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Abstract

Higher-order modes (HOMs) may affect beam stability and refrigeration require-
ments of superconducting proton linacs such as the SPL which is being studied at
CERN as a driver for future neutrino programs. One option being considered to
limit these effects is the use of coaxial HOM couplers mounted on the cutoff tubes
of the five-cell cavities.

In this work, potentially dangerous modes are analyzed and corresponding damp-
ing requirements defined, primarily on the basis of longitudinal beam dynamics and
eigenmode simulations. A novel approach is worked out to characterize entire HOM
spectra based on truncated wake potentials and an extended formulation of vector
fitting.

The design process of coaxial HOM couplers is examined under new aspects. The
first contribution to systematically design coaxial microwave filters on the basis of
filter functions is elaborated. Prior to this are empirical studies of certain microwave
structures that have not yet been well understood. Furthermore, the problem of
transmission zeros inherent to cutoff tubes is formulated.

Finally, coaxial HOM couplers are discussed in a more general context. Besides
the characteristic frequency response, the designs of several HOM couplers applied to
SPL cavities are investigated and compared in terms of mode damping, mechanical
tolerances, thermal loads, structural deformations, and multipacting. Some of the
computational analyses are validated by prototype measurements.



Zusammenfassung

Moden höherer Ordnung (HOMs) können einen beträchtlichen Einfluss auf die Strahl-
dynamik und Kühlanforderungen supraleitender Linearbeschleuniger ausüben, wie
dem SPL, der im Rahmen einer Studie für zukünftige Neutrino-Experimente am
CERN untersucht wurde. Um Auswirkungen entsprechender Moden zu begrenzen,
sind koaxiale HOM Koppler an den Grenzhohlleitern der Beschleunigerresonatoren
vorgesehen.

Im Rahmen dieser Arbeit wurden potentiell gefährliche Moden analysiert und
entsprechende Dämpfungsanforderungen definiert basierend auf Simulationen der
Strahldynamik und Eigenmoden. Die Ausarbeitung einer neuen Methode ermöglicht
zudem die Charakterisierung ganzer Modenspektren ausgehend von begrenzten Wa-
kepotentialen und einer erweiterten Formulierung des sogenannten Vektor-Fittings.

Der Entwurf koaxialer HOM-Koppler wurde unter neuen Gesichtspunkten auf-
gegriffen. Ein erster Beitrag zur Synthese von Filterfunktionen anhand koaxialer
Hochfrequenzstrukturen wird vorgestellt. Diesem gehen empirische Untersuchungen
bestimmter Strukturen voraus, deren Streueigenschaften noch nicht vollständig ver-
standen sind. Weiterhin wurde das Problem von Transmissionsnullstellen bedingt
durch Grenzhohlleiter behandelt.

Verschiedene für SPL vorgesehene HOM-Koppler wurden außerdem untersucht
und verglichen. Neben dem charakteristischen Frequenzverhalten werden die Mo-
dendämpfung, mechanische Toleranzen, das thermische Verhalten, strukturmecha-
nische Verformungen sowie Multipacting berücksichtigt. Letzteres steht im Zusam-
menhang mit Entladungseffekten die in Hochfrequenzstrukturen auftreten können
bedingt durch Sekundäremission und die damit verbundene lawinenartige Zunahme
von Elektronen. Die betrachteten numerischen Simulationen sind in Teilen durch
entsprechende Messungen an Prototypen validiert.
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1 Introduction

Particle accelerators have come to play a key role not only in fundamental research
but also in industry and medicine. They are used, for example, as a driver for
synchrotron radiation, very short coherent laser pulses, or neutron sources with nu-
merous applications involving photon and materials science. Huge particle colliders
became an essential means for particle physicists to study elementary particles, as
well as the interactions and forces among them. A significant percentage of particle
accelerators is being operated for medical purposes, mostly related to diagnostics
and treatments with X-rays or electrons. Various therapies have been developed
since the 1930s to cure diseases such as cancer without using surgical tools. Among
these are the widely applied radiation and hadron therapies. The concept of an en-
ergy amplifier that is a sub-critical reactor driven by an energetic particle beam calls
for accelerators with unprecedented reliability, and is still the subject of frequent
studies. Safe accelerator-driven reactors may produce less long-lived radioactive
waste compared to the conventional nuclear power plants. In addition, they may
consume very-long-lived elements such as plutonium. This list of applications for
particle accelerators is by no means comprehensive but covers some of the main
fields.

The longitudinal and transverse emittance growth, distortions of the beam distri-
bution, and beam collective instabilities observed in particle accelerators can be the
causes of beam induced electromagnetic fields. These wake fields may ultimately
limit the beam current, which is usually manifested through various collective effects
when ramping up the beam intensity, in particular, for large scale projects. Among
these are the Spallation Neutron Source (SNS) [1] at Oak Ridge National Laboratory
(ORNL), USA, the European X-ray Free Electron Laser (XFEL) [2] in Germany,
or the Large Hadron Collider (LHC) [3] at the European Organization for Nuclear
Research (CERN), Switzerland, which all make use of superconducting radio fre-
quency (rf) cavities.1 It is worthwhile to note that there is a natural phenomenon
present in accelerators, called Landau damping [4, 5] which causes the damping of
coherent instabilities by nonlinear spreads in betatron or synchrotron oscillations.
Dedicated devices, for instance, octupole magnets [6], wide-band transverse feed-
back kickers [7], or the recently investigated radio frequency quadrupole resonator
as studied for the Future Circular Collider (FCC) [8, 9] exploit this mechanism in
order to enhance the stability range of the particular machine.

1The notations radio frequency, high frequency, and microwave frequency are used as synonyms
and refer to a range from few tens of megahertz to ∼10 GHz for the considered applications.
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Naturally, the accelerating rf cavities are strongly interacting with the beam.
They are designed for a desired momentum transfer from the fundamental mode to
the beam while limiting surface peak fields and losses. However, a bunch of charged
particles propagating through a cavity will not only absorb energy from the rf field
in order to be accelerated, but it also excites other resonant modes to some extent,
which are usually of higher order with respect to the fundamental mode. Depending
on the beam spectrum, cavity shape, repetition rate, and bunch pattern, beam
induced fields may resonantly accumulate and potentially influence the performance
of the cavity or eventually cause the loss of some fraction of the beam current. In
order to limit these effects and to avoid beam instabilities, the accelerating cavities
are often equipped with Higher-Order Mode (HOM) couplers intended to extract a
fraction of power associated with corresponding parasitic fields. The most common
implementations are waveguides with appropriate cutoff frequencies, coaxial couplers
including microwave filters, and the beam pipe. The latter may enclose absorbers to
damp potentially dangerous Higher-Order Modes (HOMs). This treatise is focused
on the second category of implementations.

1.1 Applications of Coaxial HOM Couplers

Coaxial HOM couplers have been developed for accelerating cavities operating at
tens of megahertz up to few gigahertz while the extracted power may reach the level
of 1 kW in particular cases. Examples are the 56 MHz cavities of the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, New
York, USA [10], the 400 MHz LHC cavities [11], or the TESLA cavities of the free-
electron Laser facility in Hamburg, Germany, operating at 1.3 GHz [12]. Besides
accelerating cavities, coaxial HOM couplers are further employed for deflecting type
cavities such as the different crab cavities being developed and tested in the frame
of the high-luminosity upgrade for LHC [13–16].

These couplers, which are either attached directly to the cavity or to the beam pipe
next to the cavity, can have fairly versatile designs, all of which share the challenge
of maximizing the coupling to fields over the broad frequency band of concerned
HOMs while ensuring certain rejection of the fundamental mode for the particular
case. The notation ‘coaxial’ coupler [17, pp. 361] is somewhat confusing since these
couplers generally do not provide any concentric geometry. However, they show
similarities to coaxial guides, in that they have an inner and outer conductor. To
introduce the particular filter characteristic, the microwave structures are comprised
of multiple discontinuities along the wave propagation.

A study about a superconducting proton linac (SPL) being operated at CERN will
now be introduced. The conceptional design of this particle accelerator constitutes
the reference framework of most of the activities in the present treatise.
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1.2 SPL Study

The proposal of the Superconducting Proton Linac (SPL) at CERN became very
attractive as a potential driver for a neutrino facility after P. Zucchelli published
his concept based on beta-decaying radioactive ions [18]. Correspondingly, the first
conceptional design report of the SPL in 2000 was mainly influenced by the high
beam power needs of a CERN based neutrino factory but also by the idea of reusing
existing rf equipment from the decommissioned Large Electron Positron (LEP) col-
lider, for instance, klystrons and waveguides. It is important to note that most
resources were oriented towards the LHC for economical reasons. As the possi-
ble LHC luminosity upgrades became clearer, the design of the SPL was revised
in 2006, also taking into account the needs of other potential users, such as the
Isotope-Separation-On-Line Device (ISOLDE) and Radioactive Ion Beam (RIB) fa-
cility [19]. An international collaboration was launched by CERN in 2008 to share
the work between different accelerator laboratories and institutes [20]. The collabo-
ration meetings with focus on the SPL were the precursor of the Open Collaboration
Meeting on Superconducting Linacs for High Power Proton beams (SLHiPP) start-
ing in 2011. Besides the SPL, various other projects were involved such as the
European Spallation Source (ESS) in Lund, Sweden, the Multi-Purpose Irradiation
Facility (MYRRHA) at Mol, Belgium, the Proton Improvement Plan-II (PIP-II) at
Fermilab in Batavia, United States, or the Chinese Accelerator Driven Sub-Critical
System (C-ADS) at the Institute of Modern Physics in Lanzhou, China.

In recent years, the SPL, in particular, its low-energy part (LP-SPL), has been
investigated as a component of a new LHC injector complex which is shown in
Fig. 1.1. The proposal foresees increasing the injection energy of the Super Proton
Synchrotron (SPS) from 26 GeV to 50 GeV by replacing the Linac2, PS Booster
and PS with, respectively, the Linac4, LP-SPL, and a high-energy PS (PS2). The
new injector complex is designed to create bunches of 3.4× 1011 protons within
3.75 mm mrad in the LHC and, thus, to increase its luminosity by a factor of more

Linac2

50MeV

PS
Booster

1.4GeV

PS

26GeV

SPS

450GeV

Linac4

160MeV

LP-SPL

4GeV

PS2

50GeV

output energy

Fig. 1.1. The injector complex of the LHC with alternative concept. In solid, the present acceler-
ators. In dashed, the proposed future accelerators including the low-energy part of the SPL [19].
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than two. The normal conducting front-end of the SPL, Linac4 became an integral
part of the LHC Injector Upgrade (LIU) Project [21] and will replace the Linac2 after
the long shutdown 2 (LS2) between 2019 and 2021. Linac4 will operate as injector for
the PS Booster with a maximum average xbeam current of 17.8 µA and a maximum
repetition rate of 1.1 Hz. The proton beam is seeded by an H− ion source and
initially accelerated by a radio frequency quadrupole from 45 keV to 3 MeV. Before
further acceleration by a Drift Tube Linac (DTL), cell-coupled DTLs, and PI Mode
Structures (PIMS), the beam passes a so-called chopper line, also known as the
medium energy beam transport section of the Linac4, which forms a specific bunch
pattern. The HOM damping requirements for the SPL are significantly influenced
by the demand of various chopping patterns requested by the different clients such
as LHC, ISOLDE, RIB, and PS2. A superconducting cavity design without the
option of installing dedicated HOM damping facilities was, therefore, excluded from
the very beginning.

A schematic layout of the SPL according to the latest conceptional design [19]
is shown in Fig. 1.2 using the Linac4 as a normal conducting front-end. Energy,
pulse length, repetition rate, and beam power of the SPL can be adapted to the
needs of many high-power proton beam applications. The high-power version of
the SPL (HP-SPL), foreseen as a driver for neutrino facilities, is anticipated to
provide a proton beam of 5 GeV energy. For the previously mentioned low-power
version as PS2 injector, a proton beam of 4 GeV energy meets the requirements.
The current layout further conceives beam ejections at two intermediate stages to
drive radioactive ion beam facilities with a proton beam of 1.5 GeV and 2.6 GeV,
respectively. In addition, a low-current and high-current version is proposed for the
HP-SPL which essentially differs from the LP-SPL with respect to the amount of
power delivered to each cavity in order to compensate beam loading. The main
parameters of all mentioned SPL versions are summarized in Table 1.1.

Linac4

160MeV

82m

medium β
cryomodules

20 × 3

β=0.65 cavities

753MeV

211m

high β
cryomodules

5 × 8

β=1.00 cavities

1.46GeV

287m

high β
cryomodules

6 × 8

β=1.00 cavities

2.60GeV

392m

high β
cryomodules

12 × 8

β=1.00 cavities

5GeV

584m

1.5GeV ISOLDE 2.6GeV RIB

distance

output energy

Fig. 1.2. Schematic view of the SPL with the Linac4 as normal conducting front-end. Each
cryomodule contains four medium or high-β SPL cavities.
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Table 1.1. Nominal beam parameters for the SPL versions†.
Parameter Units HP-SPL LP-SPL

low-current high-current
energy [GeV] 5 5 4
beam power [MW] 4 4 0.144
repetition rate [Hz] 50 50 2
average pulse current [mA] 20 40 20
peak pulse current [mA] 32 64 32
source current [mA] 40 80 40
chopping ratio [%] 62 62 62
beam pulse length [ms] 0.8 0.4 0.9
protons per pulse [1014] 1.0 1.0 1.13
† low-power (LP) and high-power (HP) version.

The superconducting part of the SPL is composed of two types of cavities, both
operating at 704.4 MHz in pulsed mode. They are denoted as medium-β and high-β
SPL cavities according to their geometric β’s of 0.65 and 1, respectively.2 The super-
conducting rf cavities, designed by CEA Saclay and IPN Orsay, France, are aimed at
accelerating gradients of 19 MV/m and 25 MV/m for the medium-β and high-β type,
respectively [23]. Figure 1.3 shows the entire accelerating profile along the SPL. The
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(b)

Fig. 1.3. Accelerating profile of the SPL. (a) Accelerating gradient in each cavity and (b) the
particle energy evolving along the linac structure. The dashed lines mark the transition between
the medium-β and high-β cavity sections.

2Here, β is the ratio of the particle velocity and the speed of light. The cavities are designed
for specific (geometric) β values but, in operation, they cover a range of particle velocities [22].
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challenging gradients are achieved by elliptical multi-cell cavities immersed in liquid
helium to operate at a cryogenic temperature of 2 K. The first prototypes have been
fabricated by RI Research Instruments GmbH in Bergisch Gladbach, Germany. For
the present thesis, several rf measurements of the high-β SPL cavities were carried
out and are discussed in Chapter 3. Numerous other institutes and companies were
involved in the progress towards a fully dressed SPL cavity. Their contribution is
beyond the scope of this thesis and the reader is referred to [19] for further details.
The bare cryomodule and a schematic view of the dressed high-β SPL cavity are
shown in Fig. 1.4.

In the meantime the option of a LP-SPL as a replacement of the PS-Booster has
been superseded by an upgrade of the Booster within the LIU Project. The HP-SPL
is no longer actively pursued but remains an option for future physics programs at
CERN.

1.3 Objectives and Structure of the Thesis

In particle accelerators, the design of coaxial HOM couplers is often linked to an
intuitively chosen topology for the microwave structure being adapted to individual
HOM damping needs [24]. Besides the elaboration of corresponding requirements
for SPL as well as the design and analysis of appropriate coaxial HOM couplers,
the objective of this work is the development of a systematic design procedure for
coaxial microwave filters on the basis of filter or transfer functions detached from
any predefined topology.

(a)

tuner

bulk Nb
five-cell
cavity

magnetic
shielding

power coupler

helium tank
HOM
coupler

(b)

Fig. 1.4. (a) Cryomodule to house four high-β SPL cavities. (b) Schematic view of the dressed
cavity, with one HOM coupler being located on each cutoff tube [19].
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For the convenience of the reader, Chapter 2 collects in a more orderly presen-
tation some of the more useful material related to network theory and accelerator
physics. Basic ideas of the widely used finite element method are outlined and the
different physics problems are discussed to provide the reader with certain back-
ground knowledge for the applied numerical simulations. Furthermore, the theory
of vector fitting is introduced, a procedure which is frequently used to evaluate
simulated or measured scattering functions of resonant microwave structures.

Chapter 3 addresses the various demands made on HOM couplers by means of
the SPL. Frequency spectra of both cavity types are analyzed to identify potentially
dangerous HOMs. Besides the common approach of using eigenmode simulations,
the particular modes are also characterized on the basis of wake field simulations,
with the corresponding beam coupling impedances being processed by an extended
formulation of vector fitting. The impact of selected modes on the emittance growth
along the linac is studied taking into account certain HOM frequency spreads, the
beam input jitter, different bunch patterns, as well as amplitude and phase errors of
the rf source. In the view of these statistical analyzes and feasibility, fundamental
damping and power limits are introduced. Apart from these simulation studies, the
results of various low power rf measurements are presented, carried out on high-β
SPL cavity prototypes.

Chapter 4 redefines the design process of coaxial HOM couplers in several aspects
regarding the rf properties. It may be considered as a general tutorial not being
restricted only to the SPL. The scattering properties of certain discontinuities in
coaxial guides are investigated, some of which reveal unexpected behavior that is
not found in standard textbooks. Furthermore, certain aspects of the antenna pene-
trating into a waveguide, cutoff tube, or cavity are discussed in the context of mode
coupling, in particular, the topic of transmission zeros inherent to cutoff tubes. On
the basis of previous results, the synthesis of filter functions by means of coaxial mi-
crowave structures is developed. The method is compared to the classical approach
using reactance coupled λ/2 resonators in combination with band-stop filters. A
detailed discussion on the topology of appropriate coaxial microwave structures is
provided. The novel design procedure is drawn for two examples.

Finally, in Chapter 5, the design of HOM couplers is considered in a more general
context. Several designs adapted to the needs of high-β SPL cavities are introduced
while pointing out topological peculiarities and their impact on rf properties, in par-
ticular, the damping of concerned HOMs. The various coupler designs are further
discussed in terms of mechanical tolerances and robustness. Certain heat loads are
analyzed to eventually define appropriate mechanisms for the thermalization. Like-
wise, the multipacting behavior of selected designs is studied. The computational
analyses are, in part, accompanied and validated by prototype measurements.
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2 Fundamentals

This chapter presents some of the elementary results of network theory and particle
accelerator physics that are useful for the study of various problems in the present
treatise. Apart from that, details on the applied numerical simulations are provided
as well as the theory of a particular data fitting procedure is outlined.

2.1 Elements of Network Theory

A network or circuit is the assembly of elements whose terminals are connected at
nodes. It is defined as the collection N of terminal voltages vk(t) and currents ik(t)
obeying Kirchhoff’s voltage and current law in each loop or node, respectively. With
regard to microwave structures, it is convenient to introduce complex voltages and
currents using the Laplace transform according to

Vk(s) =

ˆ ∞
−∞

vk(t)e
−stdt, (2.1)

with the complex frequency s defined as

s = σ + jω. (2.2)

It is assumed that Vk(s) and Ik(s) belong to L2(jR) where R is the real axis. Con-
sequently, they are quadratically integrable functions, i. e. for the complex voltage

Vk : jR 7→ C square integrable ⇐⇒
ˆ ∞
−∞
|Vk(jω)|2dω <∞. (2.3)

Using this notation, the network as a collection N of complex terminal voltages and
currents Vk(s), Ik(s), may be formulated as [25, p. 3]

N ⊆ L2(jR,CN)× L2(jR,CN), (2.4)

where N is the number of elements whose terminals are connected at nodes. The
considerations are further confined to linear subspaces N , where the set of voltages
and currents satisfy homogeneity and additivity properties. Implied by the defini-
tion, such linear circuits underlie the superposition theorem which can be expressed
as follows [26, p. 14]. Let Ek(s) be a voltage excitation inserted at some point in the
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network N and Vk(s) be the corresponding voltage response measured across some
element. Furthermore, let Vl(s) be the voltage measured across the same element
as before but for a different excitation source El(s) inserted at another point of the
network. The superposition theorem states that Vk(s)+Vl(s) is the voltage response
measured when simultaneously applying the excitations Ek(s) and El(s). The same
concept can be extended to the current.

Linear circuits not containing any sources, thus denoted as passive networks, are
further characterized by the reciprocity theorem [27, p. 90]. Let the terminal voltage
Vkl(s) as measured from the node k to some reference node, be the response to the
current excitation at the node l. Then, the reciprocity theorem states that

Vkl(s) = Vlk(s). (2.5)

Likewise, the concept can be applied for a voltage source and current measurement.
In the context of equivalent circuits, Tévenin’s theorem is another important find-

ing of the network theory [27, pp. 90]. Across a pair of terminals, a source whose
internal composition is not necessarily known may equivalently be described by a
single voltage or current excitation, respectively, in series or shunt with an imped-
ance. This theorem is essential for the various equivalent circuits used to describe
the rf behavior of HOM couplers in Chapter 4.

2.1.1 Impedance Function

The ratio of the voltage across an element and corresponding terminal current is
defined as the impedance Z(s) of an element, in general, being a function of the
complex frequency. Its real and imaginary part are, respectively, denoted as resis-
tance and reactance according to

Z(s) = R(s) + jX(s). (2.6)

Consequently, a network N as a collection of terminal voltages and currents may be
written as [25, p. 4]

N =

{(
Z(s)I(s)

I(s)

)
: I(s) ∈ L2(jR,CN)

}
, (2.7)

where I(s) is the vector of terminal currents and Z(s) is a matrix of impedance
functions associating the voltages and currents for all N elements of the network.
In mathematical terms, N is the graph of the impedance matrix. Similarly, the
admittance Y (s) of an element, defined as the ratio of the terminal current to voltage
across the element, is characterized by a real conductance and imaginary susceptance
according to

Y (s) = G(s) + jB(s), (2.8)
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and yields an alternative formalism to (2.7). Using the vector V(s) which contains
the voltages across all N elements and the corresponding admittance matrix Y(s)
to associate voltages and terminal currents, the network may be written as

N =

{(
Y(s)V(s)

V(s)

)
: V(s) ∈ L2(jR,CN)

}
. (2.9)

As a consequence of the reciprocity theorem, linear passive networks admit imped-
ance and admittance matrices which are symmetric, hence Z = ZT and Y = YT. A
particular case is lossless networks containing exclusively reactive elements, i. e. the
real parts in (2.6) and (2.8) vanish for all N elements.

The classical lumped elements, that are the resistance R, capacitance C and in-
ductance L, constitute the fundamental voltage-current relations of linear passive
networks, and are given in the frequency domain by

V (s) = RI(s), I(s) = sCV (s), V (s) = sLI(s). (2.10)

It is worth noting that in spite of the very idealized models, the impedance behavior
of discontinuities in microwave structures often allows an equivalent description by
lumped circuit elements. Section 4.1 provides detailed studies on this topic with the
focus on coaxial microwave structures.

The concept of impedance and admittance is further generalized towards terminal
pairs across multiple elements in the network N . By energy conservation, it can be
shown that any impedance or admittance functions, given a passive network con-
sisting of lumped elements, is positive real [28, pp. 127]. In terms of the impedance
function, this means that

Z : C 7→ C positive real ⇐⇒ <{Z(s)} ≥ 0 ∀ σ ≥ 0,

={Z(s)} = 0 if ω = 0.
(2.11)

Positive realness is both necessary and sufficient for realizability, in the sense that the
impedance function can be constructed from a finite number of lumped elements [26,
pp. 89]. It is the essential ingredient for the synthesis of filters and frequency selective
networks. Some important properties of positive real functions are: (i) The sum of
two positive real functions is positive real. (ii) Let F (s) be a positive real function,
then F−1(s) and F (s−1) are positive real. (iii) Positive real functions cannot have
any poles or zeros in the right half plane. They may have simple poles on the
imaginary axis with strictly positive residues. (iv) Let F (s) be a positive real rational
function. It follows that the degrees of numerator and denominator polynomial differ
by at most one.

With the focusing on lossless passive network whose elements are exclusively in-
ductances and capacitances, the immittance F (s), that is either treated as imped-
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ance or admittance function, admits the form

F (s) =
r0

s
+ s

n∑

k=1

rk
s2 + ω2

k

+ r∞s, (2.12)

where r0 and r∞ are the residues at s=0 or s=∞, respectively, while rk is the residue
associated with the conjugated complex pole pair s = ±jωk, if any. Functions
of the form (2.12) are characterized by alternating poles and zeros, all being on
the imaginary axis. This is a consequence of Foster’s reactance theorem stating
that the reactance X and susceptance B defined on linear, passive, and lossless
networks are strictly monotonically increasing functions [29, pp. 230]. Figure 2.1
shows two realizations of an immittance function F (s) whose element values are
readily obtained from the residues and poles of a partial fraction decomposition
according to (2.12). Another set of realizations known as Cauer realizations, is
based on continued fraction expansion of F (s) [28, pp. 199]. Using the notation of
Pringsheim [30],

β0 +
α1|
|β1

+
α2|
|β2

+ . . . := β0 +
α1

β1 +
α2

β2 + . . .

, (2.13)

a positive real rational function F (s) of degree n, having a pole at s= 0, may be
expanded into a finite continued fraction according to

F (s) = e1s
−1 +

1 |
|e2s−1

+
1 |
|e3s−1

+ · · ·+ 1 |
|ens−1

, (2.14)

with positive real coefficients ek. The single terms alternately correspond to the
reactance or susceptance of branches in a ladder circuit as shown in Fig. 2.2(a). The
formulation (2.14) is achieved by successively removing a single pole at s = 0 and
succeeding with the reciprocal of the resultant remainder until the latter vanishes.
Note, positive realness implies the continued fraction of a rational function to be

r0s
−1

r1s
−1

r1
ω2
1

s

rns
−1

rn
ω2
1

s

r∞s

(a)

r0s
−1

r1s
−1

r1
ω2
1

s

rns
−1

rn
ω2
1

s

r∞s

(b)

Fig. 2.1. Foster realizations based on partial fraction decomposition according to the expres-
sion (2.12), with the immittance function F (s) considered as (a) admittance and (b) impedance.
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e1s
−1

e−1
2 s

e3s
−1

e−1
4 s

en−1s
−1

e−1
n s

(a)

f1s

1

f2s

f3s

1

f4s

fn−1s

1

fns

(b)

Fig. 2.2. Equivalent realizations of an impedance function Z(s) providing a pole (a) at s= 0 and
(b) at s=∞. The reactances correspond to the single terms of continued fraction expansions (2.14)
and (2.15) based on consecutive pole removal at s=0 or s=∞, respectively.

finite. Another continued fraction may be derived by consecutively removing a pole
at s=∞, which leads to

F (s) = f1s +
1 |
| f2s

+
1 |
| f3s

+ · · ·+ 1 |
| fns

, (2.15)

with positive real coefficients with fk. The corresponding realization is shown in
Fig. 2.2(b) assuming F (s) is an impedance function. The synthesis of impedance
and admittance functions is a versatile problem, with the resulting networks being
equivalent. Particularly interesting are those solutions which provide the minimum
number of elements given by the degree n of the rational function, and are denoted
as canonical networks. The general strategy is to remove some part from the given
realizable function F (s) as partial impedance or admittance associated with a known
element or assembly of elements. The process is continued for the leaving remainder
until it vanishes as for the continued fraction expansions (2.14) and (2.15). The
following properties of positive real functions are relevant for the synthesis and
adopted from [26, p. 96].

Property 2.1.1. Let F (s) be a positive real rational function of degree n > 1 with
a pole at s =∞. Let the corresponding residue be r∞. Then

F ′(s) = F (s)− r∞s (2.16)

is a positive real rational function of degree n− 1 with no pole at s =∞.

Property 2.1.2. Let F (s) be a positive real rational function of degree n > 1 with
a pole at s = 0. Let the corresponding residue be r0. Then

F ′(s) = F (s)− r0

s
(2.17)

is a positive real rational function of degree n− 1 with no pole at s = 0.
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Property 2.1.3. Let F (s) be a positive real rational function of degree n > 2 with
a conjugated complex pole pair at s = ±jωk. Let the corresponding residue be rk.
Then

F ′(s) = F (s)− rks

s2 + ω2
k

(2.18)

is a positive real rational function of degree n− 2 with no poles at s = ±jωk.

Property 2.1.4. Let F (s) be a positive real rational function of degree n ≥ 2 with
no zeros at s = ±jωk. If the numerator degree is larger than the denominator degree,
then there is a strictly positive residue rk such that

F ′(s) = F (s)− rks (2.19)

is a positive real rational function of degree n providing zeros at s = ±jωk.

Residues are associated with capacitance and inductances as shown in Fig. 2.1.
Property 2.1.4 refers to zero shifting which does not remove any pole from the
reactance function F (s). It is a preparation step to invoke a conjugated complex
pole pair at a desired frequency for the subsequent removal based on Property 2.1.3.
A detailed survey about removal of reactance poles is given in [31].

Rational impedance functions as discussed above are a particular case in mi-
crowave engineering, for example, to describe waveguide junctions. However, waveg-
uides and micro-strips do not provide impedances which are concentrated in a single
location, thus not being lumped. As a consequence, impedance functions are, in
general, irrational in the complex frequency variable s, yielding the so-called dis-
tributed elements. Before continuing with the latter one in Sec. 2.1.5, some basic
properties of passive two terminal-pair networks are summarized in the following.

2.1.2 Two-Port

A network whose voltage-current relations are solely known at N distinct terminal-
pairs may be described, if any, by a reduced set of impedance or admittance functions
similar to (2.7) or (2.9), respectively. However, the network is not completely defined
due to missing topology information, which raises the idea of equivalent circuits
providing the same voltage-current relations at the given terminal planes. A two
terminal-pair structure also denoted as two-port is defined as the collection N 2 of
complex voltages Vk(s) and currents Ik(s) with k = 1, 2 that can appear on its ports,

N 2 ⊆ L2(jR,C2)× L2(jR,C2). (2.20)

Given a linear two-port with the notation shown in Fig. 2.3, the relationship between
voltages and currents may be described in various ways, each on the basis of the
superposition theorem. Let the terminal currents be considered as independent vari-
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Two-portV1(s) V2(s)

I1(s) I2(s)

Fig. 2.3. Two-port formalism. Voltages and currents are functions of the complex frequency s.

ables, the corresponding voltages result from an impedance formulation according
to (

V1(s)
V2(s)

)
=

(
z11(s) z12(s)
z21(s) z22(s)

)(
I1(s)
I2(s)

)
. (2.21)

The matrix is called open-circuit impedance matrix Z(s) in association with the
definition of its elements,

z11(s) =
V1(s)

I1(s)

∣∣∣∣
I2=0

,

z21(s) =
V2(s)

I1(s)

∣∣∣∣
I2=0

,

z12(s) =
V1(s)

I2(s)

∣∣∣∣
I1=0

,

z22(s) =
V2(s)

I2(s)

∣∣∣∣
I1=0

.

(2.22)

The impedance functions z11, z22 are called driving point impedances while z12, z21

are the transfer impedances. By focusing on passive two terminal-pair structures,
the reciprocity theorem requires z12 = z21. Assuming the two-port can be realized
by a lumped lossless network, each impedance function must admit the form (2.12),
with simple poles on the imaginary axis. By energy conservation, it is required
that the driving point impedances z11 and z22 are positive real, thus yielding strictly
positive residues r(k)

11 or r(k)
22 , respectively, where the index k refers to the kth common

pole. The residues r(k)
12 of the transfer impedance function z12 where z12 = z21, is not

required to be positive but real. It is subjected to the residue condition [32, p. 218]

r
(k)
11 r

(k)
22 − r(k)

12

2 ≥ 0. (2.23)

In addition to the common set of poles, driving point impedances may provide pri-
vate poles [26, p. 155]. Similar results are obtained for the admittance formulation,
with the port voltages being independent variables while the terminal currents are
given by (

I1(s)
I2(s)

)
=

(
y11(s) y12(s)
y21(s) y22(s)

)(
V1(s)
V2(s)

)
. (2.24)

The matrix is called short-circuit admittance matrix Y(s) following the definition of
its elements in the analogue way to (2.22). Figure 2.4 shows equivalent two terminal-
pair networks based on the impedance and admittance formulation. Except for some
simple cases, they are abstract realizations whose elements correspond to networks
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z12

z11−z12 z22−z12

V1 V2

I1 I2

(a)

−y12

y11+y12 y22+y12V1 V2

I1 I2

(b)

Fig. 2.4. Equivalent circuits for a reciprocal two-port network. (a) T equivalent with open-circuit
impedance parameters. (b) u equivalent with short-circuit admittance parameters.

of lumped elements including coupled inductances [32, p. 224]. The relationship
between open-circuit impedance and short-circuit admittance matrix of the same
two-port is given by

Y(s) = Z−1(s). (2.25)

It is important to note that the impedance and admittance formalism fail to exist for
many two-ports, for instance, the single series impedance Zs or shunt admittance
Y p as depicted in Figs. 2.5(a) and (b), respectively. While the first admits an
admittance matrix as

Ys(s) =
1

Zs(s)

(
1 −1
−1 1

)
, (2.26)

but no appropriate impedance matrix, the two-port constructed from a shunt-
admittance function admits an impedance matrix according to

Zp(s) =
1

Yp(s)

(
1 1
1 1

)
, (2.27)

but no appropriate admittance matrix. Another formalism, particularly suitable for
the concatenation of linear two-ports, relates the voltage V1 and current I1 of the
first terminal-pair to the voltage V2 and current I2 of the second terminal-pair as

(
V1(s)
I1(s)

)
=

(
A(s) B(s)
C(s) D(s)

)(
V2(s)
−I2(s)

)
. (2.28)

Zs(s)

V1(s) V2(s)

I1(s) I2(s)

(a)

Yp(s)V1(s) V2(s)

I1(s) I2(s)

(b)

N : 1

V1(s) V2(s)

I1(s) I2(s)

(c)

Fig. 2.5. (a) Series impedance two-port. (b) Shunt admittance two-port. (c) Ideal transformer
with a turns ratio of N .
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The elements of the so-called transmission matrix which is sometimes denoted as
ABCD matrix, are defined as [32, pp. 186]

A(s) =
V1(s)

V2(s)

∣∣∣∣
I2=0

=
z11(s)

z21(s)
= −y22(s)

y21(s)
, (2.29)

B(s) = − V1(s)

I2(s)

∣∣∣∣
V2=0

= − 1

y21(s)
=

det Z(s)

z21(s)
, (2.30)

C(s) =
I1(s)

V2(s)

∣∣∣∣
I2=0

=
1

z21(s)
= −det Y(s)

y21(s)
, (2.31)

D(s) = − I1(s)

I2(s)

∣∣∣∣
V2=0

= −y11(s)

y21(s)
=

z22(s)

z21(s)
. (2.32)

A concatenation of two-ports in a chain corresponds to matrix multiplications of
their transmission matrices. Reciprocity of passive linear networks is reflected by
the condition

AD − BC = 1. (2.33)

The two-port shown in Fig. 2.5(a) consisting of a series impedance function admits
a transmission matrix according to

Ts(s) =

(
1 Zs(s)
0 1

)
, (2.34)

whereas the two-port shown in Fig. 2.5(b) consisting of a shunt admittance function
admits a transmission matrix according to

Tp(s) =

(
1 0

Yp(s) 1

)
. (2.35)

The ideal transformer shown in Fig 2.5(c) with a turns ratio N does not permit a
formulation by the impedance or admittance matrix according to (2.21) or (2.24), re-
spectively. However, it is well represented by the chain formalism as its transmission
matrix takes the form

Ttrafo =

(
N−1 0

0 N

)
. (2.36)

The chain formalism is frequently used when dealing with ladder networks as they
are essentially a composition of the three two-ports summarized in Fig. 2.5.

2.1.3 Scattering Matrix Formalism

The scattering matrix widely used in microwave engineering [29, pp. 248], provides
another formalism to describe two-terminal structures or generally N -ports similar
to the impedance, admittance or transmission formalisms. The particular difference
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to the previously introduced formalisms is that a scattering matrix always exists for
a linear, causal, passive, and time-invariant N -port [33, p. 63].

Instead of considering the voltage Vk(s) and current Ik(s) at the terminal pair k,
the incident and reflected waves ak(s), bk(s) are introduced according to [25, p. 8]

ak(s) =
1

2
√
Rk

[Vk(s) + RkIk(s)] (2.37)

bk(s) =
1

2
√
Rk

[Vk(s)−RkIk(s)] (2.38)

They are measures of the incident and reflected power, which is a more natural choice
of physical quantities in the view of microwave structures since voltages and currents
are typically not measurable at frequencies where the propagation of electromagnetic
waves becomes evident. In the context of power flow, it is appropriate to use the
notation terminal planes or ports instead of terminal pairs. It should be noted here
that microwave devices such as waveguides do not need to have two conductors
in order to transmit or reflect power. According to the definitions (2.37)–(2.38),
the incident and reflected power at the terminal plane k are given by |ak(s)|2/2
and |bk(s)|2/2, respectively.1 The resistance Rk is a reference resistance typically
associated with a source or load attached to the considered terminal plane.

With the focus on two-ports as depicted in Fig. 2.6, let the incident waves a1(s),
a2(s) be independent. Then, the scattering matrix S is defined as

(
b1(s)
b2(s)

)
=

(
s11(s) s12(s)
s21(s) s22(s)

)(
a1(s)
a2(s)

)
. (2.39)

The matrix elements s11, s22 are called reflection coefficients with respect to the
particular port while s21 and s12 are referred to as the transmission coefficients from
port 1 to port 2 or vice versa, respectively.

Two-port

R1

E1(s)

R2

E2(s)V1(s) V2(s)

I1(s) I2(s)
a1(s)

b1(s)

a2(s)

b2(s)

s11(s) s22(s)

s21(s)

s12(s)

Fig. 2.6. Scattering matrix formalism for a two-port with resistive terminations.

1The definitions of incident and reflected waves defer in literature by the normalization which
needs to be accounted in the power definition. For instance, Baher [33, pp. 63] omits the factor
1/2 in (2.37)–(2.38) while Wing [26, pp. 132] adds a factor of 1/

√
2.
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Under reciprocity, the scattering matrix S is symmetric, thus s12 = s21. Based on
the definitions (2.37) and (2.38), reflection and transmission coefficients, generally
functions of the complex frequency s, are computed under the assumption that the
ports are terminated by their particular reference resistance, according to

s11(s) =
b1(s)

a1(s)

∣∣∣∣
a2=0

=
b1(s)

a1(s)

∣∣∣∣
V2=−R2I2

=
Z in,1 −R1

Z in,1 +R1

, (2.40)

s12(s) =
b1(s)

a2(s)

∣∣∣∣
a1=0

=
b1(s)

a1(s)

∣∣∣∣
V1=−R1I1

= −2
√
R1R2

I1(s)

E2(s)

∣∣∣∣
E1=0

, (2.41)

s21(s) =
b2(s)

a1(s)

∣∣∣∣
a2=0

=
b2(s)

a1(s)

∣∣∣∣
V2=−R2I2

= −2
√
R1R2

I2(s)

E1(s)

∣∣∣∣
E2=0

, (2.42)

s22(s) =
b2(s)

a2(s)

∣∣∣∣
a1=0

=
b2(s)

a2(s)

∣∣∣∣
V1=−R1I1

=
Z in,2 −R2

Z in,2 +R2

. (2.43)

Here, Z in,k = Vk/Ik is the input impedance seen at the terminal plane k, which must
fulfill the requirements of a positive real function (2.11), if the two-port is realizable
as equivalently behaving passive networks.

Referring to Fig. 2.6, the term |s21|2 corresponds to the ratio of power delivered
to the load R2 and maximum available power provided by the voltage source E1(s)
taking into account a source resistance R1. Given the symmetry of a reciprocal
behavior, it is denoted as the transmission power gain of the two-port with respect
to the resistances R1 and R2. Closely related to the transmission coefficient s21(s)
of a two-port is the transfer function which is defined as

H(s) =
V2(s)

E1(s)

∣∣∣∣
E2=0

=
1

2

√
R2

R1

s21(s). (2.44)

The transfer function is typically considered in the design of filters as it permits a
convenient way to formulate conditions on the frequency response of desired two-
ports without specifying the internal topology. The frequency response is typically
described by a filter function D(jω) defined on the imaginary axis of the complex
s-plane, and is closely related to the magnitude of the transfer function according
to [34, pp. 32]

|H(jω)|2 =
c0

1 + |D(jω)|2 . (2.45)

The real scalar c0 is used for normalization. Consequently, the zeros or poles of the
filter function correspond to the frequencies of maximum or vanishing power transfer,
respectively. The latter are also referred to as transmission zeros [32, pp. 231].

