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Summary

This work relates to the development of new methodologies for homogeneously catalysed

(de)hydrogenation reactions. The focus is on non-noble metal catalysts based on iron or 

manganese with varying pincer ligands for the dehydrogenation of alcohols and the 

semihydrogenation of alkynes. In a first protocol, the transfer dehydrogenation of secondary 

alcohols was demonstrated, which proceeds by means of an iron PNP pincer complex as 

catalyst, and acetone as hydrogen acceptor. The ensuing publication showed the same 

dehydrogenation reaction. However, the focus was on a manganese-based in situ system, 

consisting of MnBr(CO)5 and a phosphorus-free NNN pincer ligand. Subsequently, the 

semihydrogenation of alkynes with a manganese PNP-pincer complex and molecular 

hydrogen was presented. The hydrogenation proceeded stereoselectively, exclusively the 

corresponding Z-alkenes were formed.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Entwicklung von neuen Methoden für 

homogenkatalytische (De)Hydrierungsreaktionen. Dabei wurden Nichtedelmetallkatalysatoren 

auf Basis von Eisen oder Mangan mit variierenden Pincer-Liganden für die Dehydrierung von 

Alkoholen und die Semihydrierung von Alkinen eingesetzt. In ersten Arbeiten wurde die 

Transfer-Dehydrierung von sekundären Alkoholen gezeigt, die mittels eines Eisen

PNP-Pincerkomplex und Aceton als Wasserstoffakzeptor stattfindet. Die darauffolgenden 

Arbeiten nutzten die gleiche Reaktion, allerdings war hier der Fokus auf einem mangan-

basierten in situ System, welches aus MnBr(CO)5 und einem phosphorfreiem NNN-

Pincerligand gebildet wird. Anschließend wurde die Semihydrierung von Alkinen mittels eines

Mangan PNP-Pincerkomplexes und unter Verwendung von molekularem Wasserstoff 

realisiert. Die Hydrierung verläuft stereoselektiv und es wurden ausschließlich die zugehörigen 

Z-Alkene gebildet.
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1 Target and Motivation

The economic importance of catalysis lies in the outstanding production of valuable products 

that can be found in all areas of our daily life and is demonstrated by the fact that approximately 

80% of all processes within the chemical industry rely on catalysts.[1] Frequently, catalysts 

based on noble metals (e.g. palladium, rhodium, ruthenium, etc.) are applied in industry due 

to their high activities and selectivities in various catalytic transformations. However, noble 

metals are significantly less abundant in comparison to non-noble metals such as manganese, 

iron or cobalt.[2] Due to the high natural abundance of non-noble metals in the Earth’s crust,

they are considered as environmentally benign and are cheaper alternatives for cost-effective 

chemical processes and a more sustainable industry. In particular, manganese and iron are 

highly promising candidates, given their high biocompatibility and low cost.

In the context of this thesis, non-noble pincer complexes were investigated and applied to 

industrial relevant transformations. In more detail, transfer dehydrogenations and 

hydrogenation reactions were examined through the application of novel pincer catalysts 

based on nonprecious metals.
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2 General Information – Iron and Manganese 

Iron is the most abundant element on Earth by mass (32.1%), since it forms a significant 

proportion of the Earth’s outer and inner core.[3] Furthermore, the Earth’s crust is comprised of 

5.6% iron, making it the fourth most abundant element by mass.[4] Here, it is mostly available 

as iron minerals such as hematite (Fe2O3), magnetite (Fe3O4) and siderite (FeCO3).[5] Large 

deposits of iron ore usually occur in banded iron formations, which are thin layers of iron oxide 

minerals alternating with iron-poor rock layers.[6] To make the iron ore useful for industrial 

applications, metallic iron is currently produced by blast furnace processing of mineral iron.

Iron centers (specifically ions in oxidation states +II and +III) are involved in numerous 

biological systems within living organisms, for example as crucial components of

metalloproteins, such as heme complexes, which are part of essential proteins including

hemoglobin, myoglobin, and cytochromes.[7] In these systems, iron is involved in electron 

transfer reactions and oxygen transport within enzymes, which have been referred to as 

biological catalysts. Another class of iron-based organisms are the nonheme iron-based 

enzymes, including prominent examples like methane monooxygenase and ribonucleotide 

reductase.[8] It was therefore appropriate to take inspiration from these biological catalysts and 

develop iron-based complexes for catalysis. In industry, iron is highly prevalent as a catalyst,

applied in the large-scale hydrogenation of adiponitrile and well-known procedures such as the 

Haber-Bosch and Fischer-Tropsch processes.[9] The most common iron oxidation states are 

+II and +III. However, the formal oxidation state range is from –II to +VI in different salts and

complexes, thus offering interesting possibilities for redox catalysis.[10]

Manganese ranks as the twelfth most abundant element in the Earth’s crust with a share of 

0.095%.[4] Thereby, it is the third most abundant transition metal after iron and titanium.

Typically, manganese occurs as a component of ores such as pyrolusite (MnO2), braunite 

(Mn2+Mn3+
6O8SiO4), psilomelane ((Ba,H2O)2Mn5O10), and rhodochrosite (MnCO3).[11] On an 

industrial scale, manganese ore is mostly used for the production of ferromanganese, an iron-

manganese-alloy which is utilised in the steel industry, due to its deoxidising and sulfur-fixing 

properties, and the increased hardness of the alloy compared to pure steel.[11] Thus, steel 

production has accounted for a large portion of manganese demand (90%).[12] Further 

applications include aluminium-manganese alloys, and the complex methylcyclopentadienyl 

manganese tricarbonyl (MMT), which is used as an additive in unleaded gasoline to increase

the octane rating.[13] Pure manganese is obtained by leaching manganese ore, followed by an

electrowinning process from a manganese sulfate solution.[12]

Manganese-containing enzymes are omnipresent in the biosphere and play an important role 

in a number of biological processes. Several examples occur in the human body as
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manganese cofactors are part of oxidoreductases, transferases, hydrolases, and isomerases, 

to name but a few.[14] Moreover, a metalloenzyme with a manganese core is a crucial part of 

the photosystem II, which is responsible for the oxidation of water during photosynthesis in

plants.[15] Manganese displays a wide-ranging redox chemistry with oxidation states between

–III and +VII.[11] Therefore, it has high potential as redoxcatalyst, but despite the use of

manganese(IV) oxide for catalytic oxidations on industrial scale, other large scale applications 

are rare.[16] Nonetheless, synthetically important catalysts with manganese were developed by 

the groups of Jacobsen and Adkins. Jacobsen’s catalyst is an asymmetric Mn (III) salen

complex, which allows the enantioselective epoxidation of alkenes.[17] On the other hand, 

Adkins’ catalyst is a heterogeneous catalyst, composed of Cu2Cr2O5 doped with 2–3 wt% Mn 

oxides.[18] It enables the hydrogenation of fatty esters to the corresponding fatty alcohols.

Table 1. Comparison of palladium (exemplary for noble metals) with iron and manganese.

Criterion Palladium Iron Manganese

Price[a] 2164 US$/t.oz 177 US$/t
Electrolytic (EMM), > 99,7 %: 

1.553 US$/t

Abundance[b]
0.015 ppm

70th most abundant 

element

56000 ppm

4th most abundant 

element

950 ppm

12th most abundant

element

Deposit free metal

hematite (Fe2O3)

magnetite (Fe3O4)

siderite (FeCO3)

pyrolusite (MnO2)

braunite (3 Mn2O3·MnSiO4)

psilomelane

((Ba,H2O)2Mn5O10)

rhodochrosite (MnCO3)

[a] Prices are average of 2020.[19,20] Iron ore (62% Fe): 110.0 US$/t. [b] Abundance in Earth’s crust.[4b]

Owing to the high natural abundance of iron and manganese, both metals are relatively 

inexpensive (see Table 1), offering also environmentally friendly alternatives to precious 

metals for cost-effective catalyst synthesis. Consequently, significant progress has been made

in the development of non-noble metal complexes for homogeneous catalysis in recent 

years.[21] In particular, in recent years pincer complexes play an important role due to their 

outstanding adaptability towards a vast range of catalytic applications.
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3 Pincer Complexes

Pincer complexes feature a tridentate ligand system, which binds to three adjacent coplanar 

sites of a central metal atom, forming typically five- or six-membered chelate rings.[21] Thereby,

pincer catalysts provide high stability and remarkably variable properties. In order to fine-tune

the catalytic behaviour and gain high activity for various requirements, the ligand motif can be 

easily and systematically altered with respect to its steric and electronic properties (Figure 1).

Figure 1. General structure of pincer complexes and potential modification sites in pincer ligands.[21]

Originally, pincer ligands were mainly so-called ECE type ligands comprised of an aryl ring, 

which is ortho-disubstituted by heteroatomic moieties (Figure 1, E). The meridional 

coordination mode results from the covalently bound aryl ring by a M-C σ-bond and the two 

substituents with donor atoms (N, P, S, O), which coordinate to the metal centre via dative 

bonds.[21] More recently, instead of the aryl ring, different pincer backbones have become

well-known. Additional coordination modes of the pincer ligands such as mono- or bidentate, 

as well as facial coordination have been reported.[22]

A special characteristic of some pincer complexes is the capacity of the ligand to take actively 

part in the catalytic reaction as a so called non-innocent ligand. As a result, the formal oxidation 

state of the metal does not change because the ligand actively cooperates with the metal 

centre in bond-activation processes.[23] This so called metal-ligand cooperation (MLC) is

presented in Scheme 1a where an aromatisation/dearomatisation process for a pincer complex 

bearing a pyridine backbone occurs.[24] The ligand backbone is dearomatised by base and 
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thereupon the dearomatised complex can activate a chemical bond (H–Y) such as H2, or 

dehydrogenate substrates such as alcohols by C–H bond activation, correspondingly regaining 

aromatisation in both cases. 

 

 

Scheme 1. Dearomatisation/aromatisation process[24], as well as outer[25c]- and inner-sphere[27] 
mechanisms for hydrogenation reactions. 

 

Furthermore, an amine/amide pathway (Scheme 1b) is usually proposed for aliphatic pincer 

ligands. Two conceivable mechanisms, that are classified in the categories “inner-sphere” and 

“outer-sphere” have been described (Scheme 1b, 1c).[25] During an outer-sphere mechanism, 

the ligand is termed non-innocent and takes part in the catalytic cycle by the involvement of 

the amido function of the active catalyst during proton transfer. In this case, no direct interaction 
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between the metal centre and substrate is observed. For an overwhelming majority of 

(de)hydrogenation reactions with pincer complexes the outer-sphere mechanism is 

presumed.[26] On the contrary, the inner-sphere path involves the dissociation of a ligand (arm)

to create a free coordination site, which enables the direct interaction between metal centre

and substrate. A typical inner-sphere reaction mechanism is displayed in Scheme 1c for Ru 

PNN pincer complex Ru-1 as an exemplary representation.[27,24b]

In addition to the high variability of the ligand, the metal centre also determines the properties 

of the complex. Initially, mainly noble metals of the platinum group were implemented in 

catalytic processes with pincer complexes.[28] However, the relatively high toxicity of precious 

metals and their limited availability, leading to rising prices, resulted in an increasing demand 

for non-noble counterparts. In the past two decades significant progress has been made 

developing pincer catalysts with non-noble metal centres such as manganese, iron, cobalt,

and nickel.[25c,29] In the context of redox processes, the vast majority have been implemented

for hydrogenation reactions, while dehydrogenations were rarely investigated.
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4 Dehydrogenation of Alcohols by Non-Noble Metal Pincer 
Complexes

The dehydrogenation of alcohols with transition metal catalysts offers an attractive way to 

synthesise aldehydes and ketones.[30] These are valuable chemicals with a broad spectrum of 

applications in the laboratory, as well as in industry.[31] A rising interest in the exploitation of 

renewable resources makes the usage of bio-based alcohols as feedstock for important 

platform chemicals more likely in the future, depending on the profitability of the process. New 

synthetic routes for the selective oxidation of alcohols are therefore an interesting research 

area. Two varying approaches have been studied in this context: Acceptorless alcohol 

dehydrogenation (AAD) and transfer dehydrogenation with sacrificial hydrogen 

acceptors.[25c,32] Typically, alkenes or carbonyl compounds are suitable acceptors to take up

the in situ formed hydrogen and in this way enable oxidations under milder conditions.[33] Over

the past decade, considerable progress has been made in the development of pincer 

complexes, and in particular non-noble pincer catalysts for the dehydrogenation of alcohols

have been explored.

Figure 2. Timeline for the dehydrogenation of alcohols with non-noble pincer complexes.
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An overview of the reported catalysts is displayed in Figure 2, with the majority applied for the 

acceptorless dehydrogenation of alcohols. In contrast, transfer dehydrogenations catalysed by 

pincer complexes have scarcely been explored. Hence, we focused our research on this area

(see chapter 6.1 and 6.2).

4.1 Transfer Dehydrogenation of Alcohols

As described above, reports on the transfer dehydrogenation of alcohols with non-noble pincer 

complexes were exceptionally scarce. Prior to the first publication with manganese- and iron-

based pincer catalysts, mainly iridium and rhodium complexes were applied for this

transformation.[31,34] In 2017, Gauvin and co-workers published a report primarily describing 

the commercially available Ru-Macho-BH catalyst for the dehydrogenation of butan-1-ol to 

butanal.[35]

Figure 3. Non-noble metal pincer complexes applied in the transfer dehydrogenation of alcohols.

The oxidation proceeded with 1 mol% catalyst loading at 60 °C in the presence of a large 

excess of acetone as both hydrogen acceptor and solvent. Without the excess acetone, side 

products such as butyl butyrate were observed. Further attempts to use base-metal pincer 

complexes Fe-1 and Mn-1 under the same reaction conditions showed only 2% and 6% 

butanal respectively (Figure 3). Notwithstanding, it should be cited as the first report of a 

transfer dehydrogenation with non-noble pincer complexes, to which our research is linked.

4.2 Acceptorless Dehydrogenation of Alcohols

The first example for the acceptorless dehydrogenation of alcohols with a non-noble metal 

pincer catalyst was reported by the group of Hanson in 2013.[36] Two cobalt complexes 

featuring a non-methylated PNP ligand (Co-1) and a N-methylated PNP ligand (Co-2) showed,

respectively, 90 and 95% yield of acetophenone in the dehydrogenation of 1-phenylethanol

(Figure 4).
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Figure 4. Non-noble pincer complexes applied for the acceptorless dehydrogenation of alcohols.

Due to the similar activity of Co-1 and Co-2, Zhang et al. proposed that the N-H moiety of the 

pincer backbone does not play a crucial role for the reaction. The isolation of complex Co-3 as 

the active intermediate and further NMR experiments revealed that the reaction proceeds via

a cobalt(I)/cobalt(III) cycle (Scheme 2). The general applicability of the precatalyst Co-1 was 

showcased by the successful dehydrogenation of several secondary alcohols.

Scheme 2. Proposed mechanism of cobalt-catalysed dehydrogenation of 1-phenylethanol.[36]

The first AAD catalysed by an iron pincer complex, were reported by the groups of Jones and 

Schneider in 2014.[37] Using 1 mol% of complex Fe-1 under base-free conditions, the AAD of 

a variety of benzylic and aliphatic secondary alcohols were effectively catalysed. Notably, 
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primary alcohols were selectively dehydrogenated to the respective esters and primary diols 

were successfully oxidised, furnishing the corresponding lactones. The authors used DFT 

calculations to investigate the possible mechanism of the AAD, indicating the crucial role of 

metal-ligand cooperation in this reaction. 

Later on, Sortais and co-workers demonstrated that manganese based pincer complexes are 

also suitable catalysts for dehydrogenation.[38] Complex Mn-2 was synthesised in 68% yield by 

reacting MnBr(CO)5 and pincer ligand L-1, which features a 2,6-(diaminopyridinyl)diphosphine 

scaffold, in refluxing toluene (Scheme 3). However, the authors mainly focused on 

hydrogenation, and 1-phenylethanol was the only example of an AAD reaction catalysed by 

Mn-2. Applying a catalyst loading of 5 mol% Mn-2 and 10 mol% KOtBu, acetophenone was 

obtained in 84% yield after 22 h in toluene at 110°C. 

