
Lifted Bayesian Filtering
in Multi-Entity Systems

Dissertation
to obtain the academic degree of
Doktor-Ingenieur (Dr.-Ing.)

of the Faculty of Computer Science and Electrical Engineering
at the University of Rostock

submitted by
Stefan Lüdtke

born on August 5, 1991 in Rostock

November 23, 2020

https://doi.org/10.18453/rosdok_id00003022

Dieses Werk ist lizenziert unter einer
Creative Commons Namensnennung 4.0 International
Lizenz.

First reviewer: Prof. Dr.-Ing. Thomas Kirste, University of Rostock
Second reviewer: Prof. Dr. Heiner Stuckenschmidt, University of Mannheim

Year of submission: 2020
Year of defense: 2021

i

Abstract

Bayesian filtering (BF) is a general probabilistic framework for estimating the state of a
dynamic system that can be observed only indirectly thorough noisy measurements. This
thesis focuses on systems that consist of multiple, interacting entites (e.g. agents or objects),
for which the system dynamics can be specified naturally by multiset rewriting systems
(MRSs). Unfortunately, BF in MRSs is computationally challenging due to the combinatorial
explosion in the state space size.
Therefore, we investigate efficient BF algorithms for such multi-entity systems. The main

insight is that the state space that is underling an MRS exhibits a certain symmetry, which
can be exploited to increase inference efficiency.
This thesis provides five main contributions. First, we show how distributions over multi-

sets can be decomposed into two factors: A distribution over the structures and multiplicities
of entities, and a distribution over values of the entities’ properties. This representation al-
lows to group together entities with identical structure, thus achieving a substantial reduction
in representation complexity. As this representation bears some similarity to other concepts
from lifted probabilistic inference, we call it a lifted representation.

Secondly, we introduce a BF algorithm that works directly on this lifted representation,
which is able to achieve a factorial reduction in space and time complexity, compared to
conventional, ground filtering. When observations or system dynamics break symmetry, the
algorithm automatically adapts by splitting.
When a maximally parallel action execution semantics is used – when all entities can act

in parallel – exact BF can become intractable due the large number of parallel actions. To
alleviate this problem, our third contribution is a Markov chain Monte Carlo algorithm that
samples parallel actions instead of performing full enumeration.
Fourth, we address the problem that due to symmetry breaks, the algorithm must perform

splitting, so that the model can become completely propositional over time and inference
becomes intractable. This is done by introducing inverse merging operations for a number
of practically relevant special cases.
Finally, we empirically evaluate the lifted BF algorithm on real-world human activity

recognition domains, and show that the algorithm can be more efficient than propositional
BF. To the best of our knowledge, this is the first attempt to provide BF for systems with
MRS dynamics and the first attempt that allows to perform prediction and update directly
on the lifted representation.

iii

Zusammenfassung

Bayes’sches Filtern (BF) ist ein probabilistischer Ansatz zur Zustandsschätzung dynamischer
Systeme, die nur über verrauschte Sensordaten beobachtet werden können. In dieser Arbeit
werden Systeme betrachtet, die aus mehreren, interagierenden Entitäten (z.B. Agenten oder
Objekten) bestehen. Die Systemdynamik solcher Systeme kann auf natürliche Art durch
Multiset Rewriting Systems (MRS) spezifiziert werden. BF in MRS ist allerdings durch
die kombinatorische Explosion in der Größe des Zustandsraums solcher Systeme rechnerisch
aufwendig.
Aus diesem Grund betrachten wir in dieser Arbeit effiziente Algorithmen für BF in Sys-

temen mit MRS-Dynamik. Die wesentliche Erkenntnis ist, dass der Zustandraum solcher
Systeme Symmetrien aufweist, die ausgenutzt werden können, um die Effizienz der Inferenz
zu erhöhen.
Diese Arbeit leistet fünf wesentliche Beiträge. Als Erstes zeigen wir, wie Verteilungen über

Multimengen in zwei Faktoren aufgeteilt werden können: Eine Verteilung über die Struktur
und die Multiplizität der Entitäten und eine Verteilung über die Werte der Entitäten. Diese
Repräsentation der Verteilung erlaubt es, Entitäten mit identischer Struktur zu gruppieren,
sodass die Repräsentationskomplexität beträchtlich reduziert wird. Da diese Repräsentation
Zusammenhänge zu anderen Konzepten aus dem Forschungsbereich der Lifted Probabilistic
Inference aufweist, bezeichnen wir diese als geliftete Repräsentation.
Zweitens führen wir einen BF-Algorithmus ein, der direkt auf der gelifteten Repräsentation

arbeitet, wodurch sich die Zeit- und Platzkomplexität gegenüber dem grundierten Algorith-
mus um einen faktoriellen Faktor reduziert. Wenn die Beobachtungen oder die Systemdy-
namik zu einem Symmetriebruch führen, kann der Algorithmus die Repräsentation automa-
tisch durch Splitting anpassen.
Wenn eine maximal-parallele Aktionsausführungs-Semantik genutzt wird, d.h. wenn alle

Entitäten gleichzeitig agieren können, ist exaktes BF aufgrund der großen Anzahl paralleler
Aktionen nicht mehr durchführbar. Um dieses Problem zu lösen, entwickeln wir einenMarkov
Chain Monte Carlo-Algorithmus, der parallele Aktionen sampelt anstatt diese vollständig
aufzuzählen.

Viertens behandeln wir das Problem, dass der Algorithmus durch Symmetriebrüche wieder-
holt splitten muss, sodass das Modell im Laufe der Zeit vollständig grundiert wird, wodurch
Inferenz nicht mehr durchführbar ist. Hierzu führen wir für eine Reihe von praktisch rele-
vanten Fällen Merging-Algorithmen ein, die sich invers zum Splitting verhalten.

Schließlich evaluieren wir den gelifteten BF-Algorithmus empirisch mit realen Aktivitäts-
erkennungsszenarien und zeigen, dass der Algorithmus effizienter als grundiertes BF sein
kann. Der in dieser Arbeit eingeführte BF-Algorithmus erlaubt erstmals BF in Systemen
mit MRS-Dynamik. Es handelt sich um den ersten Ansatz, um BF direkt auf der gelifteten
Repräsentation durchzuführen.

v

Acknowledgements

First, I would like to thank my supervisor, Thomas Kirste. Without his support, abundance
of ideas and constant availability for feedback, this thesis would not have been possible.
He continuously raised the bar and always encouraged me to strive for excellence, which
certainly contributed hugely to the quality of this thesis. I would also like to thank Heiner
Stuckenschmidt for agreeing to review this thesis.
I am very grateful to my colleagues at MMIS who contributed substantially to this thesis.

In particular, I would like to thank Sebastian for being a great mentor; Frank for introducing
me to R and the tidyverse; Kristina for our collaboration on so many smaller and larger
projects; Max for introducing me to the concepts that led to this thesis in the first place,
and for the inspiring cooperation on the initial LiMa papers; Albert for guiding and helping
me during the first few months at MMIS when I did not know at all what it means to do
research, and for sharing his vast experience in sensor data processing; Petra for always
being of great help; Peter for having all the solutions to technical problems; and all other
colleagues and collaborators.
Finally, special thanks to my friends and family for their tremendous support and moti-

vation during this time.

vii

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Problem Description and Requirements . 3

1.3. Contributions . 4

1.4. Outline of the Thesis . 6

2. Background 7

2.1. Probabilistic Inference . 8

2.1.1. Probabilistic Graphical Models . 8

2.1.2. Probabilistic Inference . 9

2.1.3. Relational Graphical Models . 10

2.2. Bayesian Filtering . 11

2.2.1. Problem Setup . 11

2.2.2. Particle Filtering . 13

2.2.3. Rao-Blackwellized Particle Filtering 14

2.2.4. Computational State Space Models . 15

2.2.5. Marginal Filtering . 16

2.3. Multiset Rewriting Systems . 17

2.3.1. Multiset Rewriting Systems . 17

2.3.2. Maximally Parallel MRS . 19

3. Symmetry-Aware Probabilistic Inference: A Systematic Review 21

3.1. Systematic Literature Review . 22

3.1.1. Research Question . 22

3.1.2. Search Procedure . 23

3.1.3. Paper Selection . 23

3.1.4. Analysis Procedure: Algorithm Properties 24

3.1.5. Quantitative Results . 26

3.2. Symmetry-Aware Inference Algorithms . 27

3.2.1. Lifted Probabilistic Inference . 27

3.2.2. Inference in Continuous Domains . 31

3.2.3. Relational Bayesian Filtering . 32

3.3. Conclusion . 36

ix

Contents

4. Lifted Marginal Filtering 39

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System with Struc-
tured Entities . 41
4.1.1. Design Considerations . 41
4.1.2. MRS with Structured Entities . 42
4.1.3. Maximally Parallel MRS . 44
4.1.4. Probabilistic Maximally Parallel MRS 45
4.1.5. An Algorithm to Enumerate AMCAs 48

4.2. Bayesian Filtering in Multiset Rewriting Systems 49
4.2.1. Prediction . 49
4.2.2. Update . 50

4.3. Factorizing Multiset Distributions . 52
4.3.1. Decomposing Multisets of Structured Entities 53
4.3.2. Distributions of Value Sequences . 54
4.3.3. Lifted States . 57

4.4. Lifted Filtering . 61
4.4.1. Applying Constraints and Effects to Lifted States 61
4.4.2. Splitting . 62
4.4.3. Disjointness of Lifted States . 69
4.4.4. The Lifted Marginal Filtering Algorithm 71

4.5. Experimental Evaluation . 74
4.5.1. Evaluation Scenarios . 74
4.5.2. Exact Inference . 77
4.5.3. Approximate Inference . 80
4.5.4. Summary . 83

5. Approximating the System Dynamics using MCMC 85

5.1. An MCMC Algorithm for p(K | l) . 86
5.2. Experimental Evaluation . 89

6. Lifted Marginal Filtering in Asymmetrical Models 93

6.1. Problem Statement . 95
6.2. Merging Similar States . 97

6.2.1. Divergence Measures for Lifted States 98
6.2.2. Computing Merged States . 100
6.2.3. Handling Different Distribution Types 101
6.2.4. Experimental Evaluation . 104

6.3. Merging Disjoint States . 107
6.3.1. M and l∗ known: Testing for Mergeability 109
6.3.2. l∗ Known, M Unknown: Identifying Mergeable Subsets 111
6.3.3. M and l∗ Unknown: A Greedy Search Algorithm 113
6.3.4. Experimental Evaluation . 116

6.4. Merging Normal Distributions . 119
6.4.1. Merging Entities by Gaussian Mixture Reduction 120
6.4.2. Experimental Evaluation . 121

6.5. Assumed Density Merging . 124
6.5.1. Algorithm Overview . 125

x

Contents

6.5.2. Time Points for Merging . 126
6.5.3. Exploiting Temporal Structure . 127
6.5.4. Experimental Evaluation . 127

6.6. Conclusion & Future Work . 130

7. Discussion & Conclusion 133

7.1. Summary . 134
7.2. Discussion: Why Lifting Works Here . 135
7.3. Future Work . 136

A. Notation 161

B. More Related Work 163

B.1. The Lifted (Dynamic) Junction Tree Algorithm 163
B.2. Lumpability and Syntactic Markovian Bisimulation 164
B.3. Probabilistic Programming Languages . 165
B.4. Knowledge Compilation and Tractable Models 165
B.5. Statistical Relational Learning . 165
B.6. First-Order Markov Decision Processes . 166

C. Assignment of Papers to Groups 169

D. AMCA Computation as Constraint Satisfaction 171

E. Expressiveness of Sequential and Maximally Parallel Multiset Rewriting 173

F. Disjointness of Lifted States 177

F.1. Disjointness of Typed States . 177
F.1.1. Identifying Overlap . 178
F.1.2. Shattering . 179

F.2. Disjointness of Untyped States . 180
F.2.1. Untyped States . 181
F.2.2. Matchings . 181
F.2.3. Reduction to a Constraint Satisfaction Problem 184
F.2.4. Shattering . 185

G. Details of Experiments 187

G.1. Kitchen Scenario . 187
G.2. Learning a Lifted Representation by Gaussian Mixture Fitting for the Travian

Scenario . 190

xi

1
Introduction

1.1. Motivation

The objective of this thesis is to provide efficient recursive state estimation in multi-entity
systems, i.e. dynamic systems consisting of multiple interacting entities, e.g. agents or ob-
jects. This task arises, for example, in the context of human activity recognition (HAR), as
illustrated by the following example.

Example 1. Suppose that multiple persons are present in an office environment, where
they move around and perform activities like working, chatting or preparing coffee, and
suppose that the environment is equipped with various sensors (e.g. presence sensors). We
are interested in estimating the persons’ fine-grained activities (e.g. walking, typing) and the
environmental context state (e.g. location of persons and objects) for each time step, given
the sensor data.

The task of estimating the state xt of a time-varying system that is indirectly observed
through noisy measurements is called Bayesian filtering, or recursive Bayesian state estima-
tion [188]. Specifically, Bayesian filtering assumes that the system has the Markov property
– that the system state xt at time t only depends on the systems state xt−1 at time t − 1.
Thus, the system dynamics can be expressed by a probabilistic transition model p(Xt |Xt−1).
Additionally, we assume that each observation yt only depends on the current state xt, which
is expressed by an observation model p(Yt |Xt).
The transition model can simply be represented by a transition matrix, as done in hidden

Markov models [205]). However, for complex systems with many states and transitions where
prior domain knowledge is available, it is often more natural to describe the transition model
by a computational process, i.e. by a (probabilistic) algorithm or a set of probabilistic rules
that define how the system can evolve over time. For example, the tracking domain above
can be described naturally by the set of probabilistic actions that each of the agents can
perform.
For multi-entity situations, a natural choice for the underlying formalism to specify the

system dynamics are multiset rewriting systems (MRS) [9]. In a MRS, each system state xt
is a multiset (a set where elements can occur more than once), and the system dynamics
is specified by rewriting rules. MRSs allow the concise specification of systems that that
consist of multiple, (inter-)acting entities that can be grouped into “species”.

1

1. Introduction

t=3t=1 t=2

Figure 1.1.: System dynamics of the simple tracking domain: Three agents can move between
locations, and initially, all agents are at the left location. At each time step, one
of the agents can move one place to the right. The number of states grows
quickly over time, due to the combinatorial explosion of the number of system
states, an inherent property of multi-entity systems.

To see why Bayesian filtering in systems with MRS dynamics is hard, consider Figure 1.1,
that shows a simplified version of the system described in Example 1 with three agents that
can move between three locations and that are initially all at the left location. Even for such
a simple system, the number of possible discrete system states can easily be very large: In
the example, when there are n agents and m locations, the system can be in nm different
states. More generally, the number of possible system states typically grows exponentially
with some of the system properties.

As over time, many of those states can simultaneously have non-zero probability, maintain-
ing the categorical distribution over system states by complete enumeration is infeasible, and
one has to resort to approximate inference methods, like particle filtering [55] or marginal
filtering [164]. As the system state is categorical, existing methods to represent the distir-
bution over system states parametrically (e.g. Kalman filtering [97]) can also not be used.
Even worse, the system state of an MRS is a single, multiset-valued random variable, so
the univariate distribution over system states does not directly contain any structure, like
(conditional) independence or exchangeability, that could be exploited to arrive at a more
efficient representation.

Still, the distribution often exhibits a certain regularity: For example, the three states at
t = 2 in Figure 1.1 are identical up to permutation of the agents’ identities (represented by
colors in the figure). Such regular structures arise naturally in MRSs due to the symbolic,
high-level specification of system dynamics – just like relational probabilistic models induce
symmetries in the distribution described by them, which opens up the possibility of using
lifted inference algorithms in relational graphical models [158]. Intuitively, the distribution
in Figure 1.1 could be described by a statement like “two agents are at the left location and
one is at the center location, and the colors red, green and blue are assigned to the agents

2

1.2. Problem Description and Requirements

with uniform probability, but each agent has a unique color”.

In this thesis, we will devise a formalism that allows to compactly express such statements,
and that still allows to apply multiset rewriting rules directly, without requiring to generate
all system states first, such that Bayesian filtering can be performed efficiently. Along the
way, we will also discuss the problems outlined above: What is a suitable decomposition
of multisets, so that a distribution over multisets can be represented efficiently? How can
multiset rewriting be applied directly to the efficient representation? How can these concepts
be used for an efficient Bayesian filtering algorithm?

In summary, the goal of this thesis can be stated as follows:

Research goal: The goal of this thesis is to devise efficient Bayesian filter-
ing algorithms for systems with MRS dynamics by exploiting symmetry in the
distribution of system states.

1.2. Problem Description and Requirements

We start by defining the usage situations for which we want to provide an efficient inference
algorithm, as well as requirements on the inference algorithm, in more detail. At this point,
we can only state these properties and requirements in general terms – formal and algorithmic
details will be provided in subsequent chapters.

Properties of Usage Situations This thesis is motivated by the observation that inference
in multi-entity systems (e.g. for multi-agent activity recognition domains as illustrated in
Example 1) is difficult, due to the combinatorial explosion in number of system states. More
generally, the types or situations for which we want to provide an efficient inference algorithm
can be characterized as follows:

• Stochastic process: We consider stochastic processes, i.e. dynamic systems that
evolve probabilistically over time. More specifically, we consider time-discrete, first-
order Markov processes, i.e. processes that evolves in discrete time steps, and the
system state at time t depends only on the system state at time t− 1.

• Hidden state and observations: The state of the system is not observed directly,
but through observations that depend on the current system state.

• Multiple, interacting entities: The system consists of multiple entities that simul-
taneously act and/or interact. These entities are not necessarily multiple agents, as
in Example 1, but could for example also be multiple objects that are present in the
environment.

• Structured Entities: The entities are not flat, unstructured objects, but consist of
multiple properties. For example, the persons in the office domain have a name and
location, while other entities, e.g. a coffee cup, could have properties that describe the
content type and temperature. The properties can be both discrete (like the name) or
continuous (like the temperature).

• Variable entity numbers: The number of entities can change over time. For ex-
ample, in the office domain, people can enter or leave the observed environment. As

3

1. Introduction

another example, players in a multiplayer strategy game that we will consider later can
build additional villages.

Examples of scenarios with these properties that we will be visiting later on include multi-
agent tracking, activity and context recognition for cooking assistance, and predicting oppo-
nents’ moves in an online multiplayer strategy game.

Algorithm Requirements As outlined above, the general idea for achieving efficient Bay-
esian filtering in such situations is to exploit the fact that sometimes, not all entities need to
be distinguished. When this is the case, the algorithm should group those entities together
and handle them jointly as a group. In other cases, however, it might be necessary to
distinguish those entities again, because they can behave differently or are distinguished by
observations. From these general considerations, we derived the following requirements on
the filtering algorithm and model that the algorithm operates on.

• Abstract model: The algorithm can operate on a representation where entities are
grouped together, as long as they do not need to be distinguished. Specifically, the
algorithm needs to be able to perform inference on this representation directly, without
generating the original, ground representation first. As we will see later, entities do
not need to be completely identical to be grouped, but can already be grouped when
their properties follow a joint exchangeable distribution.

• Splitting: When necessary due to system dynamics or observations, the algorithm
can slit up the grouping and handle entities individually.

• Merging: The algorithm can perform an operation that is inverse to splitting: When
possible, symmetries in the distribution are recognized and corresponding entities are
grouped together. This operation is necessary to avoid the complete grounding of the
distribution over time.

MRSs seem like a sensible choice to model these types of systems: They describe dynamic
multi-entity systems in a natural way and directly allow grouping of entities due to the
representation of states by multisets. Therefore, for now, we will focus on MRSs for modeling
the system dynamics and investigate how Bayesian filtering can be performed in MRSs. We
will revisit this choice after performing a literature review of related methods in Chapter 3.

1.3. Contributions

(1) Systematic literature review We perform a systematic literature review on MRSs and
other symmetry-aware inference methods, to investigate which of these methods can be used
for (or as part of) an efficient Bayesian filtering algorithm for multi-entity systems as specified
above. From an initial set of more than 4, 000 papers, we identify 116 relevant papers that
discuss symmetry-aware inference algorithms. We find that no method can fully solve the
problem domain already, but we identify a number of ideas and concepts that can be used
as building blocks for the inference algorithm.
Independently of the specific goal of this thesis, the review provides a classification scheme

of the identified approaches, for the first time drawing connections between different research
fields, like lifted probabilistic inference, logical filtering, and multiple object tracking.

4

1.3. Contributions

(2) Bayesian filtering in probabilistic MRSs One of the outcomes of the literature review
is the fact that Bayesian filtering for systems with MRS dynamics has not been considered
previously. So far, MRSs have only been used in the context of simulation studies. Therefore,
we systematically introduce how Bayesian filtering can be performed in MRSs by direct
application of the Bayesian filtering equations.

(3) Efficient representation of distributions over multisets Bayesian filtering in MRSs
is intractable due to the combinatorial explosion in the number of possible multisets, i.e.
system states. To alleviate this, the central technical contribution of this thesis is a suit-
able decomposition of multisets, such that the distribution over multisets can be factorized
by exploiting independence. Additionally, when factors are exchangeable (which naturally
occurs due to the fact that in the original multisets, the order of entities does not matter),
concepts from lifted inference can be used to arrive at an even more efficient representation.
Due to the relationship to lifted inference, we call this more efficient representation the lifted
representation.

(4) Bayesian filtering on the lifted representation We show how Bayesian filtering can
be performed directly on the lifted representation, without resorting to the original, much
larger ground representation. Specifically, we discuss how the prediction and update steps can
be performed on the lifted representation. When the symmetry breaks due to the system dy-
namics or observations, the state representation automatically adapts by splitting operations.
We show empirically that in the best case (when the distribution is fully exchangeable), this
algorithm leads to a factorial reduction in inference complexity.

(5) Approximate filtering This algorithm directly lends itself to an approximate version
by limiting the number of explicitly represented lifted states in the posterior. We empirically
show that the approximate algorithm can have a lower variance of the estimate and a lower
estimation error than the ground algorithm with the same number of explicitly represented
states.

(6) MCMC-based approximations for maximally parallel multiset rewriting Two issues
remain that prevent the resulting lifted Bayesian filtering algorithm from scaling directly to
large, real-world models. The first problem occurs when a maximally parallel action seman-
tics is used – when all entities can act in parallel. In this case, the number of possible parallel
actions (compound actions) can become very large, even when the lifted representation is
used, such that not all compound actions can be enumerated completely. Therefore, we in-
troduce a Markov Chain Monte Carlo (MCMC) algorithm to approximate the distribution of
compound actions. The algorithm allows to accurately perform maximally parallel multiset
rewriting in systems with thousands of entities, where complete enumeration of compound
actions is infeasible.

(7) Methods to retain a compact representation in the presence of asymmetries Sym-
metry breaks in the transition or observation model can require repeated splitting, until the
representation becomes completely ground over time. We show methods for retaining a lifted
representation, that work by identifying subsets of lifted states that afford a joint representa-
tion by a single lifted state. As this task is intractable in general, we provide algorithms for a

5

1. Introduction

number of practically relevant special cases, where factors of the distribution over multisets
are
(7a) multinomial distributions,
(7b) multivariate hypergeometric distributions, or
(7c) normal distributions.
(7d) Furthermore, we show how an even more compact representation can be obtained by

exploiting the fact that some information can be safely “forgotten” at specific points
in time during the filtering process.

We empirically show that these methods allow to substantially reduce the representational
complexity, and thus, the lifted algorithm can be more efficient than ground inference even
for real-world sensor-based human activity recognition tasks where symmetry breaks easily.

1.4. Outline of the Thesis

The remainder of this thesis consists of 6 chapters. While Chapters 2 and 3 introduce the
required background and related work, Chapters 4 to 6 contain the main contributions.

• In Chapter 2, we introduce Bayesian filtering and multiset rewriting systems as the
formalisms and models that are used throughout this thesis.

• Chapter 3 contains a systematic literature review of probabilistic inference algorithms
that make use of symmetries of the underlying distribution (Contribution 1).

• In Chapter 4, we present the main technical contribution of this thesis: An efficient
Bayesian filtering algorithm for systems with MRS dynamics. The presentation of
the algorithm is divided into multiple steps: First, we introduce probabilistic maxi-
mally parallel MRSs and argue why this type of MRS is required for Bayesian filtering.
Next, we show how Bayesian filtering can be done in MRSs in a naive way (Contribu-
tion 2), then introduce a more efficient representation for distributions over multisets
(Contribution 3) and finally show how multiset rewriting and thus Bayesian filtering
can be performed directly on this efficient representation (Contribution 4). This sec-
tion also includes an empirical evaluation of the exact and approximate versions of the
algorithm (Contribution 5).

• In Chapter 5, we introduce and evaluate an MCMC-based algorithm for approximat-
ing the distribution over parallel actions (Contribution 6).

• In Chapter 6, methods for handling symmetry breaks are introduced (Contribution
7). Each of the methods is evaluated empirically, showing that the Bayesian filtering
algorithm proposed in this thesis can be more efficient than ground inference even for
real-world application domains when using suitable strategies to cope with symmetry
breaks.

Finally, in Chapter 7, we summarize our work and present conclusions as well as possible
directions for future research.

6

2
Background

Chapter Summary In this chapter, we lay the foundation for this thesis, by introducing the
formalisms and models that are used throughout. We start by providing a brief overview of
probabilistic graphical models and inference in Section 2.1. In Section 2.2, we introduce the
special case of inference in dynamic systems, known as Bayesian filtering, including Monte
Carlo-based inference algorithms for continuous and discrete domains. In Section 2.3, the
fundamentals of Multiset Rewriting Systems, the formalism that is used in this thesis to
specify dynamic multi-entity systems, are introduced.

Parts of this chapter are based on:

[134] Stefan Lüdtke, Max Schröder, Frank Krüger, Sebastian Bader, and Thomas
Kirste. State-Space Abstractions for Probabilistic Inference: A Systematic Review.
Journal of Artificial Intelligence Research, 63:789–848, 2018.

[130] Stefan Lüdtke and Thomas Kirste. Lifted Bayesian Filtering in Multiset Rewrit-
ing Systems. Journal of Artificial Intelligence Research, accepted, 2020.

Contents

2.1. Probabilistic Inference . 8

2.1.1. Probabilistic Graphical Models 8

2.1.2. Probabilistic Inference . 9

2.1.3. Relational Graphical Models . 10

2.2. Bayesian Filtering . 11

2.2.1. Problem Setup . 11

2.2.2. Particle Filtering . 13

2.2.3. Rao-Blackwellized Particle Filtering 14

2.2.4. Computational State Space Models 15

2.2.5. Marginal Filtering . 16

2.3. Multiset Rewriting Systems . 17

2.3.1. Multiset Rewriting Systems . 17

2.3.2. Maximally Parallel MRS . 19

7

2. Background

smokes(alice)

cancer(alice)

smokes(bob)

cancer(bob)

death

β
1

β
2

α
1 α

2

(a) Factor graph.

s(a) c(a) β1

0 0 β
(00)
1

0 1 β
(01)
1

1 0 β
(10)
1

1 1 β
(11)
1

(b) Factor β1. The values
β(xx) are real numbers.
The factor β2 looks similar
(see text).

c(a) d α1

0 0 α
(00)
1

0 1 α
(01)
1

1 0 α
(10)
1

1 1 α
(11)
1

(c) Factor α1. The values
α(xx) are real numbers.
The factor α2 looks similar
(see text).

Figure 2.1.: Factor graph for Example 2, adapted from Richardson and Domingos [179].

2.1. Probabilistic Inference

In this section, we introduce central concepts of probabilistic graphical models and proba-
bilistic inference. A more detailed introduction can be found, for example, in Russell [182]
or Koller and Friedman [116]. As the algorithms presented in this thesis do not heavily rely
on graphical models (but rather make use of MRSs as the underlying formalism), we limit
the presentation here to the concepts that are necessary for discussing the related work in
Chapter 3. We also briefly introduce relational graphical models, which are the basis for the
lifted probabilistic inference algorithms discussed in Section 3.2.1.

2.1.1. Probabilistic Graphical Models

Let X1, . . . , Xn be a set of n random variables (RVs)1. We are interested in representing
(and reasoning about) probability distributions of those random variables. When all RVs
X1, . . . , Xn are discrete, a simple way to represent the joint distribution p(X1, . . . , Xn) is to
use a table that lists the probability of each assignment. Unfortunately, this table is very
large – when all RVs are binary, the table has 2n rows.

Probabilistic graphical models are a data structure that allow to represent such a joint dis-
tribution more compactly when the distribution exhibits (conditional) independence. Here,
we will focus on factor graphs as an example of graphical models. They represent a joint
probability distribution over RVs X1, . . . , Xn by decomposing the distribution p(X1, . . . , Xn)
into a set of factors F . Each factor φ ∈ F maps a vector of RV assignments to non-negative
real numbers, and the product of all factors describes the joint distribution (multiplied by a
normalization constant Z−1 ensuring that the total probability sums to one):

p(X1 = x1, . . . , Xn = xn) = Z−1
∏

φ∈F

φ(xφ), (2.1)

where xφ denotes the subset of values of RVs that is necessary to compute the factor φ. Each
factor can then be represented, for example, as a table. A factor graph is a visualization of
the factorization structure (see Figure 2.1 for an example).

1We use uppercase letters to denote random variables, and lowercase letters to denote realizations of random
variables. Instead of p(X = x), we will usually write p(x).

8

2.1. Probabilistic Inference

Example 2. [Smokers] Each person either smokes or does not smoke. For people who
smoke, the chance of getting cancer is higher than for people who do not smoke. Whether
or not at least one person died last year depends on the number of people who have cancer.

For now, let us assume that only two people, Alice and Bob, exist. We can then model
this scenario with the binary random variables smokes(alice), cancer(alice), smokes(bob),
cancer(bob) and death2. The factor graph for this scenario can be seen in Figure 2.1. It
describes a joint probability by multiplying all of the factors, for example:

p(s(a)=1, s(b)=1, c(a)=0, c(b)=0, d=0)

=Z−1 β1(s(a)=1, c(a)=0) β2(s(b)=1, c(b)=0) α1(d=0, c(a)=0) α2(d=0, c(b)=0)

=β
(10)
1 β

(10)
2 α

(00)
1 α

(00)
2

(2.2)

2.1.2. Probabilistic Inference

Given a graphical model, different types of queries can be posed: One relevant case are con-
ditional probability queries, where we want to compute a conditional probability p(Q |E=e)
of some variables Q, given evidence on variables E – in the example, we might want to
know the probability that Alice has cancer. The process of calculating such probabilities is
called probabilistic inference. Inference can always be performed by computing the complete
joint distribution, and summing out (marginalizing) the variables we are not interested in.
However, a joint distribution over n binary RVs has size 2n, so efficient inference algorithms
avoid this. For example, variable elimination (VE) [244] is an inference algorithm that elim-
inates the non-query and non-evidence variables one by one without computing the joint
distribution. A variable is eliminated by multiplying all factors that contain this variable,
and then marginalizing this variable.

Example 3. Consider the graphical model given in Figure 2.1 and the query p(s(a), s(b), d=1).
VE eliminates the non-query and non-evidence variables c(a) and c(b) one by one: The RV
c(a) is eliminated by multiplying the factor α1 and β1, resulting in a factor f0 that has the
following representation as a table (with 8 rows):

s(a) c(a) d f0

0 0 0 β
(00)
1 α

(00)
1

0 0 1 β
(00)
1 α

(01)
1

...
...

...
...

The RV c(a) is summed out of f0, resulting in a factor

f1(s(a), d) =
∑

v

f0(s(a), c(a)=v, d) =
∑

v

β1(s(a), c(a)=v)α1(c(a)=v, d)

that is represented by the following table:

2For readability, we use c(a) and c(b) instead of cancer(a) and cancer(b), s(a) and s(b) instead of smokes(a)
and smokes(b), and d instead of death.

9

2. Background

smokes(X)

cancer(X)

death

X: {alice,bob}

β

α

(a) Parfactor graph.

s(X) c(X) β

0 0 β(00)

0 1 β(01)

1 0 β(10)

1 1 β(11)

(b) Parfactor β.

c(X) d α

0 0 α(00)

0 1 α(01)

1 0 α(10)

1 1 α(11)

(c) Parfactor α.

Figure 2.2.: Parfactor graph for Example 2, using par-RVs and plate notation [32].

s(a) d f1

0 0 β
(00)
1 α

(00)
1 + β

(01)
1 α

(10)
1

0 1 β
(00)
1 α

(01)
1 + β

(01)
1 α

(11)
1

...
...

...

Thus, the distribution p(s(a), s(b), c(b), d) can be represented by the factors α2, β2 and f1
as follows:

p(s(a), s(b), c(b), d) = Z−1 f1(s(a), d)β2(s(b), c(b))α2(c(b), d))

Afterwards, the same procedure is performed for c(b): α2 and β2 are multiplied, c(b) is
marginalized, the result is multiplied with f1. The result directly represents the distribution
for the query above.

2.1.3. Relational Graphical Models

Relational graphical models use a high-level language (like first-order or relational logic) to
compactly encode large graphical models. Parametric factor graphs (parfactor graphs) [173]
are a specific instance of such relational graphical models. The idea of parfactor graphs is to
represent the redundant factors (e.g. the factors β1 and β2 in Example 2) only once, which
is achieved by extending factor graphs by a relational language.

A parametric random variable (par-RV) represents a set of random variables, one for each
assignment of the parameters. The domain of each parameter is called population (i.e. a set
of individuals). For example, if X is a parameter with the domain {a, b}, then s(X) is a
par-RV, and the parameter assignments s(a) and s(b) both represent a random variable. We
call these RVs the groundings of the par-RV.

A parametric factor, or parfactor, is a function that maps par-RV assignments to the
non-negative reals, i.e. it represents a set of factors, one for each grounding of the par-
RVs. For example, the parfactor β(s(X), c(X)) represents the two factors β1(s(a), c(a)) and
β2(s(b), c(b)). A set of par-RVs and parfactors can be represented by a parfactor graph. The
parfactor graph for Example 2 is shown in Figure 2.2 (using plate notation [32]). A parfactor
graph defines a joint probability distribution as the normalized product of all groundings of
the parfactors.

10

2.2. Bayesian Filtering

The appealing property of parfactor graphs is that the joint distribution can be calculated
more directly, without complete grounding: Factors that correspond to the same parfactor
and that have the same assignment of RVs need to be evaluated only once, raised to the
power of the number of corresponding factors. For example, consider the joint probability
p(s(a)=1, s(b)=1, c(a)=0, c(b)=0, d=0) considered in Equation 2.2. The factors β1 and β2,
as well as α1 and α2 correspond to the same parfactors and have the same assignment of
involved RVs. Thus the joint can be calculated as:

p(s(a)=1, s(b)=1, c(a)=0, c(b)=0, d=0)

=Z−1 β1(s(a)=1, c(a)=0) β2(s(b)=1, c(b)=0) α1(d=0, c(a)=0) α2(d=0, c(b)=0)

=Z−1
∏

X∈{a,b}

β(s(X)=1, c(X)=0) α(d=0, c(X)=0)

=Z−1 β(s(X)=1, c(X)=0)
2
α(d=0, c(X)=0)

2

(2.3)

More generally, the relational specification of the model leads to a certain type of symmetry
in the distribution described by it.

Definition 1. [exchangeable decomposition [159]] Let {X1, . . . , Xn} be a set of random
variables, and let X = {X1, . . . ,Xk} be a partition of the random variables into k subsets.
We call X an exchangeable decomposition, when

p(X1=x1, . . . ,Xk=xk) = p(X1=xπ(1), . . . ,Xn=xπ(k)) (2.4)

for all permutations π of 1, . . . , k.

When the size of all subsets in X is one, we call the random variables {X1, . . . , Xn} fully
exchangeable.

The example above does not have an exchangeable decomposition due to the α factor that
is more difficult to handle. For the submodel that consists only of the s(X) and c(X) RVs
and the β factors, the joint distribution p(s(a), s(b), c(a), c(b)) obviously has the exchangeable
decomposition {{s(a), c(a)}, {s(b), c(b)}}.

Distributions that have an exchangeable decomposition always allow for tractable marginal
and MAP inference [159]. This fact is exploited by lifted probabilistic inference algorithms
like first-order variable elimination [173, 207] that are discussed in Section 3.2.1.

2.2. Bayesian Filtering

In this section, we introduce the problem of Bayesian filtering (BF), also known as sequential
state estimation. This task arises when we want to estimate the state of a dynamic system
that can only be observed through noisy and ambiguous measurements. An introduction
to Bayesian filtering can, for example, be found in Murphy [149], and we provide a concise
summary of the basic concepts here for convenience.

2.2.1. Problem Setup

Let X1, . . . , XT with xt ∈ X be a sequence of random variables (RVs). For simplicity of
notation, we denote sequences of RVs X1, . . . , XT as X1:T . We call Xt the state of the

11

2. Background

system at time t. Note that Xt can be vector-valued. We assume that the distribution of
states at time t only depends on the state at time t− 1, i.e. that the states form a first-order
Markov chain.

Definition 2. [Markov chain, stationary Markov chain] Let X1:T be a sequence of random
variables. The sequence is a Markov chain when the joint distribution factorizes as

p(X1:T) = p(X1)

T∏

t=2

p(Xt |Xt−1). (2.5)

We call a Markov chain stationary if the distribution p(Xt |Xt−1) is identical for all t.

Thus, the complete joint distribution of a stationary Markov chains is represented by a
single conditional probability p(Xt |Xt−1) and the probability p(X1). We call p(X1) the prior
probability and p(Xt |Xt−1) the transition model of the Markov chain.
Furthermore, we assume that the state Xt cannot be observed directly, but that for each

time t, an observation yt is generated from the state xt, based on a distribution p(Yt |Xt).
More formally, let Y1:T be a sequence of RVs (called observations) with the property that the
distribution of Yt only depends on Xt (this property is called the sensor Markov assumption).
In this case, the joint distribution of states and observations factorizes as

p(X1:T , Y1:T) = p(X1:T) p(Y1:T |X1:T) =

(

p(X1)
T∏

t=2

p(Xt |Xt−1)

) (
T∏

t=1

p(Yt |Xt)

)

(2.6)

Again, we assume that the distribution p(Yt |Xt) is fixed, i.e. identical for each t, and call the
distribution the observation model. The complete setup, consisting of the transition model
(that describes how the system evolves over time), the observation model (that describes
how observations are generated from states), and the prior distribution (our initial belief
about the state of the system) is called a state space model.

Definition 3. [state space model [149]] Let p0(X1) be a prior distribution, pX(Xt |Xt−1)
be a transition model, and pY (Yt |Xt) be an observation model. We call a triple (p0, pX , pY)
a state space model (SSM).

There are several typical inference tasks for such systems. Filtering means to compute
the distribution p(Xt | y1:t) (the marginal filtering density, or belief state). For smoothing,
the task is to compute the distribution p(Xt | y1:T) with t < T , i.e. an estimate of a past
system state, given all observations up to the present. Prediction asks for the distribution
p(Xk+δ | y1:t), i.e. an estimate of future states. Finally, the maximum a posteriori (MAP)
estimate consists of the most probable state sequence, i.e. argmaxx1:T

p(x1:T | y1:T).
A system that keeps track of the current situation at time t to make decisions in an online

fashion (i.e. that does not have access to observations yi with i > t) performs filtering. Thus,
in the following, we focus on filtering.
In principle, the full joint distribution p(X1:T , Y1:T) can be described by a large graphical

model, and BF could be performed by any standard probabilistic inference algorithm, like
variable elimination. However, the length T of the observation sequence is typically unbound,
so that the size of the graphical model becomes larger and large over time, and thus inference
by unrolling the model is infeasible. Instead, it is straightforward to obtain a recursive

12

2.2. Bayesian Filtering

formula for the marginal filtering density p(Xt | y1:t), by making use of the Markov assumption
for the transition model and the sensor Markov assumption (for a derivation, see e.g. [149]).
Given the prior distribution p(Xt−1 | y1:t−1), i.e. the marginal filtering density of time t− 1,
we can first compute the prediction

p(Xt | y1:t−1) =

∫

X
p(Xt |xt−1) p(xt−1 | y1:t−1) dxt−1. (2.7)

and then the update

p(Xt | y1:t) = Z−1 p(yt |Xt) p(Xt | y1:t−1), (2.8)

where Z = p(yt) is a normalization factor. Thus, inference can be performed recursively,
such that inference complexity is linear in the number of time steps T .

Note that in general, Equation 2.7 requires integration (when Xt is a continuous RV). For
the discrete case, this integral becomes a sum. Furthermore, when the states discrete RVs,
the transition model p(Xt |Xt−1) can be represented by a matrix, and the model is known as a
hidden Markov model. The inference algorithm that recursively computes Equations 2.7 and
2.8 for a hidden Markov model is known as forward algorithm. Another well-known case arises
when the marginal filtering density is Gaussian, the transition model is linear-Gaussian (i.e.
a linear function with Gaussian noise), and the observation model is conditional Gaussian.
This case is known as Kalman filter model, for which the recusion can be computed in closed
form [97].

2.2.2. Particle Filtering

In general, it is not straightforward to compute Equations 2.7 and 2.8 directly, as they
both require the evaluation of complex, high-dimensional integrals: Equation 2.7 requires
integrating xt−1 out of the joint density, and the computation of the normalization factor
Z = p(yt) in Equation 2.8 requires integrating over states xt. Thus, different approximation
strategies for these distributions have been devised in the last 50 years, for example the
Gaussian sum filter [204] (that approximates the filtering density by a mixture of K normal
distributions), the extended Kalman filter (that can be applied to nonlinear systems, by
linearizing the transition and observation model, but still assuming normality of the filtering
density and noise) and the Boyen-Koller algorithm [25] (which maintains a factorized version
of the filtering density).

Another widely used class of approximate Bayesian filtering algorithms, that do not require
any linearity or normality of the SSM are sequential Monte Carlo methods [8]. The core idea
is to approximate the joint filtering distribution p(X1:t | y1:t) by a set of weighted samples

(particles) {(w
(i)
t , x

(i)
1:t)}

N
i=1:

p(X1:t | y1:t) ≈
N∑

i=1

w
(i)
t δ

x
(i)
1:t

(X1:t), (2.9)

where δ
x
(i)
1:t

denotes the delta mass located at x
(i)
1:t. The bootstrap particle filter (PF) performs

the prediction and update steps of Bayesian filtering by using this approximation. Intuitively,
the PF simulates possible sequences based on the transition model, and weighs each particle
according to the observation model. Specifically, the transition is performed by sampling

13

2. Background

new values for each particle from the transition model3, i.e. x
(i)
t ∼ p(Xt |x

(i)
t−1), and set

x
(i)
1:t = (x

(i)
1:t−1, x

(i)
t). The update step evaluates the importance weight according to the

observation model, i.e. w
(i)
t = p(yt |x

(i)
t).

Finally, a resampling step is required to avoid particle degeneracy: Without resampling,
the particle weight would become more and more skewed, until practically, only a single
particle has non-zero weight, and the algorithm thus fails to represent the distribution ad-
equately. Resampling is performed by sampling N particles with replacement from the set

{x
(i)
1:t}

N
i=1 according to weights w

(i)
t .

Also, if we are only interested in the marginal filtering density p(Xt | y1:t), we can simply

ignore the previous part x
(i)
1:t−1 of each particle. It can be shown that the particle-based

approximation shown in Equation 2.9 converges to the true joint filtering distribution when
N approaches infinity [8]. For continuous domains, particle filtering has been successfully
used for a wide range of application domains, like robot localization [214], multi-target
tracking [165], ecological models [28], or stock market prediction [34].

PF can be computationally expensive for high-dimensional state spaces due to a phe-
nomenon called sample impoverishment [60]: Resampling duplicates particles, such that
there is a loss in “diversity” in particles after resampling, i.e. the particles are utilized poorly
for representing the complete state space. This problem is more prevalent in high-dimensional
state spaces, so that the number of particles must grow exponentially with the number of
dimensions to achieve a given accuracy [20]. For continuous state spaces, this problem can
be approached, for example, by adding noise to the samples after resampling [81].

2.2.3. Rao-Blackwellized Particle Filtering

As discussed above, PF is typically computationally expensive in high-dimensional state
spaces. Closed-form exact algorithms like Kalman filtering, on the other hand, can only
be applied when the SSM adheres to specific conditions. Fortunately, both methods can
sometimes be combined, when some of the state variables satisfy conditions that allow to
handle them analytically, given the other variables. Particle filtering then only needs to be
performed for the remaining variables, i.e. a state space with lower dimensionality, requiring
fewer particles for a good approximation.

Specifically, suppose that the state variable Xt is a vector of variables Xt,1:n that can be
partitioned into parts St,1:s and Vt,1:v with s+v = n. Then, we rewrite the marginal filtering
distribution as

p(St, Vt | y1:t) = p(St | y1:t) p(Vt |St, y1:t). (2.10)

Now, assume that p(Vt |St, y1:t) can be handled analytically, while P (St | y1:t) is handled
by particle filtering. That is, partial assignments (of the variables St), combined with a
closed-form representation of the distribution over variables Vt can be used as particles.

More precisely, each particle is a triple (w
(i)
t , s

(i)
t , ρ

(i)
t), where s

(i)
t is an assignment of the

RVs st, and ρ
(i)
t is a closed-form representation of the distribution p(Vt |St, y1:t) (e.g. a mean

vector and covariance matrix). This method is known as Rao-Blackwellized particle filtering
(RBPF) [59], due to the close relationship to the Rao-Blackwell theorem.

3This approach can be generalized by sampling from an arbitrary proposal distribution, but deriving better
proposal can be challenging, so we will focus on the transition model as proposal distribution.

14

2.2. Bayesian Filtering

Example 4. A prominent example of RBPF arises in the context of simultaneous localiza-
tion and mapping (SLAM): A robot moves around an unknown two-dimensional world, and
simultaneously needs to learn the map and estimate its position in that map. The map can,
for example, be represented by the locations of L two-dimensional obstacles v1, . . . , vL (we
assume that the obstacles do not move, so we omit the time index). The robot location at
time t is the two-dimensional vector st.

The interesting observation here is that conditional on the robot’s current location st, the
obstacle locations v are independent, i.e. p(v | st, y1:t) =

∏L
l=1 p(vl | st, y1:t). Thus, RBPF

can be used, by sampling the robot’s location st, and running L independent Kalman filters
inside each particle. This procedure is known as fastSLAM [214].

2.2.4. Computational State Space Models

In the following, we introduce a method for compactly representing the transition model of
hidden Markov models (i.e. SSMs with categorical state space) known as computational state
space models.

For HMMs, the transition model is typically specified as a matrix T , where columns denote
the prior states xt−1, rows denote the posteriors xt, and each cell contains the corresponding
conditional probability p(xt |xt−1). Such a matrix has quadratic size in the number of system
states |X |, which makes this representation computationally expensive when |X | is large.
However, a matrix-based representation is unnecessary in cases where the computational
process that is underlying the transition model is known: In this case, this computational
description can be used directly as a specification of p(Xt |Xt−1). This method is known
as computational state space models (CSSMs) [123]. Specifically, the transition model of a
CSSM is represented by a function predict(xt−1), that returns the conditional probability
p(Xt |xt−1) as a set of tuples (xt, pt). In CSSMs, the states typically need an algebraic
structure to allow computations on states, as opposed to standard HMMs, where states
are atomic and only allow to test for identity. For example, a states can be a map of
variable names to values. CSSMs have certain advantages compared to explicit, matrix-
based representations of the transition model:

• The transition model is typically represented much more compactly than by an explicit,
matrix-based representation.

• The definition of latent infinite state spaces, i.e. where the state space is infinite, but
only a finite number of discrete states have non-zero probability, becomes straightfor-
ward: For example, the state space becomes infinite when the state represents a natural
number, and the prediction function allows increasing the number by one (with some
probability).

• CSSMs allow the knowledge-based construction of transition models, instead of requir-
ing extensive amounts of training data.

Recently, a number of approaches that follow this paradigm have been proposed. Com-
putational causal behavior models [120] are a CSSM variant tailored towards human activity
recognition (HAR). They use the planning domain definition language (PDDL) 2.1 [67] to
specify the transition model. This way, a set of actions is described, each consisting of (i) a
set of preconditions that need to be satisfied for the action to be applicable to a state, and

15

2. Background

(ii) an effect function that manipulates the state to compute the posterior state. Further-
more, a distribution over applicable actions is defined such that the probability of an action
is proportional to its goal-directedness, i.e. actions that reduce the goal distance are assigned
a higher probability. Other CSSM approaches include the approach by Ramı́rez and Geffner
[178], which also uses PDDL as a computational description of the predict function, and
defines inference in terms of a POMDP, and the approach by Sadilek and Kautz [183], which
uses a Markov logic network (MLN) as a symbolic description, but unrolls the MLN into a
graphical model instead of performing BF.

2.2.5. Marginal Filtering

The state space of CSSMs is typically categorical, with a very large number of different
categories (i.e. possible states). Thus exact inference could be performed by the forward
algorithm, as used for HMMs. However, due to the large number of states, the complete
enumeration of all states and their probabilities as required by the forward algorithm, al-
though theoretically possible, is practically infeasible.

Instead, when the inference algorithm cannot exploit any structure of the state space (as
attempted later in this thesis), we need to resort to approximate algorithms. In principle,
inference could simply be done by particle filtering. However, particle filtering is not suitable
for large, categorical state spaces [164]: As no metric is defined on the states xt, each state
(i.e. each category) acts as a separate, independent dimension, which makes particle filtering
challenging due to the sample impoverishment problem: More specifically, the resampling
step leads to many duplicate particles that represent the same system state. Thus, the
particles represent the overall distribution poorly, only the most likely states are represented
by (multiple) particles, while many of the less likely states are not represented by any particle.
Unfortunately, existing methods to circumvent the sample impoverishment problem, like
adding noise to states [81], cannot be applied to categorical state spaces.

As a solution, Nyolt et al. proposed the marginal filter [164]. The idea is to prevent sample
impoverishment by avoiding the need for resampling, while still maintaining a limited number
of particles. This is achieved by maintaining particles that only represent the marginal
filtering distribution p(Xt | y1:t) instead of the joint filtering distribution p(X1:t | y1:t), and
by computing all posterior states for each particle instead of sampling from the transition
model. This is possible in categorical state spaces where each state has only a finite number
of successor states (i.e. where p(Xt |xt−1) has finite support for each xt−1).

Specifically the marginal filter works as follows: The marginal filtering distribution p(Xt−1 |

y1:t−1) is represented by a set of weighted samples {(w
(i)
t−1, x

(i)
t−1)}. Instead of sampling from

the transition model, the prediction step is performed exactly, by computing p(xt |x
(i)
t−1) for

all xt and all i, and merging particles with identical state xt by summing their weight. This

leads to a new set of particles {(w
(i)
t , x

(i)
t)} with w

(i)
t =

∑

j p(x
(i)
t |x

(j)
t−1) that represent the

marginal distribution p(Xt | y1:t−1). Note that in this set, each state occurs at most once.
The algorithm can be realized efficiently by representing the marginal filtering distribution
as a map X 7→ R≥0 of states to probabilities: This way, a map insertion operator ⊕ can be
defined that directly performs the summation of weights of identical states (see Appendix
A).

The update step can then also be computed exactly, by multiplying each weight w
(i)
t with

the observation likelihood p(yt |x
(i)
t). The only approximation for each time step is then to

16

2.3. Multiset Rewriting Systems

Algorithm 1 Marginal filter.

1. Initialization

• Let P0 ← 〈x
(i)
0 : w

(i)
0 〉Ni=1 be a representation of the categorical distribution p(x0)

2. Prediction

• Let Pt ← 〈 〉 be an empty map.

• For each prior state 〈x
(i)
t−1 : w

(i)
t−1〉 ∈ Pt−1:

– Compute all successor states of x
(i)
t−1: 〈x

(j)
t : w

(j)
t 〉Mj=1 ← predict(x

(i)
t−1)

– Multiply prior weight and marginalize: Pt ← Pt ⊕ 〈x
(j)
t : w

(j)
t ∗ w

(i)
t−1〉

M
j=1

3. Update

• For each 〈x
(i)
t : w

(i)
t 〉 ∈ Pt: w

(i)
t ← w

(i)
t p(yt |x

(i)
t).

• Normalize Pt.

4. Pruning

• Keep N states with highest weight (or more elaborate pruning strategy [163])

• Set t ← t+ 1 and go to step 2

limit the number of particles that represent p(Xt | y1:t) by an operation called pruning. An
unbiased and optimal (in the sense of least squared error) pruning strategy is presented by
Nyolt and Kirste [163]. The algorithm is specified in more detail in Algorithm 1.
Note that this algorithm does not require resampling and different particles never represent

identical states, thus sample impoverishment does not occur. Marginal filtering has been
successfully applied to BF tasks in large CSSMs, e.g. a CSSM for human activity recognition
in a cooking scenario with 146 million discrete states [164].

2.3. Multiset Rewriting Systems

In the following, we provide an introduction to Multiset Rewriting Systems (MRSs). The
presentation is kept relatively brief and informal at this point. Later (Section 4.1), we will
show formal details of a newly proposed MRS that can be used to specify the transition
model of a state space model.

2.3.1. Multiset Rewriting Systems

Multiset Rewriting Systems (MRSs) are a formalism to model multi-entity systems. They
are for instance used to model cell-biological processes [47, 64, 96], population dynamics [171]
or network protocols [35]. In MRSs, states of a dynamic system are multisets, describing
which “things” and how many of them exist at a specific point in time.

Definition 4. [multiset] Let E be a set of entities. A multiset x ∈ X (over E) is a map
(partial function) x : E 7→ N from entities to natural numbers (called multiplicities in this

17

2. Background

context). In the following, the set of multisets over E is denoted as mset E .

For entities e1, . . . , ek ∈ E and multiplicities n1, . . . , nk ∈ N, we write Jn1e1, . . . , nkek K to
denote a multiset, where the multiplicity of ei is ni and the multiplicities of all entities not
listed is zero4. We write x#e to denote the multiplicity of e in x. Let x, x′ be two multisets.
We assume that multiset union x⊎x′, multiset difference x∪- x′, and multiset subset relation
x ⊑ x′ are defined as usual [23]. A multiset represents a state of the dynamic system we are
considering. We call such a multiset x a ground state.

The system dynamics is described by rewriting rules, or actions5. An action is a triple
(l, r, κ) ∈ X×X×R≥0, where l and r are multisets called reactants and products, respectively,
and κ is the kinetic constant, or weight (that is later used for defining probabilities of actions).
An action a = (l, r, κ) is compatible to a state x when the reactants are contained in x, i.e.
l ⊑ x, and is applied to x by removing the reactants, and adding the products: x′ = (x∪- l)⊎r.
We denote actions a = (l, r, w) as l

κ
→ r. An MRS is a triple (E , A, x0), where E is the set of

entities, A is the set of actions, and x0 is the initial state.

Example 5. Consider the MRS (E , A, x0) with E = {A,B}, A = {a1, a2, a3}, a1 = J 1X K
κ1→

J K, a2 = J 1X, 1Y K
κ2→ J 2X K, a3 = J 2Y K

κ3→ J 3Y K and x0 = J 2X, 1Y K, which models a
simple predator-prey system where X are predators and Y are prey, κ1 is the rate of death
of predators, κ2 is the consumption rate, and κ3 is the reproduction rate of prey. The initial
state x0 has the successor states J 1X, 1Y K (by applying a1) and J 3X K (by applying a2).
The action a3 is not compatible to x0, as there are not enough Y entities in x0.

As we have seen in the example, for a given state x, multiple actions can be compatible.
Thus, we need a mechanism for deciding which action to apply to x to obtain a successor
state. Specifically, we are interested in modeling probabilistic systems, where a probability
distribution over possible actions is defined.
Most of the modeling formalisms in systems biology specify the probabilistic semantics

via a continuous-time Markov chain (CTMC), and draw simulations by using the Gillespie
algorithm [75]: The algorithm first samples the time when the next action occurs from an
exponential distribution, and then samples the specific action that occurs at that time.
In this thesis, we are interested in MRSs as a model for describing the system dynamics of

state space models, for which we want to perform Bayesian filtering. In state space models,
the system dynamics is specified specified in terms of a discrete-time Markov chain (DTMC),
as the time steps at which the system state can change are externally imposed due to the
observations. Thus, the CTMC semantics is not suitable for our purposes, and instead, we
continue with describing a DTMC-based semantics [10].