Based on Tellegen’s theorem [26, pp. 20], the average power delivered to an N -
port equals the sum of average power available at all terminal planes, and may be
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written as

1

2

N∑

k=1

<{Vk(s)I∗k(s)} =
1

2
(aHa− bHb) =

1

2
aH(I− SHS)a. (2.46)

The vectors a and b contain the incident and reflected waves for each terminal plane
and I is the identity matrix. The notation (.)H refers to the conjugate transpose of
a vector or matrix. It follows that the scattering matrix of a loss-less N -port is
unitary, that is

SH(jω)S(jω) = I ∀ ω ∈ R. (2.47)

Scattering functions arising from physical networks have similar properties as the
impedance and admittance functions discussed in Sec. 2.1.1. Scattering functions
are real for real arguments and analytic in the right half plane. Moreover, they are
bounded to the closed unit disk for real arguments, hence [26, p. 135]

|skl(s)| ≤ 1 if <{s} ≥ 0, (2.48)

assuming the N -port is passive. This property follows from the positive semi-definite
character of the matrix (I−SHS) in (2.46). Any N -port defined on a lossless lumped
network admits a real, rational scattering matrix. Conversely, any real, rational
scattering matrix can be realized by a network composed of a finite number of
lumped elements [35, pp. 90].

Finally, the impedance and admittance matrices can be expressed by Cayley trans-
forms of the scattering matrix according to [33, pp. 68]

Z = P
1
2 (I + S) (I− S)−1 P

1
2 , (2.49)

Y = P−
1
2 (I− S) (I + S)−1 P−

1
2 , (2.50)

where P = diag{R1, R2, . . . , RN} accounts for the reference resistances at each ter-
minal plane. Note, the scattering matrix formalism introduced in this section is
referred to N -ports and particularly two-ports with resistive terminations. A gen-
eralization towards impedance terminations is given in [26, pp. 139].

2.1.4 Synthesis of Rational Transfer Functions

By referring to Fig. 2.6, synthesis is meant as a systematic procedure to find a
realization for the two-port such that a prescribed transmission behavior is achieved,
provided the resistive terminations R1 and R2. The starting point is the squared
magnitude of a rational transfer function according to

|H(jω)|2 =

∣∣∣∣
V2(jω)

E1(jω)

∣∣∣∣
2

E2=0

=
α0 + α1ω

2 + α2ω
4 + . . .+ αmω

2m

β0 + β1ω2 + β2ω4 + . . .+ βnω2n
, (2.51)
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with real coefficients αi, βj. It may be derived from an approximation of the de-
sired frequency response. The two-port is considered to be passive, thus reciprocal.
From (2.44) and (2.48), it is required that

0 ≤ |H(jω)|2 ≤ R2

4R1

∀ ω ∈ R. (2.52)

Such transfer functions can be realized by lumped lossless networks as shown by
Darlington [36], Cauer [28, pp. 395], and Belevitch [37] among others. Of the various
procedures well known in literature, the following synthesis is based on bilateral
ladder development of the driving point impedances z11, z22, taking into account the
zeros of the transfer impedance z21, associated with transmission zeros [32, pp. 231].
The impedance functions are derived from a specific representation of the scattering
matrix introduced by Belevitch [37].

Following (2.44) and the fact that the magnitude of the transfer function is given
for purely imaginary arguments s, the transmission power gain may be written as [35,
pp. 60]

|s21(jω)|2 = 4
R1

R2

|H(jω)|2 =
f(s)f(−s)
g(s)g(−s) , (2.53)

where f(s) and g(s) are polynomials with real coefficients. More specifically, g(s)
is a Hurwitz polynomial, so it does not provide any zeros in the closed right half
plane. Under these conditions the transmission coefficient can be defined as s21(s) =
f(s)/g(s) keeping in mind that scattering functions of passive networks are bounded
to the closed unit disk and analytic in the closed right half plane (Sec. 2.1.3). As-
suming a lossless two-port, the reflected power gain is obtained from the unitary
condition of the scattering matrix according to (2.47), and may be written as

|s11(jω)|2 = 1− |s21(jω)|2 =
h(s)h(−s)
g(s)g(−s) , (2.54)

where h(s) is likewise a polynomial of real coefficients. Let the corresponding re-
flection coefficient be defined as s11(s) = h(s)/g(s). It is important to note that
the choice of the polynomials f(s) and h(s) is not unique due to the missing phase
information of the transfer function. Available zeros may be freely chosen from the
left and right half plane, provided the resultant polynomials are real. Let f(s) be
necessarily either an even or odd polynomial ensuring that h(s) and g(s) are rela-
tively prime [38]. Consequently, the relationship between all three polynomials is
given by

h(s)h(−s)± f 2(s) = g(s)g(−s), (2.55)

where the upper sign applies when f(s) is an even polynomial while the lower sign
corresponds to an odd polynomial f(s). This notation is continued in the following.
With these requirements, the lumped lossless two-port admits a scattering matrix
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according to [37]

S(s) =
1

g(s)

(
h(s) f(s)
f(s) ∓h(−s)

)
. (2.56)

The open-circuit impedance matrix normalized to the reference resistances R1 and
R2 is deduced from (2.49). With the argument s being omitted, it becomes

P−
1
2 ZP−

1
2 =

1

g−h∓(g∗−h∗)

(
g+h±(g∗+h∗) 2f

2f g−h±(g∗−h∗)

)
, (2.57)

where the diagonal matrix P = diag{R1, R2} accounts for the normalization. The
subscript asterisk denotes a negative variable as argument, for instance, g = g(s)
while g∗ = g(−s). A more elegant expression of the impedance matrix is achieved by
using one of the input impedances Z in,1 or Z in,2. From (2.40), the input impedance
at port 1 normalized to the reference resistance R1 may be written as

Z in,1(s)

R1

=
1 + s11(s)

1− s11(s)
=
g(s) + h(s)

g(s)− h(s)
. (2.58)

Note, the numerator and denominator polynomials appear directly in the impedance
formulation (2.57). Splitting them into their even and odd parts according to

g(s) + h(s)

g(s)− h(s)
=
m1(s) + n1(s)

m2(s) + n2(s)
, (2.59)

wherem1(s),m2(s) refer to even polynomials while n1(s), n2(s) are odd polynomials,
the impedance matrix calculates as either

Z =
1

n2(s)

(
R1m1(s)

√
R1R2e(s2)√

R1R2e(s2) R2m2(s)

)
, if f(s) even, (2.60)

or

Z =
1

m2(s)

(
R1n1(s)

√
−R1R2e(s2)√

−R1R2e(s2) R2n2(s)

)
, if f(s) odd. (2.61)

The polynomial e(s2) is denoted as ensignant of the rational function (2.59), and is
given by [26, pp. 94]

e(s2) = m1(s)m2(s)− n1(s)n2(s). (2.62)

Once the reactance functions z11, z22, and z21 are available, both driving point
impedances are realized by continued fraction expansions in order to derive a lad-
der network. The latter becomes, in general, a concatenation of the basic elements
shown in Fig. 2.7. The procedure is based on Properties 2.1.1–2.1.4 of positive
real functions and the alteration between impedance and admittance function as
discussed in Sec. 2.1.1. Note, the ladder development from both ports allows the
procedure to account for possible private poles of z11 and z22. Furthermore, it in-
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z21=sL y21=−sC

(a)

z21=
1

sC
y21=− 1

sL

(b)

z21=
ω2
0+s

2

ω2
0Cs

y21=−ω2
0+s

2

ω2
0Ls

ω2
0=(LC)−1

(c)

Fig. 2.7. Fundamental lumped two-port networks to construct general ladder network without
coupled inductances. Transmission zeros occur (a) at zero frequency (b) at infinity, and (c) at
finite, nonzero frequency, taking into consideration that z21 or y21 must vanish.

creases the accuracy of resultant lumped element values. Transmission zeros at finite,
nonvanishing frequency, which correspond to roots of the transfer impedance z21,
are respected during the continued fraction expansion by introducing either shunt
admittance or series impedance functions according to Fig. 2.7(c), providing pairs
of conjugated complex poles at the desired frequencies. Prior to each pole removal
at finite, nonzero frequency is a zero shifting step according to Property 2.1.4, such
that the reciprocal of the remainder indeed provides the desired conjugated complex
pole pair. In the presence of m finite transmission zeros, the order in which they
need to be invoked during the realization process is found by [39]

arg min

{
F (jω1)

jω1

,
F (jω2)

jω2

, . . . ,
F (jωm)

jωm
, lim
s→∞

F (s)

s

}
, (2.63)

This expression is recursively evaluated for the remaining impedance or admittance
function, involving only the transmission zeros left over. Various examples are dis-
cussed in textbooks, such as Wing [26, pp. 171], Guillemin [32, pp. 237], and Ba-
her [33, pp. 118].

2.1.5 Uniform Transmission Lines

Passive microwave networks describing the behavior of rf devices, such as waveguide
filters, antennas, or impedance matching components, generally consist of lumped
and distributed elements. The first may be applied to model energy dissipation by
resistances or the excitation of evanescent modes at waveguide discontinuities using
capacitances or inductances. In contrast, distributed elements are required to model,
for instance, the electromagnetic wave propagation in materials. Figure 2.8 sketches
a one-dimensional distributed element between two terminal-pairs. The voltage and
current are functions of the complex frequency s and longitudinal position z along
the element which may be, for example, a coaxial line or waveguide. Other than
lumped networks which are describable by rational functions and matrices of one
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complex variable, distributed networks yield, in general, functions and matrices of
several complex variables. As a consequence of Maxwell equations, the equivalent
voltage V (z, s) and current I(z, s) obey partial differential equations of the form [40,
pp. 7]

∂V (z, s)

∂z
= −jkz(z, s)Zc(z, s)I(z, s), (2.64)

∂I(z, s)

∂z
= −jkz(z, s)Yc(z, s)V (z, s), (2.65)

with the characteristic impedance Zc(z, s) = V (z, s)/I(z, s) and corresponding ad-
mittance Yc(z, s) = Zc

−1(z, s) of the transmission line. Eliminating either V or I in
(2.64)–(2.65) leads to one-dimensional wave equations where jkz(z, s) is identified
as the complex propagation constant sometimes denoted as γ. Note, the voltage and
current are equivalents to electric and magnetic field components of a single prop-
agating mode, that is either transverse electric (TE), transverse magnetic (TM) or
transverse electromagnetic (TEM) [35, pp. 125]. In the particular case of uniform
lossless transmission lines, with the lines being of equal length, thus being commen-
surate to the same length l, the characteristic impedance and propagation constant
become independent of the longitudinal position z. In literature, such a two-port is
called a unit element.

The propagation of a transverse electromagnetic wave through a lossless coaxial
line of uniform cross-section and filled with homogeneously distributed, isotropic
material, is described by a purely imaginary propagation constant according to [41,
p. 56]

kz(z, s) = β(ω) =
ω

vph
= ω
√
εµ, (2.66)

with the permittivity ε and permeability µ given by the material properties and the
phase velocity vph which becomes the speed of light in vacuum. Furthermore, the
characteristic impedance is given by

Zc(z, s) = Zc =
1

2π

√
µ

ε
ln
ro
ri
, (2.67)

Z1

E1(s)

Z2

E2(s)V1(s) V2(s)

I1(s) I2(s)

V (z′, s)

I(z′, s)

0 z′ l
z

Fig. 2.8. Distributed network between two sources providing internal impedances. Voltage and
current are functions of the complex frequency s and longitudinal coordinate z, where 0 ≤ z ≤ l.
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where ro and ri are the outer and inner radii of the coaxial line. The corresponding
two-port admits a transmission matrix of the form [33, pp. 134]

Tue(s) =

(
cosh τs Zc sinh τs
Yc sinh τs cosh τs

)
. (2.68)

Here, the propagation constant is accounted for by the complex frequency s and
commensurate one-way delay τ = l/vph which is determined by the phase velocity vph
and length of the transmission line, l, as sketched in Fig. 2.8. Two equivalent
circuits in T and u configuration are shown in Fig. 2.9 in correspondence to the
abstract realizations depicted in Fig. 2.4 using open-circuit impedance or short-
circuit admittance parameters. Note, the transmission matrix of the unit element
depends only on one variable. However, its elements are irrational functions of this
complex frequency variable s. Using the Richards variable defined as

p = Σ + jΩ = tanh τs, (2.69)

a frequency mapping as illustrated in Fig. 2.10 is introduced. It allows the rep-
resentation of the two-port by a rational transmission matrix apart from a factor√

(1− p2), and may be written as

Tue(p) =
1√

(1− p2)

(
1 Zc p
Yc p 1

)
. (2.70)

It is important to note that the positive real character of driving point impedance
and admittance functions is preserved under the frequency transformation (2.69).
The right half p-plane maps onto the right half s-plane. Likewise, the real and
imaginary axes of the p-plane map onto the corresponding axes in the s-plane. In
principle, the same procedure as described in Sec. 2.1.4 may be applied to realize a
transfer function, provided that the two-port network consists exclusively of unit el-
ements of the same one-way delay τ . Various examples are provided, among others,

−jZc cscβl

jZc tan
βl

2
jZc tan

βl

2

V 1 V 2

I1 I2

(a)

−jYc cscβl

jYc tan
βl

2
jYc tan

βl

2
V 1 V 2

I1 I2

(b)

Fig. 2.9. Equivalent circuits for a lossless transmission line describing the propagation of a trans-
verse electromagnetic mode through a uniform coaxial line of length l and characteristic imped-
ance Zc given by (2.67). (a) T equivalent using impedance functions and (b) u equivalent using
admittance functions [40, p. 12].
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by Baher [33, pp. 235]. Referring to Fig. 2.10(b), the frequency response of a com-
mensurate distributed network reveals an inherent periodic behavior with respect to
the angular frequency ω. For instance, a low-pass filter will also provide band-pass
characteristic in the vicinity of ω = kπ/τ with k = 1, 2, . . ..

The impedance transformation of a unit element is directly deduced from (2.68).
Assuming an impedance Z2 at the output of the two-port, represented by the cor-
responding voltage-current ratio Z2(s) = V2(s)/I2(s), the impedance seen from the
input port calculates as

Zin,1(s) =
V1(s)

I1(s)
= Zc

Z2 + Zc tanh τs

Zc + Z2 tanh τs
. (2.71)

In case of vanishing real part σ→0, the frequency variable becomes purely imaginary
and the input impedance of the unit element can be written as

Zin,1(jω) = Zc
Z2 + jZc tan βl

Zc + jZ2 tan βl
. (2.72)

The scattering matrix of the unit element, provided the reference resistances at
both terminal planes equal the characteristic impedance Zc of the uniform trans-
mission line, is given by [33, p. 135]

Sue(s) =

(
0 e−τs

e−τs 0

)
. (2.73)

Consequently, a unit element yields a phase shift by τω = βl [29, p. 250].

1

−j 3π
2τ

−j π
2τ

j
π

2τ

j
3π

2τ

s-plane

σ

jω

1

∞

−∞

p-plane

Σ

jΩ

(a)

−3π

2τ
−π
τ

− π

2τ

π

2τ

π

τ
3π

2τ

ω

Ω

(b)

Fig. 2.10. (a) Mapping between the s- and p-plane. The left and right half p-plane, respectively,
map onto the left and right half s-plane. The real and imaginary axes of the p-plane map onto the
corresponding ones in the s-plane. (b) Mapping between the imaginary axes of both planes.
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2.2 Elements of Particle Accelerator Physics

In the following, some fundamental properties of the electromagnetic field in rf
cavities are discussed. Important parameters are introduced to describe the coupling
between the field and particle bunch. These parameters are typically involved not
only in the frame of cavity design but also in the analysis of beam dynamics to
derive HOM damping requirements for a stable operation.

2.2.1 Problem Formulation

Let the bunch be characterized by the charge distribution ρ and the electric current
density by j = βc0ρez where β is the ratio of the particle velocity to the speed
of light c0 and ez, the unit vector in z-direction. Here, the z-axis coincides with
the longitudinal center axis of the rf cavity as in the example shown in Fig. 2.11.
Consequently, let the influence of the wake field on the bunch motion be neglected.
The electric and magnetic field intensities e, h, in the cavity which is represented
by the domain Ω, are linked to each other via Maxwell’s equations according to

∇× e(r, t) = − ∂

∂t
b(r, t), ∇× h(r, t) =

∂

∂t
d(r, t) + j(r, t),

∇ · d(r, t) = ρ(r, t), ∇ · b(r, t) = 0,

b(r, t) = µh(r, t), d(r, t) = εe(r, t), r ∈ Ω ∪ ∂Ω, (2.74)

with the magnetic flux density b and the electric displacement d. The permittivity
and permeability ε, µ, are equal to the permittivity constant ε0 and permeability
constant µ0, respectively, since the particle propagation is considered through vac-
uum. The boundary conditions that specify the solution of the Maxwell equations

J = βc0ρez

er

ez

Ω

∂Ω

Fig. 2.11. Particle bunch traversing a circular cylindrical cavity with the velocity βc0 and the
charge distribution ρ(r,t).
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can be well approximated by

n× e(r, t) = 0, r ∈ ∂Ω, (2.75)

assuming perfectly conducting walls. The unit vector n is normal to the surface ∂Ω.
For understanding the behavior of a time-harmonic electromagnetic field in resonant
structures it is useful to consider the Fourier transform of (2.74) and (2.75), which
leads to the Maxwell equations in phasor notation [42]

∇× E(r) = −jωB(r), ∇×H(r) = jωD(r) + J(r),

∇ ·D(r) = P(r), ∇ ·B(r) = 0,

B(r) = µH(r), D(r) = εE(r), r ∈ Ω ∪ ∂Ω, (2.76)

and

n× E(r) = 0, r ∈ ∂Ω, (2.77)

with the equivalent phasors of the field quantities in (2.74) assuming sinusoidal time
dependence, the angular frequency ω, and the imaginary unit j =

√
−1. The consid-

eration in frequency domain facilitates the description of material properties which
are often assumed to be homogeneous and time-invariant but frequency dependent
such as the surface impedance of the cavity wall Zs.2 The following boundary condi-
tion extends (2.75) towards finite electric conductivity in the frequency domain [43]

n× E(r) = Zs(jω) n×H(r) r ∈ ∂Ω. (2.78)

Furthermore, for rf cavities with a rotational symmetry, it is appropriate to con-
sider the problem in cylindrical coordinates (r, ϕ, z). In the azimuthal direction ϕ,
the field inside the cavity must be periodic with 2π. Correspondingly, the electro-
magnetic field in rotational symmetric structures can be decomposed into multipolar
components proportional to exp(jmϕ) where m = 0, 1, 2, ... .3 Depending on the
azimuthal periodicity, the field solution is associated with a monopole component
(m = 0), dipole component (m = 1), quadrupole component (m = 2), et cetera.
Following this approach, the electric field can be expanded by a double Fourier series

e(r, t) =
1

4π2

∞∑

m=−∞
e−jmϕ

ˆ ∞
−∞

Ẽ
(m)

(r, z, jω) e−jωtdω, (2.79)

2Normal conducting metals such as Cu provide a surface resistance proportional to ω0.5 ac-
cording to the Skin effect, while Nb in the superconducting state provides a surface resistance
proportional to ω1.3 ... 2 depending on the technique used. The electromagnetic properties of su-
perconducting thin-films can be quite different from those of bulk superconductors.

3This method is often applied to analyze the field quality in realistic magnets [44, pp. 26-32]
and rf cavities [8, 45].
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with the Fourier coefficients

Ẽ
(m)

(r, z, jω) =

ˆ 2π

0

ˆ ∞
−∞

e(r, t)ejωtejmϕdtdϕ. (2.80)

Similar relations hold for the other field and source quantities. The problem (2.74)
and (2.75) is thus simplified to a two dimensional problem in (r, z). Generally,
the solution of realistic structures, even if rotational symmetric, requires numerical
simulations to be found. It is worthwhile at this point to consider the problem first
without sources in order to derive fundamental properties of the electromagnetic
field inside rotationally symmetric cavities.

2.2.2 Eigenmodes of a Cavity

Let the cavity be described by a closed metallic structure with vacuum inside. The
permittivity and permeability are thus equal to the permittivity and permeability
constants ε0, µ0, respectively. Furthermore, no sources are considered, hence, J =
0,P = 0. The problem given in (2.76) and (2.78) can be simplified according to

−∇×∇× E(r) + k2E(r) = 0,

∆E(r) + k2E(r) = 0, r ∈ Ω ∪ ∂Ω,

n× E(r) = Zs(jω) n×H(r), r ∈ ∂Ω. (2.81)

The values k2 = ω2εµ for which the system (2.81) admits nontrivial solutions are
called eigenvalues. Correspondingly, the solutions for E and H are denoted as elec-
tric and magnetic eigenfields, so-called eigenmodes or simply modes. A general
solution of the interior problem is given, for example, in [46, pp. 297–302] by an
expansion of the fields in terms of electric and magnetic eigenvectors. Generally, nu-
merical methods are required to evaluate the eigenmodes in realistic cavities even if
rotational symmetric. Qualitative properties of eigenmodes in rotational symmetric
structures can be derived in analogy to the problem of the closed circular-cylindrical
cavity [47]. This simplest rotational symmetric structure is commonly called a pill-
box cavity and allows for analytical solutions.

For a pillbox cavity with perfect conducting walls described by (2.77), the solution,
either a transverse electric (TE) or transverse magnetic (TM) field, is characterized
by discrete propagation constants in the radial and longitudinal directions, kr, kz.
The azimuthal periodicity leads to the multipolar decomposition as discussed before.
The electric and magnetic field components of the TM modes can be expressed as
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follows [48, pp. 352–406]

E(m,n,p)
r = −E0

kz
kr
J ′m(krr) cos(mϕ) sin(kzz), (2.82)

E(m,n,p)
ϕ = E0

mkz

kr
2r
Jm(krr) sin(mϕ) sin(kzz), (2.83)

E(m,n,p)
z = E0Jm(krr) cos(mϕ) cos(kzz), (2.84)

H(m,n,p)
r = jH0

mω

c0kr
2r
Jm(krr) sin(mϕ) cos(kzz), (2.85)

H(m,n,p)
ϕ = jH0

ω

c0kr
J ′m(krr) cos(mϕ) cos(kzz), (2.86)

where Jm and J ′m are the Bessel function of first kind andmth order and its derivative,
respectively, and E0 = Z0H0 with Z0 =

√
µ0/ε0, the impedance of free space. To

satisfy the boundary condition (2.77), the propagation constants must be chosen
such that the tangential electric field at the surface vanishes (2.75). This means for
a TM mode in a pillbox cavity of radius R and length L

kr =
jmn
R
, n = 1, 2, . . . , (2.87)

kz =
pπ

L
, p = 0, 2, . . . . (2.88)

Here, jmn corresponds to the nth root of the Bessel function of first order and mth

mode. The frequency is related to the propagation constants via the dispersion
equation according to

ω = c0k = c0

√
kr

2 + kz
2, (2.89)

with c0 as the speed of light. Similar results can be obtained for the TE modes.
A resonant mode with specific indices m, n, and p is commonly written as ei-

ther TEmnp or TMmnp. It is important to note that this classification is only ap-
proximately applicable to modes in realistic cavities since finite wall conductivity,
smooth transitions between cavity and beam pipe, and inter-mode coupling lead
to hybridization between TE and TM modes. A Resonant mode in rf cavities is
further classified as either Lower-Order Mode (LOM), Same-Order Mode (SOM),
or Higher-Order Mode (HOM). This notation is meant relative to the fundamental
mode used for operation, with the mode order being defined via the parameters
m, n and p in azimuthal, radial and longitudinal direction, respectively. Note, the
fundamental mode is generally not the mode with the lowest frequency or lowest
order. Accelerating type rf cavities typically operate in the TM010 monopole mode
whose frequency can be above the one of the TE111 dipole mode. Additionally, there
are deflecting type cavities operating in a dipole or quadrupole mode [8, 49]. In
multi-cell cavities, the modes are further distinguished by the particular phase ad-
vance per cell. The weak coupling between the cells breaks the degeneracy of modes
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and causes the formation of passbands, hence modes of the same order (SOM) but
with different phase advance per cell. Figure 2.12 shows an equivalent circuit model
to describe the coupling between modes within one passband. For a structure with
periodic boundary conditions, the following dispersion relation can be derived [50,
pp. 75–85]

ωn =
ωcell√

1 + κ cos(φn)
, (2.90)

with the angular resonant frequency of the single cell, ωcell, the cell-to-cell coupling κ,
and the phase advance per cell φn of the mode n in the considered passband. Note,
the index n should not be confused with the previous definition introduced in (2.87)
as a result of the boundary condition. Equation (2.90) describes the dispersion
behavior in multi-cell cavities as long as only adjacent cells couple to each other
and the coupling between modes of different bands is negligible. It is worthwhile
mentioning that the latter requirement does generally not apply to dipole bands in
realistic structures due to the hybridization between TE and TM modes [51].

In realistic structures, the eigenmodes further exhibit certain loss mechanisms
which are described by the quality factor or simply Q factor according to

Q = ω
U
Ploss

. (2.91)

The quality factor is defined as the ratio of the time-averaged energy of the con-
sidered mode stored in the cavity, U , and the corresponding energy loss per rf cy-
cle (Ploss/ω). The power dissipated into the cavity walls as a result of finite con-
ductivity is associated with the intrinsic quality factor Q0 while external coupling
mechanisms are quantified by the particular external quality factors Qext. The latter
one is related, for instance, to the coupling through the beam pipe, to the fundamen-
tal mode coupler, and to HOM couplers. The total quality factor of the considered
mode, denoted as the loaded quality factor QL, is calculated according to

1

QL

=
1

Q0

+
1

Qext

. (2.92)
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Fig. 2.12. Equivalent circuit of a multi-cell cavity to describe the inter-mode coupling within one
passband.
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The ratio of the power lost by external coupling mechanisms and the power dissi-
pated within the cavity due to its intrinsic properties is denoted as coupling coeffi-
cient κ, and is given by [52]

κ =
Q0

Qext

, (2.93)

If the cavity is described as a one-port so that power dissipates through only a single
terminal plane, the coupling coefficient may be written as [17, p. 154]

κ =
1± |s11|
1∓ |s11|

= SWR±1, (2.94)

with SWR as the voltage standing wave ratio [41, p. 58]. The upper sign applies
in case of overcritical coupling which means that more power is lost through the
terminal plane than within the cavity. The lower sign applies for undercritical
coupling, that is if more power dissipates in the cavity walls than through the port.

It is important to note that the cavity shape shown in Fig. 2.11 can be well
represented by a pillbox cavity as long as the considered resonant mode is only
weakly damped by fields radiating into waveguide modes of the beam pipe. This
again is determined by the (lowest) cutoff frequency of the coupled waveguide modes.
Above this threshold the spectrum of the cavity becomes continuous and significantly
diverges from the analytic solutions (2.82)–(2.86).

2.2.3 Low Field Surface Impedance of Superconductors

The surface impedance of superconductors exposed to an rf field may qualitatively
be understood by the two-fluid model [53]. Given a time-varying magnetic field
exponentially decaying with the penetration into the superconductor as predicted
by the London equations [54], the surface impedance of a superconductor can be
derived as [55]

Zs = Rs + jX =
1

2
ω2µ0

2 σ′λL
3 + jωµ0λL, (2.95)

where λL is the London penetration depth and σ′ refers to the electric conductivity
in the normal conducting state at the transition temperature. The latter one is
related to the purity of the material represented by the residual resistance ratio
RRR, and the electric conductivity σ at room temperature, i. e. 293 K, according to

σ′ = RRR σ. (2.96)

The temperature dependence of the surface resistance Rs may be deduced from
the temperature dependence of the penetration depth described by [53, 56]

1

λ2
L(T )

∝ 1− T 4

Tc
4 , (2.97)
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which applies well near the critical temperature Tc, below which the resistance drops
abruptly to zero in the presence of static electric currents. The critical temperature
for niobium is about Tc=9.2 K. In addition, the proportionality to σ for the real part
in (2.95) yields an exponential correlation with the temperature valid for T < 0.5Tc,
that is

Rs ∝ ω2λL
3 ξ exp

(
− ∆

kBT

)
(2.98)

Here, ∆ refers to the superconducting energy gap, and kB is the Boltzmann constant.
Furthermore, the mean free path of a single electron, ξ, accounts for the material
purity according to (2.96). Given the exponential decrease of the surface resistance
with the temperature, in order to minimize rf losses in a superconducting cavity, it
is preferable to operate them at a low temperature, such as 2 K for SPL cavities.

An implicit formulation for the surface resistance has been worked out by Mattis
and Bardeen [57] based on the BCS theory, and allows for quantitative predictions
apart from a residual resistance Rres typically being in the order of few nanoohms
for niobium [58]. Consequently, the surface resistance may be written as

Rs = Rbcs +Rres. (2.99)

It is important to note that the first term on the right-hand side associated with the
BCS theory applies for low fields, that is below 20 mT with respect to niobium [59].

2.2.4 Wake Potentials and Beam Coupling Impedances

The electromagnetic field in a cavity induced by a traversing particle bunch may be
expressed as superposition of infinitely many eigenmodes [60]. The mode excitation
is essentially determined by the charge and spectrum of the particle bunch. Rather
than the wake fields itself, it is more comparative to analyze the force acting back
on trailing particles due to the presence of wake fields.4 This leads to the concept
of wake potentials.

Let a driving charge q be considered with vanishing transverse dimensions but dis-
tributed in the longitudinal direction in which it propagates at the speed of light c0.
Furthermore, let this beam be generally off-centered. Using cylindrical coordinates,
the sources in Maxwell’s equations (2.74) can be formulated as

ρ(r0, ϕ0, r, ϕ, ζ) =
q

r
δ(r − r0)δ(ϕ− ϕ0)λ(ζ), (2.100)

j(r0, ϕ0, r, ϕ, ζ) = ezc0ρ(r, ϕ, r0, ϕ0, ζ). (2.101)

where r0 and ϕ0 are defined as the radial and azimuthal displacement of the driving
beam, −ζ = z − c0t with ζ ≤ 0 is the relative longitudinal coordinate to the bunch

4In the non-ultra-relativistic case (β < 1) additional static fields are present which impact not
only trailing particles [5, 50, 61].
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center (assuming z = 0 at the time t = 0), and λ(ζ) is the normalized distribution
function describing the longitudinal particle bunch profile.

The longitudinal force fz acting on a trailing point charge q′ at (r, ϕ, ζ) is repre-
sented by the longitudinal wake potential defined as [61, p. 46],

wz(r0, ϕ0, r, ϕ, ζ) =
1

qq′

ˆ ∞
−∞

fz(r0, ϕ0, r, ϕ, z, c0t = z − ζ) dz, (2.102)

where fz is the longitudinal component of the Lorentz force resulting from the so-
lution of the Maxwell (2.74) for the given boundary problem and sources (2.100)–
(2.101). The transverse wake potential results in analogue way from the transverse
Lorentz force acting on a trailing point charge q′ at (r, ϕ, ζ). Its components in
cylindrical coordinates are defined as,

wr,ϕ(r0, ϕ0, r, ϕ, ζ) =
1

qq′

ˆ ∞
−∞

fr,ϕ(r0, ϕ0, r, ϕ, z, c0t = z − ζ) dz, (2.103)

Note, the transverse wake potential has two orthogonal components which can be
chosen as horizontal and vertical, or as radial and azimuthal. For comparative
analyses, it is often more suitable to choose the directions such that the transverse
components maximize. The relationship between the transverse and longitudinal
wake potentials can be expressed as [44, p. 497]

∂swr,ϕ(r0, ϕ0, r, ϕ, ζ) = ∂r,ϕwz(r0, ϕ0, r, ϕ, ζ), (2.104)

with ∂u = ∂/∂u. Equation (2.104) is often referred to as Panofsky-Wenzel theo-
rem [62]. Similar as described in Sec. 2.2.1, the components of the wake potential
can be decomposed into multipolar components according to [5, p. 58]

wz(r0, ϕ0, r, ϕ, ζ) =
∞∑

m=0

rm0 r
mw(m)

z (ζ) cos(m(ϕ− ϕ0)), (2.105)

wr(r0, ϕ0, r, ϕ, ζ) =
∞∑

m=1

mrm0 r
m−1w(m)

r (ζ) cos(m(ϕ− ϕ0)), (2.106)

wϕ(r0, ϕ0, r, ϕ, ζ) = −
∞∑

m=1

mrm0 r
m−1w(m)

ϕ (ζ) sin(m(ϕ− ϕ0)). (2.107)

In most cases, the longitudinal wake potential is dominated by monopole modes
(m = 0) while the transverse wake potential is dominated by dipole modes (m = 1).
Higher-order field components are usually quite weak due to their radial depen-
dency according to ∝ rm or ∝ rm−1 for the longitudinal or transverse components,
respectively [44, 48, 61]. Recalling the pillbox problem, these radial dependencies
are reflected in the Bessel functions of the analytic solutions (2.82)–(2.86). Due to
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the dominance of monopole and dipole modes, it is appropriate to introduce simpli-
fied representations of the longitudinal and transverse wake potentials, respectively,
according to

w‖(ζ) = w(m)
z (ζ)|m=0, (2.108)

w⊥(ζ) = w(m)
r,ϕ (ζ)|m=1, (2.109)

where the latter one, generally, consists of two orthogonal components as mentioned
before. If the structure is rotational symmetric, both transverse components are
identical. Though the definitions (2.108) and (2.109) only account for bunch induced
monopole and dipole modes, they are commonly considered for comparative analyses
of general structures. Note, if the transverse beam size is comparable to the size
of the beam pipe, quadrupole modes may also drive transverse instabilities so they
need to be carefully considered in the cavity design [5].

The longitudinal beam coupling impedance is defined as the Fourier transform of
the corresponding wake potential normalized by the current spectrum according to

Z‖(jω) = − 1

I(jω)
q

ˆ ∞
−∞

w‖(t)e
−jωtdt, (2.110)

with the current spectrum

I(jω) = q

ˆ ∞
−∞

λ(t)e−jωtdt. (2.111)

The impedance is thus the Fourier transform of the wake potential which corresponds
to a particle bunch of vanishing size, the so-called wake function. Equation (2.110)
is equivalent to Ohm’s law. The minus sign results from the definition of the wake
potential, that is the energy gain of a point charge as it passes through the structure.
The transverse beam coupling impedance is defined as [61, p. 77]

Z⊥(jω) =
j

I(jω)
q

ˆ ∞
−∞

w⊥(t)e−jωtdt, (2.112)

where the phase shift introduced by the imaginary unit accounts for the fact that
a localized transverse force does not change the transverse position of the particle
but rather the slope of its trajectory. The relationship between transverse and
longitudinal impedances can be derived from (2.104)–(2.112), and is given by

Z⊥
(m)(jω) =

c0

ω
Z‖

(m)(jω). (2.113)

Figs. 2.13 and 2.14 show the longitudinal and transverse impedances of a circular-
cylindrical cavity with left-opened beam pipe ports as sketched in Fig. 2.11. Gen-
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erally, the impedance spectra of rf cavities are characterized by resonances which
become rapidly denser with increasing frequency, while their quality factors tend to
decrease and eventually overlap at high frequencies. In particular, this occurs above
the lowest cutoff frequency of waveguide modes in the beam pipe. Note, the two
structures analyzed in Figs. 2.13 and 2.14 differ only in the radius of the beam pipe,
which is for the latter twice as large as for the first one. The impedance drop around
10 GHz in Fig 2.14(b) is related to fields radiating into the beam pipe. It applies
likewise to the longitudinal impedance shown in 2.14(a), though the corresponding
drop appears smooth rather than abrupt. The pillbox with smaller beam pipe aper-
ture reveals similar beam coupling impedances depicted in Fig. 2.13, however, with
the particular impedance drop being at much higher frequency

2.2.5 Resonator Impedance and Shunt Resistance

Narrow band resonances in a cavity can be well approximated by a parallel RLC
resonator circuit as shown in Fig. 2.15(a). This applies, in particular, to all trapped
modes, i.e., modes below the lowest cutoff frequency of waveguide modes in the
beam pipe. The equivalence of the narrow band resonances between a cavity and
the parallel RLC circuit has been derived, for example, in [44, p. 504] and applies
to the longitudinal impedance. Accordingly, the contribution of the n-th monopole
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Fig. 2.13. (a) Longitudinal and (b) transverse beam coupling impedances of a circular-cylindrical
cavity with left-opened beam pipe ports (cavity diameter = 153 mm, cavity length = 100 mm,
beam pipe diameter = 10 mm). The impedances are derived from truncated wake potentials of
100 m length simulated in abci [63] with a Gaussian bunch of σz = 5 mm RMS length.
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Fig. 2.14. (a) Longitudinal and (b) transverse beam coupling impedances of a circular-cylindrical
cavity with left-opened beam pipe ports (cavity diameter = 153 mm, cavity length = 100 mm,
beam pipe diameter = 20 mm). The impedances are derived from truncated wake potentials of
100 m length simulated in abci [63] with a Gaussian bunch of σz = 5 mm RMS length.

mode to the longitudinal impedance, can be expressed as

Z‖ =
1

1/Rn + jωCn − j/(ωLn)
=

Rn

1 + jQn (ω/ωn − ωn/ω)
, (2.114)

with the shunt resistance Rn, the angular resonant frequency ωn = 1/
√
LnCn, and

the quality factor Qn = Rn

√
Cn/Ln. The transverse impedance follows from (2.113),

with the shunt resistance, resonant frequency, and quality factor of a monopole mode
being replaced by the corresponding quantities of a dipole mode. It is important
to note that the shunt resistance is not a physical resistance as it connects voltage
and current of two different phenomena. The voltage V (n) can be correlated to a

Ib
1

jωCn
jωLnRn V (n)

(a)

Ib

jωL′
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jωC ′
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Zs(jω)

jωL′
n V (n)
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Fig. 2.15. Equivalent circuits to model the narrow-band impedance of a rf cavity for a specific
mode. The current source represents the beam. (a) Parallel RLC circuit. The shunt resistance Rn
characterizes the interaction between beam and cavity mode. (b) Refined model using a transformer
to describe the field coupling. The surface impedance Zs(jω) accounts for wall losses.
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mode specific wake potential, that is the voltage induced in the eigenmode n by the
particle traversing the cavity. The longitudinal and transverse voltages are defined
in analogy to (2.102) and (2.103)

V
(n)
‖ (r, ϕ) =

1

q′

ˆ ∞
−∞

F (n)
z (r, ϕ, z) exp

(
j
ωn
c0

z

)
dz, (2.115)

V
(n)
⊥ (r, ϕ) =

1

q′

ˆ ∞
−∞

F (n)
r,ϕ (r, ϕ, z) exp

(
j
ωn
c0

z

)
dz, (2.116)

where F
(n)
z is the longitudinal and F

(n)
r , F (n)

ϕ are the transverse components of
the Lorentz force phasor resulting from the n-th eigenmode and a test particle of
charge q′ propagating through the structure at the speed of light c0 and at constant
transverse offset. The current flowing through the shunt resistance accounts for any
loss mechanism present in the cavity, for instance, the surface currents in the cavity
walls induced by the magnetic field or external coupling mechanisms. Hence, for
a specific eigenmode n, the shunt resistance associates the power loss of the mode
and the longitudinal or transverse voltage experienced by a particle traversing the
cavity according to

|V (n)|2 = RnP
(n)
loss. (2.117)

Note, (2.117) corresponds to the linac definition while the circuit definition provides
an additional factor of two on the right hand side. Both mechanisms, the energy
gain of the particle and the power loss are instantaneously coupled via the wake field,
in particular, the magnetic field that induces the surface current in the cavity walls.
Figure 2.15(b) shows an equivalent circuit model according to [61, p. 316] using a
transformer with a mutual inductance Mn to respect the magnetic field coupling.
However, it does not involve loss mechanisms other than the dissipated power into
the cavity walls.

To separate the two mechanisms present in the shunt resistance, another quantity,
called geometric shunt resistance, is typically used in accelerator physics, which
describes the beam-mode coupling independent off the losses

(R/Q)n =
Rn

Qn

=
|V (n)|2
ωnU (n)

, (2.118)

where U (n) is the energy contribution of the mode n stored in the cavity. Note, the
linac definition is considered according to (2.117). As the beam coupling impedances,
the shunt resistance and geometric shunt resistance are defined for a bunch with
vanishing size (point charge) and are related to either the longitudinal or transverse
impedance corresponding to (2.115) and (2.116), respectively. Furthermore it is
common to express the geometric shunt resistance as a function of the relativistic β,
hence the ratio of the particle velocity to the speed of light. In this case, the particle
velocity in definitions (2.115)–(2.116) needs to be adapted. Often, the following
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alternative definitions are used for the longitudinal and transverse geometric shunt
resistances [64]

(R/Q)‖,n(ϕ, β) =
1

r2m

|V (n)
‖ (r, ϕ, β)|2

ωnU (n)
, (2.119)

(R/Q)⊥,n(ϕ, β) =
1

r2m−1

|V (n)
⊥ (r, ϕ, β)|2
ωnU (n)

. (2.120)

The longitudinal and transverse voltage are divided by r2m or r2m−1, respectively,
in order to compensate the radial dependency. Consequently, definitions (2.119)
and (2.120) only depend on the azimuthal angle and particle velocity. Note, they
are mentioned for completeness but not applied in the present treatise. For compar-
ative cavity analyses, it is appropriate to consider the azimuthal angle of maximum
geometric shunt resistance independent of the definition used. It is worthwhile to
note that the transverse beam displacement, described by the radial displacement
r, needs to be taken into account for transverse beam dynamic studies in order to
determine the effective impedance of the cavity.