 

 

Scheme 3. Synthesis of manganese PNP complex Mn-2 reported by Sortais and co-workers.[38] 

 

In the following years, the acceptorless dehydrogenation of primary alcohols to carboxylic acid 

(salts) received significant interest. The first example of a non-noble metal catalyst performing 

this class of reactions was reported by the group of Gauvin in the above-mentioned publication 

from 2017.[35] The reaction conditions were optimised for the dehydrogenation of butanol, and 

applied to other bio-sourced alcohols such as fatty and terpenoic derived alcohols. Initially, the 

reaction was conducted with 2 mol% catalyst loading (Fe-1 or Mn-1) in the presence of 2 equiv 

water and 1.1 equiv KOH in toluene at 120 °C. However, in the absence of water, the catalytic 

activity of Fe-1 and Mn-1 was significantly increased. Butyric acid was isolated in excellent 

yields (95–96%) after 24 h and 6 h, respectively. Shortly after the work of Gauvin, Peng’s group 

further investigated the acceptorless dehydrogenation of primary alcohols and published a new 

phosphorus-free nickel NNN pincer complex (Ni-1).[39] The described methodology operates 

with 1 mol% Ni-1 in the presence of 25 mol% of the respective sodium alkoxide. Several meta- 

and para-substituted benzyl alcohol derivatives were readily dehydrogenated with yields 

ranging from 60% to 90% after 48 h at 150 °C. More recently, Gunanathan and co-workers 

used a cobalt catalyst with a phosphorus-free NNN pincer ligand (Co-4) to produce carboxylate 

salts from the corresponding primary alcohols. Overall, a broad variety of (hetero)aromatic and 

aliphatic alcohols were oxidised using 2 mol% Co-4 and 1.5 equiv KOH in toluene at 140 °C 
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for 16 h. The carboxylic acid salts were obtained after an acidic workup with 1 M HCl in low to 

excellent yields (27–95%). Notably, various challenging functionalities such as nitro, amine and 

methoxy groups, as well as internal alkenes were well tolerated.

Besides the purpose of alcohol dehydrogenation for synthetic use, alcohols such as methanol 

can be used as a hydrogen storage medium, and the release of this hydrogen is the primary 

objective of the dehydrogenation reaction.[40] In fact, hydrogen storage is a significant topic in 

social and political debate, and methanol is often discussed as a liquid organic hydrogen carrier 

(LOHC). This stems from the fact that methanol has a high gravimetric hydrogen content of 

12.6wt% and offers the possibility of circumventing the safety issues encountered during

storage and transportation of hydrogen gas.[41] With regard to pincer complexes, the main 

focus of research has been on aqueous methanol reforming. The dehydrogenation to H2 and 

CO2 proceeds through three reaction steps with formaldehyde, methylene glycol, and formic 

acid as the intermediates of the overall reaction (Scheme 4). Thus, dehydrogenation of formic 

acid is also part of ongoing research and presented in more detail in current reviews, however

it is not discussed in this work.[41,42]

Scheme 4. Non-noble pincer catalysts applied in the acceptorless dehydrogenation of methanol.

The first iron pincer catalyst applied to the acceptorless dehydrogenation of methanol was 

reported by the group of Beller in 2013.[43] In this publication the aforementioned complex Fe-
1 was presented, and the synthesis was described for the first time (Scheme 4). Although

hydrogen evolution could be obtained without the use of a base, ancillary KOH significantly 

increased the catalyst activity. By lowering the catalyst loading to 1 μmol, and with 8 M KOH 

present in a MeOH/H2O mixture (4:1) at 91 °C, a TON up to nearly 10000 was achieved after 

46 h. Following this work, the groups of Bernskoetter, Hazari and Holthausen showed the 

related formate complex Fe-2 and improved the catalytic performance by using a co-catalytic 
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amount of a Lewis acid (10 mol% LiBF4).[44] In this way, full conversion was achieved with 0.03 

mol% catalyst loading in a MeOH/H2O mixture (4:1), and ethylacetate as co-solvent at 78 °C

after 39 h. Interestingly, lowering the catalyst loading to 0.006 mol% resulted in a TON of 51000 

after 94 h. However, the yield was lowered by half under these reaction conditions. Following 

the works with iron pincer complexes, manganese based pincer catalysts were implemented 

by Beller and co-workers for aqueous methanol dehydrogenation in 2017.[45] The reported 

cationic complex Mn-3 has a pincer ligand, which coordinates the metal centre in an unusual 

facial fashion. Application of 8 μmol Mn-3 with 8 M KOH at 92 °C for 5 h gave a TON of 65.

Similarly, the neutral Mn PNP complex Mn-4 bearing isopropyl substituents on the phosphorus 

atoms was found to achieve a TON of 54. Notably, remarkable long-term stability of more than 

a month was attained in the presence of additional 10 equiv of PNPiPr ligand and a TON over 

20000 was obtained, which is a superior result in comparison to the related iron based complex

Fe-1.
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5 Hydrogenation of Alkynes by Non-Noble Metal Pincer Complexes

The transition metal mediated semihydrogenation of alkynes to the corresponding alkenes is 

an interesting transformation in homogeneous catalysis. More specifically, Z-alkenes are a 

widespread motif in biologically active compounds, as well as in pharmaceuticals and 

fragrances.[46] Being highly prevalent in the scaffold of organic compounds, a number of 

synthetic approaches have been developed in the past, but the selective C–C triple bond 

reduction constitutes the most convenient method towards selective Z-alkenes.[47] A classical 

and facile catalytic system, which is frequently employed on laboratory and industrial scale, is 

the Lindlar catalyst. The lead and quinoline-poisoned palladium on CaCO3 is able to promote 

the semihydrogenation furnishing exclusively Z-alkenes.[48] However, it has drawbacks such 

as using environmentally harmful Pb(OAc)2 during the preparation, and as a result catalyst 

recycling is elaborate and expensive.[49] Moreover, noble metals have increasingly been 

avoided over the last decade, due to their limited availability and higher price. In this respect, 

several homogeneous pincer complexes based on non-noble metals were reported for the 

semihydrogenation of alkynes. In general, two different concepts were followed: 

Hydrogenation with molecular hydrogen, and transfer hydrogenation realised by using 

hydrogen donors, for instance ammonia borane or methanol.

5.1 Transfer Semihydrogenation of Alkynes

In 2016, the group of Liu published three different cobalt pincer complexes (Co-5–Co-7), which 

promote the stereodivergent transfer semihydrogenation of alkynes by utilising ammonia 

borane (NH3BH3) as the hydrogen source.[50] Depending on the ligand used, either Z- or E-

alkenes were obtained with high yields and good selectivities (Scheme 5).

Scheme 5. Stereodivergent cobalt-catalysed transfer semihydrogenation of alkynes.[50]

The E-isomer is obtained via a Z- to E-isomerisation process, which was proven by a kinetic 

profile. Interestingly, the Z-alkene is the intermediate of the reaction and the progression of the 

isomerisation is inhibited by the substrate. After complete consumption of the alkyne, the rate 
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of the isomerisation exhibited a sharp increase. This process takes place on an open 

coordination site of the catalyst if the metal centre is sterically less hindered. Owing to bulky 

t-butyl substituents at the phosphorus atoms of the PNP ligand of complex Co-5, no

isomerisation occurs and the formation of the Z-isomers is favoured. Notably, a small 

modification of the substitutents of the PNP ligand to i-propyl (Co-6) resulted in a totally 

different stereoselectivity and primarily led to E-alkenes (12:1 E/Z). Moreover, a cobalt NNP 

pincer complex (Co-7) was reported, which showed even higher selectivity towards E-alkenes 

(>99:1 E/Z), demonstrating the beneficial effect of the pyridine coordination site. While the 

general applicability for Co-5 and Co-6 was proven by the semihydrogenation of various 

internal alkynes with good yields and stereoselectivities, catalyst Co-6 showed superior activity 

for terminal alkynes in a smaller substrate scope. Furthermore, outstanding versatility 

regarding internal and terminal alkynes was achieved by Landge et al. in 2018 using the 

phosphorus-free cobalt NNN pincer pre-catalyst Co-8 and ammonia borane, which was

applied to transform various alkynes to the corresponding Z-alkenes (Figure 5).[51]

Figure 5. Non-noble metal pincer-based catalysts for the transfer semihydrogenation of alkynes.

The first example of a manganese catalysed transfer semihydrogenation was reported by 

Driess and co-workers.[52] The precatalyst (Mn-5) bearing a pincer-type bis(NHSi)-pyridine 

ligand showed best activity with ammonia borane as the hydrogen source, leading to high 

yields and E-alkenes as the main products. In the same year, the group of El-Sepelgy 

published a manganese PNP complex (Mn-6), which was capable of reducing 18 different 

internal alkynes to give the corresponding Z-alkenes, generally in high yield and good 

selectivity.[53] The latter two catalyst systems worked with 1 mol% catalyst loading and 1 equiv 

NH3BH3 at relatively low temperatures (55–60 °C). Recently, Rueping’s group demonstrated 

alkyne reduction with the use of MeOH as the hydrogen source.[54] Upon activation with 

Cs2CO3, the manganese based pincer catalyst (Mn-7) proved to be active for the 

semihydrogenation of a variety of different alkynes to the Z-alkenes. However, high 

temperature of 150 °C was shown to be necessary for the transformation.
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5.2 Semihydrogenation of Alkynes

The first example of a non-noble metal pincer complex applied in the semihydrogenation of 

alkynes was published by the group of Milstein in 2013 (Figure 6).[55] Using an acridine-based 

iron PNP complex with an amidoborane ligand (Fe-4), sixteen different alkynes were 

successfully hydrogenated to the corresponding E-alkenes in high yields without additional 

base. Notably, high selectivity of the E-isomers (up to 100:0 E/Z) was obtained due to fast in 

situ isomerisation of the initially formed Z-alkenes.

Figure 6. Non-noble metal pincer-based catalysts for the semihydrogenation of alkynes.

In a related fashion, high E-selectivity was attained by Fout and co-workers with the cobalt 

CCC pincer catalyst Co-9 (Figure 7).[56] A variety of terminal alkynes were efficiently reduced 

with 1 to 3 mol% catalyst loading under mild conditions (4 atm H2, 30 °C, THF) and furnished 

the desired alkenes in good yields. A further publication reported related complexes with 

modified pincer ligands.[57] Compared to Co-10, complex Co-11 was substituted in the para-

position of the aryl backbone with a tert-butyl group, while catalyst Co-12 was equipped with a 

trifluoromethyl moiety at the same position. The reactivity of Co-11 was similar to the activities 

obtained with Co-9 and Co-10. However, the loss of electron densitiy at the metal centre by 

the electron-withdrawing trifluoromethyl group, led to reduced activity of the catalyst Co-12,

resulting in lower product selectivity.

Figure 7. Cobalt based pincer complexes for the semihydrogenation of alkynes.
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Another iron PNP pincer complex (Fe-5) was reported by the group of Kirchner in 2019 (Figure 

6).[58] The applied Fe catalyst contains an aminoborane ligand, which is labile and provides two 

vacant coordination sites on the catalyst after dissociation. Hence, precatalyst Fe-5 efficiently 

catalysed the reduction of internal alkynes, as well as 1,3-diynes and 1,3-enynes to the 

respective Z-alkenes under mild conditions (1 h, 25 °C, 4–5 bar H2). In 2019, Beller and 

co-workers described the first nickel based pincer complex (Ni-2).[59] Despite a heterogeneous 

methodology with nickel nanoparticles providing only Z-alkenes, a molecular defined Ni triphos 

catalyst was reported for the selective production of E-isomers via a

hydrogenation/isomerisation mechanism. Very recently, the group of Rueping disclosed an

air-stable manganese PNS pincer catalyst (Mn-8) for the semihydrogenation of alkynes with 

molecular hydrogen.[60] The previously described catalyst Mn-7 was published simultaneously 

and used for transfer semihydrogenation with MeOH, exhibiting a 50% lower activity than Mn-
8. For the substrate scope, 1–2 mol% catalyst loading in combination with 2.5 equiv KOtBu

(referred to the catalyst loading), 60 °C, and 20 bar H2 was used. Reaction times between 12 h

and 24 h in toluene were required to implement the substrate scope. Overall, 25 substrates 

including (hetero)aromatic and aryl-alkyl alkynes, were selectively hydrogenated to the 

corresponding Z-alkenes and allylic alcohols in high yields. Furthermore, a gram scale 

synthesis was accomplished with 0.5 mol% Mn-8 and 1.25 mol% KOtBu, furnishing Z-stilbene 

in 99% yield after a 16 h reaction time.
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6 Results and Discussion

6.1 Iron PNP-Pincer-Catalysed Transfer Dehydrogenation of Secondary 
Alcohols

As described in the introduction, in recent years the scientific focus of sustainable redox 

chemistry in pincer catalysis has mainly been on the application of non-noble metal pincer 

complexes in catalytic hydrogenations. This raised the question of whether the same activity 

of iron- and manganese-based pincer complexes could be obtained for the corresponding

dehydrogenation reactions. Based on previous work performed in our group regarding the 

dehydrogenation of methanol using a molecularly defined iron PNP pincer complex (Fe-1,

Scheme 6), we became interested in developing a general methodology applicable to a 

broader scope of alcohols.[43] In order to run the reaction under mild conditions, acetone was

used as inexpensive hydrogen acceptor, thus facilitating the dehydrogenation reaction.[61]

Complex Fe-1 was synthesised according to a procedure reported in literature, starting from 

the precursor FeBr2(THF)2 and pincer ligand bis(2-diisopropylphosphinoethyl)amine L-2.[43]

Under an atmosphere of CO (1 atm), the dark blue complex Fe-6 was formed and isolated in 

quantitative yield (99%). This precatalyst, however, was not able to promote the desired

dehydrogenation of 1-phenylethanol (1a). Therefore, we prepared the hydrido hydroborato 

complex Fe-1 by treating complex Fe-6 with an excess of NaBH4 in ethanol. Using this 

procedure, the bright yellow complex Fe-1 was obtained in 78% yield (Scheme 6).

Scheme 6. Synthesis of iron PNP complex Fe-1.

Due to the facile dissociation of BH3, the active hydride complex can be formed in situ without 

base.[62] However, the use of an ancillary base showed an accelerating effect on the catalytic 

activity in the case of the dehydrogenation of methanol with the same pincer complex.[43]

Hence, we tested 1 mol% catalyst loading in the presence of 5 mol% NaOtBu as additive.

Interestingly, we were able to detect an increase in yield of acetophenone (2a) from 12% to 

89% after a 19 h reaction time at 70 °C (Table 2, Entries 1–2). However, complete consumption 
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of the starting material was already achieved after 4 h, resulting in the formation of desired 

product acetophenone (2a) in 91% yield (Table 2, Entry 3).

Moreover, reducing the temperature to 50 °C resulted in similar catalytic activity (Table 2, Entry 

4). In order to provide better comparability by reducing the conversion to below 100%, the

experiments for optimising base and solvent were conducted with a 2 h reaction time. As a 

result, KOtBu and n-heptane proved to be the best choice (Table 2, Entries 5–8).

Table 2. Optimisation of the 1-phenylethanol dehydrogenation reaction conditions with complex Fe-1.[a]

Entry Base[b] t [h] T [°C] Solvent[c] Conv. [%] Yield [%]

1 - 19 70 THF 14 12

2 NaOtBu 19 70 THF 100 89

3 NaOtBu 4 70 THF 100 91

4 NaOtBu 4 50 THF 97 93

5 NaOtBu 2 50 THF 57 53

6 NaOtBu 2 50 heptane 84 73

7 KOtBu 2 50 heptane 94 84

8 KOtBu 4 50 heptane 100 97

9[d] NaOtBu 2 50 heptane 0 0

10[d,e] NaOtBu 2 50 heptane 17 13

11[e] NaOtBu 2 50 heptane 83 71

[a] Conversion and yield were determined by GC using hexadecane as an internal standard. [b]
5 mol% base loading. [c] 2.5 mL solvent, 2.5 mL acetone. [d] Reaction was carried out without
acetone. [e] Reaction was carried out in an open system.