Suppose that A is the set of actions that is applicable to x. The unnormalized probability
of a = (l, r, κ) ∈ A is computed as vx(a) = κ

∏

e∈dom(l)

(
x#e
l#e

)
. The binomial coefficient

models in how many different ways the action can be instantiated, i.e. the number of ways in
which entities from x can be chosen as the reactants of a. The probability p(a |x) of selecting
action a in state x is simply the normalized probability, i.e. p(a |x) = vx(a)/

∑

a′∈A vx(a
′).

Example 6. Consider the MRS from Example 5, the state x = J 2X, 3Y K and the kinetic
constants κ1 = κ2 = 1 and κ3 = 2. In x, all actions a1, a2 and a3 are compatible, and their

4Note that we use the term entity to refer both to a specific type of object (this is typically called a species

in the MRS community), as well as specific instances of that object (e.g. the elements occurring in a
multiset), as such a distinction is not relevant for our purposes.

5In the planning community, a rewriting rule would be called action schema.

18

2.3. Multiset Rewriting Systems

unnormalized probabilities are vx(a1) = κ1
(
2
1

)
= 2, vx(a2) = κ2

(
2
1

) (
3
1

)
= 6 and vx(a3) =

κ3
(
3
2

)
= 6. Normalizing these probabilities leads to p(a1 |x) = 1/7, p(a2 |x) = p(a3 |x) =

3/7.

Based on this definition of action probabilities, it is easy to sample a trajectory (i.e. a
sequence of states) as follows: Given a state, test which actions are applicable, select one of
the actions according to their probabilities, compute the successor state, and repeat.

2.3.2. Maximally Parallel MRS

In the simple model described above, we assumed that at each time step, only a single action
is executed. For many practical applications, this assumption does not hold, and it becomes
necessary to model multiple actions that occur in parallel in a single transition. Specifically,
when using an MRS to specify the transition model of a state space model, multiple entities
might be able to act between observations, i.e. time steps.
Maximally parallel MRSs (MPMRSs) [9] are a principled formalism to model such sys-

tems. Maximally parallel rule application is, for example, typically used in P systems [170],
motivated by the fact that in cell-biological systems, multiple reactants can interact at the
same time. In MPMRSs, each state transition consists of the parallel application of a mul-
tiset of actions, called compound action. A compound action is called applicable to a state
x when the multiset of all reactants is contained in x, and maximal when no action can be
added to the compound action so that it is still applicable. The set of all applicable and
maximal compound actions (AMCAs) define the system dynamics. An AMCA k is applied
to a state x by removing all of the reactants from x and adding all the products to x, i.e.

x′ = x∪-
(
⊎

(l,r,κ)∈k l
)

⊎
(
⊎

(l,r,κ)∈k r
)

.

Similarly to single-action (sequential) semantics, a distribution over AMCAs can be de-
fined based on the weights of individual actions and the number of ways to instantiate the
reactants, as shown by Barbuti et al. [9].
MPMRSs are strictly more expressive than sequential MRSs: Sequential semantics can be

modeled in an MPMRS by introducing a mutex entity to the state that required by each
action, so that each applicable and maximal compound action has a cardinality of one. On
the other hand, an MPMRS cannot simply be modeled by sequential semantics, as shown in
Appendix E.
This concludes the general introduction to MRSs. In Section 4.1, we present the require-

ments and definitions for the specific MRS that is used in this thesis as a basis for efficient
Bayesian filtering.

19

3
Symmetry-Aware Probabilistic

Inference: A Systematic Review

Chapter Summary We systematically review the existing work on probabilistic inference
methods that exploit symmetries, with an emphasis on Bayesian filtering. We derive a novel
classification scheme, that allows us to identify eight groups of symmetry-aware inference al-
gorithms. For the first time, this survey draws connections between research fields like lifted
inference, logical filtering and multiset rewriting, and outlines the common idea shared by
these approaches.

Parts of this chapter are based on:

[134] Stefan Lüdtke, Max Schröder, Frank Krüger, Sebastian Bader, and Thomas
Kirste. State-Space Abstractions for Probabilistic Inference: A Systematic Review.
Journal of Artificial Intelligence Research, 63:789–848, 2018.

Contents

3.1. Systematic Literature Review . 22

3.1.1. Research Question . 22

3.1.2. Search Procedure . 23

3.1.3. Paper Selection . 23

3.1.4. Analysis Procedure: Algorithm Properties 24

3.1.5. Quantitative Results . 26

3.2. Symmetry-Aware Inference Algorithms 27

3.2.1. Lifted Probabilistic Inference 27

3.2.2. Inference in Continuous Domains 31

3.2.3. Relational Bayesian Filtering 32

3.3. Conclusion . 36

21

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

As outlined in Chapter 1, the goal of this thesis is to devise an efficient Bayesian filtering
algorithm for multi-entity systems. In Section 1.2, we identified multiset rewriting systems
(MRSs) as an obvious choice to model multi-entity systems, that can also inherently exploit
symmetry in the system by grouping identical entities together. However, there are many
other concepts for making use of symmetries in probabilistic models. Most prominently,
the field of lifted probabilistic inference [50] is concerned with efficient inference in relational
probabilistic models (like Markov Logic Networks [180] or parametric factor graphs [173]),
by exploiting the symmetries that arise due to the high-level specification of the probabilistic
model.

In this chapter, we review these methods to investigate if and how they can handle the
usage situations and requirements described in Section 1.2. Such algorithms have been de-
vised in a number of research fields, like modeling and simulation or multiple object tracking.
Although they are concerned with a similar problem, the relationship between all of these
approaches has not been investigated systematically, and is not always obvious due to a
different terminology. Therefore, we use the procedure of a systematic literature review to
relate approaches from these different research fields.

3.1. Systematic Literature Review

In the following, we briefly describe the systematic review methodology that we applied.
Systematic literature reviews are common in fields like biomedical research, for collecting
evidence regarding, for example, the effect of treatments, or the accuracy of diagnostic
tests. Their goal is identifying all relevant research regarding a specific research question, by
following a reproducible and objective process. Unstructured reviews have a higher chance
to miss out contributions, either because they have not been found or because of narrative
distortion, i.e. the fact that the author of a review is more likely to include papers that
support the argumentation structure of the review.

According to Kitchenham [115], a systematic literature review consists of the following
steps: (1) Definition of the research question, (2) definition of the search procedure, (3)
identification of research items (papers), (4) paper selection, (5) paper analysis. In the
following, we describe how each step of this procedure was performed for this systematic
review.

3.1.1. Research Question

As described above, the goal of this review was to give an overview over symmetry-aware
inference algorithms from different research fields, and to organize the research by identifying
the underlying structure. Specifically, these questions can be stated as follows:

Q1 Which methods exist for exploiting symmetries in probabilistic models to increase
inference efficiency?

Q2 Which types of problems can different methods be applied to, and how is this reflected
by the properties of the methods?

Q3 How are these methods related to each other, i.e. are similar concepts used in multiple
approaches?

22

3.1. Systematic Literature Review

First term set

lifted
first order
higher order
symmetry
permutation
multiset

Second term set

Bayesian inference
probabilistic inference
probabilistic reasoning
graphical model
Bayesian network
state space model
recursive Bayesian estimation
Bayesian filtering
particle filter
hidden Markov model
probabilistic multiset rewriting
multi-agent
multi-target
multi-object
activity recognition
plan recognition

Table 3.1.: Search terms used to construct search query.

3.1.2. Search Procedure

For the literature search, we used the publication databases ScienceDirect, IEEE Xplore,
ACM digital library, and Scopus. These databases were chosen based on their relevance for
computer science publications, and the possibility to perform a search only on title, abstract
and keywords of a publication1. Our definition of search terms was based on 10 pilot papers
[9, 51, 79, 88, 104, 124, 141, 155, 173, 200] that were the result of an initial exploration. The
search terms have been iteratively refined during the search process. The resulting terms are
shown in Table 3.1.
We constructed the query by connecting all terms in a set with logical OR and both sets

with logical AND. This query describes all papers where at least one of the terms of the first
set and at least one of the elements of the second set occurs. The search has been performed
on the title, keywords and abstract of the publications.

3.1.3. Paper Selection

The search results have been assessed based on the following inclusion criteria.

I1 The paper is written in English.

I2 The paper is peer-reviewed.

I3 The full text of the paper is available via IEEExplore, the ACM Digital Library,
SpringerLink, ScienceDirect, or other sources like the author’s website.

I4 The paper includes a novel algorithmic contribution.

1Another common publication database, SpringerLink, was not used because it only allowed full text searches
as of January 2017.

23

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

Figure 3.1.: Flow diagram of paper selection.

I5 The paper is considering a probabilistic model.

I6 The paper presents an inference algorithm for the probabilistic model.

I7 The inference algorithm makes use of symmetries in the probabilistic model.

Criteria I1-I3 make sure that the analysis of the papers is feasible for us, and criterion I4
ensures that application and review papers are excluded. Criterion I5 implies that only
approaches that model a probability distribution have been considered. Methods in deter-
ministic settings, like first-order resolution, or state space abstraction in search problems
[86], were excluded by this criterion. Finally, criterion I7 ensures that only approaches that
exploit some form of symmetry were considered. Here, we interpreted the term symmetry
liberally to mean exchangeability of random variables, graph symmetries in a probabilistic
graphical model, random variables that can be handled analytically (because their distri-
bution follows a parametric form), and the case where the assignments have an underlying
algebraic structure that can be exploited.

Paper inclusion/exclusion followed a three-step process. At first, only the title, abstract,
and keywords of each publication have been examined. The full-text of the remaining papers
has been examined in more detail. By examining the references in the remaining papers, we
identified additional relevant papers (see flow diagram in Figure 3.1).

3.1.4. Analysis Procedure: Algorithm Properties

We analyzed the remaining papers in order to answer research questions Q1 – Q3. This
was done by identifying six properties of inference algorithms, that follow directly from the
algorithm requirements described in Section 1.2: The concepts that the algorithms use for
abstraction (parametization and groping of RVs), their capabilities to modify the degree
of abstraction (identification, splitting, merging) and their ability to perform inference in
dynamic domains (online inference). In the following, these properties are presented briefly.

24

3.1. Systematic Literature Review

Can the algorithm efficiently handle redundant parts of the model? (Group Variables)

Probabilistic models can contain redundancies, such that parts of the model behave identical.
For example, a graphical model that has been obtained by grounding a relational probabilis-
tic model (like a parfactor graph [173] or a Markov Logic Network [180]) typically contains
multiple identical factors. As a concrete example, consider a distribution over random vari-
ables A, B and C with p(A,B,C) = p(C) p(B |C) p(A |C), i.e. A is independent of B, given
C. Now, suppose that the distribution was generated from a relational graphical model and
thus obeys to some additional symmetry, say p(A |C) = p(B |C). In this case, the joint
distribution simplifies to p(A,B,C) = p(C) p(A |C)2, i.e. we do not need to compute the
value of P (B |C) at all, which can lead to vastly increased inference time. This property
describes whether probabilistic inference algorithms can make use of such redundancies.

Can the algorithm handle distributions at the parametric level? (Parameterization)

Another method for handling a distribution more efficiently – apart from exploiting redun-
dancies – is to parameterize the distribution. That is, when the distribution follows some
parametric form, it is sufficient to store and manipulate the parameters, instead of enumer-
ating all values. For example, the Rao-Blackwellized particle filter (Section 2.2.3) makes use
of this concept, by handling some factors of the filtering distribution parametrically.

Can the algorithm obtain a more specific distribution representation? (Splitting)

The next three properties describe the capabilities of the algorithms to modify the degree
of abstraction: Merging and Splitting. Splitting is the process of obtaining a more specific
(propositional) representation from an abstract representation (in logic, this operation is
known as grounding). Splitting operations are necessary for incorporating observations: In
the example above, when we obtain evidence for the random variable A, but not for B, the
factors p(B |C) and p(A |C) need to be treated separately again.

Can the algorithm obtain a more abstract distribution representation? (Merging)

Merging (or lifting) is the reverse process to splitting: Obtaining a more abstract or ag-
gregated representation, by identifying redundancies. Merging is necessary in all domains
where either the problem is given in a propositional form, or domains where the problem
degenerates over time by repeated splitting operations. Splitting and merging only change
the representation of a distribution, they do not change the distribution itself (in the ap-
proximate case, they try to change the distribution as little as possible).

Can the algorithm handle information about individuals? (Identification) A common
question arising for abstract representations (like relational probabilistic models) is how
information about single individuals is handled. To integrate such information, the algorithm
either needs to perform a split operation, or, when the model is given in propositional form
and merging operations are applied to it, consider the evidence before merging.

Can the algorithm perform inference in dynamic domains? (Online) This property de-
scribes the difference between (general) probabilistic inference and Bayesian filtering: Prob-
abilistic inference answers a query for a single point in time, given evidence, and Bayesian
filtering answers a sequence of queries, one for each time step. Bayesian filtering problems

25

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

Crit. # Explanation

I1 3 Paper not written in English
I2 0 Full-text not available
I3 9 Paper not peer reviewed
I4 31 Paper does not contain a novel algorithmic contribution (e.g. application

and review papers)
I5 11 Model is not probabilistic (e.g. inference in first-order logic)
I6 77 No inference algorithm for probabilistic model (e.g. because paper presents

an algorithm for learning the model structure, or something completely
different, like planning or model checking)

I7 63 Propositional model used, or the inference algorithm relies on complete
grounding

Table 3.2.: Reasons for excluding 195 of the 268 papers that remained after examining title,
keywords and abstract of the 4503 initial records.

cannot be solved efficiently by general-purpose probabilistic inference algorithms via un-
rolling the model, as the length of the observation sequence is typically unbound, so that
the size of the resulting graphical model would grow indefinitely over time. Instead, effi-
cient Bayesian filtering algorithms perform online inference, where inference complexity is
linear in the number of time steps, and observation sequences of indeterminate length can
be processed.

3.1.5. Quantitative Results

From the 4503 initial records that have been retrieved by the database search, 4235 have
been excluded by only examining their title, keywords, and abstract. The relevance of the
remaining 268 papers (regarding the inclusion criteria) has been examined based on the full-
text. 195 of those papers have been excluded based on the inclusion criteria, as shown in
Table 3.2. The high number of papers excluded because of I6 shows that the query terms
have been chosen broadly, such that also a great number of papers that are not concerned
with probabilistic inference have been retrieved. Most of the papers excluded because of I7
are concerned with inference in relational probabilistic models by complete grounding.

The remaining 73 papers were considered relevant and included into this review. The ref-
erences of these papers were examined, which lead to the identification of another 43 relevant
papers. Thus, 116 papers have been included in this review in total. This corresponds to a
precision of 73/4503 = 1.6% and a recall of 73/116 = 62.9% of the initial query.

The properties of the approaches presented in these 116 papers have been evaluated, as
described in Section 3.1.4. We then clustered the approaches, based on these properties.
That is, all approaches having the same manifestation of the properties form a cluster. With
this process, we found eight distinct groups (i.e. clusters). We assigned names to the groups
that seemed appropriate to us. The groups are shown in Table 3.3. The complete list of all
papers per group is shown in Appendix C. We want to emphasize that the groups have not
been predefined, but they are a result of the individual analysis of each paper.

As can be seen from Table 3.3, the “lifted inference” groups contain by far the most papers,
showing that lifted inference is an active research area. Figure 3.2 shows the chronological

26

3.2. Symmetry-Aware Inference Algorithms

0

5

10

15

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

N
o
.

p
a
p
e
rs

group

Top−down LI

Bottom−up LI

Continuous Inference

Logical Particle Filter

Relational Particle Filter

Relational Kalman Filter

Data Association

Prob. Multiset Rewriting

Figure 3.2.: Number of examined papers per year. The papers have been retrieved from
January to February 2017. The groups are based on the analysis and clustering
of approaches, as described in the text.

development of the research area. Although the first lifted inference paper was published
in 2003, the majority of lifted inference papers has been published after 2008. The drop in
the total number of included papers after 2014 may be due to the fact that not all papers
form 2015 and 2016 are properly indexed at the used publication databases at the time of
retrieving the papers (January – February 2017).

3.2. Symmetry-Aware Inference Algorithms

In this section, the main result of the systematic review is presented: Each of the eight
groups that were identified by the systematic review are described in more detail. Additional
related work – that was not included in this review because it was not identified by the search
procedure described above or because it did not match the inclusion criteria, but that we
still considered relevant – is presented in Appendix B.

3.2.1. Lifted Probabilistic Inference

Lifted probabilistic inference algorithms aim at exploiting the inherent symmetries and re-
dundancies that arise in relational graphical models (see Section 2.1.3 for an example of such
redundancies), i.e. they exploit exchangeability of the underlying distribution.

A formal definition of lifted inference is given by Van den Broeck [224]: An inference
algorithm is domain-lifted for a relational graphical model ∆, query q and evidence e if it
computes p(q | e) in polynomial time in each |D1|, . . . , |Dk|, where Di is the domain of the
parameters of the par-RVs appearing in ∆, q or e. Here, for the inclusion of algorithms, we
did not use this strict definition, as many inference algorithms that exploit symmetries do
not achieve fully domain-lifted inference, or the definition is not directly applicable (e.g. for

27

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

O
n
li
n
e

Id
en
ti
fi
ca
ti
o
n

G
ro
u
p
V
a
ri
a
b
le
s

P
a
ra
m
et
ri
za
ti
o
n

S
p
li
tt
in
g

M
er
g
in
g

N
o
.
P
a
p
er
s

N
a
m
e

� � � � � - 50 LI Top-down
� � � � - � 31 LI Bottom-up
� � � � � � 5 Continuous Inference
� � � � - - 7 Multiset Rewriting
� � � � � � 1 Logical Particle Filter
� � � � � � 3 Relational Particle Filter
� � � � � � 3 Relational Kalman Filter
� � � � - - 16 Data Association

Table 3.3.: Groups of inference approaches, based on the properties defined in Section 3.1.4.
�: has property, �: does not have property, -: property not necessary/not mean-
ingful.

approximate algorithms).

In the last 15 years, a large number of lifted inference approaches have been proposed.
Following Kersting [104], we distinguish two classes of lifted inference algorithms (which also
arise naturally due to the properties defined in Section 3.1.4): Top-down algorithms start
with a relational model, and perform splitting operations when necessary, and bottom-up
algorithms start with a propositional representation and identify the symmetrical structure
by merging.

Top-down Lifted Inference: First-Order Variable Elimination Poole [173] proposed the
first ideas related to lifted inference, in an algorithm known as first-order variable elimi-
nation (FOVE). The idea is to perform variable elimination directly on a parfactor graph,
eliminating entire par-RVs in one step, instead of single RVs.

Example 7. Consider the graphical model of Example 2 and the query P(s(X), d=1).
Recall that inference in the propositional model (with X = {a, b}) requires two elimination
steps, the elimination of c(a) and c(b) as shown in Example 3. In the parfactor graph (Figure
2.2), we can in principle directly eliminate the par-RV c(X) by multiplying the parfactors β
and α and marginalizing c(X) to get a factor

f(s(X), d) =
∑

v

α(c(X)=v, d) β(s(X), c(X)=v)

which can be represented by the table

28

3.2. Symmetry-Aware Inference Algorithms

s(X) d f

0 0 β(00) α(00) + β(01) α(10)

0 1 β(00) α(01) + β(01) α(11)

...
...

...

This factor directly leads to the query solution P(s(X), d=1) = f(s(X), d=1).

The elimination step performed for eliminating c(X) in the example is called inversion
elimination. Not all cases can be handled this way: For example, consider the case of
eliminating d: In the ground factor graph, eliminating d means we need to multiply all αi

factors, resulting in a factor of all c(X), i.e. a factor that has exponential size with respect to
the domain. In this case, inversion elimination cannot be applied, and FOVE as proposed by
Poole [173] needs to ground c(X) and create the exponentially large factor of all groundings
of c(X).
However, the resulting factor (after eliminating d) is exchangeable: That is, the probabil-

ity only depends on the number of groundings of c(X) that are true, instead of the specific
assignment. This was first realized by de Salvo Braz et al. [51], who presented an elimi-
nation operator that can handle this case. Later, Milch et al. [141] proposed an explicit
representation of such factors, called counting formulae.
Concretely, for efficiently eliminating the RV d, the parfactor α is first converted into a

counting formula, that is indexed by histograms of the par-RV c(X), i.e. that contains one
entry for each number of groundings of c(X) that are true. Specifically, the resulting factor
α′ has the form

#Xc(X) d α′

0 0 α(00)) 2

1 0 α(00) α(10)

...
...

...

2 1 α(11)) 2

This conversion increases the size of the factor, but allows to eliminate the parfactor
directly. From the resulting factor α′, the RV d can then be eliminated directly.

Subsequently, additional elimination rules that make FOVE applicable to more cases with-
out grounding have been proposed [6, 207, 210]. Using these rules, inference problems con-
taining at most two parameters per parfactor can always be solved in polynomial time in the
parameter domain size.
Using FOVE to answer multiple queries on the same relational graphical model is unnec-

essarily inefficient, as some intermediate results need to be computed repeatedly for each
query. The lifted junction tree algorithm [26] alleviates this problem by introducing first-
order junction trees, that intuitively represent the relational graphical model in preprocessed
form so that marginal probability queries can be answered efficiently.
Other top-down lifted inference algorithms are based on recursive conditioning [174], trans-

formation into a weighted model counting problem [223, 79], or rewriting rules [93]. Ideas
related to lifted inference also arose independently in the probabilistic database community
[206, 16].

29

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

(a) Initially, all
RV and factor
nodes have
the same
color.

(b) RV nodes
send color to
factor nodes.

(c) Factor nodes
send stacked
colors to RV
nodes.

(d) Colors are
stacked and
sorted at RV
nodes.

(e) RV nodes
with same
colors are
grouped.

Figure 3.3.: Steps of lifted BP factor graph compression. Adapted from Kersting et al. [105].

Bottom-up Lifted Inference: Lifted Belief Propagation In contrast to top-down lifted
inference algorithms, bottom-up algorithms start with a propositional model and perform
merging operations to obtain a relational structure that can be exploited. Thus, bottom-up
approaches are potentially applicable to a larger class of problems, as they do not require
that the model is given in relational form (or to even contain exact symmetries, instead
they can approximate the model by a symmetric one). However, the necessary merging
operations pose an additional overhead: The propositional model can be very large, and
merging typically requires at least linear time in the propositional model size.
A well-known bottom-up lifted inference algorithm is lifted belief propagation [105]. The

idea is to perform belief propagation (BP) on a factor graph where each node represents
a set of nodes that would send and receive the same messages in standard BP. This lifted
factor graph is obtained by simulating BP and keeping track of which nodes send and receive
the same messages. In this simulation, each node sends its color (a signature) instead of the
actual message. Initially, all RV and factor nodes have the same color signature. The colors a
node receives extend the current color of the node. This color signature is sent in consecutive
messages. After one iteration (all nodes have sent and received a message), nodes with the
same color signature are grouped for the next iteration.

Example 8. Figure 3.3 shows the steps of simulating BP and compressing the factor graph
of Example 2. The nodes s(a) and s(b), c(a) and c(b) as well as β1 and β2 have the same
color signature after one iteration. Thus, they are grouped together in the factor graph.
Afterwards, a modified BP algorithm is performed on the compressed factor graph. This
algorithm needs to consider the actual number of messages sent and received by the grouped
nodes. For example, a message sent from node c(a), c(b) to α actually represents two identical
messages.

Other bottom-up algorithms find symmetries in the graphical model by examining graph
automorphisms of the graphical model. These automorphisms can be used for lifted varia-
tional inference [30] and lifted sampling-based inference [155, 228].
Another interesting property of bottom-up algorithms is that they can potentially also be

applied to models that are not exactly symmetric. In this case, the model can be approx-

30

3.2. Symmetry-Aware Inference Algorithms

imated by a symmetrical one, so that exact or approximate lifted inference algorithms can
be applied [202, 229, 222].

3.2.2. Inference in Continuous Domains

A substantial amount of probabilistic inference research is concerned with discrete RVs,
although many practical problems require modeling continuous variables. For inference in
graphical models containing continuous RVs, algorithms for discrete models cannot be used
directly, as they typically rely on enumerating all values of the RV. Instead, it is necessary
to describe the functional form of the factors containing continuous RVs and manipulate
them analytically. Typical operations that need to be handled are marginalization and
multiplication of such continuous factors. In general, these operations can be difficult, as they
involve the evaluation of complex integrals that are not analytically tractable. Therefore,
recent research [184, 198, 17] has focused on piecewise polynomial functions for describing
factors which can be manipulated efficiently, as illustrated by the following example.

Example 9. The position of an object is observed by a noisy sensor measurement. Both
the position (x) and the observation (o) are continuous RVs. The sensor can either fail, or
work properly (modeled as a binary RV b). In the former case, the observation density is
uniform in the interval [0, 10]. In the latter case, the conditional observation density is a
quadratic function, centered at the real position and truncated at a distance of one from
the true position. This continuous distribution can be represented by a case statement as
follows2:

p(o |x, b) =







−(o− x)2 + 5/6 b = 0 ∧ x− 1 ≤ o ≤ x+ 1

1/10 b = 1 ∧ 0 ≤ o ≤ 10

0 otherwise

In the approach by Sanner and Abbasnejad [184], inference in such models is defined
in terms of variable elimination. When a variable is marginalized from a case statement
factor, the necessary integration is calculated symbolically. The resulting factor can be
more complex than the original factor (i.e. contain more cases), but it is again a piecewise
polynomial function and thus can be represented by case statements. In the context of this
review, this is a splitting operation.
We can also think of a merging operation for continuous inference algorithms: Given a

case statement, a merging operation finds an equivalent case statement with fewer cases. For
example, consider the case statement

p(a) =







−a −1 ≤ a ≤ 0

a 0 < a ≤ 1

0 otherwise,

where the first two cases can be merged into the single case |a|, when − 1 ≤ a ≤ 1. Such
operations are implicitly performed in the approach by Sanner and Abbasnejad [184], who
represent case statements as some variant of algebraic decision diagrams (ADDs).
Inference algorithms in continuous or hybrid models that rely on piecewise polynomials

have also been devised in the context of belief propagation [198] and weighted model counting
[17].

2The added constant 5/6 ensures that the density is always positive and integrates to one.

31

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

at=l0, left(l0)=l1, right(l1)=l0, right(l0)=null, up(l0)=null,
down(l0)=null, left(l1)=null, up(l1)=null, down(l1)=null

∃V1∃V2 : at=V1 ∧ left(V1)=V2 ∧ right(V2)=V1 ∧ up(V1)=null ∧
down(v1)=null ∧ up(V2)=null ∧ down(V2)=null

split

do nothing

do nothing

go right

Figure 3.4.: Top: example of a state; middle: example of a hypothesis; bottom: split and
prediction steps of the LPF. Figures adapted from Zettlemoyer et al. [242].

3.2.3. Relational Bayesian Filtering

The remaining groups of algorithms are concerned with Bayesian filtering, i.e. inference
in dynamic systems. They have been derived in a variety of research field, with different
application domains and research goals: The logical particle filter [242] allows BF in worlds
described by logical formulae, the relational particle filter [160, 161, 162] extends probabilistic
logic programs by continuous RVs and has been used for object tracking, the relational
Kalman filter [41, 39] uses continuous FOVE [38] for Kalman filtering, data association
methods [194, 88] perform BF for the case where the state space is the symmetric group,
and multiset rewriting systems allow to compactly describe dynamic systems where the order
of elements in the state does not matter. In the following, each of those methods is described
briefly.

Logical Particle Filter The logical particle filter (LPF) [242] is a Bayesian filtering algo-
rithm where (ground) states are conjunctive formulae with constants denoting objects in
the world, and proposition and function symbols representing the object’s properties and
relations. Consider a robot that moves around a maze, and needs to track its location as
well as the map. An example of a state is shown in Figure 3.4 (top): The agent is at some
location l0, and there is just one other location l1 left of l0.

The LPF does not represent states explicitly, but maintains hypotheses, that describe (pos-
sibly infinite) sets of states. A hypothesis is a first-order sentence, consisting of existentially
quantified variables, and conjunctions of literals formed with these variables. For example,
the hypothesis shown in Figure 3.4 (middle) represents all states where there is a location
left of the agent’s location, but no locations upwards or downwards of those two locations.

The transition model is described in terms of rules that have preconditions and proba-

32

3.2. Symmetry-Aware Inference Algorithms

bilistic effects. A state transition is performed as follows: First, a split operation is applied
to each hypothesis, to ensure that the applicability of transition rules can be determined.
For example, in the hypothesis h1 introduced above, the applicability of the rule go-right
cannot be determined, as in only some of the states described by h1, a location left of the
agent’s location exists. A split leads to two hypotheses: One where the rule can be applied,
and one where it cannot be applied. Afterwards, the transition model is applied to each
hypothesis separately. Observations can also require a split, e.g. when we observe that there
is a location to the right with some probability.
The LPF does not work exactly, but maintains a set of weighted samples {(h(i), w(i))}ni=1

of the hypotheses. Similar to the conventional particle filter, the LPF performs resampling
from the set of hypotheses {h(i)}ni=1, according to their weights at each time step.
In summary, the LPF allows to maintain abstract state descriptions, where the values

of some state variables is not determined. This way, all states that are only different on
those indeterminate variables are grouped together. However, opposed to lifted inference
algorithms, exchangeability of the distribution cannot be exploited in general: There is no
formalism to specify that a specific number of state variables have a certain value (like
counting formulae in lifted inference).
A problem not approached by the LPF is that variables that are instantiated once stay

instantiated for this particle, i.e. merging operations for LPFs have not been devised. This
can lead to a complete propositionalization of the filtering distribution over time.

Relational Particle Filter The relational particle filter (RPF) [160, 161, 162] is a Bayesian
filtering algorithm where states, as well as the transition and observation model, are described
by distributional clauses.

Distributional clauses are a formalism to specify conditional distributions. They have the
form h ∼ D ← B ∼= b, which describes the conditional distribution p(h |B=b) ∼ D. Each
of H, B and D can have logical variables. For example, the clause

size(X) ∼ beta(2, 3) ← material(X) ∼= metal

describes a conditional distribution p(size(X) |material(X)=metal) for each X. A dynamic
distributional clause (DDC) furthermore allows RVs to have time indices. Thus, DDCs
can be used to describe the conditional probabilities p(xt |xt−1) and p(yt |xt) of state space
models. For example, consider a dynamic system consisting of a ball and a box that can
change their position over time. The transition model can be described in terms of a DDC.
For example, the DDC pos(ID)t+1 ∼ gaussian(≃ pos(ID)t, 0.1) represents the case where
the new position of each object is distributed according to a normal distribution around the
old position.
The inference algorithm performs particle filtering, using distributional clauses to specify

the transition and observation model. Each particle is an assignment of values to some of
the RVs, while the other RVs do not have a specific value, but its distribution is described
by distributional clauses. A transition might require to know the specific value of an RV.
This is achieved by sampling from the corresponding distribution – obtaining a new set of
particles – and applying the transition model to each particle separately. This procedure is
an instance of splitting.
The RPF can be understood as a Rao-Blackwellized particle filter (RBPF), where dis-

tributional clauses are used as a closed-form representation. However, in contrast to the

33

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

�

�

���

����

����

�

� �

�

� �

�

����

�

���
���

���

Figure 3.5.: Parfactor graph describing the relational Kalman filter for Example 10. P par-
factors describe the state distribution, T parfactors correspond to the transition
model, O parfactors correspond to the observation model.

standard RBPF [59], which handles some of the RVs completely in the parameter domain
(i.e. updating the parameters), the RPF always needs to instantiate distributional clauses
by sampling when the corresponding distributions are accessed. The RPF thus performs
some form of lazy inference – it maintains the parametric representation until grounding is
inevitable, which can lead to a complete grounding over time.

Relational Kalman Filter The relational Kalman filter [41] is an algorithm for Bayesian
filtering that is based on continuous FOVE [38]. The standard Kalman filter assumes that
the filtering distribution is a multivariate normal. Opposed to that, the system state in the
relational Kalman filter is modeled as a relational pairwise model (RPM) [38], an extension
of parfactor graphs where the par-RVs are continuous and the parfactors have the form

φ(X,Y) ∝ exp

(

−
(X − Y − µ)2

σ2

)

,

where X and Y are par-RVs. RPMs essentially represent a multivariate normal distribution
with additional independence assumptions. The transition and observation model are also
defined by RPMs. Based on this state representation, a Bayesian Filtering algorithm is
defined in terms of continuous FOVE [38], i.e. by marginalizing out variables of the previous
time step.

Example 10. We are interested in estimating the true value of a number of real estates
over time, based on observations of sales prices and other factors like the housing market
index. The value of real estate i at time t is modeled as a Gaussian RV vt(i), and the housing
market index is modeled as a Gaussian RV mt. At each step, several sales prices will be
observed.

If we initially assume each real estate to have an identical value, the estimated vt(i) will
be the same for all unobserved i. Thus, all of these values can be represented by a single,
parametric RV vt(X).

The dependency between the state RVs at a single time step t is represented by a parfactor
(specifically, an RPM) P(vt(X),mt) and the observation model is an RPM O(vt(X), obst).
The transition model can (for example) be described by RPMs Tv(vt(X), vt+1(X)) and
Tm(mt,mt+1). Figure 3.5 shows the parfactor graph describing the situation. The prediction
and update steps thus have to be performed only once for each par-RV, instead of once for
each RV.

34

3.2. Symmetry-Aware Inference Algorithms

A B C

B or C?A, B or C? A, B or C?

Figure 3.6.: Data association problem. Three objects A, B and C move in 2D space. The
identities of the objects cannot be observed directly. When they come too close,
we become uncertain about the correspondence of the objects and the tracks.
Adapted from Huang et al. [88].

The key challenge of the relational Kalman filter arises when individual observations about
RVs corresponding to the same par-RV are made. In this case, a split operation needs to
be performed to handle each observed RV individually. Interestingly, even when individual
observations are made and therefore the means of the RVs become different, the variances
or RVs remain identical, which is sufficient for maintaining a relational representation. An
algorithm to approximately merge variables that have become distinct due to observations
has been described by Choi et al. [39].

Data Association Data association algorithms are concerned with the following problem:
Given a number of tracks t1, ..., tn (e.g. radar measurements, tracks of people in a video)
that correspond to objects o1, ..., on, maintain the correct correspondence between tracks
and objects (or, more general, a distribution of object-track associations). The problem is
visualized in Figure 3.6. This problem can be viewed as performing Bayesian filtering in a
state space where each state is a permutation of objects. There are n! many of these permu-
tations, so the naive approach to maintain a distribution of those permutations explicitly is
infeasible. Thus, the central task of data association algorithms is to maintain an efficient
representation of distributions of permutations, and mechanisms to perform the prediction
and update steps of Bayesian filtering directly on this representation.
Two conceptually different approaches for this goal have been devised. The first one, known

as the Fourier-theoretic approach [87, 88, 89, 91, 117], utilizes a Fourier transformation over
the symmetric group Sn (the group that represents permutations of n objects). Instead of
maintaining the complete distribution p(σ), σ ∈ Sn, the distribution is approximated by its
first few Fourier matrices, just like a function f(x), x ∈ R can be approximated by its first
few Fourier coefficients.
The second approach [194] maintains a compact representation of the distribution over

permutations matrices by an information matrix Ω. The information matrix contains un-
normalized marginal probabilities Ωij for each association of track i with identity j.
Given the information matrix Ω, we can calculate the probability of any permutation

35

3. Symmetry-Aware Probabilistic Inference: A Systematic Review

matrix A as p(A) = 1/Z exp trATΩ. Calculating the partition function Z is difficult, as it
involves summing over all permutation matrices. However, the prediction and update steps
of the Bayesian filter can be performed directly on the information matrix: The observation
of an association of a track i with a specific object j leads to an increase of the corresponding
value Ωij , and the mixing of tracks i1 and i2 leads to the same values in columns i1 and i2 in
the information matrix. It is also possible to maintain higher-order information matrices. For
example, the second-order information matrix maintains scores Ω(i1,i2),(j1,j2), where (i1, i2)
denotes a pair of tracks and (j1, j2) denotes a pair of identities.

Both approaches can be seen as a projection of the true distribution to a low-dimensional
subspace, but using different metrics – the L2 metric for the Fourier-theoretic approach and
the KLD metric for the information-theoretic approach [95]. Both approaches have been
compared by Jiang et al. [95]. They found that the Fourier-theoretic approach is better
suited for scenarios with high uncertainty, while the information-theoretic approach is better
suited for scenarios with low uncertainty about the data association.

Probabilistic Multiset Rewriting Systems Probabilistic Multiset Rewriting Systems (P-
MRSs) naturally emerge in this review as another category of symmetry-aware inference
algorithms. Here, we only discuss them from the perspective of the algorithm properties
(Section 3.1.4) and compare them with the other methods discussed in this survey – for a
general introduction to PMRSs, see Section 2.3.

The appealing property of PMRSs is their intrinsic ability to aggregate redundant parts
of the state and handle them as a group, due to the multiset state model. Specifically, when
computing the applicable rules (and their probabilities), they only need to reason about the
number of entities of a species in a multiset, instead of distinguishing them individually.
This concept is strongly related to counting formulae in C-FOVE, where probabilities only
depend on the number of RVs of a parfactor with a specific value, and not the specific RVs
that have each value.

In contrast to relational graphical models that typically assume a fixed set of RVs, PMRSs
can directly express situations where the number and/or types of entities change over time
(which is common for multi-entity situations, as discussed in Section 1.2).

On the other hand, existing PMRSs do not consider observations, and thus cannot be used
directly for BF. Furthermore, there is no way for existing MRS algorithms to distinguish
individual entities from the other entities of that species, i.e. for splitting a species.

From a lifted inference point of view, PMRSs can be seen as constantly maintaining the
filtering distribution in counting formula (i.e. lifted) form, without the possibility of ob-
servations or splitting (but with additional flexibility for expressing models with changing
numbers of RVs).

3.3. Conclusion

The goal of this literature review was to investigate in how far existing methods can be
used for efficient BF in multi-entity situations. We now summarize our findings and draw
conclusions regarding a suitable method for this purpose.

• Lifted inference provides general concepts and algorithms to exploit exchangeability.
However, existing algorithms were not devised for Bayesian filtering, and unrolling the

36

3.3. Conclusion

model is highly inefficient. Furthermore, they assume that the distribution is given
as a graphical model, which does not easily allow for changing numbers or types of
entities, which is a fundamental requirement for the multi-entity situations considered
here (see Section 1.2).

• The logical particle filter (LPF) and the relational particle filter (RPF) are more closely
related to the goal of this thesis. They are both Bayesian filtering methods that use a
rule-based formalism to specify the transition model, and both methods exploit some
form of redundancy of the distribution to achieve more efficient inference: The LPF
makes use of the fact that some state variables can be uninstantiated, such that those
variables can be ignored (thus reducing the number of different states), while the
RPF can maintain distributions of some RVs in parametric form until they need to
be accessed. However, they both cannot express the type of redundancy that arises
in multi-entity situations when not all entities can be distinguished, so these entities
could be grouped together. Furthermore, the LPF and RPF suffer from the fact that
the representation can become completely propositionalized over time.

• The relational Kalman filter and data association methods can be very efficient in
special cases, but are not applicable to the general Bayesian filtering problem in multi-
entity systems, where entities can have discrete properties or properties with non-
Gaussian distributions.

• Probabilistic multiset rewriting systems (PRMS) provide a general formalism for multi-
entity systems where the system dynamics can be described by a set of rules, and where
numbers and types of entities can change over time. Furthermore, they intrinsically
handle the case where multiple entities are identical efficiently. However, Bayesian
filtering algorithms – that allow the observation of individuals – have not been devised
for PMRS.

In summary, PMRSs are capable of modeling the types of multi-entity systems we are
interested in: The system dynamics can be described symbolically by rewriting rules, and
they directly allow for changing numbers and types of entities – as required by the usage
situations situations considered in this thesis, see Section 1.2. None of this is is easily possible
in (relational) graphical models – graphical models are simply not designed for this use case.
Therefore, from here on, we will focus solely on PMRSs as the modeling formalism that is

underlying our BF algorithm for multi-entity systems.
Unfortunately, PMRSs have been devised for simulations, and thus lack a mechanism for

incorporating observations. How to systematically handle observations for PMRSs, and how
to perform (efficient) BF for PMRSs is the topic of the next section.

37

4
Lifted Marginal Filtering

Chapter Summary In this chapter, we present the main technical contribution of this the-
sis: A lifted Bayesian filtering algorithm for systems with muliset rewriting dynamics. In
Section 4.1, we start by describing the variant of MRSs on which our BF algorithm is based.
Then, after showing how (ground) Bayesian filtering can be performed for this MRS (Sec-
tion 4.2), we derive a more efficient representation of distributions over multisets (Section
4.3). We then present a filtering algorithm that works directly on this efficient representation
(Sections 4.4). Finally, we empirically show that this algorithm leads to a factorial reduc-
tion in the representational complexity of the distribution and algorithm runtime, and in the
approximate case has a lower variance of the estimate and a lower estimation error (Section
4.5).

Parts of this chapter are based on:

[130] Stefan Lüdtke and Thomas Kirste. Lifted Bayesian Filtering in Multiset Rewrit-
ing Systems. Journal of Artificial Intelligence Research, accepted, 2020.

[132] Stefan Lüdtke, Max Schröder, Sebastian Bader, Kristian Kersting and Thomas
Kirste. Lifted Filtering via Exchangeable Decomposition. In Proceedings of the 27th
International Joint Conference on Artificial Inteligence, 2018.

[133] Stefan Lüdtke, Max Schröder, and Thomas Kirste. Approximate Probabilistic
Parallel Multiset Rewriting using MCMC. In Joint German/Austrian Conference on
Artificial Intelligence (Künstliche Intelligenz), pages 73–85. Springer, 2018.

[136] Stefan Lüdtke, Kristina Yordanova, and Thomas Kirste. Human Activity and
Context Recognition using Lifted Marginal Filtering. IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2019.

39

4. Lifted Marginal Filtering

Contents

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System
with Structured Entities . 41

4.1.1. Design Considerations . 41

4.1.2. MRS with Structured Entities 42

4.1.3. Maximally Parallel MRS . 44

4.1.4. Probabilistic Maximally Parallel MRS 45

4.1.5. An Algorithm to Enumerate AMCAs 48

4.2. Bayesian Filtering in Multiset Rewriting Systems 49

4.2.1. Prediction . 49

4.2.2. Update . 50

4.3. Factorizing Multiset Distributions 52

4.3.1. Decomposing Multisets of Structured Entities 53

4.3.2. Distributions of Value Sequences 54

4.3.3. Lifted States . 57

4.4. Lifted Filtering . 61

4.4.1. Applying Constraints and Effects to Lifted States 61

4.4.2. Splitting . 62

4.4.3. Disjointness of Lifted States . 69

4.4.4. The Lifted Marginal Filtering Algorithm 71

4.5. Experimental Evaluation . 74

4.5.1. Evaluation Scenarios . 74

4.5.2. Exact Inference . 77

4.5.3. Approximate Inference . 80

4.5.4. Summary . 83

40

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System with Structured Entities

4.1. A Probabilistic Maximally Parallel Multiset Rewriting

System with Structured Entities

From the literature review, we concluded that MRSs can be usefully employed for the sym-
bolic modeling of multi-entity systems. Their appealing property is that they can directly
work with groups of entities that cannot be distinguished. However, MRSs have not been
used in the context of BF before, and many existing MRSs cannot be used directly for this
purpose. Therefore, in this section, we present a variant of MRSs that will be the foundation
of the efficient BF algorithm for multi-entity systems presented afterwards.

In Section 4.1.1, we start by discussing the specific requirements and design consideration
of this MRS. Then, we present several extensions of MRS that are necessary to satisfy
these requirements: Structured entities (which allow more flexibility and expressiveness) are
introduced in Section 4.1.2, and a specific variant of probabilistic maximally parallel MRSs
that accounts for the structured species is introduced in Section 4.1.3.

4.1.1. Design Considerations

In the following, we describe the technical requirements and considerations of the MRS that
is underlying our efficient BF algorithm. The requirements directly follow from (a) the usage
situations we want to model, as introduced in Section 1.2, and (b) the fact that the MRS is
used in the context of BF, i.e. to specify the transition model of a state space model.

Structured Entities As introduced in Section 1.2, we are interested in systems where enti-
ties consist of a number of properties, and therefore, an MRS to model such systems requires
a formalism to represent such structured entities. For example, consider the multi-agent
activity recognition scenario in Example 1, where agents can move around multiple rooms,
and pick up and manipulate objects. When the entities are flat (unstructured), each com-
bination of properties of an agent (name, location, handled objects, current goal, ...) needs
to be modeled as a separate entity. Properties can also be continuous, leading to an infinite
number of different entities.

Furthermore, not all entities need to have all properties, but different entities can have
different subsets of properties, e.g. in Example 1, a person is described by other properties
than a coffee cup. Therefore, a vector- or sequence-based representation, where element i
denotes the value of the i-th property, is not suitable. Instead, the MRS presented below
represents entities as maps, i.e. partial functions, of property names to values.

Additionally, the structure in the entities will later allow to derive a more abstract represen-
tation, by grouping entities together that are “almost” identical, except for some properties
that we did not observe, but for which we know the joint distribution.

Flexible Specification of Actions When using structured entities, the number of different
species can easily become very large (due to the combinatorial explosion in the number of
combinations of values) or even infinite (when properties have a continuous domain). In this
case, the conventional specification of actions via reactants and products becomes unsuitable,
as this would lead to an infinite number of actions: For example, consider the action “drinking
coffee from a cup”, which can be performed when the cup is not empty. When the entity

41

4. Lifted Marginal Filtering

representing the cup also contains the coffee temperature as a property, an infinite number of
actions would be necessary, one for each possible temperature in the reactant and product.

Obviously, to encode such an infinite number of actions in a finite specification, a more
flexible syntax for specifying actions is necessary. Specifically, we will use a constraint-based
formalism for describing reactants, and describe products as functions of the reactants.

Probabilities The next two requirements arise from the fact that the MRS is used to de-
scribe the transition model of a state space model, i.e. the conditional distribution p(xt |xt−1).
First of all, this means the MRS needs to specify a distribution over successor states, i.e. we
need a probabilistic MRS.

Discrete-Time Maximally Parallel Semantics In the BF task, observations are made at
discrete time steps. Subsequently, it is natural to use an MRS that has a discrete-time
semantics, so that a single state transition occurs between observations.

However, one state transition does not mean that exactly a single action had occured (i.e.
a single agent acted): Instead, in the usage situations we are concerned with, multiple agents
can usually act at the same time between observations. For example, in the multi-agent ac-
tivity recognition scenario in Example 1, suppose that sensor observations (or preprocessed
observations, e.g. aggregated features) are obtained once every 10 seconds. Between obser-
vations, each of the agents can individually perform an action. Therefore, we will use a
maximally parallel MRS as a systematic formalism for such situations.

4.1.2. MRS with Structured Entities

Entities with attributes and corresponding schematic actions can be found in many rule-
based languages in systems biology, e.g. [47, 64, 96]. Here, we present a simple variant
of these approaches, that can also naturally handle cases where the numbers of properties
per entity type can change over time, which makes our approach flexible and expressive.
Specifically, in our model, entities are property-value maps.

Definition 5. [entity] Let P and V be two sets. We call elements from P property names
and elements from V values. An entity e ∈ E is a partial function E := P 7→ V, i.e. a map of
property names P to values V.

We use f = 〈k1: v1, . . . , kn: vn〉 to denote the partial function f where f(k1) = v1, . . . ,
f(kn) = vn. For example, the entity e with the keys Name (with value A) and Loc (with
value Table) is denoted as e = 〈Name: A,Loc: Table〉. In the following, to distinguish entities
from other functions, we use the notation e.K to denote the value corresponding to the key
K of entity e. For example, the value for the key Name of entity e is denoted as e.Name.

Example 11. We are modeling a simplified version of the person tracking and activity
recognition task introduced in Example 1: Multiple persons (agents) move in an office envi-
ronment. Each agent is characterized by a name and their current location (other aspects,
like objects in the environment that can be picked up by the agents, and so on are not mod-
eled here). Suppose there are two locations “Door” and “Table”, and three agents “Alice”
(A), “Bob” (B) and “Charlie” (C). Let P = {Loc,Name} and V = {Door, Table, A,B,C}.

42

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System with Structured Entities

A state of the system where agent A is at the table, and agents B and C are at the door, is
described by the following multiset:

x = J 1〈Name: A,Loc: Table〉, 1〈Name: B,Loc: Door〉, 1〈Name: C,Loc: Door〉 K (4.1)

Note that neither P nor V needs to be finite. For example, the location could be described
by elements from R

2. When either P or V is infinite, the set E of entity types is also
infinite. This makes the definition of actions by reactants and products, as shown in Section
2.3, infeasible, as one action definition would be necessary for each of the infinitely many
entities. Instead, actions are here defined in terms of preconditions (that describe which
constraints a structured entity must satisfy so that the action can be applied) and effects
(that describe how the state changes, with respect to the entities that are used for satisfying
the preconditions).

Definition 6. [action] Let c ∈ C be a sequence of boolean functions of entities, i.e. C :=
seq (E → {true, false}), called preconditions, and let f ∈ F be a function that manipulates
a state, given a sequence of entities, i.e. F := seq E × X → X . (called effect). The weight κ
of an action is a positive real number. An action a ∈ A is a triple a = (c, f, κ) ∈ C×F×R>0.

Before we can given an example of an action, we need to introduce some convenient
notation for some simple effects: Replacing a property value with a new value, adding a new
property-value pair to an entity, and adding an entity to the state.

• Consider an effect f that adds the property-value pair (k, v) to an entity e, or, if a
property k is already present in e, changes the value of k to v, i.e.

f(〈. . . , e, . . . 〉, x) = (x∪- J 1e K) ⊎ J 1e′ K, where

e′ = e⊙ 〈k: v〉

We will denote such an effect as “e.k ← v”.

• Consider an effect f that adds an entity e∗ to the state, i.e. f(e, x) = x ⊎ J 1e∗ K. We
denote such an effect as “+e∗”.

• The composition of two effects f1 and f2 is defined as (f1◦f2)(i1⊙i2, x) = f1(i1, f2(i2, x)).

Example 12. In the office domain (Example 11), agents can move between locations. One
of the actions – that describes movement between the door and the table – is the action
move-d-t = (c, f, κ), that is defined as follows1:

c(e) = (e.Loc == Door)

f(〈e〉, x) = e.Loc ← Table

To apply an action a to a state x, the action is instantiated : For each precondition of a,
an entity from x is selected that satisfies that precondition. The effect then manipulates the
state based on these entities – they are used as parameters of the effect function. We call
such a pair of action and a sequence of entities an action instance.

1Note that the expression e.Loc == Door is a Boolean expression in the constraint language (in this case,
an equality constraint).

43

4. Lifted Marginal Filtering

Definition 7. [action instance] An action instance is a pair (a, i) ∈ A × seq E where
a = (c, f, κ) is an action and i is a sequence of entities. An action instance is compatible to
a state x if the following conditions hold:
(i) There is a corresponding entity for each constraint, i.e. |i| = |c|.
(ii) Each precondition in c is satisfied by its corresponding entity. That is, ∀j : ij |= cj .
(iii) The multiset of the entities in e is contained in x, i.e. items(i) ⊑ x.
An action instance α = ((c, f, κ), e) is applied to a state x by applying the effect function to
the state and the bound entities, i.e. x′ = f(e, x).

It is important to note that preconditions and bound entities have a sequential order
(instead of being a multiset, as before), and thus the effect can depend on which entity is
bound to which position. For example, consider an action eats with effect f(〈e1, e2〉, x) =
x∪- e2. In this case, it obviously makes a difference in which order the entities are bound to
the preconditions, as this defines which of the entities gets eaten by the other one.

Example 13. Consider the state

x = J 1eA, 1eB, 1eC K,

where eA = 〈Name: A,Loc: Table〉, eB = 〈Name: B,Loc: Door〉 and eC = 〈Name: C,Loc: Door〉.
The action move-d-t from Example 12 can be applied to all entities where Loc == Door,
and thus, the state x has two compatible action instances

α1 = (move-d-t, eB),

α2 = (move-d-t, eC).

Applying these action instances leads to successor states x1 or x2, where

x1 = J 1eA, 1e
′
B, 1eC K,

x2 = J 1eA, 1eB, 1e
′
C K

with e′B = 〈Name: B,Loc: Table〉 and e′C = 〈Name: C,Loc: Table〉.

The set of all action instances of an action that are compatible with a given state can
be computed by a simple backtracking algorithm that has linear runtime in the number of
action instances.

4.1.3. Maximally Parallel MRS

Next, we introduce the maximally parallel semantics of the MRS. The definitions are similar
in spirit to conventional maximally parallel MRS as introduced in Section 2.3.2, but ac-
count for the constraint-based actions defined above. As usual in maximally parallel MRSs
(MPMRSs), each state transition consists of a parallel execution of a multiset of action
instances, called compound action.

Definition 8. [applicable and maximal compound action (AMCA)] A compound action
k ∈ K is a multiset of action instances, i.e. K := mset (A × seq E). We call a compound
action applicable to a state x if each action instance is compatible with x, and the multiset of
all bindings of the action instances is contained in x, i.e. ⊎(a,i)∈k items(i) ⊑ x (each entity
in a state is bound at most once). We call a compound action k maximal with respect to

44

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System with Structured Entities

a state x if no action can be added to k such that the resulting compound action is still
applicable to x. The set of applicable and maximal compound actions (AMCAs) of a state
x is denoted as Kx.

In the following, we are mostly concerned with the AMCAs, which define the transition
model.

The effect of a compound action is the composition of the individual action instances’
effects. As the order of the individual actions of a compound action is arbitrary, we require
that the order in which the effects are applied can also be arbitrary, i.e. the individual effects
must be commutative. The simple effects introduced above are always commutative (given
that they cannot operate on the same entity, which is the case when the compound action
is applicable).

Definition 9. [compound action effect, successor state] Let k be a compound action, and
let the effects of all actions in k be commutative. The effect of a compound action is the
composition of all individual action instances’ effects, i.e.

fk = ◦
((c,f,κ),i)∈k

f

We call a state x′ = fk(x) a successor state of x.

Example 14. Consider the state

x = J 2eA, 1eB K

where eA = 〈Name: A,Loc: Table〉 and eB = 〈Name: B,Loc: Door〉. Suppose that there are
two actions move-d-t (am), as defined in Example 13) and stay (as), which has a precondition
that is always true, and its effect is the identity.

There is just a single compatible action instance for am: (am, eB). For as, there are two
compatible action instances: (as, eA) and (as, eB). These three action instances allow for
three AMCAs – either both agents at the table move, just one of them moves or both stay
where they are:

k1 = J 2(as, eA), 1(as, eB) K

k2 = J 1(am, eA), 1(as, eA), 1(as, eB) K

k3 = J 2(am, eA), 1(as, eB) K

The situation is shown in Figure 4.1.

Single-action (sequential) application can be modeled in a maximally parallel MRS by
introducing an additional mutex entity to the state that is a precondition to each action. On
the other hand, MPMRS dynamics cannot be replicated in a sequential MRS in general, as
discussed in Appendix E.

4.1.4. Probabilistic Maximally Parallel MRS

Next, we introduce a probabilistic semantics for the MPMRS and show how the resulting
formalism specifies a transition model p(xt |xt−1).

45

4. Lifted Marginal Filtering

Table Door

Table Door

Table Door

Table Door

k1
μ=1

k2
μ=2

k3
μ=1

Figure 4.1.: AMCAs and successor states for Example 14: Either both red entities (entities
with name A) stay at their location, one of them moves, or both move. The
AMCA k2, where one entity moves, has multiplicity 2, as either of the two
entities could have moved.