Finally, a few properties of the geometric shunt resistance with respect to monopole
and multipole modes are summarized. Taking into account that the longitudinal field
components of eigenmodes in rotational symmetric structures are approximately
proportional to rm while the transverse field components are approximately propor-
tional to rm−1, monopole modes (m = 0) do not provide any transverse momenta on
the beam axis. Consequently, (R/Q)⊥ vanishes on the beam axis. Moreover (R/Q)‖
only marginally varies even for relatively large transverse beam displacements in the
order of the beam pipe aperture. Multipolar modes with m > 0 do not provide any
longitudinal field components on the beam axis, hence, (R/Q)‖ = 0. The transverse
geometric shunt resistance of a dipole mode (m = 1) is independent of the trans-
verse beam displacement r. It is worth noting that the transverse and longitudinal
voltages are directly related to each other via the Panofsy-Wenzel theorem [65]

V
(n)
⊥ = jβc0/ωn ∂ρ,ϕV

(n)
‖ , (2.121)

Equation (2.121) is often used in numerical simulations to calculate (R/Q)⊥ from
the longitudinal field components.

2.2.6 Mode Excitation and Loss Factor

The excitation of eigenmodes in a cavity due to a traversing particle bunch substan-
tially depends on the bunch shape, in particular, on its RMS length since a long
bunch does not contain the high frequency components excited by a shorter bunch.
Consequently, the parasitic effects of HOMs become more pronounced, the shorter
the bunch is. The fraction of energy that a single bunch of charge q loses while
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passing the structure is given by [17, p. 333]

∆E = −k‖q2, (2.122)

where the total loss factor k‖ is the integral of the longitudinal wake potential
weighted by the normalized distribution function of the longitudinal bunch pro-
file [61, p. 99]

k‖(σt) =

ˆ ∞
−∞

w‖(ζ)λ(ζ, σt) dζ. (2.123)

Note, due to its dependency on the bunch shape, the RMS bunch length σt (in time)
is typically written as an argument of the loss factor. The meaning of the loss factor
becomes more obvious by substituting the longitudinal wake potential in (2.123) by
the corresponding impedance using (2.110) and (2.111), which result in

k‖(σt) =
1

2π

ˆ ∞
−∞

Z‖(jω)|Λ(jω, σt)|2dω. (2.124)

In other words, the loss factor is the integral of the longitudinal impedance weighted
by the normalized power density spectrum of the bunch, |Λ|2. The power density
spectrum of a Gaussian bunch profile with the RMS length σt is proportional to
exp(ω2σ2

t ). In literature, it is, therefore, often stated that an effective excitation
of the monopole n is only possible if the condition ωn . 1/σt is satisfied [17, 66].
However, this necessary condition should be seen as a rough estimate only. The
beam coupling impedances may provide much lower frequency limits than expected
from the bunch profile due to external coupling mechanisms as it is the case for
the circular symmetric structure studied in Fig. 2.14. In a resonator, the total loss
factor can be further expanded into a series of modal loss factors, each of them
corresponding to a distinct monopole mode. The relationship between the modal
loss factor and the geometric shunt resistance of the mode n is given by [67]

k‖,n =
ωn
4

(R/Q)n. (2.125)

Note, the linac definition is used according to (2.117).
The kick factor k⊥ is defined in analogy to (2.123) and (2.124) using the transverse

wake potential and impedance, respectively. It describes the transverse momentum
change that the bunch experiences while passing through the structure.

2.2.7 Longitudinal Beam Dynamics

The length of a particle bunch is in the order of millimetres whereas the wave
lengths are hundreds of times larger, so this allows the greatly simplified description
as a point-like charge also known as macro particle. Note, this assumption is valid,
in particular, for high-energy proton linacs such as the SPL. Let the longitudinal
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voltage be defined according to (2.115). From (2.122) and (2.125) it follows that
a point charge q traversing the cavity excites a longitudinal voltage in each TM
monopole mode n according to

∆Vq,n(β) = −q ωn
4

(R/Q)n(β). (2.126)

To ensure energy conservation, the bunch must lose the equivalent amount of energy
given by the fundamental theorem of beam loading [65]. With the particular mode
already present in the cavity, the parasitic energy change of a bunch during the
transit and with respect to the mode n can be written as

∆En(t, β) = −q 1

2
∆Vq,n(β) + q<{Vn(t, β)}. (2.127)

The second term in (2.127), which corresponds to the field already present in the
cavity, is object to different damping mechanisms expressed by the loaded quality
factor QL,n of the particular mode according to

Vn(t, β) =
N∑

k=1

∆Vq,n(β) exp

(
−t− tk

τd,n

)
exp[jωn(t− tk)] θ(t− tk), (2.128)

with the decay constant τd,n = 2QL,n/ωn. The sum is taken over all N previous
bunches which passed the mid-plain of the cavity at the instances tk. The function
θ represents the Heaviside step function using the maximum convention, θ(0) = 1.

Furthermore, fluctuations in amplitude and phase of the accelerating voltage lead
to additional errors in the energy gain per cavity. Note, these rf errors are always
present to a certain amount despite the low-level rf system to stabilize the acceler-
ating voltage and lock the phase [19]. The error of the energy gain per cavity due
to the fundamental mode can be written as

∆E0(t, β) = q [V0(β) +∆V0(t)] cos(ω0t+ [φs +∆φs(t)])− q V0(β) cos(φs), (2.129)

where V0 is the nominal accelerating voltage at synchronous phase φs, ∆V0 and ∆φs
are the time-dependent fluctuations of the accelerating voltage and synchronous
phase, respectively, and ω0t is the arrival phase error of the particle bunch. The
fluctuations ∆φs are also denoted as the jitter provided by the rf source.

The total energy error of a bunch in the m-th cavity is given by [50, p. 166]

∆E (m+1)(t, β) = ∆E (m)(t, β) +∆E (m)
0 (t, β) +

∞∑

n=1

∆En(m)(t, β), (2.130)

where the sum is typically limited to few modes being particularly close to a har-
monic of the bunch or chopping frequency due to the resonance condition of subse-
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quent bunches in (2.128). The energy error ∆E (m) which is present in front of the
cavity m translates into an arrival time error when passing through the drift space
towards the next cavity m + 1. Since the particle velocity is below the speed of
light, the energy error is tightly connected to the time of arrival error at each cavity
according to

∆t(m+1) = ∆t(m) +

(
dt

dE

)

β

∆E (m)(t, β), (2.131)

where the gradient is determined by the drift length between the considered cavities,
L, the resting mass of the particle m0 and its velocity according to

(
dt

dE

)
= − L(m)

m0c0(γ2 − 1)3/2
. (2.132)

Here, γ is the relativistic factor.

2.3 Numerical Analyses, Techniques, and Algorithms

Apart from the measurements, most analyses across the subsequent chapters are
based on computational methods. This section provides a survey of partial dif-
ferential equations and boundary conditions describing the various problems being
assessed by numerical approaches, such as the finite difference and finite element
methods, or the finite integration technique [68–70]. Basic ideas of the widely used
finite element method are outlined along with an example to provide the reader with
certain background knowledge for the applied numerical simulations. Moreover, a
particular data fitting procedure is described that is frequently employed to analyze
simulated or measured scattering functions of resonant rf structures.

2.3.1 Finite Element Method

The finite element method allows solving partial differential equations computation-
ally, with the solution of the particular problem being approximated by polynomials
defined on typically unstructured meshes. Depending on the spatial dimension, the
latter are usually composed of line elements, triangles, quadrilaterals, or tetrahe-
drons [68, pp. 87]. This procedure is appropriate for a wide variety of problems,
such as the mode propagation through a waveguide, heat transfer at the surface of
an HOM coupler, or the structural deformation of components as a result of ther-
mal contraction. The finite element method is the basis for most of the numerical
simulations presented in this treatise.

To illustrate the principles of finite element methods, let the solution u(x, t) be
considered, which satisfies the one-dimensional problem

∂u

∂t
+ a

∂u

∂x
= 0, a ∈ R, x ∈ Ω. (2.133)
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Note, a more detailed discussion of a similar problem provides [71, pp. 1]. The
solution u(x, t) as a function of space and time depends on boundary conditions and
the initial value u(x, 0). To begin with, let the calculation domain Ωh be discretized
into K subdomains or elements according to

Ω ' Ωh =
K⋃

k=1

Dk. (2.134)

For each element Dk, the solution is approximated by an ansatz of the form

ukh(x, t) =

Np∑

i=1

uki (t)`
k
i (x), (2.135)

where the unknown time-dependent coefficients uki define the degrees of freedom
while `ki (x) are chosen as orthogonal nodal basis functions represented by Lagrange
polynomials. Thus, uki approximates the exact solution u(x, t) at the i-th node xi
of the k-th element Dk as sketched in Fig. 2.16(a). Suitable choices for the basis
functions and their representations are discussed in [69, 72]. Furthermore, a residual
Rk
h(x, t) is introduced to account for the approximation error in (2.133) according

to

Rk
h(x, t) =

∂ukh
∂t

+ a
∂ukh
∂x

, x ∈ Dk. (2.136)

The coefficients uki are determined in a way that the error becomes small. Follow-
ing Galerkin’s approach, this may be achieved by the method of mean weighted
residuals, that is ˆ

Dk
Rk
h(x, t) · υkj (x)dx = 0, (2.137)

with the test functions υkj (x) being from the same set as the basis functions `ki (x).
Equation (2.137) may be written as

ˆ
Dk

∂ukh
∂t

`kj + a
∂ukh
∂x

`kjdx = 0, (2.138)

which corresponds to a system of first order ordinary differential equations. It is
evaluated for each element taking into account a certain coupling between local
solutions in order to approximate the exact solution u(x, t) globally. The coupling
may be introduced by forcing the numerical solution uh(x, t) to be continuous across
adjacent elements as illustrated in Fig. 2.16(b).

In contrast, the discontinuous Galerkin finite element method uses a numerical
flux to imply coupling between neighboring elements. This may be illustrated as
follows. By applying Gauss’s theorem on the second term in (2.138), so that it
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Fig. 2.16. (a) Approximation of the exact solution u(x) = sin(x) satisfying (2.133) in the compu-
tational domain Ω while the time dependence is disregarded. The solution is approximated using
Lagrange polynomials `i(x) defined on the set of nodes xi. (b) Partitioning of the computational
domain Ω into three elements Dk, each characterized by two nodes. Note, the elements are only
separated for visual reasons. As the basis functions are linear the numerical approximation of the
exact solution u(x) becomes piece-wise linear. In this particular example, the approximation uh(x)
is continuous across the elements.

becomes ˆ
Dk

∂ukh
∂t

`kj − aukh
d`kj
dx

dx = −
[
aukh`

k
j

]xk+1

xk
. (2.139)

Though, the present form only considers boundary values of the local element, the
resulting right-hand side may be interpreted as information flow across the element
surface. By introducing a numerical flux (aukh)

∗ according to
ˆ
Dk

∂ukh
∂t

`kj − aukh
d`kj
dx

dx = −
ˆ
∂Dk

n(aukh)
∗`kjdx, (2.140)

with n being the surface normal vector, the coupling between adjacent elements
can be achieved. The flux must be defined in a way that it involves the local
solutions of both considered elements. Figure 2.17 depicts numerical solutions for
the problem (2.133) using different flux definitions which are further discussed in [71,
p. 25]. It is seen that the approximate solution is, in general, discontinuous across
element interfaces. Applying Gauss’s theorem on (2.140) yields

ˆ
Dk

∂ukh
∂t

`kj + a
∂ukh
∂x

`kjdx =

ˆ
∂Dk

n
(
aukh − (aukh)

∗) `kjdx, (2.141)

which is known as the strong form of the discontinuous Galerkin finite element
scheme [71, p. 8] applied to the problem (2.133).
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Fig. 2.17. Approximation of the exact solution u(x, t) for the problem (2.133) with a = 2π and
u(x, 0) = sin(x). The computation domain is split into eight elements of equal length. Using
the discontinuous Galerkin finite element method with linear basis functions, two choices for the
numerical flux are compared with each other. (a) The central flux and (b) upwind flux [71, pp. 25].

Equation (2.141) for the element Dk may be written in matrix form as

Mk du
k
h

dt
+ Skuk

h =
[(
aukh − (aukh)

∗) `k
]xk+1

xk
(2.142)

where uk
h = [uk1, u

k
2, . . . , u

k
Np]

T contains all unknowns at the instant of time while
`k = [`k1, `

k
2, . . . , `

k
Np]

T is the vector of orthogonal nodal basis functions. Furthermore,

Mk
ij =

ˆ
Dk
`ki (x)`kj (x)dx, Skij =

ˆ
Dk

d`ki (x)

dx
`kj (x)dx

refer to the mass and stiffness matrices, respectively. Similar expressions are found
for the continuous Galerkin finite element method, though their detailed imple-
mentations notably differ. It is worthwhile to note that nodal basis functions are
suitable for scalar problems. In contrast, to solve vector field problems such as the
wave propagation in the three-dimensional space, a particular basis which forms the
so-called Nédélec finite element is usually employed [72, pp. 28].

The discretization of time succeeds via implicit or explicit integration schemes
applied to (2.142), for instance, Runge-Kutta, Adams-Bashforth, or the expansion
in a Taylor series using higher-order spatial differential operators [73–75].

2.3.2 Electromagnetic Waves and Scattering Functions

Section 2.2 has already dealt with wake fields and eigenmodes of accelerating cavi-
ties. Another important analysis comprises the scattering properties and frequency
response of rf structures. For this purpose, the Helmholtz equation is solved for
a set of discrete frequency points in the range of interest. Using the electric field
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intensity, the interior scattering problem is described by

∇×∇× E− k2E = 0, r ∈ Ωvac. (2.143)

where the source-free domain Ωvac refers to the inner volume of the considered
structure, such as, a cavity or rf filter. For the sake of simplicity, it is assumed to
be filled with vacuum. Accordingly, the scattering problem is characterized by the
wave number k = k0 = ω/c0 where ω = 2πf is the angular frequency.

To account for inward and outward propagating waves across predefined terminal
planes, mode specific boundary conditions are applied, which behave approximately
like infinitely long waveguides [76]. They are typically restricted to a certain number
of propagating modes satisfying two-dimensional Helmholtz equations. For instance,
a transverse electric waveguide mode must fulfill the following eigenvalue problem
on the particular port boundary ∂Ωp,

∇×∇×Hνn + (β2 − k0
2)Hνn = 0, r ∈ ∂Ωp, (2.144)

with Hν being the component of the magnetic field intensity perpendicular to the
boundary and in parallel to the normal unit vector n. The generalized index ν
specifies the periodicity of the solution in both transverse directions spanning the
port boundary.

As for the eigenvalue problem considered in Sec. 2.2.2, energy dissipation implied
by surface currents on the interior structure walls is represented by an impedance
boundary condition according to

n× E(r) = Zs n×H(r) r ∈ ∂Ωsolid ∩ ∂Ωvac. (2.145)

It applies to the common boundary between the vacuum filled domain Ωvac and
surrounding structure ∂Ωsolid. The surface impedance of materials such as niobium
in the superconducting state has been already outlined in Sec. 2.2.3. For the sake of
completion, the surface impedance of normal conductors calculates as [42, p. 429]

Zs = (1 + j)

√
µ0ω

2σ
=

1 + j

σδ
, (2.146)

with the permittivity constant µ0, angular frequency ω, electric conductivity σ given
by the material, and penetration depth δ.

Furthermore, the SPL cavities including the fundamental mode coupler provide
one symmetry plane which allows the application of eigenmode and scattering anal-
yses on half the model. Depending on the excited resonant mode, the tangential
components of either the magnetic or electric field may vanish at this symmetry
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plane ∂Ωsym, that is

H(r)× n = 0, r ∈ ∂Ωsym, if TE, (2.147)
E(r)× n = 0, r ∈ ∂Ωsym, if TM, (2.148)

where the unit vector n is normal to the particular plane. Note, in the presence
of HOM couplers, the symmetry conditions do not apply anymore, and the entire
model must be considered such as in Sec. 5.2.3.

Finally, given a structure with two terminal planes denoted as port 1 and port 2,
the corresponding reflected and transmitted scattering functions, respectively, cal-
culate as

s11 =

s
p1

(E− Ep1) · E∗p1
dA

s
p1

Ep1 · E∗p1
dA,

(2.149)

s21 =

s
p2

E · E∗p2
dA

s
p2

Ep2 · E∗p2
dA

(2.150)

Here, E is the interior electric field which solves (2.143) and Epi refers to the specific
waveguide mode satisfying the two-dimensional Helmholtz equation (2.144) at the
port boundary ∂Ωpi .

2.3.3 Vector Fitting

In this section, the classical and modified formulations of vector fitting by Gus-
tavsen [77, 78] are introduced. Vector fitting is a general and very robust methodol-
ogy to approximate a measured or calculated frequency response {ωk, Hk}Nkk=1 with
a rational function H(s). The original formulation by Gustavsen [77, 79] considers
an ansatz of a rational function which is given by a state space representation of a
linear system according to

sx = Ax + bu(s), (2.151)
y(s) = cTx + du(s) + sh, (2.152)

where u and y are the input or, respectively, output signal given as functions of the
complex frequency according to (2.1)–(2.3). Both are linked via the vector of state
variables x. The system poles {an}Nn=1 in the diagonal matrix A and the residues
{cn}Nn=1 in the vector c are either real quantities or come in complex conjugated
pairs, while d and h are real quantities. The vector b contains ones. With these
definitions the transfer function as the ratio of the output to the input signal in
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frequency domain can be written as

H(s) = cT(sI−A)−1b + d+ sh, (2.153)

=
N∑

n=1

cn
s− an

+ d+ sh. (2.154)

The matrix I is the identity matrix. It is worth noting that the vectors b and c can
be chosen differently to obtain (2.154) since the absolute values of the state variables
are not important to describe the frequency response. The approximation problem
in the least square sense, corresponding to

min
{an,cn}Nn=1,d,h

Nk∑

k=1

|H(sk)−Hk|2 , (2.155)

is non-linear due to the unknown poles {an}Nn=1 in the ansatz (2.154). Vector fit-
ting solves (2.155) sequentially using a helper function σ(s) with a set of known
poles {ān}Nn=1 but unknown residues {c̃n}Nn=1, such that the augmented least square
problem, given by

min
{c̃n,cn}Nn=1,d,h

Nk∑

k=1

|σ(sk)H(sk)− σ(sk)Hk|2 , (2.156)

becomes linear in each iteration. This requires that the zeros of σ(s) and poles of
H(s) exactly cancel out in each iteration. Consequently, the first term in (2.156)
can be written as

σ(s)H(s) =
N∑

n=1

cn
s− ān

+ d+ sh. (2.157)

The residues of this expression are chosen as identical to the residues of the transfer
function H(s) merely for the sake of simplicity. The same applies to the parameters
d and h. Once, the augmented problem (2.156) is solved, the zeros of σ(s) provide
a set of corrected poles used for the subsequent iteration. The helper function
is intended to approach one in the considered frequency interval while iterating.
Hence, its poles and zeros are anticipated to become approximately identical. The
convergence and robustness of the scheme depends very much on the choice of the
helper function. The classical vector fitting considers an ansatz according to [77]

σ(s) =
N∑

n=1

c̃n
s− ān

+ 1. (2.158)
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Note, by forcing the helper function to approach unity at very high frequencies, the
solution of σ(s) in the augmented problem (2.156) becomes unique in each itera-
tion. The modified vector fitting published by Gustavsen [78] greatly improves the
convergence and robustness of the scheme by replacing the high-frequency asymp-
totic requirement in (2.158) with a more relaxed condition using an additional free
parameter d̃ in the ansatz of the helper function:

σ(s) =
N∑

n=1

c̃n
s− ān

+ d̃. (2.159)

To avoid the trivial null solution of d̃, the augmented least square problem is ex-
tended by the equation

<
{

Nk∑

k=1

σ(sk)

}
= Nk, (2.160)

which should be weighted in relation to the size of {Hk}Nkk=1 as described in [78].

The zeros of σ(s) and, thus the corrected poles of H(s) can be calculated by
solving an eigenvalue problem based on a minimal state space representation [79].
By comparing (2.154) with (2.151)–(2.152), the minimal state space representation
of the somewhat more general ansatz of the helper function (2.159) is given by

sx = Āx + bu(s), (2.161)

y(s) = c̃Tx + d̃u(s), (2.162)

where the augmented poles and residues {ān, c̃n}Nn=1 are contained in the diagonal
system matrix Ā and vector c̃, respectively. The elements of the vector b are again
arbitrarily chosen to unity in conjunction to the residue vector c̃. It is a fundamental
property of linear systems that the poles of the transfer function are equivalent to
the eigenvalues of the corresponding system matrices independent of the particular
state space representation. Consequently, the zeros of the helper function σ(s) are
associated with the eigenvalues of the system matrix which corresponds to a state
space representation of 1/σ(s). This is equivalent to interchanging the input and
output signals in (2.161)–(2.162), and leads to

sx = (Ā− bd̃
−1

c̃T)x + bd̃
−1
y(s), (2.163)

u(s) = −d̃−1
c̃Tx + d̃

−1
y(s). (2.164)

Thus, the corrected set of poles is calculated as

eig(Ā− bd̃
−1

c̃T). (2.165)
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It is important to note that the particular requirement of vector fitting, that is
the poles and residues {ān, c̃n}Nn=1 being either real quantities or part of complex
conjugated pairs, allows (2.165) to be represented as an eigenvalue problem of a
real matrix. This has several numerical advantages concerning the convergence
and consistency of corresponding algorithms, and further ensures that the resulting
eigenvalues are again either real quantities or come in perfect complex conjugated
pairs.

2.3.4 Heat Transfer and Structural Deformation

The temperature distribution inside solid structures, such as the cavity wall or the
inner and outer conductor of coaxial HOM couplers, is governed by the energy
conservation law according to

∇ · (k∇T ) = %cp
∂T

∂t
, r ∈ Ωsolid, (2.166)

where %, cp and k are the material specific density, heat capacity at constant pres-
sure, and thermal conductivity, respectively. The analyses carried out in Sec. 5.3.3
throughout refer to the stationary case where the right-hand side in (2.166) vanishes.
Moreover, the thermal conductivity k generally varies with the temperature and pu-
rity of the material. The latter dependence is described by the residual resistance
ratio as introduced in Sec. 2.2.3.

Exterior surfaces which are in contact with the helium bath at 2 K, for instance,
the cavity wall, are well described by a Dirichlet boundary condition forcing the
predefined temperature. More general, the heat transfer to the exterior is determined
by the particular convection heat transfer coefficient hamb according to

n · (k∇T ) = hamb(T − Tamb), r ∈ ∂Ωsolid \ ∂Ωvac, (2.167)

where Tamb is the corresponding ambient temperature. In accordance to the pre-
viously introduced notation in Sec. 2.3.2, Ωvac refers to the vacuum filled domain
inside the structure so that ∂Ωvac corresponds to the interior surface including even-
tual terminal planes. In contrast, ∂Ωsolid represents the entire structure boundary
involving interior and exterior surfaces. For the transition from niobium to liq-
uid or superfluid helium, hamb is basically the Kapitza conductance, measured and
published by Saclay in [80].

Interior surfaces exposed to electromagnetic fields receive a net heat flux which is
well described by

n · (k∇T ) =
1

2
<{Zs}|H|2, r ∈ ∂Ωsolid ∩ ∂Ωvac, (2.168)

with the frequency dependent surface impedance Zs.
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In addition, the right-hand side of (2.167) may be extended by heat radiation.
The corresponding heat flux contribution qrad satisfies [81, pp. 27]

n · qrad = εσ(T 4 − Tamb
4 ), r ∈ ∂Ωsolid \ ∂Ωvac, (2.169)

with the material specific emissivity factor ε and σ is the Stefan-Boltzmann con-
stant [82, pp. 724]. It is worth noting that the impact of heat radiation is marginal
for all considered problems in Sec. 5.3.

The deformation of an isotropic linear elastic solid with the material specific
Youngs modulus E, Poisson ratio ν, and density % is described by Navier’s equations
according to [83]

E

2(1 + ν)

(
1

1− 2ν
∇(∇ · u) +∇2u

)
+ f = %

∂2u

∂t2
r ∈ Ωsolid, (2.170)

where u corresponds to the unknown displacement vector field. The force per unit
volume due to thermal expansion is given by [84]

f = − E

3(1− 2ν)
αT∇T , (2.171)

with αT as the temperature dependent coefficient of linear thermal expansion. In
the stationary case, the right-hand side of (2.170) becomes zero. Furthermore, a
boundary condition must be added in order to allow for a unique solution. For
instance, the structure may be anchored at three points or across symmetry planes.

In order to study the impact of thermal expansion on scattering properties or
resonant modes provided by the particular rf structure, it is necessary to transfer
the structural displacements onto the interior vacuum filled domain Ωvac. Note, the
latter constitutes the calculation domain of the electromagnetic field problem, and
is naturally not involved in structural simulations. There are various approaches
available for this purpose either based on geometry modifications, mesh displace-
ments, or the use of perturbation theory. The latter approach is usually restricted to
small deformations, however explicit changes of the geometry or mesh are generally
applicable. A detailed study on this subject provides [85]. In the frame of thermal
contraction analyses presented in Sec. 5.3.3, the evaluated structural deformations
are directly transferred onto the mesh associated with Ωvac. The displacement field
at the interior surface is used as a boundary condition for moving nodes of the en-
closed mesh. A particular difficulty is the treatment of terminal planes as they are
not bounded by the solid part. Consequently, there is no solution for the displace-
ment vector field u available that could serve as a boundary condition for eventual
mesh deformations. However, keeping the ports at their original position may yield
artificial rf reflections due to mesh distortions. To move such open boundaries con-
sistently with the surrounding structure, the displacement vector field u within the
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particular port surface ∂Ωp may be obtained by solving the problem

∇(∇ · u) = 0, r ∈ ∂Ωp, (2.172)
u = u0, r ∈ ∂Ωp ∩ ∂Ωsolid. (2.173)

Here, u0 refers to the solution of problem (2.170) within the solid part, and is used
as Dirichlet boundary condition at the port edges in (2.173). Note, the same ap-
proach may be applied on symmetry planes if available. The set of partial differential
equations is solved for each terminal or symmetry plane individually. The mesh dis-
placement within the vacuum filled domain may be obtained in analogy to (2.172)–
(2.173), given the constraints placed on the boundary ∂Ωvac. This method is also
known as Laplacian smoothing [86].



3 Specifications and Requirements

This chapter focuses on HOMs of the superconducting rf cavities of the SPL as
depicted in Fig. 3.1, and their influence on the longitudinal beam dynamics. Similar
studies have been carried out in [87, 88] but are more focused on the cavities or
the SPL itself. The purpose of this chapter is to provide a detailed and conclusive
view on the transmissive needs of the HOM couplers foreseen on each cutoff tube
of the rf cavities. Monopole modes with largest geometric shunt resistance or a
frequency closest to harmonics of the bunch frequency are given particular attention.
It has been shown in [50, 87] that transverse effects caused by dipolar HOMs are
negligible in high-energy proton linacs such as the SPL. With regards to energy
recovering linacs as an alternative application for the SPL cavities, the situation
becomes much different. For completeness, the subsequent eigenmode analyses cover
both monopole and dipole modes.

The investigations are based on eigenmode and wake field simulations of the sin-
gle cavities as well as beam dynamic simulations of the SPL linac configuration.
Potentially harmful HOMs are identified and the maximum rf power dissipated in
those HOMs is estimated at various operating scenarios. With a view to feasibility,
fundamental power limits need to be introduced to prevent excessive power dissipa-
tion on the HOM couplers or cavity surface. These limits are of great importance

(a) (b)

Fig. 3.1. Bulk Nb prototypes of (a) the medium-β SPL cavity [23] and (b) the high-β SPL cavity.
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for the cavity control and tuning. Finally in this chapter, various low power rf mea-
surements are presented. The author took primary responsibility for most of the
HOM measurements on the high-β SPL cavity prototypes between 2014 and 2015.
Novel work undertaken by the author includes an improved method for eigenmode
classification following up the work of [47], the vector fitting algorithm [77] applied
on longitudinal and transverse beam coupling impedances, as well as extensions and
significant performance improvements of the beam dynamics code smd [87]. It is
important to note that the present results are not all consistent with preceding stud-
ies due to their use of simplified and/or preliminary cavity designs as well as a linac
configuration different from the latest specification. These differences are stated in
the corresponding passages in the text.

3.1 Design Parameters of the SPL Cavities

The superconducting section of the SPL linac provides two families of elliptical
cavities covering a velocity range of the protons between 160 MeV and 5 GeV [22].
Table 3.1 lists the main rf parameters of both cavity types. The operating fre-

Table 3.1. Parameters of the medium-β and high-β SPL cavities [19, 23].
property unit medium-β high-β
fundamental mode frequency [MHz] 704.4 704.4
number of gaps (cells) − 5 5
geometric β value − 0.65 1.00
particle velocity range (β) − 0.52 to 0.84 0.84 to 0.99
active length [mm] 692 1065
iris diameter (inner cells) [mm] 96 129.2
cell-to-cell coupling [%] 1.45 1.92
geometry factor G [Ω] 197 270
geometric shunt impedance (R/Q) [Ω] 275 566
nominal accelerating gradient Eacc [MV/m] 19.3 25
quality factor Q0 at nominal gradient − 6× 109 1× 1010

Epk/Eacc − 2.63 1.99
Bpk/Eacc [mT/(MV/m)] 5.12 4.20
Lorentz force detuning [Hz/(MV/m)2] −1.6 −1.0
required tuning range [kHz] ±300 ±300
required field flatness [%] 97.5 97.5
maximum rf duty cycle [%] 8.5 8.4
Qext of input coupler at 40 mA beam − 1.2× 106 1.2× 106

current and −15 deg synchronous phase
number of HOM couplers − 2 2
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quency of 704.4 MHz was chosen for economical reasons. Older rf equipment, such
as klystrons, waveguides and circulators, which was originally installed in LEP, is
now reused in Linac4. Consequently, Linac4 operates at the same frequency of
352.2 MHz. The superconducting rf cavities of the SPL are designed for twice this
frequency. Both families operate in pulsed mode at a duty cycle smaller than 10 %.
Fig. 3.2 illustrates the electromagnetic field distribution of the fundamental mode in
the high-β cavity. Qualitatively the same field distribution applies to the medium-β
version. The first prototypes of the bare cavities are shown in Fig. 3.1. According
to the experiences of the TESLA cavities [58], they are design for surface peak fields
of Epk = 50 MV/m and Bpk = 100 mT at nominal accelerating gradients. Further
details about the designs and their fabrication are addressed in [19, 23, 89].

3.2 Eigenmodes of the SPL Cavities

This section provides detailed analyses on the HOM spectra of the medium-β and
high-β SPL cavities based on eigenmode calculations. Modes with a frequency being
closest to a harmonic of the bunch frequency as well as those with high (R/Q) values
are of particular interest. All modes are cataloged, i. e. associated with radial,
azimuthal and longitudinal indices using a somewhat improved method of [47] as
described in the following.

0 10 20 30 40 50

|E| [MV/m]

(a)

0 20 40 60 80 100

|B| [mT]

(b)

Fig. 3.2. Electric (a) and magnetic (b) field distributions for the fundamental mode of the high-β
SPL cavity simulated using comsol Multiphysics® [90]. The field orientation is highlighted by
gray arrows. The model including the fundamental power coupler is cut along the symmetry plane
facing the viewer. Field magnitudes are scaled to the nominal accelerating gradient of 25 MV/m.
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3.2.1 Automated Eigenmode Classification

The eigenmodes of accelerating structures are typically cataloged and compared by
means of their electromagnetic field distribution regarding vanishing field compo-
nents as well as the number of field nodes in each spatial dimension. Due to the
rotational symmetry of the SPL cavities it is most appropriate to associate their
numerically calculated eigenmodes with the analytic solutions of the pillbox cavity
as described in Sec. 2.2.2. Modes are, thus, classified by the azimuthal, radial, and
longitudinal indices m,n, and p. The algorithm to evaluate such mode indices based
on the field distribution of the particular eigenmode follows to a large extent the
work described in [47]. This applies in particular to the differentiation between TE,
TM, and Hybrid modes and the evaluation of cell-to-cell phase advance. Likewise,
the fields are probed along the cylindrical coordinate axes within one cavity cell. The
choice of field components to count field nodes is, however, slightly modified. In case
of TM monopole modes (m = 0), both azimuthal field components are considered
whereas for multipolar modes (m > 1), independent off TM or TE, the azimuthal
electric and radial magnetic field components are considered. The reason becomes
obvious when observing the corresponding analytic solution of a pillbox cavity, here
for the TM modes

E(m)
ϕ = E0

mkz

kr
2r
Jm(krr) sin(mϕ) sin(kzz), (3.1)

H(m)
r = jH0

mω

c0kr
2r
Jm(krr) sin(mϕ) cos(kzz), (3.2)

H(m)
ϕ = jH0

ω

c0kr
J ′m(krr) cos(mϕ) cos(kzz), (3.3)

The azimuthal electric and radial magnetic field components must vanish at the
radial extremity due to the boundary conditions, but the azimuthal magnetic field
does not. Counting the zeros of the azimuthal magnetic field component along the
radial direction may lead to wrong radial indices n due to numerical noise. The only
practical cases where the azimuthal magnetic field component must be used are TM
monopole modes since their radial magnetic field component vanishes. In contrast
to the original algorithm, the evaluation of mode indices is done by sinusoidal fits
of the field components along the cylindrical coordinate axes, which is less sensitive
to numerical noise. The algorithm is implemented in vbscript and integrated as a
post processing script into cst studio suite® software [91].

3.2.2 Modal Analysis of the Medium-β SPL Cavity

The conceptional design of the SPL considers a total of 60 superconducting cavities
for the medium-β section (Fig. 1.2), with ten cryomodules each incorporating six
cavities. The section is about 130 m long and covers a particle velocity range of
β = 0.52 to 0.84. The first prototype cavity has been fabricated by Research Instru-



3.2 Eigenmodes of the SPL Cavities 57

ments (RI) between 2012 and 2013. The rf design including the fundamental mode
coupler, taken from [19, 23] shall serve as the reference model for the subsequent
analyses. Details of the geometrical parameters are listed in Appendix A.2. Note,
these parameters differ slightly from those considered in previous studies [87] in 2011.
This explains, in particular, the differing shunt resistances of some eigenmodes. The
main rf parameters of the cavity are listed in Table 3.1.

Figure 3.3 shows the dispersion curves of the first monopole and dipole modes
simulated using cst studio suite® software [91]. The corresponding longitudinal
and transverse geometric shunt resistances are given in Fig. 3.4 using (2.115)–(2.118).
The beam pipe radius of 40 mm yields cutoff frequencies of 2.871 GHz and 2.198 GHz
for the TM01 and TE11 waveguide modes, respectively. Consequently, some higher-
order modes of the TM031 band are already strongly damped via the beam pipe
ports. The dispersion curves are obtained by parameter fittings of (2.90). Poor
fittings in Fig. 3.3(b) indicate coupling between corresponding TE and TM dipole
modes causing hybridization.

According to Fig. 3.4(a), two SOMs provide the highest (R/Q) values besides the
fundamental mode. The details of the fundamental passband are listed in Table 3.2,
with the maximum and summation of the (R/Q) values being related to the entire
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Fig. 3.3. Dispersion curves of (a) monopole and (b) dipole modes in the medium-β SPL cavity.
The light line at β = 0.65 is dashed and machine lines are depicted as gray horizontal lines. The
circles correspond to full structure simulations while the solid black lines connecting them result
from a curve fitting based on the circuit model applied with periodic boundary conditions.
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Fig. 3.4. Maximum longitudinal and transverse geometric shunt resistances of (a) the first 35
monopole modes and (b) the first 60 dipole modes, respectively. The fundamental mode is high-
lighted by the circle. Machine lines are depicted as vertical gray lines.

SPL medium-β section. The variation of the (R/Q) value for each of these modes
along this section is shown in Fig. 3.5(a). The TM010 3/5π and TM010 4/5π modes
reveal shunt resistances comparable to the accelerating mode towards the start and
end of the medium-β section. Despite high shunt resistances and frequencies be-
ing close to the second machine line, the impact of SOMs on emittance growth is
marginal due to the relatively large band width of the fundamental power coupler
with Qext = 1.2× 106. This was found in previous beam dynamic studies [87].

Table 3.3 lists the higher-order monopole modes with (i) the frequency being
closest to a harmonic of the bunch frequency and (ii) the highest (R/Q) values. It is
important to note that the frequencies of the TM011 3/5π or TM031 5/5π modes are
by less than 3 MHz away from the fifth or eighth harmonic of the bunch frequency,
respectively. Manufacturing errors and tuning may further reduce the particular
distance in terms of frequency. For comparison, the ESS cavities are designed such
that all HOM frequencies are more than 5 MHz away from the nearest harmonic of

Table 3.2. Modes in the fundamental passband of the medium-β SPL cavity.
mode n fn [MHz] (R/Q)n(βg) [Ω] max (R/Q)n [Ω]

∑
(R/Q)n [Ω]

TM010 1/5π 695.41 0.03 0.86 19.45
TM010 2/5π 697.89 0.15 1.27 14.53
TM010 3/5π 700.95 0.16 74.64 1175.56
TM010 4/5π 703.41 0.47 301.67 7877.24
TM010 5/5π 704.40 301.28 325.93 13446.22
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Fig. 3.5. Longitudinal geometric shunt resistance as a function of the particle velocity for (a) modes
in the fundamental passband and (b) some significant HOMs, both for the medium-β SPL cavity.

the bunch frequency [92]. Furthermore, the TM011 2/5π provides the highest shunt
resistance with respect to HOMs. In particular, this result is different to [87, p. 98]
where a symmetric cavity design based on preliminary geometrical parameters was
used to study the beam dynamics in the SPL. As a consequence, the dispersion
relation of the TM011 band significantly differs between the present and previous
studies. Shunt resistances were assumed to be partially twice as high as found here.
The remaining HOMs in Table 3.3 provide comparably low (R/Q) values but might
have significant impact in the presence of a particular bunch pattern as discussed

Table 3.3. Significant monopole HOMs in the medium-β SPL cavity.
mode n fn [MHz] |fn − fML| [MHz] max (R/Q)n [Ω]

∑
(R/Q)n [Ω]

Modes with frequencies closest to a machine line.
TM011 3/5π 1759.21 1.79 3.18 63.37
TM031 5/5π 2820.44 2.84 0.17 0.94
TM011 2/5π 1769.17 8.17 22.09 515.65

Modes with the highest geometric shunt resistance.
TM011 1/5π 1806.89 45.89 13.03 325.21
TM020 2/5π 1527.12 118.32 11.36 165.07
TM020 1/5π 1519.60 110.80 4.63 150.05
TM011 5/5π 1710.98 50.02 5.24 131.51
TM021 4/5π 2247.54 134.34 2.02 37.90
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in Sec. 3.4.4. Figure 3.5(b) shows the variation of the longitudinal geometric shunt
resistance along the medium-β section for the first five modes in Table 3.3. The
highest shunt resistances are found towards the end of the section. A detailed
conclusion on modes of concern in terms of beam dynamics is given in Sec. 3.4.

The higher-order dipole modes with largest transverse shunt resistances are listed
in Table 3.3. As mentioned above, their impact on transverse emittance growth in
the SPL is negligible but they might require additional considerations for a different
application.

