springer, 1986.

[139] B. Vergauwen and J. Lewi. A linear local model checking algorithm for
CTL. In E. Best, editor, CONCUR '93, 4th International Conference
on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages
447�461. Springer, 1993.

[140] H. Wimmel and K. Wolf. Applying CEGAR to the petri net state
equation. Log. Methods Comput. Sci., 8(3), 2012.

181

[141] K. Wolf. Running lola 2.0 in a model checking competition. Trans.
Petri Nets Other Model. Concurr., 11:274�285, 2016.

[142] K. Wolf. Petri net model checking with LoLA 2. In V. Khomenko and
O. H. Roux, editors, Application and Theory of Petri Nets and Concur-
rency - 39th International Conference, PETRI NETS 2018, Bratislava,
Slovakia, June 24-29, 2018, Proceedings, volume 10877 of Lecture Notes
in Computer Science, pages 351�362. Springer, 2018.

[143] K. Wolf. A simple abstract interpretation for petri net queries. In
D. Moldt, E. Kindler, and H. Rölke, editors, Proceedings of the Interna-
tional Workshop on Petri Nets and Software Engineering (PNSE'18),
co-located with the39th International Conference on Application and
Theory of Petri Nets and Concurrency Petri Nets 2018 and the 18th
International Conference on Application of Concurrency to System De-
sign ACSD 2018, Bratislava, Slovakia, June 24-29, 2018, volume 2138
of CEUR Workshop Proceedings, pages 163�170. CEUR-WS.org, 2018.

[144] K. Wolf. How petri net theory serves petri net model checking: A
survey. Trans. Petri Nets Other Model. Concurr., 14:36�63, 2019.

[145] K. Wolf. Portfolio management in explicit model checking. In
M. Köhler-Buÿmeier, E. Kindler, and H. Rölke, editors, Proceedings
of the International Workshop on Petri Nets and Software Engineer-
ing co-located with 41st International Conference on Application and
Theory of Petri Nets and Concurrency (PETRI NETS 2020), Paris,
France, June 24, 2020 (due to COVID-19: virtual conference), volume
2651 of CEUR Workshop Proceedings, pages 10�28. CEUR-WS.org,
2020.

[146] R. Zurawski and M. Zhou. Petri nets and industrial applications: A
tutorial. IEEE Trans. Ind. Electron., 41(6):567�583, 1994.

All links were last followed on 11.12.2020.

182

Abbreviations

ACTL∗ universal computational tree logic∗. 43, 46

BFS breadth �rst search. 49

CC con�ict cluster. 112

CEGAR counterexample guided abstraction re�nement. 17, 70, 73

CTL computational tree logic. 18, 43, 45

CTL∗ computational tree logic∗. 39, 43

DFS depth-�rst search. 49

ECTL∗ existential computational tree logic∗. 43, 46

ILP integer linear programming. 73

LTL linear time temporal logic. 19, 43, 44

LTS labeled transition system. 26

MCC model checking contest. 13

P/T net place/transition net. 29

POR partial order reduction. 19, 120

SAT Boolean satis�ability problem. 48

SCC strongly connected component. 28

TSCC terminal strongly connected component. 28

183

List of symbols

2M the power set of M . 24

CN the incidence matrix of N . 34

DI(N) decrease-increase graph of N . 102

N r the reduced net. 66

N a place/transition net (low-level Petri net). 29

RN the reachability graph of P/T net N . 32

Ti the set of transitions that can change si. 83

Ti,ψ the set of increasing transitions in Ti w.r.t. ψ. 83

X × Y the Cartesian product of X and Y . 25

∆t,s the delta of t regarding sum s. 81

Γ the set of jump and increment constraints. 79

Σ the simulation relation. 65

δi the max. arc weight of t in Ti,ψ. 84

B the boolean domain. 24

Z the set of integers. 24

N1 the set of natural numbers excluding 0. 24

N the set of natural numbers including 0. 24

↗ (p) the set of increasing edges of p. 104

x• the post-set of x. 29

184

•x the preset of x. 29

↘ (p) the set of decreasing edges of p. 104

σ the maximal �ring sequence of a solution. 79

ILPφ the initial ILP-problem for �nite-single-path CTL formulas. 88

θi the o�set of consumable tokens in m0. 84

℘(w) the Parikh vector. 34

mr
0 the reduced initial marking. 66

r the remainder of a solution. 80

s
a−→ s′ a transition relation leading with a from s to s′. 26

t↗ t′ transition t increases transition t′. 102

t↘ t′ transition t decreases transition t′. 101

vs(m) the integer number of s in m. 80

|M | the cardinality of set M . 24

185

Index

ACTL∗, 46
alphabet, 25
atomic

proposition, 37
propositions for P/T nets, 38

Büchi automaton, 56
acceptance criterion, 56
run, 56

basics, 24
boundedness, 36

CEGAR, 75
cut o�, 86
examine solution, 76
initial abstraction, 75
partial solution, 79
realization ordering, 89
re�ne abstraction, 78
solution space, 76
solve abstract model, 76