Note that up front, any function from the AMCAs to positive real numbers which inte-
grates to one is a valid definition of these probabilities. Each definition might be plausible for
different domains, depending on the underlying “physics” (i.e. action selection mechanism):
A world where entities can independently “choose” which action to participate in requires a
different definition of AMCA probabilities than a world where entities cooperate to reach a
common goal.

Here, we use the probabilities that arise when entities choose which action to participate
in without coordinating. This is the intended semantics for the multi-agent scenarios we are
concerned with. To calculate this probability, we count the number of ways specific entities
from a state x can be chosen to be assigned to the action instances in the compound action.
This concept is closely related to the MPMRS of Barbuti et al. [9] – except that due to the
fact that we use positional preconditions, the counting process is slightly different. We start
by defining the multiplicity of an action instance α as the number of ways the bindings of α
can be chosen from the entities of a state x.

Definition 10. [multiplicity of an action instance] Let α be an action instance, let i =
〈i1, . . . , in〉 be the entities bound in α, and let x be a state. The multiplicity µ of i in x is

µ(i = 〈i1, . . . , in〉, x) =

{

(x#i1)m(〈i2, . . . , in〉, x∪- J 1i1 K) if |i| > 0

1 otherwise

Furthermore, let the multiplicity µx(α) of action instance α = (a, i) in x be µx(α) = µ(i, x).

The multiplicity of an AMCA k in state x is in principle just the product of the component
action instances’ multiplicities regarding the corresponding remaining state. However, when
defining the multiplicity this way, the multiplicity of the compound action is overestimated,
as the action instances in k do not have an order, so not each permutation of action instances
should not be counted separately.

For example, consider the state x = J 2y K and the AMCA k1 = J 2(a1, 〈y〉) K. Although
the multiplicity µx(a1, y) is 2, the multiplicity of k should be 1, as there is only a single way
to assign the entities in x to the compound action, as the order of the action instances in
the compound action is not relevant. On the other hand, the AMCA k2 = J 1(a2, 〈y, y〉) K
should have a multiplicity of 2, as the bound entities have a sequential order, so there are two

46

4.1. A Probabilistic Maximally Parallel Multiset Rewriting System with Structured Entities

distinct ways to assign entities from x to the sequence. To obtain these desired multiplicities,
we therefore need to divide by the number of permutations of identical action instances.

Definition 11. [multiplicity of an AMCA] Let k be an AMCAs of the state x. The
uncorrected multiplicity µ′ of k in x is

µ′(k, x) =

{

µx(α)µ
′(k ∪- J 1α K, x∪- items(i)), where α = (a, i) ∈ dom(k) if k 6= J K

1 otherwise
(4.2)

The multiplicity µ of k in x is obtained by dividing µ′ by the product of the number of
permutations of identical action instances in k:

µx(k) =
µ′(k, x)

z(k)
, where z(k) =

∏

α∈dom(k)

k#α! (4.3)

This definition accounts for the positional preconditions, by only dividing by the number
of permutations of action instances, but not by the number of permutations of bound entities
in each action instance (as done by Barbuti et al. [9], where action preconditions are multisets
and thus, the position of bound entities is irrelevant).
Finally, we define probabilities of AMCAs as their normalized multiplicity, multiplied by

the product of the individual actions’ weights.

Definition 12. [weight, probability of an AMCA] Let Kx be the set of AMCAs of the state
x. The weight vx(k) of an AMCA ki ∈ Kx is

vx(ki) = µx(ki)
∏

α∈dom(ki)

κki#α
a . (4.4)

The probability of an AMCA ki ∈ K, given x, is its normalized weight:

p(k |x) =
vx(k)

Z
, where Z =

∑

ki∈K

vx(ki) (4.5)

Example 15. Consider the AMCAs

k1 = J 2(as, eA), 1(as, eB) K

k2 = J 1(am, eA), 1(as, eA), 1(as, eB) K

k3 = J 2(am, eA), 1(as, eB) K

of the state x = J 2ea, 1eb K that were shown in Example 14. Their multiplicities (Equation
4.3) are µx(k1) = µx(k3) = 2 ∗ 1 ∗ 1/(2 ∗ 1) = 1 and µx(k2) = 2 ∗ 1 ∗ 1/(1 ∗ 1 ∗ 1) = 2. Thus,
assuming that the actions am and as have equal weight, the probabilities of the AMCAs are
p(k1 |x) = p(k3 |x) = 0.25 and p(k2 |x) = 0.5 (see Figure 4.1).

Computing the weight of an AMCA is closely related to the weighted model counting
problem (WMC) [36]: In WMC, we are given a propositional theory ∆, and a weight for
each literal (which induce a weight of each model). The goal is to compute the summed
weight of all models that satisfy ∆. Here, an AMCA corresponds to a propositional theory,
and each assignment of specific entities from a state x to the AMCA corresponds to a model
of that theory. In our case, the number of models can be computed directly via Equation
4.4.

47

4. Lifted Marginal Filtering

Algorithm 2 Enumerate AMCAs.

1: function enum-ca(x,AI,k)
2: if k maximal in x with respect to AI then
3: return {k} ⊲ k is AMCA

4: K ← ∅ ⊲ The set where compound actions are collected
5: for {(a, i) ∈ AI | i ⊑ x} do ⊲ Action instances applicable to x
6: x′ ← x∪- i ⊲ Remaining state
7: k′ ← k ⊎ J 1(a, i) K ⊲ Add action instance to compound action
8: AI ′ ← {(a′, i′) ∈ AI | (a′, i′) ≥ (a, i)} ⊲ Allow only ≥ instances in recursive call
9: K ′ ← enum-ca(x′,AI ′,k′) ⊲ Recursive call

10: K ← K ∪K ′

11: return K

4.1.5. An Algorithm to Enumerate AMCAs

For simulation studies, the goal is to draw sample trajectories: Given a state x, draw a sample
from p(k |x) (Equation 4.5), apply that AMCA to x and repeat the process. To be able to
sample from p(k |x), all AMCAs of x need to be enumerated, to obtain the normalization
factor Z. Furthermore, enumeration of all AMCAs will also be necessary later when using
MRSs for represent the transition model of a Bayesian filter, as for Bayesian filtering, we are
not only interested in a sample from the posterior, but in the complete posterior distribution.
In WMC terminology, we first need to generate all theories that have a non-zero model count,
and then perform WMC for each theory.

An algorithm for enumerating all AMCAs for a given state x and a set of action instances
is shown in Algorithm 2. Naively, this can be done by a simple backtracking search: Start
with an empty multiset k. For each action instance that still “fits in” x (such that the
resulting compound action is still compatible with x), add it to k and do a recursive call
with the new k and the remaining x, until the compound action is maximal.

Directly proceeding like this would produce many repetitions of the same AMCA, that
are just different in the order in which the action instance have been inserted. As multiset
insertion is commutative, the insertion order is not relevant for the resulting AMCA. Thus,
we can improve the efficiency of the algorithm by defining an arbitrary order on the action
instances, and allow only insertion of action instances that are not “smaller” than the action
instance inserted last. This way, each AMCA is generated exactly once, and subtrees that
would correspond to other insertion orders are not expanded.

This algorithm has linear time complexity in the number of AMCAs. However, this number
can easily become very large, as it does not only depend on the number of distinct entities,
but also on the overall number of entities in the state: It is at most the multiset coefficient
(
m+n−1

n

)
= (m+n−1)!

n! (m−1)! , where n is the total number of entities in the state and m is the total
number of action instances. Thus, AMCA enumeration is one of the main computational
challenges of the algorithm.

Alternatively, AMCA enumeration can be formalized as a Constraint Satisfaction Problem
(CSP), so that each solution of the CSP corresponds to an AMCA (see Appendix D for de-
tails). An approximate, MCMC-based algorithm that samples AMCAs instead of performing
complete enumeration is presented in Chapter 5.

48

4.2. Bayesian Filtering in Multiset Rewriting Systems

4.2. Bayesian Filtering in Multiset Rewriting Systems

As described in Section 2.2, a state space model (for which we want to perform BF) consists
of three components: A transition model p(Xt |Xt−1) that describes the system behavior, an
observation model p(Yt |Xt) that describes how observations are related to states, and a prior
distribution p(X1). In this section, we describe how the transition model can be derived from
a given PMPMRS, and introduce a formalism for specifying observation models for multiset
states. This allows to perform exact BF in PMPMRSs (instead of sampling state trajectories,
for which MRSs are typically used).

This naive approach turns out to be infeasible for most practical cases, but forms the basis
for the lifted filtering algorithm presented later.

4.2.1. Prediction

We first show how the transition model p(Xt |Xt−1) can be derived from a given set of
multiset rewriting rules. For each state xt, a PMPMRS defines a distribution p(K |xt)
of AMCAs (Equation 4.5), which naturally leads to a transition model: Intuitively, the
probability of a posterior state xt for a given state xt−1 is the summed probability of all
AMCAs that lead to xt+1. More formally, the distribution is computed by marginalizing
over the AMCAs Kxt−1 of xt−1 as follows2:

p(xt |xt−1) =
∑

k∈Kxt−1

p(xt, k |xt−1)

=
∑

k∈Kxt−1

p(xt |xt−1, k) p(k |xt−1)

=
∑

k∈Kxt−1

1(fk(xt−1)=xt) p(k |xt−1).

(4.6)

The filtering distribution p(Xt | y1:t) is simply a categorical distribution in this case, i.e. we
maintain a set of pairs (x,w), where x is a possible state, and w is its probability (we only
need to store the states which have non-zero probability). Technically, this can be realized
as a map from states to probabilities, as in the marginal filter.

Algorithm 3 shows how a prediction step of BF (Equation 2.7) is performed in this
approach, given a set of actions A and a prior state distribution p(Xt | y1:t) as a map

〈x
(i)
t : w

(i)
t 〉Ni=1: For each state x

(i)
t , we enumerate all action instances and AMCAs, compute

their probabilities (Equation 4.5), compute successor states and their probabilities (Equation
4.6), and finally multiply with the prior and marginalize over Xt.

Example 16. Consider the following variation of the office scenario: There are three rooms
(L, M, R), and two agents (A and B). Agents can move between adjacent rooms or stay at
their current room (i.e. there are five actions: l-m, m-l, m-r, r-m, s). Suppose that at some

2We use the fact that action effects are assumed to be deterministic, i.e. p(xt |xt−1, k) = 1(fk(xt−1)=xt) –
actions with nondeterministic effects can be modeled by introducing one action for each possible outcome
of the nondeterministic effect, so that nondeterministic effects are replaced by nondeterministic choice of
deterministic effects.

49

4. Lifted Marginal Filtering

Algorithm 3 Prediction.

• Input: Actions A, categorical distribution p(Xt | y1:t), represented as 〈x
(i)
t : w

(i)
t 〉Ni=1

• Let Pt+1 ← 〈 〉 be an empty map

• For each prior state 〈x
(i)
t , w

(i)
t 〉 ∈ Pt:

– Let AIx = enum-ai(x,A) be the action instances of x
(i)
t

– Let Kx = enum-ca(x,AIx) be the AMCAs of x
(i)
t (see Algorithm 2)

– For each k ∈ Kx:

Compute successor states, multiply prior weight and marginalize:

Pt+1 ← Pt+1 ⊕ 〈fk(x
(i)
t) : w

(i)
t ∗ p(k | x

(i)
t)〉

• Return Pt+1

point during BF, the filtering distribution looks as follows:

p(x1) = 1/3, p(x2) = 2/3,

x1 = J 1〈N: A,L: L〉, 1〈N: B,L: M〉 K

x2 = J 1〈N: A,L: L〉, 1〈N: B,L: M〉 K

Each state has four AMCAs: Either no agent moves, agent A moves, agent B moves, or
both move. Suppose that all actions have equal weight, which leads to all AMCAs having
equal weight. After applying the AMCAs and summing the probability of identical predicted
states, there are 7 states with non-zero probability, as shown in Figure 4.2 (center column).

4.2.2. Update

As we saw above, PMPMRSs directly induce a transition model p(xt |xt−1). However, exist-
ing MRS formalisms do not consider observations, and therefore, new concepts are required
to specify observations models for MRSs. Such observation models have to account for two
considerations:

• When the states xt are multisets, defining the distribution p(Yt |Xt) is not straightfor-
ward, as the domain of Xt will typically be very large (and can even be infinite), and
thus storing one distribution over Yt for each possible value of Xt is infeasible.

• For MRSs, it is natural to allow observations that to not depend on any specific entity,
but rather on features of the state xt, like existence of entities with certain properties.
For example, a room presence sensor might observe whether any person is at a specific
location, but not which one. Such non-identifying observations will also turn out to be
convenient later when using a more efficient representation for the filtering distribution,
because they do not break the symmetry of the entities.

In the following, we describe a constraint-based formalism that accounts for both of these
considerations. The idea is to partition the states into groups that behave identical with

50

4.2. Bayesian Filtering in Multiset Rewriting Systems

2/3

1/3

1/6

1/6

1/6

3/12

1/12

1/12

1/12

p(xt-1|y1:t-1) p(xt|y1:t-1)

s(), m-r()

 s(), s()

l-m(), m-r()

l-m(), s()

l-m(), s()

 s(), s()

s(), m-r()

l-m(), m-r()

0.03

0.30

0.30

0.046

0.015

0.15

0.15

p(xt|y1:t)

* 0.99

* 0.99

* 0.99

* 0.99

* 0.1

* 0.1

* 0.1

prediction update, yt = 1

Figure 4.2.: Example of prediction and update for the office scenario (Examples 16 and 17).

respect to observations (i.e. that are weighted with the same likelihood). These partitions
are defined via features of the states.

Here, we use counting constraints on states x to express this feature selection: These
constraints are true when there are exactly n (at least n, at most n) entities in x that satisfy
an entity constraint c. Counting constraints are used here because of their flexibility, i.e.
they allow to model a wide range of possible observation situations.

Counting constraints where exactly n, at least n or at most n entities in x satisfy an entity
constraint c are denoted by #=n

c , #≥n
c , and #≤n

c . The observation distribution p(y |x) then
depends on which counting constraint can be satisfied in x (and of course on the value of
y). The constraints are constructed in such a way that exactly a single constraint is satisfied
in any x, given y. This way, the constraints partition the state space, i.e. each constraint
represents a different characteristic of the state with unique distribution of observations.

Definition 13. [observation model] Let c ∈ CN = X → {true, false} be a counting con-
straint, and let y ∈ Y be an observation. We call o ∈ Y × CN → R observation model, when
for any state x and observation y, exactly a single constraint c with (y, c) ∈ dom(o) can be
satisfied in x. An observation model o specifies the distribution p(y |x) of observing y in
state x by p(y |x) = o(y, c), where c is the constraint satisfied in x.

Example 17. Suppose that the office environment is equipped with presence sensors that
are active when at least one agent is at a specific location. The sensors have a false positive
rate of 0.1 and a false negative rate of 0.01. Specifically, we assume that only the right

51

4. Lifted Marginal Filtering

location is equipped with such a sensor. Thus, the observation distribution looks as follows:

p(y = 1 |x) =

{

0.99 if at least one agent in x is at right location

0.1 otherwise

This observation model can be formalized using the constraint-based formalism: The entity
constraint c(e) = e.Loc == Right tests whether the agent e is at the right location, and the
counting constraints #=0

c and #≥1
c test whether none (or at least one) agent is at the right

location in a state x. Thus, the observation model is given by:

y c p

0 #=0
c 0.9

1 #=0
c 0.1

0 #≥1
c 0.01

1 #≥1
c 0.99

Consider the prediction distribution shown in Figure 4.2 (middle), and suppose that we
observe y = 1. Each state where at least one entity is at the right location is weighted with
0.99, and each state where no entity is at the right location is weigh with 0.1. Afterwards,
the distribution is re-normalized.

4.3. Factorizing Multiset Distributions

The naive exact filtering algorithm outlined above needs to enumerate all states with non-
zero probability explicitly, which can be computationally expensive, as MRS typically allow
for a large number of states. This is necessary because the algorithm treats the states (i.e.
multisets) as atomic terms, without considering their internal structure. In this section, we
show how to unfold the structure that is present in the multisets into a form for which we
can readily devise a distribution that can be represented efficiently.
Technically, we present an efficient representation of distributions p(X) of X -valued ran-

dom variables (RVs), where X is the set of possible multisets over structured entities. It is
important to note that this task of describing a distribution over a complex data structure
(like multiset states) via distributions over simpler objects (like tuples) is not straightfor-
ward: For example, Flach and Lachiche [66] describe a distribution over sets and multisets,
which requires to explicitly marginalize over the serializations of the set.
We propose to use a decomposition function φ (that will be introduced in Section 4.3.1),

that maps states (i.e. multisets) x to pairs (s,v), where s is the multiset structure (which
and how many entities exist), and v is a sequence of values of the entities. Then, we can
decompose the distribution as p(X) = p(S, V) = p(S) p(V |S).
For distributions over s and v, we can use standard mechanisms for representing distri-

butions more efficiently. Specifically, as we show in Section 4.3.2, we can assume that the
distribution p(V |S) exhibits independence and exchangeability, due to the regular struc-
ture of the multisets. The distribution p(S) is a categorical distribution with substantially
smaller support – and therefore much more compact representation – than p(X). Interest-
ingly, BF can be performed directly on this efficient representation: Multiset rewriting is
performed on the structures s, and the corresponding value distributions are only inspected
and manipulated when necessary (as outlined in Section 4.4).

52

4.3. Factorizing Multiset Distributions

4.3.1. Decomposing Multisets of Structured Entities

To keep the presentation simple, in the following, we consider entities that contain informa-
tion about the factor of the distribution that its values have been drawn from (we call this
information the distribution type). This is not strictly necessary, but will be convenient later
on by making the factorization structure explicit.

Definition 14. [typed entity, typed state] A typed entity ed ∈ Ed is a partial function
ed : P 7→ (D×V), i.e. a map of property names P to pairs of distribution types D and values
V. A multiset of typed entities is called typed state.

We write the distribution type as indices. For example, the typed state

x = J 1〈N: AN,L: 1L1
〉, 1〈N: BN,L: 2L2

〉 K

consists of two entities with a property N that is drawn from a distribution with type N,
one of those has a property L that is drawn from L1, and the other one has a property L
drawn from L2. The intuition here is that the values of the properties have been drawn
from a factorized representation consisting of three factors: One joint factor describing the
distribution of the N properties, and two independent factors describing the distribution of
the L properties.

Our goal is to a find a mapping between multisets (i.e. abstract objects) to syntactic struc-
tures (terms), such that (i) a distribution over terms can be represented more efficiently, and
(ii) this distribution over terms directly induces a distribution p(X) over multisets. The
obvious choice is to transform the multisets into a tuple, as existing methods for efficiently
representing distributions over tuples, like graphical models, could then be used. Unfortu-
nately, in contrast to tuples, elements in multisets do not have an order, and thus there are
multiple tuples that can represent the same multiset, so there is no straightforward bijection
between multisets and tuples.
Deriving a suitable bijection is not difficult, but involves some tedious technical details

that are outlined in the remainder of this section. Specifically, we proceed in two steps:
First, we define the canonical (ordered) serializations σ of a multiset, in which entities are
arranged sequentially (and repeated as many times as its multiplicity indicates), as well as
the key-value-pairs that each entity consists of. Then, we define a bijective decomposition
function that decomposes a serialization σ into a pair (s,v) of multiset structure s (where
multiset rewriting can be applied) and value sequence v (such that distributions over v can
be represented more efficiently).

Definition 15. [entity serialization, canonical state serialization] Let <P ⊆ P×P be a total
order of property names, <D⊆ D×D be a total order of distribution types, and <V ⊆ V ×V
be a total order of values. Let e be a typed entity. We call ς(e) = 〈k, e.k〉k∈dom(e), where
the order of the pairs follows <P (major order), <D, and <V (minor order) the canonical
serialization of e.
Let x be a typed state. We call the sequence σ that contains x#e copies of the ordered

serialization of all entities e in x, and is ordered according to <P (major order), <D, and
<V (minor order) the canonical serialization of x. Formally, for a state x, the canonical
serialization σ of x has the form

〈ς(e1), . . . , ς(e1)
︸ ︷︷ ︸

x#e1 times

, . . . , ς(en), . . . , ς(en)
︸ ︷︷ ︸

x#en times

〉,

53

4. Lifted Marginal Filtering

where {e1, . . . , en} = dom(x).

Example 18. The state

x = J 1〈N: AN,L: 1L1
〉, 1〈N: BN,L: 2L2

〉 K

has the canonical serialization

σ = 〈〈〈N, 〈N, A〉〉, 〈L, 〈L1, 1〉〉〉, 〈〈N, 〈N, B〉〉, 〈L, 〈L2, 2〉〉〉〉

Next, we define the decomposition function, that extracts the structure s and the value
sequence v from the serialization. The intuition is that s is identical to x, except that the
values are removed.

Definition 16. [decomposition function] Let x be a typed state, and let σ be the canonical
serialization of x.

• The structure se(e) ∈ ED of a typed entity e ∈ x is identical to e, except that the values
are removed, i.e. se(〈k1 : (d1, v1), . . . , ki : (di, vi)〉) = 〈k1 : d1, . . . , ki : di〉.

• The structure s ∈ S of σ (where x is the state corresponding to σ) is the multiset
of entity structures: s = J se(e) | e ∈ x K (multiplicities are added when entities are
mapped to the same entity structure).

• The value sequence v ∈ V of σ is obtained by selecting all values in σ from left to
right. That is, the value sequence of the serialization σ = 〈k1, 〈d1, v1〉, . . . , kn, 〈dn, vn〉〉
is v = 〈v1, . . . , vn〉.

Finally, the decomposition function is defined as φ(x) = (s,v).

The association between entities in x and values is maintained by the order of the elements
in the value sequence. Thus, the decomposition function φ(x) is bijective, i.e. there is an
inverse function φ−1(s,v) = x that works by “inserting” the values at the corresponding
positions.
For example, the decomposition φ(x) of x shown in Example 18 is

φ(x) = (s,v), where

s = J 1〈N: N,L: L1〉, 1〈N: N,L: L2〉 K

v = 〈A, 1, B, 2〉.

4.3.2. Distributions of Value Sequences

We started this section with the goal of deriving an efficient representation of the distribution
p(x). Now, via the bijection φ(x) = (s,v), a given distribution p(s,v) induces a distribution
p(x). In the following, we change the perspective and discuss ways of compactly representing
p(s,v) = p(v | s) p(s) – which then directly leads to an efficient representation of p(x) via φ.
Specifically, we discuss how p(v | s) can be maintained efficiently, for which we make two

assumptions:

(i) Independence of values belonging to different distribution types (situations where in-
dependence does not hold can be represented by mixtures, shown below), and

(ii) exchangeability of values corresponding to the same entity structure (due to the fact
that the entities in the multiset are not ordered, so all orders of values correspond to
the same state).

54

4.3. Factorizing Multiset Distributions

Independence We assume that p(v | s) factorizes into independent factors according to the
distribution types (i.e. random variables with different distribution type are independent).
The distribution type for each value is given by s (by generating a sequence of types from
s, in the same way as v has been extracted from x). For example, the type sequence of
s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K is 〈N,L1,N,L2,N,L2〉.

In the following, we write v(d) to denote the sub-sequence of values with distribution type
d. Based on this, the distribution p(v | s) factorizes as follows:

p(v | s) =
∏

d

p(v(d) | s)

We can think about the relationship between p(x), p(s) and p(v | s) via the following sam-
pling semantics: Given the factors p(v(d) | s) of a distribution p(v | s) and a (categorical)
distribution p(s), a sample of x is obtained by (i) sampling a structure s from p(s), (ii)
sampling a sub-sequence v(d) from p(V(d) | s) for each d, (iii) construct the sequence v from
these sub-sequences, and (iv) apply the inverse function φ−1(s,v). Steps (iii) and (iv) can
also be understood as “inserting” the values v(d) directly into s, at the positions indicated
by the distribution types d.

The following example illustrates how a distribution over x can be decomposed into a
distribution over s and a (factorized) distribution p(v | s).

Example 19. For the office domain (Example 11), suppose we need to represent the situation
“one of the three agents with names A, B and C is at room 1, and the other two agents are at
room 2, and we have no information about which specific agent is at which location” (such
situations naturally arise during filtering in MRS when some of the entities’ properties cannot
be observed directly). This situation is represented by the following uniform distribution of
three states:

p(x1) = p(x2) = p(x3) = 1/3, where

x1 = J 1〈N: AN,L: 1L1
〉, 1〈N: BN,L: 2L2

〉, 1〈N: CN,L: 2L2
〉 K

x2 = J 1〈N: BN,L: 1L1
〉, 1〈N: AN,L: 2L2

〉, 1〈N: CN,L: 2L2
〉 K

x3 = J 1〈N: CN,L: 1L1
〉, 1〈N: AN,L: 2L2

〉, 1〈N: BN,L: 2L2
〉 K.

The decompositions (s,v) = φ(x) of those states all have the identical structure

s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K

and value sequences

v1 = 〈A, 1, B, 2, C, 2〉

v2 = 〈B, 1, A, 2, C, 2〉

v3 = 〈C, 1, A, 2, B, 2〉

Recall that the sequence of distribution types corresponding to these values is 〈N,L1,N,L1,N,L2〉.
Therefore, the value sequences decompose into sub-sequences for each distribution type as
follows:

N L1 L2

v1 〈A,B,C〉 〈1〉 〈2, 2〉
v2 〈B,A,C〉 〈1〉 〈2, 2〉
v3 〈C,A,B〉 〈1〉 〈2, 2〉

55

4. Lifted Marginal Filtering

By assumption, the distribution p(v | s) factorizes into one factor per type, i.e.

p(v | s) = p(v(N) | s) p(v(L1) | s) p(v(L2) | s),

where p(v(L1) | s) ∼ δ1, p(v
(L2) | s) ∼ δ〈2,2〉 and

p(v(N) | s) =







1/3 if v(N) = 〈A,B,C〉

1/3 if v(N) = 〈B,A,C〉

1/3 if v(N) = 〈C,A,B〉

Exchangeability As seen in Example 19, we did not achieve a more efficient representa-
tion so far: Representing p(x) directly required to store three states explicitly. By using
the decomposition φ, we still need to store three sequences v(N) explicitly for representing
p(v(N) | s), and in addition need to represent p(s), p(v(L1)) and p(v(L2)). However, the factors
p(v(d) | s) can be represented more efficiently than by complete enumeration by exploiting
exchangeability, as shown next.
First, note that the sequences in the domain of each factor p(v(d) | s) adhere to a certain

order. More specifically, each sub-sequence of values that is associated with the same entity
structure in s follows <V , which is due to the fact that in the serialization process, the values
corresponding to identical entity structures are ordered according to <V . For example,
in the factor p(v(N) | s), only the sequences 〈A,B,C〉, 〈B,A,C〉 and 〈C,A,B〉 have non-
zero probability: These are exactly the sequences where the second and third value (which
correspond to the entity structure 〈X: N,Y: L2〉 with multiplicity 2 in s) are ordered. We
call the set of value sequences with this property the canonical sequences of type d according

to structure s, and denote them by V
(d)
s . All non-canonical sequences, e.g. 〈A,C,B〉, must

have probability of 0 in p(v(d) | s), as they cannot arise from the the serialization process
outlined above.
The main insight that allows to represent the factors p(v(d) | s) more efficiently is to note

that any distribution over arbitrary (non-canonical) sequences p̃(v(d) | s) can be used to define
a distribution p(v(d) | s) over canonical sequences: The distribution p(v(d) | s) is obtained
by marginalizing over all sequences in p̃(v(d) | s) that are projected to the same canonical
sequence (by ordering each sub-sequence that corresponds to the same entity structure), i.e.

p(v
(d)
∗ | s) =

∑

{v(d)|πs(v(d))=v
(d)
∗ }

p̃(v(d) | s), (4.7)

where πs is a function that maps sequences v(d) to their corresponding canonical sequence

v
(d)
∗ ∈ V

(d)
s by ordering the sub-sequences for each entity.

Example 20. Consider the distribution p̃(v(d) | s) with p̃(A,B,C | s) = p̃(A,C,B | s) =
p̃(B,C,A | s) = 1/3 (and p̃(v(d) | s) = 0 for all other sequences v(d)). Note that πs(A,B,C) =
πs(A,C,B) = 〈A,B,C〉, and πs(B,C,A) = 〈B,A,C〉. Thus, the corresponding distribution

p(v
(d)
∗ | s) over canonical sequences is given by p(A,B,C | s) = 2/3 and p(B,A,C | s) = 1/3.

In general, this does not need to lead to a more efficient representation: The distribution
p̃(v(d) | s) can even have a larger support than p(v(d) | s), as illustrated in the example above.
However, we have gained some flexibility in defining p̃, as multiple definitions of p̃ can result
in the same p.

56

4.3. Factorizing Multiset Distributions

Specifically, when all RVs in p̃(v(d) | s) are exchangeable, the factor can be represented
much more efficiently than by complete enumeration [57]: For instance, an exchangeable
distribution of n binary random variables can be represented by n + 1 parameters rather
than requiring 2n parameters as in the naive representation.

Furthermore, Equation 4.7 becomes particularly simple in this case: As all permutations
of a sequence v(d) have the same probability, it is sufficient to compute the probability p̃ of

a single sequence (say, the canonical sequence v
(d)
∗), and multiply that probability by the

number of sequences that are mapped to the canonical sequence v
(d)
∗ , i.e.

p(v
(d)
∗ | s) = α(v

(d)
∗) p̃(v

(d)
∗ | s), (4.8)

where α(v
(d)
∗) = |{v(d)|πs(v

(d)) = v
(d)
∗ }|.

Finally, the factor α(v(d)) is simply the product of the number of permutations of the
sub-sequences of v(d) corresponding to each entity structure. For example, when all values
in each of the sub-sequences of v(d) are unique, and the sub-sequences for each entity have
length k1, k2, . . . , kn (i.e. the entity structures in s with values of type d have multiplicities
k1, k2, . . . , kn), then α(v(d)) =

∏n
i=1 ki!. Either way, Equation 4.8 can be calculated without

explicitly enumerating all sequences v(d).

Example 21. Consider p̃(v(N) | s) ∼ U(A,B,C), where U(A,B,C) represents a uniform
distribution of the six permutations of A, B, C (which is obviously exchangeable). Via
Equation 4.8, this distribution represents the distribution p(v(N) | s) shown in Example 19.
For example, the probability p(B,A,C | s) is computed as

p(B,A,C | s) = α(B,A,C) p̃(B,A,C | s) = 1! ∗ 2! ∗ 1/6 = 1/3.

Mixtures We made strong assumptions to the parametric form of p(v | s), instead of allow-
ing arbitrary distributions. Fortunately, distributions where these assumptions do not hold
can be represented as a mixture of such distributions: Each distribution can be represented
as a mixture of products of exchangeable distributions – in the worst case, each mixture
component describes exactly a single variable assignment (see Figure 4.3 for an example).
Furthermore, exchangeability of the factors p̃ is often a reasonable assumption: For exam-
ple, when a property cannot be observed directly, exchangeability of that property arises
naturally, as illustrated in Example 19.
Note that we do not attempt to find such a decomposition into exchangeable factors for a

given distribution p(x)3. Instead, the idea is that an abstract (lifted) representation of the
probabilistic model – in the form of p(v | s) and p(s) – is given directly by the description of
the application domain (see the next section for such a representation), and the goal is to
maintain that structure during inference4.

4.3.3. Lifted States

In the previous section, we showed that by making independence and exchangeability as-
sumptions for p(v | s), only a set of exchangeable factors for each s needs to be maintained
to represent that distribution, instead of completely enumerating all value sequences v. In

3This task is pursued in bottom-up lifted inference, e.g. lifted belief propagation [105].
4Similar to what is done in top-down lifted inference, e.g. first-order variable elimination [173].

57

4. Lifted Marginal Filtering

v1 v2 v3 v4 v5 v6 p

A B C 1 1 2 0.1
A C B 1 1 2 0.1
B A C 1 1 2 0.1
B C A 1 1 2 0.1
C A B 1 1 2 0.1
C B A 1 1 2 0.1
A B C 1 2 2 0.2
A C B 1 2 2 0.2

v1 v2 v3 v4 v5 v6 p

U(A,B,C) δ1 δ1 δ2 0.6

δA U(B,C) δ1 δ2 δ2 0.4

Figure 4.3.: Decomposition of a distribution p(v) = p(v1, . . . , v6) (left) into a mixture of
products of exchangeable distributions (right).

the following, we present an efficient representation for the distribution p(s,v) that makes
use of this insight, and will enable us to perform multiset rewriting directly on that repre-
sentation (which is shown in Section 4.4).
Here, it is useful to distinguish between a distribution, and the representation of that

distribution. The representation can be a table, the set of parameters of a parametric
distribution, or sufficient statistics. For example, a uniform distribution of permutations of
of the three elements A, B and C can be represented by the string “U(A,B,C)”, the normal
distribution with µ = 0 and σ2 = 1 can be represented by the string “N (0, 1)”. We call
ρ ∈ R the representation of the distribution p. Given a representation ρ, we write pρ for the
distribution that is represented by ρ.
The idea to represent p(v | s) is to maintain a representation ρ for each factor p(v(d) | s).

As we have seen above, we can instead represent the exchangeable factors p̃(v(d) | s), from
which the factors p(v | s) can be directly computed via Equation 4.8. Technically, this is
realized as a map from distribution types d to representations ρ of exchangeable factors. We
call this representation the context of s.

Definition 17. [context] A context γ ∈ Γ is a map from distribution types to representations
of exchangeable distributions, i.e. Γ = D 7→ R. The distribution of canonical value sequences
that is induced by a context γ and a structure s is

p(v | s, γ) =
∏

〈d:ρ〉∈γ

pρ(v
(d) | s). (4.9)

Thus, the distribution p(v | s) is represented on the parametric rather than the instances
level. This technique is known as Rao-Blackwellization, as used in the Rao-Blackwellized
particle filter [59]. Intuitively, Rao-Blackwellization leads to more accurate estimates of the
filtering distribution, because each particle represents a complete region of the state space,
instead of only a single instance. Here, in comparison to the conventional Rao-Blackwellized
particle filter, the partitioning of variables represented on the instance and on the parameter
level is not fixed, but can change over time (due to splitting, see Section 4.4.2).
We do not attempt to decompose the distribution over structures s any further, and simply

represent p(S) as a categorical distribution. Thus, overall, we need to maintain a categorical
distribution p(S) of structures, and for each structure, a context γ that represents p(V | s).
This is equivalent to directly maintaining a categorical distribution over pairs (s, γ).

58

4.3. Factorizing Multiset Distributions

0.33

1.0

0.33 0.33

Figure 4.4.: Visualization of the lifted state from Example 22 (top) and its corresponding
ground states (bottom). Colors indicate the different names of the agents. Here,

denotes an urn without replacement containing the three elements A, B and
C. Instead of distribution types, arrows are used here to specify the association
between entities and corresponding distribution of values.

Figure 4.5.: Example illustrating the sampling semantics of lifted states: Here, two samples
are drawn from l = (s, γ), each by sampling a value from each factor in γ, and
inserting into the places specified by the distribution types. In this case, both
samples lead to the same ground state x.

Definition 18. [lifted state] We call a pair l = (s, γ) ∈ S × Γ a lifted state.

Intuitively, a lifted state represents a distribution over ground states that all have the
structure of s and whose values follow the distribution induced by γ. That is, the distribution
of ground states, given a lifted state l = (s, γ) is simply

p(x | s, γ) = 1(sx = s) p(v | s, γ), (4.10)

where φ(x) = (sx,v). This distribution can also be described by the following sampling
procedure: Draw a sample of each factor in γ, and insert the values into s at the positions
indicated by the distribution types.

Example 22. Consider the lifted state l = (s, γ) with

s = � 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 � and

γ = 〈N: U(A,B,C),L1: δ1,L2: δ〈2,2〉〉.

This lifted state (and its corresponding ground states) is visualized in Figure 4.4. It represents
exactly the distribution of ground states shown in Example 19, which can be easily seen via

59

4. Lifted Marginal Filtering

the sampling semantics (see Figure 4.5). The probability of each ground state can also be
computed in closed form via Equation 4.10. For example, the probability of the ground state

x = J 1〈N: AN,L: 1L1
〉, 1〈N: BN,L: 2L2

〉, 1〈N: CN,L: 2L2
〉 K

in l is computed as follows: Applying the decomposition function to x leads to φ(x) = (s,v)
with

s = J 1〈N: N,L: L1〉, 2〈N: N,L: L2〉 K

v(L1) = 1, v(L2) = 〈2, 2〉, v(N) = 〈A,B,C〉.

The context γ represents the distributions p̃(v(L1) | s) ∼ δ1, p̃(v
(L2) | s) ∼ δ〈2,2〉, p̃(v

(N) | s) ∼
U(A,B,C). Furthermore, α(1) = 1, α(2, 2) = 1 and α(A,B,C) = 2. Thus, according to
Equation 4.10, the probability of x in l is computed as

p(x | s, γ) = α(1) p̃(1)α(2, 2) p̃(2, 2)α(A,B,C) p̃(A,B,C) = 1 ∗ 1 ∗ 1 ∗ 1 ∗ 2 ∗ 1/6 = 1/3.

In the following, for readability we omit delta distributions and the corresponding types,
and instead write the corresponding value directly into the structure. This way, the lifted
state l in Example 22 above can by written as

s = J 1〈X: N,Y: 1〉, 2〈X: N,Y: 2〉 K

γ = 〈N: U(A,B,C)〉

Later, we will need the concept of the region of an entity structure (or a lifted state),
which is the set of all entities (or ground states) that are assigned a non-zero probability.

Definition 19. [region] Let l = (s, γ) be a lifted state and e be an entity structure in s. We
call the set

region(l) = {x | p(x | s, γ) > 0}

the region of l, and the set

regionl(e) = {ex | e = se(ex), ex ∈ x, x ∈ region(l)}

the region of e regarding l.

Note that regions can be infinite, if the context γ of l contains representations of continuous
distributions. Finally, a distribution of lifted states p(L) defines a distribution of ground
states via

p(x) =
∑

l=(s,γ)

p(l) p(x | s, γ) (4.11)

In a distribution over lifted states l = (s, γ), the structures s need not be distinct. This way,
the case where the value distribution is a mixture of multiple components can be represented.
As a final remark, note that lifted states directly allow to represent cases where p(v | s) is

continuous, by maintaining representations of continuous distributions in γ. For example, in
Section 6.4, we will consider a situation where properties follow a bivariate normal distribu-
tion. This was not possible in the original representation of p(x) that worked by enumerating
all states x and their probabilities, as the infinite number of states – that arise when at least
one of the values follow a continuous distribution – could not be enumerated exhaustively.

60

4.4. Lifted Filtering

To summarize the results so far, we showed how to efficiently represent distributions over
structured multisets, by exploiting independence and exchangeability. Technically, this was
achieved by decomposing multisets into a structure and a sequence of values, such that the
distribution over values factorizes into exchangeable factors. In the following, we show how
to use these constructs for efficient Bayesian filtering, by applying multiset rewriting directly
to the structure part of the lifted states, and manipulating the value distributions only when
necessary.

4.4. Lifted Filtering

In this section, we present Lifted Marginal Filtering (LiMa), a Bayesian filtering algorithm
that works directly on the lifted state representation. The system dynamics is defined in
terms of a PMPMRS, as introduced in Section 4.2. The key insight of this section is that
the prediction and update steps can be performed directly on lifted states, so that they are
equivalent to performing the same transformations to all ground states that are represented
by the lifted state.
Of course, this is not directly possible when different ground states that are represented

by a lifted state allow different actions to be applied, or when they need to be weighted by
different observation likelihoods. In this case, splitting (introduced in Section 4.4.2) needs
to be applied first, which transforms a lifted state into an equivalent set of lifted states that
each permit uniform application of actions or observations.

4.4.1. Applying Constraints and Effects to Lifted States

A fundamental task for multiset rewriting (and for performing the update using the obser-
vation model described in Section 4.2.2) is to test whether a constraint c is satisfied for an
entity e, i.e. whether e |= c. The goal here is to test constraints directly for entity structures,
the elements contained in the structure s of a lifted state l = (s, γ).

We say that an entity structure e in a state l satisfies a constraint c when all groundings
of e with respect to l satisfy c, i.e. when ∀ex ∈ regionl(e) : ex |= c, and does not satisfy c
when none of the groundings satisfy c, i.e. when ∀ex ∈ regionl(e) : ex 6|= c. The constraint is
indeterminate for e when it is satisfied for some groundings of e and not satisfied for other
groundings of e. This latter case is handled by splitting (Section 4.4.2).

The algorithm needs to be able to test this property without generating all ground entities
first. When only considering a simple constraint language (that only allows testing whether
a property of an entity is equal to a given constant value, and conjunctions of those tests),
this task is trivial, as illustrated in the following example.

Example 23. Consider the lifted state l = (s, γ) where

s = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ = 〈N: U(A,B,C)〉

and the constraints c1(e) = e.Y == 1 and c2(e) = e.N == A. The constraint c1 is satisfied
for 〈X: N,Y: 1〉 and not satisfied for 〈X: N,Y: 2〉. The constraint c2 is indeterminate for
each of the entities in l, because it is satisfied for only some of the groundings of each entity.

Thus, given a set of actions A and a lifted state l, we can compute lifted action instances:
A lifted action instance is a pair (a, e), where a ∈ A is an action, and e = 〈e1, . . . , en〉 is a

61

4. Lifted Marginal Filtering

sequence of entity structures, such that each ei satisfy the corresponding constraint ci of a.
Now, we can go through all previous definitions, replacing ground states with lifted states:
Lifted AMCAs and weights of lifted AMCAs can be defined analogously to Definitions 8 and
12, and thus we can define a distribution p(k | l) of AMCAs k of a given lifted state l.

In the same way as AMCA computation is related to weighted model counting (see Section
4.1.4), computation of AMCA weights for lifted states is closely related to lifted weighted
model counting (LWMC) [79]: Each AMCA corresponds to a theory, and each assignment
of specific entities from a state to the AMCA corresponds to a model of that theory. In
contrast to LWMC, we perform splits up front during theory generation (i.e. generation of
AMCAs), so that no splits need to be performed during model counting (see Section 4.4.2).

To allow multiset rewriting on lifted states, the algorithm also needs to be able to apply
an effect function directly to a lifted state l, such that the result is equivalent to applying the
effect to all groundings x ∈ region(l). More specifically, the resulting successor state l′ needs
to describe the same ground distribution as the ground distribution resulting from applying
the effect to all groundings of l.

For the simple effect functions introduced in Section 4.1.2 (replace a value of an entity,
add a new property-value-pair to an entity, add a new entity), this is also trivial: As all
manipulated properties are constants, manipulations of a lifted state are directly equivalent
to manipulations of its groundings. In principle, effects could also directly operate on the
parameters of the factors in γ (e.g. performing Kalman filtering on a Gaussian factor).
However, the simple constraints and effects discussed here already allow modeling of many
practically relevant situations (see Section 4.5), and thus, we leave more complex constraints
and effects as a topic for future work.

Example 24. Consider the effect f = e.Y ← 2, and suppose that the the effect is applied
to the entity structure e = 〈X: N,Y: 1〉 in the lifted state l = (s, γ) where

s = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ = 〈N: U(A,B,C)〉.

The successor state is l′ = (s′, γ) with

s′ = J 1〈X: N,Y: 1〉, 2〈X: N,Y: 2〉 K.

Thus, similar to Equation 4.6, the distribution p(k | l) induces a transition model p(lt | lt−1)
on lifted states. As constraints can be tested directly on lifted sates, the constraint-based
observation model (4.2.2) can also be applied directly to lifted states. Overall, Bayesian
filtering can be performed on the lifted representation, without generating the ground states
first. The resulting Lifted Marginal Filtering (LiMa) algorithm is presented in more detail
in Section 4.4.4.

4.4.2. Splitting

Before we can describe the overall Lifted Marginal Filtering algorithm, we need to discuss
a problem that can occur when testing constraints on lifted states: A constraint can be
satisfied for some groundings of an entity structure, and not satisfied for other groundings
(as illustrated in Example 23). More generally, the ground states x ∈ region(l) form partitions
based on how many entities in x satisfy c. We need to represent each of those partitions
by a separate lifted state, because a different set of AMCAs is applicable for each partition

62

4.4. Lifted Filtering

(and to compute the lifted successor states of l, it is necessary that a fixed set of AMCAs is
applicable to all groundings of l).
We want to compute lifted states that describe the partitions without requiring a complete

enumeration of all ground states first. This is done by manipulating the lifted states by an
operation called splitting. A split is an operation that decomposes a lifted state l = (s, γ)
into a set L = {(li, wi)}. We call a split correct, when (i) L describes the same distribution
of ground states as l, i.e.

∑

i

wi p(x | si, γi) = p(x | s, γ), (4.12)

and (ii) for each li ∈ L, all ground states x ∈ region(li) lie in the same partition regarding
c5 (i.e. ∀li∀x ∈ region(li) : x |= #=i

c).

Example 25. Consider the lifted state l = (s, γ) with

s = J 2〈X: N,Y: 1〉, 2〈X: N,Y: 2〉 K, γ = 〈N: U(3A, 2B)〉

and the constraint c(e) = (e.N == A) ∧ (e.Y == 1). This constraint is indeterminate
in l, as it is satisfied zero times, once, or twice for different groundings of l. The splitting
algorithm (which will be described in detail below) will create three lifted states l1 = (s1, γ1),
l2 = (s2, γ2) and l3 = (s3, γ3) that describe exactly those partitions. The split results are
identical to l, except that instead of entity structures 〈X: N,Y: 1〉, they contain groundings
of that entity structure (i.e. where e(X) = A or e(X) = B):

s1 = J 2〈X: A,Y: 1〉, 2〈X: N,Y: 1〉 K, γ1 = 〈N: U(1A, 2B)〉

s2 = J 1〈X: A,Y: 1〉, 1〈X: B,Y: 1〉, 2〈X: N,Y: 2〉 K, γ2 = 〈N: U(2A, 1B)〉

s3 = J 2〈X: B,Y: 1〉, 2〈X: N,Y: 2〉 K, γ3 = 〈N: U(3A)〉

When the weights w1 = 0.3, w2 = 0.6 and w3 = 0.1 are assigned to the states, they describe
exactly the same distribution over ground states as l (which can be seen by computing the
probability of each ground state via Equation 4.12). Furthermore, the constraint c is now
satisfied for exactly two of the entities in l1, for exactly one of the entities in l2 and for none
of the entities in l3.

Next, we show how such splits can be computed systematically. We start with a general,
high-level description of the splitting strategy, and afterwards show how this strategy is
instantiated for different parametric forms of the factor that is split.

General Splitting Strategy In the following, we discuss a general strategy for splitting a
lifted state l = (s, γ). Let c be a constraint of the form q == v∗, where q is a property name
and v∗ is a value6. Let e with e.q = d be the entity structure for which the constraint c
needs to be tested, and let γ(d) = ρ be the distribution representation that needs to be split.
For splitting, we focus on the factor pρ(V

(d)) that is represented by ρ. To keep the notation

5Note that for counting constraints #=n
c , as used in the observation model, it would in principle be sufficient

to create two partitions: One where the counting constraint is satisfied (i.e. where exactly n entities satisfy
c), and one where the counting constraint is not satisfied (i.e. where c is satisfied for a different number
m 6= n of entities). However, the latter case can often not be described by a single lifted state, and instead,
partitions for each n need to be created anyways.

6Conjunctions of those constraints can be handled consecutively by multiple splits.

63

4. Lifted Marginal Filtering

Algorithm 4 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multinomial distribution ρ.

1: function split-multinomial(l=(s, γ), p, q, v∗, e, ρ)
2: k ← s#e; P ′ ← ∅; d ← e.q
3: Create new distribution type dv∗

4: ρ′ ← ρ without v∗ ⊲ Multinomial with parameters p1
1−pv∗

, . . . , pm
1−pv∗

, see Eq. 4.18

5: γ′ ← γ ⊕ 〈d: ρ′, dv∗ : δv∗〉 ⊲ Add changed representations to context
6: e′ ← e⊕ 〈q: dv∗〉 ⊲ New entity with constant value v∗ at q
7: for i = 0, . . . , k do
8: s′ ← s∪- J (k − i) e K ⊎ J i e′ K ⊲ New structure where i entities have value v∗

9: p′ ←
(
k
i

)
piv∗ (1− pv∗)

k−i p ⊲ Probability of l′, see Equation 4.17
10: P ′ ← P ′ ∪ {((s′, γ′), p′)} ⊲ Collect all split results

11: return P ′

uncluttered, in the following we omit the subscripts and superscripts and write p(V) for that
factor.
The general strategy for splitting is to partition the possible values of the random variable

V into subsets Vi, . . . ,Vn. For each subset Vi, we create a new factor pi(V) which has
non-zero support only for the values Vi. The probability of an assignment pi(V=v) is the
re-normalized probability of the assignment in the original factor p(V=v):

pi(v) =

{
p(v)∑

v′∈Vi
p(v′) if v ∈ Vi

0 otherwise
(4.13)

The weights of the split results are set to wi =
∑

v∈Vi
p(v). From these definitions, it directly

follows that
p(V) =

∑

i

wi pi(V). (4.14)

For each factor pi(V), the splitting algorithm creates a split result li, which is identical to
l except that the representation ρ of p(V) is replaced by a representation of pi(V). Due to
Equation 4.14 and the fact that all other factors of l and all spit results li are identical, this
splitting procedure satisfies Equation 4.12 above, i.e. correctness requirement (i). To satisfy
correctness requirement (ii) – the constraint c must be satisfied for a fixed number of entities
in all groundings of li – the subsets Vi need to be chosen appropriately. When this is the
case, the general splitting strategy is correct.
In the following, we show how this general strategy is instantiated for different parametric

forms of the factor p(V). Specifically, we discuss how the subsets Vi can be chosen so that
they satisfy correctness requirement (ii).
In the experiments (Section 4.5), we will mostly be concerned with the case where the

factors p(V) are uniform distributions over permutations (which arises when entities have
unique identifies, like names). Thus, we will describe splitting procedures for this case,
and the related, but more general cases of multivariate hypergeometric distributions and
multinomial distributions (i.e. urns with and without replacement).

Multinomial Distribution We first consider sampling with replacement from an urn, which
has m possible values v1, . . . , vm, and probabilities p1, . . . , pm of drawing each of the values.

64

4.4. Lifted Filtering

The probability of drawing k samples from the urn, where kj samples have value vj and
∑m

j=1 kj = k is described by the multinomial distribution:

pρ(k1, . . . , km) =
k!

∏m
n=1 kn!

m∏

n=1

pknn . (4.15)

Intuitively, the splitting algorithm creates one split result for each possible value of Kj .
That is, split result li represents the situation where Kj = i− 1, i.e. where the value vj was
sampled i − 1 times from the urn. Before describing the splitting algorithm more formally,
the concept is illustrated by the following example.

Example 26. Consider the lifted state7

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: M(1/2A, 1/3B, 1/6C)〉).

We want to split l based on the constraint c(e) = (e.N == A) for the entity structure
〈N: N,L: X〉. The splitting algorithm generates four split results, where split result li con-
tains i− 1 times the entity structure 〈N: A,L: X〉 (which has taken value A), and k − i− 1
times the entity structure 〈N: N1,L: X〉 (which has not taken the value A):

l1 = (J 3〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K, 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉)

l2 = (J 1〈N: A,L: X〉, 2〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K, 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉)

l3 = (J 2〈N: A,L: X〉, 1〈N: N1,L: X〉, 2〈N: N2,L: Y 〉 K, 〈N1: M(2/3B, 1/3C),N2: M(1/2A, 1/3B, 1/6C)〉)

l4 = (J 3〈N: A,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: M(1/2A, 1/3B, 1/6C)〉)

The weight of split result li is defined by the (marginal) probability of sampling the value
A i − 1 times from the multinomial distribution (see Equation 4.17 below). For example,
w3 =

(
3
2

)
(12)

2 (1− 1
2)

1 = 0.375.

Next, we describe the splitting algorithm more formally. A split of a lifted state l =
(s, γ) on an equality constraint of the form e(q) == vj (where e(q) follows a multinomial
distribution and k = s#e is the multiplicity of e) results in k + 1 split results. The set Vi+1

that is used to define the split result i + 1 contains all assignments where the value vj has
been sampled i times, i.e. where Kj = i. That is, in split result li+1, i entity structures have
value vj , and k− i entity structures have values distributed according to the “remaining” urn
without vj . To see how the parameters of that urn, and the weight of li need to be chosen
so that the split is correct, we rewrite the multinomial distribution as

p(K1, . . . ,Kj=i, . . . ,Kn) = p(Kj=i) p(K1, . . . ,Kj−1,Kj+1, . . . ,Kn |Kj=i) (4.16)

From this equation, it is easy to see that this splitting strategy is an instance of the general
strategy defined above: The conditional distribution p(K1, . . . ,Kj−1,Kj+1, . . . ,Kn |Kj=i)
has the property of pi shown in Equation 4.13, i.e. it is only non-zero for assignments in Vi+1.
The marginal distribution p(Kj=i) can be evaluated directly and is used as the weight wi of
li. It is easy to show [199] that such a marginal distribution of a multinomial is a binomial
distribution with parameters k and pj , i.e.

p(Kj=i) =

(
k

i

)

pij (1− pj)
k−i. (4.17)

7We use M to indicate a multinomial distribution, i.e. an urn with replacement.

65

4. Lifted Marginal Filtering

Algorithm 5 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multivariate hypergeometric distribution ρ.

1: function split-hypergeometric(l=(s, γ), p, q, e, ρ = (vj , nj)
m
j=1)

2: k ← s#e; P ′ ← ∅; d ← e.q
3: for each composition (k1, . . . , km) ∈ C(ρ, k) do
4: s′ ← s∪- J k e K
5: ρ′ ← ρ without (k1, . . . , km)
6: γ′ ← γ ⊕ 〈d: ρ′〉 ⊲ Add changed representation to context
7: for j = 1, . . . ,m where kj > 0 do ⊲ Create state with entities for each kj > 0
8: Create new distribution type dvj
9: e′ ← e⊕ 〈q: dvj 〉 ⊲ New entity with constant value vj at q

10: s′ ← s′ ⊎ J kj e
′ K ⊲ New structure where kj entities have value vj

11: γ′ ← γ′ ⊕ 〈dvj : δvj 〉 ⊲ Add representation of constant

12: p′ ← pρ(k1, . . . , km) p ⊲ Probability of l′, see Equation 4.19
13: P ′ ← P ′ ∪ {((s′, γ′), p′)} ⊲ Collect all split results

14: return P ′

The conditional multinomial distribution p(K1, . . . ,Kj−1,Kj+1, . . . ,Km |Kj=i) can also be
represented in closed form: It is again a multinomial distribution, with parameters k− i and
p1

1−pj
, . . . , pm

1−pj
[199]:

p(K1, . . . ,Kj−1,Kj+1, . . . ,Km |Kj=i) =
(k − i)!
∏m

n=1 kn!

m∏

n=1

(
pn

1− pj

)kn

(4.18)

Intuitively, this distribution represents the ”remaining” draws from the urn, after knowing
that value vj has been drawn i times. This multinomial distribution is encoded in split
result li. As this strategy is an instance of the general splitting strategy, it is correct, i.e.
the weighted split results constructed this way describe the same distribution over ground
states as the original lifted state l. This splitting algorithm is shown in Algorithm 4.

Hypergeometric Distribution Next, we consider urns without replacement. The multi-
variate hypergeometric distribution with representation ρ = (vj , nj)

m
j=1 describes sampling

balls without replacement from an urn which has nj balls of value vj . The probability of
drawing exactly kj balls of each value vj (with k =

∑

j kj and n =
∑

j nj) is:

pρ(k1, . . . , km) =

∏m
j=1

(nj

kj

)

(
n
k

) (4.19)

Here, we cannot apply the same strategy as for multinomial distributions. The reason is
that drawing specific values v1, . . . , vk for e leads to changes in the remaining urn (the values
v1, . . . , vk are removed from the urn), which also affects other entities in l = (s, γ) that have
values distributed according to ρ.