Having acceptorless dehydrogenation as a competitive reaction pathway in mind, we were 

interested as to whether the reaction takes place without acetone under the optimised reaction 

conditions. A lack of activity within the reaction was observed when the experiment was carried 

out in a closed flask (Table 2, Entry 9). However, acceptorless dehydrogenation is usually 

conducted in an open system to release the produced hydrogen and shift the equilibrium 

towards the products.[37] Under these conditions, only 17% conversion was detected, yielding 

13% acetophenone (2a) (Table 2, Entry 10). When the experiment was performed again using 

acetone, an enhanced yield of 71% was attained, comparable to the reaction in a closed 
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system. (Table 2, Entries 6 and 11). The conducted experiments demonstrate that a hydrogen 

acceptor facilitates the alcohol dehydrogenation, thus allowing for milder reaction conditions. 

Additionally, this was supported by DFT calculations, using the B3PW91 density functional 

theory (Figure 8). A potential outer-sphere mechanism was proposed, consisting of the 

dehydrogenation of 1-phenylethanol (1a) to acetophenone (2a) by the amido complex Fe-1a,

which is transformed into the amine complex Fe-1b. In the second step the amido complex Fe-
1a is regenerated back to Fe-1b and acetone takes up the hydrogen to form isopropanol. As 

a side reaction, the amine complex Fe-1b can release H2 to form the amido complex Fe-1a
without the involvement of an acceptor, and in this case only the substrate is oxidised. These 

results agree with the hydrogen evolution confirmed by GC-MS.

The hydrogenation of acetone to isopropanol is exothermic (ΔG2) by 12.7 kJ mol-1 with a barrier 

(ΔG2
ǂ) of 90.0 kJ mol-1. It was shown that the total transfer dehydrogenation is exothermic 

(ΔGtot) by 4.0 kJ mol-1 with a computed equilibrium constant of 4.43. Due to this, an excess of 

acetone is necessary in order to shift the balance of the reaction in the direction of the products. 

In contrast, without a hydrogen acceptor the dehydrogenation is endergonic (ΔG1) by 

8.7 kJ mol-1, which validates the lack of activity of the catalytic system without acetone in a 

closed system (Table 2, Entry 9).

Figure 8. Proposed reaction sequences for the benchmark dehydrogenation 1-phenylethanol (left), and
the reaction coordinates for the interconversion of catalysts [Fe-1b=Fe-1a+H2] and hydrogen acceptor 
[acetone+H2=isopropanol] (right).

Moreover, in an open system the release of H2 was considered, and the acceptorless 

dehydrogenation of 1-phenylethanol (1a) to acetophenone (2a) and H2 was found to be

endergonic by 6.3 kJ mol-1. The marginal endergonic acceptorless dehydrogenation requires

higher temperatures to accelerate the reaction and achieve a decent yield, whereas the 
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transfer dehydrogenation with acetone is exergonic by 4.0 kJ mol-1 and can be performed 

under milder conditions (Table 2, Entries 6 and 10). Overall, the computational studies support 

the beneficial effect of acetone, which shifts the endergonic acceptorless dehydrogenation to 

an exergonic transfer dehydrogenation.

With optimised conditions in hand (1 mol% 7, 5 mol% KOtBu, 50°C, 4 h, 5 mL heptane, 5 mL 

acetone), we studied the general applicability of our catalytic system for the dehydrogenation 

of various alcohols. Benzylic alcohols with electron-withdrawing, as well as electron-donating 

groups in para- or meta-position were readily converted to the corresponding ketones in good 

to excellent isolated yields (Scheme 7, 2a–i). In the case of ortho-substituted 2’-chloro-1-

phenylethanol (2k), the observed drop of activity could be explained by the increased steric

hindrance of the substrate. Interestingly, a selective dehydrogenation of the hydroxyl group is 

observed for substrate 2g bearing an amino functionality, which is not oxidised during the 

catalytic reaction.

Additionally, by way of example, selected substrates were fully dehydrogenated to the 

corresponding ketones with only 0.1 mol% catalyst loading after 24 h (2a, 2b & 2d), whereas 

4’-bromoacetophenone (2d) was detected in 91% yield by using only 0.25 mol% of catalyst.

Moreover, ketones bearing sterically demanding substituents in α-position to the carbonyl 

function were isolated in yields ranging from 76% to 96%, without harsh conditions being 

required (2l–n). Application of substrate 2o bearing a methyl ester group resulted in cyclic ketal 

formation, which is already reported in literature, and 50% of 2,2-dimethyl-5-phenyl-1,3-

dioxolan-4-one is observed.[63] In the case of 2,2,2-trifluoro-1-phenylethanol (1p), the strong 

electron-withdrawing effect of the trifluoromethyl group causes a lack of activity in the catalytic 

system. Mandelonitrile (1q) was fully converted to benzaldehyde.

Examplarily for annulated arenes, 1-(naphthalen-1-yl)ethanol (1r) was dehydrogenated with 

95% conversion and 90% yield. Likewise, full conversion of α-tetralol (1s) was achieved, 

furnishing the desired product with 83% yield.

Additionally, allylic alcohols can be smoothly oxidised under optimised conditions as 

demonstrated for 3,5,5-trimethylcyclohex-2-en-1-ol (1t). However, in order to circumvent the 

competing Michael addition, the β-position to the hydroxyl group has to be blocked. In the case 

of 2-cyclohexen-1-ol (1u) full conversion was observed, yielding 46% of 3-acetonylcyclohexan-

1-one besides other unidentifiable side products by GC-MS analyses.

Notably, heteroaromatic substrates were effectively dehydrogenated as well. The 

corresponding ketones were obtained with yields ranging from 54% to 98%. (2v–y).

To further probe the general applicability of the catalytic system toward aliphatic alcohols, we 

tested the dehydrogenation of 1-cyclohexylethanol (1z). Despite higher catalyst loading and 

raised reaction temperatures, only modest activity was observed. 
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Scheme 7. Substrate scope and limitations for the dehydrogenation of alcohols using Fe-1.[a]

Conversions were determined by GC using hexadecane as an internal standard. Isolated yield is given 
in parentheses. [a] Reaction conditions: substrate (1 mmol), complex Fe-1 (0.01 mmol), KOtBu (0.05 
mmol), heptane (5 mL), acetone (5 mL), 50 °C, 4 h. [b] GC yield. [c] Reaction conditions: substrate (1 
mmol), complex Fe-1 (0.02 mmol), KOtBu (0.1 mmol), heptane (5 mL), acetone (5 mL), 50 °C, 24 h. [d] 
Reaction conditions: substrate (1 mmol), complex Fe-1 (0.02 mmol), KOtBu (0.1 mmol), heptane (5 mL), 
acetone (5 mL), 80 °C, 24 h.
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Additionally, we attempted the dehydrogenation of primary alcohols, e.g. benzyl alcohol (1aa), 

which resulted in various side reactions with acetone or iso-propanol. Indeed, a base-catalysed 

aldol reaction was already observed for all reactions beforehand, however only two molecules 

of acetone reacted with each other forming diacetone alcohol and 4-methylpent-3-en-2-one 

via aldol addition and aldol condensation, respectively. Consequently, conversions and yields 

were unaffected by this. However, the higher reactivity of the in situ obtained benzaldehyde 

(1aa) led to the formation of 4-phenyl-3-buten-2-ol (6%) and the corresponding ketone, 4-

phenyl-3-buten-2-one (46%). Additionally, 28% of 5-methyl-1-phenylhexa-1,4-dien-3-one, 

formed during the aldol condensation of benzaldehyde and mesityl oxide, was detected by 

GC-FID analyses. In conclusion, when acetone is used as a hydrogen acceptor, primary 

alcohols are not suitable substrates for the catalytic dehydrogenation. However, application of 

different acceptors including benzophenone, benzil, benzalacetophenone, and 3,3-dimethyl-1-

butene resulted in no conversion and therefore are unsuitable for the intended 

dehydrogenation methodology in general. 

Furthermore, 1-phenyl-1,2-ethanediol (1ab) was used as a substrate to examine possible 

selectivity towards the dehydrogenation of the secondary alcohol moiety. Surprisingly, no 

dehydrogenation took place. Further insights into the origin of this absence of activity were 

gained by conducting an experiment with the benchmark substrate 1-phenylethanol (1a) and 

diol 1ab with double the amount of catalyst and base. Under these conditions, 1-phenylethanol 

(1a) was not dehydrogenated. Based on these observations, we believe that the diol acts as a 

catalyst poison, e.g. by blocking the active site of the complex. 
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6.2 Transfer Dehydrogenation of Secondary Alcohols Catalysed by 
Manganese NNN-Pincer Complexes

As part of our ongoing interest in the transfer dehydrogenation of alcohols and the newly

emerging developments of manganese based pincer complexes, we investigated further 

catalytic systems for the desired transformation under mild conditions. Our specific focus was 

on phosphorus-free NNN-type pincer ligands, as they offer unique advantages such as being

easily accessible and bench-stable. The precatalysts were synthesised in situ by reacting 

MnBr(CO)5 with tridentate nitrogen ligands L3–L11 (Scheme 9). Using 1-phenylethanol (1a)

as the benchmark substrate, an initial screening was carried out using 0.5 mol% of metal 

precursor and chelating ligand, followed by the consecutive addition of 0.5 mol% NaOtBu, 

substrate, and acetone.

Scheme 8. Ligand screening for the dehydrogenation of 1-phenylethanol.[a]

[a] Standard reaction conditions: 1-Phenylethanol 1a (2 mmol), MnBr(CO)5 (0.5 mol%), ligand (0.5
mol%), NaOtBu (0.5 mol%), toluene (3 mL), acetone (1 mL), 90 °C, 2 h. Conversion and yield (in
paranthesis) were determined by GC using hexadecane as an internal standard.

While the application of diethylentriamine (L3) as ligand resulted in a 71% yield of 

acetophenone (2a) under the selected reaction conditions, the methylated counterpart (L4)
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and the iPr-PyBOX ligand (L5) both failed and did not display any activity (Scheme 9). Inspired 

by the good performance of a manganese catalyst with a di-picolylamine ligand (L6, dpa) for

transfer hydrogenation of ketones, we examined the activity of comparable catalytic systems 

with L6 and related ligands (L7-L9), respectively.[64] Indeed, not only the combination of 

MnBr(CO)5 and L6 showed good activity, with 65% conversion and 61% yield of acetophenone

(2a), but also N-methylated di-picolylamine (L7, Me-dpa) and tris-(2-picolyl)amine (L8, tpa)

exhibited full conversion and yields up to 98%. Surprisingly, employing terpyridine (L9) as 

ligand with MnBr(CO)5 gave no conversion at all. Under similar conditions, phosphorus 

containing pyridine-based ligands (L10, L11) revealed no formation of the product 2a in the 

case of MnBr(CO)5/L10, and a comparatively low yield of 33% by utilising MnBr(CO)5/L11. To

allow for a more precise comparison of L7 and L8, we recorded a concentration-time graph 

applying MnBr(CO)5 with each ligand. As displayed in Figure 9, the catalytic system with L7
(blue graph) was found to provide superior activity in comparison to L8 (red graph).

Figure 9. Conversion vs. time diagram for the dehydrogenation of 1-phenylethanol 1a with MnBr(CO)5

and ligand L7 or L8.

Reaction conditions: 1-Phenylethanol 1a (2 mmol), MnBr(CO)5 (0.5 mol%), ligand (0.5 mol%), NaOtBu 
(0.5 mol%), toluene (3 mL), acetone (1 mL), 90 °C. Conversion was determined by GC by using 
hexadecane as an internal standard.

A further comparison of different metal precursors revealed that the previously used 

MnBr(CO)5 and ligand L7 were the most active catalyst system for the attempted 

transformation (Figure 10). Interestingly, even noble-metal precursors based on ruthenium 

could not reach the attained high activity of this system.
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Figure 10. Metal precursor screening for the dehydrogenation of 1-phenylethanol.

Reaction conditions: 1-Phenylethanol 1a (2 mmol), precursor (0.5 mol%), L7 (0.5 mol%), NaOtBu 
(0.5 mol%), toluene (3 mL), acetone (1 mL), 90 °C. Conversions were determined by GC by using 
hexadecane as an internal standard.

As previously expected, the addition of ligand L7 to MnBr(CO)5 is crucial for the obtained 

activity, irrespective of the presence or absence of an additional base (Table 3, Entries 1–2). 

If only the base was omitted, no catalytic activity was observed (Table 3, Entry 3). The ensuing 

optimisation of further reaction parameters showed that the preformation of the catalyst

required 30 minutes, otherwise a lower yield was detected (Table 3, Entry 4). Further reduction 

of catalyst and base loading to 0.1 mol% caused a drop of activity, leading to only 22% yield 

(Table 3, Entry 5). Hence, we decided to utilise 0.5 mol% loading of precursor, ligand, and 

base in a 1:1:1 ratio to avoid an excess of base and the resulting aldol condensation, which 

leads to catalyst deactivation. The choice of solvent was determined by the reaction 

temperature of 90 °C, as lower temperatures led to not-reproducible results. Thus, only 

heptane and toluene, which have boiling points above this temperature were considered 

suitable for the reaction setup (Table 3, Entries 6–7). For this reason, acetone was always 

added shortly before the reaction vessel was closed. Conducting the reaction without acetone, 

resulted in a complete loss of activity and proved that acceptorless dehydrogenation does not 

take place under the prevailing conditions (Table 3, Entry 8).[32c,65] In summary, the initially 
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chosen reaction conditions of the ligand and precursor screening remained best, and full 

conversion of the benchmark substrate was accomplished after 2 h at 90 °C in toluene.

Table 3. Optimisation of the 1-phenylethanol dehydrogenation reaction conditions with MnBr(CO)5 and 
L7.[a]

Entry MnBr(CO)5 [mol%] Ligand [mol%] Base [mol%] Conv. [%] Yield [%]

1 [0.5] - - 0 0

2 [0.5] - NaOtBu [0.5] 0 0

3 [0.5] L7 [0.5] - 0 0

4[b] [0.5] L7 [0.5] NaOtBu [0.5] 94 93

5[c] [0.1] L7 [0.1] NaOtBu [0.1] 24 22

6[d] [0.5] L7 [0.5] NaOtBu [0.5] 92 90

7[e] [0.5] L7 [0.5] NaOtBu [0.5] 98 96

8[f] [0.5] L7 [0.5] NaOtBu [0.5] 0 0

9 [0.5] L7 [0.5] NaOtBu [0.5] >99 98

[a] 1-Phenylethanol 1a (2 mmol), 3 mL toluene, 1 mL acetone, 90 °C, 2 h. Conversion and yield
were determined by GC using hexadecane as an internal standard. [b] 15 min formation time. [c]
1-Phenylethanol 1a (4 mmol), MnBr(CO)5 (0.1 mol%), L7 (0.1 mol%), NaOtBu (0.1 mol%). [d] 1 h
reaction time, heptane (3 mL), acetone (1 mL). [e] 1 h reaction time. [f] Without acetone.

Next, we went on to test the general applicability of the catalytic system and subsequently 

deployed a variety of electronically diverse secondary alcohols to our methodology. Para-

substituted acetophenone derivatives with electron-withdrawing or electron-donating groups 

were isolated in high yields ranging from 83% to 98% (Scheme 10, Entries 2a–c, 2f–h, 2ad).

