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1. Einleitung und Fragestellungen 

1.1 Koordinierung und Modulation glattmuskulärer Aktivität 

Die kontraktile Funktion der glatten Muskulatur ist essenziell für die Aufrechterhaltung 

und Regulation zahlreicher Grundfunktionen des Körpers wie Blutdruck und 

Durchblutung, Nahrungstransport und Harnausscheidung [1]. Die Kontraktionsmuster 

glattmuskulärer Gewebe sind in hohem Maße an die organspezifischen physiologischen 

Funktionen angepasst und können in den drei Dimensionen Intensität (Kontraktionskraft), 

Zeit (Kontraktionsdauer und -häufigkeit) und Ort (räumliche Ausdehnung der Kontraktion) 

definiert werden [2, 3]. Auch die Mechanismen der Kontraktionssteuerung variieren von 

einer direkten und exakten neuronalen Kontrolle einzelner Kontraktionen im Falle der 

inneren Augenmuskeln [4] bis hin zur reinen Ansteuerung und Modulation lokaler, 

weitgehend autonom funktionierender Kontraktionsmuster wie im Falle der von lokalen 

und systemischen Signalen modulierten „basalen organeigenen Rhythmik“ (BOR) in 

weiten Teilen des Gastrointestinaltrakts [5, 6]. 

 

Aufgrund ihrer großen homöostatischen – und damit auch klinischen – Relevanz wird die 

glatte Muskulatur seit über 100 Jahren unter physiologischen und pathophysiologischen 

Bedingungen untersucht, um aus experimentellen Befunden Schlussfolgerungen über 

Erkrankungen, ihre Pathomechanismen und Behandlung abzuleiten. 

Weiterhin ist die glatte Muskulatur aufgrund der Komplexität ihrer neuronalen und 

biochemischen Steuerung ein Gewebe, an dem es sehr häufig zur Ausbildung von 

unerwünschten Arzneimittelwirkungen oder funktionellen Störungen im Rahmen 

systemischer Erkrankungen (z.B. Elektrolytstörungen, ZNS-Erkrankungen oder 

systemischer Inflammation) kommt. 

Die vorliegende Arbeit verbindet experimentelle Befunde zur Kontraktionssteuerung 

isolierter glatter Muskulatur mit klinischen Untersuchungen zu gastrointestinalen 

Funktionsstörungen bei Patienten. Damit soll nicht nur das große analytische Potenzial 

der Untersuchungen isolierter glatter Muskulatur, sondern auch deren Relevanz und ihre 

Vorhersagekraft für klinische in vivo -  Szenarien gezeigt werden. 

 

Neben fluoreszenzmikroskopischen Methoden, digitalen Datenprozessierungstechniken 

und klinischer Elektrophysiologie kommt dabei der traditionellen Organbadtechnik zur 

Analyse des Kontraktionsverhaltens intakter nativer Gewebepräparate eine zentrale Rolle 

zu. Diese leitet sich aus dem Erkenntnisgewinn der letzten Jahre zur Physiologie der 

interzellulären Koordination gastrointestinaler glatter Muskulatur und zur Bedeutung des 

Nervensystems für die Modulation der glatten Muskulatur des Gastrointestinaltrakts ab. 

Frühere Organbadstudien gingen von grundsätzlich anderen Prämissen, z.B. zur Rolle 

der ICC und des ENS aus [7]. In den letzten Jahren haben sich daher neue 
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Fragestellungen und methodische Ansätze für Organbadexperimente ergeben. Diese 

Arbeit stellt dabei die Koordination und Steuerung des Kontraktionsverhaltens der glatten 

Muskulatur des Magens und der Portalvene in den Mittelpunkt. 

 

Die unmittelbare Kontraktion glatter Muskelzellen wird durch eine vermehrte 

Phosphorylierung der regulatorischen leichten Kette des Myosins ausgelöst, für die eine 

Erhöhung der Aktivität der Myosin-Leichkettenkinase (MLCK) oder eine Hemmung der 

Myosin-Leichkettenphosphatase (MLCP) nötig ist [8]. Zahlreiche Signalwege 

beeinflussen die glattmuskuläre Kontraktilität, zentral für die dynamische Steuerung der 

MLCK-Aktivität sind jedoch Anstiege der zytoplasmatischen Kalziumkonzentration 

([Ca2+]i) [9–14]. Diese erfolgen entweder als Ergebnis eines Kalziumeinstroms über 

spannungsabhängige Kalziumkanäle (VDCC) vom L-Typ  oder infolge einer 

Kalziumfreisetzung aus intrazellulären Speichern [15].  

 

Die glatte Muskulatur des Magens zerfällt funktionell in zwei Anteile: die des stark 

dehnbaren proximalen Fundus und die des rhythmisch kontrahierenden distalen 

Magenantrums. Der Fundus dient als Reservoir und die ihn umschließende 

Muskelschicht entwickelt einen stabilen Tonus, welcher die aufgenommene Nahrung 

stetig in Richtung des Antrums drückt [16–19]. Der vom Fundus entwickelte stetige Druck 

in Richtung auf den Magenausgang schafft die Voraussetzung dafür, dass die im 

Antrumbereich stattfindenden phasisch-rhythmischen Kontraktionen den Speisebrei 

effektiv weiter durchmischen und zerkleinern können [20–22]. 

 

Nachdem das Verhalten der spontanaktiven gastrointestinalen Muskulatur lange Zeit als 

intrinsisch von Myozyten generiert und vom autonomen Nervensystem moduliert 

aufgefasst worden war, entwickelten sich seit den 80er Jahren des 20. Jahrhunderts  

weitaus differenzierte Konzepte [7, 23–25]. Vereinfachend kann das aktuelle Konzept wie 

folgt zusammengefasst werden:   

Sowohl die tonische Kontraktion des Magenfundus als auch die phasischen 

Kontraktionen des Magenantrums basieren auf der Generierung, Ausbreitung und 

nervalen Modulation elektrischer Erregungen im Gewebe [25, 26]. Verantwortlich für die 

Erzeugung der rhythmischen Depolarisationen, in deren Folge es zur Öffung der VDCC 

in elektrisch über Gap Junctions angekoppelten glatten Muskelzellen kommt, sind im 

Gastrointestinaltrakt spezifische Schrittmacherzellen, die zur Gruppe der interstitiellen 

Zellen nach Cajal (interstitial cells of Cajal, ICC) gehören [27–30]. Die rhythmischen 

Potenzialschwankungen der zwischen Ring- und Längsmuskelschicht im Plexus 

myentericus lokalisierten ICC (ICC-My) laufen ununterbrochen ab, der Bedarf für 

mechanische Aktivität ist jedoch nicht ständig gegeben, sondern im Gegenteil 
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diskontinuierlich und in verschiedenen Regionen sequenziell vorhanden. Ob die 

spontanen Depolarisationen der ICC-My zu Kontraktionen führen, hängt einerseits von 

deren Amplitude (also der Stärke der in den ICC-My generierten Einwärtsströme), 

andererseits vom Bahnungszustand, also der Erregbarkeit der glatten Muskelzellen 

selbst ab [23, 24, 31–35]. Beide Faktoren werden durch das enterische Nervensystem 

(ENS) reguliert, welches die übergroße Mehrzahl der Neurone des Plexus myentericus 

bildet und sowohl mit den ICC-My als auch mit den die Erregbarkeit der Myozyten 

modulierenden „intramuskulären ICC“ (ICC-IM) zahlreiche synaptische Verbindungen 

unterhält [36–39].  

Das ENS wird nach gegenwärtiger Ansicht neben dem zentralen, dem somatisch-

peripheren und dem vegetativen Nervensystem als eine eigenständige Komponente 

anerkannt [40, 41]. Es integriert luminale chemische und mechanische Signale mit 

hormonellen Einflüssen und den Steuersignalen des klassischen vegetativen 

(autonomen) Nervensystems (Parasympathikus/Sympathikus) und koordiniert die 

gastrointestinale Motilität über Steuersignale, die es indirekt über eine Modulation der 

ICC an die glatte Muskulatur übermittelt [42]. Die synaptischen Netzwerke des ENS 

ermöglichen – ähnlich wie im Rückenmark – den autonomen Ablauf einfacher 

Programme (z.B. des peristaltischen Reflexes [43–46]), welche auch nach Abkopplung 

vom vegetativen und zentralen Nervensystem die Erhaltung einer basalen Motilität 

sichern [47–51]. Wie spezifisch und wie effektiv die letztlich von den ICC generierten 

Steuersignale die Muskulatur erregen, hängt wesentlich von der interzellulären Kopplung 

zwischen beiden ab, deren Charakterisierung daher einen besonderen Schwerpunkt in 

der vorliegenden Arbeit einnimmt. 

 

 

Historisch wurde die phasisch aktive glatte Muskulatur des Gastrointestinaltrakts und der 

Portalvene dem Single-unit-Typ zugeordnet [52–54]. Das Single-Unit-Konzept postuliert 

eine starke und stabile elektrische Kopplung der Myozyten im Synzytium des Gewebes 

und die Ausbreitung lokal entstehender Erregungen über viele Zellen hinweg [55–58]. 

Variationen der Kopplungsstärke als mögliche weitere Modulationsebene (bzw. als Ziel 

für andere Modulatoren wie Innervation und hormonelle Steuerung) für die Aussteuerung 

der Kraft wurden außerhalb pathologischer Situationen mit gestörter zellulärer 

Netzwerkintegrität entsprechend bislang nur vereinzelt für die glatte Muskulatur arterieller 

Gefäße und des Uterus, nicht jedoch für die des Gastrointestinaltrakts berücksichtigt [59–

63]. Die experimentelle Charakterisierung der interzellulären Kopplung im phasisch 

aktiven glatten Muskel unter spontanen Bedingungen, unter pharmakologischem 

Agonisteneinfluss sowie unter Einwirkung klinisch relevanter Ionenkanalblocker erscheint 

daher besonders geeignet, unser Verständnis gastrointestinaler  Motilitätsstörungen zu 

verbessern [63–68]. 
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1.2 Pathophysiologie der gestörten intestinalen Motilität 

Die Funktion der Motilität des Gastrointestinaltrakts besteht vereinfachend darin, trotz 

einer diskontinuierlichen Nahrungsaufnahme den nachgeschalteten Darmabschnitten 

eine stets an die lokale Kapazität für Resorption und osmotischen Ausgleich angepasste 

Menge und Form von Nahrungsbrei zuzuführen [69, 70]. Abgeleitet daraus können 

Störungen in zwei Richtungen auftreten: 

Eine zu schnelle Entleerung überfordert die Resorptionskapazität, so dass Nährstoffe 

verlorengehen und in den nachfolgenden Darmabschnitten durch die Interaktion mit dem 

intestinalen Mikrobiom zu Flatulenz und mikrobiellen Fehlbesiedlungen führen. Weiterhin 

kann es insbesondere nach Gastrektomien durch osmotische Ausgleichsphänomene zu 

Flüssigkeitsverlagerungen kommen, die herausfordernd für die Kreislaufregulation sind 

(„Dumping-Syndrom“) [71]. 

Eine Hypomotilität (in Abwesenheit eines mechanischen Hindernisses) wird im Fall des 

Magens als Gastroparese bzw. sonst allgemein als Darmträgheit („Konstipation“) 

bezeichnet. Sie ist regelhaft mit einer Reduktion der koordinierten phasischen Aktivität 

der glatten Muskulatur verbunden [72]. Neben subjektiven Beschwerden wie frühzeitiger 

Sättigung, Gewichtsverlust, Oberbauchschmerzen und Übelkeit stellt die Gastroparese 

insbesondere in älteren Patientenpopulationen und unter den häufig betroffenen 

Diabetikern durch die geänderte Resorptionsdynamik von oral applizierten 

Medikamenten bzw. die Verzögerung der Glukoseaufnahme nach Insulininjektion ein teils 

erhebliches medizinisches Komplikationsrisiko dar. Bei kritisch kranken Patienten kann 

sie zu Problemen in der Enteralisierung der Ernährung führen [73–76]. 

Schätzungen zur Prävalenz der Gastroparese liegen zwischen 13 und 50 Fälle pro 

100.000 in der Allgemeinbevölkerung. Da ca. ein Drittel der Fälle auf einen Diabetes 

mellitus zurückgeführt wird, ist die Prävalenz unter Diabetikern entsprechend größer [77–

79]. Die patientenspezifische Pathophysiologie hinsichtlich der betroffenen Signalwege 

oder Zellpopulationen ist oft unbekannt, bestehende Therapieverfahren haben oft nur 

eine unbefriedigende Wirksamkeit [76].  

1.3 Fragestellungen der vorliegenden Arbeit 

Medizinisch relevante Motilitätsstörungen treten stark gehäuft in Situationen auf, in denen 

potenziell mehrere Ebenen der glattmuskulären Modulation verändert sind, da bei 

schweren Allgemeinerkrankungen gleichzeitig sowohl eine intensive Polypharmazie als 

auch Störungen der Funktion des Nervensystems auftreten [80–83]. So können 

zahlreiche klinisch eingesetzte Pharmaka oder endogen im Rahmen von Erkrankungen 

gebildete Mediatoren mit Ionenkanälen auf Neuronen, ICC und Myozyten interagieren 

und auf diesem Weg – insbesondere bei Patienten mit ohnehin erhöhtem Risiko, z.B. 
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Konkret werden in den nachfolgend referierten Arbeiten einerseits die räumlich-zeitlichen 

Eigenschaften der Kraftentwicklung im glatten Muskel von Magen und Portalvene unter 

physiologischen Bedingungen und unter Einwirkung von Substanzen mit direkten und 

indirekten Wirkungen auf Ionenkanäle und die glattmuskuläre Erregbarkeit in vitro 

analysiert (Arbeiten 1-4, [93–96]). Weiterhin werden die Auswirkungen von Läsionen 

des zentralen Nervensystems (ZNS) bei Schlaganfällen sowie des peripheren 

Nervensystems (PNS) im Rahmen schwerer Allgemeinerkrankungen auf 

Surrogatparameter der intestinalen Motilität untersucht (Arbeiten 5 und 6, [97, 98]). Die 

genannten Untersuchungen können auf drei zentrale Forschungsfragen kondensiert 

werden: 

 Wie ausgeprägt ist die interzelluläre Kopplung der intrazellulären 

Kalziumkonzentration in einem typischen phasisch aktiven glattmuskulären 

Gewebe (Portalvene)? 

 Welche Wirkungen haben die Klasse-I-Antiarrhythmika Phenytoin und Ajmalin  

auf die mechanische phasische Aktivität und Kopplung der glatten Muskulatur? 

 Wie wichtig ist die vom zentralen und peripheren Nervensystem ausgehende 

Steuerung für die Aufrechterhaltung der gastrointestinalen Motilität? 
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2. Methodik 

Die eingesetzten experimentellen und statistischen Methoden werden in den 

Originalarbeiten ausführlich dargelegt. Im Rahmen der in vitro – Experimente wurden 

ausschließlich Experimente an Geweben nach der Tötung der Versuchstiere zu 

wissenschaftlichen Zwecken im Sinne des §4 Abs 2 TierschG durchgeführt.  

2.1 Experimentelle in vitro – Experimente (Arbeiten 1-4) 

Die zeitlichen Kontraktionsmuster von Streifenpräparaten verschiedener glattmuskulärer 

Gewebe der Ratte wurden isometrisch im Organbad registriert. In den Arbeiten 1-3 [93–

95] erfolgte zudem eine Registrierung der extrazellulären elektrischen Feldpotentiale, in 

den Arbeiten 1 und 2 zudem eine fluoreszenzbasierte Messung der freien 

intrazellulären Kalziumkonzentration. In allen in vitro – Arbeiten wurden 

pharmakologische Agonisten- / Antagonistenexperimente mit quantitativen Auswertungen 

vorgenommen. 

2.2 Humane in vivo „proof-of-concept“ – Studien (Arbeiten 5 und 6) 

Zur Frage, ob Schlaganfälle oder periphere akute Polyneuropathien im Vergleich zu 

schweren Allgemeinerkrankungen ohne ZNS- bzw. PNS-Schädigung signifikant mit dem 

Auftreten gastrointestinaler Motilitätsstörungen assoziiert sind, wurden zwei verschiedene 

Kohortenstudien konzipiert und durchgeführt, von denen die Arbeiten 5 und 6 klinische 

Surrogatparameter nutzten, während Arbeit 6 zusätzlich eine apparative 

elektroneurographische Untersuchung zur Quantifizierung der PNS - Schädigung 

beinhaltete.  
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3. Ergebnisse 

3.1 Konfokalmikroskopische Netzwerkanalyse 

Die glatte Muskulatur der Portalvene ist ein prototypisches Modell für intrinsisch 

generierte mechanische Spontanaktivität und zeigt hinsichtlich ihres 

Kontraktionsverhaltens, ihrer Innervation und des Vorhandenseins von ICC eine große 

Ähnlichkeit mit phasisch aktiver gastrointestinaler Muskulatur. Allerdings ist sie 

wesentlich dünnwandiger und somit für vitalmikroskopische Untersuchungen besser 

zugänglich [99–103].  

Um die Stärke der Aktivitätskopplung des Gewebes im Rahmen der Spontanaktivität zu 

untersuchen, wurde das Gewebe als homogenes zelluläres Netzwerk betrachtet und 

über dieses ein 20*20µm messendes Raster an diskreten Orten gelegt. Über die 

Rasterpunkte hinweg wurde die Synchronizität der Kalziumoszillationen als Maß für die 

lokale Aktivität analysiert. Die so bestimmte funktionelle Kopplung überwindet 

Limitationen früherer Methoden, da mittels klassischer elektrischer Ableitmethoden nur 

entweder die Aktivität einzelner Zellen oder aber die summierten Feldpotenziale einer 

großen und letztlich unbekannten Zahl von Myozyten registriert werden konnte. 

Farbstoffdiffusionsstudien bilden hingegen rein passive Diffusionsphänomene ab und 

sind nicht zur Beschreibung zeitlich-räumlicher Aktivitätsmuster geeignet [104]. Daher 

blieb unbekannt, welches Ausmaß die lokalen Unterschiede zwischen eng benachbarten 

Regionen des Gewebes haben und über welche Strecken sich Unterschiede im Verlauf 

von [Ca2+]i als dem eigentlichen Steuersignal für die Muskelkontraktion zeigen. 

Mathematisch wurde zur Quantifizierung der Kopplungsstärke die 

Kreuzkorrelationsanalyse von Zeitreihen genutzt, welche neben der Kopplungsstärke 

Informationen über den Phasenversatz zweier Signale liefert. Die Analyse spontaner 

Kalziumsignale sowie deren Modulation durch Noradrenalin ergab, dass die Signale in 

alle Richtungen ausgehend vom Referenzpunkt bereits in Abständen von wenigen 

Mikrometern Abweichungen vom Referenzsignal aufweisen. Noradrenalin vermindert die 

Signaldämpfung als Zeichen einer verbesserten interzellulären Kopplung. 

Zusammenfassend wurde gezeigt, dass die lokalen Oszillationen von [Ca2+]i im Rahmen 

der Spontanaktivität bereits über kurze Distanzen nur unvollständig gekoppelt sind. 

Physiologische Signalsubstanzen können zu einer Synchronisierung beitragen und so 

eine Anpassung der Organfunktion an variable physiologische Anforderungen bewirken. 

Die beschriebene Methode der Netzwerkanalyse ermöglicht es somit, unabhängig von  

detaillierten Informationen über die morphologische Konnektivität eines Gewebes 

spezifische Aussagen über dessen Aktivitätsmuster zu machen. 

 

Referenz: Patejdl R, Noack T. Calcium movement in smooth muscle and evaluation of graded 

functional intercellular coupling. Chaos. 2018 Oct;28(10):106311. PMID: 30384639. 
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3.2 Kopplungshemmende Effekte des NaV-Blockers Phenytoin 

Die Bedeutung von Änderungen der Kopplungsstärke innerhalb der glatten Muskulatur 

liegt in ihren Auswirkungen auf die mechanische Aktivität begründet. Unter Beteiligung 

zahlreicher Ionenkanäle werden hierfür mehr oder weniger synchrone elektrische  

Erregungen erzeugt, welche die Grundlage für diese Aktivierung darstellen. In klinisch-

therapeutischen Kontexten werden Ionenkanalblocker z.B. im Rahmen der 

pharmakologischen Behandlung epileptischer Anfälle eingesetzt, um elektrische 

Synchronisation zu hemmen. Da jedoch Ionenkanalblocker nicht nur glatte Muskelzellen, 

sondern alle in Abb. 1 genannten Strukturen funktionell beeinflussen können, ist eine 

Analyse ihrer Wirkungen auf die unterschiedlichen Systeme wesentlich für das 

Verständnis ihrer Gesamteffekte.  

In dieser Arbeit wurden Zeitreihen spontaner und neurogen evozierter Kontraktionen 

glatter Muskulatur des Gastrointestinaltrakts sowie der Portalvene und ihre Beeinflussung 

durch Phenytoin untersucht. Phenytoin bewirkte eine konzentrationsabhängige Abnahme 

der Frequenz und der Amplitude spontaner phasischer Kontraktionen.  Eine spezifische 

Blockade von NaV-Kanälen mit Tetrodotoxin ergab keine vergleichbaren Effekte, womit 

eine NaV-Blockade als zugrundeliegender Mechanismus unwahrscheinlich wurde. Da 

sich aber in ratiometrischen Fura2-Fluoreszenzmessungen Reduktionen der 

Kalziumsignale nach kaliuminduzierter Depolarisation sowie eine Antagonisierung der 

Phenytoineffekte durch BAYK8644 zeigten, konnte eine Hemmung des Kalziumeinstroms 

durch Phenytoin angenommen werden. Da Kalziumströme die dominante 

spannungsabhängige Einwärtsstromkomponente der untersuchten glattmuskulären 

Gewebe darstellen, erklärt sich hieraus die in Feldpotenzialmessungen nachgewiesene 

reduzierte elektrische Erregungskopplung im Organverband. Diese wiederum erklärt 

unmittelbar die beobachtete Reduktion der Kontraktionskraftentwicklung sowie – im Falle 

von Schrittmacheraktionen, die sich aufgrund fehlender Verstärkung durch 

Kalziumströme nicht ausbreiten können – die beobachtete Frequenzreduktion. Weiterhin 

inhibiert Phenytoin im Rahmen seiner NaV-blockierenden Wirkung neurogene 

Kontraktionen der Fundusmuskulatur und somit potenziell auch die in vivo ablaufenden 

neuronale Einflüsse auf die Motilität. 

Zusammenfassend wurde gezeigt, dass Phenytoin nicht durch seine klassische Wirkung 

auf Natriumkanäle in ZNS, VNS und ENS, sondern durch eine Hemmung des 

Kalziumanstiegs in verschiedenen glattmuskulären Geweben Stärke und Frequenz der 

Spontanaktivität sowie die Neurotransmission hemmt.  

 

Referenz: Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by 

inhibiting calcium entry. Patejdl R, Leroux AC, Noack T. Neurogastroenterol Motil. 2015 

Oct;27(10):1453-65. PMID: 26265316 
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3.3 Kopplungsfördernde Effekte des NaV-Blockers Ajmalin 

Aus den unter 3.2 genannten Ergebnissen kann die These abgeleitet werden, dass 

klassische NaV-Blocker in Abhängigkeit ihres Interaktionsprofils mit weiteren 

Ionenkanälen grundsätzlich sowohl hemmend als auch verstärkend auf die interzelluläre 

Kopplung wirken können, je nachdem, ob sie de- oder repolarisierende Ströme hemmen. 

Diesbezügliche  Untersuchungen ergaben, dass die als Klasse-I-Antiarrhythmikum 

bekannte Substanz Ajmalin an Magen und Portalvene der Ratte deutliche Steigerungen 

der Amplitude spontaner Kontraktionen bewirkt. Demgegenüber war die Kraftentwicklung 

durch exogene cholinerge Stimulation oder kaliuminduzierte Depolarisation in Gegenwart 

von Ajmalin kaum verändert, wodurch relevante Effekte auf Kalziumströme im Gewebe 

unwahrscheinlich waren. Ebenfalls kam es zu keiner messbaren Verschiebung des 

Grundtonus der Präparate, so dass eine basale Depolarisation, z.B. durch die Blockade  

einwärts-gleichrichtender Kaliumkanäle ebenfalls unwahrscheinlich war. Ajmalin 

reduzierte weiterhin elektrisch induzierte neurogene Dilatationen. Dennoch konnte 

pharmakologisch weitgehend ausgeschlossen werden, dass z.B. eine Disinhibition der 

Muskulatur durch eine Hemmung konstitutiver hemmender Neurotransmission oder aber 

eine Aktivierung cholinerger Transmitterausschüttung der Steigerung der Spontanaktivität 

zugrunde liegt, da weder eine Vorbehandlung mit TTX noch mit L-NAME oder Atropin die 

Wirkung von Ajmalin relevant veränderte. Allerdings ergaben Untersuchungen zur 

Manipulation der interzellulären Kopplung, dass Ajmalin die Wirkung des Gap-Junction-

Blockers Carbenoxolon antagonisiert.  

Auf dieser Datengrundlage konnte zusammenfassend eine Hemmung 

spannungsaktivierter Kaliumströme mit nachfolgender Enthemmung der 

Erregungsausbreitung im Gewebe als zugrundeliegender Mechanismus der starken 

aktivierenden Wirkung von Ajmalin auf die kontraktile Aktivität von Magenantrum und 

Portalvene postuliert werden. 

 

Referenz: Effects of ajmaline on contraction patterns of isolated rat gastric antrum and portal vein 

smooth muscle strips and on neurogenic relaxations of gastric fundus. 

Patejdl R, Gromann A, Bänsch D, Noack T. Pflugers Arch. 2019 Jul;471(7):995-1005. PMID: 

31044280 

 

3.4 Graduelle tonische Kontraktion durch den S1P-Agonisten FTY720 

Während die gegensinnige Veränderung der Kontraktionen phasisch aktiver Gewebe 

durch die Hemmung spannungsabhängiger Kalzium- bzw. Kaliumkanälen methodisch 

sehr robust dargestellt werden kann, ist die Analyse von graduellen Veränderungen des 
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Kontraktionszustandes tonisch aktiver Muskulatur z.B. durch artifizielle Driftphänomene  

wesentlich störanfälliger. Unsere Untersuchungen zeigten, dass neben bekannten 

Mediator- und Neurotransmittersystemen (z.B. Prostaglandinen oder Cholinergika) auch 

der Sphingosin-1-Phophat (S1P) – Agonist FTY720  den Tonus der Fundusmuskulatur 

des Rattenmagens graduell zu steigern vermag. Auffällig war eine zeitliche Verzögerung 

zwischen Substanzapplikation und Wirkeintritt von mehreren Minuten. Die 

durchschnittliche FTY720-induzierte Kontraktion erreichte unter Standardbedingungen im 

Mittel 8,9% der Amplitude einer durch 50 mmol/l Kaliumchlorid induzierten 

Referenzkontraktion, in Anwesenheit von Indometacin sogar 31,2%. Die Verstärkung des 

Effekts durch Indomethacin war unerwartet, da die einzigen zuvor bekannten Studien zu 

Effekten von FTY720 auf glattmuskuläre Gewebe Gefäßpräparate untersucht und dort 

eine Aufhebung der Kontraktion durch Indomethacin beschrieben hatten.  

Da es sich um die erstmalige Beschreibung der Wirkungen von S1P-Agonisten am 

nativen intestinalen glatten Muskel des Magens handelte, wurde in weitergehenden 

Experimenten der Wirkmechanismus untersucht: Die Wirkung von FTY720 wurde in 

Gegenwart des VDCC-Blockers Nifedipin sowie in kalziumfreier Lösung nahezu 

vollständig aufgehoben und war nach Gabe von Antagonisten für die S1P-

Rezeptorsubtypen 2 und 3 stark reduziert, woraus eine rezeptorvermittelte Depolarisation 

mit nachfolgender VDCC-Aktivierung als Mechanismus der FTY720-induzierten 

Kontraktion abgeleitet werden konnte.  

Zusammenfassend wurde erstmalig die Wirkung eines Sphingosinanalagons auf ein 

intaktes glattmuskuläres Gewebe charakterisiert und eine Beteiligung 

spannungsabhängiger Ionenkanäle am Wirkmechanismus nachgewiesen.  

 

Referenz: The sphingosine analog fingolimod (FTY720) enhances tone and contractility of rat 

gastric fundus smooth muscle. Kraft M, Zettl UK, Noack T, Patejdl R. Neurogastroenterol Motil. 

2018 Oct;30(10):e13372. PMID: 29740911  

3.5 Schlaganfälle und gastrointestinale Motilitätsstörungen 

Schlaganfälle stellen ein häufiges und vor allem durch seine zahlreichen Komplikationen 

oftmals vital bedrohliches Krankheitsbild dar [105]. Aus theoretischen Erwägungen 

ergeben sich mögliche Interaktionen zwischen gestörter vegetativer Steuerfunktion des 

ZNS und Alterationen der gastrointestinalen Funktion, z.B. durch Läsionen wichtiger 

vegetativer Integrations- und Steuerzentren wie der Kerne des N. vagus im Hirnstamm, 

des Hypothalamus oder der Inselregion [106]. Dennoch existieren jenseits der Analyse 

von Schluckstörungen und allgemeiner Ernährungsempfehlungen kaum Daten über Art 

und Häufigkeit gastrointestinaler Komplikationen bei betroffenen Patienten. Wir 

unterzogen eine Kohorte von 76  Patienten mit Verweildauern von mehr als 14 Tagen auf 

der neurologischen Intensivstation einer retrospektiven Analyse. Hierbei wurden 
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Patienten mit (n=57, Schlaganfallgruppe, SG) und ohne (n=19) Schlaganfall miteinander 

verglichen. Die nicht-Schlaganfallgruppe (NSG) bestand zu großen Teilen aus Patienten 

mit epileptischen Anfällen und peripheren Neuropathien. Die gastrointestinale Funktion 

wurde durch die tageweise Analyse des Residualvolumens des Magens, von Erbrechen, 

Dysphagie, Obstipation, Prokinetika- und Laxantienbedarf sowie der Toleranz gegenüber 

enteraler Nahrungszufuhr erfasst. Die Vergleiche der Patienten erfolgten nach 

Adjustierung hinsichtlich der allgemeinen Krankheitsschwere, der Abhängigkeit von 

invasiver Beatmung und dem Vorliegen schwerer systemischer Infektionen bzw. 