Instead, we create a split result for each possible combination of values that can be assigned
to the k = s#e entities e. Note that in this case, it does not matter which specific value
v∗ we are interested in, was we are considering all value assignments anyway. However, the

66

4.4. Lifted Filtering

value v∗ is relevant for a common special case, as outlined below. Again, we only consider
equality constraints c that test whether a property q of an entity e ∈ dom(s) has a specific
value v∗. We assume that q is distributed according to a hypergeometric distribution, i.e.
e.q = d, and γ(d) = ρ = (vj , nj)

m
j=1.

More concretely, splitting is performed as follows: Let C(ρ, k) be the set of compositions of
k of size m (where ρ = (vj , nj)

m
j=1), i.e. a way of writing k as the sum of m integers k1+ · · ·+

km, with the additional constraint that kj is at most nj . Each composition (k1, . . . , km) ∈
C(ρ, k) corresponds to an assignment of pρ, where kj balls of value vj are drawn. The
subsets Vi which are used to define the split results each contain a single assignment, i.e. a
single composition from C(ρ, k). For each subset Vi (i.e. for each composition (k1, . . . , km) ∈
C(ρ, k)), a lifted state li is constructed, where the entity structures e are removed, and one
entity structure is inserted for each kj > 0, with multiplicity kj , that is identical to e, except
that q is distributed according to δvj . The weight wi of li is given by the probability of that
assignment, i.e. wi = pρ(k1, . . . , km) (see Equation 4.19). This splitting algorithm is shown
in Algorithm 5.

Example 27. Consider the lifted state

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B, 1C)〉).

We want to split l based on the constraint c(e) = (e.N == A) for the entity structure
〈N: N,L: X〉. Applying the procedure defined above results in six split results, one for each
possible assignment of values to the entity structure e.

l1 = (J 3〈N: A,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2B, 1C)〉)

l2 = (J 2〈N: A,L: X〉, 1〈N: B,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(1A, 1B, 1C)〉)

l3 = (J 2〈N: A,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(1A, 2B)〉)

l4 = (J 1〈N: A,L: X〉, 2〈N: B,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2A, 1C)〉)

l5 = (J 1〈N: A,L: X〉, 1〈N: B,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(2A, 1B)〉)

l6 = (J 2〈N: B,L: X〉, 1〈N: C,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A)〉)

The weight of each split component is defined by Equation 4.19. For example, w2 =
(32) (

2
1)

(63)
=

0.3. Note that the entity structures 〈N: N,L: Y 〉 are not manipulated by the splitting pro-
cedure (although the distribution of their values is of course manipulated).

In general, this procedure quickly leads to a combinatorial explosion in the number of split
components, as |C(ρ, k)| can be very large. However, there are two common special cases
where the number of split components is low. A very simple special case is n = k, i.e. all
values of the distribution are assigned to the entities. In this case, only a single composition
exists, and thus there is only a single split component. Another special case is nv∗ = 1,
i.e. the value we are interested in exists exactly once in the urn, which is discussed in the
following section.

Hypergeometric Distribution with Unique Values Finally, we discuss splitting of hyper-
geometric distributions for the special case where the value v∗ we are interested in exists
exactly once in the urn, i.e. nv∗ = 1. This special case arises for example when the values

67

4. Lifted Marginal Filtering

Algorithm 6 In lifted state l with weight p, split entity e on constraint q == v∗, distributed
according to multivariate hypergeometric distribution ρ where nv∗ = 1.

1: function split-hypergeometric-unique(l=(s, γ), p, q, e, ρ = (vj , nj)
m
j=1)

2: k ← s#e; P ′ ← ∅; d ← e.q;n ←
∑m

j=1 nj

3: Create new distribution type dv∗

4: ρ′ ← ρ without v∗

5: γ′ ← γ ⊕ 〈d: ρ′, dv∗ : δv∗〉 ⊲ Add changed representation to context
6: E ← {e ∈ dom(s) | 〈q: d〉 ∈ e} ⊲ Entities that reference ρ via d, i.e. that can take v∗

7: for each e′ ∈ E do ⊲ Create one state for each e′ that can take v∗

8: e′′ ← e′ ⊕ 〈q: dv∗〉 ⊲ New entity with constant value v∗ at q
9: s′ ← s∪- J 1e′ K ⊕ J 1e′′ K ⊲ New structure where one entity has value v∗

10: p′ ← s#e′

n
p ⊲ Probability of l′, see Equation 4.20

11: P ′ ← P ′ ∪ {((s′, γ′), p′)} ⊲ Collect all split results

12: if n >
∑

e′∈E s#e′ then

13: p′ ← 1−
∑

e′∈E s#e′

n

14: P ′ ← P ′ ∪ {((s, γ′), p′)} ⊲ Collect all split results

15: return P ′

represent unique identifiers of the entities, like names. In principle, we can proceed as out-
lined above, but this results in an unnecessarily large number of split components. Ideally,
would only need to generate two split components: (a) Constraint c can be satisfied exactly
once by an entity structure e; (b) Constraint c cannot be satisfied by any entity structure e.
Other cases (where c can be satisfied more than once) do not exist, as nv∗ = 1. In general,
however, case (b) cannot be captured by a single lifted state, as the resulting distribution is
not exchangeable, but we can decompose this case further: Suppose there are other entity
structures e′ with a property q that reference ρ. When e does not have value v∗, either one
of the other entity structures e must take value v∗, or no entity structure takes value v∗ (if
there are fewer entities than the number m of values in the urn).

Thus, the split can be performed as follows: For each entity structure ei ∈ dom(s) that
has a property q′ that is distributed according to ρ, generate a split component li, where a
single instance of ei is removed. Then, insert an entity with multiplicity of 1 that is identical
to ei, except that q is distributed according to δv∗ . Let ki = s#ei be the multiplicity of ei in
l = (s, γ), and n be the total number of elements in the urn. The weight of split component li,
i.e. the probability that v∗ is taken by any of the entities ei, is the hypergeometric distribution
of choosing v∗ once, and choosing ki − 1 other values for ei:

wi =

(
1
1

) (
n−1
ki−1

)

(
n
ki

) =
ki
n

(4.20)

Finally, if m is larger than the total number of all entity structures ei in l, generate an
additional split component, where v∗ is removed from the urn (i.e. v∗ is not taken by any

entity). The weight of this split component is the remaining probability mass, i.e. 1−
∑

e′ s#e′

n
.

The algorithm is shown in Algorithm 6.

When proceeding like this, the number of split components is identical to the number of
different entity structures ei in l that have some property distributed according to ρ. We

68

4.4. Lifted Filtering

assume that in many cases, there are few such entity structures, as opposed to the large
number of combinations of values of length s#e that need to be considered in the general
case. Note that in the case where the values represent unique identifiers of the entities,
n1 = · · · = nm = 1, i.e. we can always use this splitting procedure instead of the general
case. The following example illustrates this splitting procedure.

Example 28. Consider the lifted state

l = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B, 1C)〉).

We want to split l, based on the constraint c(e) = (e.N == C) for the entity structure
〈N: N,L: X〉. Note that nC = 1. Applying the split variant outlined above leads to three
split components (one for each entity structure that references N, and one for the case where
C is not taken by any of the entities):

l1 = (J 1〈N: C,L: X〉, 2〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉)

l2 = (J 3〈N: C,L: X〉, 1〈N: C,L: Y 〉, 1〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉)

l3 = (J 3〈N: N,L: X〉, 2〈N: N,L: Y 〉 K, 〈N: U(3A, 2B)〉)

The probability of each split component is defined by Equation 4.20, i.e. w1 = 3/6, w2 = 2/6
and w3 = 1/6.

4.4.3. Disjointness of Lifted States

When naively performing Bayesian filtering in the lifted representation, situations can arise
where regions of lifted states are not disjoint – see Figure 4.6 for an example. On the one
hand, this can sometimes be desirable, because it can allow for a compact representation of
distributions that can be decomposed into mixtures of “low-frequency” components (e.g. a
uniform distribution over permutations) and “high-frequency components” (e.g. a distinct
permutation with higher probability). On the other hand, overlapping states can lead to
situations where a distribution over n ground states is represented by up to 2n lifted states
in the worst case (when each lifted state represents a different subset of the ground states).

Thus, although the distribution p(x) is still well-defined even when lifted states have over-
lapping regions, it is sometimes preferable to prevent such an overlap, to avoid an unnecessar-
ily complex representation. Specifically, we require an operation that identifies overlapping
states on the structural level, without complete grounding, and splits them accordingly so
that all split results are either identical (so that they can be merged trivially) or disjoint.

Example 29. Consider the states l1 = (s1, γ1) and l2 = (s2, γ2) with overlapping regions
shown in Figure 4.6, where

s1 = J 2〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ1 = 〈N: U(A,B,C)〉

s2 = J 2〈X: N,Y: 1〉, 1〈X: A,Y: 2〉 K, γ2 = 〈N: U(B,C)〉.

For this pair of lifted states, a ground state x ∈ region(l1) ∩ region(l1) exists:

x = J 1〈X: B,Y: 1〉, 1〈X: C,Y: 1〉, 1〈X: A,Y: 2〉 K.

69

4. Lifted Marginal Filtering

false

true

prediction
p(lt-1|y1:t-1) p(lt-1|y1:t-1) p(lt|y1:t-1)

2 s(), 1 lm()

...

...

2 s(), 1 s()

...

...

...
...

Overlapping

Split on
L==M && N=Red

No split
required

Figure 4.6.: Example of overlapping regions, that can occur due to splitting and effect ap-

plication. Here, denotes an urn without replacement containing the three
elements R, G and B.

Note that the lifted states l1 and l2 above only share the grounding x when ignoring the
distribution types of groundings. When instead taking the distribution types into account,
l1 and l2 do not share any groundings when, as all groundings of l1 and l2 have different
distribution types.

The distribution types might be relevant in some cases, e.g. for informing the merging
strategy about the distribution a value belongs to (see Chapter 6. However, in other cases,
they can be irrelevant, so that we can “ignore” the distribution type for defining overlap of
states, to be able to obtain a more efficient representation.

Therefore, we consider operations for identifying and eliminating states with overlapping
regions for two cases: The case where ground states are only considered identical when their
types are also identical, and the case where identity does not depend on the distribution
type (i.e. considering untyped ground states). In the former case, identifying overlapping
states is simple: States overlap when they have identical structure s, and for each type d,
the factors of type d in l1 and l2 have overlapping support. In the latter case, identifying
overlap is slightly more complex, as we do not know a priori how the entities from l1 and l2
are associated to the entities in x – in contrast to the previous case, where the distribution
types directly provide this information. The following example shows how the overlapping
states l1 and l2 from above can be split so that all split results are disjoint.

Example 30. We split l1 on e = 〈X: N,Y: 2〉 with the constraint e.N == A, resulting in

70

4.4. Lifted Filtering

Algorithm 7 Lifted Marginal Filtering.

• Input: Actions A, observation model o, prior distribution p(L0) represented as

P0 = 〈l
(i)
0 : p

(i)
0 〉Ni=1, sequence of observations y1, . . . , yT

• For t = 1, . . . , T − 1

1. Prediction

– Split Pt on each action precondition (see Algorithms 4, 5 and 6)

– Calculate prediction (see Algorithm 3): Pt+1|t = predict(Pt, A)

2. Update

– Split Pt+1|t on observation model constraints

– Update weights of each 〈l
(i)
t+1|t : p

(i)
t+1|t〉 ∈ Pt+1|t: p

(i)
t+1 = p(yt | l

(i)
t+1|t) p

(i)
t+1|t

– Let P ∗
t+1 = 〈l

(i)
t+1|t : p

(i)
t+1〉

M
i=1

3. Optional: Prune Pt+1, e.g. by keeping N states with highest probability (or more
elaborate pruning strategy, see [163])

two states l′1 = (s′1, γ
′
1) and l′′1 = (s′′1, γ

′′
1) where

s′1 = J 1〈X: A,Y: 1〉, 1〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ′1 = 〈N: U(B,C)〉

s′′1 = J 2〈X: N,Y: 1〉, 1〈X: A,Y: 2〉 K, γ′′1 = 〈N: U(B,C)〉.

Now, l2 = l′1, so they can be trivially merged by summing their probabilities, and region(l2)∩
region(l′′1) = ∅.
Note that such split are only applied to states with overlapping regions, but other states

can be kept in fully lifted form: For example, the state l3 = (s3, γ3) with

s3 = J 3〈X: N,Y: 1〉 K, γ3 = 〈N: U(A,B,C)〉

does not overlap with l1 nor l2 and thus does not need to be split.

The algorithms for identifying and eliminating overlap are described in full detail in Ap-
pendix F. We call this process shattering (named after shattering in FOVE [51], although
in contrast to FOVE, shattering is not required here to guarantee the correctness of the
algorithm, but merely increases efficiency).
Whether shattering should be employed depends on the specific application scenario and

should be weighed against potential benefit of overlapping states. For example, in Section
6.2, we will consider situations where overlapping states (that describe almost the same
ground distribution) can be approximated by a single lifted state – which is not possible
when the distribution has been shattered before.

4.4.4. The Lifted Marginal Filtering Algorithm

We conclude this section by summarizing the overall Lifted Marginal Filtering (LiMa) algo-
rithm. LiMa (see Algorithm 7) performs marginal filtering (using the MRS-based transition

71

4. Lifted Marginal Filtering

1 s(), 1s(), 1 lm()

false

true

1

2 s(), 1 s()

Split on
L==M && N=Red

1/3

2/3

1/6

1/3

1/6

2 s(), 1 lm()

predictionp(lt-1|y1:t-1) p(lt-1|y1:t-1) p(lt|y1:t-1) update

1/6

2 s(), 1 s()

1/6

2 s(), 1 mr()

1 s(), 1mr(), 1 lm()

0.04

0.08

0.04

p(lt|y1:t-1)

0.42

0.42

* 0.99

* 0.99

* 0.1

* 0.1

* 0.1

Figure 4.7.: Split-prediction-update cycle of LiMa for the scenario described in Example 31.

model and constraint-based observation model) directly on the lifted representation, per-
forming splitting operations when necessary. Specifically, splitting can be required for both
the prediction step (to make sure that the preconditions of all actions are determinate) and
the update step (for the constraints of the observation model).
The LiMa algorithm directly lends itself to an approximate version: Just as in the (ground)

marginal filter, the number of states can be limited by a pruning operation, e.g. by keeping
only the N most likely states at each time step (see [163], for a discussion of more elaborate
pruning strategies).

Example 31. We consider a variant of the office scenario (Example 16), where agents are
described by a location (L) and a name (N). Agents can be at either of three positions (L,
M, R) and three actions can be performed: Staying at the current position (s), moving from
the left to the middle position (lm), and moving from the middle to the right position (mr).
All three actions have identical weight. The first two actions can be performed by any agent
(that is at the corresponding position), while the latter action (mr) can only by performed
by agent Red (only this agent is authorized to access the right location).
The right room is observed by a presence sensor that indicates whether at least one agent is

at the corresponding location. The sensor has a false positive rate of 0.1 and a false negative
rate of 0.01.
Suppose that the prior state distribution p(Lt−1 | y1:t−1) consists of only a single lifted

state l = (s, γ) (i.e. p(Lt−1 = l | y1:t−1) = 1) with

s = J 2〈N: N,L: L〉, 1〈N: N,L: M〉 K, γ = 〈N: U(R,G,B)〉.

The precondition c(e) = (e.L == M) ∧ (e.N == R) – the agent must have location L and
name R – of the action mr is indeterminate for the entity e = 〈N: N,L: M〉. Thus, a split

72

4.4. Lifted Filtering

of e on c is performed, resulting in two lifted states l1 = (s1, γ1) and l2 = (s2, γ2) with

s1 = J 2〈X: N,Y: 1〉, 1〈X: A,Y: 2〉 K, γ1 = 〈N: U(B,C)〉,

s2 = J 1〈X: A,Y: 1〉, 1〈X: N,Y: 1〉, 1〈X: N,Y: 2〉 K, γ2 = 〈N: U(B,C)〉

and weights w1 = 1/3, w2 = 2/3. In l1, two compound actions are applicable, and four
compound actions are applicable in l2. Applying the compound actions leads to five states
with non-zero weight. In general, it could be necessary to split on the observation model
constraints at this point. However, the preconditions of the presence sensor observations do
not require a split. Thus, we can directly weight each of the lifted states lt by the observation
likelihood p(Yt = 1 | lt). This example is illustrated in Figure 4.7.

Complexity of Lifted Filtering Finally, we discuss the time and space complexity of the
LiMa algorithm. First, it is easy to see that the representation complexity of the lifted
representation (i.e. the number of states that need to be maintained explicitly) is never larger
than the representation complexity of the original, ground representation: In the worst case,
each lifted state represents exactly one ground state, so that both representations coincide.

On the other hand, the representation complexity of the lifted representation can be sub-
stantially smaller than the original, ground state representation.

Example 32. Consider a lifted state where the context contains only delta distributions,
except for a single factor, which represents a uniform distribution over permutations of n
values. This lifted state represents n! ground states, i.e. the lifted representation is smaller
than the ground representation by a factor of n!. As a specific example, the lifted state
l = (s, γ) with

s = J 1〈X: N,Y: 1〉, 1〈X: N,Y: 2〉, 1〈X: N,Y: 3〉 K, γ1 = 〈N: U(A,B,C)〉

represents a distribution over 3! = 6 ground states.

More generally, the reduction in representation complexity that is achieved by the lifted
representation is proportional to the number of ground states that is represented by each
lifted state (i.e. the cardinality of the region of the lifted state). An upper bound on this
number can be given as follows: For a factor ρ, let |ρ| denote the support of ρ, i.e. the
number of distinct value sequences can be drawn from the factor. The number of ground
states |region(l)| represented by a lifted state l can then be up to8

|region(l)| ≤
∏

(d,ρ)∈γ

|ρ|

As the support of ρ is typically exponential in the number of RVs of ρ (for example, a
multinomial distribution of n values from which we draw m times has a support of nm,
and a hypergeometric distribution over n unique values has a support of n!), the represen-
tation complexity of the lifted representation can be substantially smaller than the ground
representation.

8This upper bound ignores the fact that multiple value sequences from ρ can be mapped to the same
canonical sequence (and thus the same ground state). The bound holds exactly when each value sequences
corresponds to exactly one canonical value sequence, as in Example 32.

73

4. Lifted Marginal Filtering

Runtime of the LiMa algorithm is linear in the number of states, as compound actions
need to be computed individually for each state during the prediction step. Therefore, the
results for representation complexity directly transfer to results for algorithm runtime: The
time complexity of LiMa is smaller by a factor of |region(l)| compared to ground filtering.

Note that this does not mean that the complexity of lifted filtering grows only polynomially
with respect to the number of entities in the state. Instead, lifted inference complexity can
still grow exponentially with the number of entities, when there is at least one property
that is represented explicitly (i.e. via delta distributions). This behavior can, for example,
be observed in the experimental evaluation of the tracking scenario (Section 4.5.2): In that
scenario, complexity of lifted inference is smaller by a factor of n! (where n is the number of
agents) than ground inference, because the distribution over the agents’ names is represented
efficiently, but complexity of lifted inference still grows exponentially with the number of
agents, because of the exponential number of explicitly represented joint assignments of the
location property.

Furthermore, splitting increases the representation complexity. In the worst case, repeated
splitting (of all properties) results in the degeneration of all distribution representations
to delta distributions (which have a support of 1), so that representation complexity and
runtime complexity of lifted and ground filtering coincide. Merging operations that reduce
the representation complexity – by identifying sets of lifted states that can be represented
by a single lifted state – are discussed in Chapter 6.

In summary, space and time complexity of lifted filtering can be substantially smaller
than complexity of ground filtering, by a factor that is proportional to the support of the
distributions in the context (which is typically exponential for distributions other than delta
distributions). However, when repeated splitting of all properties is required, the complexity
of lifted filtering can degenerate to the complexity of ground filtering. Next, we investigate
how these theoretical properties of LiMa manifest empirically.

4.5. Experimental Evaluation

In this section, we empirically investigate whether LiMa indeed allows for more efficient
inference due to the lifted state representation. Specifically, we performed lifted inference
(i.e. LiMa) and ground inference (i.e. the conventional marginal filtering algorithm) for three
application scenarios, to answer the following research questions:

Q1 (Representation Size) Does the lifted state representation lead to a significantly smaller
cardinality of the exact filtering distribution (i.e. can it achieve a higher representa-
tional efficiency) than a ground state representation?

Q2 (Approximation Quality) Can LiMa achieve a more accurate state estimation, when
introducing approximations by limiting the maximum number of states that represent
the filtering distribution (i.e. when performing pruning)?

4.5.1. Evaluation Scenarios

To evaluate these research questions, we modeled three application scenarios in LiMa. Table
4.1 provides an overview of the scenarios. Of the three scenarios, one (the office scenario) is
purely simulated, allowing to evaluate the algorithm on a large number of simulated dataset.

74

4.5. Experimental Evaluation

Scenario # Actions # Entities # Datasets Length Truth Obs.

(a) Office 15 1-6 6*120 51.5 Sim. Sim.
(b) Tracking 40 1-7 7*5 473.4 Real Sim.
(c) Kitchen 72 16 7 92.6 Real Real

Table 4.1.: Evaluation scenarios. The column Truth describes how the ground truth was
obtained (either by simulation, or by observing real human protagonists), and
Obs. describes how the observation sequences were obtained (by simulation or
from wearable sensors).

(a) Office scenario. Grey rectangles
denote floor pressure sensors.

(c) Kitchen scenario. Reprinted from Krüger et al. [123].

(b) Tracking scenario. Dots denote locations of presence sensors. Reprinted from
Lüdtke et al. [135].

Figure 4.8.: Evaluation scenarios.

The other two scenarios consist of actual activity sequences of human protagonists and thus
allow to evaluate the performance of the algorithms in realistic usage situations – that might
contain a substantial amount of symmetry breaks, i.e. require splitting. In the following, each
scenario is described briefly, and the intuition on the chosen modeling approach is provided.

Office This simulated scenario (originally presented by Schröder et al. [192], dataset avail-
able at [191]) consists of one to six persons (agents) that act in an office environment con-
sisting of six locations (see Figure 4.8 (a)). The agents can move between locations, carry

75

4. Lifted Marginal Filtering

objects (coffee capsules, cups, water, paper) and perform certain activities, like brewing cof-
fee or printing documents. In this scenario, only a single agent is acting per time step, i.e.
the scenario does not have a compound action semantics. The activities have a causal struc-
ture, e.g. to make a coffee, the coffee machine must have been filled with a coffee capsule.
Each location is equipped with a presence sensor (e.g. a floor pressure sensor), that indicates
whether at least one agent is present at that location. The sensor data is always correct, i.e.
there are no false positives or false negatives.

For each number of agents that act in the environment (one to six), 120 state and obser-
vation sequences have been sampled. The mean length of the observation sequences is 51.5
time steps.

The scenario has been modeled in LiMa by representing each agent and coffee capsule by a
separate entity. The entities corresponding to agents have properties describing their name,
location and whether they hold an object. As the sensor data do not allow to distinguish
which agent (and coffee capsule) is at each location, the identities of the agents and capsules
have been modeled by an urn without replacement.

Tracking This scenario (originally presented by Krüger et al. [122], dataset available at
[100]) is also concerned with tracking the locations of agents, but no other context informa-
tion, like in the previous scenario. Here, 14 locations are available (see Figure 4.8 (b)). The
observation sequences are based on real, observed human motion trajectories. Trajectories
for one to seven persons have been recorded, that are moving simultaneously in the environ-
ment. For each number of agents, five trajectories have been obtained, i.e. there is a total
of 35 datasets.

For each recorded trajectory, sensor observations of presence sensors located at each of
the five corridor locations (see Figure 4.8) have been simulated. The other rooms are not
observed. As is the office scenario, the observations are always correct, i.e. there are no false
positives or false negatives. The mean length of the observation sequences is 474.3 time
steps, i.e. more than 9 times the length of the office scenarios.

In this scenario, the only actions that agents perform is moving between locations. The
probability of each action (moving between two specific rooms, or not moving) has been
obtained by maximum-likelihood estimation from the observed trajectories. The scenario
has been modeled by representing each agent as a separate entity with properties describing
their identity and location. Again, we chose an urn without replacement to model the
distribution of the agents’ names.

Kitchen This scenario (originally presented by Krüger et al. [123], dataset available at
[121]) serves as a large, real-world evaluation of LiMa. The task here is to perform activity
and context recognition in a kitchen scenario, where an agent performs the subtasks (i)
preparing the kitchen, (ii) cooking, (iii) preparing the table, (iv) eating, and (v) washing the
dishes.

Experiments with 7 participants have been performed. The participants performed 16
different action classes, e.g. take, move or fill. They were instrumented with 5 inertial
measurement units (IMUs), recording linear acceleration and angular velocity (3 axis each)
at 120 Hz (see Figure 4.8 (c) for the sensor placement). Out of the 30 IMU signals, 180
features such as variance and energy were computed with a window size of 128 samples
and 75% overlap. Afterwards, a principal component analysis was performed, and the 21

76

4.5. Experimental Evaluation

Scenario Factor Levels Description

Agents 1–6 Number of agents (i.e. state space size)
Office

Dataset 1–120 Simulated dataset used
Agents 1–6 Number of agents (i.e. state space size)

Tracking
Dataset 1–5 Dataset used

Kitchen Run 7

Table 4.2.: Factors and levels of experimental design for exact inference.

principal components with the largest eigenvalues were selected.

In the resulting dataset, each action has a distinct duration distribution, which is not nec-
essarily a geometric distribution, thus requiring to model the duration distribution explicitly,
by concepts similar to hidden semi-Markov models [240]. This, however, would add another
layer of complexity and additional parameters, which we wanted to avoid for this evaluation.
Therefore, we reduced the dataset so that each action lasts for exactly one timestep, by
sampling one observation for each segment where the same action is executed.

We modeled the domain as a PMPMRS as follows: Each of the 10 objects shown in Figure
4.8, as well as the agent, has been modeled as a separate entity with properties like location,
clean/dirty, cooked, etc. For example, a sub-multiset of a reachable state in this PMPMRS
is

x = J 1〈N: Spoon,Dirty: yes,Pos: Sink〉,

1〈N: Plate,Dirty: yes,Pos: Sink〉,

1〈N: Pot,Dirty: yes,Pos: Counter〉, . . . K.

(4.21)

A lifted state representation has been obtained by representing the identities of objects by an
urn without replacement. The action weights have been chosen according to a goal distance
heuristic, where the goal is that the meal has been finished and all objects are washed, as
described by Krüger et al. [123]. The modeling approach is described in more detail in
Appendix G.1.

We investigated two different observation models p(yt | lt): (i) Crisp observations of the
actual action ct, i.e. p(yt | lt) = 1(at=yt) where at is the action executed in state lt and yt
is the actual (observed) action at time t; and (ii) we used the preprocessed sensor data as
observations, and assumed p(yt | lt) to be a multivariate normal distribution conditional on
the executed action, i.e. p(yt | lt) ∼ N (µat ,Σat), where yt are the preprocessed sensor data
(i.e. the 21 principal components with largest eigenvalue), at is the action executed in lt,
and the parameters µat and Σat have been estimated from the data by standard maximum-
likelihood estimation.

4.5.2. Exact Inference

Experimental Setup For assessing Q1, we performed exact filtering (i.e. without pruning)
using the lifted and the ground state representation (i.e. the conventional marginal filtering
algorithm). Note that both cases represent exactly the same distribution via Equation 4.11.

We did not compare LiMa to any other Bayesian filtering (BF) algorithm apart from
marginal filtering, because no other filtering algorithm is directly applicable to these large

77

4. Lifted Marginal Filtering

�

�

�

�

*** *** *** ***

�

�

�

�

�

ns ** ** ** **
Office Tracking

1 2 3 4 5 6 1 2 3 4 5 6 7

1e+01

1e+03

1e+05

Agents

#
 S

ta
te

s Type

� ground

lifted

Figure 4.9.: Exact inference results for the office and tracking scenarios: Number of states re-
quired for exact filtering, using lifted and ground state representations. The line
shows the mean number of states for each configuration. Note the logarithmic
scale of the y axis. Ground filtering has been infeasible for 5 and 6 agents (of-
fice) or for 6 and 7 agents (tracking). Stars indicate significant differences in the
required number of states between ground and lifted filtering, using Wilcoxon
signed-rank test. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

number of agents 1 2 3 4 5 6 7

ground 9.1 113.7 2516.5 67988.7 – – –
Office

lifted 1.1 1.6 5.0 23.9 178.1 972.3 –

ground 1.1 6.6 104.9 1056.9 9161.7 – –
Tracking

lifted 1.1 3.7 22.0 73.2 172.0 466.3 1252.9

Table 4.3.: Exact inference results for the office and tracking scenarios (as shown in Figure
4.9): Mean number of states required for exact filtering, using lifted and ground
state representations.

state spaces and structured, causal system dynamics: BF algorithms that enumerate the
transition model as a matrix are infeasible due to the large state space size. Approximate
algorithms like particle filtering can in principle be used, but it has already been shown that
marginal filtering is superior to particle filtering in categorical state spaces [164] and thus,
it is sufficient to use (ground) marginal filtering for comparison.

For both algorithms, we assessed the mean number of explicitly maintained states (ground
or lifted) that are necessary to represent the distribution as a measure of inference efficiency.
Specifically, for each observation sequence of all three evalation scenarios, we computed the
mean number of states required for ground and lifted inference. For the kitchen scenario,
we used the crisp observation model (observing the actual actions), to keep ground filtering
feasible. Table 4.2 summarizes the factors of the experimental design. All experiments have
been performed using an implementation of LiMa in Haskell.

Results Figure 4.9 and Table 4.3 show the mean number of states that are necessary for
exact filtering in the office and tracking scenarios, with respect to their state space size
(which depends on the number of agents). It can be observed that the necessary number of
states is substantially smaller when the lifted state representation is used.

78

4.5. Experimental Evaluation

1

10

100

1000

10000

#
 S

ta
te

s Type

ground

lifted

0 25 50 75

Glass

Plate

Pot

Spoon

Wooden_Spoon

t 0.00

0.25

0.50

0.75

1.00

grounding

Figure 4.10.: Exact inference results for the kitchen scenario. Top: Number of states required
for filtering in the kitchen scenario over time for subject 6, using lifted and
ground states. Bottom: Fraction of states in which each object identity is
represented explicitly. Filtering is stopped at t = 89, because it exceeds the
threshold of 50,000 states.

For the office scenario, this difference in the required number of states is statistically
significant for each number of agents (p < 10−16 using Wilcoxon signed rank test, n = 120),
and becomes more pronounced with increasing number of agents: For the Office scenario
with 1 (2, 3, 4) agents, the ground representation needs 9.7 (76.6, 508, 2800) times the
number of states than the lifted representation.

Similarly, for the tracking scenario, the difference in the number of required states is
significant for 2 to 5 agents (p < 0.05, Wilcoxon signed rank test, n = 5). For one agent,
the ground and lifted state representations are equivalent. Again, the difference becomes
more pronounced with increasing number of agents: For the tracking scenario with 2 (3, 4,
5) agents, the ground representation needs 1.8 (4.8, 14.4, 53.3) times the number of states
than the lifted representation.

Figure 4.10 (top) shows the required number of states over time for the kitchen scenario
and Figure 4.10 (bottom) shows the fraction of states in which each of the object identities is
represented explicitly (for one of the subjects, the other subjects show a similar result). Over
time, the lifted state representation becomes more and more ground, due to the fact that
some of the actions require a split on some of the objects. For example, the drink requires
that the person holds the glass (and not some other objects), and thus requires a split on
the constraint c(e) = e.N == Glass. Therefore, the lifted representation needs the same
number of states as the ground representation for large segments of the filtering process.
Segments where the lifted representation is more efficient than the ground representation
can be observed rarely, e.g. between timestep 38 and 43 for the subject shown in the figure.
Overall, for the kitchen scenario, the difference in the required number of states between
lifted and ground state representation is not significant.

Discussion The results show that the lifted state representation can lead to more efficient
inference when the scenario permits this: The office and tracking scenarios contain many
entities (agents, coffee capsules), leading to a combinatorial explosion in the support of the
ground distribution. As they cannot be discriminated by observations and do not need to be

79

4. Lifted Marginal Filtering

Scenario Factor Levels

Dataset 1–5
States 10, 25, 50, 100, 200Tracking
Repetition 1–10
Dataset 1–7
States 25, 50, 100, 200, 500, 1000, 2000Kitchen
Repetition 1–10

Table 4.4.: Factors and levels of experimental design for approximate inference.

discriminated due to the system dynamic, the lifted representation can reduce the required
number of states (and thus runtime) drastically.

For the kitchen scenario, the number of states required for the lifted and ground repre-
sentation are not significantly different. The problem is that the actions require repeated
splitting, so that the lifted representation becomes increasingly ground over time. This prob-
lem becomes specifically prevalent due to the crisp observation model employed here. To
understand this, suppose that the action drink was observed. This action can only be per-
formed when the agent holds the glass (and not some other object), requiring a split of that
property. The crisp observation model assigns only states where this action was performed a
non-zero probability. Thus, after drink was observed, the value glass is represented explicitly
in all of the posterior states.

Furthermore, when an object identity has been split off once, it remains separate indef-
initely (as shown in Figure 4.10, bottom). Intuitively, this is not always necessary. For
example, once the cooking process is finished, it is not necessary to distinguish the pot
from the other objects, so the pot’s identity does not need to be represented explicitly any
more. Methods for retaining a lifted representation for these cases are presented in Chapter
6. As we will see later, such methods can lead to increased inference efficiency even for
“asymmetrical” cases like the kitchen scenario.

4.5.3. Approximate Inference

Experimental Setup For assessing Q2, we performed approximate filtering for the tracking
and kitchen scenarios (for the latter scenario, the real sensor measurements were used as
observations). That is, the algorithm performed pruning to a fixed number of states after
each update step. Specifically, the unbiased and optimal pruning strategy (with respect to
least squared error) proposed by Nyolt and Kirste [163] was used here. The factors of the
experimental design are shown in Table 4.4.

We then computed an estimate from the filtering distribution, that represents a measure
that is relevant for answering application specific questions: For the tracking scenario, we
computed the estimated number of persons per room, and for the kitchen scenario, we
computed the most likely action class that was performed. The quality of the approximation
was assessed on this estimate (in terms of root mean squared error or accuracy, explained
below).

For the tracking scenario, we investigated the root mean squared error (RMSE) of the
number of agents per room. Let nL be the overall number of locations, let nr,t be the true
number of agents at location r at time t, and let n̂r,t be the point estimate of the number of

80

4.5. Experimental Evaluation

�

�

�

�
� �

*** *** ns ns ns
Tracking

10 25 50 100 200 inf

0.3

0.4

0.5

0.6

States

R
M

S
E

�

�

�

�

�

�

�

ns ns ** * *** * ns
Kitchen

25 50 100 200 500 1000 2000

0.40

0.45

0.50

0.55

States

A
c
c
u
ra

c
y Type

� ground

lifted

Figure 4.11.: Approximate inference results: RMSE/Accuracy of tracking/kitchen scenario
with respect to available states. For the tracking scenario, “inf” denotes an
unlimited number of states (exact filtering), i.e. a lower bound on RMSE.

states 10 25 50 100 200 ∞ (exact)

ground 0.549 0.385 0.288 0.274 0.262 0.263
lifted 0.302 0.272 0.270 0.268 0.262 0.263

Table 4.5.: Approximate inference results (as shown in Figure 4.11): Mean RMSE of tracking
scenario with respect to available states.

agents at room r for an approximate filtering distribution p̂(lt | y1:t). The RMSE is then

RMSE =

√
∑T

t=1

∑nL

r=1(nr,t − n̂r,t)2

T ∗ nL
. (4.22)

The RMSE is 0 when exactly the right number of agents is estimated per room. Only the
5 datasets where 5 agents are present simultaneously were used in this experiment, as they
are the largest datasets that afford exact ground inference. We performed experiments with
a maximum of 10, 25, 50, 100 and 200 states at the pruning step, and repeated filtering 10
times for each configuration to account for randomness in pruning. Thus, 5 ∗ 5 ∗ 10 ∗ 2 = 500
experiments were performed for this scenario.

For the kitchen scenario, we assessed the accuracy of the estimated action (out of 16
available actions): Let at be the true action class performed at time t, and let ât be the point
estimate of the performed action class (i.e. the most likely action class) for an approximate
filtering distribution p̂(lt | y1:t). The accuracy is then

Accuracy =

∑T
t=1 1(at = ât)

T
. (4.23)

We performed experiments with a maximum of 25, 50, 100, 200, 500, 1000 and 2000 states and
again repeated filtering 10 times for each configuration, i.e. 7∗7∗10∗2 = 980 experiments were
performed for this scenario, and thus 1480 experiments were performed overall for assessing
Q2.

Results Figure 4.11 shows the RMSE (or accuracy) for both scenarios and different num-
bers of available states. In the tracking scenario, RMSE of lifted filtering is never higher

81

4. Lifted Marginal Filtering

states 25 50 100 200 500 1000 2000

ground 0.430 0.441 0.459 0.488 0.498 0.542 0.561
lifted 0.424 0.443 0.477 0.503 0.518 0.542 0.563

Table 4.6.: Approximate inference results (as shown in Figure 4.11): Mean accuracy of
kitchen scenario with respect to available states.

than RMSE of ground filtering. For 10 and 25 states, RMSE of lifted filtering is significantly
lower than ground filtering (p < 0.001, n = 10 using Wilcoxon signed rank test). When
increasing the number of available states further, the difference in RMSE between lifted and
ground filtering is no longer significant (for the 10 repetitions of the inference procedure
evaluated here). Finally, for an unlimited number of available states (i.e. when performing
exact filtering), the RMSEs are identical, as in the exact case, the lifted and the ground
representation describe the same distribution.

The kitchen scenario shows a similar behavior: Increasing the number of states increases
accuracy, and the accuracy of lifted filtering is never lower than ground filtering for a fixed
number of states. Accuracy of ground filtering is significantly lower than accuracy of lifted
filtering for 100, 200, 500 and 1000 states (p < 0.05, n = 10 using Wilcoxon signed rank
test). For fewer states (25 and 50), there is no significant difference, as the number of states
is insufficient for both algorithms to achieve reasonable results. For 2000 states, there is also
no significance difference, as both algorithms eventually reach a saturation state.

Discussion The results show that in some cases, LiMa exhibits a significantly smaller esti-
mation error with lower variance than ground marginal filtering, and is never (significantly)
worse. The reason is that intuitively, LiMa can represent the filtering distribution more ac-
curately with a given number of states: Given a fixed number n of states, the support of the
ground filtering distribution is exactly n. Instead, LiMa can maintain a filtering distribution
with support > n, as each lifted state can represent a distribution over multiple ground
states. This effect does not manifest when the allowed number of states is very high, such
that the number of states is saturated for both algorithms.

Interestingly, the lifted representation achieved a higher accuracy in the kitchen scenario,
even though it did not lead to a smaller number of required states for the case of crisp
observations above, where the lifted representation quickly degenerated to the ground repre-
sentation. This difference can be explained by the different behavior of the crisp observation
model and the probabilistic, sensor-based observation model. As discussed above, when an
action that requires a split (e.g. the action drink, which requires a split on glass) is observed
in the crisp observation model, that property is represented explicitly in all posterior states.
In contrast, in the probabilistic observation model, states where an action that does not
require splitting was performed can also have non-zero probability, so that a value is repre-
sented explicitly only in some of the posterior states. Overall, the probabilistic observation
model thus does not have such a strong tendency to ground the model, so that the lifted
state representation can be more useful, which is exactly what we observed empirically here.

82

4.5. Experimental Evaluation

4.5.4. Summary

The empirical evidence shows that LiMa can indeed achieve a lower representational com-
plexity (or lower error in the approximate case) for the application scenarios investigated
here. More specifically, the following conclusions can be drawn:

• As long as any exchangeability is present in the filtering distribution, LiMa needs
fewer states to represent the exact filtering distribution. In the worst case, when
no exchangeability can be exploited, LiMa coincides exactly with ground marginal
filtering.

• When limiting the number of available states to a fixed number, estimates calculated
with LiMa can have a lower variance and lower error than ground marginal filtering,
due to the more efficient utilization of available states.

83

5
Approximating the System

Dynamics using MCMC

Chapter Summary In this chapter, we show how to solve one of the two remaining scal-
ability issues of Lifted Marginal Filtering: Efficiently computing the distribution p(K | l) of
applicable maximal compound actions (AMCAs). This is done via a Markov Chain Monte
Carlo (MCMC) algorithm that approximates the partition function of p(K | l). The proposal
works by backtracking in the search tree of the exact algorithm, and then sampling a comple-
tion of the remaining, non-maximal compound action. This approach allows to apply Lifted
Marginal Filtering to systems with a large number of AMCAs, where the exact algorithm is
infeasible.

Parts of this chapter are based on:

[133] Stefan Lüdtke, Max Schröder, and Thomas Kirste. Approximate Probabilistic
Parallel Multiset Rewriting using MCMC. In Joint German/Austrian Conference on
Artificial Intelligence (Künstliche Intelligenz), pages 73–85. Springer, 2018.

Contents

5.1. An MCMC Algorithm for p(K | l) 86

5.2. Experimental Evaluation . 89

85

5. Approximating the System Dynamics using MCMC

0.0e+00

3.0e+06

6.0e+06

9.0e+06

1.2e+07

0 20 40 60 80

prey and # predators

#
 c

o
m

p
o

u
n

d
 a

c
ti
o

n
s

Figure 5.1.: Number of AMCAs for the predator-prey scenario, in relation to the number of
predator and prey entities.

To understand the problem, consider the following example. In a simple population model,
two types of entities exist: Prey x = 〈Type: X〉 and predators y = 〈Type: Y 〉. Prey can
reproduce, a predator can eat a prey animal (leading to a decrease in prey population size
by one and increase of predator population by one), and predators can die. We assume a
maximally parallel semantics as introduced in Section 4.1, i.e. all animals can participate in
one of the actions simultaneously. The fact that animals can also choose to not participate
in any action is modeled by an additional noop action.

The number of AMCAs of a single state l in relation to the number of entities in l is shown
in Figure 5.1. We see that the number of AMCAs increases dramatically, for 80 predator
and 80 prey entities, there are already more than 10 million AMCAs. In general, when n is
the number of entity structures in l and m is the number of action instances, there can be
up to

(
m+n−1

n

)
= (m+n−1)!

n! (m−1)! AMCAs.

Unfortunately, when exactly computing the prediction as outlined in Section 4.2.1, we
need to enumerate all AMCAs, as each AMCA can lead to a different successor state. An
algorithm for enumerating AMCAs that has linear complexity in the number of AMCAs
is shown in Algorithm 2. Obviously, this algorithm quickly becomes infeasible when the
number of entities (and thus the number of AMCAs) increases.

However, in many cases, the number of posterior states will be much smaller than the
number of AMCAs, as many AMCAs can result in the same posterior state. Therefore, even
if we do not enumerate all AMCAs, but sample from p(K | l), the chance to “miss out” highly
probable posterior states is low, and we might still be able to approximate the posterior state
distribution accurately. Based on this intuition, we propose a Markov chain Monte Carlo
(MCMC) algorithm for approximating the distribution p(K | l).

5.1. An MCMC Algorithm for p(K | l)

The Metropolis-Hastings Algorithm Markov chain Monte Carlo (MCMC) algorithms like
the Metropolis-Hastings algorithm provide an efficient sampling mechanism for case where
we can directly calculate a value v(k) that is proportional to the probability of k, but
obtaining the normalization factor (the partition function) is difficult. The Metropolis-
Hastings algorithm works by constructing a Markov chain of samples M = k0, k1, . . . that

86

5.1. An MCMC Algorithm for p(K | l)

Algorithm 8 Proposal function: Draw a sample k′ from g(k′ | k).

1: function g(k,l,n)
2: R ← {r | r ⊑ k, |r| = n} ⊲ All sub-multisets of k of size n
3: r ← uniform(R) ⊲ Choose one of the sub-multisets uniformly
4: k− ← k ∪- r ⊲ Remaining compound action
5: l− ← l ∪- bound1(k−) ⊲ Remaining state of entities not bound in k−

6: K ′ ← enum-ca(l−, AI, k−) ⊲ All AMCAs k′ of l with k− ⊑ k′

7: k′ ← uniform(K ′)
8: return k′

has p(K) as its stationary distribution. The samples are produced iteratively by employing
a proposal distribution g(k′ | k) that proposes a move to the next sample k′, given the current
sample k. The proposed sample is either accepted and used as the current sample for the
next iteration, or rejected and the previous sample is kept. The acceptance probability is
calculated as

A(k, k′) = min

{

1,
v(k′) g(k | k′)

v(k) g(k′ | k)

}

.

It can be shown that the Markov chain constructed this way does indeed have the target dis-
tribution p(K) (Equation 4.5) as its stationary distribution [128]. The Metropolis-Hastings
algorithm thus is a random walk in the sample space (in our case, the space of AMCAs) with
the property that each sample is visited with a frequency relative to its probability.

Although the Markov chain eventually converges for all proposal distributions g, the con-
vergence speed heavily depends on the specific choice of g. If g makes only small, local
changes, it might explore the sample space slowly and thus converge slowly. On the other
hand, if g makes large leaps in the sample space, the acceptance probability can become low,
because the next sample is more likely to be in a region of low probability, and the algorithm
will again converge slowly.

Proposal Function In the following, we present a proposal function for compound actions.
The idea is to perform local moves in the space of the compound actions as follows: The
proposal function g(k′ | k) proposes k′ by randomly selecting a small number n of action
instances (for example, we use n = 2 in the experiments below) to delete from k. For
the remaining, non-maximal compound action k− and the remaining state l− (consisting of
the entities not bound by k−) it then computes the set of all possible completions of k−,
using the exact algorithm enum-ca (Algorithm 2). This is much easier than enumerating
all AMCAs from scratch: The compound action k− is “almost” maximal, and the exact
algorithm only needs to perform the last few steps of the search. This means the proposal
makes small changes to k for proposing k′, while ensuring that k′ is applicable and maximal.
The proposal function is shown in Algorithm 8.

Example 33. In a simplified population model, two types of entities exist: Prey x =
〈Type = X〉 and predators y = 〈Type = Y 〉. Predators can eat other animals (prey or other
predators2, action e), and all animals can reproduce (action r). For the state l = J 1x, 3y K,

1The function bounds(k) returns the multiset of all entities bound in k.
2Predators eating other predators is uncommon for predator-prey models, but is included in this example
for the sake of illustrating the algorithm.

87

5. Approximating the System Dynamics using MCMC

k = 1e(y,x), 2r(y)

k- = 1r(y)
l- = 1x, 2y

k- = 1e(y,x)
l- = 2y

k' = 1e(y,x), 2r(y)

k' = 1e(y,y), 1r(x), 1r(y)

k' = 1e(y,x), 2r(y)

k' = 1r(x), 3r(y)

k' = 1e(y,x), 1e(y,y)

Figure 5.2.: Illustration of the proposal function, using the action instances from Example
33 and the state l = J 1x, 3y K.

Algorithm 9 Probability of the proposal g(k′ | k) for given k′ and k.

1: function gProb(k′,k,l,n)
2: rem ← k ∪- k′ ⊲ Action instances in k, but not in k′.
3: R ← {r | rem ⊑ r ⊑ k, |r| = n} ⊲ Sub-multisets of k that could have been removed

from k to get to k′.
4: for r ∈ R do
5: k−r ← k ∪- r ⊲ Remaining compound action after removing r.
6: l−r ← l ∪- bound(k−r) ⊲ Remaining state of entities not bound in k−r .
7: nr ← |enum-ca(l−r , AI, k

−
r)| ⊲ Number of possible AMCAs from k−r .

8: t ← |{r|r ⊑ k, |r| = n}| ⊲ Total number of action instance combinations that could
have been removed from k.

9: p ← 1/t ∗
∑

r∈R 1/nr

10: return p

the following applicable action instances exist: (r, 〈y〉), (r, 〈x〉), (e, 〈y, x〉), (e, 〈y, y〉).
Suppose the current AMCA is k = J 1(e, 〈y, x〉), 2(r, 〈y〉) K, and in the proposal, we remove

n = 2 action instances. This results in two possible remaining compound actions k−1 =
J 1(r, 〈y〉) K and k−2 = J 1(e, 〈y, x〉) K. The compound action k−1 has three possible completions,
and k−2 has two possible completions, as shown in Figure 5.2.

Probability of Proposal Step We do not only need to sample a value from g, given k (as
implemented in Algorithm 8), but for the acceptance probability, we also need to calculate
the probability of g(k′ | k), given k′ and k. This is implemented by Algorithm 9.
The general idea is to follow all possible choices of g, and count how many of the choices

lead to k′ . In g, two random choices are performed: (i) Deciding which action instances
r to remove from k (line 3 in Algorithm 8), and (ii) choosing one of the compound action
completions k′ (line 6) . Although any distribution could have been chosen (convergence is
guaranteed in either case [128]), a uniform distribution was used on purpose in both cases,
to simplify the computation: For a uniform distribution, it is sufficient to know the number
of elements to compute the probability of each element (but we do not need to enumerate all
elements). Specifically, for the first random choice in g, it is sufficient to know the cardinality

88

5.2. Experimental Evaluation

of R (the number of action instance combinations that could be removed from k). For the
second choice, we only need to count the number of AMCAs for those cases where k′ can
actually be reached. These considerations are exploited by Algorithm 9, leading to increased
efficiency.

Figure 5.2 illustrates the algorithm. Suppose the dark grey path has been chosen by the
proposal function. The function gProb(k′, k, l, 2) then only has to call enum-ca once, for
k− = J 1(r, 〈y〉) K and l− = J 1x, 2y K, as k′ can only be reached on this path. The probability
is calculated as gProb(k′, k, l, 2) = 1/2 ∗ 1/3 = 1/6.

Finally, the Markov chain is initialized with an AMCA that is identified by a depth-first-
search procedure similar to enum-ca, except that not all branches are explored, but the
search stops when the first AMCA is found.

5.2. Experimental Evaluation

In the following, we empirically evaluate the approximation quality and convergence of the
MCMC algorithm.

Evaluation Scenario We used a Lotka-Volterra (predator-prey) system for evaluation.
The system was modeled as a PMRMRS with two types of entities (predator and prey) and
six actions (consumption, reproduction and no-op of each predator and prey). We did not
provide any observation model, i.e. the update step of Bayesian filtering was not performed.
In this scenario, no lifting was performed, i.e. ground states are maintained – however, the
results are equally valid for lifted states, where AMCA computation works identically.

We want to emphasize that the purpose of this model was not to provide a truthful model
of predator-prey dynamics, but to allow evaluation of the MCMC algorithm on an easily
scalable model, that is subject to the combinatorial explosion in the number of AMCAs.

The dynamics of the system is illustrated in Figure 5.5 (left). As in other stochastic
predator-prey models, each trajectory describes an oscillation of both the number of preda-
tors and prey. Fluctuations due to the stochasticity of the system lead an increased amplitude
of the oscillations, until eventually, one or both of the species becomes extinct [169].

Experimental Design We computed the compound action distribution (using the MCMC-
based algorithm, mcmc-ca and the exact algorithm, enum-ca) and the posterior state
distribution for a state x of the predator-prey scenario. We varied the number of predator
and prey in x (2, 3, 5, 7, 15, 20, 25, 30, 40, 50, 60, 70) and the number of samples drawn by
mcmc-ca (1, . . . , 30000). A burn-in period of 1000 samples was used.

As usual for the evaluation of Markov chains, convergence was assessed using the total
variation distance (TVD). Let p be the true distribution, and let qn be the distribution of
mcmc-ca after drawing n samples. The TVD is then

∆(n) = 1/2
∑

x

|p(x)− qn(x)| (5.1)

The mixing time τ(ǫ) measures how many samples need to be drawn until the TVD falls
below a threshold ǫ:

τ(ǫ) = min{t|∆(n) ≤ ǫ for all n ≥ t} (5.2)

89

5. Approximating the System Dynamics using MCMC

1000 5000 30000 exact

50 60 70 80 50 60 70 80 50 60 70 80 50 60 70 80

40

50

60

prey

p
re

d
a

to
rs

0.005

0.010

0.015

0.020

prob

Figure 5.3.: True posterior state distribution (computed by enum-ca) and approximate pos-
terior distribution (computed by mcmc-ca with 1000, 5000 or 30000 MCMC
steps) of a state with 70 prey and 70 predator entities. When increasing the
number of MCMC steps, the approximate posterior converges to the true poste-
rior.

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

steps

T
V

D

size 7 40 70

p(k|x)

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

steps

T
V

D

size 7 40 70

p(x'|x)

0

3000

6000

9000

12000

0 20 40 60

size

s
te

p
s

epsilon 0.1 0.25 0.5

Mixing time of p(x'|x)

Figure 5.4.: TVD of p(K |xt) (left) and p(Xt+1 |xt) (middle) for different number of samples,
and states with different numbers of entities. Right: Empirical mixing time of
p(Xt+1 |xt), indicating that a linear increase in MCMC steps (and thus, runtime)
of mcmc-ca is sufficient to achieve a given approximation quality. Note that
the mixing time was estimated from a single run for each size, and is thus noisy.

We assessed the TVD and mixing time of (i) the compound action distribution, and (ii) of the
posterior state distribution. The rationale here is that ultimately, only the posterior state
distribution is relevant, but assessing the TVD and mixing time of the compound action
distribution allows further insight into the algorithm.

Results Figure 5.3 shows a qualitative comparison of the posterior state distribution
p(Xt+1 |xt) computed by both algorithms and different numbers of MCMC steps, for a state
xt with 70 predator and 70 prey entities. When increasing the number of MCMC steps, the
approximate distribution converges to the true distribution. Note that the compound action
distribution for this situation (not shown) has a much larger cardinality (see Figure 5.1).

A quantitative comparison of both algorithms in terms of TVD is shown in Figure 5.4.
When more samples are drawn by the approximate algorithm, the TVD converges to zero,
as expected (implying that the approximate algorithm works correctly). Naturally, the TVD
converges slower for states with more entities (due to the much larger number of compound

90

5.2. Experimental Evaluation

1000

1500

2000

2500

0 50 100 150 200

Time

In
d
iv

id
u
a
ls

Type predators prey

900

1200

1500

1800

2100

900 1200 1500 1800 2100

prey

p
re

d
a
to

rs

0

50

100

150

200

0 20 40 60

size

T
im

e
 (

s
)

algorithm approximate exact

Figure 5.5.: Left: Filtering distribution for a large predator-prey model, obtained by mcmc-

ca with 10, 000 samples and pruning to n = 20 after each prediction (the line
shows the expectation and the ribbons show the standard deviation of the dis-
tribution). Middle: Expected posterior states for the predator-prey model (also
using mcmc-ca with 10, 000 samples). Each arrow points from an initial state to
its expected successor state. Right: Runtime of the algorithms, using constant
number of 10, 000 samples for mcmc-ca.

actions). Furthermore, the posterior state distribution p(Xt+1 |xt) can be approximated more
accurately than p(K |xt): For a state with 70 predator and prey entities, the approximate
transition model is reasonably accurate (successor state TVD < 0.1) after drawing 10,000
samples.

The runtime of both algorithms (using a fixed number of 10, 000 samples for mcmc-ca) for
different numbers of entities is presented in Figure 5.5 (right), showing the factorial runtime
of enum-ca in comparison to the constant runtime of mcmc-ca (when using a constant
number of samples).

Naturally, to achieve a given approximation quality, mcmc-ca requires more samples when
the number of entities is increased. This relationship is represented by the empirical mixing
time of p(Xt+1 |xt), shown in Figure 5.4 (right). The mixing time grows approximately linear
in the number of entities in the state. This suggests that to achieve the same accuracy of
the approximation, the runtime of the approximate algorithm only has to grow linearly – as
compared to the exact algorithm, which has a factorial runtime.