On the contrary, application of ortho-chlorine substituted 1-(4-fluorophenyl)ethanol (1ac)

resulted in a significantly lower catalyst activity, even with increased catalyst and base loading 

of 5 mol% and longer reaction times. However, the catalyst system showed good functional 

group tolerance as esters, amines, and methoxy ethers remained unaffected under our 

reaction conditions, and no competing side reactions were observed (2ad, 2g, 2f). Next, we 

examined the reactivity of several β-substituted derivatives. Substrates bearing ethyl (1i) or 

cyclopropyl groups (1m) decreased the catalytic activity of the system, yielding the desired

ketones with 81% and 49%, respectively. When harsher conditions were used, congeners with 

bulkier moieties could be isolated in decent yields, furnishing 67% benzophenone (2n) and 

88% cyclohexylphenyl ketone (2ae). Methoxy- or phenoxy-substitutents in the β-position were

well tolerated, however, lower yields were detected (2af–2ag). 
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Scheme 9. Substrate scope for the dehydrogenation of secondary alcohols using MnBr(CO)5 and L7.[a]

Conversions were determined by GC using hexadecane as an internal standard. Isolated yields are 
given in parentheses. [a] Reaction conditions: substrate (2 mmol), MnBr(CO)5 (0.5 mol%), L7 (0.05
mol%), NaOtBu (0.5 mol%), toluene (3 mL), acetone (1 mL), 90 °C, 2 h. [b] Reaction conditions: 
Substrate (1 mmol), MnBr(CO)5 (5 mol%), L7 (5 mol%), NaOtBu (5 mol%), toluene (6 mL), acetone (2 
mL), 90 °C, 24 h. [c] Reaction conditions: Substrate (1 mmol), MnBr(CO)5 (1 mol%), L7 (1 mol%), 
NaOtBu (1 mol%), toluene (6 mL), acetone (2 mL), 90 °C, 24 h. [d] NaOMe instead of NaOtBu. [e] GC 
yield. [f] 48 h reaction time.
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Furthermore, it could be demonstrated that heteroaromatic substrates (1y,1w) as well as α,β-

unsaturated alcohols (1u) were effectively dehydrogenated. 4-Chromanone (2y) and 3-

acetylpyridine (2w) were isolated in 71% and 37%, respectively. Moreover, 4-phenyl-3-buten-

2-one was isolated in near quantitative yield without observing any side reactions (2ah). In 

addition, the reactivity of the new catalytic system was examined for the dehydrogenation of 

acyclic and cyclic aliphatic secondary alcohols. Fortunately, all respective substrates were 

successfully dehydrogenated, albeit 5 mol% catalyst and base loading were shown to be 

necessary to yield the desired products in good to excellent yields after 24 h. An increase in 

ring size of cyclic alcohols had no significant influence on the activity of the catalytic system 

(2ak–2al, 2z). It could be demonstrated that cyclohexanol (1am) and structurally related 

compounds (1u–1t) were dehydrogenated in good yields (78–92%) to the corresponding 

ketones. Notably, the oxidation of 2-cyclohexenol (1u), which can act as Michael acceptor as 

reported vide supra in chapter 6.1, was accomplished without any detectable side products. In 

the case of allylic substrate 1an, a conversion of 92% was observed yielding 89% β-ionone 

(2an), which is widely applied in the fragrance industry. Likewise, full conversion of 

quinuclidine-3-ol (1ao) was attained, furnishing 88% of the desired ketone (2ao). To further 

probe the general applicability of the methodology toward bio-active compounds, we attempted 

the dehydrogenation of natural steroids bearing secondary alcohol moieties. To our delight, 

3β-hydroxypregn-5-en-20-on (1ap) and cholest-5-en-3β-ol (1aq) were fully dehydrogenated 

using 5 mol% MnBr(CO)5, 5 mol% L7, and 5 mol% NaOtBu at 90 °C. In both cases the desired 

product was isolated in near quantitative yield after 24 h. Notably, a selective isomerisation of 

the double bond (>99%) was obtained to yield the more stable enone products (2ap–2aq). 

Similarly, testosterone (1ar) was successfully oxidised to androstenedione (2ar) after 48 h, 

and an excellent isolated yield of 94% was achieved. 

 

To probe the formation of the precatalyst and the catalytically active species, we tested the 

isolated complex [Mn(Me-dpa)(CO)3]Br (Mn-9) in the initially conducted dehydrogenation of 

1-phenylethanol (1a) and observed a similar activity compared to the in situ formed catalyst. 

Characteristic CO bands at 2030, 1935, and 1920 cm-1 during in situ IR spectroscopic 

investigations proved the in situ generated species to be precatalyst Mn-9 (Figure 11). The 

intensities of the carbonyl bands increased with higher temperature owing to the improved 

solubility of the complex. After addition of NaOtBu a gradual decrease of the CO bands was 

observed and a new band at 1808 cm-1 appeared. From this data, we inferred that a new 

catalyst species was formed. However, characterisation of this active intermediate proved to 

be difficult, due to its instability. 

 



29

Figure 11. In situ IR spectrum of MnBr(CO)5 and L7 in heptane.
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6.3 Chemoselective Semihydrogenation of Alkynes Catalysed by 
Manganese(I)-PNP Pincer Complexes

As described in the introduction, reports on non-noble metal pincer complexes for the 

semihydrogenation of alkynes are scarce. In particular, manganese based catalysts were not 

studied for the stereoselective hydrogenation of alkynes to alkenes with molecular hydrogen

until recently. Hence, in search for a practical catalytic system, the potential of manganese 

based pincer complexes, which were previously developed in our laboratories, was evaluated 

for the semihydrogenation of 1,2-diphenylethyne 3a (Scheme 11).

Scheme 10. The tested manganese complexes for the hydrogenation of 1,2-diphenylethyne 3a.[a]

[a] General reaction conditions: 0.5 mmol substrate 3a, 2 mol% [Mn], 5 mol% NaOtBu, 1 mL toluene,
Z/E: >99. [b] 5 mol% KOtBu, 1 mL heptane, Z/E: n.d..

Using 2 mol% catalyst and 5 mol% base loading at 30 bar H2 and 50 °C, complexes Mn-12
and Mn-9 were not active for this hydrogenation. Whereas Mn-10, Mn-3 and Mn-11 showed 

high activity and performed equally well. Full conversion was observed in all cases, exclusively 

furnishing the Z-isomer (4a) in high yields (93–99%). Complexes Mn-4 and Mn-13 displayed 

inferior catalytic activities with 39% and 3% yield, respectively. A further comparison at a

shorter reaction time of 5 h showed Mn-11 to be the most active catalyst for the attempted 

transformation (Table 4, Entries 1–3). As full conversion was still obtained after lowering the 

reaction time to 2 h, we reduced the temperature to 30 °C (Table 4, Entries 4–5). 
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Table 4. Optimisation of the 1,2-diphenylacetylene hydrogenation reaction conditions.[a]

Entry Catalyst Catalyst loading 
[mol%]

T [°C] p [bar] t [h] Conv. [%] Yield [%] Z/E

1 Mn-10 2 50 30 5 61 59 97:3

2[b] Mn-3 2 50 30 5 60 56 97:3

3 Mn-11 2 50 30 5 >99 99 99:1

4 Mn-11 2 50 30 2 >99 99 >99

5 Mn-11 2 30 30 2 73 67 >99

6[b] Mn-11 1 30 30 4 >99 99 >99

7[b] Mn-11 0.5 30 30 4 77 74 >99

8[b] Mn-11 1 30 5 4 92 88 >99

[a] General reaction conditions: 0.5 mmol substrate 3a, 0.5-2 mol% [Mn], 5 mol% NaOtBu, 1 mL
toluene. Conversions were determined by GC using hexadecane as an internal standard. Isolated
yields. Z/E ratio determined by NMR analysis. [b] 0.5 mmol substrate 3a, 0.5-2 mol% [Mn], 5 mol%
KOtBu, 1 mL heptane.

Table 5. Screening of solvent and bases for the hydrogenation of 1,2-diphenylacetylene.[a]

Entry Mn-11 [mol%] Solvent Base Conv. [%] Yield [%] Z/E

1 2 CH2Cl2 KOtBu 25 21 97:3

2 2 Et2O KOtBu 53 51 99:1

3 2 THF KOtBu 19 17 97:3

4 2 dioxane KOtBu 26 23 97:3

5 2 t-AmylOH KOtBu 5 0 ---

6 2 EtOH KOtBu 0 --- ---

7 2 toluene KOtBu 90 89 >99

8 2 heptane KOtBu >99 >99 >99

9 1 heptane NaOtBu 88 86 >99

10 1 heptane KOH 8 4 n.d.

11 1 heptane KOtBu 99 98 >99

12 - heptane KOtBu 0 --- ---

[a] General reaction conditions: 0.5 mmol substrate 3a, 1-2 mol% Mn-11, 5 mol% base, 30 °C, 30 bar
H2, 2 h, 1 mL solvent. Conversions were determined by GC using hexadecane as an internal standard.
Isolated yields. Z/E ratio determined by NMR analysis.
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Notably, reduction of the catalyst loading revealed that complex Mn-11 retained high activity,

albeit 0.5 or 1 mol% catalyst loading was used (Table 4, Entries 6–8).

Subsequent optimisation of solvent and base revealed that the best activity was obtained,

when KOtBu was used as base and the reaction was conducted in heptane (Table 5, Entries 

8 & 11). As expected, a control experiment without any catalyst present in the reaction, 

exhibited no catalytic activity (Table 5, Entry 12).

Since pincer complexes are frequently expected to proceed through an outer-sphere 

mechanism by incorporation of the pincer ligand during the bond activation (MLC, see 

chapter 3), we synthesised the N-methylated pincer complex Mn-14, in order to distinguish 

between inner- or outer-sphere mechanism.[66] Therefore, we first synthesised N-methyl bis(2-

diethylphosphinoethyl)amine, starting from N-methyl bis(2-chloroethyl)amine hydrochloride.[67]

Lithiation with Et2PLi yielded ligand L-12 in 46% (Scheme 12, a). Next, the ligand was reacted 

with MnBr(CO)5 in toluene and complex Mn-14 was obtained in 63% yield. Crystals suitable 

for X-ray analysis were grown from a saturated solution of Mn-14 in methanol at 0 °C (Scheme 

12, b).

a) b)

Scheme 11. a) Synthesis of N-methylated manganese PNP complex Mn-14. b) Molecular structure of 
Mn-14 in the solid state. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and atoms 
of lower occupancy are omitted for clarity.

Blocking the active N-H site of a ligand backbone with a methyl group prevents any reaction,

which proceeds via an outer-sphere mechanism. Using Mn-14 for the model reaction with 1,2-

diphenylethyne 3a resulted in a complete loss of activity (Scheme 13, a). Hence, we concluded

that the hydrogenation by Mn-14 follows an outer-sphere mechanism, involving the N-H moiety 

of the ligand. This assumption was further supported by DFT computations. Moreover, an 
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outer-sphere mechanism was reported in previous works regarding the hydrogenation of 

esters, nitriles, ketones, and aldehydes using manganese based PNP pincer catalysts.[22e,,68]

Scheme 12. Mechanistic experiments for the semihydrogenation of alkynes.[a]

[a] General reaction conditions: 0.5 mmol substrate 3a, 1 mL toluene, Z/E: >99. Conversions were
determined by GC using hexadecane as an internal standard. Z/E ratio determined by NMR analysis.
[b] In the presence of 5 mol% KOtBu: 85% conv. and 85% yield.

Next, we were interested in the potential isomerisation ability of our developed catalyst system. 

In order to test this capability, Z-stilbene (4a) was heated with 2 mol% Mn-11 at 95 °C for 6 h 

without dihydrogen. In contrast to the iron PNP complex Fe-4 previously reported by Milstein

and co-workers, E-stilbene (5a) was not formed under our reaction conditions (Scheme 13,

b).[55] Moreover, no isomerisation was observed in the presence of 30 bar hydrogen, even 

when increased reaction temperatures were applied (Scheme 13, c). It is noteworthy that 

during this reaction setup, 1,2-diphenylethane 3a is only formed to a small extent in the case 

of Z-stilbene (4a), as well as E-stilbene (5a) (Scheme 13, c–d). At elevated temperature 

(140 °C) presumably most of the heptane and stilbene are in the gas phase, resulting in a high 
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catalyst loading in the liquid phase. However, it could be demonstrated that the hydrogenation 

of the triple bond occurs over the reduction of the double bond with catalyst Mn-11 under the 

described conditions.

Moreover, we investigated the active catalyst species by treating Mn-11 with 2 equiv of 

NaBEt3H (1 M in THF) for 24 h at room temperature. We observed formation of a mixture of 

trans-Mn-12 and cis-Mn-12, which was confirmed by 1H NMR analysis. For the following 

reactions, the catalyst was handled as a stock solution, because of its instability in pure form. 

Interestingly, using 2 mol% of hydride complex Mn-12 in the model reaction did not provide 

comparable results to the use of Mn-11 and a perceptibly lower yield of 85% Z-stilbene (4a)

was observed (Scheme 13, e). It is important to note that the hydrogenation did not take place 

without base, indicating the involvement of base in the rate-limiting reaction step. A possible 

explanation of this catalytic behaviour is the predominant formation of the thermodynamically 

more stable trans-Mn-12, which was verified by NMR analysis and DFT computations. In the 

case of the trans-isomer the concerted hydride transfer from the catalyst to the substrate via

the proposed outer-sphere mechanism cannot take place. Consequently, the base is needed 

to form the amido complex Mn-13 as an intermediate, which reacts to cis-Mn-12 under 

hydrogen atmosphere. Then the resulting cis-Mn-12 undergoes a concerted hydride transfer 

with the alkyne (Scheme 14).

Scheme 13. Postulated formation of trans- and cis-Mn-12.

To further elucidate the applicability of our developed catalytic system, a variety of 

functionalised alkynes were applied as substrates under the optimised reaction conditions 

(Scheme 15). Herein, internal alkynes bearing halide substituents such as fluorine (3b), 

chlorine (3c), bromine (3d–e) or trifluoromethyl (3f–g) in para-position were well-tolerated and 

high yields of the desired Z-alkenes were obtained (70–89%). Likewise, methoxy (4h, 4i) and 

ester (4j) substituted alkynes were selectively reduced with full conversion and excellent yields 

of up to 95%.
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Scheme 14. Substrate scope for the semihydrogenation of alkynes using Mn-11.

Conversions were determined by GC using hexadecane as an internal standard. Isolated yields are 
given in parentheses. [a] 1 mol% Mn-11, 2.5 mol% KOtBu, 5 bar H2, 30 °C, 4 h. [b] 2 mol% Mn-11, 5 
mol% KOtBu, 30 bar H2, 60 °C, 16 h. [c] 1 mol% Mn-11, 2.5 mol% KOtBu, 30 bar H2, 60 °C, 16 h. [d] 2 
mol% Mn-11, 5 mol% KOtBu, 30 bar H2, 30 °C, 16 h.

In the case of sensitive functional substituents such as keto groups (4k), a preferential 

hydrogenation of the carbonyl group was detected, even though milder conditions of 1 mol% 

Mn-11 at 30 °C were chosen. Applying optimised conditions, both functionalities were 
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hydrogenated, giving access to the corresponding (Z)-1-(4-styrylphenyl)ethan-1-ol (4k) in 85% 

isolated yield. Moreover, alkynes with alkyl moieties (3l, 3m) or a trimethylsilyl group (3n) in

para-position posed no issues and were successfully reduced in good yields. Similarly, ortho-

substituted alkynes (3o–q) were fully converted to the desired alkenes with yields ranging from 

68% to 97%. Examplarily for heteroaromatic alkynes, the semihydrogenation for 3-

(phenylethynyl) pyridine (3r) proceeded selectively to the Z-olefin 4r in quantitative yield.

Furthermore, substrate 3s carrying an aromatic and aliphatic moiety was hydrogenated to the 

corresponding alkene (4s) in a moderate yield (43%). Next, the diyne 3t was efficiently reduced 

at both triple bonds yielding the synthetically relevant 1,4-di((Z)-styryl) benzene (4t) in 90% 

yield. Subsequently, the hydrogenation of the more challenging internal aliphatic alkynes (3u,

3v) was tested, leading to no conversion even under harsher reaction conditions. Finally, the 

versatility of the catalytic system was further probed for terminal alkynes. Here, only the 

terminal alkyne 3y activated by a methylester moiety was successfully hydrogenated to 4-vinyl 

methylbenzoate (4y) in 76% isolated yield.
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7 Summary and Outlook

The aim of the present work was the examination of iron- and manganese-based non-noble 

pincer complexes and their application towards industrially relevant transformations. This 

included the screening of different pincer complexes and the investigation of their potential as 

catalysts for the homogeneous dehydrogenation reactions of alcohols, as well as the

semihydrogenation of alkynes. 