Inflammationsreaktionen (Sepsis/SIRS). Dabei zeigte sich für die gesamte Kohorte, dass 

sowohl Patienten der SG als auch der NSG mit 58% bzw. 79% eine hohe 

Wahrscheinlichkeit für das Auftreten gastrointestinaler Symptome hatten. Die weitere 

Analyse nach Adjustierung der jeweiligen Gruppen zur Berücksichtigung der o.g. 

Störgrößen zeigte, dass das Vorliegen eines Schlaganfalles per se im Vergleich zu 

Patienten mit anderen neurologischen Erkrankungen kein erhöhtes Risiko für das 

Vorliegen gastrointestinaler Symptome bedeutete, sondern dass im Gegenteil in der 

betrachteten NSG ein signifikant höheres Risiko für das Vorliegen zumindest eines 

Symptoms gastrointestinaler Dysfunktion vorliegt. Da auch die Grunderkrankungen der 

Patienten der NSG mit Störungen der Innervation des Gastrointestinaltraktes 

einhergehen können, steht dieser Befund nicht im Widerspruch zur allgemein 

akzeptierten These einer Beteiligung von ZNS und PNS an der Motilität. Er zeigt 

lediglich, dass diesbezüglich Schlaganfälle in der betrachteten Kohorte neurologischer 

Intensivpatienten nicht per se zu schwereren gastrointestinalen Komplikationen führen. 

Aufgrund der geringen Patientenzahl war diese Studie nicht geeignet zu klären, ob 

insbesondere Infarkte von Hirnstamm oder Inselregion mit spezifisch erhöhten Risiken für 

Motilitätsstörungen verbunden sind. 

Zusammenfassend belegte diese Studie erstmalig die hohe Wahrscheinlichkeit für das 

Auftreten gastrointestinaler Funktionsstörungen bei kritisch kranken 

Schlaganfallpatienten und gab gleichzeitig Hinweise auf eine insgesamt möglicherweise 

sogar noch größere Häufigkeit entsprechender Komplikationen unter kritisch kranken 

Patienten mit anderen, größtenteils weniger stark lokalisierten neurologischen 

Erkrankungen (z.B. Status epilepticus oder Polyneuropathien). 

 

 

Referenz: Clinical nutrition and gastrointestinal dysfunction in critically ill stroke patients. Patejdl 

R, Kästner M, Kolbaske S, Wittstock M. Neurol Res. 2017 Nov;39(11):959-964. PMID: 28828964 
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3.6 Periphere Neuromyopathie und gastrointestinale Motilitätsstörungen 

Neben dem zentralen ist auch das periphere Nervensystem an der Regulation der 

gastrointestinalen Motilität und ihrer Koordination mit den jeweiligen Sekretionsprozessen 

wesentlich beteiligt. Zu nennen sind neben den efferenten Fasern des Parasympathikus 

und Sympathikus des VNS hierbei auch afferente Fasern intestinaler Chemo- und 

Mechanosensoren sowie Inter- und Motoneurone des ENS. Motilitätsstörungen bei 

chronischen PNS-Schädigungen wie der diabetischen Polyneuropathie führen jedoch 

auch zum Verlust von Schrittmacherzellen (ICC), so dass der reine Beitrag der direkten 

Steuerungsfunktion des PNS zur Pathophysiologie der Motilitätsstörungen nur schwer 

abgeschätzt werden kann. Wenn akute PNS-Schädigungen einen relevanten Risikofaktor 

für gastrointestinale Dysmotilität darstellen, ist im Umkehrschluss ein erhöhtes Risiko für 

PNS-Schädigungen bei anderweitig nicht erklärbaren gastrointestinalen 

Motilitätsstörungen zu erwarten. Beispielhaft wurde in der vorliegenden Arbeit untersucht, 

ob Patienten mit schwerer Allgemeinerkrankung und ausgeprägtem 

intensivmedizinischen Behandlungsbedarf häufiger Zeichen gastrointestinaler 

Dysfunktion zeigen, wenn bei ihnen frühzeitig im Erkrankungsverlauf elektrophysiologisch 

eine Polyneuromyopathie (Critical Illness Polyneuro- bzw. Polyneuromyopathie, CINM) 

nachweisbar ist. Hierfür wurden Patienten mit einem einheitlich definierten Grad an 

Krankheitsschwere (SOFA-Score>8 über drei Tage) elektroneurographisch untersucht 

und entsprechend des erhobenen Befundes in Patienten mit- und ohne Zeichen der 

frühen Schädigung des PNS gruppiert. Da die apparative Testung von VNS und  ENS in 

der betreffenden Kohorte durch die Analgosedierung erheblich  eingeschränkt war, wurde 

stellvertretend als Surrogatparameter eine elektrophysiologische Diagnostik des 

somatischen PNS vorgenommen. Hierbei zeigte sich, dass Patienten mit 

entsprechendem Schädigungsnachweis ein erhöhtes Residualvolumen des Magens 

aufwiesen und nur verzögert den oralen Kostaufbau vollziehen konnten. Eine 

umfangreiche Analyse möglicher Störfaktoren ergab, dass dieser Unterschied zwischen 

Patienten mit- und ohne CINM nicht durch Gruppenunterschiede in der Behandlung mit 

Opioiden, Sedativa oder dem Vorliegen weiterer Risikofaktoren erklärbar war.  

Obwohl also die gastrointestinalen Motilitätsstörungen bei kritisch kranken Patienten 

weiterhin als multifaktoriell und ätiologisch komplex anzusehen sind, liefert die 

vorliegende Studie erstmals Hinweise darauf, dass eine sehr früh stattfindende 

Schädigung des PNS einen relevanten Risikofaktor darstellt, der in die prognostische 

Beurteilung und die Behandlungskonzepte der Patienten einbezogen werden kann. 

 

Referenz: Relations Between Early Neuromuscular Alterations, Gastrointestinal Dysfunction and 

Clinical Nutrition in Critically Ill Patients: An Exploratory Single-center Cohort Study.Klawitter F, 

Ehler J, Reuter DA, Patejdl R. Neurocrit Care. Epup ahead of print. PMID: 32246438 
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4. Diskussion 

Eine auf die Bedürfnisse des Gesamtorganismus abgestimmte Motilität der glatten 

Muskulatur ist eine homöostatische Grundfunktion. Neben biochemischen Prozessen auf 

der Ebene der einzelnen glatten Muskelzelle wird sie von verschiedenen Typen der ICC, 

intestinalen Neuronen sowie lokalen und systemischen Signalen (u.a. aus der 

intestinalen Mukosa, aus verschiedenen Regionen des ZNS) beeinflusst  [6]. All diese 

Ebenen können im Rahmen von Erkrankungen verändert sein. Gleichzeitig existiert ein  

immer größeres Repertoire an Pharmaka mit potenziellen Wirkungen auf lokale 

Signalwege, Transporter, Ionenkanäle oder neuronale Strukturen. Ein besseres 

Verständnis der Bedeutung der verschiedenen Ebenen der Regulation ist eine 

Voraussetzung dafür, valide pathophysiologische Konzepte und damit effektive und 

sichere Behandlungsstrategien für Störungen der gastrointestinalen Motilität entwickeln 

zu können. Die Ergebnisse der vorgelegten Arbeiten versuchen zu den diesbezüglich 

eingangs formulierten  Fragen einen Beitrag zu leisten. 

 

Für die Kopplung des Aktivitätszustandes zwischen glatten Muskelzellen gelten 

niederohmige Verbindungen („Gap-junctions“) zwischen benachbarten Myozyten sowie 

zwischen Myozyten und ICC als Schlüsselelemente, obwohl auch alternative 

physikalische Mechanismen vorgeschlagen wurden [104, 107–109]. Unabhängig vom 

konkreten Mechanismus wurde das Konzept eines „synzytialen Charakters“ vieler 

glattmuskulärer Gewebe bereits in den 30er Jahren des 20. Jahrhunderts von Bozler 

eingeführt, später auf den „phasischen Typ“ glatter Muskulatur übertragen und ist bis 

heute ein verbreitetes Modell zur Beschreibung der elektrischen Eigenschaften glatter 

Muskulatur [52, 110, 111]. Untersuchungen extrazellulärer Feldpotenziale ergaben 

jedoch, dass in der Portalvene als klassischem Single-Unit-Gewebe durchaus starke 

räumliche Heterogenitäten vorliegen, so dass mehrere nur wenige Millimeter entfernte 

Schrittmacherzentren unabhängig voneinander Aktivitätsmuster erzeugen können [112]. 

Quantitative experimentelle Analysen der zeitlichen Kopplungseigenschaften auf 

mikroskopischer Ebene fehlen bislang, die Effekte von strukturell beschriebenen 

Heterogenitäten auf Erregungsprozesse wurden bislang nur für die Uterusmuskulatur 

mathematisch modelliert [113]. Die unsererseits entwickelte Methode der 

mathematischen Kreuzkorrelationsanalyse von Kalziumsignalen in spontanaktiven 

Geweben bestätigte auch auf der damit zugänglichen räumlichen Auflösungsebene das 

Vorliegen von  einer vorhandenen, aber imperfekten Kopplung im spontanaktiven glatten 

Muskel sowie die Modulierbarkeit der Kopplung durch physiologische Agonisten [93]. 

 

Geht man von einer unter basalen Bedingungen nicht-perfekten Kopplung der 

Myozytenaktivität aus, so ergibt sich unmittelbar, dass in glattmuskulären Geweben die 
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erzeugte Kraft abhängig vom Kopplungsgrad ist. Dies ist insbesondere wegen des 

passiven elektrotonischen Charakters der Signalfortleitung naheliegend: Änderungen der 

Erregbarkeit der Zellen können die Geschwindigkeit der Ausbreitung und die Reichweite 

lokal erzeugter Signale bestimmen [114, 115]. Obwohl die Auswirkungen 

unterschiedlicher Aktivierungsgrade einzelner Gewebe – z.B. des Kolons – auf die 

Kraftentwicklung ein bekanntes Phänomen sind [116], existieren keine experimentellen 

Arbeiten, die systematisch die Bedeutung von Kopplungsverstärkung und –
abschwächung für die Kraftentwichlung gastrointestinaler Gewebe untersucht haben. 

Auch wurde die physiologische Relevanz von Ionenkanälen im gastrointestinalen glatten 

Muskel aus methodischen Gründen meist nur unter zellulären Aspekten und kaum im 

Hinblick auf die Kopplung der Erregungsmuster des intakten Organs diskutiert [117–119], 

obwohl hemmende und stimulierende Effekte zahlreicher Ionenkanalblocker auf die 

phasische Aktivität der glatten Muskulatur durchaus bekannt und beschrieben worden 

sind [120–122]. Unsere Untersuchungen zu den stimulierenden bzw. hemmenden 

Effekten der klassischen Ionenkanalblocker Phenytoin und Ajmalin zeigten eine 

Verringerung bzw. Steigerung der Kraft spontaner Kontraktionen in gastrointestinalen 

glatten Muskeln, die jeweils über die Effekte auf exogene Aktivierungen durch globale 

Depolarisation oder muskarinerge Agonisten hinausging [94, 95]. Wesentlich ist hierbei, 

dass auch ohne jegliche Änderungen der Gap Junction – Funktion eine Beeinflussung 

der de- und repolarisierenden Ströme der Myozyten die funktionelle Kopplung sehr 

wirkungsvoll beeinflusst: Während Phenytoin über Hemmungen der 

erregungsverstärkenden Kalziumströme zu einer geringeren Kopplung und damit 

unvollständigeren Rekrutierung von krafterzeugenden Myozyten durch die spontane 

Depolarisation führt, kommt es in Gegenwart von Ajmalin und anderen Blockern 

spannungsabhängiger Kaliumkanäle zu einer „ungebremsteren“ und damit 

vollständigeren Ankopplung des Gewebes.  

Die unsererseits erstmalig beschriebenene kontraktionsfördernde Wirkungen des S1P-

Agonisten FTY720 auf intakte Gewebepräparate des Magenfundus kann ebenfalls als 

Beleg für die kritische Rolle des Erregungszustands der glatten Muskelzellen für die 

Kraftentwicklung interpretiert werden, da unsererseits eine Abhängigkeit der 

Kraftenwicklung von der Verfügbarkeit von spannungsabhängigen Kalziumkanälen 

nachgewiesen wurde, der depolarisierende Effekt von FTY720 selbst jedoch offenbar nur 

vergleichsweise schwach ausfällt, wie an der auch nach FTY720-Zugabe weiterhin 

starken Reaktion auf extrazelluläre Kaliumerhöhungen ablesbar ist [96]. 

 

Angesichts der Stärke dieser Kopplungsänderungen könnte die pharmakologische 

Beeinflussung der Kopplung ein bisher wenig beachtetes, aber sehr attraktives Ziel für 

die Behandlung bei hypo- und hypomotilen Störungen sein. 
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Ob und wie das Nervensystem an der Generierung der physiologischen GI-Motilität 

beteiligt ist, wurde historisch sehr unterschiedlich bewertet: Anfang des 20. Jahrunderts 

gab es Befunde, die einen neuronalen Ursprung der gesamten Darmmotilität 

nahezulegen schienen [123]. Diese sind rückblickend auf die enge räumliche Nähe von 

Neuronen des ENS und ICC zurückzuführen [124–126]. Nach heutigem Stand des 

Wissens gilt eine große Bedeutung des ENS für eine intakte GI-Motilität als gesichert [40, 

127, 128]. Über die Rollen des peripheren bzw. autonomen Nervensystems sowie des 

ZNS existieren hingegen vergleichsweise wenige humanphysiologische bzw. klinische 

Daten, obwohl beide durch Verfahren der klinischen Routinediagnostik (z.B. 

Kernspintomographie oder Elektroneurographie) deutlich leichter zugänglich sind als das 

ENS. Beinahe alle Publikationen zu gastrointestinalen Funktionsstörungen bei 

Schlaganfällen beziehen sich auf experimentelle Beobachtungen oder auf nicht-rein 

glattmuskuläre Funktionen wie den Schluckakt sowie auf Einzelfallberichte [106, 129–

131]. Die unsererseits erhobene Häufigkeit von Zeichen einer gastrointestinalen 

Funktionsstörung bei 58% der Schlaganfallpatienten und 79% der Patienten mit anderen 

schweren neurologischen Erkankungen liefert somit erstmalig einen Anhalt für die 

besonders starke Verbreitung dieses Problems in der neurologischen Intensivmedizin 

und damit indirekt auch für die Relevanz ZNS- und PNS-vermittelter Einflüsse für die 

Erhaltung der physiologischen Motilität. Studien zur Häufigkeit gastrointestinaler 

Störungen unter Patienten mit gemischten intensivpflichtigen Erkrankungen sind aus 

methodischen Gründen oft schwer vergleichbar, berichten jedoch überwiegend geringere 

Zahlen im Bereich zwischen 10 und 20% [132–135]. Dass die Häufigkeit von Symptomen 

in der Schlaganfallgruppe, also unter Patienten mit isolierten, lokalisierten ZNS-Schäden, 

sogar eher geringer war als im gemischten Patientengut der Kontrollgruppe, kann als 

Hinweis auf eine besondere Bedeutung von diffusen Schädigungen von ZNS und PNS 

angesehen werden [97].  

Die funktionelle Relevanz des somatischen peripheren Nervensystems konnte hingegen 

in der von uns durchgeführten Untersuchung an Patienten mit kritischer 

Allgemeinerkrankung nachgewiesen werden. Ob die an peripheren motorischen und 

sensorischen Nerven nachgewiesene Schädigung ein valider Surrogatparameter für eine 

Schädigung von VNS und ENS ist, bleibt letztlich aufgrund  der fehlenden Option einer 

direkten Testung in der untersuchten Population ungeklärt. Im Gegensatz hierzu ist die 

Durchführung der apparativen Testung somatischer Nerven gut standardisiert und selbst 

im Kontext der Intensivstation mit entsprechendem logistischem Aufwand gut 

durchführbar.  

Spezifische funktionsdiagnostische Tests des enterischen Nervensystems existieren 

bislang nicht, selbst hoch entwickelte Testverfahren wie die hochauflösende Manometrie 
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des Ösophagus oder des Anorektums bilden die gemeinsame Funktion der zellulären 

Komponenten des jeweiligen Abschnitts des Verdauungskanals ab [136]. Im Gegensatz 

zur überwiegenden Zahl der bisherigen Studien [137–140] betrachtete diese 

Untersuchung erstmalig einen akuten, binnen weniger Tage eintretenden neuronalen 

Schaden, so dass hier im Gegensatz zur chronischen Situation keine komplexen 

Kompensations- oder Folgereaktionen, sondern die unmittelbare Wirkung der PNS-

Läsion auf die gastrointestinale Funktion beobachtet werden konnte. 
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5. Zusammenfassung 

In den hier zusammengefassten Arbeiten wurden die Mechanismen der interzellulären 

Koordinierung für die Steuerung der Kraft- bzw. Druckentwicklung glattmuskulärer 

Organe sowie ihre Relevanz im Kontext von Erkrankungen des Nervensystems 

untersucht. Die dabei erhobenen experimentellen Befunde sind mit dem tradierten 

Konzept eines „single-unit“-Verhaltens phasisch aktiver glatter Muskulatur nicht 

vereinbar: Bereits die Aktivität direkt benachbarter Muskelzellen kann sich relevant 

unterscheiden, und auch in größeren Gewebesegmenten erfasst der organeigene 

Schrittmacherprozess im Rahmen der basalen Spontanaktivität nicht alle Muskelzellen 

gleichermaßen. Die erhobenen Befunde belegen weiterhin, dass Veränderungen der 

Synchronisation innerhalb des Gewebes drastische Änderungen der Kraftentwicklung 

bewirken. 

Die experimentell dargestellte Fragilität der interzellulären Kopplung  legt nahe, dass die 

Abschwächung kopplungsfördernder Einflüsse des zentralen sowie des somatischen 

Nervensystems auch im klinischen Kontext gastrointestinale Funktionen beeinträchtigt. 

Tatsächlich bestätigten unsere Untersuchungen an Patienten die Häufigkeit von 

Störungen der gastrointestinalen Motilität infolge von Läsionen des zentralen sowie des 

peripheren Nervensystems. Trotz vieler weiterhin unbekannter Einflussfaktoren und 

unzureichend charakterisierter Mechanismen belegen die Ergebnisse dieser Arbeit die 

Bedeutung eines integrativen, auf die Organfunktion zentrierten experimentellen 

Vorgehens für ein besseres Verständnis der gastrointestinalen Motilität. Darüber hinaus 

unterstreichen sie die Bedeutung experimenteller Untersuchungen nativer Gewebe als 

Modellsysteme für die Vorhersage und Interpretation klinischer Funktionsstörungen. 
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Spontaneous activity of vascular smooth muscle is present in small arteries and some venous tis-

sues like the hepatic portal vein. Whereas the ability to generate rhythmic membrane potential

changes is expressed in a high number of primary oscillators, the generation of physiological tone

and phasic activity requires synchronization of specialized pacemaker activity (Interstitial Cajal-like

cells) by intercellular propagation and regeneration of excitation or a strong coupling mechanism

of smooth muscle cells. The aim of this study was to deduce oscillator coupling by analyzing the

spatiotemporal homogeneity of calcium oscillations within a native tissue preparation. Portal vein

tissue was loaded with a calcium-sensitive dye (Fluo-3). By combining confocal microscopy and

computation of spatial auto- and cross-correlation of the calcium signals, temporal and spatial cou-

pling between cells was characterized. Spontaneous oscillations of calcium signals were measured

at different predefined regions of interest. Cross-correlation analysis of these signals revealed that

their damping was very similar in all directions of the investigated z-plane. In single experiments,

improved cell-to-cell coupling was seen when noradrenaline (1–10 µM) was added to the bath-

solution. With the chosen parameters of frame refresh, the velocity of signal propagation was faster

than the maximum detectable velocity, but it could be estimated to exceed 0.1 mm/s. Correlative

Network Analysis is a new and very useful tool to determine the functional coupling parameters of

quasi-homogenous biological networks and their temporal changes. The action and significance of

pharmacological modulators can be well studied on cellular and functional aspects with this newly

introduced technique in biological sciences. Published by AIP Publishing. https://doi.org/10.1063/1.

5035168

In multicellular tissues, excitation and calcium signaling is

dependent on structural and functional tissue properties

which have many determinants. Total activity, coupling,

and action of the tissue cannot be estimated easily. Using

confocal microscopy to determine the temporal changes of

the intracellular calcium concentrations, the calculation of

the two or three-dimensional cross correlation, facilitates a

measure of functional cellular coupling and changes of the

coupling by the action of hormones or transmitters. In cel-

lular networks, where the cell types are non-homogenous,

this network-analysis provides insights about the geomet-

rical signal flow by inverting and non-inverting cells.

I. INTRODUCTION

Spontaneous activity of vascular smooth muscle is

present in small arteries and some venous tissues like the

hepatic portal vein.1–4 The generation and propagation of elec-

trical signals is a key element of physiological function in

these excitable tissues. The basic oscillatory process under-

lying spontaneous activity in smooth muscle is complex and

not yet fully elucidated.3,5 The ability to generate oscilla-

tions is considered to be an intrinsic function of cells and

a)Electronic mail: robert.patejdl@uni-rostock.de
b)Author to whom correspondence should be addressed: thomas.noack@uni-

rostock.de. Tel.: +49 381 494 8010

subcellular domains distributed all over the smooth muscle

tissue. In gastric smooth muscle, it is accepted that different

types of specialized oscillating and transmitting cells exist.

These cells are termed as “Interstitial cells of Cajal” or ICC.

The oscillating “pacemaker cells” are connected morpholog-

ically amongst each other and to smooth muscle cells. In

vascular smooth muscle, the existence of such specialized

cells is discussed controversially.1–4 In portal vein smooth

muscle, ICC have been morphologically and physiologically

identified. In mesenteric arterial smooth muscle, such cells

were not found and spontaneous activity was explained by

strong cellular coupling and calcium release mechanisms. The

degree of coupling between the elementary oscillators (ICCs

and smooth muscle or smooth muscle cells solely) is largely

unknown and has formerly been estimated indirectly in most

studies from observations of the contractile patterns of the

tissue or by measuring electrical or diffusive conductivities

between cells (Table I).

In most vascular tissues, the mechanical activity results

from “minute-rhythm” oscillations of membrane potential

and can be increased in amplitude and frequency up to a

“tetanic tone” under stimulation with the sympathetic ago-

nist noradrenaline.6,7 Under physiologic conditions, a part

of vascular tone8 and, especially, phasic contractions depend

on changes of intracellular calcium levels that are controlled

by intercellular propagation and regeneration of excitation.

Both processes involve a variety of biophysical mechanisms

1054-1500/2018/28(10)/106311/8/$30.00 28, 106311-1 Published by AIP Publishing.
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TABLE I. Experimental approaches to intercellular coupling in smooth muscle.

Technique Advantage Disadvantage

Extracellular electrical recordingsa No tissue damage Poor spatial resolution

High temporal resolution No direct information on cell to cell

communication

Sharp microelectrodes and

microinjectionb

Determination of signal velocity Restricted spatial resolution

Determination of important parts in the

cascade

No direct information on cell to cell

communication

Good temporal resolution

Multi-cell patch clampc Direct measurement of intercellular

connections

Incalculable alteration of cells and

intercellular communication by enzymatic

and mechanical preparationHigh temporal resolution

Dye-diffusiond Possible without tissue damage No information on dynamic electrical tissue

properties and excitation

Unknown interactions with cellular

metabolism

Confocal microscopye No tissue damage necessary

visualization of dynamic changes in

Ca-Concentration

Only semi-quantitative, indirect information

on excitation

Wide tissue areas observable at once

aRefs. 24 and 25.
bRef. 26.
cRef. 27.
dRefs. 10 and 28.
eRefs. 2 and 29.

and cellular structures, which have been the subject of a

number of investigations, including measurements of cell-

to-cell coupling and analysis of connexins.9–11 Furthermore,

the generation and propagation of electrical activity is dif-

ficult to describe in a mathematical and physiological way

yet since the determination of cell-to-cell coupling is not a

simple resistive behavior.12–16 Taking all these items together,

the aim of this study was to provide an elegant phenomeno-

logical characterization of the spatiotemporal properties of

functional intercellular coupling of such a complicated net-

work, rather than giving detailed estimates on the mechanisms

and parameters of cell-to-cell connectivity.

For some tissues, e.g., nerves or skeletal muscle, the pro-

cesses underlying coordinated behavior have been thoroughly

characterised and integrated into mathematical and biophys-

ical models.17–19 In smooth muscle, several cell types with

a wide range of largely unknown active and passive bio-

electrical properties contribute to the bioelectrical activity,

giving too many dark horses to yet allow for its mathematical

description or physiological modeling. In the early 20th cen-

tury, the term of “single-unit” and “multi-unit” type smooth

muscles has been formed which categorizes the variety of

smooth muscle tissues into those with “higher” and “lower”

cell to cell coupling and, correspondingly, different patterns

of neuronal control.20,21 This, however, was made up by the

observation of spontaneous myogenic activity in some smooth

muscle tissues (single unit type). Until today, electrical cou-

pling of smooth muscle cells and the interconnection to other

cell types like endothelial cells, nerve tissue, and interstitial

cells of Cajal (ICC) is of great interest. One physiological

feature of endogenous or hormonal modulation of tissue

function could be the modulation of gap junctions.10,22,23

Table I gives a synopsis on experimental techniques that

have been employed to elucidate the function and interaction

of smooth muscle cells, neural structures, ICC, and endothe-

lial cells, which are assumed to be the key elements in

the regulation of smooth muscle tone.30 Recording electrical

activity is the most intuitive way of establishing a represen-

tation of excitation, but its utility is strongly restricted by the

risk of producing artificial signals by cellular damage during

isolation procedures and by the technical restrictions of simul-

taneous multicellular measurements. Confocal microscopy

has extensively been employed in studies on excitation con-

traction coupling and calcium movements in smooth muscle

cells.31,32 However, only a small number of studies by now

have addressed the issue of functional coupling behavior in

smooth muscle tissues. Since functional coupling consists

of electrotonic depolarization of the surrounding cells lead-

ing to opening of voltage dependent calcium channels, it

is much more than a simple comparison of resistive con-

ductances. The results of former studies on the coordination

of contraction and electrical activity in the rat portal vein

have been discussed in Ref. 25. In brief, it can be assumed

that there are multiple coupled pacemaker sites that generate

complex action potentials that then spread along the vessel

wall. However, the degree of synchronization of neighbouring

smooth muscle cells has not been studied systematically yet.

In the present work, we therefore studied the degree of spa-

tial coupling in the subendothelial smooth muscle layer of the

rat portal vein by using a Correlative Network Analysis that
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extends conventional fast confocal microscopy for calcium

imaging by subsequent algorithms for mathematical Signal-

and Network Analysis. Cross correlation of time- or space-

dependent signals is a widely used mathematical algorithm

in signal detection, image processing, and being used in neu-

robiological applications. Even in neuronal networks, such

a technique is used to determine the connectivity of struc-

tures and the delay between signals mostly in event-driven

experiments.33,34 For our best knowledge, this is the first

study which uses consequently multidimensional, spatial, and

temporal cross correlations in spontaneously active smooth

muscle to determine the tissue parameters in terms of signal

damping or amplification.

II. METHODS

Tissue preparation and dye loading: The portal veins

of 23 Wistar rats were dissected and cleaned from fat and

connective tissue. Afterward, they were cut into pieces of

2 × 2 mm size, mounted on a silicon slide, and incubated

with Fluo-3 AM-E 5 µmol/l (Sigma-Aldrich, USA) and non-

cytotoxic detergent (Pluronic P-123®, BASF, Germany) in

Krebs solution at 22 °C in the dark. After 2 h, the mounted

tissue was placed into a special organ bath chamber with a

bottom made of high quality glass at a thickness of 160 µm

with the endothelial side of the preparation faced down-

wards. The temperature was kept at 29 °C by a thermostat

(Temperature Controller TC-344B, Warner Instrument Cor-

poration) and the bathing chamber was perfused with Krebs

solution continuously supplied with carbogen gas (95% O2,

5% CO2). In the course of the experiments, noradrenaline

(Sigma-Aldrich, USA) was added at a concentration of 1 up

to 10 µM. Microscopy: A confocal laser microscope (Eclipse

TE 2000-S, Nikon Instruments Inc.) with an integrated scan-

ning unit (CSU-10, Yokogawa) was used for image acquisi-

tion via an immersion oil object lens with a magnification

factor of 60. An Argon laser (643 Ion Laser, CVI Melles

Griot) was used for excitation at 488 nm. An image of the

scanned area was gained each 500 ms and the processed

with UltraView (Windows-based) software by PerkinElmer.

Figure 1 gives a schematic overview of the experimental

setup.

A. Measurements

After 20 min of settling and equilibration in the chamber,

the optical plane was positioned in the second subendothelial

cell layer. Recordings of fluorescence emission were made at

intervals of 10 min in an area of 120 × 160 µm with a reso-

lution of 1344 × 1024 dots for 120 s. During these 120 s, one

image was generated every 500 ms.