Table 3.4. Significant dipole HOMs in the medium-β SPL cavity.
mode n fn [MHz] (R/Q)⊥,n(βg) [Ω] max (R/Q)⊥,n [Ω]

∑
(R/Q)⊥,n [Ω]

TM110 5/5π 1009.59 1.38 132.13 2540.86
TM110 4/5π 1014.01 16.14 50.07 1798.40
TM110 3/5π 1020.87 20.60 21.46 483.47
TE111 3/5π 1312.69 0.95 9.16 300.68
TM110 2/5π 1030.21 5.22 8.94 269.30
TE111 2/5π 1258.53 4.83 6.05 186.19

3.2.3 Modal Analysis of the High-β SPL Cavity

The conceptional design of the SPL considers a total of 184 superconducting cavi-
ties for the high-β section (Fig. 1.2), with 46 cryomodules each incorporating four
cavities. The section is about 370 m long and covers a particle velocity range of
β = 0.84 to 0.99. Several Cu and Nb prototypes have been fabricated and tested
in the recent years. The rf design including the fundamental mode coupler taken
from [19, 88] shall serve as the reference model for the subsequent analyses. Details
of the geometrical parameters are listed in Appendix A.2. The main rf parameters
of the cavity are given in Table 3.1. The HOMs of this cavity have been studied to
a large extend in [87, 93] in 2011. However, the shunt resistance of some HOMs was
found to differ significantly from the correct values. This was verified by various sim-
ulations using cst studio suite®, ansys® hfss™, and comsol Multiphysics®
software [90, 91, 94]. Furthermore, the mode notation presented here deviates in
parts from that used in previous studies.

Figure 3.6 shows the dispersion curves of the first monopole and dipole modes cal-
culated using cst studio suite®. The corresponding longitudinal and transverse
geometric shunt resistances are given in Fig. 3.7 using (2.115)–(2.118). The beam
pipe radius of 40 mm yields cutoff frequencies of 2.871 GHz and 2.198 GHz for the
TM01 and TE11 waveguide mode, respectively. Consequently, the TM040 modes are
strongly damped via the beam pipe ports. The dispersion curves are obtained by
parameter fittings of (2.90). Poor fittings such as for the TE111 and TM110 bands
in Fig. 3.6(b) indicate coupling between corresponding dipole modes.
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Fig. 3.6. Dispersion curves of (a) monopole and (b) dipole modes in the high-β SPL cavity. The
light line at β = 1.00 is dashed and machine lines are depicted as gray horizontal lines. The circles
correspond to full structure simulations while the solid black lines connecting them result from a
curve fitting based on the circuit model applied with periodic boundary conditions.
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Fig. 3.7. Maximum longitudinal and transverse geometric shunt resistances of (a) the first 40
monopole modes and (b) the first 60 dipole modes, respectively. The fundamental mode is high-
lighted by the circle. Machine lines are depicted as vertical gray lines.
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Fig. 3.8. Longitudinal geometric shunt resistance as a function of the particle velocity for (a) modes
in the fundamental passband and (b) some significant HOMs, both for the high-β SPL cavity.

The details of the fundamental passband are listed in Table 3.5, with the maximum
and summation of the (R/Q) values being related to the entire SPL high-β section.
The variation of the (R/Q) value for each of these modes along this section is shown
in Fig. 3.8(a). The TM010 4/5π mode reveals a shunt resistance comparable to the
accelerating mode towards the start of the high-β section. However, the situation
is comparable to the SOMs in the medium-β cavity. The relatively large band width
of the fundamental power coupler with Qext = 1.2× 106 provides sufficient damping
of the TM010 4/5π mode in the high-β cavity. Hence, the expected longitudinal
emittance growth in the SPL due to SOMs is marginal [87].

Table 3.6 lists the higher-order monopole modes with (i) the frequency being
closest to a harmonic of the bunch frequency and (ii) the highest (R/Q) values.
The design frequency of the TM031 π mode is about 1 MHz away from the seventh
harmonic of the bunch frequency. Manufacturing tolerances may further reduce the

Table 3.5. Modes in the fundamental passband of the high-β SPL cavity.
mode n fn [MHz] (R/Q)n(βg) [Ω] max (R/Q)n [Ω]

∑
(R/Q)n [Ω]

TM010 1/5π 692.45 0.002 0.39 3.33
TM010 2/5π 695.68 0.037 0.37 18.84
TM010 3/5π 699.75 0.010 36.34 276.11
TM010 4/5π 703.10 0.071 173.06 5973.75
TM010 5/5π 704.40 565.60 565.60 84957.47
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Table 3.6. Significant monopole HOMs in the high-β SPL cavity.
mode n fn [MHz] |fn − fML| [MHz] max (R/Q)n [Ω]

∑
(R/Q)n [Ω]

Modes with frequencies closest to a machine line.
TM031 5/5π 2464.35 1.05 0.72 73.57
TM023 1/5π 2809.48 8.12 7.13 212.54
TM031 4/5π 2485.27 19.87 1.48 151.52

Modes with the highest geometric shunt resistance.
TM011 1/5π 1335.67 73.13 106.49 16721.78
TM011 2/5π 1329.51 79.29 59.03 7126.67
TM022 5/5π 2089.34 23.86 18.61 2339.15
TM011 3/5π 1317.33 91.47 16.23 945.51
TM030 3/5π 2219.33 106.13 4.03 487.98
TM022 4/5π 2085.83 27.37 5.65 351.82

distance in terms of frequency, which eventually favors a resonant buildup of the
beam-induced HOM voltage despite the low shunt resistance. The remaining HOMs
satisfy the minimum distance requirement of 5 MHz of the ESS cavities [92]. In
comparison to the medium-β cavity, the high-β cavity provides HOMs with larger
geometric shunt impedances. This applies, in particular, to the TM011 2/5π and
TM011 3/5π modes. Figure 3.8(b) shows the variation of the longitudinal geometric
shunt resistance along the high-β section for the first six modes in Table 3.6. The
highest shunt resistances are found towards the end of the section. A detailed
conclusion on modes of concern in terms of beam dynamics is given in Sec. 3.4.

The higher-order dipole modes with largest transverse shunt resistances are listed
in Table 3.7. As mentioned above, their impact on transverse emittance growth in
the SPL is negligible but they might require additional considerations for a different
application.

Table 3.7. Significant dipole HOMs in the high-β SPL cavity.
mode n fn [MHz] (R/Q)⊥,n(βg) [Ω] max (R/Q)⊥,n [Ω]

∑
(R/Q)⊥,n [Ω]

TE111 3/5π 918.12 41.61 49.45 8416.31
TE111 4/5π 942.75 66.79 66.79 7773.75
TM110 3/5π 1015.06 37.71 37.71 5222.33
TM111 2/5π 1393.23 33.28 33.28 5012.94
TM110 2/5π 1020.73 8.97 19.00 2638.71
TM110 4/5π 1004.06 20.56 20.56 1576.87
TM111 1/5π 1427.24 9.97 9.97 1372.71
TE111 5/5π 968.88 19.48 19.48 1279.21



64 3 Specifications and Requirements

3.3 Impedance Analyses on the High-β SPL Cavity

In this section, a novel method is presented to derive the frequency, geometric shunt
resistance and quality factor of trapped monopole and dipole modes based on trun-
cated wake potentials. It is an alternative approach to the numerous eigenmode
simulations required in Sec. 3.2 in order to deduce potentially harmful modes in
the high-β SPL cavity. Note, the method is generally applicable to trapped modes
excited by ultra-relativistic particle bunches (β=1).

It is well known that the properties of monopole and dipole modes can be accu-
rately calculated from the longitudinal or transverse impedance, respectively, if the
corresponding wake potential is simulated up to the point where it approximately
vanishes according to (2.110) and (2.112). This often excludes a reasonable simu-
lation time, particularly in the presence of very high quality factors as is typically
the case for superconducting applications. Figure 3.9 shows the longitudinal and
transverse beam coupling impedances of the high-β SPL cavity based on wake field
simulations using cst studio suite®, abci, and echo2d software [43, 63, 91].
There are no loss mechanisms present in the wake field simulations other than radi-
ation into the beam pipe. This is a common consideration for wake field simulations
in superconducting structures. The interesting trapped modes cause the wake po-
tentials to not decay or to decay only very slowly. An arbitrarily defined truncation
of the wake potentials that introduces artificial harmonics in the corresponding im-
pedances is often unavoidable under these circumstances. Typically, a weighting
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Fig. 3.9. (a) Longitudinal and (b) transverse beam coupling impedances of the high-β SPL cavity.
The impedances are derived from wake potentials simulated using cst studio suite®, abci, and
echo2d software with an RMS bunch length of 25 mm. Wake potentials are truncated at 2000 ns
and weighted by a Kaiser window to damp artificial harmonics in the resultant impedance spectra.
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function is applied to the truncated wake potentials before calculating the Fourier
transforms according to (2.110) and (2.112) in order to damp artificial fragments
in the impedances. The frequencies of resonant modes can be calculated from such
impedance spectra with very good precision using conventional fitting methods such
as Cauchy distributions [12] or vector fitting [77]. However, the same methods,
in general, fail to evaluate the geometric shunt resistances and quality factors of
resonant modes independent of the use of the previously described weighting tech-
niques to smooth the transition at the truncation point. An extended formulation
of vector fitting is proposed to resolve this issue providing the desired accuracy in
both frequency and geometric shunt resistance of trapped resonant modes within a
predefined frequency interval. The method is further able to derive the correspond-
ing loaded quality factors if at least 10 % of the full wake potential is calculated as
measured by the time where the potential approximately vanishes.

In the following, it is shown that the classical and modified formulations of vector
fitting from Sec. 2.3.3 are both eligible to fit the longitudinal and transverse beam
coupling impedances of resonant structures in relation to trapped monopole and
dipole modes. Three extended formulations of vector fitting are derived for the par-
ticular case that the impedance is calculated from a truncated wake potential. The
consistency and convergence of these iterative methods is compared to the classical
and modified vector fitting with the example of a circular cylindrical cavity with
beam pipe apertures left open. Finally, the longitudinal and transverse impedances
of the high-β SPL cavity are analyzed using vector fitting in the favored extended
formulation. The results of potential harmful modes are compared to the eigenmode
simulations of the last preceding section. It is worthwhile to note that the longitu-
dinal and transverse impedances are significantly influenced by short range effects
of the wake fields in the presence of particle bunches propagating at β < 1 due to
static fields. It is generally very difficult to characterize resonant modes from such
an impedance. For this reason, the medium-β SPL cavity is not addressed in this
section.

3.3.1 Vector Fitting of the Narrow Band Resonator Impedance

Vector fitting has been applied in various fields to approximate frequency responses
in terms of open-circuit impedance parameters, short-circuit admittance parameters,
and scattering parameters [95–97]. A different algorithm likewise based on rational
function approximation is proposed in [76, 98]. This scheme has been developed,
in particular, to approximate scattering parameters in order to evaluate frequencies
and quality factors of resonant modes in accelerating rf cavities. Similarly, the
beam coupling impedances of rf cavities associated with trapped modes can be
approximated by rational functions in order to characterize each mode individually
as shown in the following.

The longitudinal wake function of a resonant cavity in the ultra relativistic limit
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(β = 1) can be written as [61, pp. 52,105]

wδ‖(t) =
∞∑

n=1

ωnRn

2Qn

exp

(
− ωnt

2Qn

)
cos(ωnt)θ(t), (3.4)

with the angular resonant frequency ωn, shunt resistance Rn, and quality factor Qn

of the monopole mode n. The function θ represents the Heaviside step function
using the half-maximum convention θ(0) = 1/2. Equation (3.4) applies to narrow
band resonances with Qn � 1. Hence, the formulation is in particular valid for
trapped modes which are typically of concern regarding beam instabilities. The
corresponding impedance results from the Fourier transform of (3.4), which gives

Z‖(s) =

ˆ ∞
0

wδ‖(t)e
−st dt, (3.5)

=
∞∑

n=1

(
cn

s− an
+

cn
s− a∗n

)
, (3.6)

with
cn = ωnRn/(4Qn), an = −ωn/(2Qn) + jωn. (3.7)

The superscript ∗ accounts for the conjugated complex quantity. The properties of
each resonant mode are represented by a pair of complex conjugated poles and a
residue which is real. Typically, the sum is limited to modes within an interest-
ing frequency range such that vector fitting is applicable, in principle. The same
is true for the transverse beam coupling impedance since it can be expressed as a
longitudinal impedance multiplied by the factor (c0/ω) according to (2.113). Note,
the frequency dependent factor is taken out from the calculated impedance data in
order to apply vector fitting. In this case, the residues and poles in (3.7) are associ-
ated with the resonant frequency, quality factor, and transverse shunt resistance of
a dipole mode n.

The calculation of longitudinal or transverse impedances with very high accuracy
can be computationally intense and impractical as it requires the related wake po-
tentials to be decayed to approximately zero. In particular, this is problematic if
modes with high quality factors (Q ≥ 105) are present in the structure. Thus, it is
desirable to extract mode information likewise from the impedance of a truncated
wake potential. The Fourier transform of a truncated time signal is characterized
by artificial harmonics given by the period of the considered time window. These
harmonics cannot be fitted by rational functions, hence the previously discussed
method of vector fitting generally fails in case of beam coupling impedances that
are derived from truncated wake potentials. It was found that the somewhat more
relaxed vector fitting method using (2.159) as the helper function is able to converge
robustly and consistently against the resonant frequencies, while the remaining mode
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parameters associated with the residues and real part of the poles in (3.6) provide
either large errors of > 20 % or do not even converge. It is worthwhile to note that
the same is true if the wake potentials are weighted by a window to provide a smooth
transition at the truncation. The following section describes several modifications
of vector fitting to overcome the problems of truncated wake potentials.

3.3.2 Resonator Impedance of Truncated Wake Potentials

A method to fit the impedance of a truncated longitudinal wake potential which
can be described by (3.4) is presented in [99] along with an accurate derivation
of the resonant frequency, quality factor, and geometric shunt resistance of vari-
ous monopole modes in a circular cylindrical cavity. The algorithm is based on a
non-linear approximation of a truncation time dependent impedance term, which is
carried out for each mode individually. In the following, three alternative methods
are presented. All of them are based on modifications of the classical vector fitting.
Thus, the approximation problem is solved sequentially as a linear problem, where
many modes are fitted simultaneously as described in Sec. 2.3.3. In contrast to the
non-linear algorithm proposed in [99], these methods have the advantage of using
the Fourier transform of only one single truncated wake potential.

Let Z̃‖(s, t′) be the Fourier transform of the wake potential (3.4) truncated at the
time t = t′. With the definition of poles and residues introduced in (3.6) and (3.7),
the artificially compromised impedance can be written as

Z̃‖(s, t
′) =

ˆ t′

0

wδ‖(t)e
−st dt, (3.8)

=
∞∑

n=1

(
cn

s− an
wn(s, t′) +

cn
s− a∗n

w∗n(−s, t′)
)
, (3.9)

with the weighting function

wn(s, t′) = 1− exp [−(s− an)t′] . (3.10)

The latter term introduces the artificial harmonics on the natural beam coupling
impedance. A fitting method which is able to approximate a given impedance from
a truncated wake potential with (3.9) and (3.10) over a finite number of resonances,
in general, is eligible to derive the characteristic parameters of well separated modes,
that is if |ωn+1 − ωn| � 1/t′. Note, that the poles, residues, and harmonic weight-
ing functions {an, cn, wn}∞n=1 in (3.9) come in complex conjugated pairs, where the
residues are actually real quantities. Moreover, it is important to remark that the
harmonic weighting functions do not introduce any further poles since

|exp [(s− an)t′]| = exp

(
ωnt

′

2Qn

)
> 0. (3.11)
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The first modification of vector fitting follows instantly from the structure of (3.9)
for the ansatz of the transfer function H(s). With regard to a finite number of
resonances, N , and a fixed truncation time t′, an ansatz of

H(t′)(s) =
N∑

n=1

(
cn

s− an
wn(s, t) +

c∗n
s− a∗n

w∗n(−s, t)
)

t=t′
(3.12)

is chosen. Note, the index n is associated with one resonance, hence, with a pair of
complex conjugated quantities, while the same index variable was used in Sec. 2.3.3
to declare a general pole or residue. Due to the harmonic weighting functions,
the ansatz (3.12) is not anymore a rational function but rather a polynomial of
infinite order. By Taylor expansion of the exponential term in (3.10), it can be
shown that the pole of each partial fraction in (3.12) is canceled. Consequently, the
quantities {an, a∗n}Nn=1 appear as poles and zeros in H(t′)(s). In analogy to (2.156),
the augmented least square problem is given by

min
{c̃n,cn}Nn=1

Nk∑

k=1

∣∣∣σ(sk)H
(t′)(sk)− σ(sk)H

(t′)
k

∣∣∣
2

, (3.13)

where {sk, H(t′)
k }Nkk=1 are the sampled frequency and impedance values calculated from

the wake potential that is truncated at the time t = t′. The parameters d and h
in (2.154) can be optionally added to the approximation problem. However, they
would account for artificial effects linear in frequency, which have not been observed
in the calculated impedances. In order to obtain a linear approximation problem, the
helper function σ(s) with known poles but unknown residues {ān, c̃n}Nn=1 is chosen
such that

σ(s)H(t′)(s) =
N∑

n=1

(
cn

s− ān
wn(s, t) +

c∗n
s− ā∗n

w∗n(−s, t)
)

t=t′
. (3.14)

Three different approaches for the helper function σ(s) are investigated. The first
two are identical with the ansatz of the classical and modified vector fitting. That
is a fixed asymptotic behavior at very high frequencies according to

σ1(s) =
N∑

n=1

(
c̃n

s− ān
+

c̃∗n
s− ā∗n

)
+ 1, (3.15)

and a more relaxed condition for the asymptotic behavior according to

σ2(s) =
N∑

n=1

(
c̃n

s− ān
+

c̃∗n
s− ā∗n

)
+ d̃. (3.16)
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In both cases, the zeros of σ(s) used to correct the poles of H t′(s) in each iteration
follow from (2.165). The third approach of the helper function is chosen in analogy
to (3.12) using the harmonic weighting functions from (3.10). Together with the
more relaxed condition for the asymptotic behavior at very high frequencies, the
ansatz can be written as

σ
(t′)
3 (s) =

N∑

n=1

(
c̃n

s− ān
wn(s, t) +

c̃∗n
s− ā∗n

w∗n(−s, t)
)

t=t′
+ d̃. (3.17)

As the transfer function, the ansatz (3.17) is not a rational function due to the
exponential terms. Furthermore the quantities {ān, ā∗n}Nn=1 must appear as poles and
zeros. The remaining zeros which cancel the poles of H(t′), can be approximately
derived from an eigenvalue problem based on a minimal state space representation
of σ(t′)

3 (s). The latter one can be written as

s

(
x1

x2

)
=

(
Ā 0
0 Ā

)(
x1

x2

)
+

(
b

W(t′)(s)b

)
u(s), (3.18)

y(s) =
(
c̃T −c̃TW(t′)(s)

)(x1

x2

)
+ d̃u(s), (3.19)

where the augmented poles and residues {ān, ā∗n, c̃n, c̃∗n}Nn=1 are contained in the di-
agonal matrix Ā and vector c̃, respectively. The elements of the vector b are again
arbitrarily chosen to unity in conjunction to the residue vector c̃ while the elements
in the diagonal matrix W(t′)(s) are given by the exponential part of the harmonic
weighting functions according to {1−wn(s, t′), 1−w∗n(s, t′)}Nn=1. Since the latter ones
oscillate in frequency, the state space representation (3.18)–(3.19) can be linearized
in the vicinity of each mode simultaneously by choosing the diagonal elements in
W(t′)(s) according to

ŵn(t′) = |1− wn(s, t′)| = exp(−<{ān}t′). (3.20)

With this approach, the zeros of σ(t′)
3 (s) can be approximately calculated via an

eigenvalue problem that is obtained in analogy to Sec. 2.3.3 by interchanging the
input and output signals in the state space representation (3.18)–(3.19), and is given
by

eig

{(
Ā 0
0 Ā

)
−
(

b

Ŵ
(t′)

b

)
d̃
−1
(
c̃T −c̃TŴ

(t′)
)}

, (3.21)

where the diagonal matrix Ŵ
(t′)

contains the elements of (3.20) for each part of
the complex conjugated pairs. It is important to remark that half of the resulting
eigenvalues are identical to the poles {ān, ā∗n}Nn=1 as mentioned before, while the
other half is used to correct the poles of H(t′)(s).
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3.3.3 Example of a Circular-Cylindrical Cavity

A circular-cylindrical cavity with beam pipe apertures left open similar to Fig. 2.11
shall serve as a first benchmark for impedance analyses based on the above de-
rived vector fitting methods. The diameter and length of the cavity are chosen to
be 153 mm and 100 mm, respectively. The equivalent parameters of the circular-
cylindrical beam pipe are 10 mm and 15 mm, respectively, on either side of the
cavity. Figure 3.10(a) shows the longitudinal wake potential of a Gaussian bunch
of 15 mm RMS length passing the center of the cavity at the speed of light. A wall
conductivity of 106 S/m is considered. This allows a numerical calculation of the
entire wake potential and corresponding impedance in a relatively short time scale.
The longitudinal beam coupling impedance shown in Fig. 3.10(b) reveals 16 trapped
monopole modes between 1.5 GHz and 8 GHz. The details of these modes in terms
of resonant frequency, geometric shunt resistance and quality factor are summarized
in Table A.1. These values are calculated by eigenmode simulations using comsol
and agree within 1 % with the results derived from the impedance in Fig. 3.10(b)
using the classical vector fitting method and (3.7). The focus of this section is
the accuracy of such mode parameters if the fitted impedance is obtained from a
truncated wake potential. For this purpose all previously described methods are
compared: (i) The classical vector fitting, denoted as VF, uses the ansatz (2.154)
and (2.158) for the transfer and helper function, respectively. The starting poles
are chosen according to [77], hence, the complex conjugated pairs are equidistantly
distributed in the considered frequency interval. A small real part, such as 1 % of
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Fig. 3.10. (a) Wake potential of a Gaussian bunch of 15 mm RMS length passing the circular-
cylindrical cavity with a wall conductivity of 106 S/m. The simulation is carried out using cst
studio suite® [91]. (b) Corresponding longitudinal beam coupling impedance.
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the corresponding imaginary part, avoids an ill-conditioned least-square problem.
Initially, two iterations are applied on a smoothed impedance which is obtained by
the same truncated wake potential but weighted with a Kaiser window to damp
artificial harmonics introduced by the truncation. This additional step significantly
improves the convergence of the subsequent pole re-allocations. (ii) The modified
vector fitting, denoted as MVF, uses the ansatz (2.154) and (2.159) for the transfer
and helper function, respectively. The starting poles are equidistantly distributed
in the considered frequency band with a small real part as in VF. The additional
free parameter for the asymptotic behavior at very high frequencies of the helper
function allows this fitting approach to be applied directly on the impedance of the
truncated wake potential. Hence, no additional Fourier transform of the truncated
wake potential weighted by a smoothing window is required. (iii) The first variant
of impedance vector fitting, denoted as IVF1, uses the ansatz (3.12) and (3.15) for
the transfer and helper function, respectively. Due to the fixed asymptotic behavior
at very high frequencies of the helper function, the initial pole allocation succeeds as
for VF. (iv) The second variant of impedance vector fitting, denoted as IVF2, com-
bines the ansatz (3.12) and (3.16) for the transfer and helper function, respectively.
The starting poles are allocated as for MVF. No additional smoothed impedance is
required for the initial pole re-allocations. The same is true for (v) the third variant
of impedance vector fitting using (3.12) and (3.17) for the ansatz of the transfer and
helper function, respectively. This latter is denoted as IVF3 in the following.

A qualitative comparison of VF and IVF3 is shown in Fig. 3.11 where the imped-
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Fig. 3.11. In light gray, the impedance derived from the wake potential in Fig. 3.10 (a) truncated
at the time t′ = 250 ns. The classical vector fitting (in dashed, dark gray) and a variant of the
impedance vector fitting (black) are compared to each other, both, after 20 iterations. (a) The
first sixteen trapped monopole modes below 8 GHz and (b) a zoom of the first mode at 1.5 GHz.
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ance corresponds to the longitudinal wake potential in Fig. 3.10(a) truncated at the
time t′ = 250 ns, hence, when the potential is decayed by only approximately 40 %.
The resonant frequencies in Fig. 3.11(a) are equally well resolved by both fitting
methods. An exception is the fifteenth mode which requires a narrower frequency
band to be resolved. For the sake of simplicity, this mode is excluded from the sub-
sequent error studies related to frequency, geometric shunt resistance and quality
factor. The harmonics in Fig. 3.11(b) introduced by the truncation are treated as
noise in case of VF since the ansatz (2.154) cannot represent such behavior. The im-
pedance obtained by the least-square problem is thus an average of the original data.
In contrast, impedance vector fitting methods such as IVF3 can accurately recon-
struct the impedance behavior of truncated wake potentials by use of the truncation
time t′.

The more accurate reconstruction of impedance data by the impedance vector
fitting methods is further underlined in Fig. 3.12(a) which compares the stan-
dard deviation of each fit from the given data as functions of the truncation time.
The standard deviation is evaluated over 10 001 frequency samples from 0 GHz to
8 GHz. Note, the error below 100 Ω is dominated by the missing fifteenth mode in
Fig. 3.11(a). There are two outliers at t′ = 217 ns and t′ = 350 ns, which appear
only for MVF, IVF2, and IVF3. This is due to at least one further mode being
missed during the iterative pole re-allocations. The remaining methods are more
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Fig. 3.12. (a) The RMS error of the impedance fits as a function of the truncation time of the
corresponding longitudinal wake potential in Fig. 3.10 (a). The error is defined as the standard
deviation of the individual fit from the calculated impedance over a frequency range from 0 GHz to
8 GHz. (b) Maximum relative error of the resonant mode frequencies in the same frequency regime
where the fifteenth mode is excluded. The fitted frequencies are compared to the eigenmode results
in Table A.1. Each fit is carried out with 20 iterations.
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robust due to the use of few initial iterations on a smoothed impedance, which pro-
vides a more reliable set of starting poles. This approach is generally preferred for
the impedance analyses of realistic structures in order to improve the performance
of the particular vector fitting method. Furthermore, it is worthwhile to note that
the relatively low error in Fig. 3.12(a) below t′ = 100 ns is due to the fact that the
resonance peaks are significantly lowered and partially disappear. Consequently, the
errors of resonant mode parameters are much higher in this regime. This is shown,
for example, in Fig. 3.12(b) by means of the maximum error of the resonant fre-
quency, considered over all monopole modes below 8 GHz except the fifteenth mode.
The error converges against a systematic error of 0.08 % between the wake field and
eigenmode results at a truncation of approximately t′ = 250 ns. The overall error
is below 0.5 % even if a truncation time of t′ = 5 ns is chosen. Figs. 3.13 and 3.14
show the corresponding errors of the geometric shunt resistance and quality factors,
respectively, as functions of the truncation time. The calculations are carried out
for an electric conductivity of the cavity wall of 106 S/m and 108 S/m, each.

Though, the geometric shunt resistance is independent of material properties,
the results in Figs. 3.13(a) and (b) are very different with an electric conductivity
of 106 S/m and 108 S/m, respectively. The maximum error of the geometric shunt
resistance provided by VF is above 10 Ω in the considered range of truncation time.
In the particular case t′ = 500 ns in Fig. 3.13(a), the geometric shunt resistance
of the first mode at 1.5 GHz is estimated to approximately 18 % above the correct
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Fig. 3.13. Maximum error of the geometric shunt resistance over the considered resonant monopole
modes below 8 GHz except the fifteenth mode. The fitted results are compared to the eigenmode
results in Table A.1. The impedance is calculated from a truncated wake potential with varying
truncation time t′ where a wall conductivity of (a) 106 S/m and (b) 108 S/m is considered. Each
fit is carried out with 20 iterations.
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value. Thus, the results are unreliable as long as a truncated wake potential is
taken as a base for the impedance calculations. The same conclusion applies to
MVF which provides only slightly better results if the lower electric conductivity
of 106 S/m is assumed. In contrast, the impedance vector fitting methods provide
much lower maximum deviations from the correct geometric shunt resistances. The
error decreases below 1 Ω for all methods if the corresponding wake potential is trun-
cated at t′ ≥ 400 ns and an electric conductivity of 106 S/m is assumed according
to Fig. 3.13(a). This corresponds to a relative error below 1 % for all considered
modes. It is remarkable that IVF3 provides this accuracy already for a trunca-
tion at t′ = 100 ns. The outliers at t′ = 217 ns and t′ = 350 ns are present as in
Fig. 3.12(a) and can be avoided by deriving an improved set of starting poles from
an initial fit of the smoothed impedance as discussed before. The accuracy of IVF3
regarding the geometric shunt resistance is well preserved at higher electric con-
ductivity as shown in Fig. 3.13(b) while IVF1 and IVF2 seem to diverge and may
require a truncation above t′ = 500 ns for satisfying results. In fact, IVF1 and IVF2
converge much more slowly than IVF3, i. e. more than 20 iterations are necessary
to achieve the same accuracy as IVF3. It was found that IVF3 correctly resolves the
geometric shunt resistances within 1 % of all modes using less than 20 iterations even
if perfect electric boundary conditions are assumed. Hence, this fitting approach is
able to reflect the material independence of the geometric shunt resistance without
adapting the number of iterations or truncation of the wake potential.

The deviation of the quality factor is strongly correlated to the truncation time as
shown in Figs. 3.14(a) and 3.14(b) assuming an electric conductivity of the cavity
wall of 106 S/m and 108 S/m, respectively. Note, the ordinates are in logarithmic
scale. For a truncation at t′ = 250 ns in Fig. 3.14(a), the maximum error over all
considered modes provided by IVF3 is about 25 % while VF provides a maximum
error of 60 %. In Fig. 3.14(b), the same errors increase to 60 % and a factor of ten,
respectively. Though, impedance vector fitting methods provide much lower errors
of the quality factors than VF and MVF, it is necessary to simulate at least 10 % of
the full wake potential as measured by the time where the potential approximately
vanishes. The error of 25 % that seems to persist in Fig. 3.14(a) is due to the fourth,
ninth, and thirteenth mode in Fig. 3.11(a). These modes are within the vicinity
of other, much stronger coupled modes. Their quality factors are compromised
by an artificial coupling due to the harmonics introduced by the truncation. The
consequence is an ambiguity in the solution of the least-square problem. Generally, a
much longer wake potential must be considered for such modes in order to determine
their quality factors correctly.

Finally, the convergence of each fitting scheme is shown in Fig. 3.15. The longitu-
dinal wake potential is truncated at t′ = 250 ns and the electric conductivity of the
cavity wall is 106 S/m. IVF3 converges fastest within less than 10 iterations against
a minimum standard deviation between the fit and the impedance data according to
Fig. 3.15(a). Note, the minimum of roughly 100 Ω is caused by the missing fifteenth
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Fig. 3.14. Mean logarithmic error of the quality factor over the considered resonant monopole
modes below 8 GHz except the fifteenth mode. The fitted results Qn are compared to the eigenmode
results Q∗n in Table A.1. The impedance is calculated from a truncated wake potential with varying
truncation time t′ where a wall conductivity of (a) 106 S/m and (b) 108 S/m is considered. Each
fit is carried out with 20 iterations.

mode in all fits. IVF1 and IVF2 converge much more slowly against the minimum
standard deviation achieved by IVF3 while VF and MVF converge against a seven
or, respectively, eight times larger standard deviation as the harmonics introduced
by the truncation are averaged by these methods. The derived resonant frequen-
cies in Fig. 3.15(b) converge similarly for all considered fitting schemes against a
systematic error between the eigenmode and wake field simulations. The overall
best accuracy of the geometric shunt resistance with respect to monopole modes
below 8 GHz is achieved by IVF3 after 15 iterations as shown in Fig. 3.15(c). IVF1
and IVF2 provide slightly larger deviations which persist even after more than 20
iterations and are related to a single mode in the considered frequency band. The
derived quality factors from IVF3 converge within 10 iterations to an error of less
than 25 % averaged over the considered monopole modes below 8 GHz as shown in
Fig. 3.15(d). IVF1 requires 20 iterations to converge against the same deviation on
average. As mentioned above, this large error only applies to a few modes that are
artificially coupled to other modes providing much higher shunt resistances.

It was found that the convergence of IVF3 can be further improved down to
five iterations if the starting poles are derived from an initial fit of the smoothed
impedance. The initial fit can be carried out by the classical vector fitting with
two iterations, for example. The resulting set of starting poles must be slightly
perturbed in order to improve the convergence. A perturbation of ±10π/t′ applied
on the imaginary part is appropriate.



76 3 Specifications and Requirements

1 5 10 15 20

iteration

103

R
M
S
E
rr
o
r
[Ω
]

(a)

1 5 10 15 20

iteration

0.6

0.8

1.0

1.2

1.4

m
a
x
(∆

f
/
f
)
[1
0
−
3
]

VF
MVF
IVF1
IVF2
IVF3

(b)

1 5 10 15 20

iteration

0

10

20

30

m
a
x
{∆

(R
/
Q
)}

[Ω
]

(c)

1 5 10 15 20

iteration

0.1

0.2

0.3

m
ea
n
{l
g
(Q

/
Q

∗ )
}

(d)

Fig. 3.15. (a) RMS error of the impedance fits versus number of iterations. The impedance
corresponds to the wake potential in Fig. 3.10 (a) truncated at t′ = 250 ns. The error is defined as
the standard deviation of the individual fit from the calculated impedance over a frequency range
from 0 GHz to 8 GHz. (b) Maximum relative error of the resonant mode frequencies, (c) maximum
absolute error of the geometric shunt resistance and (d) mean logarithmic error of the quality
factor, considered over all resonant monopole modes below 8 GHz except the fifteenth mode. The
errors are based on comparisons with the corresponding eigenmode results in Table A.1.

3.3.4 Application on the High-β SPL Cavity

The longitudinal and transverse impedances shown in Figs. 3.16 and 3.17 are based
on wake field simulations using cst studio suite® [91] with a RMS bunch length
of 25 mm. The resultant wake potentials were truncated after t′ = 2000 ns to obtain
the particular impedances. The fitting is subdivided into two steps in order to
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Fig. 3.16. Longitudinal beam coupling impedance obtained by the corresponding wake potential
truncated at t′ = 2000 ns. The impedance is fitted by IVF3 using 160 poles.

improve the convergence: (i) Initial fits are applied on the smoothed impedances
using VF with five iterations to provide a set of initial poles. (ii) The impedances
as given in Figs. 3.16 and 3.17 are fitted using IVF3 with 20 iterations. A total of
160 poles is considered for each impedance in the frequency range below 3 GHz.

Tables 3.8 and 3.9 list the obtained resonant frequencies and geometric shunt re-
sistances for all modes of concern along with the corresponding results of eigenmode
simulations. Despite the very large frequency interval on which the fitting method
is applied, the results of impedance and eigenmode analyses are in a very good agree-
ment, particularly with respect to the monopole modes. It is worth noting that the
accuracy can be further improved by reducing the frequency interval. Comparably

Table 3.8. Significant monopole HOMs in the high-β cavity.
eigenmode simulations wake field simulations

mode n fn [MHz] (R/Q)n(βg) [Ω] fn [MHz] (R/Q)n(βg) [Ω]
Modes with frequencies closest to a machine line.

TM031 5/5π 2464.35 0.39 2463.39 0.31
TM023 1/5π 2809.48 7.13 2807.82 7.07
TM031 4/5π 2485.27 1.35 2484.31 1.22

Modes with the highest geometric shunt resistance.
TM011 1/5π 1335.67 104.60 1335.52 104.29
TM011 2/5π 1329.51 59.03 1329.37 59.07
TM022 5/5π 2089.34 18.61 2088.58 19.04
TM011 3/5π 1317.33 10.89 1317.20 11.08
TM030 3/5π 2219.34 1.66 2218.63 1.67
TM022 4/5π 2085.83 1.84 2085.13 1.94
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Fig. 3.17. Transverse beam coupling impedance obtained by the corresponding wake potential
truncated at t′ = 2000 ns. The impedance is fitted by IVF3 using 160 poles.

large deviations observed for the geometric shunt resistance of some dipole modes
listed in Table 3.9 are not yet fully understood. They occur despite the fact that
the impedance spectrum is well approximated in the vicinity of these mode frequen-
cies. Apart from this open problem, wake field simulations in combination with the
proposed methods of vector fitting have proven to be a very suitable approach to
investigate HOMs of resonant structures in great detail. Wake field simulations with
appropriate truncation can be less computing-extensive than eigenmode simulations
over the same frequency interval. Moreover, eigenmode simulations provide numer-
ous multipolar modes which do not appear in the impedance spectra. Accordingly
fewer modes need to be evaluated with regard to their frequency and geometric
shunt resistance to conclude on potential harmful HOMs. The precise analyses of
such modes, including the field distribution and particle velocity dependent geomet-
ric shunt resistance, are reserved for eigenmode simulations.

Table 3.9. Significant dipole HOMs in the high-β cavity.
eigenmode simulations wake field simulations

mode n fn [MHz] (R/Q)⊥,n(βg) [Ω] fn [MHz] (R/Q)⊥,n(βg) [Ω]
TE111 3/5π 918.12 41.61 917.72 39.45
TE111 4/5π 942.75 66.79 942.62 66.43
TM110 3/5π 1015.06 37.71 1014.97 39.96
TM111 2/5π 1393.23 33.28 1392.94 48.85
TM110 2/5π 1020.73 8.97 1020.71 9.72
TM110 4/5π 1004.06 20.56 1004.06 21.64
TM111 1/5π 1427.24 9.97 1426.93 14.94
TE111 5/5π 968.88 19.48 968.77 19.89
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3.4 Beam Dynamics

In circular machines, particle bunches repetitively excite HOMs in the accelerating
cavities. A certain longitudinal and transverse bunch position modulation over drift
spaces allows a resonant HOM build-up, in principle, at any mode frequency, and
eventually leads to the longitudinal or transverse cumulative beam break up if a
certain beam current threshold is reached [100]. Limiting the growth rate of the
so-called coupled bunch instabilities is the fundamental reason for applying HOM
damping in accelerating cavities of circular machines such as the LHC [101].

The situation in high-energy proton linacs is somewhat different. The impact of
HOMs on the transverse beam dynamic is negligible as demonstrated in [50, 87] by
means of the SPL and ESS linacs. However, HOM driven longitudinal instabilities
may arise when the frequency of a higher-order monopole mode is close to a harmonic
of the bunch frequency, which permits the HOM voltage to be resonantly built up.
Moreover, pulse substructures introduce further but weaker resonant conditions as
they are related to the repetition of the entire bunch pattern. The corresponding
frequencies are denoted as chopping lines or chopping harmonics. The Linac4 houses
a fast-switching electrostatic device to remove ultimately three out of eight bunches
in order to provide the flexibility of the various chopping patterns.

This section focuses on the impact of beam-excited HOMs on the longitudinal
beam dynamics of the SPL with the primary goal of defining HOM damping re-
quirements by examining possible cumulative beam breakups in the longitudinal
plane. The beam dynamics code smd is adapted and refined to confirm and to ex-
tend the work performed by Schuh [87]. During this study, the implementation in
root [102] is modified to provide faster executions and parallel handling of different
case studies. The statistical analyses comprise 10 to 100 times more samples than
previous studies in order to provide the results with accordingly greater statisti-
cal significance. Furthermore, the simultaneous excitation of various modes listed
in Tables 3.3 and 3.6, is included in the particle tracking simulations to compare
their individual contribution to the power loss. Acceptance criteria are derived
with regard to a feasible amount of dissipated and extracted HOM power. The
corresponding tolerances are primarily related to the minimum acceptable distance
between the resonant frequency of a particular mode and its nearest harmonic of
the bunch or chopping frequency. The quality factor of HOMs is another crucial
parameter. Ultimately, HOM damping by external coupling is required to ensure
beam stability and to avoid excessive power dissipation on the cavity wall.

3.4.1 Implementation

Several pulses are tracked through the medium-β and high-β sections of the SPL,
each containing 350 000 bunches considered as point-like macro particles. Typically,
two pulses are launched to ensure a steady state. The simulation is based on a
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drift-kick-drift model [50, pp. 165–166] where the momentum change is applied at
the mid-plane of each cavity taking into account the velocity-dependent time of
flight between subsequent cavities according to (2.131). The particle velocity inside
the cavity is assumed constant. Along with the particle bunch propagation, energy
and phase errors due to HOMs and errors in the main rf system are evaluated in
each cavity using (2.129)–(2.130). A particle is defined as lost once it is outside the
range [103, pp. 371]

2φs < φ < −φs. (3.22)

A detailed description on particle tracking in proton linacs including the interaction
between the beam and HOMs is given in [100]. The original implementation in the
beam dynamics code smd [87, pp. 79–92] is considerably modified towards faster
and parallel simulations in order to refine statistical analyses.