In detail, we investigated the catalytic activity of an iron PNP pincer complex (Fe-1) in the 

transfer dehydrogenation of different alcohols. The applied catalyst efficiently accelerates the 

transformation of secondary alcohols to ketones in the presence of acetone as hydrogen 

acceptor. Moreover, milder reaction conditions compared to most known acceptorless 

dehydrogenations were attained. The mechanism of the catalytic oxidation by Fe-1 was 

studied in detail by means of DFT studies, which provided information regarding the role of the 

hydrogen acceptor.

In addition, a manganese-based catalyst system with a phosphorus-free NNN-type pincer 

ligand was developed for the same transformation. The precatalyst Mn-9 was conveniently

synthesised in situ by reacting MnBr(CO)5 with the phosphorus-free NNN pincer ligand (L-7). 

In this way, aromatic and aliphatic alcohols were smoothly oxidised to the corresponding 

ketones even with low catalyst and base loading.

In the future, sustainability will become more of a focus for chemical processes, especially 

regarding the scarcity of resources and rising prices for conventional chemical precursors 

produced from fossil fuels. The catalytic dehydrogenation of biosourced alcohols as a pathway 

to valuable ketones could be an alternative source of supply if the cost of the process can 

compete with the conventional production. Therefore, we are in need of practical catalytic 

systems which are capable of efficiently oxidising alcohols. In this respect, the catalysts 

themselves should rely on non-noble metals, and it is apparent that the cost of the ligand will 

also play an important role. Therefore, future studies should deal with less sophisticated 

ligands such as phosphorus-free alternatives, which simplify the handling and production of 

the corresponding catalysts and will consequently be advantageous with respect to the cost of

preparation. Additionally, a future challenge will be the enhancement of substrates to more 

complex alcohols, which are more challenging.

Besides the described dehydrogenation reactions, we focused on the catalytic 

semihydrogenation of alkynes in the presence of molecular hydrogen. For this purpose, 

manganese-based pincer complexes were compared to assess their catalytic activity. Notably, 

catalyst Mn-11 is a particularly efficient catalyst for the highly chemo- and stereoselective 
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semihydrogenation of internal alkynes to the corresponding Z-alkenes. Mechanistic 

investigations based on DFT calculations, as well as control experiments, revealed that the 

hydrogenation proceeds via an outer-sphere mechanism with a direct involvement of the pincer 

ligand.

Olefins are important building blocks for fine and bulk chemistry and Z-alkenes are often an 

inherent part of pharmaceutically active compounds. Hence, a convenient, selective reduction 

is in demand, and pincer catalysts can play an important role in achieving this. Moreover,

especially for the production of pharmaceuticals, noble metal traces need to be kept below a

low threshold, and consequently precious metal catalysts should be replaced by non-noble 

pincer complexes.[69] Therefore, it is worthwhile to pursue research into non-noble pincer 

catalysts and further develop simplified ligand systems to ensure increased attractiveness for 

industrial applications.
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Iron–PNP-Pincer-Catalyzed Transfer Dehydrogenation of
Secondary Alcohols
Svenja Budweg, Zhihong Wei, Haijun Jiao, Kathrin Junge, and Matthias Beller*[a]

The well-defined iron PNP pincer complex catalyst
[Fe(H)(BH4)(CO)(HN{CH2CH2P(iPr)2}2] was used for the catalytic
dehydrogenation of secondary alcohols to give the corre-
sponding ketones. Using acetone as inexpensive hydrogen ac-
ceptor enables the oxidation with good to excellent yields.
DFT computations indicate an outer-sphere mechanism and
support the importance of an acceptor to achieve this transfor-
mation under milder conditions.

In the context of using renewable resources, oxidation of bio-
based alcohols offers possibilities for a more sustainable syn-
thesis of aldehydes and ketones.[1] In traditional oxidation
methods, stoichiometric amounts of chromium- or manga-
nese-based reactants have been used. These oxidants are haz-
ardous and environmentally harmful and large quantities of
noxious waste are produced.[2] Hence, in recent decades the
use of transition metal complexes in the presence of more en-
vironmentally friendly oxidants such as molecular oxygen and
hydrogen peroxide has become an important field in catalysis
and green chemistry.[3] Clearly, these latter methodologies are
advantageous in terms of eco-friendliness and atom
economy.[4]

The theoretical atom efficiencies for several such oxidation
methods are given in Table 1 for the typical model reaction of
1-phenylethanol to acetophenone comparing different oxi-
dants. Thus, acceptorless alcohol dehydrogenations (ADH) at-
tracted significant interest in recent years.[6] Advantageously,
these reactions require no strong oxidant and hydrogen is pro-
duced as the only byproduct.[7] However, from a thermody-
namic point of view, ADH is endothermic at ambient tempera-
ture and therefore high temperatures are necessary to shift the
equilibrium towards the desired ketone.[8] Milder reaction con-
ditions can be attained by the use of acceptors, which are able
to take up the formed hydrogen and thus have a favorable
effect on ketone formation.[9] In this respect, acetone is an in-
expensive, readily available and nontoxic option, which can
also be produced from renewables, namely lignocelluloses
through ABE fermentation.[10] As early as 1937, the first reaction

with acetone as the hydrogen acceptor was reported by Oppe-
nauer, when he carried out the selective oxidation of steroids
with an aluminum alkoxide catalyst.[11] Since then, numerous
modifications of this so-called Oppenauer oxidation have been
reported and applied to other catalytic systems.[12] The first at-
tempt to dehydrogenate alcohols with noble metal complexes
by means of this method was reported by B�ckvall and co-
workers in 1996.[13] In their approach, two different ruthenium
complexes (1 and 2, Figure 1) were employed, which were ca-
pable of dehydrogenating aromatic and aliphatic secondary al-
cohols in refluxing acetone.

In 2004, Severin and co-workers reported a heterobimetallic
complex (3, Figure 1) for the dehydrogenation (DH) of primary
and secondary alcohols at lower temperature and catalyst
loading.[14] Notably in this work, also primary alcohols were oxi-
dized to the corresponding aldehydes without the formation
of by-products through aldol condensation. This transforma-
tion was also mediated by an iridium complex carrying an N-
heterocyclic carbene ligand (4), which was developed by Yama-
guchi and co-workers.[15] Recently, Binder, Ley, and co-workers
reported a commercially available ruthenium complex (5) as an
efficient DH catalyst in a continuous flow method.[16] In the
same year, Hartwig and co-workers reported the selective oxi-
dation of secondary alcohols with a ruthenium-based complex
(6).[17] Despite the progress in this field, these catalytic systems
all rely on precious metals. Since 2000, organometallic redox
catalysis with pincer ligands has become a highly popular field
of research.[18] In this regard, a variety of complexes based on
non-noble metals have been applied in transfer hydrogena-
tions, which can be regarded as the reverse reaction of accept-
orless DH.[19] Indeed, several pincer catalysts based on manga-
nese,[20] iron,[21] and cobalt[22] have been applied for this trans-

Table 1. Theoretical atom efficiency of selected oxidation methods for
conversion of 1-phenylethanol into acetophenone.[5]

Oxidation method Atom efficien-
cy [%]

Waste

Acceptorless dehydrogenation 98 H2

Dehydrogenation with O2 87 H2O
Dehydrogenation with H2O2 77 H2O
Transfer dehydrogenation with ace-
tone as acceptor

67 isopropanol

Jones oxidation 42 H2CrO3, H2O
Swern oxidation 28 (CH3)2S, CO2, CO,

Et3NHCl

[a] S. Budweg, Z. Wei, Dr. H. Jiao, Dr. K. Junge, Prof. M. Beller
Leibniz-Institut f�r Katalyse e.V. an der Universit�t Rostock
Albert-Einstein Straße 29a, Rostock 18059 (Germany)
E-mail : matthias.beller@catalysis.de

Supporting Information and the ORCID identification number(s) for the
author(s) of this article can be found under:
https://doi.org/10.1002/cssc.201900308.

This publication is part of a Special Issue on “Sustainable Organic
Synthesis”.
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formation. In particular, iron can be readily used, owing to its
low toxicity and high natural abundance, reflected also in the
low cost of the metal.[3] Based on the previous work of our
group on the DH of methanol using a defined iron pincer cata-
lyst (7, Table 2), we became interested in the general per-
formance of this catalyst for the dehydrogenation of alcohols
with acetone as a hydrogen acceptor.[23]

To find the optimal conditions for dehydrogenation catalysis,
1-phenylethanol was applied as benchmark substrate (Table 2).
All initial tests were performed with 1 mol% of complex 7
while reaction temperatures, times, solvents, and bases were
varied. Pincer complexes with a tetrahydridoborate ligand
were used in various catalytic reactions even without added
base, owing to the easy dissociation of BH3 to form the active
hydride complex.[24] However, in the case of dehydrogenation
of methanol, the application of additional base had a favoura-
ble impact. Therefore, we utilized 5 mol% NaOtBu as an addi-
tive.[22] Hereby an increase of the acetophenone yield from
12% to 89% was detected after 19 h reaction time at 70 8C
(Table 2, entry 2).

Hence, subsequent experiments were carried out by mixing
5 mol% of base alongside the catalyst in 2.5 mL tetrahydrofur-
an, followed by the addition to the substrate dissolved in ace-
tone. To rule out simple base catalysis, the reaction was tested
without complex 7 under similar conditions, which resulted in
no dehydrogenation of the substrate at all (Table 2, entry 3).
Full conversion was detected already after 4 h, furnishing ace-
tophenone in 91% yield (Table 2, entry 4). Moreover, by reduc-
ing the temperature to 50 8C, a slightly higher yield of 93%

and 97% conversion of the substrate into the corresponding
ketone was obtained (Table 2, entry 5). To investigate the effect
of solvent and base, we shortened the reaction time to 2 h to
facilitate comparison of the obtained results. Changing the sol-
vent for complex 7 from tetrahydrofuran to heptane resulted
in an increase in yield from 53% to 73% (Table 2, entries 6
and 7).

The benefit of a hydrogen acceptor becomes clear when the
reaction is performed without acetone, leading to no detecta-
ble dehydrogenation taking place (Table 2, entry 8). Conduct-
ing the experiment in an open system favors acceptorless DH
through H2 loss, but only 13% yield of acetophenone was de-
tected (Table 2, entry 9). The use of acetone significantly en-
hanced the yield to 71%, similar to the reaction in a closed
system (Table 2, entries 7 and 10). Moreover, we also tested the
impact of different bases. 5 mol% of KOtBu led to the best re-
sults, with yields of 84% after 2 h and 97% after 4 h (Table 2,
entries 11 and 12).

After establishing optimal reaction parameters (1 mol% 7,
5 mol% KOtBu, 50 8C, 4 h, 5 mL heptane, 5 mL acetone), the
general applicability of the iron catalyst was studied (Table 3).
Overall, complex 7 was efficient for the oxidation of differently
functionalized aromatic alcohols, as well as heterocyclic aro-
matic substrates. Para-substituted acetophenone derivatives
carrying electron-donating or electron-withdrawing groups
were isolated in good yields (Table 3, 2b–h). Only the strong
�I effect of the trifluoromethyl substituent causes a lower con-
version, but the substrate was still dehydrogenated to the cor-
responding ketone with a yield of 81% (2e). Notably, the
amino functionality was not oxidized during the catalytic reac-
tion and the hydroxy group was therefore selectively dehydro-
genated (2g). The presence of a chlorine atom in the meta po-

Figure 1. Complexes applied in transfer dehydrogenation of alcohols with
acetone as hydrogen acceptor.

Table 2. Optimization of the reaction conditions with complex 7.[a]

Entry Base[b] t [h] T [8C] Solvent[c] Conv. [%] Yield [%]

1 – 19 70 THF 14 12
2 NaOtBu 19 70 THF 100 89
3[d] NaOtBu 19 70 THF 0 0
4 NaOtBu 4 70 THF 100 91
5 NaOtBu 4 50 THF 97 93
6 NaOtBu 2 50 THF 57 53
7 NaOtBu 2 50 heptane 84 73
8[e] NaOtBu 2 50 heptane 0 0
9[e,f] NaOtBu 2 50 heptane 17 13
10[f] NaOtBu 2 50 heptane 83 71
11 KOtBu 2 50 heptane 94 84
12 KOtBu 4 50 heptane 100 97

[a] Conversion and yield were determined by GC using hexadecane as an
internal standard. [b] 5 mol% base loading. [c] 2.5 mL solvent, 2.5 mL ace-
tone. [d] Reaction was carried out without 7. [e] Reaction was carried out
without acetone. [f] Reaction was carried out in an open system.
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sition led to slightly lower conversion, but nevertheless the
ketone was isolated with 78% yield (2 i). In the case of the

ortho-substituted alcohol, the yield dropped significantly,
which indicates that sterically demanding substrates are less
active (2 j). As an example of an annulated arene, 1-
(naphthalen-1-yl)ethanol was oxidized with 95% conversion,
leading to a high yield of 90% (2k).

Furthermore, a-tetralol was fully converted and isolated in
83% yield (Table 3, 2 l). When the steric demand was increased
at the a-position to the carbonyl function, yields ranging from
76% to 96% were achieved (2m–o). Unfortunately, 2,2,2-
trifluoro-1-phenylethanol, which is a more electron-poor sub-
strate owing to the strong electron-withdrawing effect of the
trifluoromethyl group, could not be transformed into the de-
sired ketone. Next, we examined the oxidation of 3,5,5-
trimethylcyclohex-2-en-1-ol and observed full conversion and
87% yield (2p). This finding indicates that allylic substrates can
be easily dehydrogenated under these conditions. However, to
suppress competing Michael additions, they have to be
blocked at the b-position to the hydroxy group. Additionally,
various heteroaromatic substrates were successfully dehydro-
genated in yields up to 98% (2q–t). Finally, as part of the sub-
strate screening, 1-cyclohexylethanol was tested as a standard
substrate for aliphatic alcohols. In this case, a higher catalyst
loading of 2 mol% 7 and 80 8C for 24 h was necessary to ob-
serve modest activity (2u).

From a sustainability point of view, it is important to reuse
the excess solvent and oxidant. Hence, we carried out solvent
recycling experiments using 1-(4-biphenylyl)-1-ethanol as sub-
strate. Gratifyingly, the desired ketone was isolated in 87%
yield by dehydrogenation in the recovered solvent (for details,
see the Supporting Information).

Next, to elucidate the reaction mechanism and explore the
experimental results, B3PW91 density functional theory com-
putations were carried out for the benchmark reaction. Accord-
ing to previous experimental and theoretical studies using Fe–
PNP pincer complexes for hydrogenation reactions,[25] as well
as self-transfer hydrogenation and isomerization reaction,[26]

we followed the reported computational procedure and the
proposed outer-sphere mechanism for our computations (for
details, see the Supporting Information). For the general
aspect of the reaction mechanism, the reaction of the former
benchmark substrate (2a) was used for our calculations. As in-
dicated in the Supporting Information, the inclusion of disper-
sion and solvation effects did not reproduce the experimental-
ly observed kinetic and thermodynamic results.

The first step in the mechanism is the dehydrogenation of 1-
phenylethanol to acetophenone by the amido complex 1Fe,
which is converted into the amine complex 2Fe (Figure 2) The
second step is the hydrogenation of acetone to isopropanol
by 2Fe, which is converted back into 1Fe. As a side reaction,
and also without hydrogen acceptor, the amine complex 2Fe
can also lose H2 to form the amido complex 1Fe. In this case,
only the dehydrogenation of 1-phenylethanol will take place.
The release of traces of H2 was confirmed by GC-MS (for de-
tails, see the Supporting Information).