B. Data processing

Areas of interest were defined in the acquired image

series, consisting of a central reference area surrounded by

8 central and 8 peripheral areas at horizontal and vertical dis-

tances of 2 and 25 µm, respectively, as shown in Fig. 2(a). The

local fluorescence values measured in the series of 240 images

of one recording were transformed to give the time course of

FIG. 1. Setup and tissue preparation for Correlative Network Analysis. The

portal vein is split longitudinally and cut into pieces of 2 × 2 mm which are

then mounted onto a silicon block and placed in a measuring chamber for con-

focal microscopy superfused with physiological salt solution. The tissue bath

has a volume of 2 ml and is thermally controlled by the supplying solution

and a thermosensor placed near the preparation.

relative fluorescence intensity (It) at the previously defined

areas. Correlative Network Analysis: This method uses the

myogenic activity of portal vein smooth muscle with the cor-

responding periods of excitation and rest. During excitation,

the intracellular calcium levels are high when compared with

resting periods.

If this signal is of high regularity and periodicity, the

degree of correlation of the signal x with signal y (each from

a different location) as a function of their lag (when signal x

follows the course of y) or lead (when signal x anticipates y)

interval τ is given by the cross-correlation function (1) as a

dependent variable of τ. The minimum distance of τ is given

by the time duration of each frame—and was chosen here as

500 ms.

�xy (τ) = lim
T→∞

1

2T

∫ T

−T

[x (t) − x̄] × [y (t + τ) − ȳ] dt. (1)

Division of (1) by the square root of the product of the auto-

correlations of x and y gives the normalized cross-correlation

function (2):

�̂xy (τ) =
�xy (τ)

√

�xx (τ) × �yy (τ)
. (2)

From pairs of calcium signals from the center region of inter-

est and all other regions at distances of 2 µm and 25 µm,

cross correlations were calculated as shown in Fig. 2(a)

using Microsoft Excel with the WinStat extension (R.K.

Fitch, Germany, 2006). The algorithm used by the software

subtracted means from both signals prior to calculating nor-

malized correlation coefficients. Values for cross correlation
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FIG. 2. Areas of interest and schema. (a) For cellular coupling, fluorescence signals are measured in the regions numbered from 1 to 18 and correlated to the

signal from the central region “c.” (b) Total scan of calcium signals in the vascular wall. Since oscillation frequency is in the range of 0.05–0.1 Hz (typical minute-

rhythm) and signal propagation velocity in x- or y-plane is low, all the cells of this scan seem to oscillate in the same phase. To investigate cellular coupling,

regions of interest defined for the recording of calcium-dependent fluorescence signals in rat portal vein using confocal microscopy is shown schematically.

were calculated with four decimals. Data are expressed as

mean ± SEM. P-values were calculated using a paired t-test

(two sided).

Since the cross correlation between two signals is not

dependent on absolute values of the detected signals (i.e., cal-

cium signals), the cross correlation equals 1 if signals from

two distinct regions are perfectly in-phase (auto-correlation);

if they have a phase-shift of 180°, the scaled cross correlation

equals −1.

For periodic signals, when � is plotted against τ, the

value of � gives peaks at the specific lag or lead interval

τxy of the signals and other peaks for multiples of the signal

period duration T added or subtracted from τxy. Therefore, it

is possible to determine the degree of similarity between cal-

cium signals from different regions of the tissue, the period

length and frequency of the calcium oscillations, the time

lag between signals (phase shift) at different given distances

and thus the velocity of calcium signal, and finally, spa-

tial differences in the signal-to-noise ratio. With increasing

noise, the second and third order maxima and minima of �

will be strongly reduced. In the continuous layer of excited

smooth muscle cells, the detected calcium signals can be mea-

sured continuously, indicating that the cells are functionally

connected to each other. Furthermore, it is a well-accepted

fact that between smooth muscle cells, the electrical cellu-

lar activity propagates but the parameters of coupling are not

yet unequivocally determined (Table I). Being aware that a

correlation is not an analytic proof of a direct physical con-

nection, we use the term of functional network analysis in this

context.

III. RESULTS

Confocal microscopy of portal vein: After mounting

the preparation on the silicone block and placing it in the

organ bath, an appropriate z-plane was selected for confocal

imaging. Figure 2(b) shows a typical example of such a

preparation. The smooth muscle cells are vertically orientated

in this picture. Some of the regions which are yellow/red col-

ored, indicating higher levels of intracellular calcium, show

blotchy areas of calcium accumulation. During the first hour

of warming-up, the calcium signal started to change with time

and low amplitude oscillations of the signal were observed

[Figs. 3(a) and 3(b)].

These wavelike oscillations of fluorescence could be

observed for more than 120 min in all preparations. The

observed frequency of steady calcium oscillations was 1–2 per

minute. Figure 3(a) gives an example of signals from two dif-

ferent regions of interest, namely, those of the center field “C”

and the region “4,” lying 20 µm apart in the transversal plane

of the tissue. Especially, the center field “C” was chosen to be

placed outside the areas where the calcium signal exceeded

the normal level. The calcium signal typically declined dur-

ing the oscillation. This damping was dependent on the laser

intensity and due to bleaching of the dye. From the record-

ings in Fig. 3(a), one can roughly obtain that for both regions

the calcium intensity signal is going up and down simulta-

neously, suggesting that they are in-phase-signals. A more

sophisticated method of analysis was performed by applying

the temporal cross-correlation function (�) on these irregular

intensity-time plots.

The spontaneously occurring calcium oscillations had

time courses with a high degree of similarity among one

another. As can be seen in Fig. 3(a), the cross-correlation func-

tion of signals from the included regions has its maximum

value at a lag near to zero seconds. This indicates that the

temporal offset between the signals observed 20 µm apart in

the horizontal direction (center region “C” vs. region 4) was

in or below the range of the temporal resolution of the image

acquisition. Furthermore, the scaled cross correlation between



106311-5 R. Patejdl and T. Noack Chaos 28, 106311 (2018)

FIG. 3. Time course of the calcium signals and processed cross correlation. (a) Fluorescence signals from the central region “c” and a peripheral region “4.”

The according cross correlation has a maximum at the time lag τ near zero. (b) Fluorescence signals from a region being 2 µm in vertical position (field 12) to

the central region “c” and their cross correlation which has a similar maximum at τ = 0 (time lag) but smaller maxima of first order (peaks left and right to the

center peak) than in Fig. 3(a).

these signals was close to 0.9, a very high value of correlation.

In the example of Fig. 3(b), the center signal was cross cor-

related with the temporal signal being only 2 µm apart in the

longitudinal direction of the cell orientation. The scaled cross

correlation had its maximum also close to 0.8 and close to a

tau of 0. The maxima of the second order were smaller than

those of Fig. 3(a). This fact indicates that, in addition to the

periodic calcium signal, a stochastic noise signal was detected

which must have been larger in Fig. 3(b) than in Fig. 3(a). In

the following, the first maxima of the scaled cross correla-

tion and their individual τ (time when the maxima occurred)

were measured subsequently at four positions by shifting the

“frame of interest” [Fig. 2(a)] in steps of 2 µm into the diag-

onal direction. This procedure of data evaluation was chosen

to reduce noise from individual measurements.

Using these algorithms, it was possible to estimate the

functional coupling in spontaneous active, vascular smooth

muscle. The amplitudes of the maximum values of � from

the regions of interest designated in Fig. 2(a) were plotted

against their spatial distances and directions. An example of

the results is shown in Fig. 4(a).

The maximum values of � from regions 2 µm apart from

the center region “C” were higher than those from regions of

interest 20 µm or 25 µm apart from the center region “C,”

indicating a spatial “damping” of the signal. Moreover, the

functional damping was relatively large during the first 2 µm

(91.2%, n = 16, SEM = 2%) and was less expressed from 2

to 20 µm (84.8%, n = 16, SEM = 3.7%). As can be obtained

from the graph in Fig. 4(a), functional propagation in transver-

sal and longitudinal directions was not significantly different

from each other (p > 0.1; n = 16).

When noradrenaline (NA) was added to the bathing solu-

tion, the calcium signals became larger and the part of the

oscillating amplitude increased. However, after increasing the

bath concentration of NA above 3 µM, the oscillatory compo-

nent of the calcium signal decreased and remained on a higher

level afterward. The functional coupling of the signals under

NA was calculated using the same procedures as described

above. The set of data was then condensed and is presented in

Fig. 4(b). Compared to the control conditions, the functional

coupling was increased at both 2 µm and 20/25 µm distances.

Such an improvement is due to a more regular spontaneous

FIG. 4. Example for functional spatial coupling under normal conditions and noradrenaline stimulation. (a) Spatial coupling of calcium waves in rat portal vein:

control conditions. z axis: coupling in per cent; x-and y-axes: distance of measured regions from central region. (b) Spatial coupling of calcium waves in rat

portal vein: effects of noradrenaline. z axis: coupling in per cent; x- and y-axes: distance of measured regions from central region. Each point is the mean of four

samples. For clarity, different shading of the bars was used (central—dark; short distance—medium; and longer distance—light).
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FIG. 5. Influence of sample field size and noradrenaline (NA) on signal similarity. The dashed line represents expected values at theoretical conditions of noise-

free homogeneity and complete synchronicity of regions at equal distances from the central region. The points in this figure are obtained by averaging three

signals from sites of equal distance in “composite fields.” Points lying above the dashed line represent values increased by increasing field size by averaging

due to improved signal-to-noise ratio. Points lying below the level of the dashed line can only occur when there is phase drift and reduced synchronization of

signals from fields at equal distance to the central region. Coupling values obtained from single field calculations compared to those from composite fields. (a)

Results for composite fields formed from single fields 2 µm apart from each other. (b) Results for composite fields formed from single fields 25 µm apart from

each other.

activity and a smaller amount of irregular and non-periodic

calcium events.

When the NA concentration was further increased to

10 µM, the functional coupling virtually decreased. Since

cross correlation is vitally dependent on the presence of cyclic

oscillations, a change of frequency or reduction of the oscil-

lating part of the signal will virtually decrease the functional

coupling. Choosing an appropriate size of the regions of

interest is important for stability and noise reduction during

network-analysis. If the fields were chosen larger than 10 µm

in diameter, the chance to detect a mixed area (in phase and

180° turned phase, see above) became significantly larger than

in situations when a circle area of interest with a diameter of

only 2 µm was used. To overcome this problem and to further

reduce noise, three raw signals from single fields at the same

plane and distance to the each other were summed up, nor-

malized, and cross correlated as “composite fields” [Figs. 5(a)

and 5(b)].

In situations of zero noise and without any phase differ-

ence, there would be no difference between cross-correlation

values from single and “composite fields” which then would

exactly cover the dashed lines shown in Figs. 5(a) and 5(b).

Data points above this line indicate higher cross-correlation

maxima caused by an improved signal to noise ratio. Such

a reduction of noise to estimate the coupling properties in

smooth muscle tissue can be well performed on the “shorter”

distances of 2 µm [Fig. 5(a)] and on the longer distances of

25 µm [Fig. 5(b)].

The ambiguous effects of NA on coupling were also

seen when single and composite field values were com-

pared: whereas the formation of composite fields for cross

correlation gave improved values for coupling under control

conditions in all the experiments, adding NA to the solution

produced both increased and decreased coupling in differ-

ent experiments [Figs. 5(a) and 5(b)] due to NA-induced

heterogeneity of calcium oscillations.

IV. DISCUSSION

In this paper, we have described the measurement of

functional cell to cell coupling in an intact portal vein that

shows spontaneous activity as it is also present in small arter-

ies and some venous tissues. Its typical minute-rhythm is very

sensitive in amplitude and frequency and dies out frequently

during in vitro experiments. It can be increased in ampli-

tude and frequency to a “tetanic tone” under stimulation with

the sympathetic agonist noradrenaline or during stimulation

with high potassium solution. Tone and phasic activity depend

on intercellular propagation and regeneration of excitation.

For determination of functional cell to cell coupling, it is of

vital importance that this minute rhythm is present and stable;

otherwise, a cross correlation would not make any sense.

The propagation of rhythmical excitation involves a vari-

ety of biophysical mechanisms and cellular structures, which

have been the subject of a number of investigations, includ-

ing measurements of cell-to-cell coupling23 or dye injection.35

Furthermore, generation and propagation of electrical cellular

activity is difficult to describe in a mathematical and physi-

ological way to give a clear picture of the propagation yet,

since the determination of cell-to-cell coupling is not a simple

ohmic behavior.25 It is much more the functional character

of coupling that has to be determined, since it necessarily

includes electrotonic conduction of excitation and reaching

the threshold of the L-type calcium channel system (or other

voltage dependent current components).36 The aim of this

study was to determine tissue and cellular properties without

disturbing the cellular syncytial tissue properties. From organ

bath experiments, it is known that the activation of spon-

taneous activity is often non-gradual; it is either present or

absent and from a certain level, small depolarizations rather

suddenly evoke spontaneous activity. Such a behavior can be

explained by a positive feedback mechanism that is activated

when the threshold is reached and which is known as the “all
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FIG. 6. Example of a signal from a dis-

tinct sample region showing antiphase

behavior in relation to the circumja-

cent vascular smooth cells. Despite the

only modest signal-to-noise ratio, the

antiphase character is clearly depicted in

the raw signal from region “5” when

compared to that from the central region

“C.” In accordance with both, the

antiphase character and the low signal

power, the cross correlation on the right

side of the figure has a negative first

order peak (see arrow) and significantly

reduced second order maxima.

or nothing” mechanism of excitation in nervous tissues. Such

a mechanism is strongly dependent on the positive feedback

and the circuit’s forward amplification. In the term of exci-

tation of a whole tissue, this feedback and amplification are

due to the coupling between the cells and the size of de- and

repolarizing currents.36 If these factors are large, the “func-

tional reserve” of cellular coupling is also large and small

changes of excitation parameters (e.g., inward currents or

potassium channel modulation) will not dramatically change

the amplitude or frequency of the smooth muscle tone.

A. Effects of noradrenaline

Noradrenaline, the transmitter of the sympathetic ner-

vous system, increases tone in various vascular beds via alpha

receptor binding. This increase of tone is often accompa-

nied by an increase of the intracellular calcium level. Since

the vessels contract along the whole circumferential wall, all

smooth muscle cells are more or less involved in this acti-

vation process. It has been shown in rat mesenteric arteries

that the intracellular calcium becomes more homogenous in

different smooth muscle cells with increasing concentration

of noradrenaline.37 The underlying mechanism is a better

electrotonic coupling via gap junctions which can be mod-

ulated in their coupling behavior by various hormones or

transmitters. On a longer time scale, an improved cell-to-

cell coupling can be maintained by a higher expression of

connexin proteins.23 Such an improvement of cell-to-cell cou-

pling by noradrenaline seems, however, not to be the only

mechanism of excitation and propagation in spontaneously

active vascular smooth muscle. In rat portal vein, during nora-

drenaline action, phases of activity fuse more and more and

at high concentrations, they fuse completely and contraction

does not reach the baseline like it can be observed in pure

phasically active smooth muscle (i.e., gastric antrum). Up to

a certain concentration (1–3 µM), portal vein reacts to NA

increase with an improved synchronization of the activity ker-

nels, an increased amplitude of their calcium oscillations, and

an increase of coupling between these kernels so that it might

look like as the contraction of a “single unit” preparation.20,21

In some of our measurements, we observed a slight

decrease of cellular coupling, when a NA concentration was

used up to 10 µM. This virtual contradiction is due to the fact

that the intrinsic, endogenous oscillatory behavior of the tis-

sue was used to perform the Correlative Network Analysis.

When noradrenaline causes tetanic contractions as described

above, it does so by increasing the intracellular calcium con-

centration to a plateau-level. This, in turn, would decrease the

overall-amplitude of calcium oscillations of single kernels.

The resulting cross-correlation function would, however, not

be influenced by this process, since it uses an inherent nor-

malization procedure. Nevertheless, if the phasic activity is

not changed homogeneously so that in some kernels distinct

activations fuse to a single one in some kernels, whereas in

others, they remain separated, an apparent inhomogeneity of

the oscillation frequency may occur that then, in turn, would

decrease the cross-correlation maximum. As can be shown

with model simulations, a temporal change of the frequency

by only 10% can result in a reduced functional coupling of up

to 50% (depending on the duration of the observed interval

and the duration of the apparent frequency change).

B. Spatial and temporal decline of the cross-correlated
signal

As stated above, the maximum of the cross-correlated

signals declines with distance from each center region. Such

a behavior is due to other excitatory or inhibitory signals

which influence the determined signal with increasing dis-

tance. Stronger coordination between the cells and the signals

lead to a better all-over functional coupling. Beside this

decrease of the maximal spatial cross correlation, the max-

ima of the second or third order tend to decrease more or

less faster [cf. Figs. 3(a) and 3(b), right side]. The reason

for the decrease of the maxima of higher order to a differ-

ent extend is due to a different signal to noise ratio of the

detected signals; noise sources may be due to the dye, the
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coupling noise, and the noise induced by fluid movement.

The wanted signal is the periodically changing calcium signal

caused by periodical excitation. Although cross correlation

of time- or space-dependent signals is a widely used mathe-

matical algorithm in biological sciences, this paper is for our

best knowledge the first which consequently uses multidimen-

sional, spatial, and temporal cross correlation of intracellular

calcium signals in spontaneous active smooth muscle tissues

to determine the tissue parameters in terms of signal damping

or amplification.

C. Perspectives

Apart from the specific coupling behavior under NA is

the fact that changes of cellular coupling at the threshold

can be well detected by the use of this method and tech-

nique. As stated above, we sometimes observed 180° phase

shifted calcium signals only some µm apart from spots which

were in-phase to the smooth muscle tissue as the whole

(Fig. 6).

Such 180° phase shifts were observed when regions

of interests were located in areas displaying structural fea-

tures distinct from the homogenous smooth muscle cell layer.

In gastrointestinal preparations, phase shifted signals were

prominent in areas containing small blood vessels. From

these observations, it might be deduced that also in the

vascular wall, signal inverting cells must exist apart from

endothelial and smooth muscle cells. Maybe that the struc-

tural difference between venous, arterial, and gastric smooth

muscle is the numeric occurrence of ICCs and the grade

of coupling.1–4 The physiological role of such anti-phase

cells has yet to be determined. Converse calcium signals

are known to occur in smooth muscle and endothelial cells

during acetylcholine induced endothelial activation.38 They

have also been reported to occur spontaneously in smooth

muscle and endothelial cells.39 By now, it only can be spec-

ulated that the phenomenon observed in our preparations in

the absence of external agonists might contribute to adapt

vascular resistance by lowering calcium in smooth muscle

cells of intramural resistance vessels to compensate for lumi-

nal compression occurring in periods of increased intramural

pressure caused by extravascular smooth muscle contraction.

This, however, will be the subject of further studies that hope-

fully will help to integrate the described phenomena into

existing theories of pacemaker activity and signal propaga-

tion in the vascular wall and lead to a better understanding

of the temporal patterns of intercellular communication in

general.2,40–42
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Phenytoin inhibits contractions of rat gastrointestinal and

portal vein smooth muscle by inhibiting calcium entry
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Key Messages

• This study investigated the effects of phenytoin, a widely used anticonvulsant drug, on gastrointestinal tissue

function using an in vitro model of smooth muscle preparations from rats by combining registrations of

pharmacological effects on mechanical contractions, electric field potentials, and dynamic intravital fluores-

cence microscopy.

• Strong inhibitory effects of phenytoin on the spontaneous and stimulated contractile activity of smooth

muscles from both upper and lower gastrointestinal tract were observed.

• The inhibitory effects of phenytoin were not related to its sodium channel blocking activity, but are rather

caused by an inhibition of calcium entry through voltage dependent L-type calcium channels.

• The results of this study should raise vigilance to gastrointestinal complications in patients treated with

phenytoin.

Abstract

Background Phenytoin is widely used as a second-line

treatment for status epilepticus. Besides its well-

known cardiac pro-arrhythmogenicity, side effects on

other organ systems have received less attention.

Methods This study investigates the effects of pheny-

toin on gastrointestinal tissue function using an

in vitro model of smooth muscle preparations from

rats by combining registrations of pharmacological

effects on mechanical contractions, electric field

potentials, and dynamic intravital fluorescence micro-

scopy. Key Results When added to the bathing solu-

tion at a concentration of 30 lM, phenytoin reduced

the frequency of spontaneous activity significantly in

antrum and portal vein preparations to 72.2 � 36.5%

(p = 0.022) and 80.7 � 24.4% (p = 0.037) of control

values, respectively. At a concentration of 100 lM,

the height of spontaneous contractions declined to

9.8 � 19.6% (p = 0.005) (antrum), 15.7 � 28.2%

(p = 0.004) (portal vein), and 31.8 � 31.3% (p =

0.005) (colon) in comparison to the control conditions

before the application of phenytoin. Depolarization

triggered increases in calcium dependent fluorescence

signals were reduced by 52.8 � 39.1% (p = 0.012) The

inhibition of spontaneous activity caused by

phenytoin was reduced in the presence of the L-type

calcium channel agonist BAY K8644(-). Conclusions

& Inferences Phenytoin exerts strong inhibitory

effects on the spontaneous and stimulated contractile

activity of smooth muscles from both the upper and

lower gastrointestinal tract. The mechanism underly-

ing this effect is not related to the sodium channel

blocking activity of phenytoin, but is rather caused by

an inhibition of calcium entry through voltage depen-

dent L-type calcium channels. The results of this

study should raise vigilance to gastrointestinal com-

plications in patients treated with phenytoin.

Keywords BAYK 8644, intestinal smooth muscle,

phenytoin, status epilepticus, vascular smooth mus-

cle.
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Abbreviations: ACh, acetylcholine; CAP, compound

action potential; ECR, electromechanical coupling

ratio; EFS, electrical field stimulation; PB, preparation

buffer; TTX, tetrodotoxin.

INTRODUCTION

Statusepilepticusmost frequentlyoccurs inchildrenand

in the elderly. Especially within the latter, prognosis of

the affected patients is often poor due to priormultimor-

bidity, delayeddiagnosis, andage-specificcomplications

of treatment. The reported incidences of status epilepti-

cus in elderly persons range from 22 to 54 per 100 000

depending on group definition and study, which under-

lines the need for appropriate, knowledge-based treat-

ment strategies in the aging western societies.1–3

Despite the growing number of other available anti-

convulsive drugs, phenytoin is still widely used as an

approved second-line treatment for status epilepticus

that is not responsive to benzodiazepines.4–6 It exerts its

inhibitory effects on neuronal excitability by binding to

and hindering activation of voltage dependent sodium

channels while they are in their inactivated state,

thereby producing a use-dependent type of block.7 Via

the samemechanism, phenytoin acts on cardiac sodium

channels, which is the basis for its historical use as an

antiarrhythmic drug and for its well-known proarrhyth-

mogenic potential. Side effects of phenytoin on other

organ systems have received less attention. Distur-

bances in gastrointestinal motility are known to occur

frequently in patients receiving antiepileptic drugs,

including phenytoin, and in patients in need for critical

care.8,9 Refractory seizures with prolonged losses of

consciousness may cause secondary complications as

pneumonia that may than lead to critical care measures

as mechanical ventilation and to extensive engagement

of motility-disturbing drugs as catecholamines and

opioids, leading to a further increase in the risk to

develop gastrointestinal hypomotility.10 The resulting

intolerance to enteral feeding contributes to the poor

prognosis of the affected patients.11,12

This study investigates the effects of phenytoin

on gastrointestinal function using an in vitro model

of smooth muscle preparations from rats. As the

functions of upper and lower parts of the alimentary

tract, namely gastric emptying and colonic propulsion,

are most frequently affected, it was chosen to study

preparations from gastric antrum, gastric fundus, and

the left colon flexure, reflecting the phasic and tonic

component of the gastric motility and colonic func-

tion. Furthermore, effects on the motor patterns of the

hepatic portal vein were studied, as changes in the

intestinal hemodynamics may bring forward gastroin-

testinal failure during critical illness.

MATERIALS AND METHODS

Preparation of tissues and tissue bath
experiments

Twenty-nine Wistar rats of both sexes were killed by decapitation
after anesthesia according to German national law and the

regulations and ethical standards of the University of Rostock.

The intact stomach, the portal vein, and part of the distal

colon (1 cm distal to the left flexure) were excised, transferred to

cooled preparation buffer (PB), and stored at 4 °C. The tissues

were then pinned to Sylgard dishes and fat and connective

tissues were removed by sharp dissection. Longitudinal smooth

muscle strips of an in situ length of 5–10 mm were excised from

antrum, fundus, and colon without opening the stomach. The

mucosa of the colon preparations was carefully removed by

blunt dissection. Portal veins were split longitudinally. All types

of tissue preparations were mounted in an organ bath, each filled

with 20 mL of Krebs solution and equilibrated with 95% O2 and

5% CO2 at a temperature of 36 °C and a pH of 7.4. They were

then connected to mechanoelectrical transducers coupled to a

bridge amplifier (both World Precision Instruments, Sarasota, FL,

USA), digitized by a PowerLab8/32 at 100/s, digitally low-pass

filtered with 0.5 Hz (ADinstruments, Bella Vista, Australia), and
then stored for further processing on a conventional computer

using LabCart 5 (ADinstruments) and MSExcel (Microsoft,

Redmond, WA, USA). Prior to the initiation of experiments,

the tissues were adjusted to a prestrain of 3 mN and left in the

bathing solution for at least 1 h to ensure sufficient equilibra-

tion time for developing their specific motor pattern.

In time control experiments, we could ensure that the specific

pattern of activity was stable over at least 6 h under the stated

conditions, with minor shifts in frequency and amplitude. To

fully compensate for the time-dependent variance, the frequency

effects and the effects of pharmacological or other interventions

on the amplitude of spontaneous contractions measured in this

study were always related to the situation immediately before the

intervention. All contractions evoked by elevations of [K+] or

adding ACh in the course of an experiment were related to a

standard control contraction evoked by these substances in the

same experiment prior to any other substance application unless
stated otherwise.

Simultaneous registration of electrical and
mechanical activity

In a small series of experiments, electrical and mechanical

activity of portal veins was measured simultaneously. The portal

vein was connected to a force transducer and placed in a plastic

capillary of 2.5 mm width that was continuously perfused with

Krebs solution from a reservoir. The spontaneously occurring

contractions of portal vein smooth muscle are preceded and

accompanied by compound action potentials (CAP) that have been
described in detail by.13 They consist of a depolarization with a

duration of several seconds with superimposed fast spikes of only

50 ms duration. These CAP were measured as extracellular

electric field potentials using ring-shaped platinum electrodes

fixed on the inside of a small tube that is continuously perfused

with Krebs solution and kept at a constant temperature.

The small tube with the fixed electrodes is named ‘perfused
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capillary’. The portal vein is placed inside this capillary. One end

is fixed to the apparatus and the other is connected to an isometric

force transducer of the same type that was used for the conven-
tional organ bath experiments. Electrical signals were amplified,

filtered with a 10–65 Hz bandpass, digitized at 1000/s (Ani-

malBioAmp, PowerLab4/32; ADinstruments) and then stored as

stated above. Mechanical force was recorded simultaneously, low-

pass filtered at 1 Hz and then stored. Substances were applied

directly into the organ bath or into the reservoir of the capillary.

Electric field stimulation

Strips of the fundus muscle were mounted on special holders with

inserted platinum wires in the same organ baths as described

above. The wires had contact to the bathing medium in close

proximity to the position where the smooth muscle tissue was
connected to the holder. Stimulus current was generated by a

Stimulator (Grass Technologies, Warwick, RI, USA) that was

lined to the wires in the holder in a way that ensured that

alternating electrode polarities could produce a homogeneous

depolarization of the tissue piece. Stimuli were applied subse-

quently with frequencies of 5, 10 and 20 Hz over 10 s. Each single

pulse had an amplitude of 80 V and a duration of 1 ms.

Intravital fluorescence microscopy

To test for changes in intracellular calcium signals caused by

phenytoin, portal vein preparations were loaded with the ratio-

metric dye Fura-2-AM at room temperature for 2 h in the presence

of 0.1% Pluronic-F127. Afterward, preparations were mounted in
an organ bat with a thin bottom suitable for fluorescence

microscopy. Excitation was alternately applied at 340 and

380 nm and emission at 510 nm was recorded using a Nikon

200 diaphot microscope (Nikon, Tokyo, Japan) photomultiplier

combined with a 714-PTI-photomultiplier (PTI, Edison, NJ, USA).

The signal was recorded and stored for further processing using

the FeliX 1.1 – software (PTI, Edison, NJ, USA). Increases in

intracellular calcium are reflected by an increase in the 510-nm

emission triggered by the excitation of Fura-2 at 340 nm and a

decrease in the 510-nm emission triggered by the excitation at

380 nm. The ratio of the emission caused by 340 and 380 nm

excitation is calculated instantaneously to give an intuitive

measure of changes in intracellular calcium concentration.

Drugs and solutions

The solutions used had the following compositions: PB: NaCl

145 mM, KCl 4.5 mM, NaH2PO4 1.4 mM, MgSO4 1 mM CaCl2,

Ethylenediaminetetraacetic acid (EDTA) 0.025 mM, 4-(2-hydro-

xyethyl)-1-piperazineethanesulfonic acid (HEPES) 5 mM. Krebs

solution: NaCl 112 mM, NaHCO3 25 mM, KH2PO4 1.2 mM, KCl

4.7 mM, MgCl2 1.2 mM, CaCl2 2.5 mM, Glucose 11.5 mM.

Potassium-rich, calcium-free Krebs solution: KCl 116.7 mM,

NaHCO3 25 mM, KH2PO4 1.2 mM, MgCl2 3.7 mM, Glucose

11.5 mM. The pH was 7.4 at 36.6 °C with continuous carbogen

gas bubbling during all experiments (95% O2, 5% CO2). All salts

were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Fura-2-AM and Pluronic F-127 were purchased from Life Tech-

nologies (Carlsbad, CA, USA). Effects of phenytoin (Desitin,

Hamburg,Germany), tetrodotoxin (TTX;Tocris Bioscience, Bristol,

UK), lidocaine (Mibe, Sandersdorf-Brehna, Germany) and BAY
K8644(-) (Bayer, Leverkusen, Germany) were tested. Amplitudes of

contractions evoked by increasing the potassium concentration to

40 mM or by adding 10 lM acetylcholine (ACh; Sigma-Aldrich)

were normalized against amplitude of contractions evoked by
70 mM potassium unless stated otherwise.