To obtain the statistical significance each simulation is repeated 1000 to 10 000
times, with Gaussian and uniform distributed error seeds being considered for (i)
the energy and phase of the particle at the entrance of the linac, (ii) the rf amplitude
and phase of the fundamental mode due to klystron errors, (iii) the frequency of the
HOMs distributed over all cavities. While each cavity is tuned to the fundamental
mode frequency, HOMs generally vary from cavity to cavity because of machining
tolerances. To be consistent with previous studies [87], a Gaussian distributed fre-
quency spread with a standard deviation of 1 MHz is chosen independent of the
particular HOM. For comparison, an empirical study of HOM frequencies, which
has been applied on cavities using deep drawing, states a maximum deviation of
0.38 % from the simulated mode frequencies [104]. Though slightly more conserva-
tive, this is fairly comparable to the frequency variations applied here. Furthermore,
the amplitude and phase errors of the main rf system are anticipated for 0.5 % and
0.5 deg, respectively [19, p. 47-48]. For comparison, the low-level rf system of the
superconducting cavities at ESS is designed to stabilize the amplitude and phase
within 0.1 % and 0.1 deg, respectively. In addition to the energy and phase error, a
bunch to bunch charge jitter of 3 % is considered [93]. All above mentioned quanti-
ties are summarized in Table 3.10 and are meant as default values which apply to

Table 3.10. Default parameters used for the particle tracking simulations [87].
parameter unit mean σ distribution
particle energy at insertion [MeV] 160 0.078 Gaussian
particle phase at insertion [deg at 704MHz] −15 0.4 Gaussian
beam current IB mA 40 1.2 Gaussian
amplitude error of main rf [%] 0 0.5 uniform
phase error of main rf [deg at 704MHz] 0 0.5 uniform
bunch to bunch charge jitter [%] 0 3 Gaussian
frequency spread of HOMs [MHz] 0 1 Gaussian
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the particular simulation if not stated differently.
Since transverse effects are expected to be marginal [50, 87], the longitudinal phase

space can be assumed independently. Figure 3.18 shows the longitudinal phase space
histogram of one pulse at the linac output in the presence of amplitude and phase
errors in the rf system but without the excitation of HOMs. The effective phase
space measured over one pulse, the so-called emittance ε, calculates as [19, p. 69]:

ε = π

√
〈∆E2〉〈∆φs2〉 − 〈∆E∆φs〉2. (3.23)

This quantity varies along the linac due to non-conservative forces, for instance, the
accelerating and wake fields. The emittance ratio between linac output and input,
denoted as ε/ε0 in Fig. 3.18, reflects the growth of the longitudinal phase space along
the structure. The phase space in Fig. 3.18(a) appears differently from [93, p. 99]
because the linac configuration as well as field profiles of the cavity have changed
since then. However, the emittance growth is nearly the same.

A major extension of the beam dynamics code smd was the simultaneous excita-
tion of arbitrarily many HOMs. Table 3.11 lists all HOMs considered in the following
analyses. Their geometric shunt resistances are shown in Figs. 3.5(b) and 3.8(b) as
functions of the particle velocity. Besides the nominal frequency in Table 3.11, the
nearest harmonic of either the bunch frequency or the 50/80 bunch pattern fre-
quency is provided, with the first one being chosen if the distance is smaller than
10 MHz. The association of individual modes with their nearest harmonics of the
bunch or pattern frequency is of particular interest when estimating the maximum
power dissipated in HOMs. It is worth noting that in addition to the manufacturing
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Fig. 3.18. Distrubution of the logitudinal phase space over one pulse at the linac output for 10 000
samples. Amplitude and phase errors of the main rf system are applied according to (a) 0.5 % and
0.5 deg, and (b) 0.1 % and 0.1 deg, respectively. No HOMs are considered.
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Table 3.11. Monopole HOMs of concern.

mode n fn [MHz]
nearest harmonic [MHz]

bunch frequency 50/80 pattern
Medium-β cavity

TM011 3/5π 1759.21 1761.0 –
TM011 2/5π 1769.17 1761.0 –
TM011 1/5π 1806.89 – 1805.0†
TM031 5/5π 2820.44 2817.6 –

High-β cavity
TM011 2/5π 1329.51 – 1329.6
TM011 1/5π 1335.67 – 1334.0
TM022 5/5π 2089.34 – 2091.2
TM031 5/5π 2464.35 2465.4 –
TM023 1/5π 2809.48 2817.6 –
† harmonic of 5/8 bunch pattern.

tolerances which cause the frequency variation from cavity to cavity, the tuner is
able to vary the frequency of HOMs at operation by several MHz.

3.4.2 HOM Frequency Spread

The impact of HOM frequency variations on the emittance growth along the SPL is
illustrated in Fig. 3.19 at nominal DC beam current and at ten times larger current.
The frequency errors are Gaussian distributed over the cavities, with the standard
deviation fσ being varied in a range from 103 Hz to 106 Hz. Moreover, the external
coupling of HOMs, Qext, which determines the decay constant in (2.128), is varied
between 105 and 108. The external quality factor is assumed to be the same for
all considered HOMs. The amplitude and phase errors of the main rf system are
excluded from the simulations. Each data point in Fig. 3.19 underlies a statistic of
1000 samples.

At the nominal beam current of 40 mA, the increase in longitudinal phase space is
relatively small as shown in Fig. 3.19(a). Amplitude and phase errors of the main rf
system would dominate the emittance growth independent of external coupling and
frequency spread in the considered ranges. At considerably larger beam currents,
a noticeable emittance growth can be induced by HOMs, in particular, at lower
frequency spreads fσ < 0.1 MHz. This is illustrated in Fig. 3.19(b) with a beam
current as much as 400 mA. With additional HOM damping by external coupling
in the order of Qext ≤ 105, this effect completely vanishes. The reason why the
emittance growth tends to increase for fσ > 0.2 MHz is due to the fact that the
TM011 3/5π in the medium-β cavity becomes close to the fifth harmonic of the
bunch frequency in some cavities. The same applies to the TM031 5/5π in the
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Fig. 3.19. Maximum emittance growth along the SPL as a function of frequency spread assumed
for each HOM in Table 3.11. (a) IB = 40 mA. (b) IB = 400 mA. Statistics of 1000 samples are
considered. Amplitude and phase errors of the main rf system are not considered.

high-β cavity with respect to the seventh harmonic. In both cases, the distance
between the nominal resonant frequency and nearest harmonic of bunch frequency
amounts to less than 2 MHz. It is worth noting that such large emittance growths at
frequency spreads around fσ = 1 MHz were not observed in past studies [87, p. 102].
Due to design changes, the frequency of the TM011 3/5π in the medium-β cavity
became much closer to the fifth harmonic of the bunch frequency. In addition, not
the TM031 5/5π mode in the high-β cavity was considered in previous studies but
the TM011 1/5π mode which is by more than 70 MHz away from the nearest machine
line (Table 3.6). Although the emittance growth at nominal beam current seems
to be negligible within the considered resonant frequency variations, the situation
changes significantly once a HOM frequency is close to a harmonic of the bunch
frequency as demonstrated in the following.

3.4.3 Emittance Growth with Random Frequency Errors

In the previous section, it was already seen that the existence of parasitic modes
near a harmonic of the bunch frequency essentially influences the longitudinal phase
space. Following the approach in [50, pp. 185–187] the impact of such modes is
further investigated in Fig. 3.20 for various predefined averaged distances between
the HOM frequencies and their individually nearest harmonic of either the bunch
frequency or 50/80 bunch pattern frequency according to Table 3.11. Hence, the
nominal frequency of each HOM is defined by a common frequency shift ∆f which
varies from 0 MHz to 4 MHz. For comparison, the conceptional design of ESS speci-
fies that all HOMs satisfy a minimum distance of 5 MHz from their nearest harmonic
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Fig. 3.20. (a) Maximum emittance growth along the SPL as a function of external coupling Qext.
The frequency shifts ∆f refer to the distance between the averaged frequency of the particular
HOM and its nearest harmonic of either the bunch frequency or 50/80 bunch pattern frequency
according to Table 3.11. The frequency spread is fixed to fσ = 1 MHz. The nominal beam current
of IB = 40 mA is assumed. Amplitude and phase errors of the main rf system are not applied.
Statistics of 10 000 samples were carried out for each data point. The reference emittance growth
in dashed corresponds to amplitude and phase errors of the main rf system of 0.1 % and 0.1 deg,
respectively, and the absence of HOMs. (b) Probability to exceed the reference growth rate.

of the bunch frequency [92]. Furthermore, the frequency spread of all considered
HOMs over the cavities is fixed to fσ = 1 MHz. Each data point in Fig. 3.20 is
derived from a statistic of 10 000 samples.

Figure 3.20(a) shows the maximum emittance growth as a function of the external
coupling Qext commonly varied for all considered HOMs. The dashed reference line
indicates the emittance growth in the presence of amplitude and phase errors of 0.1 %
and 0.1 deg, respectively, and in the absence of HOMs as shown in Fig. 3.18(b).
Figure 3.20(b) shows the corresponding probability that the particular emittance
growth exceeds the reference value within a statistic of 10 000 samples. For example,
if all considered HOMs lie on average 2 MHz away from the nearest harmonic of
the bunch or pattern frequency, one out of 10 000 linac samples occurs where the
emittance growth exceeds the threshold ε/ε0 = 1.291 at Qext = 105. For larger
distances ∆f , the probability of such a scenario is below 0.01 % and would require
more extensive statistics to be resolved. The probability is apparently much smaller
if a threshold of ε/ε0 = 3.880 is considered, which corresponds to the nominal
amplitude and phase errors of the main rf system according to Fig. 3.18(a). Even
at ∆f = 0, the probability to exceed this larger threshold is below 0.01 % as far
as Qext ≤ 2× 105. This generally confirms the results of previous studies in [87,
pp. 103–107] but with 100 times more samples per scenario, and multiple HOMs
being excited in each cavity.
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3.4.4 Sub-Structured Pulses

The same analysis as before was repeated for three different bunch patterns [19,
p. 70]: (i) 5 out of 8 bunches, (ii) 50 out of 80 bunches, and (iii) 500 out of
800 bunches. The results of the first two cases are summarized in Fig. 3.21. The
number of samples was reduced from 10 000 to 1000 to reduce the computational
effort. This simplification was justified from previous analyses in Sec. 3.4.3 without
sub-structured pulses, that is no significant differences in the maximum emittance
growths were found between 1000 and 10 000 samples except that the probability to
exceed a certain threshold cannot be resolved below 0.1 %.

Sub-structures in the pulse introduce further but weaker resonant conditions with
a higher spectral density given by the bunch frequency divided by the maximum
number of bunches within the pattern. Accordingly, the distance between harmon-
ics of the 50/80 bunch pattern is 4.4025 MHz such that the maximum frequency shift
between the particular mode frequency and its nearest harmonic of the bunch pat-
tern frequency is at most 2.2012 MHz. Consequently, frequency shifts above 2 MHz
in Fig. 3.21(b) apply only to those modes in Table 3.11, which are associated with
harmonics of the bunch frequency. The remaining modes, such as the TM011 1/5π
mode in the medium-β cavity or the TM011 1/5π mode in the high-β cavity, already
approach the next harmonic of the 50/80 pattern frequency. This explains, in par-
ticular, the larger emittance growths at ∆f > 2 MHz in Fig. 3.21(b) in comparison
to Fig. 3.20(a) and 3.21(a). Note, the effect is less pronounced for the 500/800 bunch
pattern which is not shown here. The maximum emittance growth at ∆f ≤ 2 MHz is
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Fig. 3.21. Maximum emittance growth along the SPL as a function of external coupling Qext

assuming different frequency shifts ∆f . The same configuration is applied as described in Fig. 3.20
but for various bunch patterns. The statistics is reduced to 1000 samples for each data point.
The dashed reference line indicates the emittance growth due to amplitude and phase errors of the
main rf system of 0.1 % and 0.1 deg, respectively, if no HOMs are excited.
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approximately the same independent of sub-structured or non-sub-structured pulses.
It can be concluded that an external coupling of Qext ≤ 2× 105 sufficiently mitigates
the impact of excited HOMs on the longitudinal emittance growth in the SPL.

3.4.5 Power Dissipation by HOMs

Previously, it was found that an external coupling of Qext ≤ 2× 105 must be ensured
for the HOMs of concern not to enhance the longitudinal emittance growth along
the linac. The corresponding fraction of power to be extracted from the n-th mode
in the m-th cavity is given by

Pext,n
(m) =

|V (m)
n |2

(R/Q)n(β)Qext,n

, (3.24)

where Pext,n is meant as the power averaged over the entire pulse. As before, the
analysis is based on a statistical approach. The mean frequency of each HOM over all
cavities is set at various predefined distances ∆f from the nearest harmonic of either
the bunch or pattern frequency according to Table 3.11. The frequency spread of
all HOMs along the linac is fixed to fσ = 1 MHz. Furthermore, the uncertainties of
particle energy and phase at insertion as well as the spread of beam current according
to Table 3.10 are taken into account for the statistic analyses, each comprising 1000
samples. Amplitude and phase errors of the main rf system are not considered. In
addition, pulses with and without sub-structures are compared.

Figs. 3.22 and 3.23 show the maximum power to be extracted from individual
modes in the medium-β or, respectively, high-β SPL cavity as a function of external
coupling. The results are taken from those cavities compromised by the largest
HOM voltages in the particular section. The amount of power rapidly reduces
if the resonant frequencies are moved by more than 10 kHz away from the nearest
harmonic of the bunch or pattern frequency. The total extracted power is dominated
by those modes near a harmonic of the bunch frequency, for instance, the TM011

3/5π mode in the medium-β cavity in Fig. 3.22 or the TM031 5/5π mode in the
high-β cavity in Fig. 3.23. Their nominal distance from the fifth or, respectively,
seventh harmonic of the bunch frequency is less than 2 MHz. Note, the TM011 2/5π
mode in the medium-β cavity and the TM023 1/5π mode in the high-β cavity are
excited significantly more strongly than the previous discussed modes due to larger
shunt impedances. However, their nominal frequency is about 8 MHz away from the
fifth or, respectively, eighth harmonic of the bunch frequency, which is considered
as a reasonable safety margin [92].
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Fig. 3.22. Maximum mode specific extracted power in a medium-β cavity as a function of external
coupling Qext assuming different frequency shifts ∆f (gray scaled). The frequency shifts are
related to the distance of the individual HOM mean frequency from its nearest harmonic of either
the bunch frequency or 50/80 bunch pattern frequency according to Table 3.11. The frequency
spread is fixed to fσ = 1 MHz for each mode. Four different bunch patterns are considered with
the nominal beam current of IB = 40 mA, each. Amplitude and phase errors of the main rf system
are not applied. Statistic of 1000 samples were carried out for each data point.

In the presence of sub-structured pulses, the power to be extracted from the
TM011 1/5π mode in the medium-β cavity is substantially higher. This applies, in
particular, to the 5/8 bunch pattern as illustrated in Fig. 3.22(b). In this scenario,
the total extracted power is completely dominated by the TM011 1/5π mode if the
resonant frequency of the TM011 2/5π mode is sufficiently separated from the fifth
harmonic of the bunch frequency. This phenomenon does not appear for the high-β
cavity since none of the considered modes is close enough to a harmonic of the 5/8



88 3 Specifications and Requirements

104 105 106 107 108

Qext

10−4

10−2

100

102

104

P
e
x
t,
n
[W

]

TM011 2/5π
TM011 1/5π
TM022 5/5π
TM031 5/5π
TM023 1/5π

(a) bunch pattern: 1/1

104 105 106 107 108

Qext

10−4

10−2

100

102

104

P
e
x
t,
n
[W

]

∆f = 0 Hz
∆f = 104 Hz
∆f = 105 Hz

(b) bunch pattern: 5/8

104 105 106 107 108

Qext

10−4

10−2

100

102

104

P
e
x
t,
n
[W

]

(c) bunch pattern: 50/80

104 105 106 107 108

Qext

10−4

10−2

100

102

104

P
e
x
t,
n
[W

]

(d) bunch pattern: 500/800

Fig. 3.23. Maximum mode specific extracted power in a high-β cavity as a function of external
coupling Qext assuming different frequency shifts ∆f (gray scaled). The frequency shifts are
related to the distance of the individual HOM mean frequency from its nearest harmonic of either
the bunch frequency or 50/80 bunch pattern frequency according to Table 3.11. The frequency
spread is fixed to fσ = 1 MHz for each mode. Four different bunch patterns are considered with
the nominal beam current of IB = 40 mA, each. Amplitude and phase errors of the main rf system
are not applied. Statistic of 1000 samples were carried out for each data point.

bunch pattern frequency. In case of the 50/80 bunch pattern in Fig. 3.23(c), the
power required to extract from the TM011 1/5π mode is comparable to the power
required to extract from the TM031 5/5π mode close to the seventh harmonic of
the bunch frequency. Note, modes which have not been included in the simulation
provide much smaller (R/Q) values and are considered as harmless. This conclusion
is justified by observing Figs. 3.22 and 3.23 where the extracted powers vary partially
by orders of magnitude between those modes which are accounted for.



3.4 Beam Dynamics 89

The maxima in Figs. 3.22 and 3.23 appear for all considered modes with vanish-
ing frequency shifts ∆f in a range of Qext = 106 to 107. The reason why the power
decreases at larger Qext is the fact that a significant fraction of the beam gets lost
due to an unacceptable large growth of the longitudinal phase space as illustrated in
Fig. 3.20(a). At a frequency shift of ∆f = 10 kHz, the maxima of extracted power
appear in the vicinity of Qext = 105 while at a frequency shift of ∆f = 100 kHz,
the corresponding maxima appear in the vicinity of Qext = 104. Depending on the
frequency shift the power varies between a few tens of mW and 5 kW. However,
a realistic amount of power, to be extracted by a single HOM coupler from a su-
perconducting facility that is immersed in liquid helium at 2 K, ranges from a few
tens of watts to 1 kW [16]. In the view of feasibility, quantity and costs, it was
decided to restrict the maximum power extraction to 100 W per coupler [19]. This
requires that the frequencies of the TM011 2/5π mode in the medium-β cavity and
the TM023 1/5π mode in the high-β cavity are by far more than 100 kHz away from
their nearest harmonics of the bunch frequency. In the presence of the 5/8 bunch
pattern, the TM011 1/5π mode in the medium-β cavity requires either a separation
of at least 100 kHz from its nearest harmonic of the pattern frequency or a damping
of Qext ≤ 104 according to Fig. 3.22(b). The TM011 3/5π mode in the medium-β
cavity provides a power of almost 100 W at Qext = 105 if its frequency matches
the fifth harmonic of the bunch frequency. A frequency shift of ∆f ≥ 10 kHz or a
damping of Qext ≤ 5× 104 should be considered. The damping option is preferred
since this mode is by design less than 2 MHz away from the nearest machine line.
The situation in the high-β cavity is slightly more relaxed. All considered modes
other than the TM023 1/5π mode provide in total less than 100 W to be extracted if
an external coupling of Qext ≤ 105 is ensured. This is true for any of the considered
frequency separations ∆f and bunch patterns.

It can be concluded that a damping of Qext ≤ 105 is required for all HOM.
Exceptions are the TM011 3/5π and TM011 1/5π mode in the medium-β cavity.
Both modes must be stronger damped since a certain separation of their resonant
frequencies from the nearest harmonics of the bunch or pattern frequency cannot be
guaranteed during operating. The statement from [87, p. 123], that only moderate
damping in the order of Qext = 107 is needed in the absence of any pulse sub-
structures, does not apply to the current cavity designs since both the TM011 3/5π
mode in the medium-β cavity and the TM031 5/5π mode in the high-β cavity provide
nominal frequencies which differ by less than 2 MHz from their nearest harmonics of
the bunch frequency as listed in Table 3.11. In the worst case, the particular mode
coincides with the corresponding machine line due to manufacturing tolerances or
tuner operations. A quality control and possible tuning with regard to these HOMs
is recommended to ensure a minimum distance.
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3.5 Low Power rf Measurements on High-β SPL Cavity

The first two prototypes of the high-β SPL cavity were fabricated out of Cu fol-
lowed by four prototypes made of Nb. All of them were provided by RI Research
Instruments. A fifth Nb prototype was fabricated at CERN but is not addressed in
the present treatise. The measurements discussed in the following comprise (i) the
resonant frequencies and frequency spreads of various monopole and dipole modes as
measured over the four Nb prototypes, (ii) the field profile along the particle bunch
propagation to identify selectively monopole and dipole modes as measured on a sin-
gle Nb prototype, (iii) the frequency variation of resonant modes while cooling one
of the Nb prototypes down to the operating temperature of 2 K, (iv) the frequency
sensitivity and variation of HOMs due to plastic deformations as measured on one
of the Cu prototypes, and (v) the frequency sensitivity of HOMs under the influ-
ence of elastic deformations during tuner operations as measured on one of the Nb
prototypes. The results are compared to a large extent to simulations of preceding
sections.

3.5.1 Frequency Spread

The resonant frequency of various monopole and dipole modes is measured at room
temperature for high-β cavity prototypes. A Vector Network Analyzer (VNA) is
used to analyze the rf transmission and reflection of the cavities from 0.5 GHz to
2.1 GHz. The reflected and transmitted signals are measured via two probe antennas.
One of those is installed at the port foreseen for the fundamental mode coupler while
the other one is installed on the pick-up coupler port. These ports are located at
opposite cutoff tubes such that the transmitted signal passes through the cavity.
The resonant frequencies are calculated from measured scattering functions using
the method of vector fitting from Sec. 2.3.3. This is a convenient way to process
many modes simultaneously without the lack of accuracy.

Figure 3.24 shows the frequency spread of various monopole and dipole modes
measured over the four bulk Nb prototypes. Each mode is associated with its par-
ticular passband. The circuit model of Sec. 2.2.2 with (2.90) is used to approximate
the dispersion relation for each pass band as illustrated by the solid black lines. Note,
the hybridization of dipole modes due to coupling between TM and TE modes is
not taken into account by (2.90), and yields partially poor approximations of the
dispersion relation such as for the TM110 and TE121 bands in Fig. 3.24(b). The rela-
tive frequency spread of the considered HOMs ranges between 0.5 h and 4 h which
corresponds to an absolute range of 0.5 MHz to 7 MHz. The measured monopole
and dipole modes vary on average by 2.56 MHz and 2.45 MHz, respectively. Al-
though the consideration of only four cavities is obviously not sufficient to quantify
the frequency spread with statistical significance, the measurements provide a first
estimate of realistic frequency spreads given by the mechanical tolerances during
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Fig. 3.24. Dispersion curves for (a) monopole and (b) dipole modes of the high-β SPL cavity
with the relative frequency spread ∆f/f in h measured over the first four bulk Nb prototypes as
received from the manufacturer. Circles correspond to simulated values while the solid black lines
result from a curve fitting based on the circuit model applied with periodic boundary conditions.

the fabrication and tuning. Due to the relatively large variations, it is absolutely
necessary to examine in particular the TM031 5/5π at 2464 MHz and the TM023 1/5π
mode at 2809 MHz within the cavity control as they are very close to harmonics of
the bunch frequency according to Table 3.6. It is further recommended to examine
the TM011 1/5π mode at 1336 MHz as the power loss associated with this mode can
be significant in the presence of substructured pulses as shown in Fig. 3.23(c).

3.5.2 Field Profile and Geometric Shunt Impedance

The measurement of the geometric shunt impedance requires knowledge about the
field profile along the beam axis. In 1948, Hansen and Post [105] proposed a method
which involves the interaction of the excited mode with a small metallic plunger
guided along the center axis of the cavity. Since then, plungers of various shapes
and compositions have been investigated in order to provide different effects on the
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electric and magnetic field components. The perturbation of the resonant frequency
δωn of mode n given by a small dielectric spherical bead with the radius δr in the
vicinity of (r, ϕ, z) using cylindrical coordinates calculates as [106]

δωn(r, ϕ, z)

ωn
= −πδr

3

U (n)

(
εr − 1

εr + 2
ε0|E(n)(r, ϕ, z)|2 +

µr − 1

µr + 2
µ0|H(n)(r, ϕ, z)|2

)
.

(3.25)

Typically, the perturbing bead is moved along the cavity axis, i. e. r = ϕ = 0 in
order to evaluate the field profile of the particular mode along the nominal par-
ticle bunch propagation. The measurements presented in this section are carried
out using a dielectric spherical bead with a relative permeability of µr = 1 such
that the magnetic field is, in general, not perturbed and variations of the resonant
frequency are only correlated to the perturbation of the electric field according to

δωn(z)

ωn
= −πδr

3

U (n)

εr − 1

εr + 2
ε0|E(n)(z)|2. (3.26)

It is worthwhile to note that the identification of resonant modes from scattering
parameter measurements, as described in Sec. 3.5.1, can be problematic at higher
frequencies where the mode spectrum becomes denser. In particular, this is the case
when the variation of the resonant frequencies due to manufacturing tolerances is
larger than the distance to adjacent modes. The measurement of the field profile by
perturbation allows a unique identification of resonant modes. Figure 3.25 shows the
simulated longitudinal and transverse electric field of significant monopole and dipole
modes, respectively. It covers a small selection of modes that are examined by bead
pulling in three bulk Nb prototypes. Note, the monopole and dipole modes provide
only a longitudinal or, respectively, transverse electric field component on the beam
axis such that the measurements of frequency variation along this axis correlates
to the profile of the particular field components shown in Fig. 3.25. The remaining
field components are either zero or not perturbed, so they are not measurable via
the bead.

In general, it is desirable to reduce the measurement time since even minor changes
in the environmental conditions such as temperature, humidity and pressure may
affect the results. Therefore one usually evaluates the phase variation instead of the
frequency variation while pulling the bead through the structure. The relationship
between the perturbation of phase and frequency for a mode n with a quality factor
Qn > 50 is given by [106]

δωn =
ωn

2Qn

tan δφn. (3.27)
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(h) TM111 2/5π at 1395 MHz.

Fig. 3.25. Cross-sectional view of normalized electric field components for significant monopole
(left) and dipole HOMs (right) simulated using comsol Multiphysics® software [90].
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The phase and frequency are derived from scattering parameters measured between
the fundamental mode coupler port and the port reserved for the pick-up antenna as
described in Sec. 3.5.1. In case of the phase measurement, the VNA generates a har-
monic signal with a frequency equal to the resonant frequency of the considered mode
while the frequency measurement is based on a frequency sweep at each position of
the bead with subsequent fitting of one or more resonant frequencies depending on
the frequency interval. The latter approach does not require prior knowledge of the
resonant frequency but is less accurate due to the longer measurement time.

In order to compare both methods, the field flatness from cell to cell was evaluated
for three high-β SPL cavities made of Nb. The field flatness from cell to cell is a
measure of the field quality related to the fundamental mode. It describes the
maximum variation of the peak accelerating field over all cells along the center axis,
and should be minimized during the tuning procedure of the cavity. Typically, it
is measured via the phase variation while pulling a bead through the cavity. The
results of phase and frequency measurements are compared in Table 3.12. Note,
the definition of [107, p. 250] is used for the field flatness. Hence, a value of 100 %
corresponds to a uniform distribution of the electric field maxima along the center
axis. The errors of the phase measurements are based on five repetitions and are
within ±0.2 %. The errors of the frequency measurements are five to ten times
larger, which is inappropriate for tuning the fundamental mode in terms of resonant
frequency and field flatness. However, this accuracy is sufficient to identify HOMs,
as shown in the following. The main advantage of the method based on frequency
sweeps is the consideration of an entire frequency band over many modes without
the need to know the exact resonant frequencies prior to the measurement.

Figs. 3.26 and 3.27 show the measured and simulated field profiles of various
monopole and dipole modes along the particle bunch propagation. The measure-
ments are carried out with a spherical bead made of Polyethylene with 6.2±0.02 mm
diameter and a relative permittivity of εr = 2.35. The ordinates of Figs. 3.26
and 3.27 correspond to the ratio of the longitudinal or, respectively, transverse elec-
tric field and the square root of the stored energy, which is proportional to the square
root of the relative frequency variation according to (3.26). Note, the orientation of
the electric field is deduced from simulations since the perturbation method provides
only quantities that correlate to field magnitudes. The measured results agree fairly
well with those of the simulations and permit a clear identification.

The particular case of TM monopole modes allows the calculation of geometric

Table 3.12. Field flatness of the first three high-β bulk Nb prototypes [%].
method spl1 spl2 spl3
phase measurement 98.3± 0.03 96.74± 0.18 98.01± 0.07
frequency measurement 98.05 95.98 97.74
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(a) TM011 2/5π at 1328 MHz.
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(b) TM011 1/5π at 1335 MHz.
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(c) TM022 5/5π at 2088 MHz.
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(d) TM031 5/5π at 2463 MHz.

Fig. 3.26. Measured and simulated field profiles of higher-order monopole modes.

shunt impedances since the longitudinal electric field is the only contribution that
needs to be integrated along the beam axis taking into account the phase advance
according to (2.115). The error is relatively high, as shown in Table 3.13 for various
monopole modes. This is mainly due to environmental changes that occurred during
the measurements. The bead is moved in steps of 10 mm through the structure with
the scattering functions being measured from 0.5 GHz to 2.5 GHz at each position.
This procedure requires several minutes, which means that changes in the tempera-
ture, humidity and pressure are unavoidable, and can only partially be compensated
in the case of slow drifts. Other well known problems are the slippage and vibrations
of the wire which guides the bead through the cavity and causes distortions of the
measured profiles [108, pp. 30–40]. Note, the simulated values in Table 3.13 slightly
differ from Tables 3.5 and 3.6 as the cavity is considered at room temperature.
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(a) TE111 3/5π at 918 MHz.
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(b) TE111 4/5π at 943 MHz.
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(c) TM110 3/5π at 1014 MHz.
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(d) TM111 2/5π at 1395 MHz.

Fig. 3.27. Measured and simulated field profiles of higher-order dipole modes.

Table 3.13. Frequency and geometric shunt impedance at room temperature.
simulation measurement

mode n fn [MHz] (R/Q)n(βg) [Ω] fn [MHz] (R/Q)n(βg) [Ω]
TM010 5/5π 703.82 565.50 703.82 501.82
TM011 2/5π 1328.45 59.05 1333.62 46.40
TM011 1/5π 1334.61 104.70 1337.86 122.86
TM022 3/5π 2070.75 0.27 2073.19 1.73
TM022 4/5π 2084.57 1.68 2088.11 6.17
TM022 5/5π 2088.04 19.21 2093.18 15.10
TM031 5/5π 2462.57 0.39 2463.08 0.62
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3.5.3 Impact of Temperature

The focus of this section is the frequency shift of HOMs when cooling the cavity
from room temperature down to the operating temperature of 2 K. The frequency
change is mainly caused by the thermal contraction. Furthermore, the ambient
environment changes from normal air at 293 K with 50 % humidity and atmospheric
pressure to vacuum, which alters the relative permittivity εr and, thus, the frequency
as well [109]. A third aspect is given by the abrupt change of the penetration depth
in the transition from the normal conducting to superconducting state of Nb. This
effectively alters the surface impedance, which is likewise related to a shift of the
resonant frequency [110]. All three aspects are described in detail in [111].

Two bulk Nb prototypes are examined during high-gradient tests in a cryostat.
Each cavity was installed vertically and equipped with temperature sensors as shown
in Fig. 3.28(a). The measurements presented in the following refer to the prototype
spl2 and are carried out during the warming phase from 2 K to room temperature.
The corresponding temperature profiles are shown in Fig. 3.28(b). Note, the Sensor
TT844 is close to the heater to warm the structure, which explains the overall higher
temperature. Also, the measurements are compromised by a temperature gradient
in part about 40 K. Two separate measurements were evaluated with homogeneous
temperature distribution at 2 K and 4 K.

The resonant frequencies are evaluated in a manner analogous to Sec. 3.5.1 or 3.5.2
using a VNA to measure the rf transmission and reflection between the fundamen-
tal mode coupler port and pick-up antenna port of the high-β SPL cavity. As a
consequence of much longer rf cables and pressure fluctuations in the helium bath,
the signal to noise ratio is significantly reduced. Figure 3.29 shows the example
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Fig. 3.28. (a) Sketch of the cavity equipped with four temperature sensors. (b) Temperature
distribution measured over the cavity (spl2) while warming from 2 K up to room temperature.
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of the TM110 2/5π dipole mode at 2 K and at room temperature. The measured
transmission is shown in light gray while the dashed lines correspond to a fit of
these data based on the method of classical vector fitting from Sec. 2.3.3. At both
temperatures, the fitting procedure fails due to the high noise level, and the resonant
frequencies are not resolved. Note, the modified vector fitting provides somewhat
better results by using an additional free parameter for the asymptotic behavior
at very high frequencies according to (2.159). It is more appropriate to filter or
smooth the signal before applying the fitting procedure. There are several options
to increase the signal to noise ratio without compromising the signal too much. For
example, the VNA can be configured with a lower intermediate frequency band-
width or averaging over several frequency sweeps may be applied. Both approaches
reduce the noise level but increase the measurement time. Alternatively, filters such
as a moving average or Savitzky-Golay filter [112] can subsequently be applied on
the measured data, without the need of multiple frequency sweeps or a reduced
intermediate frequency bandwidth of the VNA. A generic filter is implemented for
the same purpose. It is analog to a low-pass filter but in time domain, and can
be sketched as follows: (i) Transform the scattering parameters in time-domain.
(ii) Apply a particular window, for instance, a Kaiser window to the obtained time
signals such that components associated with the noise in the frequency spectrum
are much reduced. These are, in general, the signal components at larger time and
relatively low in amplitude. Thresholds are used to adapt the window parameters.
(iii) Back-transform the filtered time signal in frequency domain. This approach is
used to process measurements such as shown in Fig. 3.29 in a very robust way.
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Fig. 3.29. Filtering and Fitting applied on the measured rf transmission around 1020 MHz at (a)
2 K and (b) room temperature. The plots show the two polarizations of the TM110 2/5π dipole
mode. The dotted vertical lines highlight the resonant frequencies. In dashed black, a vector fit
applied on the pure data. In solid black, a vector fit applied on the filtered data.
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Figure 3.30 depicts the measured frequency variation of various modes as a func-
tion of temperature. The dashed lines correspond to the frequency shift due to
thermal contraction assuming a uniform temperature distribution at each measure-
ment. It provides a rough estimate since neither the impact of temperature gradient
nor changes in the environmental conditions are considered. In most cases the ac-
tual variation is larger. Figure 3.31 shows the total variation of all considered modes
while warming the cavity from the operating temperature of 2 K to room tempera-
ture.
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Fig. 3.30. Frequency shift during warm up. The horizontal error bars correspond to the tempera-
ture gradient in the structure while the vertical error bars are associated with the 3 dB bandwidth.
The dashed line corresponds to the analytic frequency shift due only to thermal contraction.
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Fig. 3.31. Total variation of all considered modes while changing the temperature from 2 K to
293 K. Monopole modes are marked by squares while dipole modes are marked by circles. The
dashed line corresponds to the analytic frequency shift due only to thermal contraction.

3.5.4 Plastic Deformation

After fabrication, it is imperative to tune the SPL cavities in terms of fundamental
mode frequency and field flatness from cell to cell. This process is done by plastically
deforming individual cells using a dedicated tuning bench as sketched in Fig. 3.32.
A force is applied at the irises to squeeze or squash the particular cell, which alters
the resonant frequency, cell-to-cell coupling, and eventually the field flatness of the
fundamental mode.

In the interest of developing a method to shift the frequency of individual HOMs
away from harmonics of the bunch or pattern frequencies, it is appropriate to study
the influence of cavity detuning and retuning on HOMs of concern. The variation
of various HOMs is evaluated for a bulk Nb mono-cell SPL cavity and a high-β
SPL cavity made of bulk Cu. As previously described, the resonant frequencies
are obtained by measuring the rf transmission and reflection using a VNA. The
corresponding scattering parameters are fitted by the method of vector fitting in
order to derive the resonant frequencies. In case of the mono-cell cavity, the two
rf antennas to measure the scattering parameters are installed at both beam pipe
ports. The measurements on the multi-cell cavity proceed in the same way as in
Sec. 3.5.1 using one antenna at the input coupler port and the second antenna at
the port foreseen for the pick-up antenna.

The tuning bench permits varying the length of individual cells in a range of
approximately ±1.5 mm. However, the limits depend on material conditions and
history since the tuning bench is primarily limited by force. In order to squeeze the
mono-cell cavity, the force is applied at the flanges as shown in Fig. 3.33(a). The
setup to squeeze or squash one of the inner cells of the high-β SPL cavity prototype
is shown in Fig. 3.33(b). The tuning walls are attached slightly above the irises. In
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displacement sensors

tuning wallshydraulic cylinder

input coupler port pick-up antenna port

Fig. 3.32. Sketch of the tuning bench with mounted high-β SPL cavity. The tuning plates are
attached slightly above the irises. The distance between the tuning walls is controlled by three
hydraulic cylinders, which allows individual cells to be squeezed and squashed. In order to squeeze
the outer cells, one of the tuning walls is fixed to the corresponding beam pipe flange. The overall
cavity length and distance between the tuning walls is measured by displacement sensors. The left
and right support as well as the tuning walls are on sliding bars.

addition, this setup is applied when squashing the mono-cell or the outer cells of
the high-β SPL cavity. To squeeze the outer cells of the latter one, the tuning walls
are attached to the corresponding iris and beam pipe flange, hence, a mixture of the
setups shown in Fig 3.33 is used. The deformation is measured via the entire cavity
length using displacement sensors as shown in Fig. 3.32. It is important to remark
that the variation of the cavity length provides only an estimate of the considered
cell deformation since the deformation of neighboring cells and cutoff tubes might
be involved, depending on the setup.

(a) (b)

Fig. 3.33. Setup of the tuning bench (a) to squeeze the bulk Nb mono-cell SPL cavity prototype
and (b) to squeeze or squash the center-cell of a high-β SPL cavity prototype made of bulk Cu.
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Figure 3.34 illustrates the impact of plastic deformations on various monopolar
and dipolar HOMs in the mono-cell SPL cavity. The process of squeezing and
squashing evolves very differently. This is primarily due to the fact that the force
does not exactly act at the iris but rather slightly above the iris or at the beam pipe
flanges. In a first step, the mono-cell cavity was plastically squashed by 0.23 mm,
with the tuning walls being attached to the irises as shown in Fig. 3.33(b). In a
second step, the mono-cell cavity was plastically squeezed until the original frequency
of the fundamental mode was restored, hence until the cavity was retuned. For
this purpose, the tuning walls were attached to the beam pipe flanges as shown
in Fig. 3.33(a). The force required to provide a certain plastic cell deformation
was found to be significantly lower if applied at the flanges than if applied at the
irises. The remaining frequency variation of considered HOMs ranges from 0.1 MHz
to 1.6 MHz. It is particularly surprising that the resonant frequency of some HOMs
changes significantly during the squashing process but almost remains at the same
value during the squeezing process. This behavior applies, for instance, to the TM011

mode in Fig. 3.34(a) or the TM120 mode in Fig. 3.34(b).
The high-β SPL cavity prototype made of bulk Cu is studied for various such

detuning and retuning cycles. The corresponding remaining frequency variations of
several monopolar and dipolar modes are summarized in Figs. 3.35 and 3.36, with
the inner three cells being subjected only to plastic deformations. Initially, the five-
cell cavity is tuned according to the fundamental mode frequency of 703.8 MHz and
a field flatness from cell to cell of 99 % using the method described by Padamsee [17,
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Fig. 3.34. Frequency variation of (a) monopolar and (b) dipolar HOMs in the mono-cell SPL cavity
as a function of the variation in cavity length. The initial state of the cavity corresponds to ∆l = 0
and ∆f = 0 with respect to all modes. At first, the cavity was squashed by 0.23 mm. To retrieve
the original frequency of the fundamental TM010 mode, the cavity was subsequently stretched by
1 mm such that ∆l = 0.77. The remaining HOM variations range from 0.1 MHz to 1.6 MHz.
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pp. 129–142]. After initial tuning, the impact of detuning and retuning on HOMs
is studied for individual cells as well as for a combination of two cells. For this
purpose, the cavity was firstly detuned by plastically deforming the particular cell or
cells. The resulting variation in cavity length, ∆l, is shown on the argument axes in
Figs. 3.35 and 3.36, with negative and positive values being related to squashing and
squeezing, respectively. Afterwards, the cavity was gradually tuned by deforming
the considered cell or cells in the opposite way until the original frequency of the
fundamental mode was restored within 10 kHz. The remaining frequency variation
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Fig. 3.35. Remaining frequency variation of monopolar HOMs after detuning and retuning the
high-β SPL cavity made of bulk Cu. The deformations are applied to individual cells. The cell
number is counted from the left to the right in Fig. 3.32. The cases (a)-(c) are related to the plastic
deformation of the particular inner three cells while in (d), the deformation was applied on two
neighboring cells. The remaining frequency variation after retuning, ∆f , is shown as a function of
the cavity length variation ∆l measured after the previously applied detuning process.
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of HOMs is illustrated as bars in Figs. 3.35 and 3.36. During the measurements, the
field flatness from cell to cell was recorded above 96.5 % in each retuned state.