When the release of H2 was taken into account, the accept-
orless dehydrogenation of 1-phenylethanol to acetophenone
and H2 is endergonic by 6.3 kJmol�1, whereas the transfer de-

Table 3. Transfer dehydrogenation of (hetero)aromatic alcohols with
complex 7.[a]

[a] Reaction conditions (unless otherwise stated): substrate (1 mmol),
complex 7 (0.01 mmol), KOtBu (0.05 mmol), heptane (5 mL), acetone
(5 mL), 50 8C, 4 h. Conversion was determined by GC using hexadecane
as an internal standard. Values in parentheses refer to yields of isolated
product. [b] GC yield. [c] Reaction conditions: substrate (1 mmol), com-
plex 7 (0.02 mmol), KOtBu (0.1 mmol), heptane (5 mL), acetone (5 mL),
50 8C, 24 h. [d] Reaction conditions: substrate (1 mmol), complex 7
(0.02 mmol), KOtBu (0.1 mmol), heptane (5 mL), acetone (5 mL), 80 8C,
24 h.
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hydrogenation with acetone as acceptor is exergonic by
4.0 kJmol�1. This is favorable thermodynamically and explains
the rather low yield for the reaction without acetone in com-
parison to the high yield with acetone in an open system
(Table 2, entries 9 and 10). On the basis of the reaction free
energy, the slightly endergonic acceptorless dehydrogenation
of 1-phenylethanol needs high temperature to achieve reason-
able yield, and the exergonic transfer dehydrogenation of 1-
phenylethanol and acetone can be performed under milder
conditions.

In a previous study,[26] it was found that exchange between
the amine (2Fe) and amido (1Fe) complexes under H2 release
has a free energy barrier (DGcat

�) of 80.4 kJmol�1 and is slightly
exergonic (DGcat) by 2.4 kJmol�1, indicating the reversibility
and equilibrium under H2 environment. These kinetic and ther-
modynamic parameters reveal these complexes to be effective
catalysts for hydrogenation and dehydrogenation reactions.
The barrier height is also a parameter for determining the cata-
lyst stability under the reaction conditions.

Additionally, the dehydrogenation of 1-phenylethanol to
acetophenone without hydrogen acceptor was computed at
the same level of theory (B3PW91). As in case of the transition

state of the interconversion between acetone and isopropanol,
only one-step asynchronous authentic transition states for all
hydrogenation reactions were located and identified. The de-
hydrogenation has a barrier of 100.8 kJmol�1 and is endergon-
ic (DG1) by 8.7 kJmol�1. This underlines the experimental re-
sults in a closed system, since no detectable dehydrogenation
took place in the absence of a hydrogen acceptor (Table 2,
entry 8). In contrast, an open system enables acceptorless DH
and release of H2 but would require higher temperatures to ac-
celerate the reaction (Table 2, entry 9). In contrast, when ace-
tone is used as hydrogen acceptor, the hydrogenation of ace-
tone to isopropanol has a barrier (DG2

�) of 90.0 kJmol�1 and is
exothermic (DG2) by 12.7 kJmol�1. Moreover, the total transfer
hydrogenation is exothermic (DGtot) by 4.0 kJmol�1, indicating
the well-balanced equilibrium under stoichiometric conditions.
The computed equilibrium constant is 4.43, indicating that an
excess of acetone is required to achieve a higher yield of
acetophenone.

As a second example, the transfer dehydrogenation from
allyl alcohol to ketone via the a,b-unsaturated carbonyl com-
pound 2p was computed (Figure 3). The allyl alcohol dehydro-

genation has a barrier of 105.5 kJmol�1. This step is exergonic
by 12 kJmol�1 and thermodynamically favored; expecting com-
plete conversion (>99%) and high yield (87% isolated). The
C=C hydrogenation of 3,5,5-trimethylcyclohex-2-en-1-one has a
barrier of 145.2 kJmol�1 and is exergonic by 64 kJmol�1. Under
the equilibrium conditions, the barrier to C=O hydrogenation
is lower than that to C=C hydrogenation (105.5 vs.
145.2 kJmol�1) and, therefore, C=C hydrogenation is not com-
petitive. Accordingly, only the first transfer hydrogenation step
is possible and self-transfer hydrogenation is not favored kinet-
ically, in agreement with the experiment. Apparently, the C=C

Figure 2. Proposed reaction sequences for the benchmark dehydrogenation
as well as the reaction coordinates for the interconversion of catalysts
[2Fe=1Fe+H2] and hydrogen acceptor [acetone+H2= isopropanol] .

Figure 3. Energetics of the catalyzed dehydrogenation of allyl alcohol 2p
and self-transfer isomerization.
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bond hydrogenation of the a,b-unsaturated ketone requires a
much higher temperature.

In conclusion, we have presented herein a well-defined iron
pincer complex [Fe(H)(BH4)(CO)(HN{CH2CH2P(iPr)2}2] for the cat-
alytic dehydrogenation of secondary alcohols to give the corre-
sponding ketones. This transformation proceeded under
milder conditions than acceptorless dehydrogenations. Howev-
er, it required the presence of acetone as an (inexpensive) hy-
drogen acceptor. DFT computations suggested an outer-sphere
mechanism and supported the proposed beneficial effect of
acetone, which shifts the endergonic acceptorless dehydrogen-
ation to an exergonic transfer dehydrogenation process.

Experimental Section

General procedure for the catalytic transfer
dehydrogenation

Under an argon atmosphere, a glass vial (4 mL) was charged
with complex 7 (4 mg, 0.01 mmol, 1 mol%), KOtBu (5.6 mg,
0.05 mmol, 5 mol%) and dry heptane (5 mL). The pink solution
was stirred for 2 min at room temperature. A flame-dried
Schlenk tube (25 mL) under an argon atmosphere served as re-
action vessel and the alcohol (1 mmol) and dry acetone (5 mL)
were added. The solution of catalyst and base was transferred
via syringe into the Schlenk tube under thorough stirring. The
vessel was then heated up and kept at 50 8C for 4 h in an alloy
block. After the reaction time, the Schlenk tube was cooled to
room temperature and an aliquot was taken for determination
of conversion by GC analysis. Purification was accomplished by
column chromatography and characterization by NMR spec-
troscopy and GC-MS.
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Transfer-dehydrogenation of secondary alcohols
catalyzed by manganese NNN-pincer complexes†

Svenja Budweg, Kathrin Junge and Matthias Beller *

Novel catalytic systems based on pentacarbonylmanganese bromide

and stable NNN-pincer ligands are presented for the transfer-

dehydrogenation of secondary alcohols to give the corresponding

ketones in good to excellent isolated yields. Best results are obtained

using di-picolylamine derivatives as ligands and acetone as an

inexpensive hydrogen acceptor. Besides high activity for benzylic

substrates, aliphatic alcohols, as well as steroid derivatives, are readily

oxidized in the presence of the optimal phosphorus-free catalyst.

Transition-metal catalyzed transfer-dehydrogenation of alcohols
constitutes an attractive method for selective alcohol oxidation.1

Applying a suitable hydrogen acceptor, such as alkenes or
carbonyl compounds, enables oxidations to occur under mild
conditions.2 In this respect, acetone is ideal as an inexpensive
and non-toxic acceptor, which is typically used within the
stoichiometric Oppenauer oxidation to synthesize ketones in
the presence of aluminum alkoxides.3 Following this approach,
numerous catalytic systems have been reported for alcohol
transfer-dehydrogenation, predominantly based on noble metals,
specifically ruthenium. As an example, the Bäckvall group com-
pared the reactivity of a ruthenium triphenylphosphine complex
and the bimetallic Shvo’s complex, which is well known for
hydrogen transfer reactions.4 In addition, a hetero bimetallic
complex based on ruthenium and rhodium with sterically
demanding phosphine ligands was later disclosed by Severin
and co-workers.5 More recently, the group of Hartwig developed
a highly selective oxidation of secondary alcohols using a specific
ruthenium complex with PEt3 ligands.6 Moreover, Binder and
Ley implemented this technology in continuous flow systems
using [Ru(p-cymene)-Cl2]2 without additional ligands; however,
overstoichiometric amounts of base were necessary for transfer-
dehydrogenation in this case.7 Apart from ruthenium, another
approach made use of an iridium complex carrying a stable

N-heterocyclic carbene ligand, which was published by the
group of Yamaguchi in 2005.8 Here, the low catalyst loading
and the mild conditions are noteworthy.

In contrast, to the related transfer hydrogenation of ketones,9

only two attempts have been reported so far to apply non-noble
metal complexes for the transfer-dehydrogenation of alcohols in
the presence of acetone. Originally, Guan and co-workers investi-
gated Knölker’s complex and related iron hydride catalysts for this
transformation.10 Lately, our group disclosed an iron PNP-pincer
complex for such transformations (Scheme 1).11

Even though these oxidations proceed under comparable
mild conditions, unfortunately the ligand is air-sensitive and
not commercially available. Obviously, the ecologic and eco-
nomic impact of any catalyst is not only determined by the
choice of themetal. In fact, the required ligand can bemany times
more expensive due to challenging synthesis and difficulties in
handling. For a long time (and still today), in homogeneous

Scheme 1 Transfer-dehydrogenation of alcohols using acetone as
hydrogen acceptor.
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catalysis the use of sensitive phosphine complexes is dominating.
Not surprisingly, the vast majority of organometallic catalysts based
on earth-abundant metals make use of highly sophisticated multi-
dentate P-ligands. Hence, we started a program to develop more
easily-accessible and phosphorus-free ligands, which are capable of
forming active catalysts with non-noble metal precursors.

Manganese is among the most abundant metals in the
earth’s crust. Due to the broad range of oxidation states of
manganese complexes/salts, it offers interesting possibilities
for redox catalysis.12 Hence, it is a promising candidate for the
design of new (de)hydrogenation catalysts.13 Indeed, in the last
two years, manganese(I) pincer complexes have been shown to
exhibit catalytic activity for several redox transformations and
this field became a hot topic in homogenous catalysis.14

In search for a practical catalytic system for the model
transfer-dehydrogenation of 1-phenylethanol, our work focused
on in situ generated pre-catalysts based on MnBr(CO)5 and
chelating nitrogen ligands (Fig. 1). The initial screening
was carried out using 0.5 mol% metal precursor and several
different tridentate ligands (M :N = 1 : 3). After stirring the
reaction mixture for 30 min at 90 1C a color change was observed
and 0.5 mol% NaOtBu, 1-phenylethanol and acetone were added
consecutively. As shown in Fig. 1, diethylentriamine (L1) used as
a ligand resulted in 71% yield of acetophenone. Interestingly, the
introduction of a methyl group at the nitrogen atom of the
secondary amine moiety (L2) led to complete inactivity.

A similar observation was made when the iPr-PyBOX ligand
(L3) was used. Based on our group’s previous success using a

manganese catalyst with a di-picolylamine ligand L4 for transfer
hydrogenation,15 we next tested this and related ligands L5–L7.
Indeed, utilizing L4 gave 65% conversion and 61% yield of aceto-
phenone. To our surprise, both in the presence of the N-methylated
di-picolylamine (L5, Me-dpa) as well as tris-(2-picolyl)amine (L6) full
conversion and yields up to 98% were obtained. In order to allow
for a more precise comparison, we recorded a concentration-
time graph applying both ligands. As can be seen in Fig. 2, the
catalytic system generated with L5 provided excellent activity
giving 480% conversion within the first ten minutes (97% after
30 min), whereas in the presence of L6 65% and 78% conversion
were achieved after 10 and 30 minutes, respectively.

On the other hand, the application of terpyridine (L7)
gave no conversion at all, implying that the methylene linkers
of L4–L6 play a crucial role for the catalytic activity in the TDH.
For comparison, also pyridine-based phosphorus containing
ligands (L8, L9) were tested under similar conditions, leading
to no detectable product in case of L8 and a reduced yield of
33% employing L9. As expected without any ligand present
no conversion was observed, irrespective of whether or not
base was deployed (Table 1, entries 1 and 2). Additionally, we
examined further metal precursors for the reaction with ligand
L5, but the system based on MnBr(CO)5 remained best (for
details see ESI,† Table S1).

Next, with the most active ligand L5 in hand, we examined
the influence of some critical reaction parameters. The reaction
without base led to no conversion (Table 1, entry 3). A shorter
preformation time of 15 min, furnished a slightly lower yield of
product compared to 30 min and beyond (Table 1, entry 4). The
ratio between precursor, ligand and base loading was maintained
1 : 1 : 1, in order to avoid aldol condensation of acetone by an
excess of base, which leads to catalyst deactivation.

Lowering the catalyst and base loading to 0.1 mol% resulted
in a decreased yield of 22% (Table 1, entry 5). Therefore, we
decided to utilize 0.5 mol% loading of precursor, ligand and base.
When applying a reaction temperature below 90 1C for the pre-
formation and/or the reaction, inconsistent results were observed.
Hence, we performed both the formation of the catalyst and the
reaction at this temperature. Thus, only solvents with boiling

Fig. 1 Screening of ligands applied to the transfer-dehydrogenation
of 1-phenylethanol. Reaction conditions: 1-phenylethanol (2 mmol),
MnBr(CO)5 (0.5 mol%), ligand (0.5 mol%), NaOtBu (0.5 mol%), toluene
(3 mL), acetone (1 mL), 90 1C, 2 h. Conversion and yield were determined
by GC using hexadecane as internal standard.

Fig. 2 Conversion vs. time diagram for the comparison of L5 and L6.
Reaction conditions: 1-phenylethanol (2 mmol), MnBr(CO)5 (0.5 mol%),
ligand (0.5 mol%), NaOtBu (0.5 mol%), toluene (3 mL), acetone (1 mL),
90 1C. Conversion was determined by GC.
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points higher than 90 1C (e.g., heptane and toluene) were
suitable for the reaction setup (Table 1, entries 6 and 7). In
all experiments, acetone was therefore added shortly before
closing the reaction vessel. Noticeably, in the absence of
acetone no detectable dehydrogenation was observed, clearly
showing the benefit of using an acceptor, while acceptorless
dehydrogenation doesn’t take place under given conditions.16

In summary, the reaction conditions chosen in the preliminary
studies remained best and a reaction time of 2 h was selected
for further studies.

To demonstrate the general applicability of the catalytic
system, the transfer-dehydrogenation of 15 different benzylic
alcohols was studied (Fig. 3). Noticeably, most of these sub-
strates were effectively transformed to the corresponding
ketones with low catalyst loading after a short reaction time
(0.5 mol% MnBr(CO)5, 0.5 mol% L5, 0.5 mol% NaOtBu, 90 1C,
2 h, 3 mL toluene, 1 mL acetone). For example, para-substituted
acetophenone derivatives bearing electron-donating or electron-
withdrawing groups were isolated in high yields ranging from
83% to 98%. By switching the base from NaOtBu to NaOMe,
transesterification was prevented and the ester-containing methyl
4-acetylbenzoate (2f) was isolated with a good yield of 69%.
Notably, the ester group remained stable under the given
conditions. Furthermore, we examined the dehydrogenation
of 1-(4-aminophenyl)ethanol and observed a selective oxidation
of the hydroxyl group, furnishing the corresponding ketone
with 98% yield (2g). Next, the reactivity of several b-substituted
derivatives was studied. With ethyl or cyclopropyl groups, yields
decreased to 81% (2i) and 49% (2j), respectively. Further
derivatives bearing bulkier moieties required increased catalyst
loadings and longer reaction times, whereby 67% benzophe-
none (2k) and 88% cyclohexyl phenyl ketone (2l) were isolated.

Furthermore, the presence of methoxy- or phenoxy-substituents
in the b-position to the alcohol group is tolerated (2m–n).

Exemplary for hetero aromatic alcohols, chroman-4-ol (1o)
and 3-(1-hydroxyethyl)pyridine (1p) were successfully dehydro-
genated and isolated with 71% and 37% yield, respectively.
Additionally, (E)-4-phenylbut-3-en-2-ol was oxidized to the
corresponding a,b-unsaturated ketone (2q) in nearly quantita-
tive yield without the detection of any side products.

To our delight, more demanding aliphatic alcohols were also
dehydrogenated effectively (5 mol% MnBr(CO)5, 5 mol% L5,
5 mol% NaOtBu, 90 1C, 24 h, 6 mL toluene, 2 mL acetone). As
shown in Fig. 4, the dehydrogenation of acyclic, as well as cyclic
aliphatic substrates was examined and good to excellent yields
were obtained. 3-Methyl-2-butanol and pinacolyl alcohol were
effectively oxidized with 96% (2r) and 91% (2s) yield, respectively.
Varying the ring size of the cyclic alcohols had only a minor
influence on the catalyst activity and the corresponding ketones
were obtained with excellent yields up to 96% (2t–2v).