Finally, Figure 5.5 (left) visualizes the filtering distribution of the predator-prey scenario
with a large number of entities, using mcmc-ca with 10, 000 MCMC steps. For this large-
scale model, exact compound action computation is infeasible, so a quantitative comparison
with the true distribution is not possible. Still, the distribution shows the expected oscil-
lating behavior that was also observed in smaller models, indicating that the approximate
distribution is sufficiently similar to the true distribution to generate the same quantita-
tive behavior. The corresponding transition model is visualized in Figure 5.5 (middle), by
showing the expected posterior states for different prior states.

Discussion The results show that approximating the compound action distribution by
mcmc-ca is a viable alternative to the exact algorithm. The results for the empirical mixing
time suggest that to achieve the same approximation quality, the runtime of mcmc-ca only
has to grow linearly – as compared to the exact algorithm, which has a factorial runtime.
Thus, using mcmc-ca, it is possible to accurately calculate the posterior state distribution

91

5. Approximating the System Dynamics using MCMC

for situations with a large number of entities, even when the exact algorithm is infeasible.
Of course, these findings only apply to the predator-prey scenario discussed here. As

Figure 5.3 shows, the posterior state distribution is unimodal, which is a specifically simple
case for MCMC-based algorithms. More complex scenarios, involving multimodal posteriors,
can be more challenging for mcmc-ca, although the algorithm is still guaranteed to converge
eventually [128]. In Section 6.4, a much more complex scenario is shown where applying the
MCMC-based algorithm still leads to accurate results.

92

6
Lifted Marginal Filtering in

Asymmetrical Models

Chapter Summary In this chapter, we approach the second scalability issue of LiMa: The
fact that the system dynamics or observations can lead to symmetry breaks, so that repeated
splitting must be performed until the representation degenerates to the ground form. This
is done by identifying subsets of lifted states that afford to be represented by a single lifted
state. Finding such subsets is difficult in the general case, but we can still show merging
procedures for some relevant special cases: Multinomial distributions, multivariate hypergeo-
metric distributions, and normal distributions. These methods allow to substantially reduce
the representational complexity, and thus, LiMa can be more efficient than ground inference
even for models where the symmetry breaks easily.

Parts of this chapter are based on:

[129] Stefan Lüdtke, Marcel Gehrke, Tanya Braun, Ralf Möller, and Thomas Kirste.
Lifted Marginal Filtering for Asymmetric Models by Clustering-based Merging. In
Proceedings of the 24th European Conference on Artificial Intelligence. IOS Press,
2020.

[131] Stefan Lüdtke, Alejandro Molina, Kristian Kersting, and Thomas Kirste. Gaus-
sian Lifted Marginal Filtering. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), pages 230–243. Springer, 2019.

[136] Stefan Lüdtke, Kristina Yordanova, and Thomas Kirste. Human Activity and
Context Recognition using Lifted Marginal Filtering. IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2019.

93

6. Lifted Marginal Filtering in Asymmetrical Models

Contents

6.1. Problem Statement . 95

6.2. Merging Similar States . 97

6.2.1. Divergence Measures for Lifted States 98

6.2.2. Computing Merged States . 100

6.2.3. Handling Different Distribution Types 101

6.2.4. Experimental Evaluation . 104

6.3. Merging Disjoint States . 107

6.3.1. M and l∗ known: Testing for Mergeability 109

6.3.2. l∗ Known, M Unknown: Identifying Mergeable Subsets 111

6.3.3. M and l∗ Unknown: A Greedy Search Algorithm 113

6.3.4. Experimental Evaluation . 116

6.4. Merging Normal Distributions 119

6.4.1. Merging Entities by Gaussian Mixture Reduction 120

6.4.2. Experimental Evaluation . 121

6.5. Assumed Density Merging . 124

6.5.1. Algorithm Overview . 125

6.5.2. Time Points for Merging . 126

6.5.3. Exploiting Temporal Structure 127

6.5.4. Experimental Evaluation . 127

6.6. Conclusion & Future Work . 130

94

6.1. Problem Statement

Counter Table Sink Counter Table Sink

Counter Table Sink

Counter Table Sink

split on

split on

split on

split on

Counter Table Sink

Counter Table Sink

Counter Table Sink

Counter Table Sink

Counter Table Sink

Counter Table Sink

Counter Table Sink

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 6.1.: Example of the grounding problem in the kitchen scenario: Repeatedly apply-
ing splitting operations leads to a complete grounding over time, so that the
efficiency that should be provided by the lifted representation vanishes.

6.1. Problem Statement

We start by showing an example of the grounding problem, where the representational com-
plexity of the distribution grows over time.

Example 34. Consider the kitchen scenario discussed in Section 4.5.1. One of the precon-
dition of the action “put the pot on the stove” is that the person holds the pot in their hand
(and not some other object). Thus, when the other preconditions of that action are satisfied,
the action requires a split on the constraint e.N == Pot. Similarly, the drink action requires
a split on e.N == Glass, filling the cooked dish on the plate with the spoon requires a split
on e.N == Spoon, and so on. Thus, over time, the lifted representation degenerates to the
ground representation.

The same behavior can arise due to observations: For example, we can reasonably assume
that the wearable sensor data yt depends on the type of object that is handled by the
subject at time t (as different objects might be associated with distinct movements). Thus,
the observation likelihood p(yt | lt) requires a split of lt to determine which specific object is
handled in lt.

Figure 6.1 illustrates the problem: Each time a split is performed, the number of states
increases, until finally, the states are completely ground and thus, inference in the lifted

95

6. Lifted Marginal Filtering in Asymmetrical Models

representation becomes as inefficient as ground inference. This behavior could be seen em-
pirically in Section 4.5, where in the Kitchen scenario, the number of required lifted states
coincided with the number of required ground states. Such asymmetries have been identified
as the major challenge for lifted inference methods in general, and methods to handle them
efficiently is regarded as vitally important for the usefulness of lifted inference [104].

Therefore, in this section, we are concerned with the following question: How can we
(approximately) retain a lifted representation, i.e. how can we find a representation of the
distribution with fewer lifted states, that is approximately (or even exactly) identical to the
original distribution?

More precisely, given a set of lifted states L and a categorical distribution p(l) over the
states in L, find a new set L′ of lifted states with distribution p(l′), such that |L′| < |L| and

∑

l∈L

p(l) p(X | l) ≃
∑

l′∈L′

p(l′) p(X | l′). (6.1)

We call this process merging. Depending on the merging strategy, the equality holds either
exactly or approximately.

Related Work In the context of lifted probabilistic inference, methods for retaining a com-
pact representation have been devised [233, 203]. They work by identifying (approximate)
symmetries (graph automorphisms) in the graphical model, e.g. by using color passing algo-
rithms [108], or low-rank matrix approximations [225].

For Bayesian filtering, only few merging methods have been devised. For the relational
Kalman filter, a method has been proposed that regroups Gaussian potentials that have
been split by averaging their covariance matrices [39]. For the LDJT algorithm, a merging
approach has been proposed that restores a lifted representation by identifying similar factors
by density-based clustering and cosine distance function (making use of the intuition that
factors that are scaled differently can still be similar) [72].

These methods work on a (relational) graphical model representation of the distribution,
e.g. a parfactor graph. As discussed in Section 3.3, systems with MRS dynamics cannot
easily be modeled as a graphical model. Specifically, graphical models cannot directly handle
changing numbers of entities, due to the resulting latent infinite state space. Additionally,
existing merging algorithms are concerned with merging parfactors of the joint distribution.
In LiMa, however, the distribution is a mixture, i.e. a sum of the component distributions
described by each lifted state (see Equation 4.11). The goal here is not to merge factors,
but mixture components (states). Thus, the assumptions made by existing methods do not
hold for LiMa, and therefore they cannot be used in a straightforward way here. Still, the
high-level strategy of the merging algorithms presented here (identifying similar states by
clustering, and then replacing states by cluster centers) is motivated by existing merging
algorithms.

Instead, the merging methods discussed here are more closely related to mixture sim-
plification. Most approaches in this area rely on the fact that mixture components are
continuous distributions, e.g. Gaussian mixtures. For example, Runnalls [181] proposes a
method that iteratively merges pairs of Gaussian components into a single component with
minimal Kullback-Leibler divergence to the original components. Other appraches work by
fitting a smooth distributions that best approximate a set of mixture components [243], or
by using variational methods to obtain a reduced mixture [239]. As we are concerned with a

96

6.2. Merging Similar States

Figure 6.2.: Intuition of the different approaches for merging. Each rectangle denotes a
lifted state, so that the area of the rectangle corresponds to the region of that
lifted state. Left: The lifted states have approximately identical region, so that
they can be approximated by a single lifted state. Right: The lifted states have
disjoint regions, but complement each other in a way that the overall distribution
can be represented by a single lifted state.

discrete distribution here (the distribution over ground states), these methods can also not
be applied directly.

Outline In this chapter, we present a number of different merging approaches. We start
with two complementary approaches that both work by identifying subsets G ⊆ L that can
be represented by a single lifted state lG. The intuition on both approaches is shown in
Figure 6.2. The first approach, merge-similar (Section 6.2), identifies sets G where all
l ∈ G represent (approximately) the same distribution over ground states p(X | l), such that
they can be approximated by a single lifted state lG. The other approach, merge-disjoint
(Section 6.3), identifies sets G where the regions of all states are pairwise disjoint, but they
complement each other in such a way that they can be represented by a single lifted state.

Afterwards, we consider the merging problem from a different angle: The idea is to look at
each individual state l = (s, γ), and reduce the number of different entity structures in s. By
reducing the number of entity structures, the number of action instances, thus the number of
AMCAs, and thus the number of posterior states is reduced. Furthermore, this way, multiple
lifted states can be mapped to the same lifted state, such that they can be merged trivially.
Specifically, we discuss two cases where merging of entities is possible and beneficial: (i)
When each entity encodes a conditional normal distribution (such that Gaussian mixture
model reduction methods can be employed), and (ii) when the temporal structure of the
actions allows to discard information about individuals.

6.2. Merging Similar States

First, we consider the case of lifted states l that can be merged because they describe ap-
proximately the same distribution over ground states p(X | l).

Intuitively, we can think of this procedure as analogous to Gaussian mixture reduction
[181], which can be done by identifying pairs of mixture components that describe “suffi-
ciently similar” distributions and thus can be approximated by a single component. Here,
the lifted state take the role of the mixture components, and the goal is to identify groups of
states which describe approximately the same distribution over ground states, and thus can
be replaced by a single state. We propose to identify these groups by clustering, so that the
overall merging algorithm consists of the following steps:

(i) Compute pairwise distances of the distributions p(X | l) for all l ∈ L,
(ii) Identify groups G of lifted states that afford a merge (by clustering), and

97

6. Lifted Marginal Filtering in Asymmetrical Models

(iii) Compute a single representative state lG for each group G.
In the following, we assume that all factors in γ are multinomial distributions, (the dis-

tribution that describes drawing multiple values from an urn with replacement), because
two properties of multinomial distributions will be required later: A mixture of multinomial
distributions is again a multinomial distributions, and multiple consecutive draws from an
urn with replacement are independent.
The remainder of this section is structured as follows. We start by showing how the dis-

tances between distributions p(X | l), i.e. step (i) above, can be computed efficiently, without
complete grounding (Section 6.2.1), and how the representative lG for a group G of lifted
states, i.e. step (iii), can be computed (Section 6.2.2). Afterwards, in Section 6.2.3, we gen-
eralize this method to cases where the states in G do not agree in their distribution types:
This way, the methods cannot only recover a previously existing symmetry structure (that
is encoded in the distribution types), but can discover new symmetry structures that arise
from the system dynamics. Finally, empirical results are presented in Section 6.2.4, that
show that this merging procedure can lead to a substantially smaller error than pruning (as
typically done in the marginal filter) to the same number of states.

6.2.1. Divergence Measures for Lifted States

We start by discussing how the “distance” (more precisely, the divergence) between distri-
butions p(X | l1) and p(X | l2) can be computed efficiently.

Kullback-Leibler divergence The natural choice for a divergence between distributions is
the Kullback-Leibler divergence (KLD)

DKLD(p, q) = −
∑

x

p(x) log2
q(x)

p(x)
. (6.2)

Naively, we can directly compute the ground distributions p(X | l1) and p(X | l2) (via Equa-
tion 4.10 or by repeated splitting), and then compute the KLD of these distributions, as
illustrated by the following example.

Example 35. Consider the states l1 = (s1, γ1) and l2 = (s2, γ2) with

s1 = J 1 〈N: N1〉, 1 〈N: N2〉 K, γ1 = 〈N1: M(0.8A, 0.2B),N2: M(0.1A, 0.9B)〉

s2 = J 1 〈N: N1〉, 1 〈N: N2〉 K, γ2 = 〈N1: M(0.7A, 0.3B),N2: M(0.5A, 0.5B)〉

The states describe the following distribution over ground states (which can be seen by
repeated splitting, or by Equation 4.10):

x p(x | l1) p(x | l2)

J 1 〈NN1
: A〉, 1 〈NN2

: A〉 K 0.8 ∗ 0.1 0.7 ∗ 0.5
J 1 〈NN1

: A〉, 1 〈NN2
: B〉 K 0.8 ∗ 0.9 0.7 ∗ 0.5

J 1 〈NN1
: B〉, 1 〈NN2

: A〉 K 0.2 ∗ 0.1 0.3 ∗ 0.5
J 1 〈NN1

: B〉, 1 〈NN2
: B〉 K 0.2 ∗ 0.9 0.3 ∗ 0.5

Using Equation 6.2, the KLD between p(x | l1) and p(x | l2) is DKLD = 0.568.

98

6.2. Merging Similar States

Computing the divergence directly in this way is highly inefficient, as it requires to ground
both states completely.

Fortunately, the KLD is additive for distributions that factorize into independent factors.
Specifically, when p factorizes into p(x1, x2) = p1(x1) p2(x2) and q factorizes into q(x1, x2) =
q1(x1) q2(x2), the KLD between p and q is

DKLD(p, q) = DKLD(p1, q1) +DKLD(p2, q2). (6.3)

Furthermore, recall from Equations 4.9 and 4.10 that the distribution p(x | l) is a product
over the representations in γ (times an indicator function for the structure):

p(x | s, γ) = 1(sx = x)
∏

〈d:ρ〉∈γ

pρ(v
(d) | s), (6.4)

where φ(x) = (sx,v).
This fact can be used to decompose the KLD between lifted states. First, if l1 and l2 have

different structures s1 and s2, the regions (the sets of groundings) of l1 and l2 are disjoint,
and thus, the KLD is infinite1. When the structures are identical, the additivity of the
KLD for factorized distributions can be exploited, so that the KLD between states can be
computed as follows:

DKLD(l1, l2) =

{∑

d∈dom(γ1)
DKLD(pγ1(d), pγ2(d)) if s1 = s2

∞ otherwise
(6.5)

Note that this expression does not require complete grounding, but is linear in the number
of distribution representations in l1 and l2 (assuming that the KLD between factors can be
computed in constant time).

Jensen-Shannon divergence Ideally, the divergence between states should be symmetric
(i.e. D(l1, l2) = D(l2, l1)), because there is no preference for either l1 or l2 – none of them
is the “true” distribution. A symmetrical divergence derived from the KLD is the Jensen-
Shannon divergence (JSD)

DJSD(p, q) =
1

2
DKLD(p,m) +

1

2
DKLD(q,m), (6.6)

where m = 1
2 (p+ q). Unfortunately, additivity for independent factors does not hold for the

JSD – in general, even when p and q factorize into independent components, this does not
need to be the case for m. Here, we simply assume additivity of the JSD2. This will induce
an error, but is empirically still a useful divergence measure (as shown in the experimental
evaluation in Section 6.2.4). Under this assumption, the JSD of lifted states l1 and l2 is

DJSD(l1, l2) =

{∑

d∈dom(γ1)
DJSD(pγ1(d), pγ2(d)) if s1 = s2

1 otherwise
(6.7)

Again, the divergence is maximal when s1 6= s2, because l1 and l2 do not share any groundings
in this case.
1Later, in Section 6.2.3, we will relax this condition, allowing merging of states that do not have identical
structure.

2Another option would be to define m = 1
4
(p1 + q1)(p2 + q2) [241].

99

6. Lifted Marginal Filtering in Asymmetrical Models

Example 36. Consider the states l1 and l2 shown in Example 35. The true JSD of the ground
distributions, according to Equation 6.6, is DJSD(p(X | l1), p(X | l2)) = 0.1547. Under the
assumption that the JSD is additive for independent factors – using Equation 6.7 – the JSD
becomes DJSD(l1, l2) = DJSD(pγ1(N1), pγ2(N1)) +DJSD(pγ1(N2), pγ2(N2)) = 0.1565.

6.2.2. Computing Merged States

In the previous section, we showed how divergences between lifted states can be computed
efficiently. The next goal is to identify “sufficiently similar” states regarding this divergence,
by using a clustering algorithm. Specifically, we propose to use DBSCAN [63], a density-
based clustering algorithm. In principle, any clustering algorithm could be used for this step.
We choose a density-based clustering approach here, as this way, we do not need to specify
the number of clusters in advance and do not need to make a-priori assumptions about the
shape of the clusters.
For each cluster G of lifted states, a single representative lG needs to be computed, as

described next. The underlying intuition is that each state l ∈ G is a mixture component of
the ground distribution p(x |G), and the goal is to simplify the mixture, by reducing it to a
single component lG. More specifically, according to Equations 4.9 and 4.10, the distribution
p(x |G) is given by

p(x |G) =
∑

l=(s,γ)∈G

p(l)

p(G)
1(sx = sG)

∏

〈d:ρ〉∈γ

pρ(v
(d) | s), (6.8)

where φ(x) = (sx,v) and p(G) =
∑

l∈G p(l).
To see how lG can be computed, assume that the states l ∈ G are exactly identical (i.e. (i)

they have the same structure sG, and (ii) distribution representations in γ are identical). This
allows us to rewrite the expression for p(x |G) above so that we can read off an expression
for lG directly, which we will then also use for the case where the state l ∈ G are not exactly
identical.
Due to assumption (i), the factor 1(sx = sG) can be moved in front of the sum in Equation

6.8. Furthermore, due to assumption (ii), the factors pρ(v
(d) | s) do not depend on the

structure s and have representations drawn from γ, but only on the mutual structure sG, with
representations drawn from a mutual context γG. Thus, the RVs v(d) are all conditionally
independent (given sG), i.e. the sum and the products can be switched:

p(x |G) = 1(sx = sG)
∏

〈d:ρ〉∈γG

∑

l=(s,γ)∈G

p(l)

p(G)
pρ(v

(d) | sG) (6.9)

When the factors in γ are slightly different (instead of exactly identical), this independence
holds only approximately.

The interesting observation here is that the expression in Equation 6.9 exactly describes
the distribution induced by a single lifted state (see Equation 6.4), where each factor has the
form

∑

l=(s,γ)∈G

p(l)

p(G)
pρ(v

(d) | sG). (6.10)

This means the distribution p(x |G) can be represented by a single lifted state, lG = (sG, γG),
where sG is the structure of any of the states in G and the context contains representations
of the factors shown in Equation 6.10.

100

6.2. Merging Similar States

The remaining question is how the mixture for each factor of lG shown in Equation 6.10
can be represented by a single parametric representation. In general, this will require ap-
proximations, e.g. when attempting to represent a mixture of normal distributions by a
single normal. For the multinomial distributions considered here, however, this is possible
exactly, because a mixture of multinomials is again a multinomial. The overall procedure is
illustrated in the following example.

Example 37. Consider the states l1 = (s1, γ1) and l2 = (s2, γ2) from Example 35 with

s1 = J 1 〈N: N1〉, 1 〈N: N2〉 K, γ1 = 〈N1: M(0.8A, 0.2B),N2: M(0.1A, 0.9B)〉

s2 = J 1 〈N: N1〉, 1 〈N: N2〉 K, γ2 = 〈N1: M(0.7A, 0.3B),N2: M(0.5A, 0.5B)〉

and p(l1) = 0.1, p(l2) = 0.3. Merging these states as outlined above leads to the new state
lG = (sG, γG) with

sG = J 1 〈N: N1〉, 1 〈N: N2〉 K, γG = 〈N1: M(0.725A, 0.275B),N2: M(0.4A, 0.6B)〉,

For example, the factor γG(N1) is a mixture of the factors γ1(N1) and γ2(N1) with mixture
weights 0.1/0.4 = 0.25 and 0.3/0.4 = 0.75. The probability of lG is p(lG) = 0.1 + 0.3 = 0.4.

To summarize, computing a representative for a group G is simple, when the structures of
the states in G are identical: For each distribution type, we simply approximate the mixture
of the corresponding factors by a single factor. This amounts to making an additional
independence assumption: Instead of just assuming that the factors in γ are independent
given the state l, we assume that the factors of all states l ∈ G are independent (given G).

6.2.3. Handling Different Distribution Types

Now, we draw our attention to the case where the structures of the states in G are not
identical. Specifically, we consider the case where the structures are only identical up to
renaming of distribution types, as illustrated by the following example.

Example 38. Consider the states l1 = (s1, γ1) and l2 = (s2, γ2) with

s1 = J 1 〈N: N1〉, 1 〈N: N2〉 K, γ1 = 〈N1: M(0.8A, 0.2B),N2: M(0.1A, 0.9B)〉

s2 = J 1 〈N: NX〉, 1 〈N: NY〉 K, γ2 = 〈NX: M(0.7A, 0.3B),NY: M(0.5A, 0.5B)〉

The structures s1 and s2 are not identical. Therefore, l1 and l2 do not share any groundings,
DJSD(l1, l2) = 1, and the states cannot be merged by the procedure outlined above.

The underlying intuition is that the distribution types carry information about the original
factor structure – when two factors in different states have the same type, they originated
from a split. Thus, by merging states with identical structures, we recover symmetries that
were previously present: States that originated form the same state are merged back together.

In this section, we go beyond this viewpoint: Even when factors have different types, but
are highly similar (i.e. have a low divergence), it might make sense to merge the corresponding
states. This way, we do not only recover symmetries, but discover symmetries that were not
originally present in the distribution, but that arose due to the system dynamics.

101

6. Lifted Marginal Filtering in Asymmetrical Models

Example 39. Consider the states l1 and l2 from Example 38. When renaming the distri-
bution types in l2 (NX as N1 and NY as N2), the structures of l1 and l2 become identical,
and the states can be merged by the method outlined above.

More generally, given two states l1 and l2 that have identical structures up to renaming of
distribution types, the divergence of l1 and l2 can be defined via a matching that associates
the types from l1 with the types from l2.

The following concepts are described easiest when we assume that the representations in
γ all represent univariate distributions, as in Example 38 – this way, it is guaranteed that
factors that are later compared or merged always have the same arity. For the multinomial
distributions considered here, this is not an actual restriction, as multiple consecutive draws
from an urn with replacement (as described by a multinomial distribution) are independent
anyways, so that multiple draws from a multinomial can be rewritten as single draws from
multiple multinomials. For example, the state l3 = (s3, γ3) with

s3 = J 2 〈N: N1〉, 1 〈N: N2〉, K, γ3 = 〈N1: M(0.8A, 0.2B),N2: M(0.1A, 0.9B)〉,

can be rewritten as l′3 = (s′3, γ
′
3) where

s′3 = J 1 〈N: N1〉, 1 〈N: N
′
1〉, 1 〈N: N2〉 K

γ′3 = 〈N1: M(0.8A, 0.2B),N′
1
: M(0.8A, 0.2B),N3: M(0.1A, 0.9B)〉.

Therefore, in the following, we assume that all factors in γ are univariate. Next, we can
introduce matchings of states l1 and l2, that associate each distribution type of l1 with
exactly one distribution type of l2, and vice versa.

Definition 20. [matching] Let T1 and T2 be two sets with |T1| = |T2|. We call a set of pairs
m ⊆ T1 × T2 a matching of T1 and T2, when

• all elements from T1 are used in m, i.e.
⋃

(t1,t2)∈m
t1 = T1,

• all elements from T2 are used in m, i.e.
⋃

(t1,t2)∈m
t2 = T2, and

• no element form T1 or T2 is used more than once, i.e. |m| = |T1| = |T2|.
The set of all matchings of T1 and T2 is denoted as M(T1, T2).

For example, the distribution types of the states l1 and l2 shown in Example 38 have two
possible matchings:

m1 = {(N1,NX), (N2,NY)}

m2 = {(N1,NY), (NX,NZ)}

It is straightforward to generalize the JSD between states, given a matching of their
distribution types:

DJSD(l1, l2 |m) =
∑

(d1,d2)∈m

DJSD(pγ1(d1), pγ2(d2)) (6.11)

For example, the JSD between the states l1 and l2 shown in Example 38 for both possible
matchings are DJSD(l1, l2 |m1) = 0.156 and DJSD(l1, l2 |m2) = 0.369.

A priori, it is not clear which matching m of l1 and l2 should be used for defining the
divergence of l1 and l2. The intuition here is that the optimal matching of the factors

102

6.2. Merging Similar States

Figure 6.3.: Example of the Procrustes divergence. Edges represent the matching of distri-
bution types; the marginal distance of the corresponding factors is shown next
to the edges. In this example, two matchings m1 and m2 are possible, leading to
different divergence values. The Procrustes divergence is the minimum of those
values.

that has minimal divergence should be used. In statistical shape analysis, this intuition is
formalized by the Procrustes distance [61]. It measures the distance between two sets of
points and is defined as the minimal distance between the sets of points, for all possible
Euclidean transformations (reflections, rotations and translations) of one of the sets. A
closely related concept is used in the multi-target tracking literature when comparing true and
estimated targets, known as optimal sub-pattern assignment distance [193]. For computing
the divergence between two lifted states, we can employ the same idea, by using the minimal
distance over all possible matchings:

D∗(l1, l2) = min
m∈M(l1,l2)

DJSD(l1, l2 |m) (6.12)

We call the distance D∗ the Procrustes divergence of l1 and l2 (see Figure 6.3 for an example).
Note that when there are n distribution types in l1 and l2, there are n! possible matchings

m. Still, an optimal matching can be obtained in O(n3) using the Hungarian algorithm
[167]. Furthermore, the divergence D∗ can be approximated in constant time by drawing a
constant number of samples from the set of all matchings M(l1, l2) and taking the minimal
divergence of all samples.
Similarly, the computation of the merged state (see Equation 6.9 above) can also be

generalized in this sense. Suppose that for a set G of states, matchings mli
l∗ between all

states li ∈ G and an arbitrary reference state l∗ ∈ G are available. Each factor p(v(d) | sG)
of lG can then be computed as

p(v(d) | sG) =
n∑

i=1

p(li)

p(G)
pγi(di)(v

(di) | si), (6.13)

where di = mli
l∗(d) is the distribution type in li that is matched with the type d of l∗.

For the matchings mli
l∗ , we use the optimal matchings (having smallest Procrustes diver-

gence), that have already been computed when calculating the Procrustes distance before.
The overall merging procedure is outlined in Algorithm 10.
In summary, in this section, we showed a method for merging states that describe almost

the same distribution over ground states. The algorithm does not only recover the original
symmetry that was present initially (and that is still encoded in the distribution types), but
can discover new symmetries that arise during inference. In the following, we evaluate this
approach empirically.

103

6. Lifted Marginal Filtering in Asymmetrical Models

Algorithm 10 Merge similar states.

1: function merge-similar(P = 〈li : pi〉
N
i=1, ǫ)

2: M ← ∅ ⊲ Set for collecting matchings
3: for each pair li, lj ∈ P do

4: Dij ,m
lj
li
← D∗(li, lj) ⊲ Procrustes divergence and optimal matching, Eq. 6.12

5: M ← M ∪ {m
lj
li
}

6: {Gk}
K
k=1 ← DBSCAN(D, ǫ) ⊲ Density-based clustering [63]

7: for each Gk do
8: lGk

← merge-group(Gk, P,M)
9: pGk

←
∑

l∈Gk
P (l)

10: return 〈lGk
: pGk

〉Kk=1

11: function merge-group(G = {li}
K
i=1, P = 〈li : pi〉

N
i=1, M)

12: l∗ ← arbitrary element from G ⊲ State used as reference for matchings
13: sG ← s∗

14: γG ← 〈〉
15: pG ←

∑

l∈G P (l)
16: for each d ∈ dom(γ∗) do ⊲ For each distribution type
17: ∀li ∈ G : di ← mli

l∗(d) ⊲ Collect distribution types to merge

18: ρ ← representation of
∑

li=(si,γi)∈G
P (li)
pG

pγi(di) ⊲ New factor, Equation 6.10
19: γG ← γG ⊙ 〈d : ρ〉

20: return (sG, γG)

6.2.4. Experimental Evaluation

Experimental Design The goal of the experimental evaluation was to (i) investigate the
error (in terms of JSD) that is induced by merging, in relation to the decrease in repre-
sentational complexity (i.e. number of maintained lifted states), and (ii) the runtime of the
merging algorithm.

Specifically, three different merging algorithms that differ only in the employed divergence
measure were compared: The (exact) JSD of the ground distribution (ground), the Pro-
crustes divergence using the optimal matching (Procrustes-all), and the Procrustes diver-
gence using only a single, random matching (Procrustes-single). Additionally, merging
was compared to pruning as an alternative method to limit the number of state representa-
tives.

We used a simple multi-agent activity recognition scenario for evaluation, where n ∈
{1, . . . , 5} entities move in 4 rooms (the number of ground states in this scenario is ex-
ponential in the number of entities). Entities can either stay at their current location
(action noop) or move to the room to the left (action left), when they are not already
at the leftmost room. We set the lifted state l = (s, γ) with s = Jn 〈L: L1〉 K and γ =
〈L: M(0.4A, 0.3B, 0.2C, 0.1D)〉 as initial state, and performed t = 10 prediction operations.
The number of states after 10 prediction operations was always greater than 1 (for example,
56 states for n = 3 entities). In this scenario, no observations were used, i.e. no update step
was performed.

The factors of the experimental design are shown in Table 6.1. For the states resulting from

104

6.2. Merging Similar States

Factor Levels Description

Entities 2, 3, 4, 5 Entities in the state
Algorithm ground, marginal-all,

marginal-single, pruning
Merging algorithm

ǫ 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2 Parameter of DBSCAN. For prun-

ing, the resulting number of poste-
rior states is used

Iteration 1, . . . , 10

Table 6.1.: Factors and levels of experimental design for evaluating the merge-similar al-
gorithm.

n = 2, 3, 4 or 5 entities, the different merging (and pruning) algorithms (with different values
of ǫ, which affects the numbers of maintained states) were applied, and the JSD between the
true and approximated distribution and runtime were assessed. For each factor configuration,
10 repetitions were performed. Afterwards, we evaluated the behavior of repeated merging
over time. This was done by performing t = 20 prediction operations and applying merging
(or pruning) at each time step.

Note that the merging procedure does not require to set the number of posterior states
a priori, whereas the pruning algorithm needs to be provided with that number. Thus, to
allow a fair comparison between merging and pruning, we proceeded as follows: For a given
state distribution p(Xt | y1:t) and ǫ value of DBSCAN, merging was performed, resulting in a
number n of posterior states. Then, pruning was performed, where the number of posterior
states was set to n.

Results Figure 6.4 (right) shows the runtime of the different merging algorithms. The
computationally most expensive operation in all cases is computing all pairwise state diver-
gences. We see that using the ground and Procrustes-all divergences quickly become
infeasible – the runtime of ground is exponential in the number of entities, and the runtime
of Procrustes-all is cubic in the number of entities. The runtime of Procrustes-single,
on the other hand, is constant.

Next, we investigate the size of the error that is induced by merging in comparison to
the size of the error induced by pruning. Figure 6.4 (left) shows the ground JSD between
a merged (or pruned) distribution and the original (true) distribution, in relation to the
number of allowed posterior states, for a situation with 56 prior states (resulting from 10
prediction steps from an initial state with 3 entities). In general, allowing fewer posterior
states naturally leads to a larger error, and allowing 56 states (i.e. the number of states
to represent the posterior exactly) leads to a JSD of 0. For a given number of allowed
posterior states, merging achieves a lower JSD than pruning (note the logarithmic scale of
the plot). Also note that the pruning algorithm is non-deterministic (as the retained states
are sampled), whereas the merging algorithm is deterministic (given the same lifted states
and ǫ, the merge result is fixed).

We can also see that the JSD of the true and the merged distribution does not depend
on the chosen divergence measures (Procrustes-all or Procrustes-single). Thus, it
is sufficient to compute the pairwise state divergences via Procrustes-single (which is

105

6. Lifted Marginal Filtering in Asymmetrical Models

●

●

1e−04

1e−03

1e−02

1e−01

0 20 40

Posterior states

J
S

D

●

●

0.0

0.5

1.0

2 3 4 5

Entities

ru
n
ti
m

e
 (

s
)

algorithm ● merge−ground merge−Procrustes−all merge−Procrustes−single pruning

Figure 6.4.: Evaluation of the merge-similar algorithm. Left: Tradeoff between error (in
terms of JSD) and representational complexity of the distribution (i.e. the num-
ber of lifted states) for a distribution of 56 states (with n = 3 entities). All
merging algorithms provide the same approximation quality, and pruning leads
to a higher error for a given representational complexity. Right: Overall run-
time of the different merging algorithms with respect to number of entities in
the state (which has an exponential effect on the number of states with nonzero
probability).

fastest), and still achieve a better approximation quality than by pruning.

Figure 6.5 shows the development of the JSD between the original and the approximated
distribution over time when either performing pruning (right) or merging based on the
Procrustes-single divergence. The overall error does not grow indefinitely, which is a
direct consequence of the contraction theorem of Boyen and Koller [25], which states that
propagating two distributions p and q through a transition model leads to a constant-factor
decrease in their KLD. Thus, the error between the true distribution p and the approximated
distribution q cannot grow indefinitely.

The plot shows that even when merging or pruning are applied repeatedly during filtering,
merging achieves a lower JSD than pruning for a given representational complexity.

Discussion & Summary In this experiment, limiting the number of states by merging lead
to a lower approximation error than limiting the number of states by pruning. Intuitively,
this is not surprising: Merging is a smooth approximation of the distribution (by averaging
similar states), whereas pruning is a hard approximation, that works by setting some of the
probabilities to zero. Thus, pruning can actually be usefully applied and can be performed
in a computationally feasible way.

Here, we only provided a merging procedure for the case of multinomial distributions, be-
cause a mixture of multinomials can be trivially collapsed into a single multinomial. For other
distributions (e.g. normal distributions), this is not as straightforward, and approximations
would need to be performed.

Furthermore, we only discussed the case of merging states that describe (approximately)
identical ground distributions. However, the only assumption that was necessary to rewrite
the distribution as shown in Equation 6.9 (and thus to allow merging) is that the factors
are conditionally independent, given the group G. Here, this independence holds because

106

6.3. Merging Disjoint States

merging pruning

5 10 15 20 5 10 15 20

0.00

0.05

0.10

0.15

0.20

t

J
S

D

eps

0.25

0.5

0.75

1

1.5

2

Figure 6.5.: Evaluation of the merge-similar algorithm: Development of JSD between orig-
inal distribution and approximated distribution over time, when repeatedly per-
forming approximation operations (merging or pruning) at each time step during
inference. Merging achieves a lower error than pruning (in terms of JSD).

the distributions p(x | l) for each state l are (approximately) identical, and for each state,
the factors are conditionally independent (given the state) by assumption. However, such
independence could also arise due to other cases. For example, the states can be “comple-
mentary” to each other, such that they can overall be represented by a single lifted state. In
the following section, we present an algorithm for exactly this case.

6.3. Merging Disjoint States

In the previous section, we considered states that could be merged because they describe
(approximately) the same ground distribution. Now, we consider an orthogonal case: A
group of states that all have pairwise disjoint regions, but can be merged because they
complement each other in such a way that they can be described by a single lifted state (see
Figure 6.2 for the intuition). Such situations arise naturally during filtering, when a state is
split, but the split asymmetry vanishes over time due to the system dynamics.
Here, we only consider the special case where all distribution representations ρ ∈ γ are hy-

pergeometric distributions with unique values. This special case is of high practical relevance,
as it is underlying all of the scenarios shown in Section 4.5.

Example 40. Consider the three lifted states l1 = (s1, γ1), l2 = (s2, γ2) and l3 = (s3, γ3)
with

s1 = J 1〈N: A,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ1 = 〈N: U(B,C)〉

s2 = J 1〈N: B,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ2 = 〈N: U(A,C)〉

s3 = J 1〈N: C,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ3 = 〈N: U(A,B)〉

and p(l1) = p(l2) = p(l3) = 1/3, shown in Figure 6.6. The same distribution over ground
states is also described by the single lifted state l∗ = (s∗, γ∗) with

s∗ = J 1〈N: N,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ∗ = 〈N: U(A,B,C)〉

and p(l∗) = 1. Thus, the uniform distribution of states l1, l2 and l3 can be replaced by the
distribution p(l∗) = 1.

107

6. Lifted Marginal Filtering in Asymmetrical Models

1/3

merge

1/3 1/3

1

Figure 6.6.: Three states that can be merged exactly into a single lifted state, as discussed
in Example 40.

A Note on Distribution Types Note that in the example above, the state l∗ only describes
the same distribution as l1, l2 and l3 when ignoring the distribution types of ground states.
When instead taking the distribution types into account, l∗ does not share any groundings
with l1, l2 or l3. For example, the ground state

x1 = J 1〈N: AA,L: 11〉, 1〈N: BN,L: 22〉, 1〈N: CN,L: 33〉 K

of l1 and the ground state

x∗ = J 1〈N: AN,L: 11〉, 1〈N: BN,L: 22〉, 1〈N: CN,L: 33〉 K

of l∗ are different, because they have different distribution types. From this viewpoint,
merging l1, l2 and l3 into l∗ is not sensible, as this changes the ground distribution (more
specifically, the distribution types of ground states) completely.
Still, we would like to be able to merge l1, l2 and l3: If splitting l∗ resulted in a uniform

distribution over l1, l2 and l3, merging (conceptually the inverse operation to splitting) should
be able to recover l∗ from the uniform distribution.

The solution here is to use the same strategy as in Section 6.2.3, by defining equality of
ground states so that the distribution types are ignored: Ground states are considered equal
when they are identical under an arbitrary renaming of distribution types. This convention
allows to replace a uniform distribution over l1, l2 and l3 by l∗ without affecting the ground
distribution.

Structure of this Section We consider three different cases of increasing generality.
In Section 6.2, we start with the simple case where we a set M of states and a state l∗ are

given, and the goal is to test whether the current distribution over the states in M is exactly
mergeable into l∗. This case serves as the basis for the following more general cases.
In Section 6.3.2, we consider the case where the set of states M that we want to merge is

not given a priori, but needs to be identified from a larger set P , i.e. only a subset of states
M ⊆ P can be merged. We show an algorithm that iteratively builds a merge candidate set
M , until M can be merged exactly into l∗ (or until all states in P have been examined and
M cannot be merged).

108

6.3. Merging Disjoint States

Finally, in Section 6.3.3, we generalize the merging algorithm further, by considering the
case where the merge result l∗ is also not given in advance. The final outcome of this section
is a greedy merge algorithm which identifies subsets M and merge results l∗ into which M
can be merged. The algorithm is exact (in the sense that the merge results describe exactly
the same ground distribution as the states before merging), but is not guaranteed to find
the smallest possible representation. Using this algorithm, we are not limited to recovering
known symmetries (i.e. known states l∗), but can discover new symmetries that allow for a
more compact representation.

6.3.1. M and l∗ known: Testing for Mergeability

Problem Statement We start with a simple case: Given a map M that maps states l to
their probability p(l) and a state l∗ with probability p∗, decide whether M can be merged
exactly into l∗, i.e. whether the distribution described by the states in M is identical to the
distribution described by l∗. More formally, the task is to decide whether for all x,

p∗ p(x | l∗) =
∑

l∈dom(M)

p(l) p(x | l). (6.14)

If this is the case, all states in M can be replaced by l∗. A naive algorithm to test this
property would test the equality individually for all states x, which is clearly infeasible.
In this section, we show how this property can be tested on the structural level (i.e. without

iterating over all ground states). To do so, we need to make two restrictions on the states in
M and the state l∗:

(i) For all l ∈ dom(M)∪ l∗, we assume that the context of l only contains representations
of hypergeometric distributions with unique values3. Although this assumption seems
to be a strong restriction, it is satisfied for many scenarios of practical relevance, e.g.
all of the scenarios presented in Section 4.5. This implies that the distribution over
ground states described by l is uniform, so that p(x | l) = |region(l)|−1.

(ii) Furthermore, we only consider the case where all states l ∈ dom(M) have pairwise
disjoint regions. This requirement can simply be satisfied by the algorithm described
in Section 4.4.3.

Simplifying the Mergeability Conditions Under these assumptions, testing whether Equa-
tion 6.14 holds can be done more efficiently, based on a simple observation: Suppose we have
n sets S1, . . . , Sn and a set S. When the sets S1, . . . , Sn are pairwise disjoint, they are all
subsets of S (i.e. ∀Si : Si ⊆ S), and have the same overall number of elements as S (i.e.
∑

|Si| = |S|), then the sets Si are partitions of S and thus
⊎

i Si = S.
This fact can be used to efficiently test for mergeability, as formalized in the following

theorem.

Theorem 1. Let M = 〈li : pi〉
n
i=1 be a map of lifted states to probabilities, and let l∗ be a

lifted state with probability p∗. Let the regions of all l ∈ dom(M) be pairwise disjoint, and
for all l ∈ dom(M), let p(x | l) – as well as p(x | l∗) – be uniform. If

3Note that this also includes singleton distributions, i.e. constants, that are a special case of hypergeometric
distributions where n = N = 1.

109

6. Lifted Marginal Filtering in Asymmetrical Models

(a) ∀l ∈ dom(M) : region(l) ⊆ region(l∗),

(b)
∑

l∈dom(M) |region(l)| = |region(l∗)|, and

(c) ∀l ∈ dom(M) : p∗ |region(l∗)|−1 = M(l) |region(l)|−1,

then
p∗ p(x | l∗) =

∑

l∈dom(M)

M(l) p(x | l). (6.15)

Proof. Select an arbitrary x ∈ region(l∗). There can be at most one l ∈ dom(M) with
x ∈ region(l), as all l ∈ dom(M) have pairwise disjoint regions. From the disjointness of
regions of all l ∈ dom(l), as well as conditions (a) and (b), it follows that region(l∗) =
⊎

l∈dom(M) region(l). Thus, there must be at least one l ∈ dom(M) with x ∈ region(l).
Therefore, there is exactly one l ∈ dom(M) with x ∈ region(l).

Let l̂ ∈ dom(M) be the state with x ∈ region(l̂). Thus, to show that Equation 6.15 is
satisfied, it is sufficient to show that

p∗ p(x | l∗) = M(l̂) p(x | l̂).

As p(x | l̂) and p(x | l∗) are uniform, p(x | l̂) = |region(l̂)|−1 and p(x | l∗) = |region(l∗)|−1.
Thus, using condition (c),

p∗ p(x | l∗) = p∗ |region(l∗)|−1 = M(l) |region(l̂)|−1 = M(l̂) p(x | l̂).

Example 41. Consider the three states l1, l2 and l3 (that each have a probability of 1/3) and
the state l∗ with probability 1 from Example 40. One can easily check that the conditions (a),
(b) and (c) are satisfied for M = 〈l1 : 1/3, l2 : 1/3, l3 : 1/3〉 and l∗: The state l∗ represents
six ground states that each have a probability of 1/6, and each of the lifted states l1, l2 and
l3 represents exactly two of those ground states. Thus, the states l1, l2 and l3 can be merged
exactly into l∗ (as already shown above in Example 40).

Of course, we are interested in a method to check conditions (a), (b) and (c) without exam-
ining all ground states, which requires efficient algorithms for the following two operations:
Computing the cardinality of the region of a lifted state, and testing for subset relations
among regions.
The latter task can be solved by adapting the algorithm is-disjoint described in Appendix

F: The algorithm tests whether region(l1) ∩ region(l2) 6= ∅, by constructing a matching
m of l1 and l2, such that ∀(e1, e2) ∈ m : regionl1(e1) ∩ regionl2(e2) 6= ∅. By adapting
this condition to ∀(e1, e2) ∈ m : regionl1(e1) ⊆ regionl2(e2), the algorithm tests whether
region(l1) ⊆ region(l2).

Cardinality of a Region The remaining task for which we need to provide an efficient
algorithm is computing the cardinality of the region of a given lifted state l = (s, γ). Here,
we again make use of the assumption that the context γ only contains hypergeometric dis-
tributions where all values are unique. In other words, for each distribution type d, the

representation ρ = γ(d) is a uniform distribution over permutations of values v
(d)
1 , . . . , v

(d)
k .

In this case, computing the cardinality of a region is a simple combinatorial problem.
Here, we make use of the notion of canonical value sequences introduced in Section 4.3.2:

The number of ground states with non-zero probability in l is the product of the number

110

6.3. Merging Disjoint States

Algorithm 11 Test whether states in M can be merged exactly into l∗.

1: function mergeable(M = 〈li : pi〉
n
i=1, l

∗)
2: p∗ ←

∑

l∈M M(l)
3: if

∑

l∈dom(M) |region(l)| 6= |region(l∗)|: return false
4: for each l ∈ dom(M) do
5: if region(l) 6⊆ region(l∗): return false
6: if M(l) |region(l)|−1 6= p∗ |region(l∗)|−1 return false

7: return true

of canonical value sequences of all distributions ρ ∈ ran(γ) (each combination of canonical
value sequences corresponds to exactly one ground state of l). Thus, we only need to count
the number of canonical value sequences for each distribution type d, which was already
derived for the general case in Section 4.3.2.
For the case considered here, computing this number is straightforward: A uniform distri-

bution over permutations of v
(d)
1 , . . . , v

(d)
k has a support of k!, i.e. k! distinct value sequences

can be drawn from the distribution. The number of those sequences that are mapped to
the same canonical sequence (i.e. that result in the same ground state when inserting into
the entities in s) is exactly the correction factor α(d) introduced in Section 4.3.2: When
k1, . . . , kn are the multiplicities of entity structures in s referencing d, the correction factor
(for hypergeometric distributions with unique values) is α(d) =

∏n
i=1 ki.

Thus, the number of canonical value sequences of the distribution with type d is

ms(d) = k!/α(d) = k!/
n∏

i=1

ki =

(
k

k1 . . . kn

)

.

Overall, the number of ground states with non-zero probability in l is

|region(l)| =
∏

d∈dom(γ)

ms(d).

Example 42. Consider the lifted state l = (s, γ) with

s = J 2〈N: N1,L: 1〉, 1〈N: N1,L: 2〉, 2〈N: N2,L: 3〉 K, γ = 〈N1: U(A,B,C),N2: U(D,E)〉.

Here, ms(N1) = 3!/(2! ∗ 1!) = 3, ms(N2) = 2!/2! = 1 and thus |region(l)| = 3. The
correctness can be easily checked by enumerating the three ground states in the region of l.

Summary In summary, we showed that we can efficiently check whether a given map M
(of states to probabilities) describes the same distribution over ground states than a given
state l∗ with probability p∗. This was done by only considering uniform distributions over
ground states, and checking whether the regions of all l ∈ dom(l) partition region(l∗). In
this case, we call M mergeable into l∗. The algorithm for this task is shown in Algorithm 11.

6.3.2. l∗ Known, M Unknown: Identifying Mergeable Subsets

Next, we consider the case where the states M that we want to merge are not given a priori,
but need to be identified from a larger map P . For now, we assume that the merge result

111

6. Lifted Marginal Filtering in Asymmetrical Models

Algorithm 12 For a merge candidate M (w.r.t. l∗) and a new state l with probability p,
test whether M ⊕ 〈l : p〉 is still a merge candidate w.r.t. l∗.

1: function is-candidate(M = 〈li : pi〉
n
i=1, l, p, l

∗)
2: if region(l) 6⊆ region(l∗): return false
3: Select arbitrary li ∈ dom(M)
4: if p |region(l)|−1 6= M(li) |region(li)|

−1 return false
5: return true

l∗ is still given. The goal is then to identify a map M with dom(M) ⊆ dom(P) that is
mergeable into l∗.

In principle, this is straightforward: We simply collect in M all states l that satisfy condi-
tions (a) and (c) for mergeability (Theorem 1), i.e. where region(l) ⊆ region(l∗) and where

p∗ |region(l∗)|−1 = P (l) |region(l)|−1.

When the states furthermore satisfy condition (b), i.e. when

∑

l∈dom(M)

|region(l)| = |region(l∗)|,

then M is mergeable into l∗.

Merge Candidates More formally, we call a map M a merge candidate of l∗, when con-
ditions (a) and (c) from Theorem 1 are satisfied. When M is a merge candidate, there is
a completion C so that M ⊕ C is mergeable into l∗. This is easy to see: The completion
C needs to satisfy conditions (a) and (c) of Theorem 1, and have groundings region(l∗) \
⋃

l∈dom(M) region(l). This way, it provides the remaining groundings so that condition (b)
from Theorem 1 is also satisfied. Such states always exist (in the worst case, each state in
C describes exactly one grounding, but are not necessarily present in P .

Example 43. Consider the states l1 = (s1, γ1), l2 = (s2, γ2) and l3 = (s3, γ3) from Example
40, where:

s1 = J 1〈N: A,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ1 = 〈N: U(B,C)〉

s2 = J 1〈N: B,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ2 = 〈N: U(A,C)〉

s3 = J 1〈N: C,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ3 = 〈N: U(A,B)〉

The map M〈l1 : 1/3, l2 : 1/3〉 is a merge candidate, which can be seen by the fact that
conditions (a) and (c) of Theorem 1 are satisfied, or by selecting C = 〈l3 : 1/3〉 and noting
that M ⊕C is mergeable. On the other hand, the map M = 〈l1 : 1/3, l2 : 1/4〉 is not a merge
candidate, as condition (c) is not satisfied.

In the context of the overall merge algorithm presented below, it is sufficient to test whether
a given merge candidate M stays a merge candidate when a new state l with probability p
is inserted into M . A procedure for testing this is shown in Algorithm 12.

112

6.3. Merging Disjoint States

Algorithm 13 Identify states M that are mergeable into given state l∗ from a given map
P , and perform the merge.

1: function merge-with-known-result(P = 〈li : pi〉
n
i=1, l

∗)
2: M ← 〈 〉
3: for i in 1, . . . , n do
4: if merge-candidate(M, li, pi, l

∗) then
5: M ← M ⊕ 〈li, pi〉
6: if mergeable(M, l∗) then
7: p∗ ←

∑

l∈M M(l)
8: return P ⊖M ⊕ 〈l∗ : p∗

9: return P

A Search Algorithm for M Based on the notion of merge candidates, the algorithm to
identify a map M that is mergeable w.r.t. l∗ from a larger map P is straightforward (see
Algorithm 13). The algorithm simply iterates over all states in P , and maintains a merge
candidate M . Each state l ∈ dom(P) that can be inserted into M so that M is still a merge
candidate is inserted, until either M can be merged (in which case the merge is directly
performed by returning P ⊖M ⊕ 〈l∗ : p∗〉), or until all states in P have been iterated and
M cannot be merged.

6.3.3. M and l∗ Unknown: A Greedy Search Algorithm

In this section, we consider the case where the merge result l∗ is also unknown a priori.
That is, the task can be stated as follows: Given a map P of states and probabilities,
identify a sub-map M of P and a state l∗, so that the states in M are mergeable into l∗.
When such a map M and a state l∗ have been identified, the merge is performed (by setting
P ′ = P ⊖M ⊕ 〈l∗ : p∗〉 and the process is iterated for the new map P ′. Overall, the goal is
to reduce the number of posterior states as much as possible.

Exhaustive Algorithm We first describe an optimal algorithm (in the sense of the smallest
number of posterior states). We assume that the distribution is given as a map P = 〈li : pi〉

n
i=1

of lifted states to probabilities. The merging algorithm performs two steps:

(i) Test each subset M of states in dom(P) for mergeability
(ii) Select the merges that are actually performed to obtain the minimal number of posterior

states.

To understand why the second step is necessary, note that each state can be involved in
multiple different merges, so that not all possible merges can be performed simultaneously.
For example, suppose that the states {l1, . . . , l4} exist, and the subsets M1 = {l1, l2}, M2 =
{l1, l3} and M3 = {l3, l4} can be merged. When M2 is merged, M1 and M3 cannot be
merged any more, as l1 (or l3) is no longer available. In this example, the minimal number of
posterior states is obtained by merging M1 as well as M3. In general, identifying the optimal
merges is an instance of the set cover problem, a classical NP-hard problem [99]. Thus,
overall, the optimal algorithm requires exponential time, both for testing mergeability for
each of the exponentially many subsets, and for solving the NP-hard problem of identifying
the optimal merges.

113

6. Lifted Marginal Filtering in Asymmetrical Models

Algorithm 14 Greedy algorithm for merging disjoint states.

1: function merge-disjoint(P = 〈li : pi〉
n
i=1)

2: if P = 〈〉: return 〈〉 ⊲ Occurs due to recursive call when we are done
3: M ← 〈l1 : p1〉 ⊲ First (or arbitrary) state in P
4: R ← merge-results(l1)
5: for i in 2, . . . , n do
6: R′ ← {l∗ | is-candidate(M, li, pi, l

∗), l∗ ∈ R} ⊲ Update merge results
7: if R′ 6= ∅ then
8: R ← R′;M ← M ⊕ 〈li : pi〉
9: if mergeable(M, l∗) for any l∗ ∈ R then

10: p∗ ←
∑

l∈M M(l)
11: P ← P ⊖M ⊕ 〈l∗ : p∗〉
12: return merge-disjoint(P) ⊲ Look for further merges

return 〈l1 : p1〉 ⊕merge-disjoint(P ⊖ 〈l1 : p1〉) ⊲ No merge was performed for l1,
try with rest

Greedy Algorithm To alleviate this hardness, we propose a greedy merge algorithm, shown
in Algorithm 14.

Conceptually, the algorithm is an extension of Algorithm 13: It performs a greedy search
procedure, iteratively building a merge candidate M , while additionally maintaining a set
R of possible merge results of M (how to find the states in R is discussed below). At step
i, the algorithm tests whether the state li ∈ dom(P) can be added to M . Specifically, it
tests which of the possible merge results of M are also merge results of M ⊕〈li : pi〉 (line 6),
and whether there is at least one remaining merge result. When this is the case, it inserts
li into M (line 8). Whenever M can be merged exactly into any state l∗ ∈ R, the merge is
performed directly (line 11), and the algorithm is recursively applied to the resulting states.

Note that this is a greedy algorithm that directly performs all merges it finds, instead of
identifying optimal merges. Furthermore, the algorithm does not test all subsets of states
in P for mergeability, but only tests all contiguous sub-sequences of the ordered sequence
l1, . . . , ln. Thus, not all possible merges are identified this way.

The algorithm has quadratic runtime with respect to the number of states (as a sequence

of n unique elements has n (n+1)
2 contiguous sub-sequences), in contrast to the exponential

runtime of the optimal algorithm. An obvious way to improve the greedy algorithm – to
identify more merges – is to repeat the algorithm multiple times, using a random shuffle of
the result of the previous run as input.

Possible Merge Results The remaining question is how line 4 of algorithm 14 can be
realized: How can we construct the set of possible merge results for a given lifted state?
Unfortunately, without additional restrictions, the size of R can be infinite: For example,
consider the state l1 = (s1, γ1) with

s1 = J 1〈N: A,L: 1〉, 1〈N: B,L: 2〉, 1〈N: C,L: 3〉 K, γ1 = 〈〉

114

6.3. Merging Disjoint States

1/3

M = {

R = { }

}

Figure 6.7.: Possible merge results for the state l shown on the upper part of the figure. Each
possible merge result is identical to l, except that two of the distributions in the
context have been combined into one.

Algorithm 15 Create possible merge results for a state l.