Data presentation and statistics

Values are given as mean values � standard deviation of mean.

Error bars indicate standard error. The data were analyzed using

SPSS (SPSS Inc. Chicago, IL, USA). For statistical testing, the

Wilcoxon test for dependent samples and the Mann–Whitney test

for independent samples were applied. All tests of significance

were performed at a = 0.05.

RESULTS

Spontaneous activity under control conditions

We investigated the changes in rhythm and force

development of antrum, colon, and portal vein prepara-

tions (n = 17 for each). Under standard conditions

(36.6 °C, pH7.4), the tissue preparations developed their

organ-specific pattern of activity which is shown in the

leftmost part of thepanel Fig. 1A–Cand in theFig. S1. In

gastric antrum, it consists of regular, phasic oscillations

of tone (Fig. 1A, Fig. S1A). In contrast, portal veins show

periods of quiescencewith aconstant basal tone (Fig. 1B,

Fig. S1B). The frequencieswerewithin a range of 3–5 per

min for gastric antrum and portal veins preparations,

respectively. Strips of gastric fundus smooth muscle

exhibited a purely tonic contraction without relevant

oscillations of force in the absence of external stimu-

lants. Preparations of colonic smooth muscle exhibited

small, irregular contractions of high frequency (>10/

min), onwhich larger ‘giant’ contractionswith a several-

fold higher magnitude and duration imposed at a

frequency of 1–2 per min (Fig. 11C, Fig. S1C).

Effects of phenytoin on frequency of spontaneous
activity

When added to the bathing solution at a concentration

of 30 lM, phenytoin changed the pattern of sponta-

neous activity in all tissues, as can be seen in

representative recordings (Fig. 1A–C). The frequency

of spontaneous activity was reduced significantly in

antrum and portal vein preparations to 72.2 � 36.5%

(p = 0.022) and 80.7 � 24.4% (p = 0.037) of control

values, respectively (Fig. 1D). The effect was dose

dependent with a further reduction when phenytoin

was raised to 100 lM (23.1 � 46.1% and 30.2 � 39.0%

of control), as can also be seen in the representative

traces from Fig. 1A–C. Colonic preparations responded

to phenytoin with a decrease in the amplitude of giant
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contractions, as will be depicted later in greater detail.

As long as the amplitude was sufficient to produce

clearly identifiable contraction events, the frequency of

these events persisted largely unchanged over the

whole range of tested concentrations. At concentra-

tions of 100 lM, however, contractile activity was

completely lost in 4 of the 14 tested preparations, thus

formally giving a frequency of zero. Statistically, this

behavior is reflected by a small reduction in the

arithmetic mean value of frequency, which did not

reach significance due to the very high standard

deviation (85.0 � 71.8%, p = 0.798). The small base-

line contractions of colonic strips occurring in between

the giant contractions were likewise not changed by

phenytoin (Fig. S2).

The onset of the action of phenytoin was similar

between the different tissues. The maximum effect

was attained within less than 5 min independently

from the chosen concentration. The inhibitory effect

was fully reversible after washout of phenytoin within

25 min in all tissues. Five of the nine antrum prepa-

rations showed full recovery (defined as more than

85% of control) within 5–10 min, whereas the remain-

ing four fully recovered within 20 min. In few

instances, colonic smooth muscle showed a persistent

inhibition of activity which could be usually overcome

by a short and transient stimulation with 1 lM ACh.

Effects of phenytoin on the amplitude of
spontaneous contractions

Phenytoin significantly diminished the height of spon-

taneously occurring contractions in antrum, colon, and

portal vein preparations (Fig. 1E) at concentrations

greater than or equal to 30 lM in a dose dependent

manner. At a concentration of 100 lM, the mean

contraction amplitude declined to 9.8 � 19.6%

(p = 0.005) (antrum), 15.7 � 28.2% (p = 0.004) (portal

vein), and 31.8 � 31.3% (p = 0.005 (colon) in compar-

ison to the control values obtained in the absence of

phenytoin. The duration, slope, and decline of single

contractions remained largely unchanged. With respect

to the time of effect onset after application of phenytoin,

there was no obvious difference to the dynamics of

effects on contraction frequency. In general, the recov-

ery of the full height of contractions took longer than

the recovery of frequency and was complete after

15 min in more than 80% of preparations. Especially

A B C

D E

Figure 1 (A–C) Representative recording traces of a spontaneously active smooth muscle preparations exposed to increasing concentrations of up to

30 lM (upper part) and, finally, a final step from 30 to 100 lM phenytoin. The panel figures show (A) longitudinal strip of gastric antrum; (B)

longitudinal strip of smooth muscle from the portal vein; (C) smooth muscle from the descending colon. Changes in phenytoin concentration are

indicated by arrows. (D and E) Effects of increasing concentrations of phenytoin on frequency (D) and contraction amplitude (E) of spontaneous

contractions of gastric antrum, portal vein, and colon, given as percentage of control values measured prior to adding phenytoin to the bathing

solution. Error bars indicate SEM, *p < 0.05, **p < 0.01; antrum: n = 10; portal vein n = 11; colon: n = 13).
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in six of nine antrum preparations, a transient increase

in contraction height above control levels could be

observed in theminutes after thewashout of phenytoin.

The high-frequency and low-amplitude component of

colonic activity was reduced less (to 87.7 � 32.6% of

control) than the giant contractions of the same tissue.

Effects of phenytoin on high-potassium
contractions

Elevations of [K+] to 40 mM caused contractions with

reproducible amplitude and shape under control condi-

tions. Characteristic control responses of all tissues

consisted of an increase in the force followed by a slow

and incomplete relaxation. Phenytoin diminished the

slope and amplitude of these contractions in all tissues

(Fig. 2B). The amplitude reduction was significant at

concentrations greater than or equal to 30 lM in gastric

fundus preparations and at a concentration of 100 lM in

preparations fromgastricantrum,colon,andportalvein. In

comparison to control, phenytoin 100 lM reduced high-

[K+] contraction on an average to 61.7 � 15.5% (p = 0.01)

in antrum preparations, to 31.0 � 36.9% (p = 0.03) in

portal vein preparations, to 61.8 � 32.3% (p = 0.012)

in colon preparations, and to 24.3 � 17.7% (p < 0.001) in

fundus preparations. Inhibitory force of phenytoin was

fundus > portal vein > colon > antrum. Fig. 2A gives a

representative recordingof the inhibitionphenytoinexerts

on high-[K+] evoked contractions.

Effects of phenytoin on contractions elicited by
ACh

Contractions evoked by 10 lM ACh were markedly

reduced in the presence of phenytoin 100 lM

(Fig. 3B). Compared to the control conditions, maxi-

mum force was diminished on an average to

59.4 � 33.9% (p = 0.028) (antrum), to 24.5 � 17.1%

(p = 0.018) (portal vein), to 74.0 � 28.9% (p = 0.008)

(colon), and to 63.3 � 30.4% (p = 0.011) (fundus).

Figure 2 Gastric fundus strips were contracted by stepping up the

potassium concentration from control levels to 40 mM. After flushing

with fresh Krebs solution, the preparations showed full relaxation. In

(A), three evoked contractions have been overlayed and adapted to a

common timescale to improve the comparability of the responses. The

quantitative analysis of changes in contraction amplitudes is depicted

in (B). All values are given as percentage of control values measured

prior to adding phenytoin to the bathing solution. Error bars indicate

SEM, *p < 0.05, **p < 0.01; n = 8.

Figure 3 Gastric fundus strips were contracted by adding ACh at a

concentration of 10 lM. After flushing with fresh Krebs solution, the

preparations showed full relaxation. In (A), three evoked contractions

have been overlayed and adapted to a common timescale to improve

the comparability of the responses. The quantitative analysis of

changes in contraction amplitudes is depicted in (B). All values are

given as percentage of control values measured prior to adding

phenytoin to the bathing solution. Error bars indicate SEM, *p < 0.05,

**p < 0.01; n = 8 for all tissues.
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Inhibitory force of phenytoin was strongest with

portal vein whereas antrum, fundus, and colon were

inhibited to an equal extent. Contractions evoked by

KCl were stronger inhibited by phenytoin than

those evoked by ACh. The temporal characteristics

(slope, decline, phasic vs tonic response, time to

onset) of ACh responses were largely unaltered by

phenytoin. The inhibition of ACh evoked contrac-

tions by phenytoin is illustrated by a representative

trace in Fig. 3A.

Effects of phenytoin on enteric neuromuscular
transmission

Electric field stimulation (EFS) produced rather small

but reproducible contractions in smooth muscle prepa-

rations from gastric fundus. Increasing the number of

stimuli applied during the fixed timeframe of stimula-

tion led to more forceful contractions in return. Over

the range of applied stimuli, mechanical responses

were reduced by more than 90% when stimuli were

applied in the presence of 1 lM TTX.

In the presence of 30 lM phenytoin, the response to

10 s of stimulation at 20 Hz was diminished to

68.8 � 43.0% of the response under control condi-

tions, and was further reduced to 30.3 � 20.1% at

100 lM phenytoin. Electric field stimulation-induced

contractions reached 50% of their peak value after

2.9 � 1.1 s in the absence and after 3.6 � 0.9 s in the

presence of 100 lM phenytoin. An overlay of three

contractions obtained by 10 s of stimulation with

20 Hz either under control conditions or in the

presence of two concentrations of phenytoin is shown

in the Fig. S1.

Mechanism of action: voltage dependent sodium
channels

Sodium channel blockade by 1 lM TTX, a concentra-

tion which effectively blocked neuronal activity as

shown during the EFS-experiments, had no effect on

frequency or height of spontaneous contractions in any

of the tissues. Lidocaine (10 lM to 1 mM) failed to

inhibit spontaneous activity as well. In the contrary, it

even exerted excitatory effects on all preparations in

the higher dose ranges tested both with respect to the

spontaneous activity and to the contractions evoked by

high [K+] and ACh.

Mechanism of action: calcium entry

The contractile response to increasing [Ca2+] of fundic

smooth muscle placed in an initially Ca2+-free, K+-rich

Krebs solution was significantly inhibited when

phenytoin was added to the external solution. At the

highest tested [Ca2+] of 25 mM, the force generated in

the presence of 10 lM phenytoin was 53.1 � 11.8%

(p = 0.003) of control, whereas it was 19.0 � 8.0%

(p = 0.007) in the presence of 30 lM phenytoin.

Although [Ca2+] was not increased up to the point

where the force-response of preparations reached sat-

uration, the effect of phenytoin in the tested concen-

tration range can be designated as a rightward shift of

the [Ca2+]-force-response curve (Fig. 4). The amplitude

of contractions produced in the presence of both

phenytoin and supraphysiologic [Ca2+] was comparable

or even higher than that of the contractions elicited by

increasing [K+] transiently to 40 mM in normal Krebs

solution.

Under control conditions, the L-type calcium chan-

nel agonist BAY K8644(-) increased the contraction

amplitude in preparations from antrum, portal vein,

and colon, whereas frequency was unaffected. When

present in the bathing solution at a concentration of

0.3 lM, BAY K8644(-) altered the effects of phenytoin

both on the amplitude and on the frequency of the

contractions for antrum, colon, and portal vein (Fig. 5).

The dose dependent reduction in the amplitudes of

spontaneous contractions produced by phenytoin was

shifted to the right by BAY K8644(-), increasing the

mean IC50 by a factor of 10.5, 4.3, and 3.7 in antrum,

colon, and portal vein, respectively.

Figure 4 Dependency of force development in depolarized fundic

smooth muscle from [Ca2+] in the bathing solution. When the bathing

solution was changed with potassium-rich, calcium-free solution, the

tissues showed full relaxation after remaining calcium was washed

out. With Ca2+ added to the bathing solution, tonic contractions

occurred. The data points shown here were measured under control

conditions and in the presence of 10 or 30 lM phenytoin. The x-axis

represents the negative common logarithm of the tested calcium

concentration in mol/L. All values are given as the percentage of the

value measured with the highest [Ca2+] tested under control

conditions. Error bars indicate SEM; n = 6.
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In the presence of 0.3 lM BAY K8644(-), phenytoin

decreased the frequency of spontaneous contractions in

preparations from gastric antrum, but the concentration

of phenytoin that was needed to achieve a 50% reduc-

tion in frequency was 5.8-fold higher than under the

control conditions. In colon and portal vein, an inver-

sion of the phenytoin effect was observed: Increasing

concentrations of phenytoin led to increases in the

contraction frequency to 110 � 34% (n.s.) (n = 7) or

143 � 13% (p = 0.02) (n = 5) at 30 lM, to 208 � 52%

(p = 0.002) or 176 � 49% (p = 0.025) at 100 lM, and to

469 � 308% (p = 0.007) or 258 � 36% (p = 0.001) at

1 mM in colon and portal vein, respectively.

A representative recording of this effect on a prepa-

ration from colon is shown in the Fig. S2.

To test the effects of phenytoin on calcium entry

more directly, preparations from portal vein were

studied using intravital fluorescence calcium micro-

A B

C
D

E

F

Figure 5 Concentration-dependency of the action of phenytoin in the presence and absence of 0.3 lM BAYK 8644(-). (A, C, and E) It shows changes

frequency in gastric antrum, colon, and portal vein, respectively, whereas (B, D, and F) display effects on the amplitude of spontaneous contractions in

the same order. The x-axis represents the negative common logarithm of the tested phenytoin concentration in mol/L. Effects are depicted as

percentage of values measured under control conditions before any phenytoin was added to the bathing solution. Error bars indicate SEM. The

continuous lines are calculated from Bolzmann equations of the type y = 100 � 100/(1 + EXP(ln[IC50] � ln[phenytoin])/slope) fitted automatically to

the data points using a least square difference algorithm.
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scopy. The change in the ratio of the 340/380 nm-

triggered emission at 510 nm during a tissue activation

by an increase in extracellular potassium to 75 mM

was recorded, and the traces measured subsequently

under control conditions and in the presence 100 lM

phenytoin were compared in seven experiments. Fig. 6

shows an example of such a recording with two

subsequently acquired ratiotraces from one preparation

that were rescaled and superimposed to illustrate the

difference in calcium levels that were caused by the

increased phenytoin concentrations. Over all experi-

ments, phenytoin reduced the potassium-induced flu-

orescence-ratio change significantly by 52.8 � 39.1%

(p = 0.012).

Mechanism of action: electromechanical
coupling

Complex CAPs could be recorded in parallel with the

spontaneous phasic contractions of the portal vein

preparations in all experiments using the perfused

capillary setup (n = 6). Within the CAP, single spikes

could be identified (Fig. 7). The maximum amplitude

of CAP was not changed significantly in the presence

of phenytoin (83.1 � 17.4% of control with 30 lM and

87.3 � 12.4% with 100 lM in the perfusion solution).

Time integrals of mechanical and electrical activity

during single spontaneous contractions were calcu-

lated numerically from the data. To compensate for the

variance of both voltage and force amplitudes between

preparations, a specific electromechanical coupling

ratio (ECR) (force integral per voltage integral) was

defined for each experiment. The effects of adding

phenytoin or BAY K8644(-) were then calculated as

relative changes in this ratio. Using this approach, it

became evident that the ECR declines with rising

concentrations of phenytoin (77.1% of control with

30 lM and 48.1% with 100 lM, n = 5), indicating that

its presence hinders the conversion of membrane

potential depolarization to mechanical force (Fig. 8).

With BAY K8644(-) in the perfusate, the integrated

force of contractions increased more than the inte-

grated electric activity, corresponding to an increase in

ECR. The same effects were observed with increasing

[Ca2+] in the perfusate.

DISCUSSION

Repetitive electrical excitation underlies both the

pathological phenomenon of seizure activity of the

cerebral cortex and the physiological phenomenon of

spontaneous activity throughout the alimentary tract

(for reviews, see Ref. [14–16]). Phenytoin is one of the

most commonly used drugs in the treatment of

epileptic seizures and status epilepticus.

This study demonstrates that phenytoin exerts

strong inhibitory effects on the activity pattern of

preparations from both upper and lower gastrointesti-

nal tract. Furthermore, it shows that phenytoin sup-

presses the function of the portal vein, suggesting an

Figure 6 Ratio of 510 nm-light emission triggered by alternating

excitation with light of 340 and 380 nm wavelength over time. The

recording was made from a portal vein loaded with the ratiometric dye

Fura-2 and kept in an organ bath mounted on the fluorescence

microscope. The external potassium concentration was increased to

75 mM once under control conditions and then, after flushing with

regular Krebs solution and at least 15 min recovery time, in the

presence of 100 lM phenytoin added to the bathing solution.

Figure 7 Typical measurement of extracellular field potentials,

plotted against the left ordinate, and simultaneously measured

contractile force of a portal vein smooth muscle preparation, plotted

against the right ordinate. Electrical discharges form a complex action

potential which causes, and thus precedes the mechanical activation,

whereas mechanical contraction lags behind.
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additional effect on blood drainage from the gastroin-

testinal tract. Neither the effects of anticonvulsants on

the function of intestinal smooth muscle nor their

physiological underlying mechanisms have been thor-

oughly studied by now.

The literature gives only sparse references: In a study

on rabbit small intestine, phenytoin was reported to

reduce tone, amplitude, and frequency of spontaneous

contractions, leading to a complete cessation of activ-

ity at a concentration of 290 lM.17 Very similar

concentrations have been reported to reduce sponta-

neous tone, ACh-induced contractions and electric

activity in the smooth muscle from the guinea-pig

ileum and tenia coli by another group.18 These results

are in accordance with our data from other parts of the

gastrointestinal tract of rats, as we could demonstrate

clear effects at concentrations of 30 lM and a strong

inhibition at 100 lM.

Physiologically, gastrointestinal motility is based

upon the specific endogenous motor patterns of the

different parts of the alimentary canal, which are

modulated by the enteric nervous system via different

neurotransmitters that are released in the vicinity of

interstitial cells of Cajal and smooth muscle cells or by

circulating mediators. Drugs affecting gastrointestinal

motility in vivo can do so by interfering with one or

more components of this complex system.

To find out which components were affected by

phenytoin, spontaneous and stimulated motor activity

was studied. The following conclusions can be drawn

from our experiments:

1 As phenytoin led to a decrease in the frequency of

spontaneous contractions, an interference with the

pacemaker function network can be stated. This

may be due either to a direct inhibition of the

pacemaker currents or due to an inhibition of the

excitatory currents in the cells propagating the

current that serve as amplifiers of the pacemaker

current and only, thereby, enable the spread of

excitation over the tissue and its mechanically

effective involvement in contraction.15,19 Both sce-

narios would, however, lead to different mechanical

activity patterns: A mere reduction in pacemaker

current would lead to a reduction in frequency and,

by impaired recruitment of adjacent tissue, to a

reduction in the amplitude of contractions. If inhi-

bition reached a critical point, this would inevitably

lead to a complete attenuation of spontaneous

contractions. If only the amplification of pacemaker

potentials was impaired, the rate of contractions

would remain unchanged, even though the ampli-

tude of contractions would be reduced. In both

scenarios, at some point in between, it may happen

that single contractions are canceled. The observed

pattern allows the conclusion that the amplification

of pacemaker potentials is hindered in all prepara-

tions, whereas pacemaker currents themselves are

predominantly affected in gastric antrum and portal

vein, but not in the colonic smooth muscle.

2 The inhibition of contractions evoked by high [K+]

gives evidence that not only the pacemaking

process or its propagation is impaired by phenytoin.

In addition, the transformation from membrane

potential depolarization of smooth muscle cells to

force generation obviously is impaired, as the high

[K+] – mediated depolarization of membrane poten-

tial should give a depolarization that is sufficient to

open voltage dependent L-type calcium channels.

This is consistent with the finding that phenytoin

produces a strong shift in the [Ca2+]-response curve

of permanently depolarized fundic smooth muscle.

3 The amplitude of ACh-induced contractions is

affected less than high [K+]-induced contractions.

As it is well-accepted that ACh mediates contrac-

tions in the investigated tissues not only by activat-

ing Ca2+-influx from the extracellular space by

opening voltage-dependent calcium channels, but

also by promoting the release of stored Ca2+, this

finding gives further evidence that phenytoin inhi-

bits calcium channel function.20

4 The relative inhibition of fundic smooth muscle

responses to EFS was more pronounced than the

inhibition of ACh-induced contractions (ACh con-

tractions reduced to 63% of control, EFS-contractions

to 30%). As the responses were fully abolished by

TTX, it can be stated that they were caused by enteric

Figure 8 Numerical integration of electrical and mechanical activity

permits the calculation of an electromechanical coupling ratio (ECR)

by dividing integrated force by integrated extracellular field potential,

giving the ECR which reaches a plateau at the end of a spontaneous

contraction. The ECR curve calculated during a contraction under

control conditions lies far above that obtained in the presence of

phenytoin 100 lM, indicating decreased electromechanical coupling.

© 2015 John Wiley & Sons Ltd 9
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nerve stimulation with subsequent neurotransmitter

release. Thus, in the tested range of concentrations,

phenytoin seems to affect enteric nerve function and

ACh-release from postganglionic nerve terminals

which may further contribute to the clinically

observed changes in gastrointestinal motility. It is of

interest that EFS-mediated contractions are inhibited

by very low concentrations of phenytoin when com-

pared to agonist-induced contractions. Thismay seem

surprising, but fits well with the involvement of

voltage-dependent sodium channels in EFS-mediated

contractions demonstrated in the TTX-experiments.

Phenytoin itself is, as stated above, classified as a

substance with a high affinity to sodium channels,

which is reflected by its historical categorization into

the group of class I antiarrhythmics.

5 The effects of phenytoin are reduced or even inverted

in the presence of the L-type calcium channel agonist

BAY K8644(-). While a right-shift in the concentra-

tion-response curve and the IC50 can be expected from

the discussed mechanisms, the increase in the fre-

quency of the spontaneous contractions which can be

observed in portal veins and colonic smoothmuscle is

surprising. This stimulatory effect is not observed

with BAY K8644(-) alone, but only with increasing

concentrations of phenytoin. A possible explanation

may be that the inhibition of calcium currents

directly impairs the amplificatory mechanism that

is required to maintain homogeneous cell to cell

coupling of slow wave depolarizations spreading

throughout the tissue, whereas pacemaker cells are

considered to be less dependent on L-type calcium

channels. This may lead to an uncoupling of pace-

making activity in the tissue, which may finally

result in more frequent contractions of small ampli-

tude arising from different areas of the preparation.

Further experimental work is, however, necessary to

test this hypothesis more directly.

6 In the presence of 100 lMphenytoin, calcium signals

as measured by Fura-2 are reduced when compared to

control conditions. This fact itself does not necessar-

ily depict on which level the transformation of the

voltage signal into a calcium increase is disturbed by

phenytoin, but when considered consistent with the

results of the experiments with BAY K8644(-), it

strongly supports an inhibition of the L-type calcium

channels of the smooth muscle cell membrane as the

central mechanism of action of phenytoin.

Data on the effects of phenytoin on lower colonic,

gastric smooth muscle or the portal vein does not exist

in the literature, and the same applies to systematic

studies on possible mechanisms of action of phenytoin.

Taken together, the observations stated above suggest

an interference of phenytoin with membrane excita-

tion or electromechanical coupling as its mechanism

of action in smooth muscle.

An alternative explanation for the inhibitory effects

of phenytoin seen in our study would be an interaction

with voltage-dependent sodium channels, because

phenytoin is thought to inhibit seizure activity in

epilepsy largely by inhibiting these. We thus tested

whether voltage dependent sodium currents are

involved in the spontaneous activity of the used tissue

preparations by applying TTX and lidocaine to the

preparations. As both substances failed to exhibit any

inhibitory effect, it can be concluded that classic

voltage-gated sodium channels are not involved in

the spontaneous activity of the tested intestinal

smooth muscles, a result which is in accordance with

previous studies.21,22

Changes in intracellular [Ca2+] are the central event

in excitation contraction coupling of smooth mus-

cle.23–25 Published data on the interactions between

phenytoin and high-voltage activated calcium chan-

nels from patch clamp studies in neurons is rather

inconclusive, and studies in smooth muscle do not

exist by now.26,27 The partial rescue of the phenytoin-

inhibited contractility and spontaneous activity that

can be observed when increasing [Ca2+] to supraphys-

iological levels supports the idea that phenytoin may

interact with calcium entry, most likely via interfer-

ence with the L-type calcium channel current (CaV1.2).

This conclusion is further supported by the finding

that the agonist and activator of this channel, BAY

K8644(-) antagonized the effect of phenytoin and lead

to a rightward shift in concentration-response curves.

As calcium ions, BAY K8644(-) itself, too had a

stimulatory effect on the tissues, which is directly

related to its channel activating properties.28 In the

experiments on the calcium dependency of the inhibi-

tory actions of phenytoin using fundic smooth muscle

strips continuously depolarized in a high-potassium

solution, phenytoin interestingly exerted strong inhi-

bitory effects at concentrations that were only mod-

estly affecting contractions evoked by externally added

agonists, as can be seen by comparing the Figs 2B and

3B with Fig. 4. The most likely explanation for this

phenomenon is that phenytoin blocks calcium chan-

nels in a use-dependent manner, as it has been

previously shown in other cell lines.29 According to

the Nernst equation, EK+ shifts from �34 mV with

40 mM K+ to �5.7 mV with 117 mM K+. The voltage-

dependent calcium channels of fundic smooth muscle

cells show a very steep increase in steady state

activation over this potential range.30 This results in

an increased open probability and an increased sensi-

© 2015 John Wiley & Sons Ltd10
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tivity to the use-dependent blocking by phenytoin,

offering an attractive hypothesis to explain the

increased inhibition of contractions at lower concen-

trations of phenytoin under conditions of sustained

strong depolarization.

The simultaneous measurements of electrical and

mechanical activity give further evidence that the

inhibition of electromechanical coupling via an inhi-

bition of the calcium system is the central mechanism

of action of phenytoin in smooth muscle. The decrease

in both the integrated contractile force and the

integrated electrical activity can be fully explained by

assuming that the conductivity of L-type calcium

channels is diminished, but only to a degree at which

channels would still be able to open upon depolariza-

tion and trigger the membrane depolarization. This

would enable the propagation of the signal throughout

the tissue, but it would nevertheless lead to a dimin-

ished cumulative Ca2+-flux, and thus to a decrease in

contractile force, which is exactly what is observed in

these experiments.

The question arises whether the concentrations of

phenytoin that have shown to exert relevant inhibi-

tory effects on the tested smooth muscle tissues are

of relevance in the context of clinical treatment.

Because current recommendations have defined the

therapeutic range of phenytoin plasma concentration

to be between 10 and 20 lg/mL (37–72 lM), this

obviously seems to be the case.31 It has to be

considered, however, that phenytoin is protein bound

to a variable extent of 60–90%, thus obviously

reducing the pharmacologically active amount of

the drug in vivo, whereas most of the phenytoin

can be considered to be freely available in vitro as

the organ bath medium is virtually void of protein.

Therapeutic concentrations of free phenytoin have

been reported to be 3.3–9.6 lM,32,33 which may

explain why severe disturbances in the gastrointesti-

nal motility are not routinely associated with pheny-

toin treatment.

Nevertheless, there are at least three situations in

which free phenytoin levels may easily cross the stated

limit and may reach concentrations that may interfere

with smooth muscle function: (i) Intravenous applica-

tion for status epilepticus is an emergency intervention

primarily guided on clinical grounds. Laboratory tests

to measure free plasma concentrations of phenytoin

still are not easily available even in developed coun-

tries, which is why supratherapeutic concentrations

may be reached and kept for varying durations until

either results from therapeutic drug monitoring ana-

lyzes are on hand or toxic effects are recognized. (ii)

During critical illness and in the elderly, plasma

protein concentrations are significantly lowered,

which can lead to dramatic increases in free phenytoin.

The use of phenytoin in geriatric patients should thus

be considered very carefully. Doses should be kept low

and the time of treatment as short as possible. Ther-

apeutic drug monitoring is of special importance in

these patients. (iii) Many drugs and other substances

interfere with the protein binding of phenytoin, e.g.,

alcohol, warfarin, tolbutamide, omeprazole, or salicy-

lates. Considering these aspects, it seems likely that

phenytoin concentrations may reach levels where

smooth muscle function is inhibited in clinical prac-

tice. Besides, there are presumably patients whose

gastrointestinal tract is susceptible to even lower

concentrations of phenytoin than that found to be

effective in this study, as many patients receive other

drugs with inhibitory actions on motility at the same

time, e.g., opioids or catecholamines.

Although the in vitro data from our study strongly

suggest that phenytoin may cause clinically relevant

reductions in the gastrointestinal motility, this

hypothesis can only be proven by in vivo experiments

and observational clinical studies. To our knowledge,

such studies do not exist. In a small trial that had

been designed to test effects of phenytoin on motion

sickness found that phenytoin prevented increases in

the frequency of gastric myoelectric activity as mea-

sured by electrogastrography (‘gastric tachyarrhyth-

mia’).34 Data addressing gastrointestinal

complications of phenytoin use in the emergency

medicine and intensive care setting are completely

lacking by now. The mere fact that phenytoin is an

old, approved substance may give a false feeling of

safety, but it is important to note that the spectrum of

patients receiving anticonvulsant drugs has changed

dramatically over the last twenty years in the western

world, with far more highly geriatric, severely dis-

eased persons receiving that often develop highly

refractory, often non-convulsive seizures on grounds

of cerebrovascular and neurodegenerative alterations

of the cerebral function. From this point, observa-

tional clinical studies on gastrointestinal complica-

tions associated with phenytoin applications in these

groups are highly desirable. Furthermore, extended

in vitro data are needed regarding the interactions of

widely applied medications on smooth muscle func-

tion.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s web site:

Figure S1. Representative traces depicting the spontaneous contractions of longitudinal smooth muscle

preparations from gastric antrum (A), portal vein (B), and colon (C) under control conditions at higher temporal

resolution. The preparations are the same as those shown in Fig. 1.