Moreover, we studied the dehydrogenation of cyclohexanol and
structurally related compounds and obtained the corresponding
ketones with high yields of 78% to 92%. For trimethylcyclohex-2-
en-1-ol (1y) full conversion to the corresponding ketone was
detected. The oxidation of 2-cyclohexenol (1x) was achieved
without any competing side reactions, despite the likelihood of
it acting as an effective Michael acceptor due to the conjugated

Table 1 Mn-Catalyzed transfer-dehydrogenation of 1-phenylethanol
with MnBr(CO)5 and ligand L5a

Entry
MnBr(CO)5
[mol%]

Ligand
[mol%] Base [mol%]

Conv.
[%]

Yield
[%]

1 [0.5] — — 0 0
2 [0.5] — NaOtBu [0.5] 0 0
3 [0.5] L5 [0.5] — 0 0
4b [0.5] L5 [0.5] NaOtBu [0.5] 94 93
5c [0.1] L5 [0.1] NaOtBu [0.1] 24 22
6d [0.5] L5 [0.5] NaOtBu [0.5] 92 90
7e [0.5] L5 [0.5] NaOtBu [0.5] 98 96
8 [0.5] L5 [0.5] NaOtBu [0.5] 499 98

a 1-Phenylethanol (2 mmol). Conversion and yield were determined by
GC using hexadecane as an internal standard. b 15 min formation time.
c 1-Phenylethanol (4 mmol), MnBr(CO)5 (0.1 mol%), L5 (0.1 mol%),
NaOtBu (0.1 mol%). d 1 h reaction time, heptane (3 mL), acetone
(1 mL). e 1 h reaction time.

Fig. 3 Manganese-catalyzed dehydrogenation of benzylic alcohols. Con-
version was determined by GC using hexadecane as an internal standard.
Isolated yields are given in parentheses. a Substrate (1 mmol), MnBr(CO)5
(5 mol%), L5 (5 mol%), NaOtBu (5 mol%), toluene (6 mL), acetone (2 mL),
90 1C, 24 h. b Substrate (1 mmol), MnBr(CO)5 (1 mol%), L5 (1 mol%), NaOMe
(1 mol%), toluene (6 mL), acetone (2 mL), 90 1C, 24 h. c Substrate (1 mmol),
MnBr(CO)5 (1 mol%), L5 (1 mol%), NaOtBu (1 mol%), toluene (6 mL),
acetone (2 mL), 90 1C, 24 h. dGC yield.
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double bond. Furthermore, the allylic substrate 1z, which is fre-
quently used in the fragrance industry, was effectively transformed to
b-ionone (2z). Similarly, conversion of quinuclidine-3-ol was accom-
plished, yielding 88% of the corresponding ketone (2aa).

Finally, we tested the dehydrogenation of natural steroids
bearing secondary alcohol moieties to showcase the utility of the
catalytic system for modification of bio-active compounds (Fig. 5).

Thus, 3b-hydroxypregn-5-en-20-one and cholest-5-en-3b-ol were
converted entirely to the corresponding ketones using 5 mol%
MnBr(CO)5, 5 mol% L5 and 5 mol% NaOtBu at 90 1C, furnishing
progesterone (2ab) in 93% yield and cholest-4-en-3-one (2ac) in
98% yield after 24 h. Noticeably, a selective isomerization of the
double bond occurred (499%) to produce the more stable enone
products. Moreover, testosterone was fully oxidized to androstene-
dione (2ad) and isolated in excellent yield of 94%.

Importantly, the use of the isolated complex [Mn(Me-dpa)-
(CO)3]Br in the dehydrogenation of 1-phenylethanol showed similar
activity compared to the in situ formed catalyst.

Performing in situ IR spectroscopic investigations under cataly-
tic conditions revealed characteristic CO bands at 2030, 1935 and
1920 cm�1 for the in situ generated species dissolved in heptane, as
well as for the isolated complex (for details see ESI,† Fig. S1).
The intensities of the carbonyl bands increased with higher
temperature, due to better solubility. After activation by base
(NaOtBu), a slight decrease of the original CO bands is observed
and a new band at 1808 cm�1 appeared indicating that in both
cases the same catalytic active species is formed.

In conclusion, we present a convenient protocol for the
transfer-dehydrogenation of secondary alcohols using acetone

as inexpensive hydrogen acceptor. The conveniently in situ
generated manganese catalyst is stabilized by a stable phosphorus-
free NNN-pincer ligand allowing oxidation of aromatic and aliphatic
alcohols.
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Fig. 5 Manganese-catalyzed dehydrogenation of aliphatic alcohols. Gen-
eral reaction conditions: substrate (1 mmol), MnBr(CO)5 (5 mol%), L5
(5 mol%), NaOtBu (5 mol%), toluene (6 mL), acetone (2 mL), 90 1C, 24 h.
Conversion was determined by GC using hexadecane as an internal
standard. Isolated yields are given in parentheses. a48 h reaction time.
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Chemoselective semihydrogenation of alkynes
catalyzed by manganeseĲI)-PNP pincer
complexes†‡

Marcel Garbe,§a Svenja Budweg, §a Veronica Papa, a Zhihong Wei, a

Helen Hornke,a Stephan Bachmann,b Michelangelo Scalone,b Anke Spannenberg,a

Haijun Jiao, a Kathrin Junge *a and Matthias Beller *a

A general manganese catalyzed chemoselective semihydrogenation of alkynes to olefins in the presence of

molecular hydrogen is described. The best results are obtained by applying the aliphatic Mn PNP pincer

complex Mn-3c which allows the transformation of various substituted internal alkynes to the respective

Z-olefins under mild conditions and in high yields. Mechanistic investigations based on experiments and

computations indicate the formation of the Z-isomer via an outer-sphere mechanism.

Introduction

Olefins play an important role as synthetic building blocks
for fine and bulk chemistry as well as in organic synthesis.1

Additionally, alkenes and here especially the Z-isomers can be
found as structural motifs in numerous biologically and
pharmaceutically active compounds. Although various
synthetic approaches for these compounds have been
developed in the past, the selective reduction of C–C triple
bonds to alkenes offers a convenient route.2 In general, in
this transformation the control of chemoselectivity (alkenes
vs. alkanes) and the stereoselectivity (E- and/or Z-olefins) is
important. A selective preparation of one single isomer
strongly depends on the chosen reaction parameters as well
as on the catalyst. Traditionally, the application of
heterogeneous transition–metal catalysts such as the Lindlar
catalyst3a,b (lead-poisoned Pd on CaCO3) enables the selective
semihydrogenation of alkynes to Z-olefins. Besides Pd,3 other
transition metals, such as Rh,4 Ru,5 Nb,6 Cr,7 and V,8 have
been reported for both heterogeneous and homogeneous
catalysis.9

Based on the growing significance of sustainability and
the shortage of resources, the development of cheap, more
easily available, non-noble metal catalysts is of increasing
importance. In this respect, catalytic systems derived from

first row transition metals such as Ni,10 Co,11 Fe,12 or Cu,13

were studied for this reaction. Here, especially homogeneous
pincer type catalysts have been applied for the (transfer)
semihydrogenation of alkynes to alkenes.

The first example of a non-noble metal pincer based catalyst
for the semihydrogenation of alkynes has been reported by
Milstein and co-workers in 2013 (Fig. 1).14a More specifically, the
acridine-based PNP iron complex Fe-1 selectively reduced
internal alkynes to the E-alkenes, while no additional base was
required to obtain the desired products. Notably, the
corresponding E-isomers were formed in high yields with E :Z
ratios of up to 100 :0 via rapid isomerisation of the originally
formed Z-products. Very recently, the Kirchner group presented
a cationic iron pincer complex Fe-2 bearing an aminoborane
ligand, which efficiently reduced internal alkynes under mild
conditions to the respective Z-olefins.14b

Based on the pioneering work of Milstein, Co pincer
ligated catalysts were published for the (transfer)

3994 | Catal. Sci. Technol., 2020, 10, 3994–4001 This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Non-noble metal pincer-based catalysts for the (transfer)
semihydrogenation of internal alkynes.

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 L
ei

bn
iz

-I
ns

tit
ut

 f&
#2

52
;r 

K
at

al
ys

e 
e.

 V
. (

LI
K

A
T 

R
os

to
ck

) o
n 

3/
9/

20
21

 9
:1

8:
37

 A
M

. 

View Article Online
View Journal  | View Issue



Catal. Sci. Technol., 2020, 10, 3994–4001 | 3995This journal is © The Royal Society of Chemistry 2020

semihydrogenation of alkynes to the E- or Z-isomers.15 Thus,
the Co CCC pincer complex Co-1 is able to reduce alkynes
with high selectivity to trans-alkenes.15a A broad range of
substituted diphenylacetylenes was hydrogenated in high
yields and E/Z ratios both with electron-donating and -
withdrawing groups. Mechanistic studies showed that the
corresponding E-alkenes are produced by initial cis-
hydrogenation followed by cis/trans-isomerisation.
Interestingly, Liu and co-workers developed a stereo-
divergent Co-catalysed transfer hydrogenation of alkynes to
Z- and/or E-alkenes.15b,d They observed that the stereocontrol
for the semihydrogenation of alkynes strongly depends on
the ligand type of the Co-pincer catalyst. Applying the Co
PNP pincer complex Co-2a bearing bulky t-butyl substituents
preferentially the Z-isomers are formed with ammonia
borane as hydrogen source. The E-isomer is usually formed
via isomerisation of the Z-alkene, which occurred on an open
coordination site of the sterically less hindered metal centre
of the catalyst. Notably, a slight change of the PNP-ligand
structure from t-butyl (Co-2a) to i-propyl substituents (Co-1b)
of the Co pincer complex resulted in a completely different
stereoselectivity mainly yielding the E-alkenes. The
phosphorous-free Co NNN pincer pre-catalyst Co-3 also
required ammonia borane for activation transforming
internal alkynes to the Z-alkenes.15c

Furthermore, the Ni PPP pincer complex Ni-1 was reported
to convert 1,2-diphenylacetylene quantitatively to E-stilbene.16

Recently, also two manganese derived pincer type
complexes were reported for the transfer semihydrogenation
of internal alkynes.17 Here, the N-heterocyclic silylene–
manganese catalyst Mn-1 produced the respective E-olefins,
while with the manganese pre-catalyst [MnĲII)-PNP]ĳCl]2 Mn-2
the preferential formation of the Z-alkene was observed. Both
catalytic systems worked at relatively low temperature for
several substrates, but as a drawback equimolar amounts of
borane adducts are required as hydrogen donor and for
catalyst activation.

Although, a reasonable number of non-noble metal
pincer-based catalyst was reported for the semihydrogenation
of internal alkynes in the past years, examples of defined
catalysts operating with molecular hydrogen are still limited.
Herein, we present the development of the first manganese-
based pincer catalyst which allows for the semihydrogenation
of alkynes using inexpensive and atom-efficient H2.

Results and discussion
Catalytic semihydrogenation of internal alkynes using
manganese pincer complexes

At the start of our work, various manganese PNP,18 NNP,19

and NNN20 pincer ligated complexes Mn-3–Mn-7, which were
developed in our laboratory, were tested for hydrogenation of
the model compound 1,2-diphenylethyne 1a using 2 mol%
catalyst and 5 mol% base loading at 30 bar H2 and 50 °C
(Fig. 2). Interestingly, the Mn complex Mn-3a with i-Pr2P
substituents in the PNP ligand backbone as well as the NNN

Mn-5 and Mn-6 and NNP ligated Mn species Mn-7 provided
only low or no reactivity (Table 1, entries 1, 5–7). In case of
Mn pincer compounds Mn-3b, Mn-3ck, and Mn-3c complete
conversion to the corresponding olefin 2a was detected
(entries 2–4), while exclusively the Z-isomer was formed.
Notably, the neutral Mn pincer complex Mn-3c produced
between 80–99% of the Z-stilbene in short reaction time
(entries 8–12) and mild conditions (reaction temperature: 30
°C; entry 14). The excellent catalytic performance of this
system is also demonstrated using only 0.5 mol% of pre-
catalyst Mn-3c (entry 17). It is important to mention that in
none of these reactions complete hydrogenation to the
corresponding alkane was observed.

After the identification of the optimal Mn-pincer complex,
the influence of different reaction parameters such as solvent
and bases was further investigated (Table 2). In
dichloromethane or various ethers only moderate yields of
the Z-olefin were observed (entries 1–4), while the
chemoselective formation of cis-stilbene 2a stayed unaffected.
Also, more polar alcoholic solvents completely failed to give
the desired product (entries 5–6). In contrast, aprotic
nonpolar solvents such as n-heptane and toluene proved to
be suitable for this transformation producing the cis-alkene
in yields above 90% (entries 7–10, 12). Notably, apart from
KOtBu, other bases such as NaOtBu and KOH were tested
using 1 mol% catalyst loading of Mn-3c (entries 8–10). Here,
again complete conversion was obtained with KOtBu, while
NaOtBu leads to slightly lower product yield. In case of KOH
only poor reactivity was observed. A blank experiment using 5
mol% of KOtBu without catalyst shows no conversion (entry
11).

The general applicability and the functional group
tolerance of pre-catalyst Mn-3c were tested for diverse
substrates (Scheme 1). Here, 20 different internal alkynes
bearing (hetero)aromatic as well as alkyl moieties were
efficiently reduced to the respective alkenes in good to high
isolated yields with excellent Z-selectivities under comparably
mild conditions (30 bar H2, 30–60 °C). Alkynes with halide
substituents such as fluorine (1b), chlorine (2c), bromine
(2d–e) or the trifluoromethyl group (2f–g) are quantitatively
transformed to the cis-olefins in 70–89% isolated yields.
Additionally, ester (1i) and amine groups (1o, 1q) on the
alkynes were tolerated by the pincer complex Mn-3c

Fig. 2 Selection of manganese pincer based complexes tested in the
semihydrogenation of 1,2-diphenylacetylene (1a).
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producing selectively the alkene products. In case of the
alkyne 1j bearing a keto group in para-position on the
aromatic ring both functionalities are reduced to the
respective (Z)-1-(4-styrylphenyl) ethane-1-ol (2j) in 85%
isolated yield. Attempts to shift the selectivity for this special
substrate (1j) to the exclusive reduction of the triple bond
failed. In fact, applying 1 mol% Mn-3c at 30 °C preferential

reduction of the ketone took place. Furthermore, the
heteroaromatic alkyne (1r) is converted in excellent yield
(99%) and selectivity to the cis-olefin 2r. In addition, the
diyne 1t is smoothly reduced on both triple bonds to the
synthetically interesting (Z,Z)-diene 2t. While the catalyst Mn-
3c works efficiently for internal alkynes bearing at least one
aromatic substituent, no conversion was detected for the

Table 1 Manganese-catalysed hydrogenation of 1,2-diphenylethyne 1a: optimization of the reaction conditionsa

Entry Catalyst (mol%) T (°C) p (bar) h Conv. (%) Yield 2a (%) Z/E

1 Mn-3a (2) 50 30 16 45 39 >99
2 Mn-3b (2) 50 30 16 97 93 >99
3 Mn-3ck (2) 50 30 16 >99 95 >99
4 Mn-3c (2) 50 30 16 >99 99 >99
5 Mn-5 (2) 50 30 16 2 — —
6b Mn-6 (2) 50 30 16 3 — —
7b Mn-7 (2) 50 30 16 5.5 3 n.d.
8 Mn-3b (2) 50 30 5 61 59 97 : 3
9b Mn-3ck (2) 50 30 5 60 56 97 : 3
10 Mn-3c (2) 50 30 5 >99 99 99 : 1
11 Mn-3b (2) 50 30 2 61 60 >99
12 Mn-3c (2) 50 30 2 >99 99 >99
13c Mn-4 (2) 50 30 2 2 — —
14 Mn-3c (2) 30 30 2 73 67 >99
15 Mn-3c (1) 30 30 2 43 38 98 : 2
16b Mn-3c (1) 30 30 4 >99 99 >99
17b Mn-3c (0.5) 30 30 4 77 74 >99
18b Mn-3c (1) 30 5 4 92 88 >99

a General conditions: 0.5 mmol substrate 1a, 2 mol% catalyst Mn-3–Mn-7, 5 mol% NaOtBu, 1 mL toluene. b 5 mol% KOtBu; 1 mL heptane. c 2
mL heptane.