computation tree, 39
constraints

balance, 83
deadlock, 93
increment, 78
jump, 78
length, 83
minimum, 92

CTL, 45
basic operators, 45
complexity, 49

CTL∗

complexity, 49
ctl*, 39

semantics, 40
syntax, 40

deadlock, 36
decrease and increase graph, 102
directed, 25

ECTL∗, 46
embedded place invariant, 116
empty nest check, 58
executable, 34

�reable, 38
formula simpli�cation, 114

graph, 25

heuristics
largest constant, 68
percentage, 68
simple threshold, 67

homogeneous pair, 104

incidence matrix, 34
incremental edge, 104

language, 25
liveness, 44
lower bound, 81
LTL, 44

complexity, 49

186

LTS, 26
acyclic, 27
cyclic, 27
maximal path, 27
path, 27
reachable, 28
terminal state, 27

mappings, 25
model checking, 48

CTL, 50
explicit, 49
LTL, 54
symbolic, 47

multiset, 25

negation normal form, 42

P-invariant, 35
P/T net, 29

con�ict cluster, 29
enabledness, 31
marking, 30
post-set, 29
preset, 29
reachability graph, 32
transition rule, 31
transition sequence, 32

Parikh vector, 34
path formula

semantics, 40
syntax, 40

path quanti�er
always, 40
exists, 40

Petri net, 29
place invariant, 35
preservation

ACTL∗, 65
ECTL∗, 65

process, 23
product system, 57

quick checks, 93

reachability, 32
reachability problem, 34
realizable, 35
reduced initial marking, 66
reduced net, 66
relations, 25

safety, 44
SCC, 28
sequence, 25
sets, 24
simulation, 65
single-path formula

existential, 152
existential �nite, 87
universal, 153
universal �nite, 88

state equation, 34
state formula

semantics, 40
syntax, 40

state space, 32
stubborn sets, 123
stubborn sets preservation

CTL−X, 127
deadlock, 126
LTL−X, 127
reachability, 127
TSCC, 127

stubborn sets principles
branching, 125
commutativity, 123
key, 124
non-ignoring, 125
non-leaving, 131
semi-invisibility, 132
up-set, 126
visibility, 124

stutter-invariant, 44

187

subgraph, 25
system, 23

T-invariant, 35
temporal operator

eventually, 40
globally, 40
next, 40
release, 40
until, 40

transition delta, 81
decreasing, 81
increasing, 81

transition invariant, 35
transitions

closure, 128
decreasing, 101
�ring, 31
increasing, 102
sequence, 32

traps, 116
tree, 38
TSCC, 28

unlabeled transition system, 26
upper bound, 81

visibility, 124

weighted sum of tokens, 35
word, 25

188

	I Introduction and preliminaries
	About this thesis
	Motivation
	Research goal
	Contributions
	Outline

	Systems
	Basic mathematical notions
	Labeled transition system
	Place/transition nets

	Specification
	Basics
	Computational tree logic*
	Linear time temporal logic
	Computational tree logic
	ACTL* and ECTL*

	Model checking
	Complexity
	Explicit model checking
	CTL model checking
	LTL model checking

	II Reduction techniques
	Verification with under-approximation
	Motivational example
	The theory of under-approximation
	Heuristics
	Implementation
	Experimental validation
	Discussion

	Linear algebra for finite-single-path formulas
	CEGAR for reachability analysis
	Basics
	Solving (EX)Ek varphi
	Solving E (varphi U psi)
	Solving finite-single-path CTL formulas
	Solving EG varphi partially
	Quick checks
	Discussion

	III Supplementary strength reduction
	Acceleration of enabledness-updates
	Motivational example
	Preprocessing decreasing and increasing transitions
	The former computation of the decrease-increase-graph
	Accelerated computation of the decrease-increase-graph
	Experimental validation
	Discussion

	Formula simplification
	Formula simplification
	Experimental validation
	Discussion

	IV Partial order reduction
	The stubborn set method
	Motivational example
	Principles
	Property preservation
	Using DI(N) for stubborn set computations

	Automata-based partial order reduction for LTL
	Updated principles
	Automata-based stubborn sets for LTL
	Comparison
	Discussion

	Stubborn sets for special CTL formulas
	varphi, AG varphi
	EG varphi, AF varphi
	E (varphi U psi), A (varphi R psi)
	EGEF varphi, AFAG varphi
	EFEG varphi, AGAF varphi
	EFAG varphi, EFAGEF varphi, AGEF varphi, AGEFAG varphi
	Formulas starting with EX and AX
	Boolean combinations
	Single-path formulas
	Experimental validation
	Discussion

	V Conclusions
	Conclusion
	Compatibility
	Open problems and future work

	Bibliography
	Abbreviations
	List of symbols
	Index