The variation of HOMs by detuning and retuning the high-β SPL cavity was found
to be much less than observed for the mono-cell cavity. This is partially due to the
fact that modes such as the TM011 1/5π and TM011 2/5π are mainly concentrated in
the outer cells whose deformation is not considered here. However, even the TM022

5/5π mode which is concentrated at two inner cells according to Fig. 3.25(e) does
not provide larger variations than 250 kHz within the considered detuning range of
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Fig. 3.36. Remaining frequency variation of dipolar HOMs after detuning and retuning the high-β
SPL cavity made of bulk Cu. The deformations are applied to individual cells. The cell number
is counted from the left to the right in Fig. 3.32. The cases (a)-(c) are related to the plastic
deformation of the particular inner three cells while in (d), the deformation was applied on two
neighboring cells. The remaining frequency variation after retuning, ∆f , is shown as a function of
the cavity length variation ∆l measured after the previously applied detuning process.
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∆l = ±1.5 mm. This is about six times smaller than the frequency variation achieved
for the corresponding mode in the mono-cell cavity in Fig. 3.34(a). Comparing
Figs. 3.35 and 3.36, the variations of the considered dipolar HOMs appear somewhat
lower than the variations of the considered monopolar HOMs.

The present tuning bench permits only a moderate change of the particular HOM
frequency in the order of a few hundreds of kHz at most. This is sufficient to avoid
excessive power dissipation by HOMs with a frequency being too close to a harmonic
of the bunch frequency, as studied in Sec. 3.4.5. However, the frequency variations
of HOMs during operation due to the tuner may retune to this worst case scenario.
The impact of elastic cavity deformations on HOMs caused by the tuner is discussed
in the following.

3.5.5 Elastic Deformation during Operation

In order to compensate frequency drifts of the fundamental mode frequency during
operation, each cavity is equipped with a tuner as sketched in Fig. 3.37. It is also
required to compensate remaining unpredictable frequency errors occurring during
the cryomodule assembly and cool down [19]. The tuner has been developed at CEA
Saclay and is able to squeeze the entire cavity at 2 K within a range of approximately
3 mm. This range is considered as the elastic regime of the high-β SPL cavity
and allows the fundamental mode frequency to be adjusted in a range of about
500 kHz. The tuner is attached to the tuning plate of the cavity and the helium
vessel which is replaced by an experimental frame in Fig. 3.37. The same setup
with the experimental frame is used in order to investigate the variation of HOM
frequencies during the tuner operation at room temperature.

The measurements shown in Fig. 3.38 are carried out for one of the bulk Nb pro-
totypes (spl4). Since the deformations are elastic and relatively small, the resonant
frequencies vary linearly with the displacement according to the perturbation the-
ory. Therefore, the results are given as frequency variation per 1 mm cavity length

tuning plate

step motor

tuner

experimental frame

input coupler port

Fig. 3.37. Sketch of the high-β SPL cavity equipped with the tuner in an experimental frame.
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Fig. 3.38. Sensitivity of modes during tuner operation as a function of the mode frequency. The
ordinate is given in frequency variation per 1 mm cavity length increase. Monopole modes are
highlighted by squares while dipole modes are highlighted by circles.

increase. Depending on the considered mode the resonant frequency may vary up
to ±2.4 MHz. The TM031 4/5π and TM023 1/5π in Table 3.6 provide sufficient dis-
tance from the seventh and eights harmonic of the bunch frequency, respectively.
Note, this applies only if manufacturing errors or other unpredictable effects do not
push these modes significantly closer to the particular harmonics of the bunch fre-
quency. However, the TM031 5/5π mode with a nominal distance of 1.05 MHz from
the seventh harmonic of the bunch frequency may vary in a range of about 0.9 MHz.
According to Fig. 3.23, the extracted power rises by several tens of watts as this
mode approaches the seventh harmonic of the bunch frequency. An HOM coupler
intended to provide an external quality factor of Qext = 105 for the TM031 5/5π mode
is required to extract about 60 W in the worst case, only for this mode. A lower
quality factor further increases the extracted HOM power to more than 100 W. It is
important to remark that the TM031 5/5π is only moderately influenced by detuning
and retuning individual cells, as shown in Fig. 3.35 by the black bars. It is due to
the fact that this mode is concentrated in the irises and one cutoff tube according to
Fig. 3.25(g). A deformation of the outer cell together with the corresponding cutoff
tube is recommended.
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3.6 Summary of the Results

Potentially dangerous higher-order modes have been identified for both the medium-
β and high-β SPL cavity. A survey of extensive studies on the basis of simulations
and measurements has been presented to characterize these modes not only in terms
of resonant frequency, geometric shunt impedance, and field patterns but also by
their influence on eventual emittance growth in the longitudinal phase space, sensi-
tivity on plastic or elastic cavity deformations, as well as their frequency variations
while cooling the cavity from room temperature, i. e. 293 K down to the operating
temperature of 2 K.

The influence on the beam, which manifests first and foremost in an increased
longitudinal phase space, strongly depends on the distance between the resonant
frequency of the particular mode and its nearest harmonic of the bunch or chopping
frequency. A minimum distance of 10 kHz is necessary to keep the operation feasi-
ble. Since the tuner allows for frequency shifts in the order of 2 MHz, the situation
may become very problematic with respect to the TM011 3/5π mode at ∼1759 MHz
in the medium-β cavity and the TM031 5/5π mode at ∼ 2464 MHz in the high-β
cavity. Likewise, manufacturing tolerances may cause frequency variations in the
order of few megahertz as measurements on four prototype cavities have shown.
For comparison, the frequency shifts of individual HOMs achieved by plastic de-
formation using the tuning bench are very moderate and possibly not sufficient to
provide the necessary distance from the nearest harmonic of the bunch or chopping
frequency. Consequently, the frequencies of both HOMs need to be carefully revised
and monitored during the cryomodule assembly and operation.

Moreover, a damping of Qext . 105 is required for the HOMs concerned while
the extracted power is specified to 100 W in the worst case. Besides the mode
frequencies, these parameters provide the basic conditions for the design of appro-
priate HOM couplers. The distinct field patterns found for the various concerned
high-order modes underline the need for these couplers on either cutoff tube of the
cavity, as already defined in the SPL specification.

By deriving extended formulations of the classical vector fitting, a novel approach
has been established to quantify the frequency and geometric shunt impedances of
many modes simultaneously given the spectrum of a truncated wake potential. It
provides an alternative to eigenmode simulations in order to characterize monopole
and dipole modes. An open question asks why the geometric shunt impedance
obtained for some dipole modes notably deviates from the predicted value provided
by an eigenmode simulation, though the impedances spectrum is well approximated
in the vicinity of the particular resonant frequency.
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4 Coaxial Couplers and the
Synthesis of Filter Functions

The understanding of obstacles in coaxial guides and the way they influence the
frequency response and resonance properties is fundamental for the design of coaxial
waveguide filters. Numerical simulations permit the precise evaluation of scattering
properties associated with individual discontinuities in such waveguides. But their
capabilities for the design of an entire filter are limited to exhaustive parameter
variations on a particular topology of discontinuities. Often, it remains unclear
whether the topology, as chosen prior to the numerical analyses, indeed is suitable for
the given problem. Even for a specified topology, the applied numerical optimization
scheme may not be able to converge against the best solution, given a certain set of
requirements, as too many variables may be involved.

To answer these questions, it is instructive to investigate the scattering properties
of basic discontinuities in coaxial guides. Section 4.1 provides various studies on this
topic. Prior to these studies is a general method to evaluate equivalent microwave
networks composed of transmission lines and lumped elements. It permits a highly
simplified algebraic representation of the three-dimensional boundary value problem
within frequency ranges that are limited but often practically the most relevant.

In order to complete the picture of coaxial HOM couplers which are typically
mounted on cutoff tubes or sometimes even directly on the cavity, Sec. 4.2 discusses
several aspects of electromagnetic field coupling which are particularly important
for the antenna design. The problem is again represented by equivalent circuits.
Novel work undertaken by the author comprises the investigations of frequencies at
which the coupling to specific waveguide modes nearly vanishes.

Section 4.3 focuses on systematic procedures to design the waveguide filter of
coaxial HOM couplers. At first, a method based on reactance-coupled λ/2 resonators
proposed by Haebel and Gerigk [24, 101] is reviewed followed by detailed discussions
on the topology of appropriate coaxial microwave filters. Finally, a combination of
the insertion loss method and equivalent networks fitted to numerically simulated
data is studied with the intention to develop a generally applicable design procedure
for coaxial microwave filters; this further implies the most suitable topology for the
given problem described by a filter or transfer function. This approach rests on
the idea that scattering properties of discontinuities in coaxial waveguides are well
described by lumped elements within the interesting frequency range. The principle
of equivalent microwave circuits introduced by Montgomery [27] will be essential
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for the proposed synthesis of filter functions. Two examples are presented, a third-
order and fifth-order elliptic high-pass filter, both adapted to the requirements of
the high-β SPL cavity. To the author’s best knowledge there is no comparable
systematic procedure to design the filter component of coaxial HOM couplers on
the base of filter functions. Throughout this chapter, various existing HOM couplers
are discussed with the focus on their equivalent networks and potential lacks in the
filter approximation.

4.1 Components and Equivalent Circuits

Marcuvitz [40] provides a very comprehensive overview on equivalent microwave cir-
cuits for numerous discontinuities in waveguides, with the circuit parameters being
derived from analytical or semi-analytical approaches. Such methods provide only
approximate results for the frequency response of individual discontinuities. In con-
trast, numerical simulations are not subjected to these constraints. In particular,
scattering properties of multiple discontinuities relatively close to each other, so that
evanescent modes may interact, are partially unexplored. The subsequent studies
rest on a more generic approach which is based on (i) numerical field calculations
to obtain the full scattering matrix of the considered rf structure and (ii) a subse-
quent parameter fit of an appropriate microwave network such that nearly the same
scattering matrix is achieved over a certain frequency range. It is important to note
that the same scattering matrix can always be approximated by different equivalent
circuits. However, these circuits will not, in general, be equally simple. Thus, it
is preferable to choose the option with the simplest association between geometri-
cal design parameters of the rf structure, such as lengths and radii, and equivalent
circuit parameters, for instance, capacitances and inductances.

The microwave structures to be described in the following are composed of an
input and output region.1 Each corresponds to a coaxial guide, with the dimensions
being, in general, different. Between these two sections resides the obstacle of in-
terest, which ranges from a single discontinuity to a cascade of discontinuities. It is
assumed that only the TEM mode propagates, so that the microwave structure may
be described by equivalent two-port networks. These models are restricted to the
frequency range below the cutoff frequency of the first HOM propagating through
the coaxial guide. Note, this is the most important condition in practice [27, p. 60].

The coaxial waveguides at the input and output region are described by trans-
mission lines, each taking into account the length and characteristic impedance
according to the propagation of the TEM mode. While the impedance can be read-
ily derived from the radii of the inner and outer conductor using (2.67), the length
can only be estimated from the distance between the particular terminal plane and

1The notation ‘input’ and ‘output’ are only chosen for convenience. There is no preference
direction for any of the considered rf structures.
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obstacle due to the finite thickness of the latter one. For this reason, the waveguide
lengths are involved in all subsequent fitting procedures as free parameters. It is
important to note that the terminal planes must not be located too close to the
obstacle in order not to compromise the resulting scattering matrix by evanescent
modes. In other words, the coaxial waveguides representing the input and output
region are a means to analyze scattering properties of the concerned obstacles.

4.1.1 Inductive Post in Coaxial Guide

A fixing between the inner and outer conductor of a coaxial waveguide can be
modeled by a shunt inductance between two transmission lines according to Fig. 4.1.
Matthaei [113, p. 362] provides an analytical expression for the inductance, however,
with relatively large errors as later shown. Qualitatively the same behavior of a shunt
inductance in a coaxial waveguide can be achieved by a small aperture [40, pp. 246].
The following procedure derives the inductance from the simulated scattering matrix
of the entire structure and a non-linear model fit. It is assumed for the moment that
the topology of the microwave network in Fig. 4.1(b) is appropriate for the given rf
structure. Later in this section, it will be shown that this is indeed the case over a
certain frequency range.

Z1, l1 Z2, l2

θ1 θ2θ′1 θ′2

2∆

ri

ro

2 rfix

(a)

Z1, l1 Z2, l2

jωLp

θ1 θ2θ′1 θ′2

(b)

Fig. 4.1. (a) Cross-sectional and side view of a coaxial structure with a cylindrical fixing of radius
rfix between the inner and outer conductor. (b) Equivalent circuit model.

Referring to Fig. 4.1(a), at first, the scattering matrix S′ of the microwave struc-
ture between the terminal planes θ′1 and θ

′
2, is obtained by numerical simulations.2 It

is assumed that the scattering matrix is normalized to the characteristic impedances
Z1 and Z2 at the corresponding ports. As previously mentioned, the terminal planes
must not be located too close to the obstacle in order to not compromise the results
by artificial reflections associated with evanescent modes. A subsequent transforma-
tion provides the scattering matrix S at the obstacle between the terminal planes
θ1 and θ2 according to [29, p. 250]

S(l1,l2) = w(l1,l2)S′w(l1,l2), (4.1)
2Numerical simulations are mostly carried out using cst studio suite® [91] for the present

chapter. In part, they are verified with comsol Multiphysics® software [90].



112 4 Coaxial Couplers and the Synthesis of Filter Functions

where the diagonal matrix

w(l1,l2) = diag{ejβ1l1 , ejβ2l2} (4.2)

invokes the inward phase shifts along each terminal translation given by the propa-
gation constants β1,2 and lengths l1,2 according to (2.73). Note, a pure phase shift
of the scattering functions assumes that no losses are present. Furthermore, the
propagation constants are equal in both regions since the field propagation only in
vacuum shall be considered. Thus, it is β1 = β2 = β. The exact values for the
lengths l1 and l2 are per se not known due to the finite thickness of the obstacle.
Consequently, the elements of the scattering matrix S are considered as functions
of these lengths. Let l1,2 +∆ be the distance from the particular terminal plane θ′1,2
to the center of the obstacle, which is a priori known. Linear transforms l1,2 7→ ∆
are introduced to reduce the number of length variables and to confine their varia-
tions to the vicinity of the fixing. In other words, the variable ∆ represents half the
electric thickness of the obstacle.

Furthermore, it is appropriate, to transform the scattering matrix S into a form
which is a somewhat simpler association with the shunt inductance Lp, for instance,
the open-circuit impedance matrix introduced in Sec. 2.1.2. Using (2.49), it may be
written as

Z(∆) = P
1
2

[
I + S(∆)

] [
I− S(∆)

]−1

P
1
2 , (4.3)

where
P = diag{Z1, Z2} (4.4)

accounts for the normalization to the characteristic impedances of the coaxial guides,
Z1 and Z2, while I refers to the identity matrix. Taking into consideration that only
the TEM mode propagates through the structure, the characteristic impedances
calculate as (Sec. 2.1.5)

Z1,2 =
1

2π

√
µ

ε
ln
ro
ri

∣∣∣∣
1,2

, (4.5)

with the inner and outer radii ri, ro, of the particular coaxial waveguide region.
Apart from the obstacle, Fig. 4.1(a) sketches a uniform coaxial guide, such that
Z1 = Z2. According to (2.27), all open-circuit impedance functions in (4.3) must
be approximated by the expression jωLp over a certain frequency range, so that
the microwave network sketched in Fig. 4.1(b), may be considered as equivalent.
Indeed, this is true for one solution of ∆, which consequently defines a unique shunt
inductance as shown in Fig. 4.2(a) by means of a symmetric example. Though the
shunt inductance was calculated at a single frequency point of 960 MHz, the reflec-
tion factor depicted in Fig. 4.2(b) is well approximated by the two-port network
for f < 1.5 GHz with residuals in the order of 10−2. Referring to Fig. 4.2(a), the
resultant value for ∆ is by an order of magnitude smaller than the radius of the
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Fig. 4.2. (a) Open-circuit impedance parameters as functions of the distance between the terminal
planes θ1,2, and center of the obstacle according to the rf structure and equivalent circuit shown in
Fig. 4.1. The structure is assumed to be symmetric, hence, Z1 =Z2 and l1 = l2. Furthermore, it is
ri = 5 mm, ro = 22.5 mm, and rfix = 3 mm. The open-circuit impedance parameters are calculated
at a frequency of 960 MHz. At ∆= 0.27 mm, all of them coincide and yield unique inductance of
5.566 nH which corresponds to the shunt inductance Lp of the equivalent circuit. (b) Reflection
coefficient at the terminal plane θ1 obtained from the simulated data and equivalent circuit model
using the result of (a) over a larger frequency range.

cylindrical fixing, rfix, for the considered example. Hence, it is important to distin-
guish between the geometric and electric size of the obstacle, with the latter being
implied by the effective lengths l1 and l2 of the transmission lines representing the
coaxial waveguide sections of the input and output region, respectively. It is worth
noting that the electric thickness of the obstacle may alternatively be accounted for
by additional lumped elements in the equivalent circuit [40].

By referring to (2.35), the formulation as transmission matrix allows an equally
simple association with the shunt inductance Lp as previously described for the open-
circuit impedance matrix. The relationship between the elements of both matrices
is given in (2.29)–(2.32). Using the notation of (4.3), the transmission matrix may
be written as

T(∆) =
1

z
(∆)
21

(
z

(∆)
11 z

(∆)
11 z

(∆)
22 − z(∆)

12 z
(∆)
21

1 z
(∆)
22

)
. (4.6)

The advantage of this formulation emerges in the presence of multiple discontinuities
in the rf structure as it will be seen later. The short-circuit admittance matrix of a
shunt two-port is not defined. Hence, this formulation is not suitable to solve the
equivalent circuit. However, the singularity can be used to identify the lengths l1
and l2. Another approach rests on the analytical expression for the scattering matrix
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of a shunt two-port characterized by a general admittance function Y p according to
Fig. 2.5(b). The scattering functions satisfy [29, pp. 250]

s11 = s11
′ej2βl1 =

Y 1 − (Y 2 + Y p)

Y 1 + (Y 2 + Y p)
, (4.7)

s12 = s12
′ejβ(l1+l2) =

2
√
Y 1Y 2

Y 1 + (Y 2 + Y p)
= s21, (4.8)

s22 = s22
′ej2βl2 =

Y 2 − (Y 1 + Y p)

Y 2 + (Y 1 + Y p)
, (4.9)

with Y 1,2 = 1/Z1,2. Note, These formulas for a two-port junction have been used
in [101] to estimate the shunt inductance of LHC HOM couplers.

Figure 4.3(a) shows the shunt inductance for reasonable dimensions of SPL HOM
couplers. The radius rfix of the cylindrical fixing is varied between 2 mm and 10 mm.
Likewise, the radius ri of the inner conductor is varied from 5 mm to 10 mm while the
radius of the outer conductor is fixed to ro=22.5 mm according to specifications. The
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Fig. 4.3. (a) Shunt inductance for various parameter configurations of the microwave structures
shown in Fig. 4.1. In gray scaled and highlighted by markers, the inductance derived from the
impedance formulation of the simulated scattering matrix (4.3). In blue, the estimated inductance
obtained from (4.10). The radius rfix of the cylindrical fixing is varied along with different radii ri
of the inner conductor. The radius ro of the outer conductor is specified by the coupler ports of
the SPL cavities. The equivalent network is valid for f ≤ 1.5 GHz. (b) Series capacitor normalized
to the expression (4.16) for various parameter configurations of the microwave structures shown in
Fig. 4.4. In gray scaled and highlighted by markers, the capacitance derived from the admittance
formulation of the simulated scattering matrix (4.11). In blue, the estimated capacitance obtained
from (4.17). The gap distance dgap is varied assuming the same configurations for ri and ro, as
used in (a). The equivalent network is valid for f ≤ 3 GHz.
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inductances found by the impedance formulation (4.3) are highlighted by markers,
and ranges approximately from 8.1±1.0 nH down to 2 nH. Throughout all geometric
variations, the frequency response of the microwave structure is well approximated
by its equivalent circuit for f < 1.5 GHz with residuals in the order of 10−2 as
measured by scattering functions. The blue curves in Fig. 4.3(a) are obtained from
an analytical expression provided by Matthaei [113, p. 362] according to

Lp ≈ 0.3666µ0(ro − ri) lg 2
ro−ri
rfix

. (4.10)

The error is relatively large with respect to the considered dimensions. In particular,
the expectation that the impact of ri reduces as rfix becomes larger is not satisfied.

According to the equivalent circuit in Fig. 4.1(b), the fixing between the inner
and outer conductor of a coaxial guide may be denoted as inductive post. It pro-
vides a transmission zero at the frequency of zero. Hence, it is generally suitable
for the design of coaxial high-pass and band-pass filters. Notwithstanding, this does
not exclude that a shunt inductance may behave parasitically in a high-pass filter
as further explained in Sec. 4.3.2. Low-pass and band-stop filters are, in general,
unsuitable applications for a shunt inductance. It is worth noting that in spite of
the characteristic frequency response, the inductive post is required in most cou-
pler designs to hold the inner conductor in a vacuum environment. Depending on
the power requirements, it may further provide the supply with a coolant for the
antenna [101].

4.1.2 Capacitive Gap in Coaxial Guide

An interruption of the inner conductor in a coaxial waveguide can be modeled by
a series capacitance between two transmission lines according to Fig. 4.4. In an
analogous way to the previous section, the equivalent circuit parameters are found
by associating the series capacitance Cs with the simulated scattering matrix at the
terminal planes θ1,2.

Z1, l1 Z2, l2

θ1 θ2θ′1 θ′2
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ro

(a)
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1
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θ1 θ2θ′1 θ′2

(b)

Fig. 4.4. (a) Cross-sectional and side view of a coaxial structure, with the inner conductor being
interrupted by a distance dgap. (b) Equivalent circuit model.
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The open-circuit impedance matrix of a series two-port is singular, so the for-
mulation (4.3) is not appropriate to solve the problem. Instead, the short-circuit
admittance matrix can be used, whose elements must equal ±jωCs according to
(2.26), so that the microwave network sketched in Fig. 4.4(b) may be considered as
equivalent. Similar to the previous section, this equality requires the correct choice
for the lengths l1 and l2, which implies a nonzero distance ∆ between the terminal
planes θ1,2 and the center of the obstacle. According to (2.50), the relationship
between admittance and scattering matrix may be written as

Y(∆) = P−
1
2

[
I− S(∆)

] [
I + S(∆)

]−1

P−
1
2 , (4.11)

using the same definitions as in Sec. 4.1.1. Considering (2.34), the formulation as
transmission matrix allows an equally simple association with the series capacitance
Cs as the short-circuit admittance matrix. The relationship between the elements
of both matrices is given in (2.29)–(2.32). Using the notation of (4.11), the trans-
mission matrix may be written as

T(∆) = − 1

y
(∆)
21

(
y

(∆)
22 1

y
(∆)
11 y

(∆)
22 − y(∆)

12 y
(∆)
21 y

(∆)
11

)
. (4.12)

Finally, the series capacitance Cs may be directly derived from the scattering matrix
of a series two-port characterized by a general impedance function Zs according to
Fig. 2.5(a). The scattering functions of such a two-port junction satisfy [29, pp. 250]

s11 = s11
′ej2βl1 =

(Z2 + Zs)− Z1

(Z2 + Zs) + Z1

, (4.13)

s12 = s12
′ejβ(l1+l2) =

2
√
Z1Z2

(Z2 + Zs) + Z1

= s21, (4.14)

s22 = s22
′ej2βl2 =

(Z1 + Zs)− Z2

(Z1 + Zs) + Z2

. (4.15)

Figure 4.3(b) shows the series capacitance for reasonable dimensions of SPL HOM
couplers. The gap distance dgap is varied between 0.2 mm and 2 mm assuming differ-
ent radii of the inner conductor, ri. The capacitances obtained from the admittance
formulation (4.11) are highlighted by markers. They are normalized to the definition

C∗ = ε0
πri

2

dgap

, (4.16)

to illustrate the impact of fringe fields. Referring to Fig. 4.3(b), such fringe fields
contribute between 10 % and 40 % to the total capacitance. It is worthwhile to
note that a variation by less than 10 % suffices to notably impact the frequency
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response of microwave filters. Consequently, stray phenomena in the vicinity of
capacitive gaps must be taken into account for the design of coaxial microwave filters,
particularly with larger gap distances. Throughout all geometric variations, the
frequency response of the microwave structure is well approximated by its equivalent
circuit for f < 3 GHz with residuals in the order of 10−2 as measured by scattering
functions. The blue curves in Fig. 4.3(b) are obtained from an analytical expression
provided by Matthaei [113, p. 363] according to

Cs ≈ ε0
πri

2

dgap

+ 1.9653 ε0ri ln 2
ro−ri
dgap

. (4.17)

Like the inductive post of Sec. 4.1.1, the capacitive gap provides a transmission
zero at a frequency of zero. Thus, it is generally suitable for the design of coaxial
high-pass and band-pass filters. The counterpart, that is the transmission function
of a low-pass or band-stop filter, cannot be realized by this element. Apart from
the characteristic frequency response, the capacitive gap in some coupler designs is
required for the thermal isolation, particularly in superconductive applications as
demonstrated in Sec. 5.3.2.

4.1.3 Change of Radius in Coaxial Guide

The frequency response of a series inductance and shunt capacitance can be approx-
imated by coaxial waveguides with varying radii of the inner or outer conductor [40,
pp. 310]. Figs. 4.5 and 4.6 show two examples, with the discontinuity being applied
only on the inner conductor. By referring to the equivalent circuits of a transmission
line as illustrated in Fig. 2.9, a short coaxial section with reduced radius, given a
small phase advance βl0 and high characteristic impedance Z0, can be approximated
by a series two-port with an impedance function Zs = jZ0βl0 = jωLs. In contrast,
a short coaxial section with increased radius, given a small phase advance βl0 and
low characteristic impedance Z0, can be approximated by a shunt two-port with an
admittance function Yp = jY 0βl0 = jωCp.
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Fig. 4.5. (a) Cross-sectional and side view of a coaxial structure, with the radius of the inner
conductor being decreased over a short distance. (b) Equivalent circuit model.
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Fig. 4.6. (a) Cross-sectional and side view of a coaxial structure, with the radius of the inner
conductor being increased over a short distance. (b) Equivalent circuit model.

The precise evaluations of the series inductance and shunt capacitance proceeds as
for the series capacitance in Sec. 4.1.2 or the shunt inductance in Sec. 4.1.1, respec-
tively. According to the equivalent circuits, both structures in Figs. 4.5(a) and 4.6(a)
provide frequency responses with transmission zeros at infinite frequency. Hence,
they are suitable for the design of low-pass filters, the so-called stepped impedance
low-pass filters [41, pp. 422]. Both components are not of primary interest for the
design of HOM couplers which, in general, aim for high-pass characteristics. How-
ever, they might be included in the design process for practical needs. For example,
ceramic windows as vacuum barriers are typically considered for coaxial couplers in
superconducting applications, where they introduce a notable shunt capacitance.

4.1.4 Two Uncoupled Inductive Posts in Coaxial Guide

The previously considered microwave structures where characterized by single dis-
continuities. A natural question arising from these studies is, how such obstacles
may influence each other in a cascade similar to a ladder network. It is expected
that coupling mechanisms between multiple discontinuities, which rest on the exci-
tation of evanescent modes, modify parameters of equivalent circuits, assuming the
discontinuities are close enough to each other. A first example is the combination
of two inductive posts, each represented by a shunt inductance, and separated by a
waveguide section according to Fig. 4.7. Note, the equivalent circuit does not ac-
count for coupling by explicit elements. Hence, the contribution of possible coupling
mechanisms resides only in the shunt inductances L1,2 and impedance Z0. This way
the results can be directly compared with those of Sec. 4.1.1.

In order to calculate the equivalent circuit parameters, it is not sufficient to con-
sider the scattering matrix at a single frequency point as in the previous examples.
The resulting problem formulation would be under determined yielding inconsistent
results with varying frequency. Instead, a minimization problem over discrete sam-
ples in the interesting frequency range is proposed to solve the equivalent circuit
model. At first, the scattering matrices S′k between the terminal planes θ′1 and θ′2 of
the rf structure, sketched in Fig. 4.7(a), are evaluated at discrete frequency samples
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Fig. 4.7. (a) Cross-sectional and side view of a coaxial structure with two cylindrical fixing of
radii rfix1 and rfix2 between the inner and outer conductor. (b) Equivalent circuit model.

{ωk}Nkk=1 using numerical simulations. The transform (4.1) provides the correspond-
ing scattering matrices at the terminal planes θ1 and θ2, with the lengths l1 and l2
being unknown. Let l1+∆1 be the distance from the terminal plane θ′1 to the center
of the left fixing in Fig. 4.7(a), which is a priori known. Similarly, let l2 +∆2 be
the distance from the terminal plane θ′2 to the center of the right fixing, which is
likewise a priori known. Since ∆1 and ∆2 define half the electric thickness for the
individual fixing, the sum l0+∆1+∆2 must correspond to the distance between the
centers of both fixings. Linear transforms {∆1, ∆2} 7→ {l0, l1, l2} are introduced to
reduce the number of length variables and to confine their variations to the vicinity
of the corresponding fixing.

The equivalent circuit between the terminal planes θ1 and θ2 in Fig. 4.7(b) allows
for a relatively simple formulation of the short-circuit admittance matrix. Using the
u equivalent network of transmission lines as shown in Fig. 2.9(b), the admittance
functions satisfy

y11 + y12 =
1

jωL1

+ jY 0 tan
βl0
2
, (4.18)

y12 = jY 0 csc βl0 = y21, (4.19)

y22 + y12 =
1

jωL2

+ jY 0 tan
βl0
2
, (4.20)

with Y 0 = 1/Z0 being the effective admittance of the waveguide section between
both fixings. A necessary condition for the frequency response of the rf structure
being approximated by the equivalent circuit can be formulated as a minimization
problem using (4.11) and (4.18)–(4.20) according to

min
∆,Y 0,L1,L2

Nk∑

k=1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

ωkL1={y11
(∆)
k + y12

(∆)
k } − ωkL1Y 0 tan

βl
(∆)
0

2
+ 1

={y12
(∆)
k } sin βl

(∆)
0 − Y 0

ωkL2={y22
(∆)
k + y12

(∆)
k } − ωkL2Y 0 tan

βl
(∆)
0

2
+ 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

, (4.21)
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with ∆ = {∆1, ∆2}. The admittance parameters yij
(∆)
k are obtained from the sim-

ulated and phase shifted scattering matrix between the terminal planes θ1,2, which
is sampled at the frequencies {ωk}Nkk=1. A suitable norm ||.|| is given by the L2

norm yielding a non-linear least-square problem. Furthermore, the model param-
eters must be normalized to precondition the problem and avoiding differences by
orders of magnitude. In filter approximation theory, a common normalization of the
frequency and lumped circuit elements ω,R, L, C is given by

ω = ωrefΩ, R = RrefR̃, L =
Rref

ωref

L̃, C =
1

ωrefRref

C̃, (4.22)

where ωref is a reference angular frequency, typically, the cutoff frequency of a filter,
and Rref is a reference resistance, for instance, the characteristic impedance at one
of terminal planes, Z1,2.

An alternative and slightly more elegant approach to derive the model parameters
succeeds via the transmission matrix. The equivalent circuit between the terminal
planes θ1 and θ2 in Fig. 4.7(b) admits a transmission matrix whose elements satisfy

A = cos βl0 +
Z0

ωL2

cos βl0 (4.23)

B = jZ0 sin βl0 (4.24)

D = cos βl0 +
Z0

ωL1

cos βl0. (4.25)

Note, the remaining transmission parameter of the linear passive network may be
calculated from the reciprocity condition according to (2.33). The network is char-
acterized by only three independent transmission parameters according to the three
independent short-circuit admittance parameters in (4.18)–(4.20). A necessary con-
dition for the frequency response of the rf structure being approximated by the
equivalent circuit follows from (4.6) and (4.23)–(4.25), and may be formulated as

min
∆,Z0,L1,L2

Nk∑

k=1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

={B(∆)
k }+ ωkL2

(
cos βl

(∆)
0 −<{A(∆)

k }
)

={B(∆)
k } − Z0 sin βl

(∆)
0

={B(∆)
k }+ ωkL1

(
cos βl

(∆)
0 −<{D(∆)

k }
)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
, (4.26)

with the transmission parameters A(∆)
k , B

(∆)
k , and D(∆)

k being derived from the sim-
ulated and phase shifted scattering matrix between the terminal planes θ1,2. They
are sampled at the frequencies {ωk}Nkk=1. Again, using the L2 norm a nonlinear least-
square problem is obtained which can be solved by iterative minimization schemes,
such as a constrained BFGS algorithm3

3Broyden-Fletcher-Goldfarb-Shanno algorithm, a hill-climbing optimization technique.
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Figs. 4.8(a) and (b) show the results for a coaxial waveguide structure with two
identical fixings based on the stort-circuit admittance or transmission matrix for-
mulation, respectively. The dimensions are identically to those of the previously
considered single inductive post in Fig. 4.2(b). The reflection coefficient is well
approximated over the entire considered frequency range, which justifies the net-
work sketched in Fig. 4.7(b) being an equivalent circuit model. It applies to a
notably larger frequency range than found for the model of a single inductive post
in Sec. 4.1.1, with residuals again in the order of 10−2. The resulting circuit param-
eters slightly differ by less than 5 % between the two approaches. Generally, it was
found that the formulation provided by the transmission matrix (4.26) leads to a
more robust and consistent behavior of the applied minimization scheme. Despite
this small variation between the results, the shunt inductances of each fixing appear
somewhat larger than for the single inductive post. Furthermore, the impedance ob-
tained for the central waveguide section, Z0, is significantly below the characteristic
impedance according to (4.5). Both effects are studied in further detail in Fig. 4.9
by varying the distance between the cylindrical fixings, dfix, and the radii rfix1,2 as-
suming a symmetric rf structure. The resulting circuit parameters vary smoothly
and consistently according to the geometrical parameter changes. The waveguide
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Fig. 4.8. Approximation of the numerically simulated rf reflection from the rf structure at the
terminal plane θ1 by means of the equivalent circuit model according to Fig. 4.7. The structure is
assumed to be symmetric, hence, Z1 = Z2, l1 = l2, and rfix1 = rfix2, with ri = 5 mm, ro = 22.5 mm,
and rfix1 = 3 mm. The cross section of the coaxial waveguide in between the fixings is identically
to those of the input and output regions. The fixings are separated by a distance of 10 mm. The
circuit parameters L1, Z0 are derived from the minimization problem given by (a) the admittance
matrix formulation according to Eq (4.21) and (b) the transmission matrix formulation according
to (4.26). The fits are characterized by R2 values, each, revealing very good approximation in the
considered frequency range f ≤ 3.5 GHz.
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Fig. 4.9. Parameters of the equivalent circuit model as shown in Fig. 4.7, with the quantities being
derived from the minimization problem (4.26). The inner and outer radii of the symmetrically
assumed coaxial rf structure are 5 mm and 22.5 mm, respectively. The same cross section applies
to the waveguide region between the identical fixings whose distance dfix and common radius
rfix1 =rfix2 are varied. (a) Effective impedance of the central waveguide section normalized to the
characteristic impedance of Z∗0 = 90.24 Ω according to (4.5). (b) Shunt inductance of each fixing
normalized to the corresponding value of the single inductive post in Fig. 4.3(a).

section between the fixings reveals effective impedance which is throughout below
the characteristic impedance as calculated by (4.5). The curves shown in Fig. 4.9(a)
correspond to the ratio of the effective and characteristic impedances, and follow
approximately an exponential trend according to ∝ [1−exp(−dfix/d0)], where d0 is a
constant. The ratio further reduces with increasing fixing radii rfix1,2. Figure 4.9(b)
shows the shunt inductance of the identical fixings normalized to the solution for
the corresponding single inductive post of Sec. 4.1.1, which is denoted as Lp. It
exponentially decreases as the distance dfix between the fixings becomes larger, and
approaches unity. At a distance of dfix = 10 mm, the inductance ranges from 8 %
to 15 % above the corresponding value of a single inductive post, depending on the
considered fixing radii rfix1,2. The impact of the latter parameters becomes marginal
for dfix>20 mm which corresponds to a tenth of the wavelength at 1.5 GHz, while the
solution of the single inductive post may be considered for a distance dfix>40 mm.

The equivalent circuit in Fig. 4.7(b) provides qualitatively a very similar frequency
response as the single inductive post in Sec. 4.1.1. This can be seen already from
the scattering functions depicted in Figs. 4.2(b) and 4.8. Approximating the trans-
mission line in between the shunt inductances by a series inductance, the resulting
two-port network barely provides a single transmission zero at the frequency of zero.
Since this property is likewise achieved by the much simpler single inductive post,
the combination of two inductive posts according to Fig. 4.7(a) does not appear of
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particular interest for designing coaxial microwave filters with high-pass character-
istics. Nevertheless, the structure is widely used, for instance, in the design of the
TESLA HOM coupler and numerous of its derivatives [1, 58, 114]. This is primarily
due to mechanical and thermal reasons as two connected fixings significantly facil-
itate the implementation of a cooling circuit. From the rf point of view, multiple
inductive posts arranged to a cascade along the coaxial lines become reasonable
for the implementation of reactance-coupled λ/2 resonators to provide band-pass
characteristics as discussed in Sec. 4.3.1.

4.1.5 Two Coupled Inductive Posts in Coaxial Guide

Although the equivalent circuit in Fig. 4.7(b) allows for a fair approximation of the
scattering properties of the microwave structure in the interesting frequency range,
the effective impedance of the waveguide section between the two fixings is signif-
icantly lower than the expected characteristic impedance. It is an abstract rather
than physical quantity to account for possible coupling effects. Figure 4.10(b) illus-
trates an alternative equivalent microwave network for the same coaxial rf structure.
It describes inductive coupling between the particular fixing and inner conductor of
the central coaxial waveguide by using additional inductances before and after the
central transmission line.
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jωL21

θ1 θ2θ′1 θ′2

(b)

Fig. 4.10. (a) Cross-sectional and side view of a coaxial structure with two cylindrical fixing of
radii rfix1 and rfix2 between the inner and outer conductor. (b) Equivalent circuit model.

Despite the fact that the equivalent circuit model introduces four further un-
knowns in comparison to the model of Sec. 4.1.4, the minimization problem can be
written in a very similar form as before provided the coupled shunt and series induc-
tances are described by transformers. To illustrate this, consider the circuit segment
in Fig. 4.11(a), which is taken from the original microwave network in Fig. 4.10(b).
By deriving its open-circuit impedance parameters and comparing with Fig. 2.4(a),
it can be shown that the circuit depicted in Fig. 4.11(b) corresponds to an equivalent
form. Such a T-network behaves like a transformer if and only if the canonical form
of inductances vanishes [26, p. 118], that is if

− L3(L1 + L3) + (L1 + L3)(L2 + L3)− L3(L2 + L3) = 0. (4.27)
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Fig. 4.11. (a) Two-port consisting of a series and shunt inductance which are coupled to each
other. (b) T equivalent circuit of (a). The two-port in (c) describes a transformer which is likewise
equivalent to the others provided L1L2 = L2

3. This condition also known as unity coupling, leads
to M = L1 + L3, LA = L1, LB = L1 + L2 + 2L3. A transformer is typically characterized by the
mutual inductance M and the voltage or inverse current transform ratio N = LA/M = M/LB .

Hence, the inductances are not independent of each other. In fact, they are related
as L1L2 = L2

3. Figure 4.11(c) shows the network of a transformer which is like-
wise equivalent to the original one in Fig. 4.11(a), provided condition (4.27) holds.
The advantage of the representation as transformer is the elegant expression of the
transmission matrix which is given by

(
V1

I1

)
=




N 0
1

jωM

1

N



(
V2

−I2

)
, (4.28)

where N is the voltage or inverse current transform ratio whileM corresponds to the
coupling inductance. Using this notation and comparing with (2.36), N−1 may be
interpreted as the turns ratio of an equivalent transformer. Following the notation
in Fig. 4.11, both quantities are related to the inductances of the original circuit
segment as

L1 = MN, L2 =
M(1−N)2

N
, L3 = M(1−N). (4.29)

Using the equivalence of a transformer, the entire transmission matrix of the
microwave network in Fig. 4.10(b) between the terminal planes θ1 and θ2 admits
parameters which satisfy

A =
N1

N2

cos βl0 +
N1

ωM2

Z0 sin βl0 (4.30)

B = jN1N2Z0 sin βl0, (4.31)

D =
N2

N1

cos βl0 +
N2

ωM1

Z0 sin βl0, (4.32)

with the coupling inductance and voltage or inverse current transform ratio M1,
N1, being related to L11, L12, L13 while M2, N2 are associated with L21, L22, L23,
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each according to (4.29). A necessary condition for the frequency response of the rf
structure being approximated by the equivalent circuit follows from (4.6) and (4.30)–
(4.32), and may be formulated as

min
∆,Z0,M1,N1,M2,N2

Nk∑

k=1
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k }
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k } −N1N2Z0 sin βl

(∆)
0
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k }+ ωkM1

(
N2 cos βl

(∆)
0 −N1<{D(∆)

k }
)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
. (4.33)

Again, the quantities A(∆)
k , B

(∆)
k , and D

(∆)
k are obtained from the simulated and

phase shifted scattering matrix between the terminal planes θ1 and θ2 of the rf
structure in Fig. 4.10(a). They are sampled at the frequencies {ωk}Nkk=1.