Figure S2. Overlay of three representative contractions of a gastric fundus smooth muscle preparation obtained at

intervals of 10 min by 10 s of electric field stimulation under control conditions or in the presence of two

concentrations of 30 and 100 lM phenytoin. EFS with 20 Hz and 10 s duration was started as indicated by the upper

bar. The other stimulus parameters were: stimulus voltage: 80 V; single pulse duration: 1 ms.
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Abstract

Class-I-antiarrhythmics like ajmaline are known to alter smooth muscle function, which may cause alterations in gastrointestinal

motility. The effects of ajmaline on isolated gastric and portal vein smoothmuscle and the underlyingmechanisms are unknown.We

studied the effects of ajmaline on the contractile patterns of isolated preparations of gastric antrum and portal vein fromWistar rats.

The organ bath technique was used to measure spontaneous or pharmacologically induced isometric contractions. Changes in force

observed after application of ajmaline or under control conditions are reported as % of the amplitude of an initial K+-induced

contraction. Electric field stimulation was used to study neurogenic relaxations of gastric fundus smoothmuscle. Ajmaline increased

the amplitude of spontaneous contractions of muscle strips (portal vein: control 31.1 ± 15.2%, with 100 μM ajmaline 76.6 ± 32.3%,

n = 9, p < 0.01; gastric antrum: control 9.5 ± 1.6%, with 100 μM ajmaline 63.9 ± 9.96%, n = 14, p < 0.01). The frequency of

spontaneous activity was reduced in portal vein, but not in gastric antrum strips. The effects of ajmaline were not blocked by

tetrodotoxin, L-nitroarginine methyl ester, or atropine. Ajmaline abolished coordinated neurogenic relaxations triggered by electric

field stimulation and partly reversed the inhibition of GA spontaneous activity caused by the gap junction blocker carbenoxolone.

Ajmaline enhances the amplitude of spontaneous contractions in rat gastric and portal vein smooth muscle. This effect may be

accompanied, but not caused by an inhibition of enteric neurotransmission. Enhanced syncytial coupling as indicated by its ability to

antagonize the effects of carbenoxolone is likely to underlie the enhancement of contractility.

Keywords Class-I-antiarrhythmics . Ajmaline . Gastrointestinal motility . Smooth muscle . Enteric nervous system

Introduction

Antiarrhythmic drugs (AAD) are known to exert various side

effects, the most prominent being their potential to induce

clinically relevant cardiac arrhythmias by themselves [9, 31,

48]. Non-cardiac side effects are well known but have been

considerably less thoroughly studied [13].

Class I AAD (e.g., flecainide or ajmaline) are used for the

acute treatment of supraventricular tachycardia and the stabi-

lization of sinus rhythm after cardioversion. Gastrointestinal

symptoms, especially nausea (9%), abdominal pain (3%), and

constipation (4%), are known side effects of both substances

[13, 23, 29].

The physiological mechanisms underlying the gastrointes-

tinal adverse effects of class I AAD are yet unknown.

Theoretically, the substances could interact either with the

intrinsic (Bmyogenic^) activation of smooth muscle and/or

with the neurogenic modulation of the myogenic tone by the

autonomic and enteric nervous systems. Both mechanisms are

known to account for clinically relevant signs and symptoms

of gastrointestinal dysfunction [1, 25, 27, 32, 36].

Use-dependent block of voltage-gated sodium channels

(NaV) is considered to be the central mechanism of action for

class I AAD in the heart [22, 31]. These channels are not con-

sidered to be essential for the generation of basic motor patterns

of isolated intestinal smooth muscle. NaV channels are,
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however, involved in neuronal modulation of myogenic tone,

e.g., in the active process of adaptive gastric relaxation follow-

ing the ingestion of food [42, 47]. Besides its affinity for NaV
channels of the heart, skeletal muscle, and neurons, ajmaline has

been demonstrated to interact with voltage-dependent K chan-

nels (KV) and hERG-type K channels [2, 11, 18, 19, 24, 51].

Phenytoin, an anticonvulsive drug which has been used histor-

ically as a class IA AAD, exerts inhibitory effects on the con-

tractility of isolated intestinal and vascular smoothmuscles from

rats by inhibiting calcium entry [39]. Whereas stimulating ef-

fects on the contractile behavior of guinea pig ileum, taenia coli,

and portal vein (PV) have been reported for ajmaline, the liter-

ature contains no information about its effects on neurotrans-

mission in these tissues [4, 7, 10].

The present study investigates the effects of ajmaline on the

spontaneous activity, on contractions induced by acetylcholine

(ACh) and high-K+-depolarizations as well as neurogenic re-

sponses of isolated rat gastric and PV smooth muscle. These rat

tissues were chosen because they are thoroughly characterized

regarding their motor patterns and reflexes as well as their cel-

lular mechanisms, i.e., ion channels and pharmacological prop-

erties. Both PVand gastric antrum (GA) are prototypical spon-

taneously active smooth muscles, but whereas spontaneous ac-

tivity in isolated PV is not fully synchronized between different

pacemaker sites, mechanical activations of the GA is consid-

ered to be fully coordinated [15, 16]. Therefore, under certain

circumstances, differential responses of both tissues can be in-

dicative for substance effects on intercellular coupling.

This study was designed to address three central questions:

1. Which effects does ajmaline have on the spontaneous tone

and contractile patterns of isolated gastric and PV smooth

muscle?

2. Are these effects related to actions of ajmaline on enteric

neurotransmission?

3. Which mechanisms do account for effects of ajmaline on

spontaneous activity?

Materials and methods

Preparation of tissues and organ bath experiments

The ARRIVE guidelines were followed as far as applicable for

the experiments on isolated tissue strips performed in the con-

text of this study [20]. All procedures performed were in accor-

dance with the ethical standards of the University of Rostock as

well as German national law (Tierschutzgesetz, §7) and the

regulations of the state of Mecklenburg-West Pomerania.

Following these regulations, a formal notification was made

for housing and breeding the animals to the federal state author-

ity (internal code: A4214/74KL), whereas an ethics statement

or other institutional approval was not necessary since no inter-

ventions were made on the animals while alive. Animals were

kept in 800 cm2 cages (Zoonlab, Castrop-Rauxel, Germany) on

wood shavings (Abedd, Vienna, Austria), had free access to tap

water and pellet food (1534-000, Sniff Spezialdiäten, Soest,

Germany), and were kept at a 12-h dark-light cycle. Thirty-

eight Wistar rats of both sexes bred at our institution (mean ±

standard deviation: weight, 261 ± 37 g; age, 168 ± 41 days)

were anesthetized with ether, and killed by decapitation. After

opening the abdomen, the stomach and the PV were excised

and stored in preparation buffer (PB) at 4 °C. Connective tissue

and fat were removed by sharp dissection under the preparation

microscope (Olympus SZ40, Olympus, Shinjuku, Japan) in

Sylgard dishes filled with PB at a magnification of 0.8–2 for

stomach and 3–5 for PV. From the stomach, longitudinal

smooth muscle strips of an in situ length of 5–10 mm and

2 mm width were excised from the antrum in lines running

parallel to the greater curvature without lesioning the mucosa.

Strips of identical dimensions were taken from the fundus in a

similar manner, but by cutting in a rectangular angle to the

greater curvature following the visible direction of circular mus-

cle bundles. After cleaning, portal veins were split longitudinal-

ly and cut to a length of 10 mm. Preparations of PV and GA

were tethered to glass holders, whereas fundus strips were teth-

ered to plastic holders with integrated platinum wires for field

stimulation. The holders were then mounted vertically in organ

baths with volume capacities of either 20 or 30 ml. Each bath

was filled with Krebs solution and bubbled with 95% O2 and

5% CO2 at a temperature of 36 °C and a pH of 7.4. The

amounts of added drugs were always adapted to the organ bath

size to give equivalent concentrations. The tissue strips were

connected to mechanoelectrical transducers with a force reso-

lution of 0.01 mN coupled to a bridge amplifier operating in

differential (full bridge) mode (FORT10g/Transbridge

TBM4M, both World Precision Instruments, Sarasota, FL,

USA). The obtained signal was sampled at a rate of 100/s and

low-pass fil tered with 2 Hz using PowerLab8/32

(ADInstruments, Bella Vista, Australia), and then stored for

further processing with LabChart (LabchartPro edition,

Version 7.3.1, ADInstruments, Bella Vista, Australia) and MS

Excel 2010 (Microsoft, Redmond, WA, USA). After placing

the preparations in the organ bath, they were adjusted to a

pre-strain of 2–3 mN to bring them to their in situ length.

Before first substance applications were made, they were then

allowed to equilibrate over 1 h. Then, before any other maneu-

ver, a reference contraction was induced by increasing the po-

tassium concentration to 60 mM by changing the organ bath

solution with a modified Krebs buffer in which Na+ had been

substituted with equimolar amounts of K+. To compensate for

differences in thickness of muscle strips, all tension values re-

ported are given as % of the maximum of this contraction

except when stated differently. After flushing with regular

Krebs solution, preparations were allowed to equilibrate again
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for 20 min before any other substance testing. In experiments

testing ajmaline effects on spontaneous activity, ajmaline con-

centration was increased at intervals of 10 min. At the end of

each experiment, a second high-K+-contraction was induced in

the same manner as the initial reference contraction. To test for

a contribution of constitutive neurotransmission in mediating

the effects of ajmaline in GA, tetrodotoxin (TTX, 1 μM), atro-

pine (10 μM), and L-nitroarginine methyl ester (L-NAME,

10 μM) were added to the organ bath prior to the first applica-

tion of ajmaline. Two series of experiments on interactions of

ajmaline with carbenoxolone and tetraethylammonium (TEA)

in the setting of spontaneously active GA are described in detail

in the respective paragraph of the results.

Spectral analysis of spontaneous activity

The spectral analysis function of the LabChart software was

used to calculate fast Fourier transforms (FFT) of 3-min inter-

vals of tension recordings from PVand GA under control con-

ditions and in the presence of 100 μMajmaline. For calculating

the FFT, a size of 8 k and the Hann-Data window were applied

with an overlap set to 50%. Spectrum values display signal

amplitude in microvolts at a particular given frequency. Only

preparations with a fully continuous regular spontaneous activ-

ity were selected. Amplitude spectra from five PVand five GA

preparations were calculated, exported to MS Excel 2010 and

normalized to the amplitude of the high-K+-contraction obtain-

ed in the respective preparation. Finally, the mean spectra for

PVand GAwere calculated from the single measurements.

Responses evoked by electric field stimulation

Fundus muscle strips were tethered to holders with inserted

platinum wires in the same organ baths as described above.

The distance between platinum wires and smooth muscle tis-

sue was adjusted to values between 1 and 2 mm. Pulses were

generated by a Grass S-8 stimulator (Grass Technologies,

Warwick, RI, USA) that was connected to the electrodes.

The protocol used was adapted from D’Amato et al. [8].

Briefly, serotonin was added at a concentration of 0.3 μM

and equilibrated for 20 min to establish a plateau from which

dilatations and contractions could be studied. Over the whole

experiment, the Krebs buffer contained guanethidine (4 μM)

and atropine (1 μM) to establish non-cholinergic, non-

adrenergic (NANC) conditions for stimulation. Electric stim-

uli were applied subsequently with a frequency of 20 Hz and a

train duration of 5 s at intervals of 100 s. Single pulse voltage

amplitude was 60 V and square pulse duration was 0.5 ms to

selectively stimulate nerve varicosities and not smooth muscle

cells. The effects of ajmaline on the resulting dilatations were

measured by normalizing them to the dilatation amplitude

measured prior to the addition of ajmaline in the respective

preparation.

Contractions evoked by high potassium

To estimate the influx of Ca2+ via voltage-dependent calcium

channels (VDCC), contractions were evoked by depolarizing

the tissue with potassium (60 mM). As a measure of ajmaline

effects on membrane-potential dependent calcium entry, the

contractions evoked by high K+ in the presence of ajmaline

were normalized to those evoked under control conditions.

This was done separately for the early and the late K+-induced

contraction by comparing the arithmetic means of tension

values from the first 30 s after increasing K+ or from the last

30 s of the K+ elevation period.

Acetylcholine induced contractions

Responses to ACh (10 μM) were tested to measure effects of

ajmaline on intracellular signaling cascades and release of

Ca2+ from intracellular stores. Ratios of early and late contrac-

tions with and without ajmaline in the organ bath were calcu-

lated in the same manner as described above for high-K+-

contractions.

Simultaneous registration of electrical
and mechanical activity

The setup used for recording electrical activity has been de-

scribed previously [14, 38, 39]. Briefly, PV preparations were

placed in a plastic tube of 2.5 mm width and were tethered to a

force transducer. The tube was continuously perfused with fresh

Krebs solution. The extracellular electric potentials preceding

and accompanying contractions were recorded using ring-

shaped platinum electrodes fixed on the inside of a small tube.

One end of the PVwas placed at a fixed positionwithin the tube

and the other was tethered to an isometric force transducer of

the same type that was used for the conventional organ bath

experiments. The preparationwasmoved along the longitudinal

axis of the tube up to a position where the amplitude of spike

complexes reached a maximum. Electrical signals were record-

ed using an AnimalBioAmp connected to a PowerLab8/32

(both ADInstruments, Bella Vista, Australia) set to a 10–65-

Hz bandpass at a sampling rate of 2 kHz. Simultaneously, ten-

sion was recorded using the above-mentioned equipment, low-

pass filtered at 1 Hz, and then stored. For distinct spontaneous

contractions, the mean amplitudes of field potentials were mea-

sured and compared between control conditions and in the

presence of ajmaline 100 μM.

Calcium sensitivity of depolarized smooth muscle

Strips of gastric fundus were equilibrated for 45 min in regular

Krebs solution. Then, the bathing solution was exchanged

three times with potassium-rich, calcium-free solution in

which Ca2+ was substituted with Mg2+. After that, the
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preparations were equilibrated for another 30 min. Then, Ca2+

was added stepwise to the bathing solution. When a concen-

tration of 30 mM was reached, the organ bath was flushed

again with regular Krebs solution, again equilibrated, and

the change to Ca2+-free solution and the Ca2+ titration were

repeated as before, but ajmaline was added to the organ bath

after the final exchange of Ca2+-free solution. The concentra-

tion dependency of force generation associated with increas-

ing concentrations of Ca2+ was measured under control con-

ditions and compared to that estimated in the presence of

100 μM ajmaline. The responses were normalized to the max-

imum value obtained under control conditions.

Drugs and solutions

The solutions used were composed as follows: PB: NaCl

145 mM, KCl 4.5 mM, NaH2PO4 1.2 mM, MgSO4 1.2 mM,

CaCl2 1 mM, EDTA 0.025 mM, HEPES 5 mM. Krebs solution:

NaCl 112 mM, NaHCO3 25 mM, KH2PO4 1.2 mM, KCl

4.7 mM, MgCl2 1.2 mM, CaCl2 2.5 mM, glucose 11.5 mM.

Potassium-rich Krebs solution: NaCl 57.7 mM, KCl 58.8 mM,

NaHCO3 25 mM, KH2PO4 1.2 mM, MgCl2 1.2 mM, CaCl2
2.5 mM, glucose 11.5 mM. Potassium-rich, calcium-free Krebs

solution: KCl 116.7 mM, NaHCO3 25 mM, KH2PO4 1.2 mM,

MgCl2 3.7 mM, glucose 11.5 mM. Calcium solution for titrating

[Ca2+] in potassium-rich, calcium-free Krebs solution: CaCl2
110 mM. The pH was 7.4 at 36.6 °C with continuous carbogen

gas bubbling during all experiments (95% O2, 5% CO2).

Atropine, carbenoxolone, serotonin, sodium nitroprusside

(SNP), TEA, and all above-mentioned salts were purchased from

Sigma-Aldrich (St. Louis, MO, USA). Ajmaline (Gilurytmal®)

was purchased from Carinopharm (Elze, Germany). Other sub-

stances used in this study were acetylcholine (Michol-E®, Ciba

Vision, Germany) and guanethidine (Santa CruzBiotechnology).

All substances were dissolved in double distilled water and

stored according to the distributor’s recommendations.

Data presentation and statistics

Values are given as mean values ± standard deviation of mean

(SDM). Error bars indicate standard error of mean (SEM). The

legend for box plots given in Fig. 5 (b4) applies for all box

plots. Sample size was calculated using G*Power 3.1 (F. Faul,

Kiel University, Kiel, Germany) in a pre-test-approach to as-

sure detection of significance for changes of mean values

larger than 20% with a power of 0.8 on the basis of an esti-

mated SDM of 30%. The data were analyzed using MS Excel

2010 (Microsoft, Redmond, WA, USA), SPSS 22 (IBM,

Armonk, NY, USA), and OriginLab 2018b (Nothhampton,

MA, USA). For statistical testing, the Wilcoxon test for de-

pendent samples and the Mann–Whitney test for independent

samples were applied. All tests of significance were per-

formed at α = 0.05.

Results

Contraction patterns under control conditions

After equilibration in Krebs solution, tissue preparations from

PV and GA showed characteristic motor patterns which re-

semble that seen in the very beginning of the recordings

shown in Fig. 1 (a1 and b1) prior to adding ajmaline. Portal

veins developed contractions with amplitudes of 1.6 ± 0.8 mN

or 31.1 ± 6.8% of an initial test contraction evoked by

stepping [K+] up to 60 mM. The mean frequency of PV was

4.7 ± 2.1 min−1, baseline tension under control conditions was

2.2 ± 1.4 mN, n = 9. GA strips exhibited regular phasic con-

tractions at a mean frequency of 3 ± 0.8 min−1 and with a

mean amplitude of 0.8 ± 0.2 mN or 9.5 ± 1.6% of a respective

high-K+-contraction (n = 14). Baseline tension of GA under

control conditions was 1.4 ± 0.5 mN, n = 14.

The mean frequency spectra of spontaneous activity depict

the temporal variance in the rhythmicity of the endogenously

paced activations of the tissue under control conditions for PV

(Fig. 1, a2) and GA (Fig. 1, a2). Whereas the frequency spec-

trum of PV shows three small peaks, there is one clear dom-

inant frequency in GA, indicating a higher degree of intrinsic

oscillator coupling.

Effects of ajmaline on spontaneous activity

The amplitude of spontaneous contractions grew in both tis-

sues when ajmaline was added to the Krebs solution. In PV

preparations, the increase was significant from concentrations

of 10 μM onwards, strengthened remarkably up to 30 μM

whereas 100 μM did not produce further increase (Fig. 1,

a1, c). The ajmaline-induced increase in force of spontaneous

contractions of GAwas very similar to that observed in muscle

strips from PV, but reached significance already from concen-

trations of 1 μM onwards and failed to saturate up to 100 μM

(Fig. 1, b1, c).

Despite the remarkably large effects on spontaneous con-

tractions, the full relaxation to baseline in between spontane-

ous contractions, which is a characteristic for both PVandGA,

was fully maintained (seen also in Fig. 1, a1 and b1; data for

GA: mean change from tension under control conditions: −

0.03 ± 0.13 mN at 1 μM; − 0.04 ± 0.15 mN at 10 μM; − 0.13

± 0.29 mN at 100 μM ajmaline; p > 0.05 for all; n = 14; data

for PV: mean change from tension under control conditions:

0.02 ± 0.08 mN at 1 μM; − 0.03 ± 0.15 mN at 10 μM; − 0.01

± 0.12 mN at 100 μM ajmaline; p > 0.05 for all; n = 9).

Effects of ajmaline on frequency were measured using

spectra calculated by FFT of tension recordings. In compari-

son with spectra obtained under control conditions, it became

evident that ajmaline causes a clear shift to lower frequencies

in PV (Fig. 1, a2). When ajmaline was added, intervals be-

tween spontaneous contractions of PV became longer and the
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contractions themselves became larger and broader. In con-

trast to that, the FFTof GA activity did not show any relevant

shift in the dominant frequency (Fig. 1, b2).

Constitutive endogenous neurotransmission

The ajmaline-induced increase in the amplitude of spontane-

ous contractions was neither forestalled nor blocked by adding

TTX (Fig. 2a), L-NAME (Fig. 2b), or atropine (Fig. 2c) to the

bathing solution 15 min before starting ajmaline application

(contraction amplitude with 100 μM ajmaline: 74 ± 15.8% for

TTX, 63 ± 13.1% for L-NAME, 72 ± 19.0% for atropine, for

all n = 5, p > 0.05 when compared to the amplitude obtained

with 100 μM ajmaline added to control conditions).

Spontaneous electrical activity

Ajmaline increased the coordinated spontaneous electrical ac-

tivity that triggers and maintains phasic contractions.

Although the absolute value of the recorded field potentials

varied between preparations (2–50 μV for GA, Fig. 3a, 5–

25μV for PV, Fig. 3b), the mean ratio between field potentials

recorded in the presence of 100 μM ajmaline and under con-

trol conditions was significantly greater than 1. For PV, it was

1.4 ± 0.07, p < 0.05, n = 5, whereas it was 2.1 ± 0.4 (p < 0.05,

n = 5) for GA.

Effects of ajmaline on neuronally mediated responses

Strips from gastric fundus developed a stable basal tone

of 6.6 ± 1.6 mN (n = 7) without phasic contractions after

equilibration as can be seen in the very left part of

Fig. 4. Serotonin (0.3 μM) produced a contraction with

an initial peak followed by a slow and steady decline

over several minutes that stabilizes as a plateau-like ten-

sion which was still above the initial level. When elec-

tric field stimulation was applied during the plateau

phase of the serotonin contraction under control condi-

tions, relaxations of uniform shape and amplitude

followed each electric field stimulation (EFS) pulse train

Fig. 1 Representative recordings of tension generated spontaneously by

isolated longitudinal strips from PV (a1) and GA (b1) under control

conditions and in the presence of increasing concentrations of ajmaline.

Frequency spectra of 5-min samples from PV (a2) and GA strips (b2).

The ordinate alignment is given separately for both graphs. Zero values of

force correspond to the intersection level with the logarithmically scaled

abscissa which displays frequency. Spectra were calculated using a fast

Fourier transform (FFT), values display signal amplitude in millivolts at a

given frequency. Lines in both a2 and b2 are means from five

preparations. Gray lines show spectra obtained under control

conditions, black lines obtained with ajmaline 100 μM in the organ

bath. Mean amplitude of spontaneous portal vein and antrum

contractions estimated over 2 min before stepping to the next

concentration of ajmaline (c). Tension is expressed as percentage of an

initial high-K+-contraction. Calculated mean values and SD for PV: 31.1

± 15.2% under control conditions; 1 μM: 35.8 ± 18.8%, p > 0.05; 10 μM:

52.1 ± 20.9%, p < 0.01; 100 μM: 73.6 ± 32.3%, n = 6, p < 0.01. Data for

GA: 1 μM: 9.5 ± 1.6%, 10 μM: 17.2 ± 2.8%, 30 μM: 34.3 ± 4.9%,

100 μM: 63.9 ± 9.96%, n = 14, p < 0.05 for 1 μM and p < 0.01 for 10,

30, and 100 μM. Error bars show SEM. *p < 0.05, **p < 0.01
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(middle part of Fig. 4). After application of ajmaline,

baseline tension increased and irregular oscillations be-

came obvious (100 μM, right part of Fig. 4). In this

situation, EFS trains failed to produce clearly identifiable

relaxations in all of the tested preparations (n = 5).

Nominally, the mean amplitude of EFS-induced relaxa-

tions obtained in the presence of 100 μM ajmaline was

reduced to 3.2 ± 2.8% of the mean relaxation obtained

under control conditions (p < 0.01, n = 5).

Effects on evoked contractions:
high-K+-depolarization and acetylcholine

When the potassium concentration of the Krebs solution was

stepped up to 60 mM, PV and GA strips contracted with a

characteristic shape and time course. An early peak of con-

tractions was regularly observed within the first minute of

high-K+-exposition which was then followed by a slow in-

crease under control conditions or a decline in the presence

of ajmaline (Fig. 5, a1, b1). In PV, already the early contrac-

tion induced by high K+ in the presence of ajmaline was re-

duced when compared to control conditions. After 2 min of

high-K+-activation, there was a further significant drop in the

presence of ajmaline (Fig. 5, a2). In GA, the amplitude of the

early phase of high-K-contractions of GAwas not different in

the presence of 100 μM ajmaline when compared to control

conditions, the contraction after 2 min exposure to high K+

was significantly lower with ajmaline (Fig. 5, b2).

Acetylcholine (10 μM) was added in the presence and ab-

sence of 100 μM ajmaline. Acetylcholine responses of PV

were unaltered by ajmaline (Fig. 5, a3, a4), whereas ajmaline

caused a significant increase of the early and late ACh re-

sponse of GA (Fig. 5, b3, b4).

Calcium sensitivity of depolarized smooth muscle

Gastric fundus strips incubated in calcium-free high-potassi-

um solution developed stable contractions when calcium was

added to the solution. The concentration dependency of force

generation was measured under control conditions and com-

pared to that measured in the presence of 100 μM ajmaline.

The responses were normalized to the maximum value obtain-

ed under control conditions (Fig. 6). At calcium concentra-

tions of 3 mM and above, the resulting force was significantly

reduced in the presence of ajmaline compared to control con-

ditions (n = 9, p < 0.01 for 3, 10, and 20 mM Ca2+).

Modification of carbenoxolone effects by ajmaline
in GA

The gap junction blocker carbenoxolone was used to alter

intercellular electric current propagation and thus intercellular

Fig. 3 Representative measurement of extracellular field potentials (EFP,

upper traces) and simultaneously measured contractile force (lower

traces) of a PV (a) and GA (b) smooth muscle preparation.

Concentration of ajmaline is given in the middle horizontal line, at

intermissions 15 min of recorded data are skipped

Fig. 2 a Effects of ajmaline on

spontaneous activity of GA strips

pretreated with 1 μM TTX for

15 min. b Effects of ajmaline on

spontaneous activity of GA strips

pretreated with 10 μM L-NAME

for 15 min. c Effects of atropine

on spontaneous activity of GA

strips pretreated with 10 μM L-

NAME for 15 min
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coupling [6, 37]. After preparations of GA had been equili-

brated and a reference contraction measured as described in

the section on spontaneous activity, carbenoxolone (20 μM)

was added. Over the following 5 min, the amplitude of con-

tractions declined significantly from 20.0 ± 14.4 to 3.5 ± 4.1%

of the high-K+-contraction amplitude (p < 0.05, n = 5). After

adding ajmaline (100 μM), the amplitude increased again up

to 13.0 ± 6.4% (p < 0.05, n = 5, Fig. 7a).

Effects of TEA on GA in the presence of ajmaline

After the same pretreatment as described in the section on

carbenoxolone, adding TEA to concentrations of 1 and

10 mM led to a dose-dependent increase in the high-K+-nor-

malized amplitude of phasic contractions. Compared to basal

conditions, mean amplitudes of spontaneous phasic contrac-

tions were increased equally by 1 mM TEA in the presence or

absence of ajmaline (% of high-K+-contraction: 64 ± 28%

without ajmaline, 60 ± 24% with 100 μM ajmaline, n = 7,

p > 0.05, Fig. 7b). Increasing TEA from 1 to 10 mM evoked

a further tension increase which again was not different be-

tween ajmaline-pretreated and control muscle strips (% of

high-K+-contraction: 132 ± 56% without, 112 ± 73% with

100 μM ajmaline, n = 8, p > 0.05, Fig. 7c).

Discussion

Main findings

In this study, it is shown that the class-I-antiarrhythmic agent

ajmaline exerts three major effects in the isolated rat PV, GA,

and gastric fundus smooth muscle.

Ajmaline increases the amplitude of per se spontaneously

occurring phasic contractions in smooth muscle strips of PV

and GA in a concentration-dependent manner.

In PV, but not in GA, ajmaline changes the frequency of the

rhythmical activity and increases the contraction phases as

well as the inter-contraction intervals.

A third finding is that ajmaline virtually abrogates coordi-

nated neurogenic dilatory responses in gastric fundus strips.

Underlying mechanisms

The loss of effective neurogenic relaxations might be explained

on the presynaptic level by the NaV-blocking properties of

ajmaline [18, 51]. Alternatively, it is possible that ajmaline

switches the smooth muscle to an oscillatory, unstable state by

inhibiting stabilizingmechanisms, e.g., by blocking ion channels

carrying voltage-activated outward currents. Both mechanisms

would offer an explanation for the observed increase in the am-

plitude of phasic contractions. An abrogation of constitutive in-

hibitory neurotransmission by ajmaline via presynaptic inhibi-

tion of transmitter release is, however, unlikely to account for the

observed increase in phasic contractions since neither a specific

block of NaV by TTX nor a global inhibition of nitric oxide

synthesis with L-NAME caused increases in phasic contractions

under the basal experimental conditions tested.

Furthermore, it could be speculated that ajmaline acts via an

increased release of the major excitatory neurotransmitter ACh

due to an ajmaline-induced Bleaky^ release from varicosities

that has been described for other NaV-blocking drugs as a result

of collateral K+ channel inhibition [44]. Since it was observed

that atropine did not counteract the ajmaline-induced increase in

contractions, this mechanism is also unlikely.

To further clarify the mechanism of action of ajmaline, we

compared its effects on two different types of contractions of

smooth muscle:

On the one hand, adding acetylcholine or potassium to the

bathing solution elicits contractions which are carried by the

full number of smooth muscle cells present in the preparation,

since all regions of the tissue are exposed to the chemical

(ACh) or electrical (high [K+]) stimulus. The same applies to

the addition of Ca2+ to depolarized smooth muscle strips.

Fig. 4 Interactions of ajmaline with electric field stimulation: Tension

recording from a gastric fundus strip precontracted with 0.3 μM

serotonin. At the indicated time points, electric field stimulation (↓EFS)

was applied for 10 s with 1 ms pulses at a frequency of 10 s−1 and 80 mA.