1: function merge-results(l = (s, γ))
2: R ← ∅
3: for each pair d1, d2 ∈ dom(γ) do ⊲ Including singleton distributions
4: ρ1 ← γ(d1), ρ2 ← γ(d2)
5: Let dr be a new distribution type
6: Let ρr be the uniform distribution over permutations of all values from ρ1 and ρ2
7: γr ← γ \ 〈d1 : ρ1, d2 : ρ2〉 ⊙ 〈dr : ρr〉
8: Let sr be identical to s, except all occurrences of d1 and d2 are replaced by dr
9: R ← R ∪ {(sr, γr)}

10: return R

and the map M = 〈l : p〉. There are infinitely many states l∗ for which M is a merge
candidate, e.g. the states l∗1 and l∗2 with

s∗1 = J 1〈N: C,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ∗1 = 〈N: U(A,B)〉

s∗2 = J 1〈N: C,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ∗2 = 〈N: U(A,B,C,D)〉

Therefore, we only consider a constrained set of possible merge results. For a given state l,
we define the possible merge results as the states that are identical to l, except that two of the
uniform distributions over permutations ρ1 and ρ2 in γ are combined into one distribution ρr,
that is a uniform distribution of permutations of values from both ρ1 and ρ2. For example,
for the state l1 above, we only consider

s∗1 = J 1〈N: N,L: 1〉, 1〈N: N,L: 2〉, 1〈N: C,L: 3〉 K, γ∗1 = 〈N: U(A,B)〉

s∗2 = J 1〈N: N,L: 1〉, 1〈N: B,L: 2〉, 1〈N: N,L: 3〉 K, γ∗3 = 〈N: U(A,C)〉

s∗3 = J 1〈N: A,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ∗3 = 〈N: U(B,C)〉

as merge results (see Figure 6.7). The algorithm that constructs this set R for a given state
l is shown in Algorithm 15.

Summary In summary, we provided a greedy merge algorithm that allows to identify
subsets of states that can be merged, as well as the corresponding merge results. All steps
of the algorithms can be performed without complete enumeration of ground states, i.e. the
algorithm can efficiently identify and perform merges. Note that the algorithm is exact (it

115

6. Lifted Marginal Filtering in Asymmetrical Models

does not change the ground distribution), but not optimal (it does not identify all possible
merges).

6.3.4. Experimental Evaluation

The goal of the experiments was to evaluate the runtime of the greedy merge algorithm – in
comparison to the exhaustive algorithm – and its ability to reduce the number of states that
are required to represent the distribution. Specifically, we assessed a version of the algorithm
where the greedy algorithm (Algorithm 14) is repeated m times, using a random shuffle of
the results of the previous run as input. As the algorithm is exact, an error between original
and merged distribution does not need to be assessed.

Experimental Design We performed experiments with two different models: First, a sim-
ple benchmark model was used to compare the exhaustive and the greedy versions of the
merge-disjoint algorithm regarding runtime and number of posterior states. Afterwards,
the algorithm was evaluated with a version of the tracking scenario described in Section
4.5.1.

Benchmark Scenario: For the synthetic benchmark scenario, a state distribution was
obtained as follows: For a state l = (s, γ) with

s = J 3〈N: N,L: X〉, 3〈N: N,L: Y 〉, 3〈N: N,L: Z〉 K, γ = 〈N: A,B,C,D,E, F,G,H, I〉),

and probability p(l) = 1, we iteratively performed k ∈ {2, 3, 4, 5, 6} splits (e.g. for k = 3, splits
on the constraints e.N == A, e.N == B and e.N == C were performed). This resulted in
sets of states of size n ∈ {9, 27, 77, 200, 450}. Each of the resulting sets can always be merged
into the original state l. For each set, we ran the greedy algorithm for m ∈ {1, 2, 5, 10}
iterations. The exhaustive algorithms was run only for n = 9 and n = 27, as it exceeded a
threshold of 600 s for larger n. For each configuration, 10 repetitions were performed, and
means of runtime and number of posterior states are reported for each configuration. N

Tracking Scenario: Additionally, we assessed the effect of the merging algorithm on
a dynamic system that is a variant of the tracking scenario introduced in Section 4.5.1.
Specifically, we assessed the number of states that are necessary when either merging is
performed after each prediction operation, or not performed. In this model, 3 agents move
around 5 rooms. The rooms follow a sequential layout, e.g. agents can move between rooms
1 and 2, but not between 1 and 3. At each timestep, each agent can either change to an
adjacent room, or stay at the current room (with a certain probability).

Each observation yt is a vector that indicates the location of each agent. Locations can
also be unobserved, denoted as “NA”. For example, when yt = (“NA”, 4, “NA”)T , the agents
A and C have not been observed, and agent B has been observed at location 4. We denote

the location of agent a as y
(a)
t . We assume that when the location is observed, it is correct in

90% of the cases, and when the location is not observed, each state is weight with a constant

normalization factor. Thus, the observation model is p(y |x) =
∏

a p(y
(a)
t |xt) with

p(y
(a)
t |xt) =







0.9 if y
(a)
t 6= “NA” and agent a is at location y

(a)
t in xt

0.1/4 if y
(a)
t 6= “NA” and agent a is not at location y

(a)
t in xt

1/5 if y
(a)
t = “NA”

(6.16)

116

6.3. Merging Disjoint States

Scenario Factor Levels Description

Benchmark n 9,27,77,200,450 Prior states
i 1,2,5,10 Iterations of merging algorithm

Tracking f 2,5,10 Frequency of identifying an agent
i 0,1,5,10 Iterations of merging algorithm

Table 6.2.: Factors and levels of experimental design for evaluating the merge-disjoint

algorithm.

●

●

0

25

50

75

0 100 200 300 400

#prior states

ru
n
ti
m

e
 (

s
)

algorithm

● exhaustive

greedy 1

greedy 2

greedy 5

greedy 10

● ● ● ●0

100

200

300

2.5 5.0 7.5 10.0

iterations

#
 p

o
s
te

ri
o
r

s
ta

te
s # prior states

● 9

27

77

200

450

Figure 6.8.: Evaluation of themerge-disjoint algorithm. Left: Runtime of the merging
algorithm with respect to number of states before merging. The runtime grows
approximately linear with the number of states. Right: Number of states after
merging, with respect to number of iterations of the algorithm. In principle,
merging into a single state is possible in all cases. The number of posterior
states decreases quickly with the number of iterations.

Observing the location of an agent leads to a split of the distribution: The observation
likelihood p(yt |xt) depends on the location of a specific agent a, i.e. each state must be split

into the situations where agent a is at location y
(a)
t , and where it is not at location y

(a)
t .

We varied the frequency f of identifying one of the agents (each 10th, 5th or 2nd time step)
and the number of iterations performed by the merging algorithm (0, 1, 5 or 10). The more
frequently the agents are identified, the more splits need to be performed and the larger is
the representational complexity of the distribution. Note that such a relatively low number
of splits (every 5th or 10th timestep) is realistic for real-world domains: In the kitchen
scenario investigated above, about 4 splits need to be performed during the approximately
100 timesteps. The factors and levels of the experimental design are shown in Table 6.2.

Results Figure 6.8 shows runtime and number of posterior states for the benchmark sce-
nario. The exhaustive algorithm quickly becomes infeasible: For n = 27 states, it has a mean
runtime of more than 10 s, and for n = 77, it exceeds the threshold of 600 s. The runtime
of the greedy algorithm grows approximately linear with the number of states, and sub-
linear with the number of iterations (later iterations can be faster, as the number of states
is already smaller and thus the number of possible merges is smaller). From 6.8 (right), we
can see that the number of posterior states decreases quickly with the number of iterations
of the algorithm, such that the greedy algorithm can efficiently reduce the representational

117

6. Lifted Marginal Filtering in Asymmetrical Models

0

50

100

5 10 15 20

t

#
 s

ta
te

s

iterations 0 1 5 10

*

ns

identification_freq: 2 identification_freq: 5 identification_freq: 10

0 1 5 10 0 1 5 10 0 1 5 10

0

50

100

150

iterations

#
 s

ta
te

s
Figure 6.9.: Evaluation of the merge-disjoint algorithm. Left: Example run of the tracking

scenario with identifying observations every 2nd timestep. Right: Overall results
for the tracking scenario, showing mean number of states for different frequencies
f of identifying observation (2, 5 or 10) and number of iterations of the greedy
merging algorithm (0, 1, 5 or 10). Stars indicate significant differences in the
number of states, using Wilcoxon signed-rank test. *: p < 0.05, **: p < 0.01,
***: p < 0.001.

complexity.
For the tracking scenario, Figure 6.9 (left) shows the number of states required to repre-

sent the filtering distribution p(xt | y1:t) over time t, when identifying observations are made
every 2nd timestep. When no merging is employed (i.e. # iterations = 0), the number of
necessary states grows quickly, as each split increases the representational complexity (until
the representation is effectively completely ground after only a few time steps). When the
greedy merging algorithm is applied, the mean (as well as the maximum) number of states
that needs to be maintained is substantially smaller.

Figure 6.9 shows the complete results for the tracking scenario. In all cases, merging can
effectively reduce the number of states that need to be maintained. Even when just one
iteration of the merging algorithm is performed, the required number of states is reduced
significantly (p < 0.001, Wilcoxon signed rank test, n = 20). Increasing the number of
merging iterations from 1 to 5 leads to a further reduction in the number of states in all
three cases (p < 0.05, Wilcoxon signed rank test, n = 20). When increasing the number
of iterations further from 5 to 10, the decrease in required states is only significant for
some of the scenarios (when identifying observations occur every 2nd or 5th timestep), but
not significant for others (when identifying observations occur every 10th timestep). This
observation indicates a saturation effect, i.e. most merges have already been identified with
5 iterations so that increasing the number of iterations further has only a small effect.

Summary & Future Work The results show that the merging algorithm described here
can be usefully employed. The number of state representatives is reduced substantially, and
thus, the algorithm allows more efficient inference – without introducing any approximation.

Here, a group of states is only merged when it can be replaced exactly by a state l∗. How-
ever, the algorithm directly lends itself to approximations, such that a merge is also performed
when Equation 6.14 holds only approximately. Specifically, approximations can be easily in-
troduced into the mergeability conditions: Condition (c) of Theorem 1 can be relaxed, such
that instead of requiring that the probability of all ground states of all l ∈ dom(M) are iden-

118

6.4. Merging Normal Distributions

1

2

1

5

2

4

40

45

50

55

−100 −90 −80 −70 −60

1

2

1

5

2

31

40

45

50

55

−100 −90 −80 −70 −60

2

5

3

2

3

40

45

50

55

−100 −90 −80 −70 −60

Figure 6.10.: Example of the approach for merging entities that consist of normal distribu-
tions, for the online multiplayer game described in Example 44. Each ellipse
denotes the location distribution of an entity (i.e. a village), the colors denote
the different owners, and the numbers denote the multiplicity of that entity.
Left: Prior game state. Middle: Game state after several conquer actions oc-
curred. Right: New game state, after merging some of the entities by Gaussian
Mixture reduction methods.

tical, we only require that their difference is not larger than some value ǫ. Similarly, condition
(b) can be relaxed, so that instead of requiring that

∑

l∈dom(M) |region(l)| = |region(l∗)|, we
only require

∑

l∈dom(M) |region(l)| − |region(l∗)| < ǫ. Evaluating such approximate methods
is a topic for future work.

Finally, another topic for future work is to generalize this merging algorithm to make it
applicable to more cases, instead of requiring that all distributions in γ are uniform distri-
butions over permutations.

6.4. Merging Normal Distributions

In this section, we consider another special case: All properties of an entity follow a singleton
distribution except for one property, that follows a (multivariate) normal distribution. An
example of a scenario for which this special case is relevant is the multiplayer online game
Travian4, which was already investigated previously as an evaluation scenario for a (ground)
Bayesian filtering algorithm [213].

Example 44. Travian is an online multiplayer strategy game consisting of a grid map.
Players own one or multiple villages located on the map. We focus on the high-level aspects
of the game, namely village ownership and attacks. Specifically, the entities of a game
state represent villages, containing owner and location information. We assume that there
is no exact location information, but the location of each village is represented by a normal
distribution5. The situation depicted in Figure 6.10 (left) is represented by the lifted state
l = (s, γ) with

s = J 4 〈P: Blue,L: L1〉, 2 〈P: Green,L: L2〉, 5 〈P: Green,L: L3〉, . . . K,

γ = 〈L1: N (µ1,Σ1),L2: N (µ2,Σ2),L3: N (µ3,Σ3), . . .〉.
(6.17)

4www.travian.com
5For now, we assume that the location distribution is given a priori. The distribution can, for example,
be estimated by fitting a Gaussian mixture to the locations of all villages of each player, as shown in
Appendix G.2.

119

6. Lifted Marginal Filtering in Asymmetrical Models

Over time, the number of distinct entity structures (species) grows due to the system
dynamics. For example, when one of the four entities 〈P: Blue,Loc: L1〉 is conquered by
the green player, the posterior state contains three instances of 〈P: Blue,Loc: L1〉 and one
instance of 〈P: Green,Loc: L1〉. This situation is visualized in Figure 6.10 (middle).

Recall that the number of compound actions (and thus the number of posterior states)
depends on the number of species in s. Thus, the goal here is to reduce the number of
species in s. More specifically, given a state l, the goal is to compute a new state l′ with
fewer species, i.e. |dom(s′)| < |dom(s)|. Intuitively, this is done by identifying species that
are “sufficiently close” and merging them into a single species.

6.4.1. Merging Entities by Gaussian Mixture Reduction

In this section, we show how Gaussian mixture reduction methods [181] can be used for
merging. This is done by deriving an expression for the the distribution over value sequences
p(v | s, γ) that can be viewed as a Gaussian mixture.

Here, we only consider the case where Gaussian factors that are referenced multiple times
are products of univariate, i.i.d. Gaussian factors. For example, in the state l in Equation
6.17, the factor with type L1 is referenced four time, thus N (µ1,Σ1) denotes the distribution
that consists of four i.i.d. normal distributions that all have parameters µ1 and Σ1.

Furthermore, for now, we limit the discussion to multiset structures s = Jn1 e1, . . . , nm em K,
where all ei are identical, except that they reference a different representation of a normal
distribution ρi in γ. For example, in the multiplayer game described above, we consider
sub-multisets where all entities have the same value for the owner property.

For a sub-state l = (s, γ) of this form, the sampling process for obtaining a ground state
x ∈ region(l) can be described as follows:

(i) Sample from each normal ρi exactly ni times,
(ii) insert the values into the corresponding entities ei, and
(iii) collect all entities in a multiset x.

Due to step (i) of the sampling process, the distribution of values v(d) that belong to
distribution type d factorizes completely, i.e.

p(v(d) | s, γ) =
n∏

j=1

pγ(d)(v
(d)
j), (6.18)

where n is the multiplicity of the entity structure that references d and v
(d)
j is the j-th value

of the sequence v(d). Subsequently, the distribution of the complete value sequence v is given
by

p(v | s, γ) =
∏

(d,ρ)∈γ

n∏

j=1

pρ(v
(d)
j). (6.19)

Recall that the goal of this section is to rewrite this distribution as a Gaussian mixture. We
see that the distribution p(v | s, γ) is (almost) a Gaussian mixture, except that we sample
exactly n times from each factor. By dropping this constraint, and assuming that each value
vj can be sampled from any of the normal distributions, and that the probability of selecting

120

6.4. Merging Normal Distributions

the distribution d is proportional to the number of references to d, the distribution becomes

p(v | s, γ) =
N∏

j=1

∑

(d,ρ)∈γ

n

N
pρ(vj), (6.20)

where N =
∑

n∈range(s) n is the total multiplicity of s. This distribution describes a sequence
of i.i.d. samples from a mixture, where pρ are the mixture components and n/N is the weight
of each mixture. It is easy to see that the expected number of draws from each normal in
this distribution is the same as in the original distribution in Equation 6.19.
For Gaussian mixtures, the problem of reducing the number of mixture components is

well-understood: Given a Gaussian mixture, a mixture with fewer components that has a
minimal distance to the original mixture can be computed. For our approach, we employ
the same concepts: After each transition, we apply a merging procedure that reduces the
number of different entity structures (i.e. mixture components). Specifically, we employ
the procedure described by Runnalls [181]: Let si and sj be two entities in a state s, with
multiplicities ni and nj . Assume that they have associated value distributions pi ∝ N (µi,Σi)
and pj ∝ N (µj ,Σj). The Gaussian mixture of pi and pj is pm = wi pi + wj pj , where
wi = ni/n and wj = nj/N . The parameters of the normal pij ∝ N (µij ,Σij) with minimal
Kullback-Leibler divergence to pm are calculated as follows:

wij = wi + wj , wi|ij =
wi

wi + wj
, wj|ij =

wj

wi + wj

µij = wi|ijµi + wj|ijµj

Σij = wi|ijΣi + wj|ijΣj + wi|ijwj|ij(µi − µj)(µi − µj)
T

The weight of the new component pij is wij , and the multiplicity of the new entity is ni+nj .
Given a mixture, it is possible to find the optimal components to merge, i.e. those producing
the smallest change in Kullback-Leibler divergence of the mixtures before and after merging.
This is done by calculating the bound B(i, j) = 1

2 [wij log|Σij | − wi log|Σi| − wj log|Σj |] for
all combinations of components pi and pj and selecting the two components for which B(i, j)
is minimal. This operation is repeated, until either the minimal bound B(i, j) exceeds a
threshold or the desired number of mixture components is reached.
This merging procedure is applied separately to all sub-states that are formed by assign-

ments of the other properties that do not follow normal distributions (in the Travian scenario,
merging is done separately for each player). An example for the Travian scenario is shown
in Figure 6.10 (right) – where the villages of the red player in the north-east, as well as the
villages of the green player in the south-east are merged.

6.4.2. Experimental Evaluation

The goal of the experiments was to evaluate the effect of this merging approach on runtime
and accuracy (in terms of AUC), in relationship to the domain size (i.e. number of enti-
ties) and extent of the approximation (i.e. maximum number of mixture components after
merging).

Data and Modeling Approach We evaluated the proposed approach on a prediction task
in Travian, as introduced in Example 44. The same application scenario has also been

121

6. Lifted Marginal Filtering in Asymmetrical Models

Factor Levels Description

Entity structures per
player

1, 3, 5, ∞ (ground
representation)

Maximum number of Entity structures per
player, i.e. mixture components

Timesteps 2,. . . ,5 Prediction horizon
Players 3,. . . ,10 Number of players per state
Merging yes, no Gaussian mixture reduction
Dataset 1,. . . ,10 Random subset of complete data

Table 6.3.: Factors and levels of experimental design for evaluating the Gaussian mixture
merging algorithm.

investigated by Thon et al. [213] using a ground state representation. We used a similar
experimental design regarding data recording, performed experiments and evaluation metrics,
whenever possible.

We logged the state of a game server over 5 days and recorded high-level data (position and
ownership of villages). The data was collected once every 24 hours. The data contains more
than 6400 villages and 1400 players. We evaluated our approach on a subset of this data,
that has been extracted in the same way as done by Thon et al. [213]: From the complete
data, sequences of local game world states were sampled. Each sequence contains the game
state for a small set of players (3 to 10 players). The sets were chosen such that there are no
interactions with players not in the set, but a high number of interactions between players
in the set. For each number of players, 10 such sets have been sampled. The largest sets
(with 10 players) contain 311.6 villages on average.

The scenario was modeled in LiMa as illustrated in Example 44: The state contains high-
level information, namely village location and ownership. In this simple model, only two
actions are possible: A village stays with the same owner, or a village is conquered. The
weight of each conquering action depends on the distance of the conquering player’s villages
to the conquered village (following Thon et al. [213]). Specifically, the weight of the action
“village ej is conquered by an attack starting from village ei”, is the Bhattacharyya distance
[68] D(ρi, ρj) of the corresponding location distributions ρi of ei and ρj of ej :

D(ρi, ρj) =
1

8
(µi − µj)

T Σ−1 (µi − µj) +
1

2
ln

(

detΣ
√
detΣi detΣj

)

,

where ρi = N (µi,Σi), ρj = N (µj ,Σj) and Σ =
Σi+Σj

2 .

The initial state was obtained by fitting, for each player, a Gaussian mixture to all village
locations of that player. Details are provided in Appendix G.2.

Experimental Design We used a factorial design, with factors shown in Table 6.3. We
varied the number of players in a subset (from 3 to 10), which defines the domain size,
and thus inference complexity and runtime. The number of entity structures per player
in the initial state was set to either 1, 3 or 5. Additionally, experiments with the ground
state representation were performed (i.e. the initial state contains one entity structure for
each village). Multiple prediction steps (up to 5) were performed, without incorporating
observations. After each prediction step, either Gaussian mixture merging was performed to

122

6.4. Merging Normal Distributions

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

false_positive_fraction

tr
u
e
_
p
o
s
it
iv

e
_
fr

a
c
ti
o
n

Components

�

�

�

�

1

3

5

Ground

� �

�

�

� �

�

ns ns ns

ns
*

**

0.4

0.6

0.8

1.0

1.2

1 3 5 Ground

Components

A
U

C

merge

�

�

no

yes

�

�

�

�

�

�

�

*** ** *

0

100

200

300

400

500

1 3 5 Ground

Components

R
u
n
ti
m

e
 (

s
)

merge

�

�

no

yes

�

�

�

�

�
�

�

�

�
�

�

�

� �

�

�

0.4

0.6

0.8

1.0

2 3 4 5

t

A
U

C

Components

�

�

�

�

1

3

5

Ground

Figure 6.11.: Evaluation of Gaussian mixture merging (Travian scenario). Top left: Example
of ROC curves for 3 players. Top right: AUC for different numbers of mixture
components per player. Bottom left: Runtime for different number of mixture
components per player. Bottom right: AUC for different prediction horizons.
Stars indicate significant differences, using Wilcoxon signed-rank test. ∗: p <
0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001.

reduce the number of mixture components (i.e. number of entity structures per player) to
the maximally allowed number (1, 3 or 5), or no merging was performed.

The prediction accuracy was assessed by computing receiver operating characteristic (ROC)
curves, regarding whether each conquer event did or did not occur in the transition, and by
calculating the area under the curve (AUC). In all experiments, the MCMC-based algorithm
to compute AMCAs as described in Chapter 5 was used with 100 samples, and pruning to a
maximum number of 100 states has been performed. For each factor configuration, 10 runs
have been performed. We used a prototypical implementation of our approach in R, and
used the R package mclust [195] for fitting Gaussian mixtures by expectation maximization.

Results Results of the evaluation are shown in Figure 6.11. The upper left plot shows
exemplary ROC curves for the subsets containing 3 players. AUC is substantially greater
than 0.5, indicating that all models capture some of the characteristics of the true system
dynamics. As expected, the AUC is lowest when only a single entity structure is allowed
per player, as this is the most extensive approximation of the true locations. The more
components are allowed, the more information about the true locations is preserved, resulting
in a more accurate prediction.

Figure 6.11 (top right) shows the AUC for different numbers of allowed mixture compo-
nents (i.e. species) per player, and a prediction horizon of 2. The obtained AUC values for

123

6. Lifted Marginal Filtering in Asymmetrical Models

the ground version of our approach are comparable to results reported by Thon et al. [213]
(approximately 0.8 in both cases).

Allowing more components in general leads to a higher AUC, as discussed above. Here,
the differences in AUC between 3 and 5 components, and between 5 components and ground
inference are statistically significant (p < 0.05, Wilcoxon signed rank test, n = 160). On the
other hand, for each number of components, there is no significant difference in AUC between
the runs where Gaussian mixture merging was performed or not performed (Wilcoxon signed
rank test, n = 80).

Figure 6.11 (bottom left) shows the average runtime of computing the prediction. In
contrast to the AUC, the runtime increases significantly when the number of components
is increased. Most notably, even the lifted models with 5 components and no merging have
significantly lower runtime than the ground models (p < 0.05 using Wilcoxon signed rank
test, n = 80). Furthermore, Gaussian mixture merging also leads to a significantly lower
runtime, compared to the lifted models without merging (p < 0.05 using Wilcoxon signed
rank test, n = 80).

Figure 6.11 (bottom right) shows the AUC for different prediction horizons (of models
where mixture merging was performed). Again, the AUC is significantly higher when more
components are used, and highest for ground filtering.

Discussion In summary, the lifted state representation allowed for a significantly lower
inference runtime, but also lead to a significantly lower prediction performance in terms of
AUC. Merging, on the other hand, further reduced the runtime of the lifted models signifi-
cantly, without affecting AUC. Thus, the results show that merging is actually beneficial in
this case.

We suspect that merging did not affect AUC in this scenario because of the smoothness of
the transition model: Instead of hard constraints, the action weights depend on the values of
the involved entities via a smooth function. However, when there are hard constraints on the
values that are approximated by merging, merging could lead to a vastly different posterior
distribution.

Overall, for the multiplayer game investigated here, the lifted representation, together with
a suitable merging procedure, allowed us to perform inference for substantially larger models
than what was possible by previous approaches for the same scenario [213]: For 10 players,
our models contained over 300 villages on average, whereas Thon et al. [213] report results
for at most 30 – 40 villages.

6.5. Assumed Density Merging

Finally, we present a merging concept that is based on the observation that it is sometimes
possible to safely “forget” information about concrete values (that were obtained by split-
ting), because that information is not required later in the inference process (when no action
in the future depends on that value). Specifically, it is then possible to introduce additional
exchangeability assumptions for distributions involving that value.

As in Section 6.3, we only consider the case where the factors of the value distributions
are uniform distributions over permutations of values v1, . . . , vk. Additionally, we require
that there is at most one factor where k > 1, i.e. all other factors are singleton distributions
(constants). This case is underlying all of the scenarios evaluated earlier in Section 4.5.

124

6.5. Assumed Density Merging

Counter Table Sink

Counter Table Sink Counter Table Sink

merge

Figure 6.12.: Example of assumed density merging of two lifted states. For both states,
the joint distribution of object identities is projected to an exchangeable dis-
tribution. This way, both states are mapped to the same state. Note that
they cannot be merged exactly by merge-disjoint, see Example 45 for more
details.

6.5.1. Algorithm Overview

We start by providing a concrete example of this merging approach.

Example 45. Consider a simplified version of the Kitchen domain (see Figure 6.12), where
three objects (plate, knife and spoon, denoted as A, B, C) and three object locations (counter,
table and sink, denoted as 1, 2, 3) exist, and there are two states l1 = (s1, γ1) and l2 = (s2, γ2)
with

s1 = J 1〈N: A,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ1 = 〈N: U(B,C)〉,

s2 = J 1〈N: N,L: 1〉, 1〈N: A,L: 2〉, 1〈N: N,L: 3〉 K, γ2 = 〈N: U(B,C)〉

and p(l1) = 0.5, p(l2) = 0.5. The states l1 and l2 cannot be merged exactly by merge-

disjoint.

However, suppose that for all states l′ that are reachable from l1 or l2, the value of property
N is never relevant for the action precondition (because whenever a constraint on N occurs
in a precondition p, the precondition cannot be satisfied in l′ due to some other constraint in
p). In this case, we can safely “forget“ the additional information about N that is provided
by the states l1 and l2. That is, the distributions of all object names can be projected onto
a uniform distribution of permutations (i.e. an exchangeable distribution).

Even when we later need to evaluate constraints on specific values ofN , we can still perform
this merging operation and accept that it induced an error (for example, the probability that
B is at location 3 was 1/2 before merging, but 1/3 after merging).

Technically, the distribution representations6 ρ1 = δA and ρ2 = U(B,C) are combined
into a single representation ρr = U(A,B,C) that represents the uniform distribution over all

6Recall that we use a shorthand notation for singleton distributions here, by writing the corresponding value
directly into the structure. For example, the context γ1 actually contains two distribution representations,
U(B,C) and δA.

125

6. Lifted Marginal Filtering in Asymmetrical Models

Algorithm 16 Assumed density merging.

1: function adm(l = (s, γ))
2: Let ρu be the only uniform distribution over permutations in γ,
3: and du be the corresponding distribution type
4: for each singleton distribution δv in γ with distribution type dv do
5: if none of the states reachable from l via AMCAs need to be split on v then
6: Let ρ∗ be the uniform distribution of permutations of v and values from ρu
7: Let d∗ be a new distribution type
8: Let s∗ be identical to s, except all occurrences of dv and du are replaced by d∗

9: γ∗ ← γ \ 〈dv : δv, du : ρu〉 ⊙ 〈d∗ : ρ∗〉
10: return adm((s∗, γ∗)) ⊲ Recursive call, try merging other values

11: return l

permutations of values from ρ1 and ρ2. Applying this operation to both l1 and l2 in both
cases results in the state l∗ = (s∗, γ∗) with

s∗ = J 1〈N: N,L: 1〉, 1〈N: N,L: 2〉, 1〈N: N,L: 3〉 K, γ∗ = 〈N: U(A,B,C)〉.

Opposed to merge-disjoint, this is an approximate operation, making the support of
the distribution wider. For example, ground states that contain the entity 〈N: A,L: 3〉 are
in the region of l∗, but not in the region of l1 or l2. Thus, when a constraint on a value of
N needs to be evaluated later on (i.e. when a split of the distribution of N is performed),
this merging operation induces an error. On the other hand, the approximate representation
has lower representational complexity, as seen in the example above, where multiple different
states were mapped to the same state l∗. If the number of available lifted states is limited
(when pruning is performed), this means that memory units become available to cover other
parts of the distribution, that would otherwise not be represented at all. As we will see in
Section 6.5.4, this tradeoff can indeed lead to more accurate results.

6.5.2. Time Points for Merging

The remaining question is at which time points this merging procedure should be applied,
and which values should be merged. As outlined before, merging increases the support of the
distribution. Therefore, when a constraint e.N == v needs to be evaluated after merging
(and thus a split is required), the number of resulting states can be even higher than the
number of states before merging. For example, splitting the state l∗ from Example 45 on the
constraint e.N == A results in three states (A can be at either of the three locations).

Clearly, this case needs to be avoided – the goal of merging is to reduce the number of
required states, not increase it. Therefore, a value v should only be merged when a split on
v is not required in the future. When this is the case, we call v mergeable.

Definition 21. [mergeability] Let l = (s, γ) be a lifted state. Let δv be a singleton distri-
bution in γ, and let A be a set of actions. When for all states l′ that are reachable from l
(via AMCAs of A), no constraint of the form e.N == v needs to be evaluated to test the
preconditions of actions in A, we call v mergeable in l.

Algorithm 16 describes this merging procedure more formally. For each state l = (s, γ),

126

6.5. Assumed Density Merging

the algorithm checks whether a value v is mergeable, and if there is such a value, the merge
is performed directly.

This concept is closely related to assumed density filtering, where certain assumptions
are made on the form of the filtering distribution, and the true distribution is projected
to a distribution that adheres to these assumptions at each time step. For example, the
Boyen-Koller algorithm for inference in dynamic Bayesian networks [25] projects the true
filtering distribution onto a factorized distribution at each time step. Here, instead of making
independence assumptions, we assume exchangeability of the distribution. Additionally, we
do not project to the exchangeable distribution at each time step, but only when we are
certain that the exchangeability is not eliminated afterwards by splitting.

Finally, this merging concept can be seen as a generalization of the merge-disjoint algo-
rithm described in Section 6.3: In that algorithm, the idea was to replace two representations
ρ1, ρ2 ∈ γ by a joint, exchangeable representation ρr, when a set of states can be identified
so that this is possible exactly. Instead, here we directly combine ρ1 and ρ2, even when this
induces an error on the underlying ground distribution.

6.5.3. Exploiting Temporal Structure

Finally, we discuss how mergeable values (Definition 21) can be identified. Suppose there is an
action a that has a precondition that involves v, i.e. that is of the form (X == v)∧c1∧· · ·∧cn,
where X is a property name and c1, . . . , cn are further constraints. A split on v is necessary
if and only if all constraints c1, . . . , cn are satisfied – when one of the constraints is not
satisfied, the complete precondition of a is not satisfied and the split on v does not need
to be performed. Thus, we actually have to check (for each value v and each action a that
involves v) whether c1 ∧ · · · ∧ cn is satisfied eventually, for any state that is reachable from
l. This question could be formalized in, for example, computation tree logic (CTL), so that
model checking methods [42] could be applied.

Such an automatic analysis of the causal structure is a topic for future work. Here, we only
performed a manual analysis of the actions of the kitchen scenario: We identified situations
(described by constraints on lifted states) where specific object names v are mergeable (see
Table 6.4). More details are provided in the description of the experimental evaluation below.

6.5.4. Experimental Evaluation

The main motivation for devising this merging approach was the fact that the lifted repre-
sentation did not lead to a reduced representational complexity in the kitchen scenario (see
Section 4.5), due to repeated splitting. Thus, in this section, we investigate the Kitchen
scenario again, and evaluate whether applying merging finally allows us to achieve a sub-
stantially reduced representational complexity

Experimental Design Situations where merging could be applied for the kitchen scenario
were identified manually, by examining the causal structure of the domain. The following
three situations have been identified:

• After cooking has been finished, the pot and the wooden spoon are mergeable.
• Once the glass becomes empty (i.e. the agent drank from the glass for the last time),
the glass is mergeable.

• When the agent has finished eating, the spoon and the plate are mergeable.

127

6. Lifted Marginal Filtering in Asymmetrical Models

Constraint Mergeable values

e.LastAction == cook Woden Spoon, Pot
e1.LastAction == drink ∧ e2.Name == Glass ∧ e2.F ill ==
empty

Glass

e1.LastAction == eat Spoon, Plate

Table 6.4.: Situations where assumed density merging was applied for the Kitchen scenario.
The table shows for each merge instant, the constraint that must be satisfied to
perform this merge, and the value (of the name property) that is merged with
the other object names.

These situations are described via constraints on the state, as shown in Table 6.4: For
each state where one of the constraints is satisfied, the corresponding values of the name
property are merged.

Similar to the evaluation in Section 4.5, we performed two experiments: Exact filtering
(using the crisp action observations to keep exact filtering feasible), and approximate filter-
ing (using the real sensor-based observations) by limiting the number of allowed states via
pruning. Exact filtering was performed to assess the number of states that are required to
represent the exact filtering distribution, and for approximate filtering, the activity recogni-
tion accuracy when using a fixed number of states to represent the distribution was assessed.
For both cases, we compared the performance of filtering with merging and without merging,
to evaluate the effect of the merging operation.

Results For exact filtering, Figure 6.13 (top) shows the required number of states over time
for one of the subjects. When no merging is performed, there is no significant difference in
the number of states that is required by the lifted and the ground representation: This fact
was already observed in Section 4.5, and was the main motivation for devising this merging
approach.

When merging is applied, the lifted representation is sometimes substantially smaller than
the ground representation. The reason for this efficiency gain can be seen in Figure 6.13
(bottom), which shows the fraction of states in which each object was represented explicitly.
When no merging is performed, the lifted representation degenerates over time due to re-
peated splitting. The merging procedure can prevent this degeneration: Whenever a specific
object identity is not needed any more, it is discarded and thus, the lifted representation
stays comparably compact.

Merging tends to reduce the number of required states specifically in those phases where
the overall number of states is large. For example, in Figure 6.13, the difference between
ground and lifted representation (with merging) is most pronounced when setting the table
(timeteps 38 to 43) and when washing the dishes (from timestep 75 to 83) – which are
exactly the phases where the overall number of states is large, as many permutations of
object identities are possible.

Figure 6.14 shows the activity recognition accuracy, when performing approximate filter-
ing. Recall that assumed density merging is an approximate procedure that manipulates the
underlying ground distribution. Therefore, one could suspect that applying merging would
have a negative effect on the activity recognition accuracy. However, merging allows to pre-

128

6.5. Assumed Density Merging

1

10

100

1000

10000

#
 S

ta
te

s

Type

Ground

Lifted, no merge

Lifted, merge

Glass

Plate

Pot

Spoon

Wooden_Spoon

0 25 50 75 100

no
yes

no
yes

no
yes

no
yes

no
yes

t

M
e
rg

e

0.00

0.25

0.50

0.75

1.00

grounding

dish washing

Figure 6.13.: Assumed density merging evaluation. Top: Number of states required for filter-
ing in the kitchen scenario over time for subject 6, using ground and lifted states
(with merging, and without merging). Bottom: Fraction of states in which each
object identity is represented explicitly, when merging is applied, or not applied.
When merging is applied, the lifted representation is sometimes substantially
smaller than the ground representation, specifically between timestep 75 and
83, which corresponds to the phase where the dishes are washed and many
permutations of objects are possible.

serve the lifted state representation, where intuitively, fewer states are necessary to represent
the filtering distribution with a given accuracy. Thus, when the maximum number of states
is fixed, merging can lead to a more accurate representation of the filtering distribution, and
to a higher activity recognition accuracy, as shown in Figure 6.14.

Specifically, when 200 states are available, the accuracy of lifted filtering with merging
is significantly higher than the accuracy of lifted filtering without merging (p < 0.05, n =
70 using Wilcoxon signed rank test). Additionally, lifted filtering (both with and without
merging) leads to a significantly higher accuracy than ground filtering for 100, 200, 500 and
1000 available states.

Conclusion & Future Work In summary, the merging approach used here could effectively
limit the representational complexity of the filtering distribution – even when using the crisp
observation model, that amplifies the tendency of the model to become ground. Addition-
ally, for a fixed number of available states, merging could increase the activity recognition
accuracy, compared to the lifted model without merging. Thus, we could show that LiMa,
together with a suitable merging strategy, can be usefully employed even for large models,
with observations consisting of real sensor data, like the kitchen scenario presented here.

Here, we used handcrafted rules to identify appropriate time points for merging, to demon-
strate the effect of merging when the situations for applying merging are chosen optimally.
Of course, methods for automatically identifying these situations are required to make this
merging approach more generally applicable without manual intervention, e.g. by employing
model checking methods.

129

6. Lifted Marginal Filtering in Asymmetrical Models

**

*

**

*

*

25 50 100 200 500 1000 2000
g

ro
u

n
d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

g
ro

u
n

d

lif
te

d

lif
te

d
+

m
e

rg
e

0.40

0.45

0.50

0.55

0.60

A
c
c
u
ra

c
y

Type

ground

lifted

lifted+merge

Figure 6.14.: Assumed density merging evaluation. Activity recognition accuracy for approx-
imate filtering in the kitchen scenario. When between 100 or 1000 states are
available, the accuracy of lifted filtering is significantly higher than the accu-
racy of ground filtering. The difference in accuracy between lifted filtering with
and without merging is only significant for 200 states.

Algorithm Merged dists. Approx/exact Assumptions

merge-similar multinomial approximate all factors are multinomial
merge-disjoint hypergeometric exact disjoint states, all factors are

hypergeometric
merge-normals normal approximate one normal per entity, other

factors are singletons
adm hypergeometric approximate other factors are singletons

Table 6.5.: Overview of the different merging algorithms presented in Chapter 6.

6.6. Conclusion & Future Work

In this chapter, we presented a number of different ideas for retaining a compact, lifted
representation of the filtering distribution, to avoid complete grounding over time. Such
methods are vitally important for efficiently applying lifted inference methods (like LiMa) to
systems that are not perfectly symmetric – as most systems of realistic complexity, especially
when the involve observations that stem from the physical world, like sensor data.

Table 6.5 summarizes the merging approaches discussed in this chapter. Each of the
algorithms requires a specific parametric form of the factors that are manipulated and needs
to make additional assumptions. These algorithms are only a few samples from the space of
possible merging algorithms, showcasing considerations and challenges such algorithms are
facing. Future work will need to focus on generalizing and unifying the existing methods,
making them applicable to more cases. Important open questions and directions for future
work are:

• Evaluating the merging algorithms described here with other models that are of realistic
size and use real sensor data to obtain additional insight into the usefulness of each of

130

6.6. Conclusion & Future Work

the algorithms under different conditions.

• Generalizing the methods: Each of the merging approaches only works under specific
assumptions. While some of the assumptions might be crucial, others could be relaxed.
For example, the merge-similar algorithm could be generalized such that the set G of
merged states do not have to describe (approximately) the same ground distribution,
but only have to factorize into (approximately) independent factors, conditional on G.

• Combining methods, to make them more generally applicable. For example, combining
the merge-disjoint and merge-similar algorithms into a general merging approach
for partially overlapping states would be of high practical relevance. Unfortunately,
this is highly non-trivial, due to the interactions that arise when the context is allowed
to contain distribution representations with different parametric forms: For example,
the value distributions considered by merge-similar are generally non-uniform, but
this means that the merge-disjoint algorithm cannot be applied directly any more.

• Making use of variational methods to derive merging algorithms: Variational methods
construct an analytic approximation of the true posterior by assuming that the distri-
bution factorizes into a number of independent factors. Such methods could be used
in the context of merging, to find a lifted state (a representation of a distribution with
a certain factorization structure) that approximates the true distribution over ground
states.

• Devising merging algorithms that are based on methods for approximating arbitrary
distributions over permutations by using non-commutative Fourier theory [87], de-
scribed in more detail in Chapter 7.

At some point, all merging methods will have to resort to heuristics or approximation, as
optimal merging for the general case is NP hard (as described in Section 6.3.3).

131

7
Discussion & Conclusion

Chapter Summary Finally, in this chapter, we summarize the results achieved so far, and
discuss directions for future research.
Possible future research directions include theoretical statements about lifted filtering, symmetry-
preserving observation models, using more elaborate methods to represent distributions in the
context, and employing concepts from noncommutative Fourier theory to allow low-frequency
approximations of distributions over multisets.

Contents

7.1. Summary . 134

7.2. Discussion: Why Lifting Works Here 135

7.3. Future Work . 136

133

7. Discussion & Conclusion

7.1. Summary

In this thesis, we devised a lifted Bayesian filtering algorithm for multi-entity systems, i.e.
systems with MRS dynamics, that exploits symmetries that naturally arise in MRSs. In the
following, we summarize our main contributions.

MRSs and the Need for Efficient Inference This thesis was motivated by inference in
dynamic multi-entity systems, a task that arises, for example, in the context of multi-agent
human activity recognition. Multiset rewriting systems (MRSs) allow to specify such multi-
entity systems in a natural way, and for this reason are used ubiquitously used in the modeling
and simulation community. However, the advantages of MRSs come at a price: Like other
symbolic, declarative AI methods [118], MRSs typically generate very large, discrete state
spaces (that have a high number of parameters), where inference quickly becomes infeasible.

Fortunately, however, the state space of MRSs naturally exhibits a certain symmetry :
When computing posterior states, they only need to reason about the number of entities
of each species in the state, instead of distinguishing them individually. Thus, they allow
to gracefully transition between an individual-based representation and a representation by
counts. The goal of this thesis was to devise novel inference algorithms for MRSs that make
use of this property.

Lifted Marginal Filtering The main contribution of this thesis is an efficient Bayesian
filtering algorithm for systems with MRS dynamics. We started by showing how (ground)
Bayesian filtering can be performed for MRS (which is a contribution in itself, as previously,
MRS were only used for simulation studies).

Then, we derived a more efficient representation for distributions over multisets. This was
achieved by introducing a suitable decomposition of multisets x into pairs (s,v), where s is a
multiset structure and v is a value tuple. This made it possible to use standard mechanisms
to represent the distribution over v more efficiently: Independence could be exploited by
maintaining the distribution in factorized form, and exchangeability could be exploited by
representing the distribution by sufficient statistics. This procedure, which is an instance of
Rao-Blackwellization, directly lead to the concept of lifted state: A pair of structure s, and a
representation γ of a distribution over v. A lifted state represents a distribution over ground
states that all have the same structure and values distributed according to γ.

Next, we showed how Bayesian filtering can be performed directly on this representation.
We made use of the fact that the structures s are still multisets, so that multiset rewriting
can (in principle) still be applied. Whenever a constraint is not determined in a lifted state,
because it is satisfied for some part of the support of the lifted state and not satisfied for
some other part, a split (conceptually similar to splitting in lifted inference) is required.

Even without further modifications or improvements, we could show that this lifted Bayesian
filtering algorithm can sometimes be orders of magnitude more efficient (in terms of number
of maintained states and thus runtime) than ground filtering.

The algorithm directly lends itself to an approximate version, by limiting the maximum
number of maintained states. In the approximate case, the lifted algorithm could achieve a
lower approximation error and lower variance of the estimate than ground filtering.

134

7.2. Discussion: Why Lifting Works Here

Approximating the System Dynamics Using MCMC Even though the algorithm worked
well for some models, we identified two scalability issues that severely limit the usefulness of
the basic algorithm for real-world applications.

The first problem is the fact that the number of parallel actions (compound actions) can
grow exponentially with respect to the number of entities in each state. Therefore, even for a
moderate number of entities, the number of compound actions can become excessively large,
so that complete enumeration (as done by the exact algorithm) is infeasible. We proposed
a Markov chain Monte Carlo (MCMC) algorithm that samples compound actions. The pro-
posal works by backtracking in the search tree of the exact algorithm, and then sampling a
completion of the remaining, non-maximal compound action (which is much simpler to find
than constructing a maximal compound action from scratch). Using this algorithm, maxi-
mally parallel multiset rewriting can be performed for systems with thousands of entities,
where the exact algorithm is infeasible.

Lifted Marginal Filtering for Asymmetrical Models The other problem that prevents
the direct application of the algorithm to real-world domains is the fact that symmetry
breaks require repeated splitting until the representation degenerates to the ground form. We
introduced merging to overcome this problem – identifying subsets of lifted states that can be
represented by a single lifted state. As this problem is hard in general, we provided merging
algorithms for a number of relevant special cases: For multinomial value distributions, we
considered the case where lifted states can be merged because they represent approximately
the same ground distribution. The intuition is that due to the stochasticity of the process,
the distributions described by two lifted states will become more similar over time, increasing
the chance of finding states that are sufficiently similar to merge them.

For hypergeometric value distributions, we considered the orthogonal case, where a set of
disjoint states can be merged because the states complement each other, so that they can be
replaced by a single lifted state. We also considered the case of Gaussian value distributions,
where different entities in a state could be merged by Gaussian mixture reduction methods.

Finally, we explored opportunities for merging that arise from knowledge about the causal
structure of the system: When a certain property never needs to be distinguished in the
future by any of the preconditions, this property can be forgotten. Using these merging
methods, the lifted filtering algorithm required a substantially lower number of states than
ground filtering even in a real-world application scenario.

7.2. Discussion: Why Lifting Works Here

Symmetry-breaking evidence is viewed as one of the major issues that prevents the appli-
cation of lifted inference to real-world domains [219, 104, 233, 29]. Even if the model is
symmetric, the symmetry breaks easily when asymmetric evidence about the random vari-
ables are obtained, so that lifted inference coincides with standard, propositional inference.
It has been formally shown that exact inference in a weighted first-order knowledge base
becomes intractable when evidence on binary atoms is present [90].

Somewhat surprisingly though, we could still retain a lifted representation for the human
activity recognition (HAR) scenarios considered in this thesis. For example, in the track-
ing scenario (where agents move between multiple locations and are observed by presence
sensors), splitting was never required, although observations were obtained at each time step.

135

7. Discussion & Conclusion

Where does the discrepancy between this empirical observation and the fact that evidence
can be highly problematic in lifted inference come from? To get an intuition, consider
collective classification in the WebKB dataset [44] as an example of a typical lifted inference
application domain. The dataset consists of websites from computer science departments,
containing information about the words that appear on each website, and links between
them. The collective classification task is to predict the page labels, given information about
words on each page and the link structure. Evidence on the words that appear on each page
makes all pages distinct, so that the symmetry in the model breaks. Exact lifted inference
is intractable in this case.

In contrast, in the tracking scenario, the observations are of a different kind: The presence
sensors just observe that there is any agent at the corresponding location, instead of observing
a specific agent. More formally, the observation likelihood depends on constraints of the state.
For example, when the presence sensor at location A is active, the likelihood depends on the
constraint e.Loc == A.

A model of the tracking scenario in a relational graphical model (e.g. a parfactor graph)
might contain a par-RV at-Locaction(L,N) with logical variables L (describing the location)
and N (describing the name). Then, the likelihood of the presence sensor observation would
depend on the constraint “there is an n ∈ N so that at-Location(a, n) is true”. Thus, the
observations in the Tracking model do not correspond to evidence on ground atoms, but to
constraints on the first-order terms.

In summary, the problem of symmetry-breaking evidence seems to be less prevalent in HAR
as compared to domains like link prediction, collective classification, or entity resolution,
which makes lifted inference-based methods well suited to this domain. Of course, HAR
is not completely free from this problem, as we saw in the kitchen scenario, where it was
necessary to distinguish the different items in the kitchen. Merging can alleviate this problem
for a number of cases, shown in Chapter 6. Additionally, ideas for directly preventing splitting
due to symmetry-breaking evidence (instead of recovering the lifted representation later on,
as done by merging) are presented below.

7.3. Future Work

Algorithmic Extensions The lifted marginal filtering (LiMa) algorithm directly lends itself
to a number of algorithmic extensions, that are well-established for ground Bayesian filtering,
e.g. for hidden Markov models (HMMs) or computational state-space models (CSSMs).

• Smoothing and MAP inference: In this thesis, we only considered filtering, i.e.
computing p(xt | y1:t), but not smoothing (computing p(xt | y1:T) for t < T) and maxi-
mum a-posteriori (MAP) inference (i.e. computing argmaxx1:T

p(x1:T | y1:T)). Extend-
ing LiMa to these tasks is straightforward, by appropriately adapting the forward-
backward algorithm to compute the smoothing distribution, and the Viterbi algorithm
to obtain the MAP sequence. Unfortunately, for smoothing or MAP inference, asym-
metries at time t+ δ can propagate back to time t (i.e. a split at time t+ δ can require
splitting at time t). Thus, appropriate merging strategies – or other methods for avoid-
ing grounding, as discussed below – are even more relevant for smoothing and MAP
inference.

• Durative actions: In LiMa, the transition model has a discrete-time Markov chain

136

7.3. Future Work

semantics. Thus, the durations of all (compound) actions implicitly follow a geometric
distribution – the probability that the (compound) action at time t continues at time
t+ 1 does not depend on the duration of that action. In real-world domains, however,
action durations do not necessarily follow a geometric distribution. Thus, to better de-
scribe reality, it is necessary to explicitly model the duration distribution of actions (as
done in some CSSMs [123]), so that the underlying formalism becomes a semi-Markov
model. This is complicated by the fact that LiMa is based on a maximally parallel
MRS, so that the question arises how parallel actions and semi-Markov semantics can
be combined appropriately.

• Parameter and structure learning: So far, we have only been concerned with infer-
ence, but not with learning. In contrast to sub-symbolic models (e.g. neural networks),
symbolic models, as considered here, can be constructed directly based on prior domain
knowledge, so that learning is not of outmost relevance. Still, parameter learning (e.g.
learning the weights of actions) via expectation maximization is an interesting topic
for future work. Another challenging goal is structure learning of LiMa models, e.g.
learning the (compound) actions from state trajectories or even observation sequences.
Process mining [226] might provide first ideas for this task. Another interesting direc-
tion is to derive possible actions from semi-structured data (e.g. textual descriptions
of the domain), as demonstrated by Yordanova for the case of PDDL actions [238].

A Theory of Lifted Filtering For relational probabilistic models, a detailed theory is avail-
able that describes under which conditions (lifted) inference is tractable. The formal results
are based on the notion of domain-lifted algorithms [217]: An algorithm is domain-lifted for
a problem class, if and only if for all instances of this problem class, inference is polynomial
in the domain size of the logical variables. Jaeger and Van den Broeck [90] showed that
inference in relational models is intractable in general, but domain-lifted algorithms exist
when the model adheres to certain constraints.
A similar theory is not yet available for LiMa models, or more generally, Bayesian filtering

tasks with MRS dynamics. LiMa is based on a completely different, computational speci-
fication of the probabilistic model, so that applying existing results is not straightforward.
Therefore, a possible topic for future work is to derive such formal results: Which properties
of the model (e.g. of the multiset rewriting rules) guarantee tractable inference?

Neural Observation Models In this thesis, we focused mainly on a formalism for the sys-
tem model p(Xt |Xt−1) and an efficient representation of the filtering distribution p(Xt | y1:t).
For the observation model p(Yt |Xt), we only considered hand-crafted models or simple para-
metric distributions (like a conditional normal distribution in the Kitchen scenario). How-
ever, accurate, flexible observation models are required to achieve state-of-the-art prediction
performance (e.g. in terms of activity recognition accuracy). Furthermore, opposed to the
system model that can often be constructed from prior domain knowledge, the observation
model typically needs to be estimated from training data.
Therefore, an immediate direction for future work is to extend LiMa by powerful methods

to learn observation models, i.e. density estimators that can model the complex relationship
between system states and observations. Neural density estimators, like the (real-valued)
neural autoregressive density estimator [216] or the masked autoregressive flow density es-
timator [168], are promising methods for this purpose. They make use of recent advances

137

7. Discussion & Conclusion

in (deep) neural networks to allow tractable density estimation in high-dimensional data.
Tractable probabilistic graphical model, like sum-product networks [176] (that also support
continuous distributions [148]) are another promising class of methods for this porpose. This
research could eventually lead to a hybrid method that uses recent advances in deep archi-
tectures to learn complex, high-dimensional observation models, and the symbolic methods
developed in this thesis to model the system dynamics based on domain knowledge.

Symmetry-aware Observation Models One of the recurring themes throughout this the-
sis has been that asymmetry in the transition or observation model can lead to a complete
grounding of the filtering distribution, and thus intractable inference. Specifically, asym-
metric evidence can be highly problematic for lifted inference, as discussed in Section 7.2.
We approached this problem by merging methods that restore a lifted representation of the
distribution. However, merging can simply come too late when the distribution is already
completely ground.

An alternative idea is to avoid splitting due to asymmetric evidence in the first place,
by approximating the evidence by more “symmetrical” evidence, so that fewer splits are
required. Specifically, Van den Broeck and Darwiche propose to approximate evidence by a
low-rank Boolean matrix factorization [219].

It is not obvious how these methods could be employed for LiMa, that does not use
relational graphical models to specify the probabilistic model. Additionally, the observations
in most interesting, real-world domains that we are concerned with are typically continuous
rather than boolean. For example, HAR tasks like the kitchen scenario typically involve
sensor data from wearables or environmental sensors. For the continuous case, methods that
avoid observation splits have not been proposed so far.

To achieve this goal, one could exploit the fact that there is a clear separation between
observations and hidden states in Bayesian filtering models like LiMa. This should allow us to
handle asymmetrical observations already in the observation model, so that the asymmetry
does not propagate to the lifted representation over hidden states. Intuitively, this could
be achieved by regularizing the observation model with the (known) symmetries from the
system model. For example, posterior regularization [69] allows estimation of probabilistic
models subject to additional constraints (that represent the symmetries).

Other Distribution Representations In this thesis, we made use of Rao-Blackwellization
– the idea that some of the RVs can be handled analytically during filtering, while others
need to be represented explicitly. This was done by introducing the notion of representa-
tions of distributions – specifically, of the factors of the value distribution p(v | s, γ). Here,
we considered representations by parameters of parametric distributions, and by sufficient
statistics (for exchangeable factors).

In general, other, more flexible methods for representing distributions could be employed,
as long as they provide tractable marginal inference (which is necessary for testing constraints
and performing splitting), and are closed under conditioning (to ensure that split results can
still be represented). Most notably, tractable probabilistic models like sum-product networks
[176] satisfy these conditions. They even support continuous distributions by using piecewise
polynomials as leaf distributions [148]. Another option for this purpose are exchangeable
variable models (EVMs) [158]: Interestingly, the context γ in LiMa can be seen as a specific
instance of an EVM. This would also provide us with methods for learning distribution

138

7.3. Future Work

representations from training data.

Distributions over Multiplicities Even in the lifted state representation, the multiplicities
of entities are still represented explicitly, so that when different numbers of entities are possi-
ble, all possible multiplicities need to be enumerated. In some scenarios, this can contribute
substantially to the overall number of states, e.g. in the predator-prey scenario in Chapter
5.
A future research direction is to investigate how distributions over multiplicities could

be represented more efficiently, e.g. parametrically, or by other methods to represent dis-
tributions over counts, like Poisson sum-product networks [147]. The challenge here is the
computation of (compound) actions – the algorithms presented in this thesis require ex-
act multiplicities instead of distributions. Either, situations where compound actions can
be computed on the parametric level could be identified, or approximation strategies, e.g.
appropriate sampling schemes, need to be devised.