In order to investigate possible coupling phenomena solely by inductances, let
the effective impedance Z0 be fixed to the characteristic impedance according to
the geometrical parameters of the coaxial waveguide section. Figs. 4.12 and 4.13
show the resulting network parameters for the symmetric example of Sec. 4.1.4 as
functions of the distance dfix between cylindrically shaped fixings whose common
radius rfix1 = rfix2 is likewise varied. Throughout all geometric variations, the fre-
quency response of the microwave structure is well approximated by the equivalent
circuit for f < 3 GHz with residuals in the order of 10−2 as measured by scatter-
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Fig. 4.12. Parameters of the transformers as a result of the minimization problem (4.33) given by
the transmission matrix formulation of the equivalent circuit in Fig. 4.10. The inner and outer radii
of the symmetrically assumed coaxial rf structure are 5 mm and 22.5 mm, respectively. The same
cross section applies to the waveguide region between the identical fixings whose distance dfix and
common radius rfix1 = rfix2 are varied. (a) Coupling inductance normalized to the corresponding
inductance of the single inductive post as shown in Fig. 4.3(a). (b) Voltage transform ratio.
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ing functions. Although the applicable frequency range is slightly lower than for
the equivalent circuit of the previous section, it is a suitable network to represent
scattering properties of the rf structure shown in Fig. 4.10(a).

Referring to Fig. 4.12(a), the coupling inductance of the equivalent transformers
exponentially decreases with the distance dfix and approaches the inductance Lp of
the single inductive post discussed in Sec. 4.1.1. Furthermore, the value slightly
decreases with decreasing radius of the cylindrical fixings. In Fig. 4.12(b), the
voltage or inverse current transform ratio approaches unity towards larger distances
as the coupling between the fixings reduces. Except for the largest fixing radius
of rfix = 5 mm, both quantities M1, N1, vary smoothly and consistently according
to the geometrical parameter changes of the rf structure, which gives confidence in
the solutions of the minimization problem (4.33). This is not necessarily true for
the derived shunt inductance L11 in Fig. 4.13(a) indicating relatively large errors.
Nevertheless, the shunt inductance seems to behave very similarly to Fig. 4.9(b).
Hence, a direct evaluation via the simpler equivalent circuit of Sec. 4.1.4 seems
more appropriate as sufficient to provide the shunt inductances L11 and L21 of the
extended model in Fig. 4.10(b). Since shunt inductances are not independent of
the distance dfix, it can be deduced that the equivalent circuit is not able to fully
represent field coupling between the fixings by explicit lumped elements. The series
inductance L12 in Fig. 4.13(b), likewise derived from the coupling inductance and
voltage transform ratio, varies very consistently with geometrical parameter changes.
The quantity reflects very clearly some fraction of coupling between the inductive
posts. For a very short distance of dfix = 2.5 mm and depending on the radius of
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Fig. 4.13. (a) Shunt and (b) series inductances of the equivalent circuit model in Fig. 4.10 derived
from the parameters of the transformer in Fig. 4.12 using (4.29). Both quantities are normalized
to the corresponding inductance of the single inductive post as shown in Fig. 4.3(a).
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the cylindrical fixings, the series inductance amounts between 10 % to 35 % of Lp
provided by the single inductive post in Sec. 4.1.1.

To conclude, the equivalent circuit model in Fig. 4.10(b) is able to represent
some fraction of eventual coupling between the two fixings by introducing inductive
coupling between shunt and series inductances. It allows for a fair approximation
of the frequency response of the rf structure in the interesting frequency range,
although the accuracy is slightly lower than for the model discussed in the previous
section. Furthermore, the equivalent circuit provides a more physical meaning, in
that the effective impedance of the coaxial waveguide section in between the fixings
corresponds to the characteristic impedance given by (2.67). However, the resulting
shunt inductances of the circuits in Figs. 4.7(b) and 4.10(b) are approximately the
same. Regarding numerical accuracy, it is more appropriate to consider the simpler
equivalent circuit of Sec. 4.1.1 without dedicated coupling elements.

4.1.6 Mid-Shunt Ladder between Inductive Posts in Coaxial Guide

Although it is barely found in existing designs of HOM couplers, the following rf
structure will be fundamental for the design of coaxial high-pass filters. It provides
the key component for the synthesis method discussed in Sec. 4.3.3. Figure 4.14(a)
illustrates the somewhat modified rf structure of Secs. 4.1.4 and 4.1.5, with the inner
conductor of the central waveguide section in between the fixings being interrupted
by a small distance dgap, similar to Sec. 4.1.2. Interestingly, Xu [115] proposed
a similar structure already in 2011 for his design of the so-called two-stage HOM
coupler with double notch frequency. The design was based purely on numerical
simulations. However, the equivalent circuit was misinterpreted, so the remarkable
resonance behavior remained unnoticed. Likewise, Ainsworth [116, pp. 120] used
this structure in one of his HOM coupler designs without giving attention to the
consequences of an equivalent microwave network. The work of both essentially
motivated the present studies.
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Fig. 4.14. (a) Cross-sectional and side view of a coaxial structure with two fixings between the
inner and outer conductor. The fixings are modeled as cylinders with the radii rfix1 and rfix2. The
inner conductor between the fixings is interrupted by a distance dgap. (b) Equivalent circuit.
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Following the results of Sec. 4.1.2, the gap which separates the inner conductor
in Fig. 4.14(a) ought to be represented by a series capacitor. This together with the
shunt inductances of the fixings would provide a typical network of a high-pass filter
disregarding the transmission lines in between the lumped elements. A correspond-
ing ladder network, which comprises the equivalent circuits of Secs. 4.1.1 and 4.1.2
in an alternating manner, provides multiple transmission zeros at the frequency of
zero. However, numerical simulations of the rf structure reveal a transmission zero
at finite, nonzero frequency as shown in Fig. 4.15(a) by means of |s21|2. In order
to achieve this behavior for a ladder network, either the admittance function of a
shunt arm or the impedance function of a series arm must provide a pole at finite,
nonzero frequency. Since the inductive posts remained unchanged from Secs. 4.1.4
and 4.1.5, the focus will be on the series arm. The simplest one-port revealing an
impedance function with one pole at finite, nonzero frequency, is given by the paral-
lel LC resonator as shown in the circuit model of Fig. 4.14(b). Indeed this network
enables the scattering properties of the considered microwave structure to be ap-
proximated over a large frequency range. The two-port consisting of a parallel LC
resonator connected in series is denoted as mid-shunt ladder [39]. Though, the addi-
tional inductance L0 is literally not seen in the coaxial rf structure, the subsequent
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Fig. 4.15. Approximation of the numerically simulated rf reflection and transmission with respect to
the terminal planes θ1 and θ1 by means of the equivalent circuit model according to Fig. 4.14. The
structure is assumed to be symmetric, hence, Z1 = Z2, l1 = l2, and rfix1 = rfix2, with ri = 5 mm,
ro = 22.5 mm, and rfix1 = 3 mm. The cross section of the coaxial waveguide in between the fixings
is identical to those of the input and output regions. The fixings are separated by a distance
of dfix = 22.5 mm while the inner conductor is separated by a distance of dgap = 0.3 mm. The
circuit parameters L0, C0, L1 are derived from the minimization problem. (a) Magnitude of the rf
transmission and reflection. (b) Real and imaginary part of the reflection at the terminal plane θ1.
The R2 value reveals very good approximation in the considered frequency range f ≤ 2 GHz.
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investigations provide empirical evidence of its existence. Similar to Sec. 4.1.4, the
circuit of Fig. 4.15(b) does not account for coupling between inductive posts and
the inner conductor by dedicated elements. The contribution of possible coupling
mechanisms resides in the shunt inductances L1,2 and effective impedance Z0.

The equivalent circuit is solved in a way analogous to the previous case studies.
The microwave network in Fig. 4.14(b) between the terminal planes θ1 and θ2 admits
a transmission matrix whose parameters may be written as

A =
B

jωL2

+ cos βl0 −
1

2Z0C0

ω

ω2
0 − ω2

sin βl0 (4.34)

B = j
1

C0

ω

ω2
0 − ω2

cos2 βl0
2

+ jZ0 sin βl0 (4.35)

D =
B

jωL1

+ cos βl0 −
1

2Z0C0

ω

ω2
0 − ω2

sin βl0, (4.36)

where ω0 = 1/
√
L0C0 corresponds to the resonant frequency of the parallel LC

resonator. A necessary condition for the frequency response of the rf structure
being approximated by the equivalent circuit follows from (4.6) and (4.34)–(4.36),
and may be formulated as
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(4.37)
with δ2

k = ω2
0 − ω2

k. The quantities A(∆)
k , B

(∆)
k , and D

(∆)
k are obtained from the

simulated and phase shifted scattering matrix between the terminal planes θ1 and
θ2 of the rf structure in Fig. 4.14(a). They are sampled at the frequencies {ωk}Nkk=1.
Note, the resonant frequency ω0 is readily available from the simulated frequency
response as illustrated in Fig. 4.15(a). Consequently, only one parameter of the
parallel LC resonator is involved in the minimization problem.

Figs. 4.16 and 4.17 show the resulting microwave network parameters of symmetric
structures. Hence, the input and output waveguide regions as well as the cylindri-
cally shaped fixings are identically such that Z1 = Z2 and L1 = L2. Throughout
all geometric variations, the frequency response of the coaxial guide, expressed by
scattering functions, is well approximated for f ≤ 3 GHz with residuals in the or-
der of 10−2 by solving the minimization problem (4.37). Moreover in most cases,
the resulting circuit parameters change very smoothly and consistently according
to the geometric changes of the rf structures. The possibility of approximation and
the consistency of the parameter variations both justify the microwave network in
Fig. 4.14(b) as an equivalent circuit model.
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Fig. 4.16. Circuit parameters of the equivalent microwave network which represents the rf structure
according to Fig. 4.14. The inner and outer radii of the symmetrically assumed coaxial geometry
are 5 mm and 22.5 mm, respectively. The same cross section applies to the waveguide between the
identical fixings whose distance dfix is varied while their common radius rfix1 = 3 mm. Moreover,
the gap distance dgap which separates the inner conductor is varied. (a) Effective impedance of the
coaxial waveguide between the fixings normalized to the characteristic impedance of Z∗0 = 90.24 Ω
according to (4.5). (b) Shunt inductance of each fixing normalized to the corresponding value of
the single inductive post in Fig. 4.3(a). (c) Capacitance of the parallel LC resonator normalized
to the definition (4.16). (d) Inductance of the parallel LC resonator normalized as (b).

The first case study illustrated in Fig. 4.16 focuses on the impact of the gap dis-
tance dgap which intuitively defines the capacitance of the parallel LC resonator.
Furthermore all circuit parameters are shown as functions of the distance dfix be-
tween the fixings while rfix1 = rfix2 = 3 mm. The effective impedance Z0 and shunt
inductance L1, respectively, shown in Figs. 4.16(a) and 4.16(b), only marginally vary
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Fig. 4.17. Circuit parameters of the equivalent microwave network which represents the rf structure
according to Fig. 4.14. The inner and outer radii of the symmetrically assumed coaxial geometry
are 5 mm and 22.5 mm, respectively. The same cross section applies to the waveguide between
the identical fixings whose distance dfix and common radius rfix1 are varied. The gap distance
which separates the inner conductor is fixed to dgap = 0.3 mm. (a) Effective impedance of the
coaxial waveguide between the fixings normalized to the characteristic impedance of Z∗0 = 90.24 Ω
according to (4.5). (b) Shunt inductance of each fixing normalized to the corresponding value of
the single inductive post in Fig. 4.3(a). (c) Capacitance of the parallel LC resonator normalized
to the definition (4.16). (d) Inductance of the parallel LC resonator normalized as (b).

with the gap distance. The results are similar to those of Secs. 4.1.4 and 4.1.5 which
consider the same microwave structure except for the capacitive gap. Likewise, the
inductance L0 of the parallel LC resonator does not depend on the gap distance as
depicted in Fig. 4.16(d). However, it varies by an order of magnitude within the
considered variation of dfix. Notice, the inductance L0 can be notably larger than
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the shunt inductances L1 and L2. For the capacitance of the parallel LC resonator
shown in Fig. 4.16(c), a similar dependency on the gap distance is observed as in
Sec. 4.1.2. To illustrate the contribution of fringe fields, the capacitance is normal-
ized to the definition (4.16). Interestingly, the capacitance reduces as the distance
dfix between the fixings becomes larger, and seems to approach the corresponding
solution of Fig. 4.3(b). In other words, the presence of inductive posts increases the
contribution of fringe fields to the total capacitance.

The second case study illustrated in Fig. 4.17 considers the impact of the common
fixing radius rfix1 =rfix2. All circuit parameters are given as functions of the distance
dfix between the inductive posts while a fixed gap distance of dgap = 0.3 mm is
assumed. Slight fluctuations of the circuit parameters along geometric variations
of the coaxial rf structure indicate larger errors than for the previous case study.
This applies, in particular, to the effective impedance Z0 in Figs. 4.17(a) and shunt
inductance L1 in Fig. 4.17(b), each at a radius of rfix1 = 5 mm. By comparing with
Fig. 4.9, both circuit parameters behave similar as for the coaxial structure without
capacitive gap. However, the presence of the mid-shunt ladder notably modifies the
decay of the shunt inductance as the distance dfix becomes larger. The capacitance
of the parallel LC resonator depicted in Fig. 4.17(c) reduces with increasing distance
dfix, and approaches the solution of Sec. 4.1.2. Furthermore for dfix < 20 mm, the
capacitance notably varies with the radius of the cylindrical fixings, i. e. in parts
by 20 %. In contrast, the inductance L0 of the parallel LC resonator shown in
Fig. 4.17(d), only marginally depends on the radii rfix1,2.

To further characterize the mid-shunt ladder, a new geometrical parameter will
be introduced, the rotation angle αfix between the two fixings in the transverse
plane according to Fig. 4.18(a). It was found that the additional modification does
not require a different equivalent microwave network than previously considered.
Furthermore, the symmetry of the network is preserved even for αfix 6= 0 deg provided
the input and output waveguide regions as well as inductive posts are identical.
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Fig. 4.18. (a) Cross-sectional and side view of a coaxial structure with two fixings between the
inner and outer conductor. The fixings are modeled as cylinders with the radii rfix1 and rfix2. They
are rotated against each other in the transverse plane by the angle αfix. The inner conductor of
the central waveguide section is interrupted by a distance dgap. (b) Equivalent circuit model.
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Fig. 4.19. Circuit parameters of the equivalent microwave network which represents the rf struc-
ture according to Fig. 4.18. The inner and outer radii of the coaxial geometry are 5 mm and
22.5 mm, respectively. The same cross section applies to the waveguide between the identical fix-
ings whose distance dfix is varied while their common radius rfix1 = 3 mm. Moreover, the gap
distance dgap = 0.3 mm and the angle between the fixings in the transverse plane is varied. (a)
Effective impedance of the coaxial waveguide between the fixings normalized to the characteristic
impedance of Z∗0 = 90.24 Ω according to (4.5). (b) Capacitance of the parallel LC resonator nor-
malized to the definition (4.16). (c) and (d) Inductance of the parallel LC resonator normalized
to the corresponding value of the single inductive post in Fig. 4.3(a).

The third case study illustrated in Fig. 4.19 considers the impact of the rotation
angle αfix assuming a symmetric microwave structure. Circuit parameters are given
as functions of the distance dfix between the inductive posts while the gap distance
dgap = 0.3 mm and common radius of the cylindrical fixings, rfix1 = rfix2 = 3 mm. In
Fig. 4.19(a), the enhancement of shunt inductances due to coupling mechanisms,
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significantly reduces as the rotation angle becomes larger, and nearly vanishes for
αfix ≥ 80 deg. A similar behavior provides the capacitance of the parallel LC res-
onator shown in Fig. 4.19(b). As the rotation angle rises, the contribution of fringe
fields to the total capacitance C0 becomes less. The inductance L0 of the paral-
lel LC resonator shown in Figs. 4.19(c)–(d) rises partially by orders of magnitude
with increasing rotation angle. The exponential dependency on the distance dfix

between the fixings is well preserved for αfix≤60 deg. Note, this range is character-
ized by a relatively moderate variation of the inductance with the rotation angle.
For αfix > 60 deg, the inductance drastically increases as the angle becomes larger.
Moreover, an asymptotic behavior due to a singularity appears for relatively small
values of dfix while the angle approaches 90 deg. This property will be very important
for the synthesis of filter functions since it allows for practically any reasonable in-
ductance of the LC resonator while the impact of transmission lines can be reduced
as desired. Significant alterations of L0 with the rotation angle αfix, in particular,
at small distances dfix, provide evidence for the mid-shunt ladder being related to
evanescent higher order multipole modes of the coaxial guide. It is remarkable that
the corresponding frequency response of such a problem is fairly well represented by
a simple resonator in between transmission lines and shunt inductances. However,
a proof by means of analytical field calculations remains an open problem.

Disregarding the transmission lines, the equivalent circuit sketched in Fig. 4.18(b)
corresponds to a canonical form of a third-order high-pass filter with one transmis-
sion zero at finite, nonzero frequency and another one at zero. For this reason, the
considered coaxial microwave structure is an ideal candidate for the design of HOM
couplers independent of the approximation type which may range from relatively
simple maximally flat to computationally more ambitious elliptic filters. It is worth
noting that the coaxial structure provides only three discontinuities, i. e. the induc-
tive posts and capacitive gap, while the equivalent microwave network requires four
lumped elements. Thus, the number of obstacles in a coaxial filter may be lower
than the number of lumped elements in a canonical circuit of equivalent behavior.

4.1.7 Mid-Series Ladder between Inductive Posts in Coaxial Guide

Themid-series ladder refers to a two-port network consisting of a series LC resonator
connected in shunt [39]. Enclosed by transmission lines and shunt inductances, it
constitutes the counterpart to the equivalent circuit of the previous section. The
realization as coaxial microwave structure is shown in Fig 4.20 together with the
equivalent circuit. Other than the left and right fixings represented by the shunt
inductances L1,2, the center post is separated by a small distance from the outer
conductor of the coaxial structure in order to introduce a capacitive gap. Alterna-
tively, a mid-series ladder may be approximately achieved by a coaxial waveguide
terminated with a shunt capacitance as applied for the TESLA HOM coupler. It is
important to note that the latter approach provides only a certain inductance L0 in



4.1 Components and Equivalent Circuits 135

Z0,
l0
2 Z0,

l0
2Z1, l1 Z2, l2

θ1 θ2θ′1 θ′2

2∆1 2∆2

ri

ro

2 rfix1,2

(a)

jωL1 jωL2

Z1, l1 Z2, l2Z0,
l0
2 Z0,

l0
2

1

jωC0

jωL0

θ1 θ2θ′1 θ′2

(b)

Fig. 4.20. (a) Cross-sectional and side view of a coaxial structure with two fixings between the
inner and outer conductor. The fixings are modeled as cylinders with the radii rfix1 and rfix2. At
the center, a cylindrical post of the radius rfix0 is attached to the inner conductor. It is separated
from the outer conductor by a small gap of the size dgap. (b) Equivalent circuit model.

the vicinity of the resonant frequency ω0 = 1/
√
L0C0 due to the frequency depen-

dent impedance transformation of the transmission line representing the waveguide.
Both implementations of mid-series ladders are very common for the design of coax-
ial HOM couplers in order to provide transmission zeros at finite, nonzero frequency.
A particular advantage is the simple and flexible frequency adjustment of the trans-
mission zero by slightly modifying the distance of the capacitive gap [101, p. 29].
However, in contrast to the mid-shunt ladder of Sec. 4.1.7, the inductance of the
series resonator, if any, is very constrained in practice. This is, in particular, unfa-
vorable for the synthesis of certain filter functions which require distinct values for
both the capacitance C0 and inductance L0.

The equivalent circuit for the coaxial rf structure according to Fig. 4.20 is solved
in an analogous way to previous sections, by fitting the simulated and phase shifted
scattering matrices over discrete frequency samples. Again, the transmission matrix
of the equivalent circuit permits an elegant formulation of the non-linear minimiza-
tion problem to derive circuit parameters. Between the terminal planes θ1 and θ2,
the microwave network in Fig. 4.20(b) admits a transmission matrix whose param-
eters can be written as

A =
B

jωL2

+ cos βl0 −
Z0

2L0

ω

ω2
0 − ω2

sin βl0 (4.38)

B = −jZ
2
0

L0

ω

ω2
0 − ω2

sin2 βl0
2

+ jZ0 sin βl0 (4.39)

D =
B

jωL1

+ cos βl0 −
Z0

2L0

ω

ω2
0 − ω2

sin βl0, (4.40)

where ω0 = 1/
√
L0C0 corresponds to the resonant frequency of the series LC res-

onator. The remaining element of the transmission matrix results from the reciprocal
condition (2.33).
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Despite the different network topologies, the transmission functions given in (4.38)–
(4.40) are very similar to (4.34)–(4.36) of the previous section. Let L0s be denoted
as the inductance of the series resonator in the microwave network of Fig. 4.20(b)
while C0s denotes the capacitance of the shunt resonator in the microwave network
of Fig. 4.14(b). Then, both networks become equivalent if

βl0 = π/2, (4.41)
L0s = −Z2

0C0p. (4.42)

The first condition strictly applies only for a certain frequency and is characteristic
for a λ/4 transformer. Note, in the vicinity of this frequency, the scattering matrix
of both circuits remain approximately the same. The second requirement yields
a negative inductance which is not reasonable either for networks or microwave
structures, provided they are linear, passive and time-invariant. It can be deduced
that the microwave networks of Figs. 4.14(b) and 4.20(b) are not equivalent to
each other. Consequently, the simplest and most reasonable model to describe the
scattering properties of the coaxial microwave structure shown in Fig. 4.14(a) is
given by the equivalent circuit of Fig. 4.14(b). The same conclusion applies for the
structure and equivalent circuit depicted in Fig. 4.20. It provides pseudo-high-pass
characteristics which are further discussed in Sec. 4.3.2.

4.2 On the Excitation of Waveguide Modes

The preceding section has dealt with the rf behavior of coaxial structures comprising
one or more discontinuities and their corresponding equivalent microwave circuits.
In order to complete the picture of coaxial couplers, it is necessary to further consider
certain aspects of the coupling to modes in the attached waveguide, cutoff tube, or
cavity. By reciprocity, this topic is closely related to the excitation of waveguide
modes, which is extensively covered in the literature [27, 29, 42]. This section reflects,
in parts, the theory developed in [29, pp. 276]. Qualitative results are discussed in
the context of HOM couplers as well as consequences for the antenna design.

4.2.1 Probe and Loop Coupling in a Waveguide

Figure 4.21 illustrates common coupling types between a coaxial line and waveguide.
The probe and open-loop antennas are particularly interesting for superconducting
applications due to the simpler design and easier manufacturing. The power transfer
essentially depends on the field distribution of the considered waveguide mode. Re-
ferring to Fig. 4.21(a), any mode providing nonzero electric field components along
the probe antenna will excite currents on the probe. In contrast, loop antennas
primarily couple to the magnetic field of the particular waveguide modes as further
explained in Sec. 4.2.2.
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Fig. 4.21. Transition between a circular waveguide and coaxial line using (a) a probe antenna,
(b) closed-loop antenna, and (c) open-loop antenna. The propagation direction of the circular
waveguide faces the viewer. Electric and magnetic field lines correspond to a TE-like mode.

By referring to the examples in Fig. 4.21, let the volume V be imagined completely
exterior and bounded by the surface S, with the coaxial line and waveguide being
cut perpendicular to their particular axes at some arbitrarily chosen plane called
terminal plane or port. Since vacuum is considered inside the coaxial line and
waveguide, Maxwell’s equations for harmonic fields yield a symmetric behavior of the
solution, which may be expressed by the following form of the reciprocity theorem [29,
p. 278] {

S

(E×Hn − En ×H) · n dA =
y

V

En · JdV, (4.43)

where n refers to the local normal vector of the surface element dS. The electro-
magnetic field E, H, may be considered as the field being radiated by the current
J on the antenna. Likewise, J may be considered as the current being induced by
the same electromagnetic field. Equation (4.43) further accounts for the coupling
to the n-th mode in the circular waveguide whose electric and magnetic fields are
given by En and Hn, respectively. By reciprocity, if the originally considered probe
or loop currents are driven by a TEM mode incident from the coaxial line, the
same waveguide modes will be excited, which were previously considered to be the
source. Note, the circular waveguide in the examples of Fig. 4.21 may be the cutoff
tube of an accelerating cavity. The considerations above equally apply if the coaxial
line directly terminates into a cavity. In this case, the field quantities En and Hn

correspond to the n-th resonant mode.

The antenna of an HOM coupler should be designed and placed such that coupling
to the fundamental mode of the cavity is significantly reduced while the power
transfer to concerned HOMs is as high as desired. Often, these requirements are
contradictory and cannot be achieved by solely changing the shape or location of
the antenna due to the given modal field distributions. This is true for the SPL
cavities where both the fundamental and higher order modes of concern belong to
the same category of transverse magnetic modes without azimuthal dependency.
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Thus appropriate microwave filters are inevitable. If coaxial HOM couplers are
considered, such a filter may be constructed from several of the components discussed
in Sec. 4.1. In contrast, deflecting type cavities operating with multipole modes may
be equipped with simple probe or loop antennas without additional filters in order
to suppress undesired HOMs [8, 85].

4.2.2 Radiation from Current Elements

To illustrate the coupling of an antenna to modes in a waveguide or cavity, let a one-
dimensional current source J be located between the terminal planes θ1 and θ2 of an
infinitely long cylindrical waveguide. The current source may be arbitrarily formed
by an open or closed path C describing the antenna shape as shown in Fig. 4.22(a)
or 4.22(b), respectively. The electromagnetic field radiated from the left terminal
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Fig. 4.22. Different current sources in an infinitely long waveguide. (a) Current segment and (b)
current loop, each described by the corresponding path C. The loop is further characterized by
the enclosed surface normal vector n.

plane θ1 where z1 > 0 is source free and may be expressed as sum over all transverse
electric and magnetic waveguide modes according to

Eθ1 =
∑

n

cθ1,n(Ẽ⊥,n + Ẽ‖,n)e−jβnz1 , (4.44)

Hθ1 =
∑

n

cθ1,n(−H̃⊥,n + H̃‖,n)e−jβnz1 , z1 > 0, (4.45)

where Ẽ‖,n, H̃‖,n are longitudinal and Ẽ⊥,n, H̃⊥,n are transverse field components of
the n-th waveguide mode with arbitrary normalization. The electric and magnetic
fields radiated from the right terminal plane θ2 where z2 > 0 may be expressed in
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the analogue way by the superposition of infinitely many waveguide modes as

Eθ2 =
∑

n

cθ2,n(Ẽ⊥,n − Ẽ‖,n)e−jβnz2 , (4.46)

Hθ2 =
∑

n

cθ2,n(H̃⊥,n + H̃‖,n)e−jβnz2 , z2 > 0, (4.47)

Again, the index n involves all possible transverse electric and magnetic waveguide
modes. Note, the coordinates z1 and z2 refer to the distance from the particular
terminal plane as shown in Fig. 4.22. The coefficients cθ1,n, cθ2,n can be derived
from (4.43), with the volume V being confined by waveguide walls and both termi-
nal planes θ1,2. In the lossless case, that is the electric conductivity of the waveguide
walls becomes infinite and (2.77) holds, the surface integral of the reciprocity for-
mula (4.43) reduces to the waveguide cross sections at the terminal planes. By
choosing the n-th mode to be of the form (4.46)–(4.47) such that

En = (Ẽ⊥,n − Ẽ‖,n)e−jβnz, (4.48)

Hn = (H̃⊥,n + H̃‖,n)e−jβnz, (4.49)

the coefficient cθ1,n becomes [29, pp. 278]

cθ1,n =
1

Pθ1,n

y

V

(Ẽ⊥,n − Ẽ‖,n) · Je−jβnz dV, (4.50)

where Pθ1,n is a measure of the modal power flow through the terminal cross section
and is given by

Pθ1,n = 2
x

θ1

(Ẽ⊥,n × H̃⊥,n) · ez dA = 2
x

θ2

(Ẽ⊥,n × H̃⊥,n) · ez dA = Pθ2,n. (4.51)

Note, due to the lossless consideration, this power flow is the same everywhere along
the waveguide left from the terminal plane θ1 or right from the terminal plane θ2. A
similar expression can be found for the coefficients cθ2,n by choosing the n-th mode
in (4.43) to be of the form (4.44)–(4.45) that is

En = (Ẽ⊥,n + Ẽ‖,n)ejβnz, (4.52)

Hn = (−H̃⊥,n + H̃‖,n)ejβnz. (4.53)

Inserting into the reciprocity relation (4.43) yields

cθ2,n =
1

Pθ2,n

y

V

(Ẽ⊥,n + Ẽ‖,n) · Jejβnz dV. (4.54)
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Though numerical simulations are generally required to evaluate waveguide modes
and field integrals for realistic problems, expressions (4.50) and (4.54) already pro-
vide important qualitative information about the nature of mode excitation in a
waveguide using probe or loop antennas. Let a linear current element J⊥ be located
at z = 0 and directed perpendicular to the wave propagation. Note, this configura-
tion is similar to the example of a probe antenna in Fig. 4.21(a). A current source
of this type provides identical field amplitudes at both terminal planes since

cθ1,n =
1

Pθ1,n

ˆ
C

Ẽ⊥,n · Idl =
1

Pθ2,n

ˆ
C

Ẽ⊥,n · Idl = cθ2,n, (4.55)

where the quantity I corresponds to the current flow in the predefined direction.
By referring to (4.44)–(4.47), the electric field across the terminal planes θ1 and θ2

appears to be continuous while the transverse magnetic field is not. This behavior
may equivalently be described by a shunt voltage source between two transmission
lines which represent the propagation of a single mode in the waveguide. If more than
one propagating mode is present, several such equivalent circuits may be considered
independently due to the mode orthogonality. For the second configuration, let the
center of a linear current element again be located at z = 0 but directed parallel to
the wave propagation. If the line current density J‖ is symmetric in z, the modal
field coefficients of such an axial current source obey the relationship

cθ1,n = − 1

Pθ1,n

ˆ
C

Ẽ‖,n · Ie−jβnzdl = − 1

Pθ2,n

ˆ
C

Ẽ‖,n · Iejβnzdl = −cθ2,n, (4.56)

since Ẽ‖,n is independent of the longitudinal position z. As in the previous example,
the coupling is governed by the electric field. Observing (4.44)–(4.47), the transverse
magnetic field is equal at both terminal planes θ1 and θ2 while the transverse electric
field provides a discontinuity here. This behavior may equivalently be described by a
voltage source connected in series between two transmission lines taking into account
the single mode propagation through the waveguide.

Similar conclusions on equivalent circuit models follow for the current loop shown
Fig. 4.22(b). The coupling mechanism of this configuration which is representative
for loop antennas as depicted in Fig. 4.21(b), is dominated by the magnetic flux
traversing the loop. Given a homogeneous current flow I0 around the contour C, this
can be shown by reformulating the right hand side of the reciprocity formula (4.43)
according to

y

V

En · J dV =

˛
C

En · I0dl

= I0

x

S

∇× En · dA = −jωµ0I0

x

S

Hn · dA (4.57)
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Here, the surface S is bounded by the closed path C. Consequently, the coupling
is determined by the contribution of magnetic field that crosses the loop antenna.
Using (4.57), the field amplitude of (4.44)–(4.47) may be written as

cθ1,n = −jωµ0I0

Pθ1,n

x

S

(H̃⊥,n + H̃‖,n) · e−jβnzdA. (4.58)

cθ2,n = −jωµ0I0

Pθ2,n

x

S

(−H̃⊥,n + H̃‖,n) · ejβnzdA. (4.59)

Again via continuity and discontinuity considerations of selected field components,
the purely transverse current loop may be interpreted as a voltage source connected
in shunt between two transmission lines which account for the propagation of a single
mode through the waveguide. It is important to note that the choice of voltage or
current source for the equivalent circuit model is arbitrary since any voltage source of
a network may be replaced by an equivalent current source and vice versa according
to Tévenin’s theorem as introduced in Sec. 2.1. Nonetheless, a magnetic field may
intuitively be associated with electric currents while the electric field may intuitively
be associated with potential differences, hence, voltages.

4.2.3 Impedance Matching and Reactance Compensation

The previous considerations provide some preliminary ideas of how an equivalent
microwave network may look in order to describe the coupling of waveguide modes
with an antenna. Though illustrative, the simplified representation of the antenna
by current elements located in the waveguide is unsuitable with respect to design and
optimization tasks. Referring to the original problem in Fig. 4.21, that is a probe
or loop antenna inserted into a circular waveguide and connected to a coaxial line,
let the volume V be imagined completely exterior and bounded by the surface S,
with the coaxial line and waveguide being cut perpendicular to their particular axes
at some arbitrarily chosen terminal planes. The energy conservation for harmonic
fields may be expressed using the complex Poynting vector as

1

2

{

S

E×H∗ · n dA = PV + 2jω(Um − U e), (4.60)

where PV is the power dissipated in the volume V . Since the considered domain is
source free and filled with vacuum, let this contribution to the energy balance be
disregarded, thus PV = 0. The second term on the right hand side accounts for the
reactive power which is owed by the excitation of evanescent modes being present
in the vicinity of the antenna. As no real power is carried by such modes, the
contribution to the stored energy appears parasitic. Furthermore, let the electric
conductivity of the waveguide walls and antenna be infinite such that (2.77) holds.
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Then, the surface integral in (4.60) reduces to the circular and coaxial waveguide
cross sections at the particular terminal planes. It may be split according to the
direction of the power flow as

1

2

{

S

E×H∗ · n dA =
1

2
V inI

∗
in − P, (4.61)

with the first term on the right hand side being the inward power flow at the coaxial
port and P is the power radiated in both directions through the infinitely long
circular waveguide. The inward power flow represented by an equivalent voltage
and current in (4.61) yields the connection between impedance and dissipated or
stored energy, and is given by [27, pp. 130]

Zin =
P + 2jω(Um − U e)

1
2
I inI

∗
in

= R0 + jX (4.62)

The real part of this input impedance seen from the coaxial port,

R0 =
2P

I inI
∗
in

, (4.63)

is the radiation resistance of the antenna [29, p. 281]. Both quantities, the radia-
tion resistance R0 and parasitic reactance X, must be considered individually for
each excited waveguide mode according to the modal power flow (4.51). Likewise,
the input power and corresponding equivalent terminal current I in must be pro-
jected onto the field distribution of the individual mode according to the reciprocity
formula (4.43) and derived results for the field amplitudes (4.50) and (4.54). The
radiation resistance and parasitic reactance are determined by various geometrical
parameters that are not only related to the antenna shape and insertion depth but
also to the waveguide cross section and aperture for the coaxial line. Eventually,
discontinuities along the waveguide will have a notable impact as well.

Let a single mode be excited by an antenna in a circular waveguide through which
it propagates. Now the problem may be simplified and described by one of the mi-
crowave networks shown in Figs. 4.23. According to Sec. 4.2.2, they constitute ideal
cases, in that either the electric or magnetic field across the coupling region, between
θ′1 and θ′2, behaves as continuous. The mode propagation in the circular waveguide
is represented by the horizontal transmission lines at the terminal planes θ1 and θ2

while the skewed transmission line at the terminal plane θ3 accounts for the propa-
gation of the TEM mode through the coaxial line. The ideal transformer provides a
means of adjusting the coupling such that the same amount of power radiates into
the circular waveguide as delivered by the coaxial line. Equation (4.62) represents
the input impedance at the terminal plane θ3, which is given by the transformation
of the wave impedance Z1 = Z2 and reactance jX. In order to avoid reflections at
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the imagined terminal plane θ′3 and to achieve the maximum power transfer, the ra-
diation resistance (4.63) must equal the characteristic impedance of the coaxial line
Z3 given by (2.67). Note, the evaluation of scattering parameters provided by nu-
merical simulations or measurement always refers to the rf transmission or reflection
with respect to the terminal planes θ1, θ2, and θ3. The radiation resistance allows
the internal impedance mismatch to be quantified. Furthermore, it is important to
minimize the amount of reactive energy stored in evanescent modes in order to max-
imize the power transfer to the desired mode. This is typically done by introducing
a suitable reactance to compensate jX. Referring to the equivalent circuit models
in Fig. 4.23, let the circular waveguide at the terminal plane θ2 be shorted while the
length l2 is chosen such that the impedance at the terminal plane θ′2 seen towards
the short equals −jX. Though the equivalent circuits represent in both cases very
idealized coupling, this approach of reactance compensation is common for realistic
problems, for instance, the waveguide-coax transition of coaxial fundamental mode
couplers [107, pp. 263]. The concept of reactance compensation may be involved
in the design of HOM couplers with the additional complexity that multiple modes
are considered. According to the previous considerations, the design task must not
be restricted to the antenna and its penetration depth into the waveguide. It should
also include the entire coupling region, that is, the circular waveguide with even-
tual discontinuities towards the cavity or beam pipe as well as the aperture to the
coaxial line. A trade-off must be defined between modes of concern for achieving
overall acceptable damping. In this context, the analysis of transmission zeros,
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θ′3

θ3
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Fig. 4.23. Equivalent circuit models to describe the excitation of a single mode propagating through
an infinitely long waveguide by an antenna which is inserted in the same and connected to a coaxial
line. The mode propagation in the circular waveguide is represented by the horizontal transmission
lines at the terminal planes θ1 and θ2 while the skewed transmission line at the terminal plane
θ3 accounts for the propagation of the TEM mode through the coaxial line. The field coupling is
described by an ideal transformer for impedance conversion and a reactive component taking into
account the energy stored by evanescent modes. Across the terminal planes θ′1 and θ′2, continuity
of the transverse (a) electric and (b) magnetic field component is respected.
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hence, frequencies at which no or very moderate power is transmitted, becomes very
important, and is further discussed in Sec. 4.2.4.

Regarding HOM couplers, there is one case where the reactance X may be de-
sired, that is for the fundamental mode of the cavity. According to the results of
Sec. 4.2.2, the probe and transverse loop antennas may equivalently be described
in a very simplified manner by the microwave network shown in Fig. 4.23(a) char-
acterized by a shunt reactance. The open-loop antenna sketched in Fig. 4.21(c)
is particularly interesting since its reactance corresponds to a series LC resonator
similar to Sec. 4.1.7, given the inductive behavior of the loop combined with a ca-
pacitive gap between the antenna and outer conductor of the coaxial line. Various
existing HOM couplers comprise such open-loop antennas in order to suppress the
transmission of the fundamental mode by adjusting the resonant frequency of the
equivalent LC resonator accordingly [101, 117].

In the literature, various interpretations of HOM couplers by equivalent circuits
lack a very important component: the ideal transformer. As previously mentioned,
this means is required to ensure energy conservation, and enables the radiation
resistance to be distinguished from the characteristic impedance of a propagating
mode in a waveguide or the resistance associated with the power dissipation of a
resonant mode in a cavity. Figure 4.24(a) sketches the equivalent circuit of an HOM
coupler with probe antenna as proposed in [17, pp. 361] and formerly discussed
in [11, 24, 101] among others. The electromagnetic field inside the waveguide or
cavity is represented by a current source according to the displacement currents
picked up by the probe. The reactive part of the antenna, given by the stray
capacitance at the probe tip, is connected in shunt similar to the equivalent circuit
model in Fig. 4.23(a). Consequently the antenna is assumed to be infinitesimally thin
to respect continuity of the transverse electric field components across the coupling
region. The fact that the source does not provide any resistance is in contradiction
to the physical meaning of power transfer. To illustrate this discrepancy, let the

two-port
I0

RL
Cs

antenna filter load

(a)

two-portR L C Cc RL

cavity antenna filter load

Cs
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Fig. 4.24. Equivalent circuit models to describe the coupling of a resonant mode in a cavity to
an HOM coupler. The electromagnetic field in the vicinity of the antenna is represented by (a)
the current source I0 [11, 101] and (b) an RLC circuit excited at the resonant frequency of the
considered cavity mode [118]. The two-port ought to provide optimum power transmission with
respect to dangerous HOMs while the fundamental mode is greatly rejected.
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stray capacity be completely compensated for a selected mode. Then the extracted
amount of power could be arbitrarily high by choosing a correspondingly high load
resistance RL. A wrong conclusion may be deduced from Fig. 4.24(a), for instance,
the maximum power provided from the source is given by [17, pp. 363]

Pmax =
I2

0

4ωCs
, (4.64)

which applies if the resistance seen from the left side of the two-port is

R =
1

ωCs
. (4.65)

Though correct for the given network, this result misses the fact that the current
source must provide a resistance in order to allow for any power transmission and
not to keep the energy stored in only evanescent or resonant modes. This resistance
is exactly the radiation resistance derived from (4.62), and may be considered in
parallel to the stray capacitance Cs in Fig. 4.24(a). Note, if the characteristic im-
pedance of a propagating mode in a waveguide is considered instead of the radiation
resistance, an ideal transformer must be inserted between the antenna and filter part
in order to ensure energy conservation.