Whereas after first EFS train after 9 min of ajmaline incubation, a

dilatation similar to those observed under control conditions occurs,

subsequent EFS trains only evoke very barely recognizable, transient

responses
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Increases of contractions evoked in this Bextrinsic^ manner

would reflect changes in force produced on the single cell

level, e.g., by enhanced excitation-contraction-coupling or

calcium sensitization. Our findings suggest that such changes

occur only very moderately: Only ACh-induced contractions

of GA were slightly increased, whereas K+-induced contrac-

tions and Ca2+ sensitivity of GA and PV preparations were

unchanged or even decreased.

Fig. 5 Contractions evoked by a single step application of K+ to 60 mM

or ACh to 10 μM. Representative traces obtained under control

conditions are given in green, traces obtained in the presence of

100 μM ajmaline in red. a1, K+ induced contraction of PV; a3, ACh

induced contraction of PV; b1, K+ induced contraction of GA; b3, ACh

induced contraction of GA.Mean values of tensionwere calculated over a

30-s period (shaded period on the left in a1, a3, b1, b3) immediately after

application of K+ or ACh and for a 30-s period before flushing with

regular Krebs buffer (shaded period on the right in a1, a3, b1, b3).

Ratios were calculated between the respective means obtained in the

presence of 100 μM ajmaline and under control conditions in the same

tissue sample. The distribution of the obtained early and late ratios is

represented by the box plots shown next to the recording traces: a2, K+

induced contraction of PV; a4, ACh induced contraction of PV; b2, K+

induced contraction of GA; b4, ACh induced contraction of GA. Box plot

designations for all are given in the legend in b4. For both K+ and ACh,

n = 17 for GA, n = 6 for PV

Fig. 7 a Carbenoxolone was added at the indicated time point after

equilibration and reference contraction had been obtained as for regular

experiments on spontaneous activity in GA. By cumulatively adding

ajmaline, this effect was counteracted. b TEA at 1 and 10 mM were

added at the indicated time points. c Ajmaline (100 μM) added prior to

the application of TEA

Fig. 6 Tension development of depolarized fundus smooth muscle

depends on [Ca2+] in the bathing solution. The data points shown were

measured under control conditions and in the presence of 100 μM

ajmaline. All values are given as the percentage of the value measured

with the highest [Ca2+] tested under control conditions; n = 9
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On the other hand, the spontaneous phasic contractions of

longitudinal strips of PV and GA were markedly increased.

They might be considered to result from the spread of pace-

maker potentials generated by Interstitial Cells of Cajal (ICC)

[5, 49]. However, the direct reduction of K+ currents by K+

channel blockers can also hold for stronger rhythmical contrac-

tions. Tetraethylammonium used at 1 mM inhibits K+ channels

of high conductance (BK(Ca)) more or less selectively [3]. At

higher concentrations, its action is also present on Kv channels

in PV and GA smooth muscle [26, 33, 34]. Remarkably, the

effects of TEA and ajmaline were non-additive, as would be

expected if both act at common targets, i.e., K+ channels.

Different studies in man, guinea pig, rat, and mice have

shown the intercellular coupling within the longitudinal layer

of gastric smooth muscle to be relatively poor, which is

reflected by the slow propagation of excitation in the longitu-

dinal in comparison to the rather fast propagation within the

circular muscle layer [17, 45, 49]. The difference in velocities

resulting from the different degree of coupling is the basis for

the effective propagation of circular contractions from gastric

corpus towards the pyloric region via the antrum. Due to the

weak electrical coupling in the longitudinal direction, slow

wave potentials generated by ICC under the basal conditions

that are present during organ bath experiments in standard

Krebs buffer may spread incompletely within the excised

muscle strip and may fail to reach the threshold for smooth

muscle cell excitation at some point along the longitudinal

axis of the strip. The amount of force generated would then

be smaller than the force developed by the very same muscle

strip when all of its smooth muscle cells are activated by

exogenous agonists of high K+.

The fact that ajmaline strongly increases the amplitude of

endogenously generated spontaneous contractions, whereas it

has far less pronounced effects on exogenously evoked ones,

may indicate that ajmaline acts by enhancing intercellular cou-

pling. This hypothesis would be supported by the finding that

it antagonizes the effects of the gap junction blocker

carbenoxolone. Data from the literature and our own experi-

ments on Ca2+ sensitivity make it unlikely that improved

spread of excitation within the tissue is due to increased cal-

cium currents. Instead, inhibition of voltage-activated K+ cur-

rents by ajmaline can be considered to improve intercellular

coupling: In analogy to nerve and cardiac muscle, inhibiting

K+ currents would increase membrane resistance and thus

increase length constant. Furthermore, it would cause an in-

crease in action potential amplitude and duration and thus an

increase in the duration and amplitude of electrotonic current

spread from active to yet undepolarized cells, as it is supported

by our finding that ajmaline increases the amplitude of field

potentials from PV and GA. The observed interaction with

carbenoxolone would thus reflect a functional antagonism

on the level of electric tissue properties rather than a compet-

itive antagonism, e.g., at the level of connexins. The

synchronizing action of ajmaline reduced frequencies of spon-

taneous activity in PV, but not in GA might well be explained

by the fact that only the PVexhibits asynchronously working

pacemaker sites under the basal conditions [15, 16].

Although K+ channel block is not considered as a leading

mechanism of action for class I AAD, the literature reports K+

channel blocking properties for some local anesthetics which

are also classified as class I AAD [19, 43, 50]. Ajmaline has

been reported to inhibit several types of NaVand KV channels

already at low micromolar concentrations [2, 11, 12, 24].

Therefore, it is likely that it will also inhibit other voltage-

dependent ion channels, especially potassium and calcium

channels—but with a higher IC50. Since decreasing target

specificity with increasing concentration is known for several

drugs like nifedipine, verapamil, mibefradil, ciclazindol, phe-

nytoin, and others and could well explain the effects of

ajmaline observed on tissue level in the concentration range

used in this study [28, 30, 35, 39, 52].

Clinical implications

From the clinical point of view, the relation between the con-

centrations tested and those occurring in vivo over the course

of treatment is relevant. Ajmaline is almost exclusively ad-

ministered by the intravenous route. According to the litera-

ture, plasma concentrations of 2.4 to 5.0 mg/l (7.3 to 15.3 μM)

occur in the first minutes after injection and decline to less

than 1% of their maximum value within the next hour [21].

Concentrations of 1 μM led to significant effects in prepara-

tions from GA in this ex vivo study and are therefore likely to

cause effects in vivo, too. Stomach cramps may be attributed

to augmented spontaneous contractions caused by potassium

channel inhibition, whereas abdominal discomfort and dys-

peptic symptoms after food ingestion could reflect an im-

paired gastric accommodation reflex due to ineffective neuro-

genic relaxation. In sum, both pathways may contribute to key

symptoms of dyspepsia.

Besides the potential adverse effects that may occur in pa-

tients without preexisting gastrointestinal dysmotility, the

stimulatory effects of ajmaline should raise interest in the po-

tential of group I AAD for treating hypomotile conditions as

chronic gastroparesis, for which existing medical treatments

fail to give sufficient relief [36, 40]. This applies especially to

the group of patients with neuropathic (e.g., diabetic)

gastroparesis since the potentially harmful inhibitory effects

of ajmaline on neurotransmission can be expected to be neg-

ligible when there is already no effective organ innervation at

the onset of treatment. Despite the potential side effects in

terms of cardiac arrhythmias and impaired gastric accommo-

dation, a potential of class I AAR in this field is supported by

the fact that the local anesthetic procaine has been reported to

be effective in the treatment of gastrointestinal hypomotility

following gastrointestinal tract surgery [41, 46].
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Limitations

This study has some limitations: Although it gives strong sup-

port to the hypothesis of increased coupling as the reason for

the observed increase in force, the methodology is not suited

to detect the specific type of ion channels involved and to

characterize the changes in the spatial pattern of tissue excita-

tion. For the further clarification of the underlying mecha-

nisms, follow-up studies using single cell patch clamp studies,

supravital fluorescence microscopy, and pressure measure-

ments on whole isolated organs will be necessary and are

currently in preparation.
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complications more frequently than patients on placebo. Whereas 

40% of participants on placebo reported any kind of gastrointestinal 

disorder (nausea, diarrhea, vomiting, or dyspepsia), it were 43% of 

the patients receiving 0.5 mg fingolimod per day and 49% in those 

on 1.25 mg fingolimod per day.6 The pharmacodynamic basis of 

these treatment related events has not yet been elucidated.

The mechanism of action on the immune system and other organ 

systems is complex since FTY720 can either be phosphorylated to 

FTY720- P which acts as an agonist on S1PR, or it can act as a func-

tional antagonist to endogenous S1P by leading to internalization 

of	S1PR	or	by	inhibiting	sphingosine	kinase	1	(SPK1).7 Furthermore, 

FTY720	inhibits	phospholipase	A2	in	an	S1PR-	independent	pathway	
and acts as an antagonist on cannabinoid receptors.8,9 Five different 

S1PR subtypes exist, of which S1PR 1, 3, 4, and 5 have been unequiv-

ocally reported to be activated by FTY720- P.10 The downstream 

signaling of both S1PR- dependent and S1PR- independent pathways 

affects various elements that contribute to the control of smooth 

muscle	 function,	 among	 them	L-	type	 calcium	channels,	 rho-	kinase	
(ROK),	and	nitric	oxide	synthase	(NOS)	(for	a	review,	see11).

Different groups have studied the effects of S1P and FTY720 

on the contractility of vascular smooth muscle.12-16	 According	 to	
Spijkers et al., FTY720 causes contractions of carotid arteries in 

spontaneously hypertensive rats that were abolished by endothe-

lium denudation and cyclooxygenase (COX) inhibition.12	Very	 little	
is known about the effects of FTY720 on gastrointestinal smooth 

muscle.

A	study	on	isolated	cells	from	the	circular	portion	layer	of	rabbit	
gastric antrum demonstrated that S1P led to a biphasic contractile 

response that was mediated by S1PR1 and S1PR2.
17	Another	study	

on dispersed cells from cat esophagus reported that S1P caused an 

S1PR2 mediated contraction.18 Two studies reported modulatory 

effects of S1P and its analogs on spontaneous activity of cultured 

interstitial cells of Cajal (ICC).19,20

This study investigates the effects of FTY720 on gastrointes-

tinal	 smooth	muscle	 force.	 An	 ex	 vivo	model	 of	 smooth	muscle	
preparation from rats was used under basal conditions and with a 

depolarization	activating	L-	type	Ca2+ channels. To our knowledge, 

the actions of FTY720 on native isolated tissue preparations of 

gastric smooth muscle have not yet been studied. Gastrointestinal 

motility has been recognized over recent decades not to be a func-

tion of a single cell type but rather the result of a complex inter-

action between neurons, ICC, and myocytes.21 Thus, studies on 

intact tissue specimen are essential to predict and analyze the in 

vivo responses of drugs and mediators acting on gastrointestinal 

function.

2  | MATERIAL S AND METHODS

2.1 | Tissue preparation

Wistar albino rats of 200-  to 300- day- old (20 males, 16 females) 

were killed by decapitation after anesthesia according to German 

national law and the regulations and ethical standards of the 

University of Rostock. The whole stomach was excised and placed 

in	 a	 cold	physiological	 salt	 solution	containing	145	mmol	L−1	NaCl,	
4.5	mmol	L−1	KCl,	0.1	mmol	L−1 CaCl2,	1.1	mmol	L

−1	NaH2PO4, 1 mmol 

L−1 MgSO4,	0.025	mmol	L
−1	ethylenediaminetetraacetic	acid	(EDTA),	

5	mmol	 L−1 4- (2- hydroxyethyl)- 1- piperazineethanesulfonic acid 

(HEPES) (pH 7.4), stored at 4°C. The stomach was pinned to a Sylgard 

dish at the esophageal and duodenal endings. Fat and adhering tis-

sue were removed.

Muscle strips of 1 mm thickness were cut from the fundus in 

a circular direction, cutting perpendicular to the proximal part of 

the	 greater	 curvature	without	 opening	 the	 stomach.	 Afterward,	
the strips were suspended in cold physiological salt solution, teth-

ered to glass holders with one ending transferred into a vertical 

organ bath and finally tethered to a force transducer with the 

other ending.

The	organ	baths	were	filled	with	modified	Krebs-	Henseleit	buffer	
(112	mmol	L−1	NaCl,	4.7	mmol	L−1	KCl,	2.5	mmol	L−1 CaCl, 1.2 mmol 

L−1 MgCl2,	25	mmol	L
−1	NaHCO3,	1.2	mmol	L

−1	KH2PO4, 11.5 mmol 

L−1 glucose) and equilibrated with 95% O2 and 5% CO2 at a tempera-

ture of 36°C and a pH of 7.4. Isometric force was recorded using 

mechanoelectrical transducers coupled to a bridge amplifier (both 

World	Precision	 Instruments,	Sarasota,	FL,	USA),	 low-	pass	 filtered	
at	1	Hz,	and	digitized	by	a	PowerLab	8/32	at	100/s	(ADinstruments,	
Bella	 Vista,	 Australia).	 LabChart7	 (ADinstruments)	 and	 MSExcel	
(Microsoft,	Redmond,	WA,	USA)	were	used	for	the	further	process-
ing of the data.

2.2 | Procedure

The circular smooth muscle strips were tested for tone increases 

induced	by	FTY720	and	for	FTY720	induced	changes	 in	high-	K+- 

induced	contractions.	Strips	were	placed	in	Krebs-	Henseleit	buffer	
(Krebs	 solution)	 or	 in	 COX	 inhibitor	 (indomethacin	 10	μmol	 L−1) 
containing	Krebs	solution.	A	prestrain	of	3	mN	was	set	and	strips	
were then left for least 1 hour to ensure sufficient equilibration 

Key Points

• It is not known how FTY720, a drug approved for multi-

ple sclerosis, modulates native gastric smooth muscle 

function.

• FTY720 increases tone and contractions of fundus 

smooth	muscle.	Inhibiting	prostaglandin	or	NO	synthe-

sis enhances these effects. The effects of FTY720 de-

pend on Ca2+ entry and Ca2+ sensitization and on the 

activation sphingosine receptors.

• The results of this study raise the possibility that gastro-

intestinal complications in multiple sclerosis patients 

treated with FTY720 may be due to direct drug effects 

on gastrointestinal muscle.
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time	for	developing	their	specific	motor	pattern.	Afterward,	a	ref-
erence contraction was induced by increasing potassium concen-

tration	 in	 the	Krebs	 solution	by	50	mmol	L−1 (total concentration 

of	 K+:	 54.7	mmol	 L−1).	 All	 force	 changes	 observed	 during	 further	
measurements of contraction and tone refer to the amplitude of 

this	 first	K+-	induced	contraction.	After	 the	maximum	of	 contrac-
tion was reached, the organ bath solution was replaced by either 

fresh	 Krebs-	Henseleit	 buffer	 or	 another	 modified	 solution,	 de-

pending	 on	 the	 experiment.	 A	 Ca2+-	free	 solution	 (112	mmol	 L−1 
NaCl,	4.7	mmol	L−1	KCl,	3.7	mmol	L−1 MgCl2,	25	mmol	L

−1	NaHCO3, 

1.2	mmol	 L−1	 KH2PO4,	 11.5	 glucose,	 1	mmol	 L
−1	 EGTA)	 and	 a	

indomethacin-	containing	solution	supplemented	with	the	NOS	in-

hibitor	L-	NAME	were	used.
When	the	tone	had	stabilized	following	the	 initial	high-	K+ con-

traction and the successive washout step, either a first dose of 

FTY720	was	 added	 or	 the	 strips	were	 pretreated	with	HA-	1100/
JTE-	013/nifedipine	 followed	 by	 FTY720.	 In	 time	 control	 experi-
ments, double- distilled water (ddH2O) was added at time points and 

volumes identical to those added in experiments with using FTY20.

2.3 | Reagents

FTY720,	 indomethacin,	 Nω-	Nitro-	L-	arginine	 Methyl	 Ester	 hydro-

chloride	(L-	NAME),	nifedipine,	and	JTE-	013	were	from	Sigma	Aldrich	
(St.	 Louis,	MO,	USA).	HA-	1100	hydrochloride	 (hydroxyfasudil)	 and	
suramin	were	purchased	from	Tocris	Bioscience	(Ellisville,	MO,	USA).

Indomethacin was dissolved in DMSO, all other substances 

in ddH2O. Since nifedipine is highly photosensitive, all work steps 

and the measurements were performed under darkroom conditions 

using a sodium lamp for illumination.

2.4 | Data presentation and statistics

Changes in tone and contraction amplitudes were normalized to the 

first	K+- induced contraction of the sample to account for variabil-

ity	in	total	strength	between	individual	strips	(Figure	1).	As	a	refer-
ence value for the estimation of changes in tone, the mean force 

of the last 2 minutes prior to the first FTY720/ddH2O- application 

was determined. It was subtracted from the subsequent force data 

to give the changes in tone after the application of the substances. 

At	the	end	of	each	experiment,	a	second	reference	contraction	was	
induced	by	adding	KCl	as	described	above.	The	percentage	of	force	
observed	during	this	second	K+ application in relation to the first is 

designated as FTY720K50 or ddH2OK50, depending on whether it was 

evoked in the presence of FTY720 or vehicle.

Values	are	given	as	mean	±	SEM	of	mean.	For	statistical	testing,	
the Shapiro- Wilk test and the equal variance test were applied by 

using	 SigmaPlot	 13.0	 (Systat	 Software,	 San	 Jose,	California,	USA).	
For normally distributed values, the t test for independent samples 

was applied; otherwise, the Mann- Whitney U test for independent 

samples was used.

3  | RESULTS

3.1 | Effects of FTY720 on tone and high- K+ 

contractions under control conditions

When added to the organ bath after a defined period of equi-

libration and in the absence of any exogenous drugs, FTY720 

increased the tone of fundus strips significantly from a concen-

tration of 10 μmol	L−1 onwards (2.9% ± 2.1%, n = 11, P < .05). The 

F I G U RE  1 Extraction of numerical data from time- based isometric force measurements. The equations given next to the trace were 

used	to	calculate	the	readout	parameters	used	in	this	study.	The	maximal	isometric	force	for	both	high-	K+ contractions and for the FTY720 

effect was determined (max1-3).	The	stabilized	tone	(sbt)	was	taken	after	equilibration	following	the	first	high-	K
+ contraction. The sbt was 

then	subtracted	from	all	max-	values.	The	subsequent	FTY720	induced	changes	in	tone	and	the	second	high-	K+ contraction were normalized 

on	the	first	high-	K+ contraction and are given as respective %- values, ie, effect of 100 μmol	L−1 FTY = 100*ΔC2/ΔC1;	size	of	second	K
+ 

contraction = 100*ΔC3/ΔC1
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increase was even more pronounced at 100 
μmol	L−1 (8.9% ± 2.4%, 

n = 11, P < .05). The effects of cumulatively increasing [FTY720] 

in the bathing solution are depicted in the representative trace 

of	 Figure	2A.	 The	 increase	 in	 tone	occurred	with	 a	 delay	 of	 sev-

eral minutes and had a phasic component. Within the application 

interval of 20 minutes, the samples reached a constant plateau 

higher than the basal level. The observed effect was reversed 

after a washout. Samples treated with ddH2O instead of FTY720 

showed a decrease in tone over time (0.4% ddH2O:	−4.5%	±	2.5%,	
n = 9 and 1.3% ddH2O:	 −5.0%	±	2.7%,	 n	=	9).	 When	 compar-
ing FTY720 treated with ddH2O- treated muscle strips, [FTY720] 

10 μmol	L−1 increased the tone by 7% and [FTY720] 100 μmol	L−1 by 

14%	(sum	of	the	bars,	Figure	2B).	Figure	3A	shows	the	aggregated	
concentration-	contraction	data	of	measured	fundus	strips	in	Krebs	
solution	and	in	Krebs	solution	containing	1	μmol	L−1 indomethacin. 

The FTY720 effect did not saturate up to the highest concentra-

tion tested.

After	tone	had	stabilized	following	the	final	concentration	step	
to 100 μmol	 L−1 FTY720, a contraction was induced by increasing 

[K+] as described above. The observed contraction was not differ-

ent from that evoked in strips exposed to ddH2O instead of FTY720 

(FTY720K50: 77.5% ± 7.6%, n = 12; ddH2O K50: 89.3% ± 9.4%, n = 9, 

Figure 3B).

3.2 | Altered effects of FTY720 under conditions of 
COX inhibition

In the presence of the COX inhibitor indomethacin (10 μmol 

L−1), FTY720 retained its ability to increase tone (10 μmol	 L−1: 
15.7% ± 4.8%, n = 12, P < .01; 100 μmol	 L−1: 32.1% ± 7.7%, n = 12, 

P < .01) (Figure 4). The temporal pattern of drug responses was not 

changed	(Figure	4A).	In	samples	treated	with	ddH2O, tone decreased 

over time (0.4% ddH2O:	 −6.8%	±	4%,	 n	=	10	 and	 1.3%	 ddH2O: 

−8.8%	±	5.1%,	n	=	11)	(Figure	4B).	When	indomethacin	was	present	
in	the	bathing	solution,	high-	K+- evoked contractions in the presence 

of FTY720 were significantly stronger than time- matched vehicle 

controls (FTY720	K50: 96.8% ± 10.8%; ddH2O K50: 65.2% ± 4.5%; 

n = 9; P < .05) (Figure 3B).

In	contrast	to	the	enhancing	effect	of	indomethacin	on	high-	K+ 

contractions in the presence of FTY720, the time- matched vehicle 

control contractions were significantly weaker than those evoked 

in	 standard	 Krebs	 solution	 (standard	 Krebs	 solution:	 ddH2OK50 

89.3%	±	9.4%;	 indomethacin-	containing	 Krebs	 solution:	 ddH2OK50 

65.2% ± 4.5%; n = 9; P < .05). Furthermore, the arithmetic mean am-

plitude	of	high-	K+ contractions evoked in the presence of FTY720 

was higher with indomethacin in the bathing solution than in stan-

dard	Krebs	solution.	The	difference,	however,	failed	to	reach	signif-
icance	(standard	Krebs	solution	+	FTY720K50: 77.8% ± 7.6%, n = 12; 

indomethacin- containing solution + FTY720K50: 96.8% ± 10.8%, 

n = 9; P = .224, Figure 3B).

3.3 | FTY720 effects under conditions of 
NOS inhibition

The	 inhibition	 of	NO	 synthesis	 by	 L-	NAME	 abolished	 the	 gradual	
decrease in tone over time that was otherwise observed reliably. 

Compared with vehicle and time control experiments, tone dropped 

less	 and	 was,	 thus,	 higher	 in	 the	 presence	 of	 L-	NAME	 (control	
with ddH2O:	 −8.8%	±	5.1%;	 control	 with	 100	μmol	 L

−1	L-	NAME:	
−0.2%	±	1.4%,	n	=	8,	P < .05).

F I G U RE  2 FTY720	increases	tone	of	circular	gastric	fundus	strips	in	standard	Krebs	solution.	A,	Fundus	circular	smooth	muscle	strips	
in	standard	Krebs	solution	were	exposed	to	cumulatively	increasing	concentrations	of	FTY720.	A	representative	contractile	force	trace	
is	shown.	B,	Fundus	circular	smooth	muscle	strips	in	standard	Krebs	solution	were	treated	with	10	and	100	μmol	L−1 FTY720 or vehicle 

(ddH2O).	The	relative	isometric	force	is	expressed	as	the	ratio	of	the	first	high-	K
+- induced contraction
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In contrast to other experimental conditions, FTY720 added 

in	 the	 presence	 of	 L-	NAME	 caused	 a	 significant	 increase	 in	
tone already at a concentration of 1 μmol	 L−1 (indomethacin- 

containing	 solution	+	L-	NAME	+	1	μmol	 L−1 FTY720: 7.7% ± 1.5%, 

n	=	8;	 indomethacin-	containing	 solution	+	L-	NAME	+	ddH2O: 

−0.5%	±	1.1%,	 n	=	9;	 P < .05) (Figure 5). Tone with 1 μmol	 L−1 
FTY720 not only differed significantly from tone in time- matched 

vehicle	 control	 experiments	 in	 the	 presence	 of	 L-	NAME,	 but	
was also different from the tone seen with 1 μmol	L−1 FTY720 in 

indomethacin- containing solution (indomethacin- containing solu-

tion ± FTY720: 1.3% ± 1.4%, n = 11). This second difference was 

not observed at higher concentrations of FTY720. Furthermore, the 

second	K+-	induced	contraction	was	increased	with	NOS	inhibition	
(L-	NAMEK50: 190.6% ± 48.4%, n = 9, P < .05).	High-	K+ contractions 

in	 L-	NAME-	containing	 solution	 did,	 however,	 not	 differ	 between	

experiments	 with	 and	 without	 FTY720	 (L-	NAME	±	FTY720K50: 

131.8%	±	28.8%,	 n	=	6;	 L-	NAME	±	ddH2OK50: 190.6% ± 48.4%, 

n = 9, P = .79).

3.4 | FTY720 effects under conditions of reduced 
extracellular [Ca2+]

After	the	first	K+- induced contraction, the indomethacin- containing 

Krebs	 solution	 was	 changed	 to	 a	 modified,	 Ca2+-	free	 Krebs	 solu-

tion containing indomethacin 10 μmol	 L−1	 and	 EGTA	 1	mmol	 L−1. 
At	 least	2	washouts	with	 this	 solution	were	done	before	 continu-

ing with the next experimental steps. Under these conditions, nei-

ther FTY720 nor vehicle increased tone ([FTY720] 10 μmol	 L−1: 
−0.1%	±	0.5%,	 n	=	10;	 100	μmol	 L−1: 0.03% ± 0.5%, n = 10; 0.4% 

ddH2O: 0.5% ± 0.3%, n = 7; 1.3% ddH2O: 0.2% ± 0.1%, n = 7).

F I G U RE  3 A,	Concentration-	contraction	data	of	FTY720	in	standard	Krebs	solution	and	indomethacin-	containing	Krebs	solution.	Fundus	
circular smooth muscle strips with (n = 11) and without (n = 10) 10 μmol	L−1	indomethacin	in	the	Krebs	solution	were	exposed	to	increasing	
concentrations	of	FTY720.	B,	Effect	of	FTY720	on	the	second	K+-	induced	contraction	in	standard	Krebs	solution	vs	indomethacin-	
containing	Krebs	solution.	Fundus	circular	smooth	muscle	strips	in	indomethacin-	containing	Krebs	solution	and	standard	Krebs	solution	
were treated with 100 μmol	L−1 FTY720 or 0.4% resp. 1.3% ddH2O	followed	by	the	addition	of	50	mmol	L

−1	KCl

F I G U RE  4 FTY720 increases 

tone of circular gastric fundus strips 

in	indomethacin-	containing	Krebs	
solution.	A,	Fundus	circular	smooth	
muscle strips in indomethacin- containing 

Krebs	solution	were	treated	with	
increasing	concentrations	of	FTY720.	A	
representative contractile force trace is 

shown. B, Fundus circular smooth muscle 

strips	in	standard	Krebs	solution	were	
treated with 10 and 100 μmol	L−1 FTY720 

or ddH2O. The relative isometric force 

is	expressed	as	the	ratio	of	the	first	K+- 

induced contraction
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Strips treated with FTY720 and samples exposed to vehicle showed a 

week	contraction	after	KCl	application	in	Ca2+- free solution (FTY720K50: 

2.3% ± 0.5%, n = 10, P = .526 and ddH2OK50: 3.8% ± 2.5%, n = 7).

3.5 | FTY720 effects under conditions of L- type 
Ca2+ channel inhibition

The	 inhibition	 of	 L-	type	Ca2+ channels by nifedipine (0.1 μmol	 L−1) 
markedly reduced the FTY720 induced increase in tone (Figure 6) 

and	abolished	high-	K+-	induced	contractions	 (Figure	7).	After	appli-
cation of FTY720, tone increased significantly compared with time- 

matched vehicle controls ([FTY720]10 
μmol	 L−1: 3% ± 0.5%, n = 6; 

0.4% ddH2O: - 0.1% ± 0.05%, P < .01, n = 6; [FTY720] 100 
μmol	L−1: 

6.8% ± 1.2%, 1.3% ddH2O: 0.7% ± 0.4%, P < .01, n = 6). This increase 

was, however, significantly less than that observed in samples not 

treated with nifedipine (P < .01, Figure 6).

Although	 there	 was	 no	 K+- induced contraction in sam-

ples exposed to vehicle with nifedipine, samples treated with 

F I G U RE  5 The effect of FTY720 +  

L-	NAME	on	the	tone.	A,	Fundus	circular	
smooth muscle strips in indomethacin- 

containing	Krebs	solution	+	100 
μmol 

L−1	L-	NAME	were	treated	with	
increasing	concentrations	of	FTY720.	A	
representative contractile force is shown. 

B, Fundus circular smooth muscle strips in 

indomethacin-	containing	Krebs	solution	
and	indomethacin-	containing	Krebs	
solution + 100 

μmol	L−1	L-	NAME	were	
treated with 10 and 100 

μmol	L−1 FTY720. 

The maximal isometric force is expressed 

as	the	ratio	of	the	first	K+- induced 

contraction

F I G U RE  6 The effect of FTY720 +  

nifedipine on tone. Fundus circular 

smooth muscle strips in indomethacin- 

containing	Krebs	solution	pretreated	with	
[nifedipine] 0.1 μmol	L−1 were treated with 

[FTY720] 10 and 100 
μmol	L−1 or vehicle 

(ddH2O)
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FTY720 under the same conditions showed a small contraction 

after	KCl	application	 (FTY720	K50 5.1% ± 2.9%, n = 6, P = .167, 

Figure 7).