Noncommutative Fourier Theory An important special case of distributions that arose
in many of the application scenarios we considered are distributions over permutations. For
this case, specialized methods [88] have been developed that allow efficient Bayesian filtering
in state spaces of permutations. They utilize a Fourier transform over the symmetric group
(the group of permutations) to approximate a distribution over permutations by its low-
frequency components. As a first step, using these methods to represent factors of the value
distribution where permutations are involved could lead to substantially efficiency gains for
those cases.
Additionally, algebraic structures are ubiquitous in MRSs: For example, compound actions

with the effect composition operator form a group, and multisets with multiset union are
a monoid. From here, the following research question naturally arises: Can ideas from
noncommutative Fourier theory be used to devise an efficient Bayesian filtering algorithm for
systems with MRS dynamics, e.g. by providing low-frequency approximations of distributions
over compound actions or multiset states?

139

Bibliography

[1] B. Ahmadi, K. Kersting, and F. Hadiji. Lifted belief propagation: Pairwise marginals
and beyond. In Proceedings of the 5th European Workshop on Probabilistic Graphical
Models, pages 9–16, 2010. (Cited on page 169)

[2] B. Ahmadi, K. Kersting, M. Mladenov, and S. Natarajan. Exploiting symmetries for
scaling loopy belief propagation and relational training. Machine Learning, 92(1):91–
132, 2013. (Cited on pages 166 and 169)

[3] B. Ahmadi, K. Kersting, and S. Natarajan. MapReduce lifting for belief propagation.
In AAAI Workshop - Technical Report, volume WS-13-16, pages 2–7, 2013. (Cited on
page 169)

[4] B. Ahmadi, M. Mladenov, K. Kersting, and S. Sanner. On lifted pagerank, kalman
filter and towards lifted linear program solving. In Technical Report of the Symposium
”Lernen, Wissen, Adaptivitat - Learning, Knowledge, and Adaptivity 2011” of the GI
Special Interest Groups KDML, IR and WM, pages 35–42, 2011. (Cited on page 169)

[5] A. Anand, A. Grover, Mausam, and P. Singla. Contextual symmetries in probabilistic
graphical models. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2016. (Cited on page 169)

[6] U. Apsel and R. Brafman. Extended Lifted Inference with Joint Formulas. In Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, pages 11–18, Barcelona, Spain, 2011. AUAI Press. (Cited on pages 29 and 169)

[7] U. Apsel, K. Kersting, and M. Mladenov. Lifting relational MAP-LPs using cluster
signatures. In AAAI Workshop - Technical Report, volume WS-14-13, pages 2–8, 2014.
(Cited on page 169)

[8] D. Arnaud, N. de Freitas, and Neil Gordon. Sequential Monte Carlo Methods in Prac-
tice. Springer-Verlag New York, 2001. (Cited on pages 13 and 14)

[9] R. Barbuti, F. Levi, P. Milazzo, and G. Scatena. Maximally Parallel Probabilistic
Semantics for Multiset Rewriting. Fundamenta Informaticae, 112(1):1–17, 2011. (Cited
on pages 1, 19, 23, 46, 47, and 169)

[10] R. Barbuti, F. Levi, P. Milazzo, and G. Scatena. Probabilistic model checking of
biological systems with uncertain kinetic rates. Theoretical Computer Science, 419:2 –
16, 2012. (Cited on pages 18 and 169)

141

Bibliography

[11] M. Baum and U. Hanebeck. Association-free tracking of two closely spaced targets.
In Proceedings of the IEEE Conference on Multisensor Fusion and Integration for
Intelligent Systems, pages 62–67. IEEE, 2010. (Cited on page 169)

[12] M. Baum and U. Hanebeck. Using symmetric state transformations for multi-target
tracking. In Proceedings of the 14th International Conference on Information Fusion,
pages 1–8. IEEE, 2011. (Cited on page 169)

[13] M. Baum and U. Hanebeck. The kernel-sme filter for multiple target tracking. In
Proceedings of the 16th International Conference on Information Fusion, pages 288–
295. IEEE, 2013. (Cited on page 169)

[14] M. Baum, P. Ruoff, D. Itte, and U. Hanebeck. Optimal Point Estimates for Multi-
target States based on Kernel Distances. In Proceedings of the 51st IEEE Conference
on Decision and Control, Maui, Hawaii, USA, December 2012. (Cited on page 169)

[15] M. Baum, P. Willett, and U. Hanebeck. MMOSPA-based track extraction in the PHD
filter-a justification for k-means clustering. In Proceedings of the IEEE 53rd Annual
Conference on Decision and Control, pages 1816–1821. IEEE, 2014. (Cited on page 169)

[16] P. Beame, G. Van den Broeck, E. Gribkoff, and D. Suciu. Symmetric Weighted First-
Order Model Counting. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 313–328, 2015. (Cited on pages 29
and 169)

[17] V. Belle, A. Passerini, and G. Van den Broeck. Probabilistic inference in hybrid do-
mains by weighted model integration. In Proceedings of 24th International Joint Con-
ference on Artificial Intelligence, pages 2770–2776, 2015. (Cited on pages 31 and 169)

[18] V. Belle, G. Van den Broeck, and A. Passerini. Hashing-based approximate probabilis-
tic inference in hybrid domains. In Proceedings of the 31st Conference on Uncertainty
in Artificial Intelligence (UAI), pages 141–150, 2015. (Cited on page 169)

[19] V. Belle, G. Van den Broeck, and A. Passerini. Component Caching in Hybrid Domains
with Piecewise Polynomial Densities. In AAAI, pages 3369–3375, 2016. (Cited on
page 169)

[20] Thomas Bengtsson, Peter Bickel, Bo Li, et al. Curse-of-dimensionality revisited: Col-
lapse of the particle filter in very large scale systems. In Probability and statistics:
Essays in honor of David A. Freedman, pages 316–334. Institute of Mathematical
Statistics, 2008. (Cited on page 14)

[21] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019. (Cited on page 165)

[22] S. Bistarelli, I. Cervesato, G. Lenzini, R. Marangoni, and F. Martinelli. On repre-
senting biological systems through multiset rewriting. In International Conference on
Computer Aided Systems Theory, pages 415–426. Springer, 2003. (Cited on page 169)

142

Bibliography

[23] Wayne D Blizard et al. Multiset theory. Notre Dame Journal of formal logic, 30(1):36–
66, 1988. (Cited on page 18)

[24] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order
MDPs. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, volume 1, pages 690–700, 2001. (Cited on page 166)

[25] Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes.
In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence,
pages 33–42, 1998. (Cited on pages 13, 106, and 127)

[26] Tanya Braun and Ralf Möller. Lifted junction tree algorithm. In Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), pages 30–
42. Springer, 2016. (Cited on pages 29 and 163)

[27] Peter Buchholz. Exact and ordinary lumpability in finite markov chains. Journal of
applied probability, pages 59–75, 1994. (Cited on page 164)

[28] ST Buckland, KB Newman, L Thomas, and NB Koesters. State-space models for the
dynamics of wild animal populations. Ecological modelling, 171(1-2):157–175, 2004.
(Cited on page 14)

[29] H. Bui, T. Huynh, and R. De Braz. Exact lifted inference with distinct soft evidence
on every object. In Proceedings of the National Conference on Artificial Intelligence,
volume 3, pages 1875–1881, 2012. (Cited on pages 135 and 169)

[30] H. Bui, T. Huynh, and S. Riedel. Automorphism groups of graphical models and lifted
variational inference. In Uncertainty in Artificial Intelligence - Proceedings of the 29th
Conference, pages 132–141, 2013. (Cited on pages 30 and 169)

[31] H. Bui, T. Huynh, and D. Sontag. Lifted tree-reweighted variational inference. In
Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, pages 92–
101, 2014. (Cited on page 169)

[32] W. Buntine. Operations for learning with graphical models. Journal of artificial
intelligence research, 2:159–225, 1994. (Cited on page 10)

[33] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin. Syntactic
markovian bisimulation for chemical reaction networks. In Models, Algorithms, Logics
and Tools, pages 466–483. Springer, 2017. (Cited on page 164)

[34] Carlos M Carvalho and Hedibert F Lopes. Simulation-based sequential analysis of
markov switching stochastic volatility models. Computational Statistics & Data Anal-
ysis, 51(9):4526–4542, 2007. (Cited on page 14)

[35] Iliano Cervesato, Nancy A Durgin, Patrick D Lincoln, John C Mitchell, and Andre
Scedrov. A meta-notation for protocol analysis. In Computer Security Foundations
Workshop, 1999. Proceedings of the 12th IEEE, pages 55–69. IEEE, 1999. (Cited on
page 17)

[36] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799, 2008. (Cited on page 47)

143

Bibliography

[37] J. Choi and E. Amir. Lifted Relational Variational Inference. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI’12, pages 196–
206, Catalina Island, CA, 2012. AUAI Press. (Cited on page 169)

[38] J. Choi, E. Amir, and D. Hill. Lifted Inference for Relational Continuous Models. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI’10, pages 126–134, Catalina Island, CA, 2010. AUAI Press. (Cited on pages 32,
34, and 169)

[39] J. Choi, E. Amir, T. Xu, and A. Valocchi. Learning Relational Kalman Filtering.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages
2539–2546, 2015. (Cited on pages 32, 35, 96, and 169)

[40] J. Choi, R. de Salvo Braz, and H. Bui. Efficient Methods for Lifted Inference with
Aggregate Factors. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011. (Cited on page 169)

[41] J. Choi, A. Guzman-Rivera, and E. Amir. Lifted Relational Kalman Filtering. In Pro-
ceedings of the Twenty-Second International Joint Conference on Artificial Intelligence,
pages 2092–2099, 2011. (Cited on pages 32, 34, and 169)

[42] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. MIT press, 2018. (Cited on page 127)

[43] M.C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc
consistency revisited. Artificial Intelligence, 174:449–478, 2010. (Cited on page 172)

[44] Mark Craven and Seán Slattery. Relational learning with statistical predicate invention:
Better models for hypertext. Machine Learning, 43(1-2):97–119, 2001. (Cited on
page 136)

[45] Nilesh Dalvi, Karl Schnaitter, and Dan Suciu. Computing query probability with inci-
dence algebras. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 203–214. ACM, 2010. (Cited on
page 169)

[46] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases.
The International Journal on Very Large Data Bases, 16(4):523–544, 2007. (Cited on
page 169)

[47] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine.
Rule-based modelling of cellular signalling. In International conference on concurrency
theory, pages 17–41. Springer, 2007. (Cited on pages 17 and 42)

[48] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of
Artificial Intelligence Research, 17(1):229–264, 2002. (Cited on page 165)

[49] M. Das, Y. Wu, T. Khot, K. Kersting, and S. Natarajan. Scaling lifted probabilistic
inference and learning via graph databases. In Proceedings of the 16th SIAM Interna-
tional Conference on Data Mining 2016, pages 738–746, 2016. (Cited on page 169)

144

Bibliography

[50] L. De Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 10(2):1–189, 2016. (Cited on page 22)

[51] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages
1319–1325, 2005. (Cited on pages 23, 29, 71, 169, and 179)

[52] R. de Salvo Braz, E. Amir, and D. Roth. MPE and partial inversion in lifted prob-
abilistic variable elimination. In Proceedings of the National Conference on Artificial
Intelligence, volume 2, pages 1123–1130, 2006. (Cited on page 169)

[53] R. de Salvo Braz, S. Natarajan, H. Bui, J. Shavlik, and S. Russell. Anytime lifted belief
propagation. In International Workshop on Statistical Relational Learning, volume 9,
2009. (Cited on page 169)

[54] T. Dean and R. Givan. Model minimization in Markov decision processes. In Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, pages 106–111, 1997.
(Cited on page 166)

[55] Pierre Del Moral. Non linear filtering: Interacting particle solution. Markov Processes
and Related Fields, 2:555–580, 03 1996. (Cited on page 2)

[56] Salem Derisavi, Holger Hermanns, and William H Sanders. Optimal state-space lump-
ing in markov chains. Information Processing Letters, 87(6):309–315, 2003. (Cited on
page 164)

[57] Persi Diaconis and David Freedman. De finetti’s generalizations of exchangeability.
Studies in inductive logic and probability, 2:233–249, 1980. (Cited on page 57)

[58] P. Domingos and W. Webb. A tractable first-order probabilistic logic. In Proceedings
of the National Conference on Artificial Intelligence, volume 3, pages 1902–1909, 2012.
(Cited on page 169)

[59] A. Doucet, N. De Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, pages 176–183. Morgan Kaufmann Publishers
Inc., 2000. (Cited on pages 14, 34, and 58)

[60] Arnaud Doucet. On sequential simulation-based methods for bayesian filtering. Tech-
nical report, CUED/F-INFENG/TR 310, Department of Engineering, Cambridge Uni-
versity., 1998. (Cited on page 14)

[61] IL Dryden and KV Mardia. Statistical analysis of shape. Wiley, 1998. (Cited on
page 103)

[62] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. Top-k query processing in
probabilistic databases with non-materialized views. In 29th International Conference
on Data Engineering, pages 122–133. IEEE, 2013. (Cited on page 169)

145

Bibliography

[63] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol-
ume 96, pages 226–231, 1996. (Cited on pages 100 and 104)

[64] James R Faeder, Michael L Blinov, and William S Hlavacek. Rule-based modeling
of biochemical systems with bionetgen. In Systems biology, pages 113–167. Springer,
2009. (Cited on pages 17 and 42)

[65] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gut-
mann, Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in
probabilistic logic programs using weighted boolean formulas. Theory and Practice of
Logic Programming, 15(3):358–401, 2015. (Cited on page 165)

[66] Peter A Flach and Nicolas Lachiche. Decomposing probability distributions on struc-
tured individuals. In ILP Work-in-progress reports, 2000. (Cited on page 52)

[67] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. Journal of artificial intelligence research, 20:61–124, 2003. (Cited
on page 15)

[68] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.
(Cited on page 122)

[69] Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regu-
larization for structured latent variable models. Journal of Machine Learning Research,
11(67):2001–2049, 2010. (Cited on page 138)

[70] Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact symbolic inference for
probabilistic programs. In International Conference on Computer Aided Verification,
pages 62–83. Springer, 2016. (Cited on page 165)

[71] Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algo-
rithm. In Proceedings of the International Conference on Conceptual Structures, pages
55–69. Springer, 2018. (Cited on page 163)

[72] Marcel Gehrke, Tanya Braun, and Ralf Möller. Taming Reasoning in Temporal Proba-
bilistic Relational Models. In Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI 2020), 2020. (Cited on page 96)

[73] T. Geier and S. Biundo. Approximate online inference for dynamic markov logic net-
works. In 23rd IEEE International Conference on Tools with Artificial Intelligence,
pages 764–768. IEEE, 2011. (Cited on page 169)

[74] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT press,
2007. (Cited on page 166)

[75] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361, 1977. (Cited on page 18)

[76] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147(1-2):163–223, July 2003. (Cited
on page 166)

146

Bibliography

[77] V. Gogate and P. Domingos. Exploiting logical structure in lifted probabilistic infer-
ence. In AAAI Workshop - Technical Report, volume WS-10-06, pages 19–25, 2010.
(Cited on page 169)

[78] V. Gogate, A. Jha, and D. Venugopal. Advances in Lifted Importance Sampling.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
(Cited on page 169)

[79] Vibhav Gogate and Pedro Domingos. Probabilistic Theorem Proving. In Proceedings
of the 27th Conference on Uncertainty in Artificial Intelligence, pages 256–265. AUAI
Press, 2011. (Cited on pages 23, 29, 62, and 169)

[80] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua
Tenenbaum. Church: a language for generative models with non-parametric memoiza-
tion and approximate inference. In Uncertainty in Artificial Intelligence, 2008. (Cited
on page 165)

[81] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE proceedings F (radar and
signal processing), volume 140, pages 107–113. IET, 1993. (Cited on pages 14 and 16)

[82] F. Hadiji, B. Ahmadi, and K. Kersting. Efficient sequential clamping for lifted message
passing. In Lecture Notes in Computer Science, volume 7006 LNAI, pages 122–133,
2011. (Cited on page 169)

[83] F. Hadiji and K. Kersting. Reduce and re-lift: Bootstrapped lifted likelihood maxi-
mization for MAP. In AAAI Workshop - Technical Report, volume WS-13-16, pages
8–14, 2013. (Cited on page 169)

[84] U. Hanebeck and M. Baum. Association-free direct filtering of multi-target random
finite sets with set distance measures. In 18th International Conference on Information
Fusion, pages 1367–1374. IEEE, 2015. (Cited on page 169)

[85] S. Hölldobler and O. Skvortsova. A logic-based approach to dynamic program-
ming. In Proceedings of the Workshop on “Learning and Planning in Markov Pro-
cesses–Advances and Challenges” at the Nineteenth National Conference on Artificial
Intelligence, pages 31–36, 2004. (Cited on page 166)

[86] R. Holte and G. Fan. State Space Abstraction in Artificial Intelligence and Opera-
tions Research. In Workshops at the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. (Cited on page 24)

[87] J. Huang, C. Guestrin, and L. Guibas. Efficient inference for distributions on per-
mutations. In Advances in Neural Information Processing Systems, 2009. (Cited on
pages 35, 131, and 169)

[88] J. Huang, C. Guestrin, and L. Guibas. Fourier Theoretic Probabilistic Inference over
Permutations. Journal of Machine Learning Research, 10:997–1070, June 2009. (Cited
on pages 23, 32, 35, 139, and 169)

147

Bibliography

[89] J. Huang, C. Guestrin, X. Jiang, and L. Guibas. Exploiting Probabilistic Independence
for Permutations. In International Conference on Artificial Intelligence and Statistics,
pages 248–255, 2009. (Cited on pages 35 and 169)

[90] M. Jaeger and G. Van den Broeck. Liftability of Probabilistic Inference: Upper and
Lower Bounds. In Proceedings of StarAI, 2012. (Cited on pages 135 and 137)

[91] S. Jagabathula and D. Shah. Inferring rankings using constrained sensing. IEEE
Transactions on Information Theory, 57(11):7288–7306, 2011. (Cited on pages 35
and 169)

[92] A. Jaimovich, O. Meshi, and N. Friedman. Template based inference in symmetric
relational Markov random fields. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, 2007. (Cited on page 169)

[93] A. Jha, V. Gogate, A. Meliou, and D. Suciu. Lifted inference seen from the other side:
The tractable features. In 24th Annual Conference on Neural Information Processing
Systems, 2010. (Cited on pages 29 and 169)

[94] Abhay Jha and Dan Suciu. Probabilistic databases with MarkoViews. Proceedings of
the VLDB Endowment, 5(11):1160–1171, 2012. (Cited on page 169)

[95] X. Jiang, J. Huang, and L. Guibas. Fourier-information duality in the identity man-
agement problem. In Lecture Notes in Computer Science, volume 6912 LNAI, pages
97–113, 2011. (Cited on pages 36 and 169)

[96] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Cristian Versari. Biochemical
reaction rules with constraints. In European symposium on programming, pages 338–
357. Springer, 2011. (Cited on pages 17 and 42)

[97] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960. (Cited on pages 2 and 13)

[98] B. Kang and K. Kim. Exploiting symmetries for single- and multi-agent Partially
Observable Stochastic Domains. Artificial Intelligence, 182–183:32 – 57, 2012. (Cited
on page 166)

[99] Richard M Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972. (Cited on page 113)

[100] Martin Kasparick and Frank Krüger. Probabilistic action selection - tracking multiple
persons in indoor environments. http://dx.doi.org/10.18453/rosdok_id00000114,
2013. (Cited on page 76)

[101] S. Kazemi, A. Kimmig, G. Van den Broeck, and D. Poole. New liftable classes for first-
order probabilistic inference. In Advances in Neural Information Processing Systems,
pages 3117–3125, 2016. (Cited on page 169)

[102] S. Kazemi, A. Kimmig, G. Van Den Broeck, and D. Poole. Domain Recursion for
Lifted Inference with Existential Quantifiers. In arXiv Preprint arXiv:1707.07763,
2017. (Cited on page 169)

148

http://dx.doi.org/10.18453/rosdok_id00000114

Bibliography

[103] S. Kazemi and D. Poole. Elimination ordering in lifted first-order probabilistic infer-
ence. In Proceedings of the National Conference on Artificial Intelligence, volume 2,
pages 863–870, 2014. (Cited on page 169)

[104] K. Kersting. Lifted Probabilistic Inference. In Proceedings of the 20th European Con-
ference on Artificial Intelligence, volume 242, pages 33–38. IOS Press, 2012. (Cited on
pages 23, 28, 96, and 135)

[105] K. Kersting, B. Ahmadi, and S. Natarajan. Counting belief propagation. In Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence, pages 277–284, 2009.
(Cited on pages 30, 57, and 169)

[106] K. Kersting, Y. El Massaoudi, F. Hadiji, and B. Ahmadi. Informed Lifting for Message-
Passing. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 2010. (Cited on page 169)

[107] K. Kersting, M. Van Otterlo, and L. De Raedt. Bellman goes relational. In Proceedings
of the Twenty-First International Conference on Machine Learning, page 59. ACM,
2004. (Cited on page 166)

[108] Kristian Kersting, Martin Mladenov, Roman Garnett, and Martin Grohe. Power iter-
ated color refinement. In Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014. (Cited on page 96)

[109] R. Khardon and S. Sanner. Stochastic planning and lifted inference. arXiv preprint,
arXiv:1701.01048, 2017. (Cited on pages 166 and 167)

[110] C. Kiddon and P. Domingos. Leveraging ontologies for lifted probabilistic inference
and learning. In AAAI Workshop - Technical Report, volume WS-10-06, pages 40–45,
2010. (Cited on page 169)

[111] C. Kiddon and P. Domingos. Coarse-to-fine inference and learning for first-order prob-
abilistic models. In Proceedings of the National Conference on Artificial Intelligence,
volume 2, pages 1049–1056, 2011. (Cited on page 169)

[112] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic
sentential decision diagrams. In Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning, 2014. (Cited on page 165)

[113] J. Kisyński and D. Poole. Constraint processing in lifted probabilistic inference. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 293–
302, 2009. (Cited on page 169)

[114] J. Kisyński and D. Poole. Lifted aggregation in directed first-order probabilistic mod-
els. In Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence, pages 1922–1929, 2009. (Cited on page 169)

[115] Barbara Kitchenham. Procedures for Performing Systematic Reviews. In Keele Uni-
versity Technical Report TR/SE-0401. 2004. (Cited on page 22)

[116] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT press, 2009. (Cited on page 8)

149

Bibliography

[117] R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with representations of
the symmetric group. Journal of Machine Learning Research, 2:211–218, 2007. (Cited
on pages 35 and 169)

[118] Parisa Kordjamshidi, Dan Roth, and Kristian Kersting. Systems ai: A declarative
learning based programming perspective. In IJCAI, pages 5464–5471, 2018. (Cited on
page 134)

[119] E. Krishnamurthy, V. Murthy, and V. Krishnamurthy. Biologically inspired rule-based
multiset programming paradigm for soft-computing. In Proceedings of the 1st Confer-
ence on Computing Frontiers, pages 140–149, 2004. (Cited on page 169)

[120] Frank Krüger. Activity, Context, and Plan Recognition with Computational Causal Be-
haviour Models. PhD thesis, University of Rostock, 2016. (Cited on pages 15 and 188)

[121] Frank Krüger, Albert Hein, Kristina Yordanova, and Thomas Kirste. Recognising the
actions during cooking task (Cooking task dataset), 2015. (Cited on page 76)

[122] Frank Krüger, Martin Kasparick, Thomas Mundt, and Thomas Kirste. Where are
my colleagues and why? Tracking multiple persons in indoor environments. In 10th
International Conference on Intelligent Environments (IE), 2014, Shanghai, China,
July 2014. (Cited on page 76)

[123] Frank Krüger, Martin Nyolt, Kristina Yordanova, Albert Hein, and Thomas Kirste.
Computational State Space Models for Activity and Intention Recognition. A Feasi-
bility Study. PLOS ONE, 9(11):e109381, November 2014. (Cited on pages 15, 75, 76,
77, 137, and 189)

[124] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic
model checking. In Lecture Notes in Computer Science, volume 4144 LNCS, pages
234–248, 2006. (Cited on page 23)

[125] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the Royal
Statistical Society: Series B (Methodological), 50(2):157–194, 1988. (Cited on page 163)

[126] W. Leven and A. Lanterman. Multiple target tracking with symmetric measurement
equations using unscented Kalman and particle filters. In Proceedings of the Thirty-
Sixth Southeastern Symposium on System Theory, pages 195–199. IEEE, 2004. (Cited
on page 169)

[127] W. Leven and A. Lanterman. Unscented Kalman Filters for Multiple Target Tracking
With Symmetric Measurement Equations. IEEE Transactions on Automatic Control,
54(2):370–375, February 2009. (Cited on page 169)

[128] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. Amer-
ican Mathematical Soc., 2017. (Cited on pages 87, 88, and 92)

[129] Stefan Lüdtke, Marcel Gehrke, Tanya Braun, Ralf Möller, and Thomas Kirste. Lifted
marginal filtering for asymmetric models by clustering-based merging. In Proceedings
of the 24th European Conference on Artificial Intelligence. IOS Press, 2020. (Cited on
page 93)

150

Bibliography

[130] Stefan Lüdtke and Thomas Kirste. Lifted bayesian filtering in multiset rewriting sys-
tems. Journal of Artificial Intelligence Research, 2020. accepted. (Cited on pages 7
and 39)

[131] Stefan Lüdtke, Alejandro Molina, Kristian Kersting, and Thomas Kirste. Gaussian
lifted marginal filtering. In KI 2019: Advances in Artificial Intelligence, pages 230–
243. Springer, 2019. (Cited on page 93)

[132] Stefan Lüdtke, Max Schröder, Sebastian Bader, Kristian Kersting, and Thomas Kirste.
Lifted Filtering via Exchangeable Decomposition. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, 2018. (Cited on page 39)

[133] Stefan Lüdtke, Max Schröder, and Thomas Kirste. Approximate probabilistic parallel
multiset rewriting using MCMC. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), pages 73–85. Springer, 2018. (Cited on pages 39
and 85)

[134] Stefan Lüdtke, Max Schröder, Frank Krüger, Sebastian Bader, and Thomas Kirste.
State-space abstractions for probabilistic inference: a systematic review. Journal of
Artificial Intelligence Research, 63:789–848, 2018. (Cited on pages 7 and 21)

[135] Stefan Lüdtke, Max Schröder, Frank Krüger, and Thomas Kirste. Where are my
colleagues? Tracking and Counting Multiple Persons using Lifted Marginal Filtering.
In Procedings of the 4th International Workshop on Sensor-Based Activity Recognition
and Interaction, 2017. (Cited on page 75)

[136] Stefan Lüdtke, Kristina Yordanova, and Thomas Kirste. Human activity and context
recognition using lifted marginal filtering. In IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops), pages 83–88,
2019. (Cited on pages 39 and 93)

[137] R. Mahler. Multitarget Bayes filtering via first-order multitarget moments. IEEE
Transactions on Aerospace and Electronic systems, 39(4):1152–1178, 2003. (Cited on
page 169)

[138] C. Maus, S. Rybacki, and A. Uhrmacher. Rule-based multi-level modeling of cell
biological systems. BMC Systems Biology, 5(1):166, 2011. (Cited on page 169)

[139] Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs. In Advances in Neural Information
Processing Systems, pages 1249–1257, 2009. (Cited on page 165)

[140] W. Meert, G. Van Den Broeck, and A. Darwiche. Lifted Inference for Probabilistic
Logic Programs. In Workshop on Probabilistic Logic Programming, 2014. (Cited on
page 169)

[141] B. Milch, L. Zettlemoyer, K. Kersting, M. Haimes, and L. Kaelbling. Lifted probabilis-
tic inference with counting formulas. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, pages 1062–1068, 2008. (Cited on pages 23, 29, and 169)

151

Bibliography

[142] H. Mittal, P. Goyal, V. Gogate, and P. Singla. New rules for domain independent
lifted MAP inference. In Advances in Neural Information Processing Systems, pages
649–657, 2014. (Cited on page 169)

[143] M. Mladenov, B. Ahmadi, and K. Kersting. Lifted Linear Programming. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 788–797, 2012. (Cited
on page 169)

[144] M. Mladenov, A. Globerson, and K. Kersting. Efficient lifting of MAP LP relaxations
using k-locality. Journal of Machine Learning Research, 33:623–632, 2014. (Cited on
page 169)

[145] M. Mladenov, A. Globerson, and K. Kersting. Lifted Message Passing as
Reparametrization of Graphical Models. In Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, pages 603–612, 2014. (Cited on page 169)

[146] M. Mladenov and K. Kersting. Lifted inference via k-locality. In AAAI Workshop -
Technical Report, volume WS-13-16, pages 25–30, 2013. (Cited on page 169)

[147] Alejandro Molina, Sriraam Natarajan, and Kristian Kersting. Poisson sum-product
networks: A deep architecture for tractable multivariate poisson distributions. In
AAAI, pages 2357–2363, 2017. (Cited on page 139)

[148] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana
Esposito, and Kristian Kersting. Mixed sum-product networks: A deep architecture
for hybrid domains. In Thirty-second AAAI conference on artificial intelligence, 2018.
(Cited on page 138)

[149] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
(Cited on pages 11, 12, and 13)

[150] Kevin Patrick Murphy and Stuart Russell. Dynamic bayesian networks: representation,
inference and learning. PhD thesis, University of California, Berkeley Berkeley, CA,
2002. (Cited on page 163)

[151] A. Nath and P. Domingos. Efficient Belief Propagation for Utility Maximization and
Repeated Inference. In Proceedings of the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, volume 4, page 3, 2010. (Cited on page 169)

[152] A. Nath and P. Domingos. Efficient lifting for online probabilistic inference. In
AAAI Workshop - Technical Report, volume WS-10-06, pages 64–69, 2010. (Cited
on page 169)

[153] K. Ng and J. Lloyd. Probabilistic reasoning in a classical logic. Journal of Applied
Logic, 7(2):218–238, 2009. (Cited on page 169)

[154] K. Ng, J. Lloyd, and W. Uther. Probabilistic modelling, inference and learning using
logical theories. Annals of Mathematics and Artificial Intelligence, 54(1-3):159–205,
2008. (Cited on page 169)

152

Bibliography

[155] M. Niepert. Markov chains on orbits of permutation groups. In Uncertainty in Artificial
Intelligence - Proceedings of the 28th Conference, pages 624–633, 2012. (Cited on
pages 23, 30, and 169)

[156] M. Niepert. Symmetry-aware marginal density estimation. In Proceedings of the 27th
AAAI Conference on Artificial Intelligence, pages 725–731, 2013. (Cited on page 169)

[157] Mathias Niepert. Lifted probabilistic inference: An mcmc perspective. In Proceedings of
he 2nd International Workshop on Statistical Relational AI, 2012. (Cited on page 164)

[158] Mathias Niepert and Pedro Domingos. Exchangeable variable models. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), pages 271–279,
2014. (Cited on pages 2 and 138)

[159] Mathias Niepert and Guy Van den Broeck. Tractability through exchangeability: A
new perspective on efficient probabilistic inference. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, pages 2467–2475, 2014. (Cited on page 11)

[160] D. Nitti, T. De Laet, and L. De Raedt. A particle filter for hybrid relational domains.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2764–2771. IEEE, November 2013. (Cited on pages 32, 33, and 169)

[161] D. Nitti, T. De Laet, and L. De Raedt. Relational object tracking and learning. In
IEEE International Conference on Robotics and Automation, pages 935–942, 2014.
(Cited on pages 32, 33, and 169)

[162] D. Nitti, T. De Laet, and L. De Raedt. Probabilistic logic programming for hybrid
relational domains. Machine Learning, 103(3):1–43, 2016. (Cited on pages 32, 33,
and 169)

[163] Martin Nyolt and Thomas Kirste. On Resampling for Bayesian Filters in Discrete State
Spaces. In Proceedings of the 27th International Conference on Tools with Artificial
Intelligence, pages 526–533, Vietri sul Mare, Italy, November 2015. IEEE Computer
Society. (Cited on pages 17, 71, 72, and 80)

[164] Martin Nyolt, Frank Krüger, Kristina Yordanova, Albert Hein, and Thomas Kirste.
Marginal filtering in large state spaces. International Journal of Approximate Reason-
ing, 61:16–32, June 2015. (Cited on pages 2, 16, 17, and 78)

[165] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and David G Lowe. A
boosted particle filter: Multitarget detection and tracking. In European conference on
computer vision, pages 28–39. Springer, 2004. (Cited on page 14)

[166] N. Oury and G. Plotkin. Multi-level modelling via stochastic multi-level multiset
rewriting. Mathematical Structures in Computer Science, 23(02):471–503, April 2013.
(Cited on page 169)

[167] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, Inc., 1982. (Cited on page 103)

153

Bibliography

[168] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. In Advances in Neural Information Processing Systems, pages
2338–2347, 2017. (Cited on page 137)

[169] Matthew Parker and Alex Kamenev. Extinction in the Lotka-Volterra model. Physical
Review E, 80(2), August 2009. (Cited on page 89)

[170] Gheorghe Paun. Membrane Computing: An Introduction. Springer Science & Business
Media, 2012. (Cited on page 19)

[171] Dario Pescini, Daniela Besozzi, Giancarlo Mauri, and Claudio Zandron. Dynamical
probabilistic P systems. International Journal of Foundations of Computer Science,
17(01):183–204, 2006. (Cited on page 17)

[172] Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles
River Analytics Technical Report, 137:96, 2009. (Cited on page 165)

[173] D. Poole. First-order probabilistic inference. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pages 985–991, 2003. (Cited on pages 10,
11, 22, 23, 25, 28, 29, 57, and 169)

[174] D. Poole, F. Bacchus, and J. Kisynski. Towards completely lifted search-based proba-
bilistic inference. arXiv preprint, arXiv:1107.4035, 2011. (Cited on pages 29 and 169)

[175] H. Poon, P. Domingos, and M. Sumner. A General Method for Reducing the Com-
plexity of Relational Inference and its Application to MCMC. In Proceedings of the
23rd National Conference on Artificial Intelligence, volume 8, pages 1075–1080, 2008.
(Cited on page 169)

[176] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture.
In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, UAI’11, page 337–346, Arlington, Virginia, USA, 2011. AUAI Press. (Cited on
pages 138 and 165)

[177] M Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014. (Cited on page 166)

[178] Miquel Ramı́rez and Hector Geffner. Goal recognition over POMDPs: Inferring the
intention of a POMDP agent. In Proceedings of the 22nd IJCAI, pages 2009–2014.
AAAI Press, 2011. (Cited on page 16)

[179] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2
SPEC. ISS.):107–136, 2006. (Cited on page 8)

[180] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning,
62(1-2):107–136, 2006. (Cited on pages 22 and 25)

[181] Andrew R Runnalls. Kullback-leibler approach to gaussian mixture reduction. IEEE
Transactions on Aerospace and Electronic Systems, 43(3), 2007. (Cited on pages 96,
97, 120, and 121)

154

Bibliography

[182] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.
(Cited on page 8)

[183] Adam Sadilek and Henry Kautz. Location-based Reasoning about Complex Multi-
Agent Behavior. Journal of Artificial Intelligence Research, 43(1):87–133, January
2012. (Cited on page 16)

[184] S. Sanner and E. Abbasnejad. Symbolic Variable Elimination for Discrete and Contin-
uous Graphical Models. In AAAI, 2012. (Cited on pages 31 and 169)

[185] S. Sanner and C. Boutilier. Practical solution techniques for first-order MDPs. Artificial
Intelligence, 173(5-6):748–788, April 2009. (Cited on page 166)

[186] S. Sarkhel and V. Gogate. Lifting WALKSAT-based local search algorithms for MAP
inference. In AAAI Workshop - Technical Report, volume WS-13-16, pages 64–67,
2013. (Cited on page 169)

[187] S. Sarkhel, D. Venugopal, P. Singla, and V. Gogate. Lifted MAP Inference for Markov
Logic Networks. In Proceedings of the Seventeenth International Conference on Arti-
ficial Intelligence and Statistics, pages 859–867, 2014. (Cited on page 169)

[188] Simo Särkkä. Bayesian Filtering and Smoothing, volume 3. Cambridge University
Press, 2013. (Cited on page 1)

[189] Taisuke Sato and Yoshitaka Kameya. New advances in logic-based probabilistic mod-
eling by prism. In Probabilistic inductive logic programming, pages 118–155. Springer,
2008. (Cited on page 165)

[190] Thomas Schiex, Helene Fargier, and Gerard Verfaillie. Valued constraint satisfaction
problems: Hard and easy problems. In Procedings of the International Joint Conference
on Artificial Intelligence, 1995. (Cited on page 172)

[191] Max Schröder, Stefan Lüdtke, Sebastian Bader, Frank Krüger, and Thomas Kirste. An
Office Scenario Dataset for Benchmarking Observation-equivalent Entities, December
2016. (Cited on page 75)

[192] Max Schröder, Stefan Lüdtke, Sebastian Bader, Frank Krüger, and Thomas Kirste.
Abstracting from Observation-equivalent Entities in Human Behavior Modeling. In
AAAI Workshop: Plan, Activity, and Intent Recognition, February 2017. (Cited on
page 75)

[193] Dominic Schuhmacher, Ba-Tuong Vo, and Ba-Ngu Vo. A consistent metric for per-
formance evaluation of multi-object filters. IEEE transactions on signal processing,
56(8):3447–3457, 2008. (Cited on page 103)

[194] B. Schumitsch, S. Thrun, G. Bradski, and K. Olukotun. The information-form data
association filter. In NIPS, pages 1193–1200, 2005. (Cited on pages 32, 35, and 169)

[195] Luca Scrucca, Michael Fop, T Brendan Murphy, and Adrian E Raftery. mclust 5:
Clustering, classification and density estimation using gaussian finite mixture models.
The R journal, 8(1):289, 2016. (Cited on pages 123 and 190)

155

Bibliography

[196] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in probabilis-
tic databases. Proceedings of the VLDB Endowment, 1(1):809–820, 2008. (Cited on
page 169)

[197] P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based approximate lifted inference.
In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
pages 496–505. AUAI Press, 2009. (Cited on page 169)

[198] P. Shenoy and J. West. Inference in hybrid Bayesian networks using mixtures of
polynomials. International Journal of Approximate Reasoning, 52(5):641–657, July
2011. (Cited on pages 31 and 169)

[199] Kyle Siegrist. Random: Probability, mathematical statistics, stochastic processes,
2020. Accessed: 2020-10-01. (Cited on pages 65 and 66)

[200] P. Singla and P. Domingos. Lifted first-order belief propagation. In Proceedings of
the National Conference on Artificial Intelligence, volume 2, pages 1094–1099, 2008.
(Cited on pages 23 and 169)

[201] P. Singla, A. Nath, and P. Domingos. Approximate Lifted Belief Propagation. In AAAI
Workshop - Technical Report, pages 92–97, 2010. (Cited on page 169)

[202] P. Singla, A. Nath, and P. Domingos. Approximate Lifting Techniques for Belief
Propagation. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, pages 2497–2504, 2014. (Cited on pages 31 and 169)

[203] Parag Singla, Aniruddh Nath, and Pedro M Domingos. Approximate lifting techniques
for belief propagation. In Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014. (Cited on page 96)

[204] Harold W Sorenson and Daniel L Alspach. Recursive bayesian estimation using gaus-
sian sums. Automatica, 7(4):465–479, 1971. (Cited on page 13)

[205] R. L. Stratonovich. Conditional markov processes. Theory of Probability & Its Appli-
cations, 5(2):156–178, 1960. (Cited on page 1)

[206] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management, 3(2):1–180, May 2011. (Cited on
page 29)

[207] N. Taghipour, J. Davis, and H. Blockeel. Generalized counting for lifted variable
elimination. In 23rd International Conference on Inductive Logic Programming, volume
8812, pages 107–122, 2014. (Cited on pages 11, 29, 163, and 169)

[208] N. Taghipour, D. Fierens, J. Davis, and H. Blockeel. Lifted variable elimination with
arbitrary constraints. Journal of Machine Learning Research, 22:1194–1202, 2012.
(Cited on page 169)

[209] N. Taghipour, D. Fierens, J. Davis, and H. Blockeel. Lifted variable elimination: De-
coupling the operators from the constraint language. Journal of Artificial Intelligence
Research, 47:393–439, 2013. (Cited on page 169)

156

Bibliography

[210] N. Taghipour, D. Fierens, G. Van Den Broeck, J. Davis, and H. Blockeel. Completeness
results for lifted variable elimination. In Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, 2013. (Cited on pages 29 and 169)

[211] N. Taghipour, D. Fierens, G. Van Den Broeck, J. Davis, and H. Blockeel. On the
completeness of lifted variable elimination. In AAAI Workshop - Technical Report,
volume WS-13-16, pages 74–80, 2013. (Cited on page 169)

[212] F. Takiyama and F. Cozman. Inference with Aggregation Parfactors: Lifted Elimi-
nation with First-Order d-Separation. In Proceedings of the Brazilian Conference on
Intelligent Systems, pages 384–389, October 2014. (Cited on page 169)

[213] I. Thon, N. Landwehr, and L. De Raedt. Stochastic relational processes: Efficient
inference and applications. Machine Learning, 82(2):239–272, February 2011. (Cited
on pages 119, 122, and 124)

[214] Sebastian Thrun, Michael Montemerlo, Daphne Koller, Ben Wegbreit, Juan Nieto,
and Eduardo Nebot. Fastslam: An efficient solution to the simultaneous localization
and mapping problem with unknown data association. Journal of Machine Learning
Research, 4(3):380–407, 2004. (Cited on pages 14 and 15)

[215] M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous
state Markov Decision Processes. In Proceedings of the 23rd International Conference
on Machine Learning, pages 945–952. ACM, 2006. (Cited on page 166)

[216] Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural au-
toregressive density-estimator. In Advances in Neural Information Processing Systems,
pages 2175–2183, 2013. (Cited on page 137)

[217] G. Van Den Broeck. On the completeness of first-order knowledge compilation for lifted
probabilistic inference. In 25th Annual Conference on Neural Information Processing
Systems, 2011. (Cited on pages 137 and 169)

[218] G. Van Den Broeck, A. Choi, and A. Darwiche. Lifted relax, compensate and then
recover: From approximate to exact lifted probabilistic inference. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pages 131–141,
2012. (Cited on page 169)

[219] G. Van Den Broeck and A. Darwiche. On the complexity and approximation of binary
evidence in lifted inference. In Advances in Neural Information Processing Systems,
pages 2868–2876, 2013. (Cited on pages 135, 138, and 169)

[220] G. Van Den Broeck and J. Davis. Conditioning in first-order knowledge compilation and
lifted probabilistic inference. In Proceedings of the National Conference on Artificial
Intelligence, volume 3, pages 1961–1967, 2012. (Cited on page 169)

[221] G. Van Den Broeck, W. Meert, and A. Darwiche. Skolemization for weighted first-order
model counting. In Proceedings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning, 2014. (Cited on page 169)

157

Bibliography

[222] G. Van Den Broeck and M. Niepert. Lifted probabilistic inference for asymmetric
graphical models. In Proceedings of the National Conference on Artificial Intelligence,
volume 5, pages 3599–3605, 2015. (Cited on pages 31 and 169)

[223] G. Van Den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt. Lifted
probabilistic inference by first-order knowledge compilation. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, pages 2178–
2185, 2011. (Cited on pages 29, 165, and 169)

[224] Guy Van den Broeck. Lifted inference and learning in statistical relational models.
PhD thesis, PhD thesis, KU Leuven, 2013. (Cited on page 27)

[225] Guy Van den Broeck and Adnan Darwiche. On the complexity and approximation
of binary evidence in lifted inference. In Advances in Neural Information Processing
Systems, pages 2868–2876, 2013. (Cited on page 96)

[226] Wil Van Der Aalst. Process mining. Communications of the ACM, 55(8):76–83, 2012.
(Cited on page 137)

[227] J.a Van Haaren, G.a b Van den Broeck, W.a Meert, and J.a Davis. Lifted generative
learning of Markov logic networks. Machine Learning, 103(1):27–55, 2016. (Cited on
page 166)

[228] D. Venugopal and V. Gogate. On lifting the Gibbs sampling algorithm. In Advances
in Neural Information Processing Systems, volume 3, pages 1655–1663, 2012. (Cited
on pages 30 and 169)

[229] D. Venugopal and V. Gogate. Evidence-based clustering for scalable inference in
Markov logic. In Lecture Notes in Computer Science, volume 8726 LNAI, pages 258–
273, 2014. (Cited on pages 31 and 169)

[230] D. Venugopal and V. Gogate. Scaling-up importance sampling for Markov logic net-
works. In Advances in Neural Information Processing, volume 4, pages 2978–2986,
2014. (Cited on page 169)

[231] D. Venugopal, S. Sarkhel, and K. Cherry. Non-parametric domain approximation for
scalable Gibbs sampling in MLNs. In 32nd Conference on Uncertainty in Artificial
Intelligence, pages 745–754, 2016. (Cited on page 169)

[232] D. Venugopal, S. Sarkhel, and V. Gogate. Just count the satisfied groundings: Scalable
local-search and sampling based inference in MLNs. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, volume 5, pages 3606–3612, 2015. (Cited
on page 169)

[233] Deepak Venugopal and Vibhav Gogate. Evidence-based clustering for scalable inference
in markov logic. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 258–273. Springer, 2014. (Cited on pages 96 and 135)

[234] J. Vlasselaer, A. Kimmig, A. Dries, W. Meert, and L. De Raedt. Knowledge Compila-
tion and Weighted Model Counting for Inference in Probabilistic Logic Programs. In
Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016. (Cited
on page 169)

158

Bibliography

[235] C. Wang, S. Joshi, and R. Khardon. First order decision diagrams for relational MDPs.
Journal of Artificial Intelligence Research, 31:431–472, 2008. (Cited on page 166)

[236] T. Warnke, T. Helms, and A. Uhrmacher. Syntax and Semantics of a Multi-Level
Modeling Language. In Proceedings of the 3rd ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pages 133–144. ACM Press, 2015. (Cited on page 169)

[237] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach to prob-
abilistic programming inference. In Artificial Intelligence and Statistics, pages 1024–
1032, 2014. (Cited on page 165)

[238] Kristina Yordanova. Extracting planning operators from instructional texts for be-
haviour interpretation. In Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 215–228. Springer, 2018. (Cited on page 137)

[239] Lei Yu, Tianyu Yang, and Antoni B Chan. Density-preserving hierarchical em algo-
rithm: simplifying gaussian mixture models for approximate inference. IEEE transac-
tions on pattern analysis and machine intelligence, 41(6):1323–1337, 2018. (Cited on
page 96)

[240] Shun-Zheng Yu. Hidden semi-markov models. Artificial intelligence, 174(2):215–243,
2010. (Cited on page 77)

[241] Zeynep Yucel, Francesco Zanlungo, Claudio Feliciani, Adrien Gregorj, and Takayuki
Kanda. Identification of social relation within pedestrian dyads. PloS one,
14(10):e0223656, 2019. (Cited on page 99)

[242] L. Zettlemoyer, H. Pasula, and L. Kaelbling. Logical particle filtering. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008. (Cited
on pages 32 and 169)

[243] Kai Zhang and James T Kwok. Simplifying mixture models through function approx-
imation. In Advances in Neural Information Processing Systems, pages 1577–1584,
2007. (Cited on page 96)

[244] Nevin L. Zhang and David Poole. A simple approach to Bayesian network compu-
tations. In Proceedings of the Tenth Canadian Conference on Artificial Intelligence,
1994. (Cited on page 9)

159

A
Notation

The concepts in this work rely heavily on maps, multisets, and lists of variable length. Thus,
we need a suitable notation for working with such objects.

Maps The type of a map (partial function) taking elements from X and mapping to ele-
ments from Y is denoted as X 7→ Y . Furthermore, dom denotes the domain of a map (the
set of all elements x ∈ X such that f(x) is defined), ran denotes the range (codomain) of
the map (i.e. Y in the previous example), and img denotes its image (i.e. all y ∈ Y for which
there exists an x ∈ X with f(x) = y). A map m with m(x1) = y1, . . . ,m(xi) = yi is denoted
as m = 〈x1 : y1, . . . , xi : yi〉. To distinguish entities from other maps, we use the notation
e.K to denote the value corresponding to the key K of entity e.

Two maps can be combined by the operator ⊙, which is defined as:

(m1 ⊙m2)(k) =







m2(k) if k ∈ dom(m2) or (k ∈ dom(m1) ∧ k ∈ dom(m2))

m1(k) if k ∈ dom(m1) ∧ k /∈ dom(m2)

undefined otherwise

Note that this operator is not commutative: When a key k exists in both m1 and m2, the
map m1⊙m2 contains the value m2(k). We use m \k to denote removing the key-value pair
with key k from the map m.

It is sometimes convenient to have another map combination operator ⊕ at hand that
directly computes the sum of the elements in the range of the map (requiring that a sum is
defined for those elements):

(m1 ⊕m2)(k) =







m1(k) if k ∈ dom(m1) and k /∈ dom(m2)

m2(k) if k /∈ dom(m1) and k ∈ dom(m2)

m1(k) +m2(k) if k ∈ dom(m1) and k ∈ dom(m2)

undefined otherwise

Similarly, an operator ⊖ can be defined, that computes the difference of elements in the
range of the maps.

161

A. Notation

Sequences Sequences are maps of indices to elements. The expression seq X denotes the
set of finite sequences over X. We use 〈a1, . . . , an〉 as shorthand notation for 〈1 : a1, . . . , n :
an〉. The concatenation of two sequences s1 and s2 is denoted by s1 ⊙ s2, i.e. 〈a1, . . . , ai〉 ⊙
〈ai+1, . . . , aj〉 = 〈a1, . . . , aj〉. The length of a sequence s is denoted as |s|. The i-th element
of the sequence s is denoted as si, i.e. 〈a1, . . . , ai, . . . , an〉i = ai. We use a ∈ s to denote that
an element a is occurring in the sequence s. We use s \ ai to denote removing element ai
from the sequence s, i.e. 〈a1, . . . , ai−1, ai, ai+1, . . . , an〉 \ ai = 〈a1, . . . , ai−1, ai+1, . . . , an〉.

Multisets Multisets are maps from elements to natural numbers (multiplicities). The ex-
pression mset X denotes the set of multisets over X. We write Jn1 a1, . . . , ni ai K to denote
the multiset 〈a1 : n1, . . . , ai : ni〉. The expression x#a denotes the multiplicity of element
a in x, i.e. x#a = x(a). We use x1 ⊎ x2 to denote multiset union, and x1 ∪- x2 to denote
multiset difference, i.e. x1 ⊎x2 = x1⊕x2 and x1 ∪- x2 = x1⊖x2 (we use different symbols for
clarity). The function items(s) returns the multiset of elements in the sequence s, in which
each element a appears exactly as often as a appears in s, i.e. items(s) =⊎a∈s a.

Symbol Description

dom domain
ran codomain
img image
seq X Set of finite sequences over X
⊙ For maps: map combination; for sequences: concatenation
\ For sets: set difference; for maps: removing key-value pairs from a map;

for sequences: removing an element from a sequence
⊕ Map combination with summation of values
⊖ Map combination with subtraction of value
mset X Set of multiset over X
⊎ Multiset union
∪- Multiset difference
Multiplicity of an element in a multiset
1 Indicator function

Table A.1.: List of notation symbols.

162

B
More Related Work

In the following, we present additional work related to LiMa that was not discussed in the
literature survey (Chapter 3).

B.1. The Lifted (Dynamic) Junction Tree Algorithm

Using the variable elimination algorithm to answer multiple queries on the same graphical
model is unnecessarily inefficient, as some intermediate results need to be computed re-
peatedly for each query. The idea of the junction tree algorithm [125] is to perform these
computations a priori and store the results in a suitable form, so that queries can be an-
swered efficiently afterwards. Intuitively, the nodes of the junction tree represent subsets of
the complete model that share close relations, and information is propagated between the
junction tree nodes so that at the end, each node has all information it needs to compute
marginals of the random variables it contains. Braun and Möller [26] introduced a lifted
version of the junction tree algorithm by introducing first-order junction trees and using
first-order variable elimination [207] as the underlying inference algorithm.

The interface algorithm [150] is an inference algorithm for dynamic Bayesian networks
(DBNs). It constructs a junction tree from the DBN and performs inference on this junction
tree. Furthermore, it exploits the fact that only the random variables with outgoing edges
from time t − 1 are required for computing the belief states at time t. The lifted dynamic
junction tree (LDJT) algorithm [71] combines the lifted junction tree algorithm with the
interface algorithm to perform efficient inference in dynamic relational models.

The LDJT algorithm is closely related to LiMa: Both algorithm perform inference in
dynamic systems, and exploit symmetries in the underlying distribution to increase efficiency.
However, they are using completely different formalisms to specify the dynamic system: The
LDJT algorithm uses relational graphical models to specify the dynamic system, whereas
LiMa uses a symbolic, rule-based description (specifically, a MRS). The LDJT algorithm
(and conventional lifted inference algorithms in general) cannot be applied directly to MRSs,
which was the reason for devising LiMa in the first place.

163

B. More Related Work

B.2. Lumpability and Syntactic Markovian Bisimulation

The concept of lumpability describes under which conditions states in a Markov chain can
be aggregated to obtain an equivalent Markov chain with fewer states. A Markov chain with
transition model p is called lumpable with respect to a partition T of states, when for each
subset Ti and Tj in T and each states xi, x

′
i ∈ Ti,

∑

xj∈Tj

p(xj |xi) =
∑

xj∈Tj

p(xj |x
′
i).

Intuitively, when a Markov chain is lumpable with respect to partition T , we can construct
a smaller Markov chain, where state xi represents the partition Ti in T , and the transition
from xi to xj are the summed transition probabilities from states in Ti to Tj . The chain
constructed this way is the quotient Markov chain.

Lumping can lead to a substantial reduction in state space size. Instead of working with
the original chain with large state space size, we can compute a lumping and work with the
quotient chain (as long as we are not interested in differentiating between states that are in the
same subset of T). Unfortunately, most of the methods for generating the partition require
complete generation of the state space of the Markov chain, so that they are intractable for
large state spaces [56, 27].

Lumpability was also discussed in the context of lifted MCMC [157]: In this context, the
quotient chain does not actually need to be computed. Instead, the idea is to introduce new
transitions between states that are equivalent with respect to some equivalence relation, so
that the resulting orbital Markov chain behaves as if it was the quotient chain.

It is important to note that this algorithm does not perform Bayesian filtering, but gen-
erates samples of a single, static distribution – the Markov chain that is used in the MCMC
algorithm should not be confused with the Markov chain that that is induced by the tran-
sition model of Bayesian filtering. Thus, the algorithm only considers symmetries that are
present in the filtering distribution at a specific point in time.

Other approaches apply the concept of lumpability to stochastic processes in the context
of stochastic simulation of MRSs [33]. They avoid generating the complete state space of the
Markov chain by working on the MRS syntax. Specifically, they introduce an equivalence
relation of species (called Syntactic Markovian Bisimulation, SMB), based on properties
that can be checked statically by inspecting the MRS rules. Intuitively, two species X and Y
are equivalent when all reactions that have identical products and whose reactants are only
different in X and Y have identical reaction rates.

An SMB is fundamentally different from the symmetry property in LiMa, because it is a
global property that must hold for all points in time and regardless of the current distribution
over system states. In contrast, in LiMa, entities are grouped at specific points in time, when
the corresponding random variables are exchangeable in the current filtering distribution.
The grouping of entities can change over time due to splitting and merging. When a split of
some property could be required in the system at some point (due to action preconditions or
observations), entities that contain this property will not be equivalent in the sense of SMB.