Table 2 Influence of solvents and bases for Mn-catalysed semihydrogenation of 1,2-diphenylethyne 1aa

Entry Solvent Base Conv. (%) Yield 2a (%) Z/E

1 CH2Cl2 KOtBu 25 21 97 : 3
2 Et2O KOtBu 53 51 99 : 1
3 THF KOtBu 19 17 97 : 3
4 Dioxane KOtBu 26 23 97 : 3
5 t-AmylOH KOtBu 5 0 —
6 EtOH KOtBu 0 — —
7 Heptane KOtBu >99 >99 >99
8b Heptane KOtBu 99 98 >99
9b Heptane NaOtBu 88 86 >99
10b Heptane KOH 8 4 n.d.
11c Heptane KOtBu 0 — —
12 Toluene KOtBu 90 89 >99
13d Toluene KOtBu 85 85 >99
14d Toluene — 3 2 n.d.

a General conditions: 0.5 mmol substrate, 2 mol% catalyst Mn-3c, 5 mol% KOtBu, 1 mL solvent, 30 bar H2, 30 °C, 2 h. b General conditions:
0.5 mmol substrate, 1 mol% Mn-3c, 5 mol% base, 1 mL heptane. c General conditions: 0.5 mmol substrate, 5 mol% KOtBu, 1 mL solvent, 30
bar H2, 30 °C, 2 h. d General conditions: 0.5 mmol substrate, 2 mol% catalyst Mn-3ca, 1 mL solvent, 30 bar H2, 30 °C, 4 h.
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related alkyl-substituted internal alkyne 1u. However, alkyne
1s with an aromatic and aliphatic moiety smoothly reacted to
the cis-olefin 2s. Finally, three terminal alkynes 4a–c were
tested in the presence of 2 mol% Mn-3c at 30 bar hydrogen,
60 °C and 16 hours. Only the activated terminal alkyne 4c was
selectively reduced on the alkyne moiety giving 4-vinyl
methylbenzoate 5c in 76% isolated yield.

Investigation of the reaction mechanism

The reaction mechanism was studied based on both catalytic
experiments and DFT computation. To investigate the
potential isomerisation ability of our optimal catalyst system,

Z-stilbene was heated with 2 mol% Mn-3c at 95 °C for 6
hours in the absence of hydrogen (Scheme 2a). Interestingly,
no formation of the corresponding E-product was observed.
This finding contrasts with the previous work of Milstein and
co-workers, who reported isomerisation of the initially
formed Z-product to the E-olefin with their acridine-based
PNP iron complex Fe-1.14a

Besides, no isomerisation of 2 or reduction to 1,2-
diphenylethane 3 was observed, when cis- or trans-stilbene
were heated in the presence of 1 mol% of catalyst Mn-3c at
30 bar hydrogen pressure at 30 °C, 80 °C or 100 °C
(Scheme 2b and c). At a temperature of 140 °C only little
formation to the alkane occurred (9% of 1,2-diphenylethane
3) potentially due to the fact that a major part of heptane
and stilbene are in the gas phase, while the catalyst stays in
the liquid phase. Nevertheless, these findings demonstrate
the preference of Mn-3c for the hydrogenation of the triple
bond compared to olefins and are in good agreement with
theory vide infra. Here, the computations showed a slightly
lower energy barrier for the hydrogenation of cis-stilbene (2a:
21.3 kcal mol−1) to 1,2-diphenylethane than for trans-stilbene
(1b: 23.2 kcal mol−1).

Moreover, the so-called metal–ligand cooperation (MLC)
was studied, which is often observed in catalytic
hydrogenations with pincer complexes.21 Also, in our
previous works on catalytic reduction of carboxylic acid
derivatives with iron,22 cobalt23 or manganese18a,c pincer
complexes, the aliphatic PNP pincer ligand played an active
role in the hydrogen transfer process.

To figure out the possible involvement of the pincer
ligand in the direct hydrogenation of alkynes, a further
control experiment was realised. To prove the ability of metal
ligand cooperation, the NH moiety of the pincer backbone in
the manganese catalyst was blocked with a methyl
substituent.

Scheme 1 Semihydrogenation of alkynes catalysed byMn-3c. a Conversions
are determined by GC analysis. Isolated yields are given in parentheses.

Scheme 2 Mechanistic experiments for the semihydrogenation of
alkynes. a) Isomerisation experiment with Mn-3c. b).
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Therefore, the respective N-methylated manganese pincer
complex Mn-4 was synthesised starting from [MnĲCO)5Br]
and pincer ligand MeNĲCH2–CH2–PEt2)2 (see ESI†) and
characterised by spectroscopic methods. The 31P NMR
spectra of Mn-4 showed one signal at 64.6 ppm indicating
the formation of only one isomer. Furthermore, in the IR-
spectra two characteristic bands at 1899 and 1807 cm−1 are
found in the carbonyl region demonstrating the presence of
two CO molecules in the complex Mn-4. Signals at m/z 397
and m/z 415 were detected in the ESI-spectroscopic analysis
referring to [MĲMn-4)–2CO]+ and [MĲMn-4)–Br + ACN]+,
respectively. These fragments indicate the formation of the
neutral manganese complex Mn-4. Additionally, a peak at m/z
402 was observed in trace amounts which could be assigned
to a cationic Mn-species bearing three CO molecules and the
pincer-backbone.

Such a similar coordination behaviour is known for the
related Mn-3c complex, which forms the kinetically stable
cationic Mn-3ck next to the thermodynamically more stable
neutral compound Mn-3c, too.18c Finally, crystals suitable for
X-ray diffraction analysis were grown in methanol solution
stored at 0 °C. The molecular structure (Fig. 3) exhibited a
distorted octahedral geometry.24 Here, the manganese centre
is surrounded by the PNP donor atoms of the pincer ligand
and one CO molecule placed in an equatorial position and a
bromine atom as well as a second CO molecule arranged in
axial position. Taking all these analytical data into account
the formation of the neutral Mn complex with the structure
[MnĲPMeNPEt)ĲBr)ĲCO)2] Mn-4 is confirmed.

Using Mn-4 for the model hydrogenation showed no
conversion (Scheme 2d), which unambiguously proves the
importance of the N–H moiety of the aliphatic ligand
backbone. This experimental result also provides a strong
hint for an outer-sphere hydrogenation mechanism in the
catalytic reaction. This assumption was further explored by
DFT computations. In our previous investigations on the
hydrogenation of esters18c as well as nitriles, ketones and
aldehydes18a using the same type of catalysts (Mn-3) (Fig. 1)
an outer-sphere hydrogenation mechanism was proposed,
too. In more detail, the Mn–H transfer step with the
formation of an intermediate and a subsequent N–H transfer
to the product could be verified by experiment and theory.
Furthermore, such aliphatic Mn pincer based catalysts have

been successfully used in the isomerisation of allylic alcohols
to the corresponding carbonyl compounds via a
dehydrogenation/hydrogenation pathway, which was
validated by the isolation of an intermediate, deuterium
labelling experiments as well as by comparative DFT
computation.25 A similar outer-sphere mechanism has been
discussed for the hydrogenation of quinolines by using well-
defined PNP and PNN pincer manganese complexes.26

Therefore, the hydrogenated complex Mn-3ca, which
should be involved in the catalytic cycle, was prepared
separately by treating Mn-3c with 2 equivalents of NaBEt3H (1
M in THF) for 24 hours at room temperature. This complex
was isolated from a red solution giving a brown oil, which
was not stable in pure form. Therefore, Mn-3ca was handled
in a stock solution, which was used to confirm the structure
by spectroscopic methods. In the 1H NMR spectrum
characteristic peaks for the hydride group were found at −5.8
and −6.1 ppm. During the MS analysis signals at m/z 360 and
401 were detected, which can be assigned to [MĲMn-3ca)–H]+

and [MĲMn-3ca)–H + ACN]+ (see ESI† for further details).
Using 2 mol% of Mn-3ca for the benchmark reaction
provided cis-stilbene in 85% yield (Table 2, entry 13) only in
the presence of 5 mol% KOtBu. Interestingly, the hydride
species Mn-3ca is not active without base (Table 2, entry 14).
A possible reason for this catalytic behaviour is the
preferential formation of the thermodynamically more stable
trans-Mn-3ca isomer during the synthesis, which is confirmed
by DFT computation and NMR analysis (see ESI†).27 As an
outer-sphere mechanism is discussed, in case of a trans-Mn-
3ca complex no concerted hydride transfer from the catalyst
to the substrate is possible. In order to form the active cis-
configuration, the base is needed to generate the amido
complex Mn-3cb, which then forms the cis-Mn-3ca under a
hydrogen atmosphere (Scheme 3).

Considering all these findings and the performed
experimental work, the hydrogenation of 1,2-diphenylethyne
1a was computed on the basis of such a bifunctional outer-
sphere mechanism (Scheme 4, top).

Extensive benchmark calculations including different
functional methods in gas-phase as well as in solution
(SMD28) with van der Waals dispersion correction (GD3BJ29)
were carried out on the basis of the real-size catalysts (ethyl-
substituted PNP ligand) and substrates in order to select the
appropriate computational methods. In the following the

Fig. 3 Molecular structure of Mn-4 in the crystal. Only one molecule
of the asymmetric unit is depicted. Displacement ellipsoids correspond
to 30% probability. Hydrogen atoms and atoms of lower occupancy
are omitted for clarity; for further information see ESI.† Scheme 3 Postulated formation of cis- and trans-Mn-3ca.
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data from M06L30 in combination with the all electron
6-311++G(3df,3pd) basis set31 in heptane solution are
presented (Scheme 4, bottom). Other results are given in
the ESI.† For hydrogenation reactions, a stepwise reaction
scheme has been calculated, where the first Mn–H transfer
has a higher barrier than the second N–H transfer.32

Therefore, only the simplified potential free energy surface
with only the highest barriers (the Mn–H transfer step) is
discussed. In agreement with previous results,18 the
interconversion from the hydride Mn-3ca to the amido
complex Mn-3cb has a Gibbs free energy barrier of 20.6 kcal
mol−1 and is slightly endergonic (1.6 kcal mol−1) revealing
adjustable reversibility and equilibrium under given
conditions. In addition, the CO dissociation to Mn-3cc is
highly endergonic by 50.2 kcal mol−1 demonstrating an
enhanced stability of complex Mn-3ca.

The hydrogenation of 1,2-diphenylethyne (1a) to
cis-stilbene (2a) has a free energy barrier of 17.3 kcal mol−1,
which is lower than that (20.6 kcal mol−1) of H2 elimination
and is exergonic by 24.4 kcal mol−1. Both values indicate that
in case of the hydrogenation reaction the energy barrier is
lower. These findings agree with the experimental results,
where the hydrogenation of 1,2-diphenylethyne (1a) to
cis-stilbene (2a) is accessible at low temperature and low H2

pressure (Table 1, entries 14–18).
Furthermore, the corresponding hydrogenation of cis- (2a)

and trans-stilbene (1b) to 1,2-diphenylethane
(Scheme 2b and c) was computed to have barrier of 21.3 and
23.2 kcal mol−1, and exergonic reaction free energy by 18.9
and 13.1 kcal mol−1, respectively. In comparison with the free
energy barrier of H2 elimination, the hydrogenation of cis-
and trans-stilbene requires higher temperature and/or higher

H2 pressure. Such high pressure is necessary to keep the
stability of complex Mn-3ca towards H2 elimination,
especially in case of trans-stilbene hydrogenation. The higher
barrier of the hydrogenation of cis- and trans-stilbene
compared to the hydrogenation of 1,2-diphenylethyne
explains the observed chemoselectivity as well as the
inactivity of cis- and trans-stilbene up to 100 °C
(Scheme 2b and c). Under the optimized conditions for the
semihydrogenation of 1,2-diphenylethyne (1a), neither
cis-stilbene nor trans-stilbene can be hydrogenated further
on. However, at elevated temperature of 140 °C and 30 bar
H2 pressure, slow transformation of cis- and trans-stilbene
into the corresponding alkane was found. As the energy
barriers of the interconversion of the active catalysts between
Mn-3ca and Mn-3cb are close to the hydrogenation barriers
of cis- and trans-stilbene, one could expect that the reaction
should occur at high temperature. The observed low reactivity
might be associated with the reduced solubility of H2 gas in
solution at high temperature,33 as well as with the crossover
of the reaction to the gas phase.

DFT computation is also a helpful tool to understand the
reaction behaviour of different substituted alkynes
(Scheme 1): thus, in substrate 1j the preferential
hydrogenation of the ketone group can be explained by the
lower hydrogenation barrier of benzophenone (15.5 kcal
mol−1) compared to the hydrogenation barrier of the alkyne
functionality in 1,2-diphenylacetylene (1a). On the other side,
for methyl 4-(phenylethynyl)benzoate (1i) a barrier of 22.2
kcal mol−1 was computed for the first hydrogenation step of
methyl benzoate (Ph–COOCH3), which is higher than that of
CC triple bond hydrogenation of 1a. Therefore, a high
chemoselectivity for the hydrogenation of alkyne moiety was
observed in 1i.

Also, the strong influence of the alkyl substitution on the
reactivity of alkynes can be elucidated by DFT computations.
While alkyne 1s with one phenyl and one alkyl substituent
can be smoothly reduced, 4-octyne (1u) bearing two alkyl
groups showed no activity at all. This effect is caused by the
high energy barrier in case of alkyl substitution. Here, a
barrier of 26.7 kcal mol−1 was computed for the
hydrogenation of 4-octyne (1u), which is by 9.4 kcal mol−1

higher than that of 1a hydrogenation. All these values clearly
explain and support the experimental results.

Conclusions

For the first time the selective hydrogenation of alkynes using
hydrogen in the presence of molecularly defined manganese
pincer complexes is described. Specifically, the manganese
complex Mn-3c coordinated by an aliphatic PNP pincer
ligand allows for highly chemo- and stereoselective
semihydrogenation of internal alkynes under mild
conditions. Moreover, this non-noble metal derived pre-
catalyst efficiently converts various internal alkynes to the
corresponding Z-olefins. Mechanistic investigations based on
experiments and computations reveal a direct involvement of

Scheme 4 Proposed bifunctional outer-sphere mechanism for the
Mn-catalysed hydrogenation of alkyne 1a and alkenes 2 (top) and
M06L/6-311+G(3df,3pd) computed Gibbs free energy in heptane
solution (bottom)
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the pincer ligand in the hydrogenation step via an outer
sphere pathway.
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10 Appendix

10.1 Further Publications

The publication (see below, chapter 10.1.1), which was mainly prepared during my master 

studies, builds the basis of the publication 9.1 and is therefore presented in this chapter as 

additional information for the readers convenience. The review (chapter 10.1.2) was prepared 

during my PhD.

10.1.1 Manganese(I)-catalysed Enantioselective Hydrogenation of Ketones 
Using a Defined Chiral PNP Pincer Ligand

M. Garbe, K. Junge, S. Walker, Z. Wei, H. Jiao, A. Spannenberg, S. Bachmann, M. Scalone

and M. Beller

Angew.Chem. Int. Ed. 2017, 56, 11237–11241.

International Edition: DOI: 10.1002/anie.201705471

German Edition: DOI: 10.1002/ange.201705471

10.1.2 Catalytic oxidations by dehydrogenation of alkanes, alcohols and 
amines with defined (non)-noble metal pincer complexes

S. Budweg, K. Junge and M. Beller

Catal. Sci. Technol. 2020, 10, 3825–3842.

DOI: 10.1039/D0CY00699H
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