3.6 | FTY720 effects in the presence of sphingosine 
receptor antagonists

To verify the specificity of effects evoked by high concentrations 

of FTY720, we tested for interactions with the S1PR antagonists 

JTE-	013	 (S1PR2) and suramin (S1PR3). Suramin (10 μmol	 L−1) itself 

did not affect tone, whereas 1 μmol	L−1	JTE-	013	led	to	a	slight,	non-	
significant decrease in tone when added to indomethacin- containing 

Krebs	 solution.	 With	 both	 blockers,	 only	 a	 small	 increase	 in	 tone	
could	still	be	observed	after	FTY720	application	(JTE-	013	+		FTY720	
10 μmol	L−1: 1.6% ± 0.3%, n = 6 and 100 μmol	L−1: 5.9% ± 1.2%, n = 6; 

suramin ± FTY720 10 μmol	L−1: 4.3% ± 0.7%, n = 12 and 100 μmol	L−1: 
9.2% ± 1.7%, n = 12, P < .05	 for	 each;	Figure	8A).	The	amplitudes	of	
high-	K+- induced contractions did not differ between experiments with 

FTY720	and	S1PR	antagonists	(FTY720	+		JTE-	013K50: 78.9% ± 5.5%, 

n = 6 and FTY720 +  suraminK50: 75.4% ± 5.3%, n = 12) and those ob-

tained	with	FTY720	in	indomethacin-	containing	Krebs	solution	with-

out S1PR antagonists.

3.7 | FTY720 effects in the presence of 
ROK inhibitors

The	 inhibition	 of	 ROK	 by	 HA-	1100	 led	 to	 a	 decrease	 in	 tone	 of	
fundus	 circular	 smooth	 muscle	 strips	 (Figure	8B).	 No	 significant	
effect	of	HA1100	on	 the	K+- induced contraction was observed in 

indomethacin-	containing	 Krebs	 solution.	 The	 contractile	 effect	 of	
FTY720 was nearly nullified after preincubation with 10 μmol	 L−1 
HA-	1100.	 There	 was	 no	 significant	 difference	 between	 the	 data	
of FTY720 (10 μmol	L−1: 3.1% ± 1.8%, n = 6, P = .509 and 100 μmol 

L−1: 3.8% ± 1.2%, n = 6, P = .369) and the data of samples exposed 

to vehicle (0.4% ddH2O: 1.8% ± 0.8%, n = 9 and 1.3% ddH2O: 

F I G U RE  7 The	effect	of	FTY720+	nifedipine	on	K+- induced 

contraction. Fundus circular smooth muscle strips in indomethacin- 

containing	Krebs	solution	and	indomethacin-	containing	Krebs	
solution + 0.1 

μmol	L−1 nifedipine were treated with 100 
μmol 

L−1 FTY720 or 1.3% ddH2O followed by the addition of 50 mmol 

L−1	KCl.	Further	combined	experiments	with	0.1 
μmol	L−1 

nifedipine + 10 
μmol	L−1	HA-	1100	were	realized

F I G U RE  8 A,	The	effect	of	FTY720	+		sphingosine	receptor	antagonists	on	tone.	Fundus	circular	smooth	muscle	strips	in	indomethacin-	
containing	Krebs	solution	pretreated	with	[JTE-	013]	1	μmol	L−1 or [suramin] 10 

μmol	L−1 were treated with [FTY720] 10 and 100 
μmol	L−1 

or vehicle (ddH2O).	B,	The	effect	of	FTY720	+		HA-	1100	on	tone.	Fundus	circular	smooth	muscle	strips	in	indomethacin-	containing	Krebs	
solution	without	HA-	1100	and	pretreated	with	[HA-	1100]	10	μmol	L−1 were treated with [FTY720] 10 and 100 μmol	L−1 or vehicle (ddH2O)
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2.4% ± 1.0%, n = 6). The pro- contractile effect of FTY720 on the 

second	 high-	K+- induced contraction was not only blunted, it was 

even	 inversed	 by	HA-	1100:	With	 FTY720	 and	HA-	1100,	 the	 sec-
ond	 high-	K+	 contraction	 reached	 only	 half	 of	 the	 first	 K+- induced 

contraction (39.6% ± 8.3%, n = 6), which was significantly differ-

ent from the reaction of samples treated with FTY720 and vehi-

cle	 in	 indomethacin-	containing	 Krebs	 solution	 without	 HA-	1100	
(74.8% ± 7.4%, n = 6, P < .05).

4  | DISCUSSION

This study gives evidence that the immune modulator FTY720 in-

creases tone and depolarization- induced contractions of fundus 

circular smooth muscle strips. These results are in line with the 

finding that FTY720 causes an increase in intestinal motility and 

shortened transit times in vivo in a mouse model of Parkinson’s 

disease.22 They suggest that direct effects on smooth muscle may 

underlie the gastrointestinal side effects occurring with FTY720 in 

MS treatment.6

To our knowledge, the mechanism underlying the pro- contractile 

effects in native preparations of gastrointestinal smooth muscle 

has not been studied yet. For arterial vessels, it has been shown 

that FTY720, its metabolite FTY720- P, and its endogenous analog 

S1P interfere with the endothelial synthesis of prostaglandins and 

NO.12,16 From experiments using cultured intestinal smooth muscle 

cells, Dragusin et al. concluded that S1P causes the contractions on 

intestinal smooth muscle cells in an equal manner as in the vascu-

lar system, that is, by enhancing COX activity and expression.23 In 

fundus circular smooth muscle, inhibition of COX with indomethacin 

has previously been shown to reduce tone, indicating that constitu-

tive prostaglandin release has a pro- contractile net effect.24,25 Our 

finding	that	responses	to	high-	K+ were reduced in the presence of 

indomethacin is in line with these previous reports (Figure 3B).

In contrast to the findings in vascular smooth muscle, the FTY720 

induced increase in fundus muscle tone was still observable after 

COX inhibition. In fact, the effect was even stronger when compared 

with experiments without indomethacin. Furthermore, with COX in-

hibition,	high-	K+- induced contractions were significantly enhanced 

by	 FTY720.	 Apparently,	 constitutively	 released	 prostaglandins	 in-

hibit FTY720- induced contractions, since the FTY720 effect is en-

hanced after inhibiting prostaglandin synthesis. In addition, FTY720 

increases tone already at lower concentrations when COX is inhib-

ited. This increased sensitivity of smooth muscle to FTY720 may be 

relevant in patients on FTY720 taking COX- inhibiting drugs for an-

tithrombotic or analgesic treatment, since these could augment the 

gastrointestinal side effects of FTY720.

The most likely reason why our results on the role of COX and 

prostaglandins in mediating reactions of gastric tissue to FTY720 

differ from those reported on cultured smooth muscle cells seems 

to be that cell culture models fail to reproduce the complexity of 

different cell types and their interactions which is characteristic for 

native intestinal smooth muscle.

This fact is also relevant when studying interactions between 

FTY720	and	NO	signaling.	Our	results	corroborate	previous	reports	
that	NO	 is	 continuously	 released	 by	 the	 enteric	 nitrergic	 neurons	
of the rat fundus,26	since	an	inhibition	of	NO	synthesis	by	L-	NAME	
leads	 to	 an	 increase	 in	 tone	 and	 enhanced	 high-	K+- induced con-

tractions.	If	FTY720	interfered	with	constitutive	NO	synthesis,	this	
would offer an explanation for its pro- contractile effects. We tested 

this	by	blocking	NO	synthesis	with	L-	NAME	and	found	no	reduction	
of FTY720 effects. This virtually excludes that the tone increasing 

effects	 of	 FTY720	are	mediated	by	 reducing	NO	production.	 The	
fact that even lower concentrations (1 μmol	 L−1) of FTY720 pro-

duced	effects	when	NO	synthesis	was	blocked	can	be	attributed	to	
L-	NAME	inhibiting	constitutive	NO	release.

To elucidate the downstream signaling pathways mediating the 

contractile actions of FTY720, we studied the importance of Ca2+ 

influx and the Ca2+-	sensitization	through	the	ROK/Rho	pathway	for	
FTY720. In vascular smooth muscle, S1P- induced contractions have 

been reported to be highly dependent on extracellular Ca2+ con-

centration.27 Our results corroborate this dependence for FTY720 

induced contractions of fundus smooth muscle. Furthermore, we 

assessed the contribution of Ca2+	influx	via	voltage	operated	L-	type	
Ca2+	channels	(VOCC)	and	found	that	FTY720	induced	contractions	
were	significantly	reduced	by	the	specific	VOCC-	blocker	nifedipine.	
These findings are in line with data on the principal effects of nifed-

ipine in gastric fundus and on its inhibition of S1P and FTY720- P 

mediated effects in detrusor muscle.28,29

The fact that FTY720 induced contractions are to a large part 

mediated	by	opening	of	VOCC	implies	that	FTY720	 leads	to	a	de-

polarization of membrane potential. This may occur via potassium 

channel inhibition as it has been demonstrated to occur in fundus 

smooth muscle cells stimulated with acetylcholine or in vascular 

smooth muscle by S1P.30,31 Besides changing intracellular calcium 

levels by promoting calcium influx, FTY720 increases Ca2+ sensitiv-

ity	via	the	RhoA/ROK	signaling	pathway:	inhibition	of	ROK	with	HA-	
1100 lead to a decrease in the observed FTY720 effect on the tone 

of fundus circular smooth muscle. The interpretation of this result is, 

however, puzzling, since the effect of FTY720 is not just reduced but 

clearly	reversed	by	HA-	1100,	a	phenomenon	that	may	reflect	non-	
RhoA/ROK-	specific	kinase	inhibiting	effects.

According	 to	data	 from	 the	 literature,	S1P	acts	 through	a	dual	
pathway involving both Ca2+ influx and Ca2+ sensitization.11,19,23 

Zhou and Murthy reported that S1P induced contractions in isolated 

muscle	cells	were	mediated	through	the	RhoA/ROK	signaling	path-

way. In addition, they could show that this pathway involves the ac-

tivation of S1PR.17 It is established that FTY720 and its metabolite 

FTY720- P are potent agonists of S1P receptors as well.10 The affin-

ity to S1PR2	receptor	is	controversial.	Although	Brinkmann	et	al.	ex-
cluded, based on sphingosine kinase assays, FTY720 and FTY720- P 

as agonists of S1PR2, Sobel et al. assumed an interaction between 

FTY720 and S1PR2.10,32 Our results suggest that the FTY720- 

induced effect on the tone is partly mediated through S1PR2 inter-

actions, since blocking S1PR2 receptor leads to an 80% inhibition of 

the FTY720- induced increase in tone.
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Another	 receptor	 subtype	 that	 is	considered	 to	be	highly	 rele-

vant in S1P- mediated vasoconstriction is S1PR3.33 We used the S1P3 

inhibitor suramin to investigate the relevance of S1PR3 for the con-

traction of fundus smooth muscle cells. By blocking S1PR3, results 

similar to those of S1PR2 inhibition could be observed. In conclusion, 

both receptors seem to be involved in mediating the FTY720 on fun-

dus	smooth	muscle	tone.	Neither	S1PR2 nor S1PR3 are involved in 

the	effects	of	FTY720	on	the	high-	K+- induced contraction.

From the reported data, the question remains whether 

FTY720 itself or FTY720- P causes the observed effects. From 

receptor- affinity studies, it is known that FTY720- P activates 

S1PR1,3,4,5 with EC50 values in the nanomolar range10,34). In 

contrast, the affinity of non- phosphorylated FTY720 to S1PR is 

low (S1PR1,5) or seems to be lacking at all (S1PR2,3).34	 A	 direct	
S1PR2,3 activation by non- phosphorylated FTY720, therefore, 

seems rather unlikely. Considering that FTY720- P as the active 

compound,	the	time	required	for	SPK2- catalyzed phosphorylation 

of FTY720 would explain the delay in effect onset observed in 

the	present	study.	Although	the	activity	of	SPK2 in rodent intes-

tine has been reported to be low, it is known to have a steep con-

centration	dependency	 in	 the	micromolar	 range	 (Km = 24,1 μmol 

L−1 according to Billich et al.35). The concentration dependency 

of	 FTY720	 effects	 observed	 in	 our	 experiments	 (Figure	3A)	
may, therefore, reflect the higher dynamics of FTY720- P forma-

tion rather than the direct concentration dependent binding of 

FTY720 to S1PR. The highest plasma concentrations of FTY720 

that have been observed in vivo are in the nanomolar range with 

peak values occurring 8 hours after administration in mice and 

after 36 hours in humans.10,36,37 In vivo, the phosphorylation of 

FTY720 occurs in parallel with the slow absorption and leads 

to plasma concentrations of FTY720- P that exceed those of 

FTY720 and are suitable for S1P receptor activation.10 The rate 

of phosphorylation of FTY720 to active FTY720- P under the ex 

vivo conditions of our study is not known. It can rather be sup-

posed that the observed effects are caused by FTY720- P that is 

synthesized	by	SPHK2,	which	would	explain	 the	delay	 in	effect	
onset.	 Since	 the	 reported	activity	of	SPHK2	 in	 rodent	 intestine	
has been reported to be relatively low with a steep concentration 

dependency	in	the	micromolar	range	(Km	=	24.1	μmol	L−1 accord-

ing to Billich et al.35), it is likely that the concentration depen-

dency of FTY720 effects observed in our experiments reflects 

the higher dynamics of FTY720- P formation with subsequent re-

ceptor binding of FTY720- P rather than the direct concentration 

dependent	effects	of	FTY720	on	S1PR.	Another	consequence	of	
the slow absorption of FTY720 is that after ingestion, its con-

centration within the lumen of the stomach and the intestine can 

be expected to be significantly higher than the peak concentra-

tions measured later on in plasma after the drug has been diluted 

within the total body fluid volume.

Taken together, these considerations and the experimental re-

sults presented in this work show that FTY720 causes increases 

in gastric smooth muscle tone and contractility ex vivo. These ef-

fects may also underlie the gastrointestinal side effects observed 

in patients. The fact that COX inhibition increases tissue sensitivity 

to FTY720 may rise special interest toward intestinal complications 

in	 patients	 taking	 non-	steroidal	 anti-	inflammatory	 drugs	 (NSAIDs)	
for symptomatic treatment of pain that is a very frequent albeit 

formerly underestimated symptom of MS.38 Clearly, further stud-

ies are needed to clarify the active compound that is mediating the 

FTY720- induced contractions in this tissue.
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ABSTRACT

Background:  Data on the epidemiology and risk factors of altered gastrointestinal motility 
(AGIM) is virtually lacking for patients suffering from non-traumatic neurologic diseases and 
stroke. This study investigated whether patterns of AGIM differ between patients with stroke 
and other severe acute brain diseases.
Methods: Clinical records of stroke and non-stroke patients treated at a neurological intensive 
care unit (ICU) were reviewed at day 1–5 and at day 10 after admission. The data was analyzed for 
the course of enteral/parenteral nutrition and for and for signs and symptoms of gastrointestinal 
dysfunction. The study included data of 76 patients, 57 with stroke (stroke group, SG) and 19 
with other neurological diseases (non-stroke group, NSG).
Results: Basic demographic as well as clinical baseline characteristics and alimentation regime 
were similar in both groups. At least one sign of AGIM was seen in 33/57 (58%) SG and in 15/19 
(79%) NSG patients (P = 0.099). Regurgitation was significantly more frequent among patients 
from the NSG (P < 0.05). Subjects from the NSG also spent a higher proportion of time with at 
least one symptom of AGIM present (P < 0.05).
Conclusions:  For the first time, this study investigated the prevalence of AGIM in patients 
suffering from severe stroke. The prevalence of disturbed gastrointestinal function was found 
to be high in stroke patients, but was lower than in a group of non-stroke patients with similar 
general disease severity and baseline characteristics.

Introduction

Difficulties in establishing, maintaining, and expanding 
enteral nutrition in critically ill patients are associated 
with numerous medical and surgical complications, a 
prolonged stay at the intensive care unit (ICU), a delay 
in the onset of effective rehabilitation, and increased 
costs [1–3].

It is known that a wide variety of pathophysiological 
mechanisms contribute to clinical problems in enteral 
nutrition during critical illness (e.g. medications used 
for analgesia, sedation, or antibiotic therapy [4,5], blood 
glucose [6], or preexisting diabetes [7], for reviews, see 
[8–10]). Furthermore, nutrients and liquids adminis-
tered at inadequate and unnecessarily high quantities 
may per se contribute to the development of feeding 
intolerance and other complications [11]. In stroke as in 
any other underlying neurologic disease, alterations of 
the autonomic and enteric nervous system or of central 
nervous system structures add to the number of possi-
ble causative mechanisms of gastrointestinal impairment 
(GII) [12–16].

Despite the generally accepted relevance of nutri-
tional matters in daily clinical routine for virtually all 
patients suffering from critical illness, only few studies 

have investigated non-surgical and non-trauma patients 
and, to the authors’ best knowledge, except for one sin-
gle case report, there is no study that has assessed the 
complications of specific feeding strategies with special 
regard to stroke patients [13]. The purpose of this study 
was to assess the clinical epidemiology and risk factors of 
gastrointestinal disturbances within a sample of patients 
from a non-surgical neuro-ICU.

Methods

Study population

The study retrospectively reviewed clinical records of 
the intensive care unit at the Department of Neurology, 
University of Rostock, between November 2013 and 
March 2015. The database contained 80 patients who 
met main inclusion criterion of at least 14 days of con-
tinuous intensive care treatment within the stated period 
of time. Thorough revision revealed inconsistencies 
regarding the documentation of nutrition and medica-
tions in the clinical files of four patients that were thus 
excluded from further analysis. Of the remaining 76 
patients, there were 19 subjects primarily suffering from 
other conditions than acute stroke. All of these patients 
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were included in this analysis and will subsequently be 
designated as the non-stroke group (NSG). Fifty-seven 
patients with an acute vascular event as their principal 
diagnosis were defined as the stroke group (SG).

Data collection and analysis

SG included patients with ischemic and hemorrhagic 
stroke as well as subarachnoid hemorrhage. NSG 
included patients suffering from any other acute neu-
rological conditions apart from stroke.

We collected the following information from the 
patients’ files: gender, date of birth, duration of treat-
ment, main diagnosis, Acute Physiology And Chronic 
Health Evaluation II (APACHE II), in case of stroke 
severity assessment according to the National Institute 
of Heath Stroke Scale (NIHSS) at the time of admis-
sion, presence of polyneuropathy, diabetes mellitus, 
presence of SIRS or sepsis, and health outcome (dis-
charge to home, to another hospital, rehabilitation, or 
death).

To reflect the occurrence and severity of symp-
toms related to altered gastrointestinal function, 
we defined a measure representing the cumulative 

alteration of gastrointestinal motility (CAGIM) as a 
numeric value. Signs and symptoms integrated in the 
CAGIM were nausea, nasogastric tube regurgitation 
(defined as backward flow of gastric contents greater 
than 50  ml/8  h via the nasogastric tube), vomiting, 
constipation (four subsequent days without defeca-
tion after admission), and application of a prokinetic 
substance (erythromycine, domperidone, metoclopr-
amide). Whenever one of the stated conditions was 
met by a patient, one point was assigned and added to 
the previous number. Thus, the ‘CAGIM’ could take 
values ranging from 0 to 5. The symptom ‘diarrhea’ 
was not included in the score since the available data 
from patient records did not allow for an unequivo-
cal identification of patients suffering from or being 
untroubled from diarrhea.

The daily amounts of formula intake, total enteral 
fluid intake, and total volume of intravenous infusions 
were gathered to capture potential group differences in 
the administered nutrition that may account for differ-
ences in motility disorders.

Statistical analysis

The database construction and statistical analy-
sis were performed with LibreOffice Calc 3.6 (The 
Document Foundation, Berlin, Germany), MS Excel 
2010 (Microsoft, Redmond, WA, U.S.A.), and SPSS 20 
(IBM, Armonk, NY, U.S.A.). For quantitative data, sta-
tistical significance was analyzed with the independent 
two-sample t-test for equal variance, qualitative data 
were analyzed using the χ²-Test. Significance was set at 
P < 0.05 for both tests. The power achieved by the statis-
tical tests was calculated post hoc using G*Power V3.1.9 
(University of Dusseldorf, Germany).

Ethics statement

This study was performed as a part of a research project 
concerning stroke and gastric motility disorders. The 
project was approved by the University Medicine Ethics 
Committee of the University of Rostock and assigned 
with the number A-2013-0025. Data are handled in 
accordance with national German law and the institu-
tional standards of the University of Rostock.

Results

Study population

Patient demographics and basic clinical parameters 
of the whole sample, for the SG and NSG are given in 
Table 1. Both groups were comparable with respect 
to age, prevalence of diabetes mellitus, prevalence of 
systemic infection/inflammation, and general disease 
consciousness. Patients of the NSG had a significantly 
longer duration of their ICU stay and were dependent on 
mechanical ventilation over a longer proportion of time. 
NSG patients tended to have a slightly higher general 
disease severity as reflected by the APACHEII-score. Six 
of the stroke patients died during the further course of 
treatment, whereas four patients of the NSG deceased 
(10.5 vs. 21%, P = 0.24).

Details about the diseases found in SG and NSG are 
given in Table 2. Thirty patients of the SG suffered from 
left, 6 from right hemispheric or bilateral lesions, 7 from 
bilateral pathology, and 12 from infratentorial ischemia 
or hemorrhage. The mean NIHSS of SG patients was 

Table 1. Demographic and clinical characteristics of the whole patient sample, sg and Nsg.

Note: The P-value is given as a measure of clinical differences and similarities between sg and Nsg.

SG + NSG (N = 76) SG (N = 57) NSG (N = 19) P-value Achieved power (1 − β)

Female 33% (25) 28% (16) 47% (9) 0.121 0.62
Mean age, years (sD) 70.7 (11.5) 71.4 (11) 71.6 (12) 0.949 0.05
Mean duration of treatment, days (sD) 20.5 (7.8) 18.9 (5.8) 26.2 (10) 0.0001 0.95
% of days with mechanical ventilation within observa-

tion period
47% 39% 68% 0.0001 0.99

Diabetes mellitus 51% (39) 46% (26) 58% (11) 0.35 0.31
sirs or sepsis 62% (47) 60% (34) 58% (11) 0.141 0.99
Mean aPache ii (sD) 16.1 (7.5) 15.2 (7) 19.1 (8.4) 0.05 0.599
Mean gcs (sD) 9 (4.6) 9.5 (4.5) 7.9 (4.7) 0.176 0.37



NEUROLOGICAL RESEARCH   961

14.2 ± 9.7. Patients with hemorrhagic stroke had lower 
mean NIHSS values than those with ischemic stroke 
(NIHSS 10.6 ± 8.4 vs. 16.8 ± 10; P = 0.03). No signif-
icant differences could be detected in NIHSS scores 
between left- and right-sided stroke or between supra- 
and infratentorial stroke.

Gastrointestinal impairment

Signs and symptoms of impaired gastrointestinal func-
tions indicated by an CAGIM greater than 0 at any time 
point were seen in 48 out of the 76 observed subjects 
(63%) and tended to be more frequent in non-stroke 
patients (Table 3, Figure 1).

The proportion of days within the observation period 
at which a CAGIM > 0 was observed was significantly 
higher in the NSG. In the NSG, the proportion of days 
with observed regurgitation in patients supplied with a 

feeding tube or with vomiting in patients without a tube 
was significantly increased (Table 3).

There was a significant correlation between admin-
istration of opioid analgesics or noradrenaline and the 
occurrence of gastrointestinal dysfunction. On days with 
opioid administration, there was an increased probabil-
ity for a CAGIM-score greater than zero within the total 
sample and the SG, but not the NSG (total sample: 49% 
with vs. 24% in patients without opioids, OR 2.03, 95%CI 
1.30–3.20, P = 0.0017; SG: 47% with vs. 21% in patients 
without opioids, OR 2.5, 95%CI 1.34–3.79, P = 0.0019; 
NSG: 54% with vs. 50% in patients without opioids, OR 
1.07, 95%CI 0.41–2.81, P = 0.88). Feeding tube regurgita-
tion was associated with opioid application in SG and the 
total sample (total: 27% with vs. 6.1% in patients without 
opioids, OR 4.4, 95%CI 1.29–15.23, P = 0.011; SG: 22% 
with vs. 4.8% in patients without opioids; OR 4.6, 95%CI 
1.01–20.83, P = 0.03; NSG: 38% with vs. 3.1% in patients 
without opioids, OR 3.05, 95%CI 0.35–27.48, P = 0.29). 
Patients receiving noradrenaline had an increased risk 
to develop any kind of GI-symptom, again in the SG and 
over the whole sample (total: 58% with vs. 27% without 
noradrenaline, OR 2.2, 95%CI 1.42–3.35, P = 0.0003; SG: 
57% with vs. 22% without noradrenaline, OR 2.2, 95%CI 
1.52–4.35, P = 0.0004; NSG: 59% with vs. 49% without 
noradrenaline, OR 1.22, 95%CI 0.56–2.64, P = 0.61).

The prevalence of altered motility among patients 
was also correlated with blood glucose levels. In patients 
with at least one symptom, blood glucose levels were 
significantly increased when the whole sample and 
the SG were analyzed, whereas in the NSG, a trend 
without significance was seen (total sample: 11.2 ± 4.5 
in patients with CAGIM  >  0 vs. 8.9  ±  6.2  mmol/l in 
patients with CAGIM  =  0, P  <  0.001; SG: 11.2  ±  4.4 
in patients with CAGIM  >  0 vs. 8.9  ±  6.2  mmol/l in 
patients with CAGIM  =  0, P  =  0.002; NSG: 12  ±  4.8 
in patients with CAGIM > 0 vs. 10.2 ± 6.9 mmol/l in 
patients with CAGIM = 0, P = 0.14). Among the single 
parameters of dysmotility, blood glucose levels corre-
lated significantly with the occurrence of regurgitation 
in the total sample, SG and NSG (total sample: 12.1 ± 5 
in patients with vs. 9.2 ± 5.9 mmol/l in patients with-
out regurgitation, P = 0.002; SG: 12.1 ± 4.7 in patients 

Table 2.  Distribution of stroke patterns and non-vascular dis-
eases within the stroke group (sg) and non-stroke group (Nsg).

Note: Mca — middle cerebral artery, Pca — posterior cerebral artery, 
aiDP — acute inflammatory demyelinating polyneuropathy.

Diagnosis

stroke group (57)
•  ischemic (30)
▪  hemispheric infarction (20)

•  Mca (19)
○  right (2)
○  left (13)
○  mixed (4)

•  Pca (1)
▪  Thalamic infarction (1)
▪  Brainstem infarction (9)

•  hemorrhagic (27)
▪  intracerebral, supratentorial (20)

•  right (4)
•  left (14)
•  mixed (2)
▪  intracerebral, infratentorial (3)
▪  subarachnoid (4)

Non-stroke group (19)
•  status epilepticus (12)
•  hypoxic brain damage (2)
•  aiDP (3)
•  Meningoencephalitis (1)
•  epidural hematoma (1)

Table 3. Prevalence of clinical signs and symptoms of gastrointestinal impairment.

Notes: *only for days at which the patient was supplied with a gastric or nasogastric feeding tube ** only for days without mechanical ventilation *** only 
for days at which patients were not supplied with a nasogastric or gastric tube **** only days one to five were considered since information on the tenth 
day does not allow for classification constipated/non-constipated. odds ratio < 1 indicates lower probability of respective complication to occur in patients 
from stroke group (sg) compared to patients from the non-stroke group (Nsg). cagiM = cumulative alteration of gastrointestinal motility, see methods 
section for details.

Symptom SG NSG Odds ratio 95% confidence interval P-value Achieved power (1 − β)

cagiM > 0 33/57 (58%) 15/19 (79%) 0.37 0.11–1.24 0.099 0.75
Patients with regurgitation at 

any time*
12/41 (29%) 11/18 (6%) 0.26 0.08–0.84 0.021 0.92

Days with cagiM > 0 86/342 (25%) 40/114 (35%) 0.62 0.39–0.98 0.039 0.9
Days with regurgitation* 23/176 (13%) 23/86 (27%) 0.411 0.22–0.79 0.006 0.98
Days with nausea** 19/205 (9%) 2/37 (5%) 1.79 0.40–8.00 0.442 0.36
Days with vomiting*** 23/166 (14%) 8/28 (29%) 0.40 0.16–1.02 0.049 0.95
Days on prokinetics 24/342 (7%) 13/114 (11%) 0.586 0.28–1.20 0.194 0. 44
Patients with constipation**** 17/57 (30%) 9/19 (47%) 0.472 0.16–1.37 0.163 0.56
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intake between SG and NSG. Without this correction, 
formula intake of the NSG significantly outweighs that 
of the SG (307 ± 414 ml vs. 219 ± 365 ml, P = 0.03). 
After correcting for the feeding tube state of the single 
patients, the difference between both groups decreases 
and is not significant any more at any time point  
(Table 4 and Figure 2).

In line with this finding, both groups showed nearly 
identical ratios of the mean daily fluid delivered via the 
parenteral route and the sum of enterally and intra-
venously delivered fluid over the whole observation 
period. In patients with impaired oral food intake of 
whatever cause, the enteral energy delivery achieved at 
day 5 exceeded 1000 kcal in only one NSG and four SG 
patients (Table 4).

Discussion

Our findings indicate that stroke patients do not have an 
increased risk of developing clinically relevant gastro-
intestinal motility impairment when compared to other 
critically ill patients with neurologic diseases.

Early enteral nutrition is generally recommended in 
intensive care patients with and without stroke and has 
been shown to reduce complications [1,18–23]. Patients 
included in our study received alimentation according 
to current guidelines with respect to overall energy, 
nutrient composition, and total fluid volume. Over the 
last years, some clinical studies found that very early 
enteral nutrition might not be advantageous in criti-
cally ill patients in general and also in comatose stroke 
patients [24–26]. On the basis of the evidence available at 
the time this study was conducted, enteral nutrition was 
started with low amounts of tea or water and formula 
added later on when patients did not show regurgita-
tions, diarrhea, or severe shock.