164

B.3. Probabilistic Programming Languages

B.3. Probabilistic Programming Languages

Probabilistic Programming Languages (PPLs) describe, similar to computational state-space
models (CSSMs) like LiMa, a complex distribution by the algorithmic process that generates
the distribution. There are two branches of PPLs: Probabilistic Logic Programs (like ProbLog
[65] or Prism [189]) add probabilistic annotations to facts of a logic program. Imperative and
functional PPLs (e.g. Pyro [21] or Church [80]) are based on general-purpose programming
languages, and allow arbitrary constructs like loops and branches.

Thus, the underlying distributions can be complex, and inference is often computationally
expensive. Inference methods either perform exact or approximate (sampling-based) path
enumeration [237, 70], but these methods cannot exploit the structure of the underlying
distribution for more efficient inference. Alternatively, inference algorithms can compile the
program into a symbolic representation like a probabilistic graphical model [139, 172] or
a Binary Decision Diagram, and then perform inference on this representation. This way,
conditional and context-specific independence of the distribution can be exploited. However,
we are not aware of any inference algorithms for PPLs that exploit exchangeability that arises
due to the algorithmic description, which was the main motivation for developing LiMa.

B.4. Knowledge Compilation and Tractable Models

Knowledge compilation refers to a class of propositional reasoning methods. The idea is to
transform a propositional theory into a structure that allows more efficient inference, like a
binary decision diagram (BDD), or d-DNNF (see [48] for an overview of compilation targets).
The motivation is to perform this (potentially costly) transformation up-front, and then be
able to answer a large number of queries on the compiled representation quickly.

These methods can be used for probabilistic inference, by transforming the probabilistic
inference task to a weighted model counting (WMC) task. Given a propositional theory ∆
and a weight assigned to each literal (that define the weight of each model), WMC asks for
the sum of all models of ∆. After transforming the probabilistic inference to a WMC task,
WMC can be performed efficiently by knowledge compilation methods.

Recently, tractable probabilistic models (like sum-product networks [176] or probabilis-
tic sentential decision diagrams [112]) have received attention. They are closely related to
knowledge compilation target languages, but take a more direct approach: They encode
distributions in such a way that inference is directly tractable.

These methods can be seen as orthogonal to lifted inference methods: While knowledge
compilation methods and tractable models can exploit contextual independence, the focus of
lifted inference is on exploiting exchangeability. Indeed, a method that combines knowledge
compilation with lifted inference has been devised [223], that works by transforming inference
to a first-order WMC problem, and using a first-order compilation target language.

B.5. Statistical Relational Learning

A task that has not been discussed in this thesis is that of learning a LiMa model. Specifically,
the parameters of the MRS that defines the transition model (i.e. the action weights) or the
parameters of the observation model could be estimated from data.

165

B. More Related Work

A closely related task is considered in statistical relational learning [74], that aims at learn-
ing the parameters of relational probabilistic models from data. In parameter learning, the
goal is to optimize the likelihood of the model, given the data. This is, as in the proposi-
tional setting, typically done by expectation maximization: The parameters are computed
in an iterative process, consisting of computing the expected likelihood of the model, given
the current parameters, and choosing new parameters that maximize this expectation. In
contrast to propositional models, however, multiple parameters may be tied in relational
models (thus effectively reducing the total number of parameters). Parameter learning is a
difficult task, as it requires to perform probabilistic inference (which is itself a hard prob-
lem) each time the expectation is computed. Thus, approximate methods are typically used,
that optimize easier to compute measures than the likelihood. Recently, exact [227] and
approximate [2] lifted inference methods have been used for parameter learning.

B.6. First-Order Markov Decision Processes

A Markov decision process (MDP) is a model for sequential decision making where an agent
has to select actions based on the current environment state. Each action is associated with
a reward. Given an MDP, the task is to compute an optimal policy, i.e. a function that
assigns each state a corresponding action such that the long-term reward is maximized. The
optimal policy can be obtained by computing the value function (that assigns a value to each
state) using dynamic programming, see Puterman [177] for a more thorough introduction.

Similar to Bayesian filtering in MRSs, MDPs also suffer from the combinatorial explosion
in the number of states, such that algorithms that need to enumerate all states can become
infeasible. Methods for retaining a compact representation of the state space follow two basic
ideas. The first approach is to find symmetries in the state space of an MDP and group
symmetric state, thus obtaining a smaller state space [54, 76, 98]. The second approach
is to directly use a first-order formalism to represent states, and perform all operations
within this formalism [24, 107, 85, 185, 235]. In these approaches, states, actions, reward
functions, value functions and policies are all based on first-order logic. This way, the
resulting policy can be independent of the actual domain objects, and the computations to
obtain this policy can be independent of the domain size. A problem is that the (logical)
representation of the value function can easily become complex and redundant, requiring
expensive first-order simplification. Proposed solutions to this problem include first-order
ADDs (that can represent such a value function more compactly), and the use of approximate
methods [185].

Conceptually, first-order MDPs (and their solution techniques) bear strong relationships
to lifted probabilistic inference: Both are concerned with first-order models, where parts
of the model are redundant or identical. They both exploit these symmetries to achieve
more efficient algorithms, by performing operations “in bulk” for entire sets of redundant
components.

However, there is also a more technical, intimate relationship between MDPs and proba-
bilistic inference: It has been shown that decision problems (in terms of an MDP) can be cast
into a probabilistic inference problem [215]. Thus, any probabilistic inference algorithm can
be used to solve MDPs. This relationship also holds for first-order MDPs: Recently, Khardon
and Sanner [109] showed that the probabilistic inference problem that can be derived from a
first-order MDP inherits its symmetric structure. This structure can be exploited by lifted

166

B.6. First-Order Markov Decision Processes

inference, avoiding redundant computations. Due to the complex structure of the query, it is
however not possible to use standard lifted inference algorithms here. Instead, the first-order
dynamic programming approaches for solving first-order MDPs can be seen as performing
some specialized lifted inference algorithm. An interesting perspective for future research
is to combine the distinct innovations from both domains, and close the gap between the
respective lines of research – a paradigm termed generalized lifted inference by Khardon and
Sanner [109].

167

C
Assignment of Papers to Groups

The following table shows the specific papers associated with each of the groups defined in
the systematic literature review (Chapter 3).

Name References

Top-down LI [173] [113] [51] [52] [141] [6] [207] [210] [211] [49] [208] [209]
[154] [153] [212] [114] [40] [200] [53] [201] [202] [79] [78] [223]
[220] [217] [221] [140] [16] [234] [29] [77] [37] [93] [174] [103]
[101] [102] [110] [111] [175] [186] [187] [232] [142] [58] [45]
[46] [62] [94]

Bottom-up LI [106] [92] [105] [3] [2] [231] [230] [228] [229] [218] [83] [196]
[197] [30] [31] [155] [5] [222] [156] [144] [7] [143] [146] [145]
[219] [152] [151] [1] [82] [4] [73]

Continuous Inference [17] [18] [19] [184] [198]
Logical Particle Filter [242]
Relational Particle Filter [160] [162] [161]
Relational Kalman Filter [38] [41] [39]
Data Association [194] [87] [88] [89] [91] [117] [95] [11] [12] [13] [14] [15] [84]

[126] [127] [137]
Prob. Multiset Rewriting [9] [10] [119] [236] [22] [166] [138]

169

D
AMCA Computation as Constraint

Satisfaction

The central computational challenge in PMPMRSs is the enumeration of all AMCAs k of a
state l, which is required for computing the partition function Z =

∑

k∈K vl(k), where vl(k)
is the weight of k in l (see Definition 12). In Section 4.1.5, we presented a backtracking
search algorithm for this purpose, that exploits commutativity of multiset insertion to prune
subtrees of the search tree (that correspond to the different insertion orders).
Alternatively, the problem of identifying AMCAs can be formalized as a constraint satis-

faction problem (CSP), which allows us to employ the mature and well-understood theory
of CSPs to analyze the problem. Specifically, for a given set of action instances A and state
l = (s, γ), a CSP Ω = (X,D,C)1 can be created, such that each solution of the CSP is an
AMCA of (A, l) and vice versa, as follows:

• For each action instance (a, i) ∈ A, there is a CSP variable x ∈ X. The domain of x is
{0, . . . ,min

e∈i
(s#e)}, i.e. the variable x models the multiplicity of (a, i) in the compound

action.

• For each entity e ∈ dom(s) with multiplicity ne, there is a constraint c ∈ C involving
all variables xi whose corresponding action instances ai bind e. Let mi,e be the number
of times the action instance ai binds e. The constraint then is

∑

ime,i xi = ne. This
constraint ensures that the corresponding compound action is applicable and maximal.

Note that the constraint language consists only of sums and equality, independently of the
constraint language of action preconditions, which have been resolved before when computing
action instances.
A solution σ of the CSP Ω is an assignment of all variables inX that satisfies all constraints.

Each solution σ of Ω corresponds to a compound action kσ, where the value σ(x) of a variable
x indicates the multiplicity of the corresponding action instance (a, i) in kσ. Furthermore,
kσ is obviously applicable and maximal due to the constraints of Ω, as illustrated by the
following example.

Example 46. Recall the population model introduced in Example 33, where prey x =
〈Type = X〉 and predators y = 〈Type = Y 〉 exist. Predators can eat other animals (prey

1X is a set of variables, D is a set of domains, and C is a set of constraints

171

D. AMCA Computation as Constraint Satisfaction

Figure D.1.: The CSP for Example 46. Circles represent variables, rectangles represent con-
straints.

or other predators, action e), and all animals can reproduce (action r). For the state
l = J 1x, 2y K, the following applicable action instances exist: (r, 〈y〉), (r, 〈x〉), (e, 〈y, x〉),
(e, 〈y, y〉).
The corresponding CSP is shown in Figure D.1. For example, it contains the constraint

(r, y) + (e, (y, x)) + 2(e, (y, y)) = 2 because the entity y needs to be bound exactly 2 times
(i.e. the sum of multiplicities of action instances that bind y must be 2). Obviously, this
CSP has three solutions that correspond directly to the AMCAs.

Theorem 2. Let A be a set of action instances, and let l be a lifted state. Let Ω be the CSP
constructed from (A, l) as outlined above. Let kσ denote the compound action constructed
from a CSP solution σ. Then, for each solution σ of Ω, kσ is an AMCA of (A, l), and for
each AMCA k of (A, l), there is a solution σ of Ω so that kσ = k.

Proof. Let σ be a solution of Ω, and kσ be the corresponding compound action. Consider an
arbitrary entity e of l with multiplicity ne. Due to the constraint

∑

ime,i xi = ne, the entity
e is bound exactly ne times in kσ. Thus, kσ is an AMCA.

Let k be an AMCA of l. We can construct an assignment σ of the CSP variables where
the value of variable xi is the multiplicity of the corresponding action instance ai in k. As k
is applicable and maximal, σ satisfies all constraints of Ω and thus is a solution of Ω.

Thus, we can obtain all AMCAs of (A, l) by enumerating all solutions of the corresponding
CSP Ω. We can use standard backtracking for this purpose. This is sufficient, as the problem
here is not that finding each solution is difficult, but that there are factorially many solutions.

Note that the CSP we are considering is not an instance of a valued (or weighted) CSP
[43, 190]: They assume that each satisfied constraint has a value, and the goal is to find the
optimal variable assignment, whereas in our approach, only solutions have a value, and we
are interested the distribution of solutions.

172

E
Expressiveness of Sequential and

Maximally Parallel Multiset
Rewriting

In this section, we investigate the relationship between maximally parallel MRS semantics
(as defined in Section 4.1) and sequential MRS semantics (as defined in Section 2.3.1).
Specifically, we are concerned with the expressiveness of both formalisms. Obviously, each
sequential MRS can be emulated by a maximally parallel MRS, by adding a mutex entity
to the state and all preconditions, so that each compound action consists of exactly a single
action.

Here, we investigate their relationship in the other direction: Is it possible, for each maxi-
mally parallel MRS, to construct an equivalent sequential MRS that shows the same system
behavior? If this would be the case, the involved definitions of the maximally parallel MRS in
Section 4.1 would be superfluous, and we could have used a sequential MRS as the foundation
of the efficient BF algorithm.

Below, we show that this is not the case: Maximally parallel MRS are strictly more ex-
pressive than sequential MRS, i.e. there are systems that cannot be expressed by a sequential
MRS.

Example 47. Consider an MRS with the initial state x = J 1A, 1B, 1X, 1Y K and actions1

AX = J 1A, 1X K → J K

AY = J 1A, 1Y K → J K

BX = J 1B, 1X K → J K

BY = J 1B, 1Y K → J K

For this MRS, action instances coincide with actions, i.e. there is one action instance for each
of the actions. Suppose that the weights of the action instances are wAX = wBX = wBY = 3
and wAY = 1.

1For simplicity, we used a simple reactant-product notation for the actions, but of course, the actions could
just as well be denoted in precondition-effect notation.

173

E. Expressiveness of Sequential and Maximally Parallel Multiset Rewriting

Note that this MRS models a simple assignment problem over the sets {A,B} and {X,Y },
where the assignment AY has higher cost than the others (when interpreting weights as
negative costs).
There are two possible AMCAs k1 = J 1AX, 1BY K and k2 = J 1AY, 1BX K. Using

Definition 12, the compound actions have probabilities p(k1 |x) = 3 ∗ 3/12 = 0.75 and
p(k2 |x) = 3/12 = 0.25.

We are concerned with the question whether there is a sequential MRS that “behaves sim-
ilar” to the maximally parallel MRS outlined in the example. More precisely, can we define
a distribution over actions p(a |x) so that the probability of sampling a specific sequence of
actions is identical to the probability of sampling the corresponding AMCA?
Before we can answer this question, we need to formalize it more. Consider a sequence of

actions s = 〈a1, . . . , aT 〉. Under sequential MRS semantics, the probability of the sequence
is simply given by the product of the individual actions’ probabilities. These probabilities
will in general depend on the weight of the actions, and (by the chain rule) on the previously
chosen actions (not directly, but via the state that is manipulated by the previously chosen
actions).

p(s) = p(A1 = a1, . . . , AT = aT) =

T∏

t=1

pw(At = at |A1 = a1, . . . , At−1 = at−1), (E.1)

where w is the vector of all action weights. Here, the random variable At denotes the action
chosen at time t.

Obviously, multiple of such sequences correspond to the same compound actions, as the
elements in the compound action do not have an order. Specifically, all sequences s with
items(s) = k correspond to the compound action k. In the example above, the sequences
s11 = 〈AX,BY 〉 and s12 = 〈BY,AX〉 both correspond to k1, and the sequences s21 =
〈AY,BX〉 and s22 = 〈BX,AY 〉 both correspond to k2.
We say that a sequential MRS and parallel-action MRS behave similar, when for all k,

p(k) =
∑

{s | items(s)=k}

p(s) (E.2)

Now, we come back to Example 47, and investigate whether we can find action probabilities
for a sequential MRS so that it is equivalent to the parallel MRS in the sense of Equation E.2.

Example 47, cont’d. In this example, both compound actions consist of exactly two ac-
tions, thus we look at action sequences of length two, and try to find distributions p(A1)
and p(A2 |A1) so that Equation E.2 holds. If distributions p(A1) and p(A2 |A1) exist, the
following needs to hold:

p(k1) = p(s11) + p(s12)

= p(A1=AX) p(A2=BY |A1=AX) + p(A1=BY) p(A2=AX |A1=BY)
(E.3)

Note that in this example, the choice of the second action is always deterministic: Once the
first action is chosen, there are only two entities left in the state, leaving only a single action
that can be executed. Thus, p(A2=BY |A1=AX) = p(A2=AX |A1=BY) = 1, so that

p(k1) = p(A1=AX) + p(A1=BY). (E.4)

174

The same reasoning applies to p(k2), for which we get

p(k2) = p(A1=AY) + p(A1=BX). (E.5)

Now, we make use of the fundamental assumption for sequential MRS stated above: The
probability of an action depends only on the action’s weight and previously executed actions
(via the current state). From wAX = wBX = wBY , it thus follows that p(A1=AX)=p(A1 =
BX) = p(A1=BY). Using the symbolic names α = p(A1=AX) = p(A1=BX) = p(A1=BY)
and β = p(A1=AY), we get

p(k1) = 2α (E.6)

p(k2) = α+ β (E.7)

Inserting the compound action probabilities p(k1) = 0.75 and p(k2) = 0.25 and solving for
α and β gives α = 0.375 and β = −0.125. As β must be a probability, we cannot find a
distribution p(A1) so that the resulting sequential MRS has a similar dynamics as the parallel
MRS. We can generalize this observation in the following theorem.

Theorem 3. [non-serializability] Let A be a set of actions and let x0 be a state. Let K
be the set of AMCAs of (A, x0), and let p(k |x0) be a distribution over AMCAs. It is not
possible to fix distributions p(At |A1, . . . , At−1) that only depend on the action weights and
satisfy Equation E.2.

The counterexample given above directly proofs this theorem.
The theorem shows that it is not always possible to find a sequential MRS that shows

the same behavior as a maximally parallel MRS. Specifically, this means that although
two actions have identical weight, they need to have different probabilities to emulate the
behavior of a maximally parallel MRS. Of course, this violates the fundamental assumption
for sequential MRS: The weight are the only information available to construct the action
probabilities.
From a certain perspective, this result is not surprising: If it would be possible to con-

struct a sequential MRS with equivalent behavior to a given maximally parallel MRS, the
global optimum of the assignment problem that we started with in the example above could
be solved by a greedy strategy, by simply selecting the most likely action (i.e. most likely
assignment) in each step.

Another reason for the potential disagreement of maximally parallel and sequential MRS
can be seen as follows: Consider a given joint distribution over actions p(A1, A2). The
marginal probability for selecting the first action is, of course p(A1) =

∑

a2
p(A1, A2=a2).

Thus, intuitively, to faithfully model the compound action distribution p(A1, A2), the marginal
distribution p(A1) must contain “knowledge” about the future, since it needs to consider all
choices of future actions.

In summary, parallel and serial systems defined on the same set of local weights will
represent disagreeing distributions over compound actions, no matter what mapping from
weights to probabilities is chosen.
Finally, this result does not mean that maximally parallel MRSs are inherently better than

sequential MRSs. Our goal here was not a “competition” between different MRS semantics,
but rather showing that maximally parallel MRS can model different situations than the
(more common) sequential MRS. Which semantics is more suitable for a given situation is a
different question that might not always be easy to answer.

175

F
Disjointness of Lifted States

Here, we discuss the following problem: Given two lifted states l1 and l2, test whether there
is a ground state that has a non-zero probability in both l1 and l2, i.e. whether region(l1) ∩
region(l2) 6= ∅, without completely enumerating the ground states. Additionally, when such
a ground state exists, perform appropriate splitting operations, such that all split results are
pairwise disjoint.

Example 48. As an example of two lifted states whose regions are not disjoint, consider
the situation shown in Figure F.1. The regions of the lifted states l1 and l2 with

l1 = (J 1〈N: N1,L: X〉, 1〈N: N2,L: X〉, 1〈N: N1,L: Y 〉 K, 〈N1: U(A,B),N2: U(A,B)〉)

l2 = (J 1〈N: N1,L: X〉, 1〈N: N2,L: X〉, 1〈N: N1,L: Y 〉 K, 〈N1: U(A,B),N2: U(A)〉)

overlap on the ground state

x = J 1〈N: AN1
,L: XX〉, 1〈N: BN2

,L: XX〉, 1〈N: AN1
,L: YY〉 K.

As in Section 6.2, we consider overlapping states for two situations: We start with the
simple case, where the regions of two lifted states are considered to be overlapping when
there is a typed ground state that is an element of both regions (as in the example above).
Afterwards, we discuss a more general case, where overlap of regions is defined in terms of

untyped ground states: The regions of the states l1 and l2 are considered to be overlapping
when there are ground states x1 ∈ region(l1) and and x2 ∈ region(l2) so that 1 is identical
to x2 under an arbitrary renaming of the distribution types of x1. This case is relevant, for
example, for the merge-disjoint algorithm (Section 6.3), that requires states to be disjoint
in this sense.

F.1. Disjointness of Typed States

In this section, we investigate the case where the distribution types of ground states are
taken into account to define overlap of regions. We first show how we can test whether
region(l1) ∩ region(l2) 6= ∅ for given l1 and l2, without enumeration of all ground states.
Afterwards, we show how appropriate splits can be applied to l1 and l2, so that the regions
of all split results are disjoint.

177

F. Disjointness of Lifted States

A1
B1

A2
B2

B1A2 A1

B1A1A2

A1B2 B1

B2 A1B1

region(l1)
region(l2)

l2l1

A1
B1

A2

Figure F.1.: Example of lifted states with overlapping regions (see Example 48).

F.1.1. Identifying Overlap

We start by showing that lifted sates can only have overlapping regions when their structures
are identical. We call the states l1 = (s1, γ1) and l2 = (s2, γ2) disjoint when region(l1) ∩
region(l2) = ∅, i.e. when for each ground state x, either p(x | s1, γ1) = 0 or p(x | s2, γ2) = 0.
In other words, the states are disjoint when the conditional distributions p(x | s1, γ1) and
p(x | s2, γ2) are orthogonal, i.e. when

0 =
∑

x

p(x | s1, γ1) p(x | s2, γ2).

By using the decomposition φ(x) = (s,v), we get:

=
∑

s

∑

v

p(s | s1, γ1) p(v | s, s1, γ1) p(s | s2, γ2) p(v | s, s2, γ2)

=
∑

s

p(s | s1, γ1) p(s | s2, γ2)
∑

v

p(v | s1, γ1) p(v | s1, γ1)

Only a single term of the first sum can be non-zero, when s = s1 = s2, in which case
p(s | s1, γ1) = 1 and p(s | s2, γ2) = 1, i.e.

=1(s1 = s2)
∑

v

p(v | s1, γ1) p(v | s2, γ2).

Thus, l1 and l2 can only be non-orthogonal when their structures are identical.

Next, we decompose the other sum further. When the structures s1 and s2 are identical,
the contexts γ1 and γ2 have identical distribution types. Using this fact (and the fact that

178

F.1. Disjointness of Typed States

p(v | s, γ) decomposes into the product shown in Equation 4.9), the sum can be rewritten as

∑

v

p(v | s1, γ1) p(v | s2, γ2)

=
∑

v




∏

d∈dom(γ1)

pγ1(d)(v
(d) | s1)








∏

d∈dom(γ2)

pγ2(d)(v
(d) | s2)





=
∑

v

∏

d∈dom(γ1)

pγ1(d)(v
(d) | s1) pγ2(d)(v

(d) | s2).

This expression is non-zero when at east one of the terms of the sum is non-zero. This is the
case when each pair of factors γ1(d) and γ2(d) have an assignment for which they are both
non-zero, i.e. when each pair of factors γ1(d) and γ2(d) has overlapping support.

In summary, the regions of lifted states l1 and l2 overlap when (i) they have the same
structure, and (ii) when all factors with identical types have overlapping support. Both
properties can be tested on the syntactic level, without enumerating all groundings.

F.1.2. Shattering

To ensure disjointness, states with overlapping regions need to be split until all split results
are disjoint. Specifically, a pair of states l1 and l2 with overlapping regions will be split into
at least three split results: A state representing region(l1) \ region(l2), a state representing
region(l2) \ region(l1), and a state representing region(l1) ∩ region(l2).
For the case discussed here, identifying appropriate splits is straightforward: We can simply

select a pair of factors γ1(d) and γ2(d) that have overlapping (but not identical) support.
Such a factor must exist: If all factors have identical support, the states l1 and l2 would be
identical, and if a pair of factors would have disjoint support, the states would be disjoint.
For such a pair γ1(d) and γ2(d), we split both factors on a value that is in the support

of both γ1(d) and γ2(d). This way, after splitting, in all split results, the factors can no
longer overlap on that value. This procedure then needs to be applied recursively to all split
results, as they can still overlap on other factors (or on other values of the same factor). The
procedure is guaranteed to terminate, as the regions of the states become smaller with each
split. In the worst case, all resulting states are completely ground (and thus guaranteed to
be disjoint). We call this process shattering (named after shattering in FOVE [51]).

Example 49. Consider the states l1 = (s1, γ1) and l2 = (s2, γ2) from Example 48. The
support of factors γ1(N2) and γ2(N2) overlap on the value A. Thus, we split l1 on the entity
e = 〈N: N2,L: X〉 and the constraint e.N == A. Splitting l1 leads to the following two split
results:

l′1 = (J 1〈N: N1,L: X〉, 1〈N: N2,L: X〉, 1〈N: N1,L: Y 〉 K, 〈N1: U(A,B),N2: U(A)〉)

l′′1 = (J 1〈N: N1,L: X〉, 1〈N: N2,L: X〉, 1〈N: N1,L: Y 〉 K, 〈N1: U(A,B),N2: U(B)〉)

In l2, the factor γ2(N2) is already ground and thus, the state is not split. Now, all resulting
states are either disjoint or identical: The region of l′′1 is disjoint from the regions of l2 as
well as l′1, and l′1 and l2 are identical so they can be trivially merged.

Finally, shattering can be integrated into the filtering algorithm. Specifically, the test for
disjointness can be performed iteratively during the prediction step, when inserting elements

179

F. Disjointness of Lifted States

A
B

A
B

A

A
B

A

BA ABAA

BA BB AB

A AA

region(l1)

region(l2)

l2l1

Figure F.2.: Example of lifted states with overlapping regions, when distribution types are
ignored.

into the map that represents the filtering distribution (second to last line in Algorithm 3).
Condition (i) – states can only overlap when they have the same structure – can be exploited
here, by representing the filtering distribution by a map P : S → (V → R>0), so that states
with potential overlap can be identified quickly.

F.2. Disjointness of Untyped States

Next, we consider a more general notion of overlap: Lifted states have overlapping region
when there are ground states x1 ∈ region(l1) and x2 ∈ region(l2) so that x1 is identical to x2
except for the distribution types. For example, the merge-disjoint algorithm (see Section
6.3) requires that all lifted states are disjoint in this sense. The underlying intuition is that
ground states that have identical values are identical, even when these values were sampled
from different factors (indicated by different distribution types). The following example
illustrates this situation.

Example 50. Consider the states l1 and l2 shown in Figure F.2, where

l1 = (J 2〈N: N1,L: X〉, 1〈N: N2,L: Y 〉 K, 〈N1: U(A,B),N2: U(A,B)〉)

l2 = (J 1〈N: N1,L: X〉, 1〈N: N2,L: X〉, 1〈N: N3,L: Y 〉 K, 〈N1: U(A,B),N2: U(A),N3: U(A)〉)

The ground states x1 ∈ region(l1) and x2 ∈ region(l2) where

x1 = J 1〈N: BN1
,L: X〉, 1〈N: AN1

,L: X〉, 1〈N: AN2
,L: Y 〉 K

x2 = J 1〈N: BN1
,L: X〉, 1〈N: AN2

,L: X〉, 1〈N: AN3
,L: Y 〉 K

are identical, except for the distribution types (i.e. when “removing” the distribution types
from x1 and x2, they are both mapped to the state

x = J 1〈N: B,L: X〉, 1〈N: A,L: X〉, 1〈N: A,L: Y 〉 K.

180

F.2. Disjointness of Untyped States

Identifying states that overlap in this sense is more challenging than for the case before.
Intuitively, the problem is that we do not know in advance how the entities from l1 and l2 are
associated to the entities in x – in contrast to the case above, where the distribution types
directly provided this information. The general strategy is to search a possible matching of
the entities from l1 and l2, so that a ground state x that is in the region of both l1 and l2
can be constructed from the matching.

In the following, we start by defining the notion of states that are “similar except for
distribution types” more precisely. Afterwards, we define matchings of lifted states l1 and
l2, which indicate how the entities from l1 and l2 are associated, when this information
is not provided by the distribution type, as before. Finally, we chow how a state x ∈
region(l1)∪ region(l2) can be constructed from a matching, and how the necessary splits (so
that all split results are disjoint) can be read off x.

F.2.1. Untyped States

The concept of “ignoring distribution types” is formally captured by untyped states.

Definition 22. [untyped entity, untyped state] Let e = 〈q1 : (d1, v1), . . . , qn : (dn, vn)〉 be a
typed entity. We call u(e) = 〈q1 : v1, . . . , qn : vn〉 the untyped entity of e. Similarly, given a
typed (ground) state x = Jm1 e1, . . . ,mn en K, we call u(x) = Jm1 u(e1), . . . ,mn u(en) K the
untyped state of x.

Similarly, an untyped entity structure u(e) is a set of property names of the entity e,
and an untyped structure u(s) is a multiset of the untyped entities of the structure s.
Based on this definition, we can define the untyped region of an entity as uregionl(e) =
{u(ex) | ex ∈ regionl(e)}, and similarly the untyped region of a state l as uregion(l) =
{u(x) |x ∈ region(l)}. Finally, we can specify the goal of this section more precisely: Given
two lifted states l1 and l2, identify whether uregion(l1) ∩ uregion(l2) 6= ∅.

F.2.2. Matchings

In the following, we discuss how we can test whether the untyped regions of lifted states
overlap, without enumerating all untyped ground states. Conceptually, the idea is to con-
struct a matching of entities from l1 and l2, so that each pair of entities have overlapping
(untyped) regions. As we will see below, the existence of such a matching is only a necessary
condition for the overlap of l1 and l2, as it ignores the dependencies between entities (that
arise when values in multiple entities are drawn from a joint factor).

Definition 23. [multiset matching] Let s1 and s2 be multisets. We call a sequence of pairs

m = 〈((e
(i)
1 , e

(i)
2)〉ni=1

a matching of s1 and s2, when

• for each pair (e1, e2) ∈ m : e1 ∈ dom(s1) and e2 ∈ dom(s2),
• the multiplicity of each entity e ∈ s1 is identical to the number of occurrences of e in

m, i.e. s1#e =
∑

(e1,e2)∈m
1(e1 = e), and

• the multiplicity of each entity e ∈ s2 is identical to the number of occurrences of e in
m, i.e. s2#e =

∑

(e1,e2)∈m
1(e2 = e).

181

F. Disjointness of Lifted States

The set of all matchings of the entities in s1 and s2 (that are distinct up to ordering of the
pairs) is denoted as M(s1, s2).

For each ground state x ∈ region(l), there is a matching between x and l so that for each
pair (ex, el), ex ∈ uregionl(el), as stated by the following theorem.

Theorem 4. Let l = (s, γ) be a lifted state, and let x ∈ uregion(l). Then, there is a
matching m of s and x, with the property that ∀(es, ex) ∈ m: ex ∈ uregionl(es).

Proof. Consider the sampling semantics to obtain a sample x ∈ uregion(l). For each entity
es ∈ dom(s), a new entity ex is created as follows: For each property q in es, sample a value
v and set e.q = v. Obviously, ex ∈ uregionl(es). Thus, when collecting exactly all those pairs
(es, ex) in m, the sequence m will be a matching with the claimed property.

Example 51. Consider the lifted state

l1 = (J 2〈N: N1,L: X〉, 1〈N: N2,L: Y 〉 K, 〈N1: U(A,B),N2: U(A,B)〉)

and the ground state x = J 1〈N: A,L: X〉, 1〈N: B,L: X〉, 1〈N: A,L: Y 〉 K from Example 50
above. As x ∈ uregion(l1), we can find a matching m with the property described in Theorem
4:

m = 〈(〈N: N1,L: X〉, 〈N: A,L: X〉),

(〈N: N1,L: X〉, 〈N: B,L: X〉),

(〈N: N2,L: Y 〉, 〈N: A,L: Y 〉)〉

This is true for any lifted state l that has x in its untyped region. Thus, for two lifted
states l1 and l2 that both have x in their untyped region (i.e. that are overlapping), there is
also a matching of entities from l1 = (s1, γ1) and l2 = (s2, γ2), such that for each pair (e1, e2)
with e1 ∈ dom(s1) and e2 ∈ dom(s2), they both have an entity e ∈ dom(x) in their region.

Theorem 5. Let l1 and l2 be two lifted states with uregion(l1) ∩ uregion(l2) 6= ∅. Then,
there is a matching m of l1 and l2 where

∀(e1, e2) ∈ m : uregionl1(e1) ∩ uregionl2(e2) 6= ∅. (F.1)

This theorem provides us with a necessary condition for overlapping regions of lifted states
that can be tested on individual entities. Fortunately, deciding whether Equation F.1 holds
is simple: Regions of entities overlap when they have the same properties, and when for
each property q, the corresponding distributions γ1(e1.q) and γ2(e2.q) do not have disjoint
support.
However, finding a matching with the property of Equation F.1 can still be difficult.

Naively, we need to construct all matchings m, and check each of them. Below, we outline
a search-based approach that can be more efficient.
Before, we introduce a another necessary condition for overlapping regions that can be

tested without finding a matching of entities: Similar to the case above, two lifted states l1
and l2 can only have overlapping regions when they have the same untyped structure. This
is the case because all ground states from the region of l1 and l2 need to share that structure.

182

F.2. Disjointness of Untyped States

Algorithm 17 Test disjointness of lifted states (for the case where distribution types are
ignored).

1: function is-disjoint(l1 = (s1, γ1), l2 = (s2, γ2))
2: if u(s1) 6= u(s2) then
3: return true
4: Let E1 be the sequence of entities of s1, and E2 be the sequence of entities of s2
5: return search-overlap(E1, E2, 〈〉)

6: function search-overlap(E1 = 〈e
(1)
1 , . . . , e

(2)
1 〉, E2 = 〈e

(1)
2 , . . . , e

(n)
2 〉, m)

7: if E1 == 〈〉 then ⊲ All entities are used in m, i.e. m is candidate matching
8: Construct a CSP Γ from m that has a solution when ∃x ∈ region(l1) ∩ region(l2)
9: if Γ has a solution then return false else return true

10: for i = 1, . . . , n do

11: if uregionl1(e
(1)
1) ∩ uregionl2(e

(i)
2) 6= ∅ then

12: r ← search-overlap(E1 \ e
(1)
1 , E2 \ e

(i)
2 , m⊙ 〈(e

(1)
1 , e

(i)
2)〉)

13: if r is false then
14: return false
15: return true

Theorem 6. Let l1 = (s1, γ1) and l2 = (s2, γ2) be two lifted states. When uregion(l1) ∩
uregion(l2) 6= ∅, then u(s1) = u(s2).

Proof. Via Theorem 5, there is a matching between l1 and l2 such that ∀(e1, e2) ∈ m:
uregionl1(e1) ∩ uregionl2(e2) 6= ∅. Thus, ∀(e1, e2) ∈ m : u(e1) = u(e2), and therefore,
u(s1) = u(s2).

These properties allow to check potential overlap directly on the syntactic level: First, two
lifted states can only overlap when their untyped structures are identical (Theorem 6). When
this necessary condition is satisfied, we can proceed to check the necessary condition given by
Theorem 5. Unfortunately, this property needs to be checked for all possible matches of the
two lifted states. Although this number is large in the worst case (when both states have n
entity structures each, there can be up to n! matches), the number of matches that actually
needs to be checked is typically much lower: First, the number of different entity structures is
typically much lower than the overall multiplicity, and thus, the number of distinct matches
will also be much lower. Furthermore, the matchings can be constructed iteratively in a DFS-
based approach (as outlined in Algorithm 17), such that when the condition of Theorem 6
is violated, we do not need to explore that subtree any further.

Finally, note that these are only necessary, but not sufficient conditions. Intuitively, these
conditions ignore the correlation of entities that can exist when values of different entities
follow a joint distribution. For example, the entities 〈N: N1,L: X〉 and 〈N: N2,L: Y 〉 from
the state l1 (Example 50) need to have a distinct N slot, as that property is distributed
according to an urn without replacement with unique values.

Thus, for each matching that satisfies the necessary conditions, we need to check whether
there actually exists a ground state x with x ∈ region(l1) ∩ region(l2). Here, this is done by
transformation into a constraint satisfaction problem (CSP), as outlined next.

183

F. Disjointness of Lifted States

Figure F.3.: Example of a candidate matching (left), and the corresponding CSP (right).
Circles denote CSP variables (with domain written below each variable), and
rectangles denote constraints.

F.2.3. Reduction to a Constraint Satisfaction Problem

Here, we discuss the remaining problem for identifying whether uregion(l1)∩uregion(l2) 6= ∅:
Given a candidate matching m, construct a ground state x with x ∈ uregion(l1)∩uregion(l2),
if one exists.

This can be done by transforming the problem into a constraint satisfaction problem
(CSP), so that a solution to the CSP directly corresponds to a state x ∈ uregion(l1) ∩

uregion(l2). The general idea is to create a CSP variable x
(i)
q for each property q of each

pair of entities (e
(i)
1 , e

(i)
2) ∈ m, with domain identical to the intersection of the support of the

distributions γ1(e1.q) and γ2(e2.q). This way, we ensure that an assignment of these CSP

variables corresponds to a ground entity e(i) with e(i) ∈ uregionl1(e
(i)
1) ∩ uregionl2(e

(i)
2).

Additionally, we need to consider the constraints that arise due to the distributions in γ:
For example, for an urn without replacement with unique values, all values that reference
that distribution need to be unique. This is modeled by pairwise inequality constraints of
the corresponding CSP variables.

When the CSP has a solution, then the regions of l1 and l2 are not disjoint, and a state x
that is an element of both regions can be directly constructed from the solution.

Example 52. Consider the example shown in Figure F.3. Suppose we have identified the
matching

m = 〈(〈N: N1,L: X〉, 〈N: A,L: X〉),

(〈N: N1,L: X〉, 〈N: N,L: X〉),

(〈N: N2,L: Y 〉, 〈N: A,L: Y 〉)〉

for the states l1 and l2 (see Example 50). The corresponding CSP is shown in Figure F.3
(right). From the solution of the CSP, the ground state

x = J 1〈N: A,L: X〉, 1〈N: B,L: X〉, 1〈N: A,L: Y 〉 K

can be constructed directly.

Finally, the CSP solution directly provides us with a matching mx between entities of x
and l1 (and also with a matching m2 between entities of x and l2, that is consistent with
mx), which is necessary for shattering, explained next.

184

F.2. Disjointness of Untyped States

A
B

A
B

A

A
B

A
(a) overlapping

(b) split

BA

A
B

AB

A
B

(d) still overlapping

(e) split again

B AB A AB

(f) also split

A AA

A

A
B

A

(c) no split
required

Figure F.4.: Example of shattering (see Example 53 for a more detailed explanation). The
two states at the top are not disjoint (a), so they need to be split (b,c). Un-
fortunately, two of the split results are still overlapping (d), so they need to be
split again (e,f). The resulting four states are disjoint.

F.2.4. Shattering

As for the case of states with identical structure, we are again interested in identifying
appropriate splits so that all split results are disjoint.
Fortunately, the function is-disjoint (Algorithm 17) already provides us with a ground

state x ∈ region(l1) ∩ region(l2) and a mapping m of the entities in l1 and l2, which can be
used to guide the splitting process.
Specifically, we select a pair (e1, e2) of entities from m, where for a property q, γ1(e1.q) 6=

γ2(e2.q). By the same reasoning as in Section F.1.2, such a pair of entities must exist,
as otherwise, the states l1 and l2 would be identical. Also, the distributions γ1(e1.q) and
γ2(e2.q) cannot have disjoint support, due to Theorem 5. Thus, the distributions γ1(e1.q)
and γ2(e2.q) are neither disjoint nor identical, i.e. they need to be split to make the states
l1 and l2 disjoint.
The value on which to split is given directly by the entity ex ∈ regionl1(e1) ∩ regionl2(e2)

of ground state x ∈ region(l1) ∩ region(l2): We split entity e1 of l1, as well as e2 of l2, on
the constraint q == ex.q. Intuitively, by splitting on the value ex.q, we are dividing the
lifted state into those ground states that are elements of uregion(l1)∩ uregion(l2), and those
that are just elements of either uregion(l1) or uregion(l2). This procedure is then applied
recursively on all split results, as the resulting states can still overlap, due to other properties.

Example 53. Consider the lifted states l1 = (s1, γ1) and l2 = (s2, γ2) shown in Figure F.4
(top) with

l1 = (J 2〈N: N1,L: X〉, 1〈N: N2,L: Y 〉 K, 〈N1: U(A,B),N2: U(A,B)〉)

l2 = (J 1〈N: N,L: X〉, 1〈N: A,L: X〉, 1〈N: A,L: Y 〉 K, 〈N: U(A,B)〉)

Their regions overlap on the ground state

x = J 1〈N: A,L: X〉, 1〈N: B,L: X〉, 1〈N: A,L: Y 〉 K.

185

F. Disjointness of Lifted States

The shattering algorithm selects q = N , e1 = 〈N: N2,L: Y 〉 and e2 = 〈N: A,L: Y 〉 for
splitting. Here, e2 does not need to be split, as e2.q is already a constant. Splitting l1 on e1
with the constraint e1.N == A results in two states

l′1 = (J 2〈N: N1,L: X〉, 1〈N: A,L: Y 〉 K, 〈N1: U(A,B)〉)

l′′1 = (J 2〈N: N1,L: X〉, 1〈N: B,L: Y 〉 K, 〈N1: U(A,B)〉)

Unfortunately, l′1 and l2 still have overlapping regions, so the shattering process needs to
be applied recursively, as shown in Figure F.4. Finally, we arrive at four disjoint states (as
opposed to the five ground states in region(l1) ∩ region(l2)).

186

G
Details of Experiments

G.1. Kitchen Scenario

Here, we provide more details on the LiMa model for the kitchen scenario (see Sections 4.5
and 6.5.4). The state is modeled so that it consists of one entity for each object that is used
during the cooking process, as well as an entity for the subject, and an entity for each hand
of the subject (the latter allow to easily track whether each hand is already occupied).

For the lifted state representation, the identities of the glass, plate, pot, spoon and wooden
spoon are represented by an urn without replacement. The reasoning is that these objects
do not always need to be distinguished, e.g. when cleaning the utensils or when setting the
table. Specifically, the initial state is l = (s, γ) with

s = J 3〈N: N,Dirty: No,Pos: Cupboard〉,

2〈N: N,Dirty: No,Pos: Counter〉,

1〈N: Knife,Pos: Counter〉,

1〈N: Cutting board,Pos: Counter〉,

1〈N: Sponge,Pos: Sink〉,

1〈N: Bottle,Pos: Counter,Closed: Yes〉,

1〈N: Carrot,Pos: Counter,Clean: No,Cut: No,Cooked: No〉,

1〈N: Cupboard,Closed: Yes〉,

1〈N: Stove, SwitchedOn: No〉,

1〈N: Person,Pos: Sink,Hungry: Yes,Thursty: Yes, Seated: No〉,

2〈N: Hand,Free: Yes〉 K,

γ =〈N: U(Glass, Plate, Pot, Spoon, Wooden Spoon)〉.

For each of the 16 action classes that subjects can perform (see Figure G.2 for all action
classes), there is a corresponding action in the PMPMRS that describes the transition model.
Additionally, a number of more specific actions have been designed, that cover behaviors
that have been observed but are not already modeled by the 16 general-purpose actions.
For example, the general put action assumes that an object is put at a specific location
(the current location of the agent), but there are also cases where an object a is put inside

187

G. Details of Experiments

0.4

0.5

0.6

LiMa LiMa+merge MF HMM QDA

model

A
c
c
u
ra

c
y

Figure G.1.: Accuracy (of predicting the activity class) of LiMa (using at most 2000 states),
the ground marginal filter, and the baseline classifiers for the kitchen scenario.

another object b, such that moving b will also move a, which is modeled by an additional
put-inside action.

The weights of actions have been chosen according to a goal distance heuristic, that is based
on the task script shown in Table G.1. The intuition here is that people act goal-directed in
this scenario, i.e. they have a higher chance to execute an action that will decrease the goal
distance. The same concepts are used in Computational Causal Behavior Models (CCBMs)
[120].

Specifically, such an action selection mechanism requires to slightly generalize the definition
of actions (Definition 6): Instead of positive real numbers, a weight is a function κ : S ×Γ×
〈E〉 → R≥0 of the prior state and the bound entities to the positive real numbers. Here, we
set κ(s, γ, e) = exp(−d(f(s, γ, e)), where f is the effect function of the action (i.e. f(s, γ, e)
is the posterior state after applying the action to state l with bound entities e), and d is the
step of the task script shown in Table G.1.

In addition, we compared the accuracy of action class recognition between LiMa and two
baseline classifiers: Quadratic discriminant analysis (QDA) and a hidden Markov model
(HMM). The parameters of the QDA and the HMM have been estimated by the standard
maximum likelihood estimators, using the labeled training data. As the rest of the evalu-
ation is not done as a cross validation (which would have been methodologically infeasible
considering the knowledge-based construction of the PMPMRS), the baseline models are also
trained on the complete dataset. Figure G.2 shows the confusion matrices of LiMa (with
and without merging) and the baseline classifiers, and Figure G.1 shows corresponding ac-
curacies. There is no significant difference of accuracy between LiMa, the ground marginal
filter (MF), and the HMM. The fact that there is no significant difference between LiMa and
MF comes from the fact that both algorithms are saturated with 2000 particles (see Figure
4.11). The HMM (with 16 states) has 272 parameters – as no cross validation is performed,
we suspect that the HMM is subject to overfitting, and thus accuracy is overestimated.

188

G.1. Kitchen Scenario

WASH

WAIT

TURN_ON

TURN_OFF

TAKE

STAND_UP

SIT_DOWN

PUT

OPEN

MOVE

FILL

EAT

DRINK

CUT

COOK

CLOSE

C
L
O

S
E

C
O

O
K

C
U

T

D
R

IN
K

E
A
T

F
IL

L

M
O

V
E

O
P

E
N

P
U

T

S
IT

_
D

O
W

N

S
T
A

N
D

_
U

P

T
A

K
E

T
U

R
N

_
O

F
F

T
U

R
N

_
O

N

W
A

IT

W
A

S
H

truth

e
s
ti
m

a
te

0.00

0.25

0.50

0.75

1.00

value

(a) QDA.

WASH

WAIT

TURN_ON

TURN_OFF

TAKE

STAND_UP

SIT_DOWN

PUT

OPEN

MOVE

FILL

EAT

DRINK

CUT

COOK

CLOSE

C
L
O

S
E

C
O

O
K

C
U

T

D
R

IN
K

E
A
T

F
IL

L

M
O

V
E

O
P

E
N

P
U

T

S
IT

_
D

O
W

N

S
T
A

N
D

_
U

P

T
A

K
E

T
U

R
N

_
O

F
F

T
U

R
N

_
O

N

W
A

IT

W
A

S
H

truth

e
s
ti
m

a
te

0.00

0.25

0.50

0.75

1.00

value

(b) HMM.

WASH

WAIT

TURN_ON

TURN_OFF

TAKE

STAND_UP

SIT_DOWN

PUT

OPEN

MOVE

FILL

EAT

DRINK

CUT

COOK

CLOSE

C
L
O

S
E

C
O

O
K

C
U

T

D
R

IN
K

E
A
T

F
IL

L

M
O

V
E

O
P

E
N

P
U

T

S
IT

_
D

O
W

N

S
T
A

N
D

_
U

P

T
A

K
E

T
U

R
N

_
O

F
F

T
U

R
N

_
O

N

W
A

IT

W
A

S
H

truth

e
s
ti
m

a
te

0.00

0.25

0.50

0.75

1.00

value

(c) LiMa, no merging.

WASH

WAIT

TURN_ON

TURN_OFF

TAKE

STAND_UP

SIT_DOWN

PUT

OPEN

MOVE

FILL

EAT

DRINK

CUT

COOK

CLOSE

C
L
O

S
E

C
O

O
K

C
U

T

D
R

IN
K

E
A
T

F
IL

L

M
O

V
E

O
P

E
N

P
U

T

S
IT

_
D

O
W

N

S
T
A

N
D

_
U

P

T
A

K
E

T
U

R
N

_
O

F
F

T
U

R
N

_
O

N

W
A

IT

W
A

S
H

truth

e
s
ti
m

a
te

0.00

0.25

0.50

0.75

1.00

value

(d) LiMa with merging.

Figure G.2.: Confusion matrices for the kitchen scenario.

Step d Task State predicate if task not fulfilled

1 14 Clean hands – (no state predicate with lower step count
matches)

2 13 Get food to sink not clean food, holds food, not at sink
3 12 Clean food not clean food, holds food, at sink
4 11 Cut food clean food, not food prepared
5 10 Turn stove on food prepared, not cooked, stove off
6 9 Cook food food prepared, not cooked, stove on
7 8 Turn oven off hungry, cooked, stove on
8 7 Finish setting table &

Sit down
hungry, cooked, stove off, not seated

9 6 Enjoy meal hungry, stove off, seated
10 5 Get up not hungry, seated
11 4 clean kitchen utensil

(ku)
not hungry, not seated, 4 ku dirty

12 3 clean ku not hungry, not seated, 3 ku dirty
13 2 clean ku not hungry, not seated, 2 ku dirty
14 1 clean ku not hungry, not seated, 1 ku dirty
15 0 done

Table G.1.: Task script for the kitchen scenario. Reproduced from Krüger et al. [123].

189

G. Details of Experiments

●
● ● ● ● ●

●

●
●

● ● ●
●

● ●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ● ●

● ●

●

●

● ● ●
● ●

● ● ● ●

●
● ●

● ●

●
● ● ● ● ●

●

● ●●
● ●

● ● ●
●

● ●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ● ●

● ●

●

●

●
●

● ● ● ●

●
● ●

● ●

●
● ● ● ● ●

●

● ●●
● ●

● ● ●
●

● ●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ● ●

● ●

●

●

●
●

● ● ● ●

●
● ●

● ●

●

●
● ● ● ● ●

●

● ●●
● ●

● ● ●
●

● ●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ● ●

● ●

●

●

●
●

● ● ● ●

●
● ●

● ●

●

●
● ● ● ● ●

●

● ●●
● ●

● ● ●
●

● ●
●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ● ●

● ●

●

●

●
●

● ● ● ●

●
● ●

● ●

30

40

50

60

70

30 40 50 60 70

8

9

1

10

1

2

4

1

1

3
4

1
1

5

4
41

30

40

50

60

70

30 40 50 60 70

Figure G.3.: Example of fitting a Gaussian mixture to obtain the lifted representation for the
Travian scenario. Left: Original village locations, different colors denote differ-
ent players. Right: Lifted state representation. Each ellipse denotes location
distribution of an entity structure, the numbers denote their multiplicities.

G.2. Learning a Lifted Representation by Gaussian Mixture

Fitting for the Travian Scenario

In this section, we describe in more detail how the lifted initial state is estimated in the
Travian scenario (Section 6.4).
The dataset D that was obtained from a real game server consists of tuples (v, o), where v

denotes the two-dimensional position of a village on the grid map, and o denotes the owner
of the village. This situation could be modeled as a ground state x, where each tuple (v, o)
corresponds to an entity e = 〈P: o,L: v〉. Our goal here is to obtain a lifted state l that is a
“good” description of this game state, but has fewer distinct entities.
This is done by assuming that the data D is a sample of an underlying distribution of

village locations, and that this distribution can be described by a lifted state. The lifted
state can then be obtained by estimating the parameters of this distribution.
Recall (as shown in Equation 6.20) that the distribution over all data points v1:N with a

fixed owner o can be approximated as:

p(v1:N | s, γ) =
N∏

j=1

∑

(di,ρi)∈γ

ni

N
pρi(vj),

with pρ ∼ N (µi,Σi). This distribution is a Gaussian mixture, and parameters (i.e. mixture
weights ni, mean vectors µi and covariance matrices Σi can be estimated by expectation
maximization for each player o. Specifically, we used the R package mclust [195] for ex-
pectation maximization, and assumed that all components of a given owner share a single
covariance matrix Σ.
Constructing the corresponding lifted state l = (s, γ) from those parameters is straight-

forward: For each mixture component with parameters µi and Σ,
(i) create a representation ρi = N (µi,Σ),
(ii) create a new distribution label di,
(iii) insert 〈di : ρi〉 into γ,

190

G.2. Learning a Lifted Representation by Gaussian Mixture Fitting for the Travian Scenario

(iv) create an entity structure ei = 〈P: o,L: di〉,
(v) set the multiplicity mi of ei as the number of samples (v, o) that most likely belong to

mixture component i, i.e. for which the likelihood pρi(v) is maximal, and
(vi) insert ei with multiplicity mi into s.
Figure G.3 visualizes this estimation procedure for one of the datasets that was actually

used in the experiments with 10 players and 71 villages (only a part of the map is shown).

191

Curriculum Vitae

Name Stefan Lüdtke
Date of Birth August 05, 1991
Place of Birth Rostock
Nationality German

Experience and Education

since 10/2016 Research Associate, University of Rostock, Germany
10/2014 – 10/2016 Master in Computer Science, University of Rostock
10/2011 – 10/2014 Bachelor in Computer Science, University of Lübeck
2002 – 2010 High-school diploma (Abitur), Gymnasium Sanitz

193

G.2. Learning a Lifted Representation by Gaussian Mixture Fitting for the Travian Scenario

195

	Introduction
	Motivation
	Problem Description and Requirements
	Contributions
	Outline of the Thesis

	Background
	Probabilistic Inference
	Probabilistic Graphical Models
	Probabilistic Inference
	Relational Graphical Models

	Bayesian Filtering
	Problem Setup
	Particle Filtering
	Rao-Blackwellized Particle Filtering
	Computational State Space Models
	Marginal Filtering

	Multiset Rewriting Systems
	Multiset Rewriting Systems
	Maximally Parallel MRS

	Symmetry-Aware Probabilistic Inference: A Systematic Review
	Systematic Literature Review
	Research Question
	Search Procedure
	Paper Selection
	Analysis Procedure: Algorithm Properties
	Quantitative Results

	Symmetry-Aware Inference Algorithms
	Lifted Probabilistic Inference
	Inference in Continuous Domains
	Relational Bayesian Filtering

	Conclusion

	Lifted Marginal Filtering
	A Probabilistic Maximally Parallel Multiset Rewriting System with Structured Entities
	Design Considerations
	MRS with Structured Entities
	Maximally Parallel MRS
	Probabilistic Maximally Parallel MRS
	An Algorithm to Enumerate AMCAs

	Bayesian Filtering in Multiset Rewriting Systems
	Prediction
	Update

	Factorizing Multiset Distributions
	Decomposing Multisets of Structured Entities
	Distributions of Value Sequences
	Lifted States

	Lifted Filtering
	Applying Constraints and Effects to Lifted States
	Splitting
	Disjointness of Lifted States
	The Lifted Marginal Filtering Algorithm

	Experimental Evaluation
	Evaluation Scenarios
	Exact Inference
	Approximate Inference
	Summary

	Approximating the System Dynamics using MCMC
	An MCMC Algorithm for p(K `39`42`"613A``45`47`"603A|l)
	Experimental Evaluation

	Lifted Marginal Filtering in Asymmetrical Models
	Problem Statement
	Merging Similar States
	Divergence Measures for Lifted States
	Computing Merged States
	Handling Different Distribution Types
	Experimental Evaluation

	Merging Disjoint States
	M and l* known: Testing for Mergeability
	l* Known, M Unknown: Identifying Mergeable Subsets
	M and l* Unknown: A Greedy Search Algorithm
	Experimental Evaluation

	Merging Normal Distributions
	Merging Entities by Gaussian Mixture Reduction
	Experimental Evaluation

	Assumed Density Merging
	Algorithm Overview
	Time Points for Merging
	Exploiting Temporal Structure
	Experimental Evaluation

	Conclusion & Future Work

	Discussion & Conclusion
	Summary
	Discussion: Why Lifting Works Here
	Future Work

	Notation
	More Related Work
	The Lifted (Dynamic) Junction Tree Algorithm
	Lumpability and Syntactic Markovian Bisimulation
	Probabilistic Programming Languages
	Knowledge Compilation and Tractable Models
	Statistical Relational Learning
	First-Order Markov Decision Processes

	Assignment of Papers to Groups
	AMCA Computation as Constraint Satisfaction
	Expressiveness of Sequential and Maximally Parallel Multiset Rewriting
	Disjointness of Lifted States
	Disjointness of Typed States
	Identifying Overlap
	Shattering

	Disjointness of Untyped States
	Untyped States
	Matchings
	Reduction to a Constraint Satisfaction Problem
	Shattering

	Details of Experiments
	Kitchen Scenario
	Learning a Lifted Representation by Gaussian Mixture Fitting for the Travian Scenario