Following the common definition (e.g. ‘Feeding intol-
erance is present if at least 20 kcal/kg BW/day via enteral 
route cannot be reached within 72 h of feeding attempt’ 
[27]), ‘feeding intolerance’ was thus a frequent condition 
within the study population irrespective of the under-
lying disease. This fact underlines the severity of illness 
and GI-dysfunction in both groups.

Despite the similarities between groups regarding 
severity of disease and applied alimentation, signs and 
symptoms differed between both groups within the 
early observation period between day 1 and 5, which 
were not detectable at day 10 anymore. Over the whole 
period, 57% of the stroke and 79% of the non-stroke 
patients suffered from at least one type of gastrointesti-
nal symptom at least on one day (Table 3). Comparing 
the proportion of days with and without symptoms in 
both groups yielded a highly significant preponderance 
of GI-disturbances in the non-stroke group.

Besides the dependence on stroke or non-stroke, 
symptoms also correlated with parameters reflecting 
general disease severity and treatments with potential 

with vs. 9.3 ± 5.9 mmol/l in patients without regurgi-
tation, P = 0.023; NSG: 13.4 ± 5.4 in patients with vs. 
10.2  ±  6.45  mmol/l in patients without regurgitation, 
P = 0.03).

Time course and characteristics of alimentation

Dysphagia and impaired consciousness in the context 
of severe neurological disorders were the relevant indi-
cations for enteral alimentation of patients via a gas-
tric or nasogastric feeding tube in both groups. In all 
conscious patients, a swallowing test according to the 
Gugging Swallowing Screen protocol (GUSS) was con-
ducted to decide whether a nasogastric tube was indi-
cated or not [17]. When summing up the days observed 
within the relevant time period for all patients of both 
groups, it turned out that subjects from the NSG were 
clearly more dependent on alimentation via a feeding 
tube (75% vs. 51%, P < 0.0001). Only days at which a 
patient of either group was supplied with a feeding tube 
were included in the analysis of differences of formula 

Figure 1.  Time course of gastrointestinal impairment in 
patients that were unable to swallow. cumulative alteration of 
gastrointestinal motility (cagiM) was defined according to the 
symptoms of disturbed gi function as described in the section 
‘gastrointestinal impairment’ for patients of the stroke group 
(sg) and the non-stroke group (Nsg).

Figure 2. Differences in mean enteral formula intake within the 
observation period between patients of the stroke group (sg) 
and the non-stroke group (Nsg). only patients supplied with a 
feeding tube were included. error bars depict standard error of 
mean.
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most frequently around the third day of hospitalization. 
Until day two, the incidence of AGIM is actually even 
lower than in patients suffering from other severe dis-
eases. Monitoring of gastric function and — if indicated 
— prokinetic treatment and slowing down the rate of 
daily formula application should be considered around 
this time. Further systematic studies on the interrelation 
of early enteral alimentation and gastrointestinal distur-
bances are highly warranted to establish a fundamental 
for adequate feeding strategies and avoiding harm that 
may be caused by inadequate alimentation in the early 
phase of severe stroke.

Geolocation information

The patients included in this study came from the city 
of Rostock and its surroundings in the federal state of 
Mecklenburg-Vorpommern.
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adverse effects on the intestine. For the whole study 
sample, noradrenaline application and elevated blood 
glucose were associated with an increased risk for feed-
ing tube regurgitation. In addition, opioids increased the 
combined risk for developing any type of AGIM.

Limitations of this study include the rather small 
patient number, the heterogeneous disease severity in 
the SG when compared to the NSG as reflected by the 
higher proportion of patients receiving mechanical ven-
tilation and complete gastric tube feeding in the latter 
as well as the strong preponderance of supratentorial 
strokes. The small sample size was addressed by choos-
ing appropriate statistical measures, but made it impos-
sible to detect small- and medium-sized effects as well as 
differences within subgroups of the SG regarding the lat-
eralization, localization, and size of lesions. This aspect is 
of particular interest and should be addressed in future 
studies, since a growing body of evidence supports a role 
of localization for the development of autonomic dys-
function [12]. Nevertheless, despite the small sample size 
and the accordingly low-power, significant differences 
between stroke and non-stroke patients were detected.

Besides the finding that stroke patients in general 
seem to have no relevantly increased risk of developing 
AGIM when compared to other patients on the neuro-
logic ICU, the practically most important result of this 
study addresses the time point on which stroke patients 
develop GI-disturbances. Our data indicate that this is 

Table 4. characteristics of clinical nutrition for the study population.

Notes: Values are given as the arithmetic mean of intake over the indicated time period. *only for patients supplied with a gastric or nasogastric feeding 
tube.

Stroke (N = 57) Non-stroke (N = 19) P-value Achieved power (1 − β)

Nutrition
 % of time with nasogastric tube (days) 51 (176/342) 75 (86/114) <0.001 0.999
 % of patients with feeding tube day 1 23 (13/57) 32 (6/19) 0.44 0.33
 % of patients with feeding tube day 2 44 (25/57) 79 (15/19) 0.008 0.99
Mean daily enteral*
 Formula intake, all days *, ml (sD) 315 (404) 339 (414) 0.617 0.12
 Formula intake day 1–5*, ml (sD) 329 (339) 345 (351) 0.750 0.09
 Formula intake day 1+2*, ml (sD) 177 (240) 146 (208) 0.628 0.12
 Formula intake day 3+4*, ml (sD) 311 (291) 416 (348) 0.123 0.44
 Formula intake day 10*, ml (sD) 688 (530) 639 (575) 0.753 0.11
 Water intake, all days *, ml (sD) 332 (256) 337 (233) 0.868 0.07
 Total fluid intake, all days, ml (sD) 2415 (1509) 2605 (1421) 0.207 0.28
 energy intake, all days *, kcal (sD) 354 (420) 350 (413) 0.936 0.05
 energy intake day 5* kcal (sD) 588 (460) 476 (516) 0.407 0.16
 energy intake day 10*, kcal (sD) 716 (516) 661 (568) 0.715 0.16
Mean daily intravenous
 Volume intake, all days, ml (sD) 2291 (1223) 2546 (1168) 0.051 0.63
 [%] of total energy intake, all days (sD) 67 (33) 73 (30) 0.071 0.62
 [%] of total energy intake day 1+2 (sD) 75 (35) 81 (31) 0.346 0.26
 [%] of total energy intake day 3+4 (sD) 69 (31) 74 (25) 0.382 0.18
 [%] of total energy intake day 10 (sD) 52 (33) 58 (39) 0.553 0.15
Mean [%] of enteral from total fluid intake
 day 1–5 (sD) 26 (23) 24 (24) 0.492 0.44
 day 1+2 (sD) 23 (23) 21 (24) 0.449 0.17
 day 3+4 (sD) 24 (23) 23 (24) 0.934 0.07
 day 10 (sD) 28 (21) 25 (22) 0.495 0.18

36 (23) 34 (23) 0.817 0.10
No. of patients reaching enteral energy delivery of at least 1000 kcal 

at
 Day 5** 4/35 1/40 0.563 0.37
 Day 10** 7/40 4/18 0.671 0.40
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Introduction
Several pathophysiological conditions are known to pro-

mote alterations of gastrointestinal (GI) motility and 

malnutrition in the critically ill [1]. Among these are 

lesions of the central, the autonomic, the enteric, and the 

somatic nervous system. Nevertheless, rather few stud-

ies have addressed the hypothetical interdependence 

between neurological and GI complications in the criti-

cally ill [2, 3].

Patients with critical illness neuromyopathy (CINM) 

are commonly exposed to risk factors of GI dysfunction 

[4]. We hypothesize that CINM and intensive care unit-

acquired weakness (ICUAW) might be independent risk 

factors for GI dysmotility in critically ill patients.

Methods
Data were derived from a current prospective observa-

tional study including patients ≥ 18 years with a sequen-

tial organ failure assessment (SOFA) score ≥ 8 on three 

consecutive days within the first five days after intensive 

care unit (ICU) admission by analyzing medical reports 

for parameters related to nutrition and GI function (Clin-

icalTrials.gov: NCT02706314, local ethics board identi-

fier A 2016-0016). The study protocol is summarized in 

Fig. 1.

Assessment of Early Critical Illness Neuromyopathy 

(eCINM) and Intensive Care Unit: acquired Weakness 

(ICUAW)

On study day 3 and 10, electroneurography (ENG) was 

performed by recording compound motor action poten-

tials (CMAP) from the abductor digiti minimi (ADM) 

and the extensor digitorum brevis (EDB) muscles and 

sensory nerve action potentials (SNAP) from radial and 

sural nerves. A CINM-typical alteration was stated when 

CMAP amplitude was below 4  mV and SNAP ampli-

tude was smaller than 7.5  µV for the radial and 10  µV 

for the sural nerve. When less than four of the record-

ing sites gave amplitudes above the stated cutoff values, 

the patient was classified early CINM (eCINM) positive. 

ICUAW was diagnosed if the Medical Research Council 

sum score (MRCSS) was < 48 points [5]. When MRCSS 

could not be assessed the ICUAW status was stated based 

upon neurological examination and second ENG (Fig. 1).

Assessment of GI function and Clinical Nutrition

Over 14 days, we analyzed data on swallowing function 

assessed by a fiberoptic endoscopic swallowing evalua-

tion (FEES), peroral nutrient supplementation, the extent 

of calories delivered via a feeding tube and the duration 

of feeding tube dependence, the gastric residual volume 

(GRV), and the frequency of bowel movements. To esti-

mate confounding effects, plasma glucose concentration, 

and administered doses of opioids, laxatives and proki-

netic drugs were analyzed. Measurements of GRV were 

standardized according to local nursing guidelines with 

nasogastric tubes all of the same type and diameter.*Correspondence:  robert.patejdl@uni‑rostock.de 
2 Oscar Langendorff Institute of Physiology, University Medical Center 

Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
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Statistics

Statistics were done with MS-Excel 2010 (Microsoft, 

Redmond, WA, USA) and IBM SPSS Statistics (ver-

sion 25, Chicago, IL, USA). According to the distribu-

tion of data (using Shapiro–Wilk test), Student’s t test or 

Mann–Whitney test was used for continuous variables. 

Chi-square test or Fisher’s exact test was used for cat-

egorical variables. Kendall’s τ was calculated in bivariate 

correlations. For nonparametric analysis, we used partial 

rank correlations, and for two variables, a confounder 

corrected τ (τconfounder) was calculated. Statistical signifi-

cance was considered at p < 0.05.

Results
Patient Demographics and Baseline Parameters

From 7912 patients screened initially, 30 of those (28 sur-

gical and 2 non-surgical) that had been enrolled in the 

original trial also met the additional criteria of this study 

(Fig. 1). At day 3, 17 patients were classified eCINM+ and 

13 eCINM− according to ENG findings. With regard to 

the MRCSS at day 10 and the neurological examination, 

16 patients were classified ICUAW+ and 14 ICUAW−. 

Irrespective of the classification, the different study 

groups were comparable in demographics and clinical 

baseline characteristics listed in Table 1, except for higher 

initial APACHE II, SOFA, and mNUTRIC scores in the 

group of patients classified as ICUAW+ at day 10.

Clinical Nutrition, Motility, Laxative and Prokinetic 

Treatment in Relation to Neuromuscular Dysfunction

Results with regard to nutrition and GI motility are listed 

in Table  1. For all formed groups, the mNUTRIC score 

was > 4 and significantly higher in ICUAW+ patients, 

indicating high-risk for malnutrition. Concordantly, 

within 14  days both ICUAW+ and eCINM+ patients 

had fewer days with oral intake. Peroral alimentation 

was significantly reduced for almost all study days in 

ICUAW+ patients and at study day 5 in eCINM+ patients 

(Fig.  2a). Patients with ICUAW were longer dependent 

on nasogastric tubes and received more calories via tube 

feeding. Furthermore, none of the ICUAW+ patients 

received normal diet by day 14.

Mean daily GRV differed significantly in relation to the 

eCINM status. In ICUAW− patients, GRV was higher 

within the first seven days, whereas it tended to be lower 

in this subgroup from day 10 onwards. In contrast, mean 

GRV in eCINM+ patients was almost constantly equal or 

higher than in eCINM− patients. By individually analyz-

ing days on mechanical ventilation, significantly more 

ICUAW+ patients needed nasogastric tube feeding than 

patients without ICUAW and the GRV was still higher 

in eCINM+ patients. Bowel movements were more fre-

quently detected in ICUAW+ patients, but reduced in 

eCINM+ patients by analyzing days with intubation.

The duration of laxative treatment with lactulose 

and sodium picosulfate was significantly higher in the 

ICUAW+ group (lactulose: given on 63% of observation 

days in ICUAW+ patients vs. 40% in ICUAW−; sodium 

picosulfate: ICUAW+ : 57%, ICUAW−: 34%, p < 0.001 for 

both).

Plasma Glucose, Opioids, and Narcotics in Relation To 

Neuromuscular Dysfunction

Mean daily plasma glucose concentrations were signifi-

cantly higher in ICUAW+ and eCINM+ patients. The 

MRCSS, but not the number of ENG alterations, cor-

related significantly with the mean plasma glucose, but 

missed statistical significance when corrected for enteral 

nutrition in partial correlations (Fig. 2b–d).

Fig. 1 Selection of patient sample and classification of patients as 

eCINM± and ICUAW± . a: Exclusion criteria were: any pre‑existing 

neuromuscular impairment or gastrointestinal disease of any kind, 

gastrointestinal surgery prior to ICU admission or within the following 

14 days after admission to the ICU, high‑dose glucocorticoid treat‑

ment (i.e., more than 300 mg of methylprednisolone or equivalent 

doses of other steroids), prior treatment at another ICU for more than 

24 h, missing informed consent by the patient or a legal representa‑

tive, participation in another clinical trial or expected imminent death. 

b: MRCSS is assessed by summing up strength scores graded 0–5 

from each of 3 muscle groups of each extremity tested by instructing 

the patient to forcefully abduct the shoulder, flex the elbow, extend 

the wrist, flex the hip, extend the knee, and dorsiflex the foot. c: 

Eligibility for MRCSS testing was stated when a patient had to follow 

standardized requests: “Open and close your eyes”; “Look at me”; 

“Open your mouth and put out your tongue”; “Nod your head”; “Raise 

your eyebrows until I have counted to five”. d: see “methods” section 

for applied electrophysiological criteria of eCINM. e: Whenever MRCSS 

testing was not possible, patients were also classified ICUAW on day 

10 if neurological examination revealed a symmetric flaccid palsy and 

a loss of deep tendon reflexes in all tested limb muscles



ICUAW+ and eCINM+ patients received opioids more 

frequently, but there was no difference in the treatment 

duration with sufentanil (most frequently administered 

opioid on 37% of all days). Patients without eCINM 

tended to receive sufentanil for a longer period. Admin-

istered sufentanil doses were significantly lower in 

ICUAW+  and eCINM+ patients.

Neither bivariate nor partial correlations (corrected 

for GRV) between the mean number of days at which 

patients received opioids and the number of altered 

SNAP/CMAP sites reached significance (Fig.  2e). The 

same applied to the correlation between mean GRV and 

ENG alterations (corrected for days with opioids, Fig. 2f ). 

In contrast, single-day GRV was correlated with the num-

ber of the patients’ ENG alterations, even if corrected 

for sufentanil effects (Fig. 2g). There were no group dif-

ferences in administered doses and application times of 

other opioids or narcotics.

Table 1 Study population characteristics and surrogate parameters of clinical nutrition and gastrointestinal function

Bold values indicate statistical significance

Data presented as sum or mean ± SD. Parameters indicated with “*” are assessed only for days at which patients were supplied with a feeding tube. **Number of 

patients with FEES-confirmed diagnosis of swallowing disorder. Patients were tested when were compliant, able to sit upright and follow specific commands

APACHE II acute physiology and chronic health evaluation score II as assessed at ICU admission, eCINM early critical illness neuromyopathy, GRV gastric residual 

volume, ICUAW  intensive care unit-acquired weakness, mNUTRIC modified nutrition risk in critically ill score, MRCSS Medical Research Council sum score, SOFA 

sequential organ failure assessment score

Parameters ICUAW+ ICUAW− P value eCINM+ eCINM− p value

Study population characteristics

 Patient number (n) 14 16 N/A 17 13 N/A

 MRCSS day 10 (n = 28) 29.3 ± 13.0 54.9 ± 4.6  < 0.001 40.6 ± 13.7 46.2 ± 18.8 0.38

 Age (years) 68.2 ± 11.3 59.8 ± 15.5 0.19 67.2 ± 11.9 66.8 ± 15.9 0.94

 Female 7/14 6/16 0.49 9/17 2/13 0.06

 APACHE II 26.1 ± 3.5 22.9 ± 6.2 0.15 24.5 ± 5.6 24.2 ± 4.7 0.85

 SOFA‑score day 3 13.7 ± 3.1 9.4 ± 1.6  < 0.001 12.4 ± 3.4 10.2 ± 2.1 0.07

 SOFA‑score day 10 6.6 ± 3.2 3.9 ± 3.2 0.004 5.4 ± 3.3 4.8 ± 3.2 0.64

 Patients with diabetes mellitus (n) 4/14 4/16 0.83 3/17 5/13 0.24

Surrogate parameters of clinical nutrition and gastrointestinal function

 Total observation period (days) 196 222 N/A 238 182 N/A

  mNUTRIC score 7 ± 0.9 6 ± 1.6 0.03 4.8 ± 0.9 4.5 ± 0.9 0.39

  Confirmed swallowing disorder** (n) 6/14 0/16 0.005 4/17 2/13 0.98

  Days with nasogastric tube in situ (n) 160 (82%) 80 (36%)  < 0.001 143 (60%) 97 (53%) 0.16

  Days with oral intake (n) 18 (9%) 117 (52%)  < 0.001 64 (27%) 71 (39%) 0.014

  Patients receiving normal diet after 14 days (n) 0/14 6/16 0.019 2/17 4/13 0.19

  Mean energy via feeding tube (kcal/day)* 1022 ± 777 205 ± 383  < 0.001 897 ± 734 830 ± 725 0.48

  Days with GRV* (n) 100 (63%) 52 (65%) 0.78 99 (41%) 53 (29%) 0.01

  Mean GRV per day (ml) * 157 ± 266 167 ± 240 0.78 194 ± 286 112 ± 189 0.008

  Days with bowel movements (n) 82 (41%) 91 (43%) 0.92 108 (45%) 65 (36%) 0.06

 Days with mechanical ventilation (n) 176 (89%) 104 (47%)  < 0.001 182 (76%) 98 (54%)  < 0.001

  Days with nasogastric tube in situ (n) 143 (81%) 48 (46%)  < 0.001 139 (76%) 80 (82%) 0.37

  Days with oral intake (n) 14 (8%) 29 (28%)  < 0.001 28 (15%) 15 (15%) 0.99

  Mean energy via feeding tube (kcal/day)* 1017 ± 779 415 ± 470  < 0.001 906 ± 742 888 ± 722 0.85

  Days with GRV* (n) 94 (61%) 18 (49%) 0.2 96 (53%) 47 (48%) 0.45

  Mean GRV per day (ml)* 162 ± 267 181 ± 248 0.62 197 ± 289 117 ± 200 0.03

  Days with bowel movements (n) 73 (41%) 45 (43%) 0.8 83 (46%) 35 (36%) 0.13

 Days with endotracheal intubation 98 (50%) 50 (23%)  < 0.001 93 (39%) 55 (30%) 0.06

  Days with Nasogastric tube in situ (n) 79 (81%) 35 (70%) 0.15 69 (74%) 45 (82%) 0.29

  Mean energy via feeding tube (kcal/day)* 707 ± 688 358 ± 388 0.01 621 ± 677 596 ± 558 0.83

  Days with GRV* (n) 46 (47%) 23 (46%) 0.92 41 (44%) 28 (51%) 0.42

  Mean GRV per day (ml)* 94 ± 146 167 ± 254 0.14 121 ± 192 109 ± 183 0.84

  Days with bowel movements (n) 28 (29%) 7 (14%) 0.03 21 (55%) 35 (64%)  < 0.001



Discussion
The results of this study indicate that alterations in 

electrophysiological parameters may be predictive 

for increased GRV, prolonged feeding tube depend-

ence, less frequent bowel movements in intubated 

patients, prolonged opioid prescription, and decreased 

sufentanil-dose demands in the later course of criti-

cal illness. When ICUAW status was assessable by day 

10, ICUAW+ subjects had retrospectively suffered from 

more severe disease, had more often required mechanical 

ventilation, and had shown a prolonged dependency on 

tube feeding and opioids. Considering all this and the fact 

Fig. 2 a Changes in the percentage of patients receiving oral alimentation. The sample was divided into groups either based upon the results of 

muscle strength on day 10 (ICUAW ±) or depending on the results of an ENG on day 3 (CINM ±). Dots depict mean values calculated from the sub‑

samples. Asterisks indicate significance of difference between respective groups at a level of p < 0.05. The patient numbers in each group are given 

in Table 1, line 1. eCINM: early critical illness neuromyopathy. ICUAW: intensive care unit‑acquired weakness. b–d Correlations of mean daily plasma 

glucose levels of patients with MRCSS (b), the number of altered SNAP/CMAP sites in ENG (c) and enteral energy delivery (d, n = 22 for all). Kendall’s 

tau (τ) for the correlation of plasma glucose with MRCSS is > 0.299 and thus per se significant. When corrected for energy delivered via the feeding 

tube, the correlation is not significant anymore. In the figures, “pcorr” depicts p value after correction for delivered formula energy. e–g Correlations of 

the number of altered muscle/nerve recording sites on day 3 with overall opioid treatment (e), with GRV calculated as mean value of all GRV meas‑

ured in single patients over the whole observation period (f) and with all single GRV values measured on sufentanil‑treatment days (g). For mean 

calculations of GRV, only days when patients were supplied with a feeding tube were calculated. In the figures, “pcorr” depicts p value after correction 

for GRV (e), for the number of days patients were on opioids (f), and for the administered daily dose of sufentanil (g). CMAP compound motor action 

potential. MRCSS Medical Research Council sum score. SNAP sensory nerve action potential



that baseline SOFA and APACHE II scores were worse in 

this same group of patients, it seems likely that ICUAW 

merely reflects foregoing disease severity, whereas early 

CINM may predict upcoming gastrointestinal signs and 

symptoms independently from disease severity.

Since hyperglycemia is stated as a risk factor for ICUAW 

[6], increased glucose levels may either be a cause for or a 

consequence of ICUAW+ or eCINM+ status. As neither 

the MRCSS nor the number of ENG alterations was inde-

pendently correlated with glucose levels (Fig. 2b, c), both 

findings do not support a causative role of hyperglycemia 

for the development of ICUAW or eCINM here.

Surprisingly, sufentanil doses were lower in 

ICUAW+ and eCINM+ patients by comparing days on 

mechanical ventilation. We hypothesize that the impair-

ment of neuromuscular function influenced the clinical 

perception of opioid needs due to sensory impairment or 

muscular weakness with reduced pain-indicating move-

ments. Despite our efforts to compensate opioid effects, we 

cannot rule out that some of the observed differences in GI 

function parameters are confounded by opioid exposure.

This study has some relevant limitations: First, the low 

number of patients resulted from our intended preselec-

tion of patients who were diseased so severely that GI and 

neuromuscular complications were likely to occur. This 

selection caused the small sample size, which limits the 

certainty of all stated statistical relations. Second, some 

of the observed effects were rather small. But although 

more sensitive functional tests or biomarkers might have 

yielded more specific results, it was our genuine interest 

to analyze the impact of ICUAW and eCINM on clinically 

accessible and relevant parameters. Third, our criteria 

to define eCINM were based on our monocentric refer-

ence values and differ from general definitions suggested 

by other groups. The decision to define own criteria was 

motivated by the fact that there are no generally applica-

ble criteria for diagnosing eCINM in a cohort like ours [5].

The preliminary results of this exploratory study need 

verification in future studies. These may exclusively enroll 

critically ill surgical patients and combine the essential 

early electroneurographic assessment with more sensitive 

markers of GI function (e.g., sonographic or refractometric 

assessment of gastric transport) or measurement of bio-

markers of nutrition and intestinal failure (e.g., prealbu-

min, citrulline, fatty acid-binding protein) [7]. Furthermore, 

we conclude that the concept of ICUAW is not suitable to 

study the potential relevance of neuromuscular impairment 

for early gastrointestinal complications of critical illness.

Author details
1 Department of Anaesthesiology and Intensive Care Medicine, University 

Medical Center Rostock, 18057 Rostock, Germany. 2 Oscar Langendorff 

Institute of Physiology, University Medical Center Rostock, Gertrudenstraße 9, 

18057 Rostock, Germany. 

Acknowledgements

Open Access funding provided by Projekt DEAL.

Author contributions

FK, JE and RP contributed to the study conception and design and were 

involved in the acquisition and analysis of data. All authors contributed to the 

interpretation of data, drafting and revising the article and gave final approval 

of the version to be published.

Source of support

No external support was utilized for conducting this study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical Approval/Informed Consent

All procedures performed in studies involving human participants were in 

accordance with the ethical standards of the institutional and/or national 

research committee and with the 1964 Helsinki declaration and its later 

amendments or comparable ethical standards. Informed consent was 

obtained from all individual participants included in the study or from their 

legal representatives.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International 

License, which permits use, sharing, adaptation, distribution and reproduction 

in any medium or format, as long as you give appropriate credit to the original 

author(s) and the source, provide a link to the Creative Commons licence, and 

indicate if changes were made. The images or other third party material in this 

article are included in the article’s Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included in the 

article’s Creative Commons licence and your intended use is not permitted 

by statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder. To view a copy of this licence, 

visit http://creat iveco mmons .org/licen ses/by/4.0/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑

lished maps and institutional affiliations.

References

 1. Reintam Blaser A, Parm P, Kitus R, Starkopf J. Risk factors for intra‑abdom‑

inal hypertension in mechanically ventilated patients. Acta Anaesthesiol 

Scand. 2011;55:607–14.

 2. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system 

in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13:517–28.

 3. Patejdl R, Kastner M, Kolbaske S, Wittstock M. Clinical nutrition and 

gastrointestinal dysfunction in critically ill stroke patients. Neurol Res. 

2017;39:959–64.

 4. Garnacho‑Montero J, Madrazo‑Osuna J, Garcia‑Garmendia JL, et al. 

Critical illness polyneuropathy: risk factors and clinical consequences. A 

cohort study in septic patients. Intensive Care Med. 2001;27:1288–96.

 5. Stevens RD, Marshall SA, Cornblath DR, et al. A framework for diagnosing 

and classifying intensive care unit‑acquired weakness. Crit Care Med. 

2009;37:S299–S308.

 6. van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. 

Insulin therapy protects the central and peripheral nervous system of 

intensive care patients. Neurology. 2005;64:1348–53.

 7. Moreira TV, McQuiggan M. Methods for the assessment of gastric empty‑

ing in critically ill, enterally fed adults. Nutr Clin Pract. 2009;24:261–73.

http://creativecommons.org/licenses/by/4.0/

	Belegexemplar Patejdl habil.pdf
	Habil Patejdl 3.pdf
	Version 1m3.pdf
	1 accepted in chaos.pdf
	I. INTRODUCTION
	II. METHODS
	A. Measurements
	B. Data processing

	III. RESULTS
	IV. DISCUSSION
	A. Effects of noradrenaline
	B. Spatial and temporal decline of the cross-correlated signal
	C. Perspectives

	ACKNOWLEDGMENTS

	2 Patejdl_et_al-2015-Neurogastroenterology_&_Motility.pdf
	3 Patejdl2019_Article_EffectsOfAjmalineOnContraction.pdf
	Effects...
	Abstract
	Introduction
	Materials and methods
	Preparation of tissues and organ bath experiments
	Spectral analysis of spontaneous activity
	Responses evoked by electric field stimulation
	Contractions evoked by high potassium
	Acetylcholine induced contractions
	Simultaneous registration of electrical and mechanical activity
	Calcium sensitivity of depolarized smooth muscle
	Drugs and solutions
	Data presentation and statistics

	Results
	Contraction patterns under control conditions
	Effects of ajmaline on spontaneous activity
	Constitutive endogenous neurotransmission
	Spontaneous electrical activity
	Effects of ajmaline on neuronally mediated responses
	Effects on evoked contractions: high-K+-depolarization and acetylcholine
	Calcium sensitivity of depolarized smooth muscle
	Modification of carbenoxolone effects by ajmaline in GA
	Effects of TEA on GA in the presence of ajmaline

	Discussion
	Main findings
	Underlying mechanisms
	Clinical implications
	Limitations

	References


	4 FTY720 Kraft.pdf
	5 Clinical nutrition and gastrointestinal dysfunction in critically ill stroke patients.pdf
	Abstract
	Background: 
	Methods: 
	Results: 
	Conclusions: 
	Introduction
	Methods
	Study population
	Data collection and analysis
	Statistical analysis
	Ethics statement

	Results
	Study population
	Gastrointestinal impairment
	Time course and characteristics of alimentation

	Discussion
	Geolocation information
	Disclosure statement
	References

	6 Klawitter2020_Article_RelationsBetweenEarlyNeuromusc.pdf
	Relations Between Early Neuromuscular Alterations, Gastrointestinal Dysfunction, and Clinical Nutrition in Critically Ill Patients: An Exploratory Single-center Cohort Study
	Introduction
	Methods
	Assessment of Early Critical Illness Neuromyopathy (eCINM) and Intensive Care Unit: acquired Weakness (ICUAW)
	Assessment of GI function and Clinical Nutrition
	Statistics

	Results
	Patient Demographics and Baseline Parameters
	Clinical Nutrition, Motility, Laxative and Prokinetic Treatment in Relation to Neuromuscular Dysfunction
	Plasma Glucose, Opioids, and Narcotics in Relation To Neuromuscular Dysfunction

	Discussion
	Acknowledgements
	References