Likewise, the second example shown in Fig. 4.24(b) leaves out the ideal trans-
former in order to convert the resistance R associated with the power dissipation of
a resonant mode in the cavity into the radiation resistance R0. In contrast to the
previous example, the reactive component of the antenna is described by an addi-
tional capacitance connected in series as proposed in [118] and likewise discussed
in [116, pp. 98]. The interpretation of Cs and Cc is debatable, whether related to
the stray capacitance or fringe field of the coaxial line in the region of the antenna
tip. Nonetheless, the separation into two capacitances is not in contradiction to the
model shown in Fig. 4.24(a), which considers merely one capacitance connected in
parallel to a current source. The excited RLC resonant circuit may be imagined as
a voltage source with the internal impedance given by the resistance R and capac-
itance Cs. By applying Tévenin’s theorem as introduced in Sec. 2.1, this voltage
source may equivalently be described by a current source with the resistance and
capacitance each connected in shunt. Therefore, both circuits in Fig. 4.24 represent
the coupling between a resonant mode and probe antenna in equivalent manner. A
differentiation between Cs and Cc as depicted in Fig. 4.24(b) is not reasonable.

The equivalent circuits in Fig. 4.24 intuitively illustrate the principle of how a
fraction of power is extracted from a resonant mode in a cavity. However, they
do not represent power transmission in the strict sense. The first model lacks the
source resistance while the second is a pure impedance consideration. Eventual
reflections due to impedance changes are not accounted for, which implies perfect
matching from the cavity up to the load. Though very illustrative, complex systems
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consisting of a cavity, antenna, filter, and load are unfavorable for the initial design
phase of HOM couplers. Nonetheless, the derived results (4.64) and (4.65) yield two
important conclusions to achieve an optimum power transmission: (i) The effective
reactance of the coupling must be minimized, for instance, by compensation. (ii) The
optimal radiation resistance directly depends on the effective coupling reactance.

The two-ports in Fig. 4.24 allow for the specific filter characteristics of HOM
couplers using components as presented in Sec. 4.1. They ought to provide the
desired power transfer of concerned HOMs while the fundamental mode is greatly
rejected. Furthermore, they need to be matched to the radiation resistance R0 and
load RL. Since the first generally varies for different modes, a trade-off must be
defined. Moreover, the two-port may be considered for partial compensation of
the antenna reactance, though the impact is significantly lower than provided by
geometric variations of the antenna, aperture or cutoff tube. A phenomenon which
cannot be influenced by the filter component is subsequently discussed.

4.2.4 Frequencies of Field Cancellation

Often HOM couplers are not directly mounted on accelerating cavities. Instead,
they couple to resonant modes through a cutoff tube which is located right before or
after the cavity as in the case of the SPL. These tubes are essentially waveguides and
provide the transition between the cavity and beam pipe as illustrated in Fig. 4.25(a).
The cavity and beam pipe are, respectively, imagined left from the terminal plane θ1

and right from the terminal plane θ2 while the coaxial microwave filter of the HOM
coupler is located above the terminal plane θ3. Independent of the considered mode
propagating through the circular waveguide, the frequency response at θ1 with the
TEM mode being excited at θ3, is characterized by frequencies at which no or very

l0 ∆

r1
r2

lt

θ3

θ2θ1

r
z

(a)

l0

r1

l0θ1 θ1

θ3 θ3

r
z

(b)

Fig. 4.25. (a) Probe antenna applied on a cylindrical waveguide which is tapered at a distance
l0 from the center of the antenna. This configuration corresponds to the cutoff tubes of the SPL
cavities, with the cavity at the terminal plane θ1. (b) Probe and its image (dashed) to model the
field coupling between a coaxial line and cylindrical waveguide shortened at a distance l0 from the
center of the antenna. The z-axis coincides with the center axis of the circular waveguide.
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low power transmission is observed. This is, in particular, problematic if the cavity
provides potentially dangerous higher-order modes at such frequencies, as they may
not sufficiently be damped no matter how the coupler is designed. The following
theory is based on the superposition of propagating fields in the circular waveguide,
in a way that they cancel out each other exactly at the antenna position.

Given an electromagnetic wave being able to propagate through the circular
waveguide section of larger aperture in Fig. 4.25(a), it is assumed that the same
mode is asymptotically damped within the waveguide section of smaller aperture,
hence, it behaves evanescent after the taper. This is true if the considered frequency
ω satisfies the relation

ω1 < ω < ω2, (4.66)

where ω1 and ω2 are the angular cutoff frequencies associated with the larger or
smaller waveguide cross section, respectively. Referring to the cylindrical waveguides
of radii r1 and r2 in Fig. 4.25(a), the cutoff frequency of transverse magnetic modes
can be deduced from (2.87) according to

ω1,2 = c0
jmn
r1,2

, if TMmn mode, (4.67)

where jmn is the n-th root of the Bessel function of first order and m-th mode. A
similar expression follows for transverse electric modes, that is [29, p. 197]

ω1,2 = c0
j′mn
r1,2

, if TEmn mode, (4.68)

where j′mn is the n-th root of the first derivative of the corresponding Bessel function.
To begin with, let the coupling problem be simplified such that the circular waveg-
uide is shortened in one direction at the distance l0 from the center of the probe
antenna as depicted in Fig. 4.25(b). The short circuit is motivated by the fact that
no wave propagation occurs in the corresponding direction of the original problem.
Though not accounting for the evanescent field contribution, this simplification is
very illustrative to derive the condition under which a transmission zero between
the terminal planes θ1 and θ3 occurs. The short-circuit is equivalent to an image of
the entire structure, indicated by dashed lines in Fig. 4.25(b). Similar to Sec. 4.2.2,
the probe antenna and its image may be considered as line current elements with
opposite directions in order to fulfill the boundary condition at the longitudinal po-
sition z = 0. It is worthwhile to note that the same problem is discussed in [29,
pp. 276] but in a different context. Due to the reverse directions of the current
sources, the fields radiated from the probe and its image differ by a phase shift of π.
Field cancellation occurs if the wavelength of the considered mode equals λ = 2l0.
This is equivalent to the condition

β0,n2l0 = 2πn, (4.69)
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where the integer n imposes the periodicity with 2π and β0,n is the corresponding
propagation constant. Under this condition, there is no net power transmitted
towards the terminal plane θ1 by the particular mode. The circumstance may be
interpreted as a transmission zero between the considered mode at the terminal plane
θ1 and TEM mode at terminal plane θ3. Condition (4.69) provides the counterpart
of reactance compensation, that is the compensation of the radiation resistance.

Other, than for the TEM mode considered in Sec. 4.1, the propagation constant
of a transverse magnetic or electric mode in a circular waveguide is determined by
its cutoff frequency according to

β =
1

c0

√
ω2 − ω2

1, ω > ω1. (4.70)

Inserting in (4.69) yields the corresponding frequencies at which the transmission
zeros occur,

ω0,n = ω1

√
1 +

(
πnc0

ω1l0

)2

. (4.71)

The subsequent examples related to the dimensions of the SPL cutoff tubes, con-
sidering solely the case n= 1. Figure 4.26 shows the transmission power gain with
respect to the propagation of either the TE11 or TM01 mode being considered at the
terminal plane θ1, and TEM mode propagation at the remaining terminal plane θ3.
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Fig. 4.26. Transmission power gain between the circular and coaxial waveguide ports for the
simplified problem depicted in Fig. 4.25(b), taking into account (a) the TE11 and (b) TM01 mode
propagation at the terminal plane θ1 while the remaining terminal plane θ3 considers the TEM
mode propagation, each. In dashed black, the cutoff frequency f1 of the corresponding circular
waveguide mode with radius r1 = 65 mm. In dashed gray the transmission zeros given by (4.71).
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Equation (4.71) precisely describes the transmission zeros for the simplified problem
as shown by the dashed gray lines. The smaller the distance l0 between the antenna
and short-circuit, the larger is the corresponding frequency at which ideally no rf
power is transmitted.

From (4.71), one may wrongly conclude that by sufficiently reducing the distance
l0 of a cutoff tube as depicted in Fig. 4.25(a), transmission zeros can be removed
from any finite frequency range given by concerned HOMs. This is not observed for
the original problem of a cutoff tube with tapered waveguide as shown in Fig. 4.27
by means of the transmission power gain for the same mode configuration as before.
The transmission power gain shown in Fig. 4.27(a) refers to the coupling between
the TE11 and TEM mode, respectively, at the terminal planes θ1 and θ3, and reveals
transmission zeros at much lower frequencies in comparison to the previous case
in Fig. 4.26(a). In particular, for the considered range of l0, all transmission zeros
appear below the cutoff frequency of the waveguide section with smaller radius ω2.

A first attempt to describe the anticipated transmission zeros based on the above
observation is motivated by a frequency transformation of even-order elliptic filter
functions [31]. Let ω̃0,n be defined by the linear dispersion relation of electromagnetic
waves propagating in vacuum, ω̃ = c0β, and the requirement (4.69) according to

ω̃0,n =
πnc0

l0 +∆
. (4.72)

0 1 2 3

f [GHz]

−80

−60

−40

−20

0

sc
a
tt
er
in
g
[d
B
]

|s31|2

(a) TEM-TE11 transmission

0 1 2 3

f [GHz]

−80

−60

−40

−20

0

sc
a
tt
er
in
g
[d
B
]

|s31|2

l0 = 30mm
l0 = 50mm
l0 = 70mm
l0 = 90mm
l0 = 110mm
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Fig. 4.27. Transmission power gain between modes at the terminal planes θ1 and θ3 of the problem
depicted in Fig. 4.25(a). In dashed black, the cutoff frequencies f1 and f2 of the circular waveguide
sections with corresponding radii r1 = 65 mm and r2 = 40 mm. The dimensions refer to the cutoff
tube of the high-β SPL cavity on tuner side, where the tapering is elongated over a distance of
28 mm. Transmission zeros are highlighted by dashed gray lines.
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The quantity ∆ introduces an additional distance as illustrated in Fig. 4.25(a). It
accounts for the finite, nonzero transition region in which the considered waveguide
mode is partially able to propagate. Its value is a-priori not known but can be
approximated in different ways as later shown. To map the frequency ω̃ ∈ (0,∞)
to ω ∈ [ω1, ω2], at first, a normalization is introduced, which ensures the resulting
cutoff frequencies being reciprocal to each other. With the normalized frequencies
given by

Ω̃ =
ω̃√
ω1ω2

, (4.73)

Ω =
ω√
ω1ω2

, (4.74)

let the inverse transform be defined as

Ω̃
2

=

∣∣∣∣
Ω2 −Ω2

1

1−Ω2
1Ω

2

∣∣∣∣ =
Ω2 −Ω2

1

1−Ω2
1Ω

2 , (4.75)

with Ω ≥ Ω1 and 0 ≤ Ω1Ω ≤ 1. Note, by replacing the frequency variables with
their corresponding complex variables p= jΩ and p̃= jΩ̃, the transformation used
in [31] is restored. Equation (4.75) may also be expressed via the Poincaré hyperbolic
distance function [25, p. 11] as Ω̃

2
= ρ(Ω2, Ω2

1) with the pseudo-hyperbolic metric
being defined on the open disk of radius Ω−2

1 . Rearranging (4.75) for Ω, substitution
according to (4.73)–(4.74), and invoking the condition for field cancellation (4.72)
based on the propagation constant in free space yields the transformed transmission
zeros as

ω0,n = ω1

√
1 + (ω̃0,n/ω1)2

1 + (ω̃0,n/ω2)2
. (4.76)

It is important to note that the frequency map is entirely based on the observation
that transmission zeros of the present problem seem to appear between the cut-
off frequencies ω1 and ω2 given by the two apertures of the circular waveguide in
Fig. 4.25(a). In the limit ω2→∞ which applies if r2 =0, the expression (4.71) of the
short-circuit problem is restored. It was found that (4.76) well describes transmis-
sion zeros with respect to the TE11 mode as shown in Fig. 4.27(a). The correction
∆ is chosen such that the error of transmission zeros for all considered lengths l0 is
minimized. Table 4.1 shows the relative error of (4.76) by means of the SPL cutoff
tube with radii r1 = 65 mm, r2 = 40 mm and a tapered transition region of 28 mm
elongation [88]. The values are likewise found in Fig. A.2. The length l0 which
describes the longitudinal distance from the center of the HOM coupler port to the
position where the taper begins, is varied from 30 mm to 110 mm, where l0 = 30 mm
corresponds to the actual value of the prototype geometry. Note, the dimensions
apply to the cutoff tube of the high-β SPL cavity on the tuner side as sketched
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Table 4.1. Approximation error of transmission zeros in the cutoff tubes.
TE11 TM01 TM01

l0 [mm] ω0 [GHz] δω† [%] δω‡ [%] ω0 [GHz] δω§ [%] ω0 [GHz] δω§ [%]
30 2.1735 0.0003 – 1.9473 0.7153 – –
50 2.0633 0.0413 0.0413 1.8806 0.3673 2.8695 0.1560
70 1.9212 0.1302 0.1687 1.8429 0.0083 2.6143 4.8981
90 1.7965 0.0148 0.9626 1.8226 0.0746 2.4055 0.4501
110 1.7037 0.4035 1.2446 1.8110 0.0444 2.2402 0.5608

† Relative error of (4.76) using a correction of the distance ∆=−17 mm.
‡ Relative error of (4.81) using the model in Fig. 4.28(a) with Lt=6.6 nH and ∆=33.7 mm.
§ Relative error of (4.81) using the model in Fig. 4.28(b) with Ct=0.81 pF and ∆=14 mm.

by the test assembly in Fig. 3.37. The second and third columns of Table 4.1, re-
spectively, list the frequency of transmission zeros based on numerical simulations,
ω0, and corresponding relative errors provided by the approximation (4.76) if a dis-
tance correction of ∆=−17 mm is considered. Errors below 0.5 % reveal fairly good
approximations with respect to the TE11 mode. However, the analytic model fails
in the view of the TM01 mode since the associated frequency response significantly
differs between both mode types, as is apparent in Fig. 4.27.

The following more general approach for describing transmission zeros in cutoff
tubes is based on equivalent circuits involving lumped and distributed elements.
Referring to Fig. 4.25(a), the mode propagation or damping within the different
waveguide sections of constant radius r1, r2, with r1 > r2, is represented by corre-
sponding transmission lines of characteristic impedances Z1,2 and lengths l1,2. Here,
transverse electric and magnetic modes naturally behave very differently. The char-
acteristic impedances for a TM mode in the different waveguide sections may be
written as [29, p. 197]

Z1 =
Z0

ω

√
ω2 − ω2

1, (4.77)

Z2 = j
Z0

ω

√
ω2

2 − ω2, if TM mode, (4.78)

taking into account (4.66) for the considered frequency range. The quantity Z0

refers to the impedance of free space given by
√
µ0/ε0. Regarding TE modes, an

equivalent expression applies to the reciprocal of characteristic impedance, hence,
to the admittance which may be written for the individual waveguide sections as

Y 1 =
Y0

ω

√
ω2 − ω2

1, (4.79)

Y 2 = j
Y0

ω

√
ω2

2 − ω2, if TE mode, (4.80)
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where Y0 = 1/Z0. Furthermore, the tapered transition region in Fig. 4.25(a) can be
approximated by a lumped element as well as a length correction ∆ applied to the
neighboring transmission lines in order to account for the electric size of the transi-
tion. The procedure is identical to the characterization of discontinuities in coaxial
waveguides as extensively treated Sec. 4.1, with the difference that the characteris-
tic impedances or admittances in (4.77)–(4.80) are frequency dependent. By testing
various microwave networks on their equivalence to the tapered circular waveguide
disregarding the coaxial line in Fig. 4.25(a), it was found that the transition re-
gion behaves for the TE11 mode as a shunt inductance but for the TM01 mode as a
shunt capacitance, each within the frequency range given by (4.66). Consequently,
the scattering properties of the tapered circular waveguide may equivalently be de-
scribed by the microwave networks shown in Fig. 4.28. The lumped elements and
length corrections are derived by fitting the simulated rf reflection s11 at the termi-
nal plane θ1 with the expression (4.7) over the predefined frequency range. With
respect to the previously introduced dimensions applying to a cutoff tube of the
high-β SPL cavity, the approximation error provided by the equivalent circuits is
below 2× 10−2 as measured by real and imaginary parts of the reflection coefficient
assuming (4.66). Since the particular mode is asymptotically damped in the waveg-
uide section of smaller aperture as a consequence of (4.66), the transmission line
given by Z2, l2 may be imagined to be infinitely long, which corresponds to a termi-
nation by its characteristic impedance. On the basis of these equivalent circuits, the
necessary and sufficient condition for a transmission zero being present in a cutoff
tube according to Fig. 4.25(a) is a vanishing input impedance Zin,1 at the position
of the probe antenna. Thus, the corresponding frequencies may be written as

ω0,n = arg{Zin,1(jω) = 0 : l1 = l0 +∆}, (4.81)

where n accounts for the periodic behavior of the transmission line. In analogy to

Z1, l1

Z2jωLt

l2→∞

Zin,1

(a)

Z1, l1

Z2
1

jωCt

l2→∞

Zin,1

(b)

Fig. 4.28. Equivalent circuits describing (a) the TE11 and (b) TM01 mode propagation through the
tapered circular waveguide as sketched in Fig, 4.25(a) disregarding the coaxial line. Both models
are limited to the frequency range given by (4.66). Within the waveguide section of larger aperture,
the input impedance Zin,1 is defined on an internal terminal plane at given distance from the taper
while the waveguide section of smaller aperture is matched at the terminal plane θ2.
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the previous approach based on frequency transformation, the problem (4.81) may
be reformulated for the TE11 mode as

Ω̃
2

h = ρ(Ω2, Ω2
1), (4.82)

and for the TM01 mode as
Ω̃
−2

e = ρ−1(Ω2, Ω2
1), (4.83)

taking into account the frequency normalization given by (4.73)–(4.74). Those Ω =
Ω0,n which solve (4.82) or (4.83) are the corresponding normalized frequencies
being associated with transmission zeros. As previously introduced, ρ is the pseudo-
hyperbolic distance function defined as

ρ(Ω2, Ω2
1) =

∣∣∣∣
Ω2 −Ω2

1

1−Ω2
1Ω

2

∣∣∣∣ =
Ω2 −Ω2

1

1−Ω2
1Ω

2 . (4.84)

Its square root and the reciprocal of its square root as functions of Ω are shown in
solid black in Fig. 4.29. Unlike (4.75), the left hand sides of (4.82) and (4.83) do not
only depend on the distance l0 and order n which is related to the periodic behavior
of the transmission line. They are also functions of Ω according to

Ω̃h =

(
1

Ω1

− 1

Y0
√
ω1ω2Lt

√
1−Ω2

1Ω
2

)
tan β(l0 +∆), (4.85)

Ω̃
−1

e =

(
Z0

√
ω1ω2Ct

√
1−Ω2

1Ω
2 −Ω1

)
tan β(l0 +∆), (4.86)

with the propagation constant β as defined in (4.70). Thus, the idea of a frequency
transformation as previously considered for the TE11 mode, is generally not appro-
priate. Expressions (4.85) and (4.86) are likewise plotted as functions of Ω in 4.29(a)
and 4.29(b), respectively, with the distance l0 being varied from 30 mm to 110 mm.
The intercepts of black and blue curves in Fig. 4.29 provide the normalized frequen-
cies Ω0,n, hence the frequencies of transmission zeros, ω0,n, after applying (4.74).
The corresponding relative approximation errors listed in Table 4.1 are below 1 %
except for two cases. Although, slightly less precise than (4.76) for the TE11 mode
propagation, the calculation of transmission zeros on the basis of equivalent circuits
as shown in Fig. 4.28 yields a more general approach being suitable for different
mode types. It allows the study of conditions under which transmission zeros disap-
pear without the need of extensive numerical simulations. Referring to the example
of the SPL cutoff tube, the transmission zeros with respect to the TM01 mode prop-
agation vanish if the capacitance Ct provided by the taper is reduced to half while
placing the probe antenna at a distance l0 = 15 mm away from the taper. Although
very abstract, particularly the requirement on Ct, these considerations may provide
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Fig. 4.29. Expressions (4.85) and (4.86) as functions of the normalized frequency Ω, with the
distances l0 being varied. The dashed blue lines represent poles of these functions. In dashed
black, the normalized cutoff frequencies Ω1 and Ω2 =Ω−1

1 resulting for the cutoff tube described
in Fig. 4.27, with r1 = 65 mm and r2 = 40 mm. In solid black, root expressions of the pseudo-
hyperbolic distance function ρ according to (4.84). Gray circles refer to normalized frequencies of
transmission zeros as simulated. The intercepts of black and blue curves provide the normalized
frequencies of transmission zeros predicted by the equivalent circuit models according to Fig. 4.28
and derived conditions (4.82)–(4.83). In accordance with Table 4.1, the parameters accounting for
the taper of lt=28 mm length are (a) Lt=6.6 nH, ∆=33.7 mm and (b) Ct=0.81 pF, ∆=14 mm.

general guidance for the design of cutoff tubes.
Finally, Table 4.2 compares the available cutoff tubes of high-β SPL cavities as

designed by CEA Saclay [19, pp. 80]. Geometrical parameters such as the radii
r1, r2 of the circular waveguide sections, taper elongation lt, or distance between the
coaxial line and taper, l0, have significant impact on the frequency of transmission
zeros in the considered cutoff tube. In addition, variations of the antenna shape
provided by the HOM coupler may cause slight frequency shifts. The listed fre-
quency ranges in Table 4.2 result from different HOM coupler designs considered
in Chapter 5. It is important to note that transmission zeros with respect to the

Table 4.2. Transmission zeros of the high-β SPL cutoff tubes.
cutoff tube r1 r2 lt l0 ω0

† ω0
‡

[mm] [mm] [mm] [mm] [GHz] [GHz]
tuner side 65 40 28 30 2.18–2.19 1.85–1.96
fundamental mode coupler side 70 40 34 59 1.93–1.94 1.68–1.74

† TE11 mode propagation through the circular waveguide.
‡ TM01 mode propagation through the circular waveguide.
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TM01 mode propagation occur for both cutoff tubes at frequencies sufficiently far
away from the TM011 frequency band of the cavity. Consequently, the damping of
corresponding potentially dangerous HOMs, as listed in Table 3.8, is expected not
to be compromised by field cancellation phenomena within the cutoff tubes.

4.3 Design Procedure of Coaxial Filters

The remaining part of this chapter focuses on the rf design of coaxial HOM couplers.
The design process is understood as synthesis, that is the systematical approach to
approximate a given frequency response by an appropriate microwave structure,
typically being a combination of those components discussed in Sec. 4.1. It should
not be confused with the design of HOM couplers, which is a more general task
involving inter alia the thermal and structural behavior and will be assessed in
Chapter 5. Thus, the filter synthesis constitutes the first step towards designing an
HOM coupler. It is important to note that there is no generally applicable theory
on the synthesis of coaxial microwave structures with multiple discontinuities. Little
work has been published in this field, mostly based on frequencies of the fundamental
mode and some HOMs [24, 101, 118]. This section presents initial studies towards an
insertion loss method for coaxial high-pass filters given a transfer or corresponding
filter function. To begin with, the procedure developed by Haebel and Gerigk [101]
is reviewed. Results of Secs. 4.1 and 4.2 are used to point out limitations of this
approach as well as some misinterpretations in this work.

4.3.1 Review of the Coupler Design by Haebel and Gerigk

The design procedure reported by Haebel [24] is a result of various ideas that had
been developed and tested in the scope of HOM couplers for LEP and HERA. Later,
the approach was refined by Gerigk [101], and eventually led to the HOM cou-
plers being used for LHC cavities. The designs are closely related to synchronously
tuned reactance-coupled λ/2 resonators [113, pp. 528]. Other than the insertion loss
method, it is not a transfer function that is taken as the base but rather distinct
frequencies associated with the fundamental mode, ω0, and concerned higher-order
modes denoted as ω1, ω2, . . . ωk. The design procedure relies on the principal of re-
actance compensation over a possible large frequency range given by the HOMs of
concern. It is illustrated in the following with the help of microwave networks shown
in Fig. 4.30, disregarding the transmission behavior for the fundamental mode.

The antenna, either a probe or loop, is described by a current or voltage source
which provides internal impedance seen left from the terminal plane θ1. Note, the
original references, such as [24], only consider a reactance. However, such models
miss the definition of an internal resistivity to allow power flow as extensively dis-
cussed in Sec 4.2.3 by means of the probe antenna. Although the conditions under
which power is extracted from a resonant mode must be rethought when introduc-
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ing a source resistance R1, the actual design procedure remains the same due to the
focus on the reactive component. Referring to the microwave networks in Fig. 4.30,
the maximum power transmission to the load R2 occurs, if the source susceptance
ωCs or reactance ωLs is compensated while matching the resistance seen from the
terminal plane θ1 towards the load with the source resistance R1. The necessary
impedance transformation can be achieved by a transmission line in combination
with the shunt inductance Lp, however, only in the vicinity of distinct frequencies.
This condition is sometimes referred to as resonant coupling. The shunt induc-
tance Lp is considered of necessity in the view of coaxial filters. As discussed in
Sec. 4.1.1 the connection between inner and outer conductor result in such an in-
ductive behavior. In [24], some equivalent circuits further consider series and shunt
capacitances which likewise have their practical meaning in the coaxial filter but the
principle of resonant coupling is the same. It is important to note that the sources
together with the internal impedance are, in general, fictive models to represent
the antenna. Depending on whether a current or voltage source is considered, the
equivalent circuit is referred to as electric or magnetic coupling, respectively [101].
However, this interpretation is somewhat misleading since the rf device provides a
unique frequency response. In the presence of mode coupling into a waveguide or
resonator, the impedance provided by the source in Fig. 4.30 acts as being connected
in shunt following the considerations in Sec. 4.2.3 with the equivalent circuit shown
in Fig. 4.23(a). This is equally achieved by replacing current and voltage source
respectively by an open or short.

A weakness of the design procedure lies in the assumption that reactance com-
pensation can be achieved by merely adjusting the filter part of HOM couplers.
According to Sec. 4.2, the excitation of evanescent modes associated with reactive
components is to some extent influenced by the waveguide or cavity geometry. The
most obvious example is the observation of transmission zeros in cutoff tubes as dis-

E1

R1 Z1, l1

jωLp R2

1

jωCs

θ1 θ2

(a)

E1

R1 jωLs Z1, l1

jωLp R2

θ1 θ2

(b)

Fig. 4.30. Circuit models to describe mode coupling via (a) probe or (b) loop antenna. To maximize
the power transmitted to the load R2, the capacitive or inductive reactance of the source must
be compensated while the resistance seen from the terminal plane θ1 towards the right must be
matched to the source resistance R1. The required impedance transformation is realized by a
transmission line in combination with the shunt inductance Lp for distinct frequencies.
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cussed in Sec. 4.2.4. Consequently, the idea of reactance compensation and derived
resonant coupling is not sufficient to elaborate a design procedure for HOM couplers.
It is the matching between the source and load resistance R1, R2, via impedance
transformation which completes the design strategy.

A practical difficulty results from the fact that the frequencies of maximum power
transmission usually do not fit the spectrum of concerned HOMs [24]. More control
of the passband behavior can be achieved using multiple transmission lines sepa-
rated by shunt inductances as proposed in [101]. The obtained network shown in
Fig. 4.31(a) disregarding the capacitances C ′ν corresponds to a coaxial waveguide
structures which is essentially a cascade of the components discussed in Sec. 4.1.1
and 4.1.4. The approach is motivated from the band-pass characteristics of induc-
tively coupled series resonators as depicted in Fig. 4.31(b). To achieve the desired
behavior of series resonators in the microwave network, each transmission line in be-
tween shunt inductances is considered as λ/2 resonator terminating in a short [34,
p. 26]. The latter implies that the impedance of each shunt arm is much smaller
than the total impedance connected in parallel to it. Figure 4.32 illustrates the
approximation between lumped circuit and transmission line model by means of an
arbitrarily chosen example using three inductively coupled resonators. According
to Sec. 2.1.5, the periodic behavior of transmission lines leads to infinitely many
passbands, with the first being most relevant for the design of HOM couplers. Each
further coupled resonator provides a new resonance in the passband of the resulting
filter. However, for feasibility, coaxial HOM in superconductive applications are
typically limited to two or three stages. The main problem when optimizing the rf
design remains to fit the frequencies of maximum power transmission to the given
HOM pattern, which is often characterized by conflicting goals.

Given the specific topology of a coaxial guide according to the equivalent circuit
in Fig. 4.31(a), a systematic design procedure can be developed. Note, all con-
siderations are solely focused on the transmission of HOMs, hence the passband
characteristics of the corresponding coupler. A proposal for such a design procedure

( ) ( ) ( )

jωM1 jωM2

Z1, l1

1

jωC ′
1
Z2, l2

1

jωC ′
2

Zn, ln

1
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n

θ1 θ2

(a)

jωM1 jωM2

jωL1

1

jωC1 jωL2

1

jωC2 jωLn

1

jωCn

θ1 θ2

(b)

Fig. 4.31. (a) Band-pass filter using inductively coupled series resonators, with the capacitances
being optional. (b) Lumped network to approximate the band-pass characteristics of (a).
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Fig. 4.32. Band-pass consisting of three inductively coupled resonators realized by lumped elements
or λ/2 transformers assuming C ′i=∞ according to Fig. 4.31. (a) Transmitted power gain between
the terminal planes θ1 and θ2, and (b) real part of the normalized input admittance at the terminal
plane θ1, both as functions of the normalized frequency Ω = ω/ω1, where ω1 = 1/

√
L1C1. The

example is calculated for the values L1 =L2 =L3 = 10 H, C1 =C2 =C3 = 0.1 F, M1 =M2 = 10 H
and reference resistances at the terminal planes θ1 and θ2 of R1 = 7 Ω and R2 = 1 Ω, respectively.
Lengths of the transmission lines correspond to half the wavelength at ω1 while their characteristic
impedances satisfy Z1 =Z2 =Z3 =R1.

is reported in [101] and briefly reflected in the following. Let the reference frequency
ω∞ be defined as the geometric mean of the lowest and highest considered HOM
frequency according to

ω∞ =
√
ω1ωk. (4.87)

This will be the design frequency for each individual resonator. Furthermore, the
bandwidth of the anticipated band-pass filter is defined as

∆ω = |ωk − ω1|. (4.88)

Coupled resonators are characterized by a coupling factor k which is given as ratio
of the bandwidth and center frequency, that is

k =
∆ω

ω∞
. (4.89)

It relates the shunt and neighboring series inductances in Fig. 4.31(b) according to

k
√
LνLν+1 = Mν , ν = 1 2, . . . n− 1. (4.90)
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Weak coupling, that is k � 1, allows for the assumption that each transmission line
in Fig. 4.31(a) terminates approximately in a short, and yields the equivalence be-
tween series LC resonator and λ/2 transformer. Strictly speaking, each transmission
line terminates in small impedance dominated by the particular shunt inductance.
Consequently, small corrections of the transmission line lengths are required. The
impedance transformation for the νth shorted transmission line in the vicinity of the
design frequency ω∞ may be written as [101, p. 25]

Z in,ν(ω) = jZν tan

(
ωπ

ω∞

)

ω≈ω∞

' jZν

(
ωπ

ω∞
− π

)
, (4.91)

where the characteristic impedance Zν is given by the predefined cross section of
the particular coaxial waveguide segment according to (2.67). A weak formulation
is used to solve the lumped circuit elements in Fig. 4.31(b). It requires equal slope
between the input reactance of the terminated transmission line and corresponding
lumped circuit resonator at design frequency. For the first loop providing a resonator
with inductances L1,M1 and the capacitance C1, the condition is expressed as

∂

∂ω

(
jω(L1 +M1) +

1

jωC1

)∣∣∣∣
ω=ω∞

=
∂

∂ω
Z in,1(ω)

∣∣∣∣
ω=ω∞

. (4.92)

Similar expressions are obtained for the remaining loops of the ladder network de-
picted in Fig. 4.31(b). It is important to note that such weak conditions proposed
in [101, p. 25] do not imply approximation between transmission line and lumped
circuit model. Merely, a similar passband behavior is realized due to the identical
resonant frequency ω∞ considered in both models. Alternatively to (4.92), the reac-
tance of the transmission line and corresponding lumped circuit resonator may be
equated with each other at design frequency instead of their derivatives, in order
to ensure approximation at least in a single frequency point. Evaluating (4.92) and
corresponding conditions for the other loops of the ladder network yields a system
of equations which satisfy

2ω∞(L1 +M1) = Z1, (4.93)
2ω∞(Lν+1 +Mν +Mν+1) = Zν+1, ν = 1, 2 . . . n− 2 (4.94)

2ω∞(Ln +Mn−1) = Zn. (4.95)

Together with (4.90) it becomes a non-linear system of equations, in general, pro-
viding multiple solutions, some of which will not be feasible. Once a solution is
found, the remaining capacitances Cν are obtained via the resonant frequency ω∞
and total inductance of each resonator. A subsequent manual tuning of the cir-
cuit elements is mandatory to adjust the frequency response of the band-pass filter
before calculating the lengths of transmission lines. The latter again is based on
the equivalence between the input reactance of transmission line and lumped cir-
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cuit resonator at design frequency. Note, the assumption of weak coupling permits
each resonator to be considered independently. In the process of finding appropriate
transmission lines, series capacitances C ′ν as shown in Fig. 4.31(a) may optionally
be added to reduce their lengths. Finally, the coaxial waveguide filter is constructed
from the specific transmission line model. The shunt inductances Mν are realized
as fixings between the inner and outer conductor, and adjusted by the non-linear
fitting approach described in Sec. 4.1.1. Similarly, the optional series capacitances
C ′ν which correspond to interruptions of the inner conductor in the coaxial guide,
may be adjusted according to the procedures discussed in Sec. 4.1.2.

Although the fundamental mode will, in general, be outside the passband of the
above described band-pass filter, its rejection is usually not sufficient in practice,
particularly not for superconducting applications. A band-stop filter is added to
achieve the desired suppression, typically realized as a mid-series ladder with the
resonant frequency ω0 given by the fundamental cavity mode. The so-called notch
filter is either implemented as open-loop antenna as shown in Fig. 4.33, or by replac-
ing one of the shunt inductances Mν in Fig. 4.31 with a series LC resonator such
that

ω0 =
1√
L0C0

, (4.96)

jω∞L0 +
1

jω∞C0

= jω∞Mν . (4.97)

The latter option yields coaxial filter structures of the type discussed in Sec. 4.1.7.
It is important to note that the design procedure according to Haebel and Gerigk

provides merely an initial geometry due to the various assumptions made in this
approach: (i) The frequency pattern of the concerned HOM is reduced to a single

cavity

or

wave-
guide

coaxial line

Z1,l1 Z2,l2 Z3,l3 Z4,l4
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Fig. 4.33. Coaxial HOM coupler with an open-loop antenna to realize band-stop behavior at
the fundamental mode frequency. (a) Longitudinal cross-sectional view of the waveguide filter
and (b) equivalent circuit. The combination of shunt inductance M , series capacitance C1, and
transmission lines yields a band-pass filter adjusted to the concerned HOM frequency pattern. The
shunt capacitance C2 is introduced by the ceramic window at the terminal plane θ′2.
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frequency ω∞ and coupling factor k to define the passband characteristics. At-
tenuation limits are not involved. (ii) The band-pass and band-stop filter for the
high-order modes and fundamental mode, respectively, influence slightly. This in-
teraction is not controlled during the design process. (iii) The resulting lengths lν
are often too large for realistic implementations such that the assumption of weak
coupling may get lost. (iv) As later discussed in Sec. 4.3.2, the combination of
shunt inductance and mid-series ladder to provide a band-stop filter compromises
the overall filter characteristics in both the stopband and passband. The resultant
attenuation loss or increase within these frequency bands is not taken into account.
(v) Weak conditions such as (4.92) do not imply approximation between the trans-
mission line and lumped circuit model shown in Fig. 4.31. To conclude, subsequent
rf design optimizations using numerical simulations are an essential addition to the
method described above.

4.3.2 Topological Considerations

The design procedure of the previous section underlies a particular topology of the
coaxial filter structure and associated equivalent circuit, that is a cascade of shunt in-
ductances and transmission lines in combination with a mid-series ladder. Based on
the observations in Sec. 4.1, a microwave filter which is given by a coaxial waveguide
housing multiple obstacles, thus, providing various discontinuities, may equivalently
be described by a generalized network as sketched in Fig. 4.34. It considers al-
ternately uniform transmission lines and lumped lossless two-ports connected in a
chain. Each discontinuity excites evanescent modes which correspond to the lumped
lossless networks. Some of the evanescent modes will be able to extend their influ-
ence well to the neighboring obstacles. An example is the mid-shunt ladder between
inductive posts, which is a result of the coupling between evanescent multipolar
modes. Surprisingly, even in this case, the equivalent circuit is found to be a cas-
cade of lumped lossless two-port networks and transmission lines in an alternating
order according to Sec. 4.1.6. It is important to note that the topology depicted
Fig. 4.34 is a result of the coaxial structures investigated in Sec. 4.1. It is by no means
proven to be generally applicable. For instance, there has not yet been a study of the
coupling between more than two inductive posts located relatively closely to each
other so that evanescent modes may extend their impact over all discontinuities.

LLN#1 LLN#2 LLN#N

Z1, l1 Z2, l2 ZN , lN ZN+1, lN+1

Fig. 4.34. Cascade of lossless lumped networks (LLN) and unit elements in alternating order.
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Consequently, when combining the various discontinuities considered in Sec. 4.1, a
sufficient distance must be assumed so that the particular equivalent circuits remain
valid. Taking this restriction into account, the microwave structures introduced in
Sec. 4.1 cover all basic reactive components which are important for the construction
of high-pass filters on the basis of ladder networks.4 The shunt inductance shown in
Fig. 4.35(a) is realized as a fixing between the inner and outer conductor according
to Sec. 4.1.1. The two-port network provides a transmission zero at the frequency
of zero as the admittance function of the shunt arm provides a pole here. Likewise,
the series capacitance shown in Fig. 4.35(b) is characterized by a transmission zero
at vanishing frequency as the impedance function of the series arm provides a pole
here. It is realized by a capacitive gap interrupting the inner conductor of the coax-
ial guide according to Sec. 4.1.2. The mid-series ladder shown in Fig. 4.35(c) may

jωL

(a)

1

jωC

(b)

jωL
1

jωC

(c)

jωL

1

jωC

(d)

Fig. 4.35. Fundamental lumped two-port networks to construct high-pass filters in ladder con-
figuration. The shunt inductance (a) and series capacitance (b) provide a transmission zero at
the frequency of zero, each. The mid-series ladder (c) and mid-shunt ladder (d) reveal a conju-
gated complex pole pair of the shunt admittance or series impedance function, respectively. The
associated transmission zero occurs at ω0 = 1/

√
LC, in both cases.

be realized by an inductive post in combination with a capacitive gap between inner
and outer conductor of the coaxial guide. A combined consideration with shunt in-
ductances as in Sec. 4.1.7 is not mandatory for the existence of a mid-series ladder.
In contrast, the mid-shunt ladder shown in Fig. 4.35(d) occurs only in combina-
tion with enclosed shunt inductances regarding the coaxial microwave structure of
Sec. 4.1.6. Note, an explicit implementation of a parallel LC resonator along the
inner conductor of a coaxial line as proposed in [119] is not reasonable since shunt
inductances are essential parts for the construction of high-pass filters. Similar to
the mid-series ladder whose shunt arm yields an admittance function with a conju-
gated complex pole pair, the mid-shunt ladder provides an impedance function of
the series arm with a conjugated complex pole pair. Consequently, the transmission
zero occurs in both cases at finite nonvanishing frequency.

4HOM couplers may be realized as high-pass or band-pass filters with respect to concerned
higher-order modes, or as band-stop filters with respect to the fundamental mode. For the same
filter order, the first option yields the simplest of all networks with least number of lumped elements.



4.3 Design Procedure of Coaxial Filters 163

The literature offers numerous realizations of rational high-pass filter functions by
lossless lumped networks [32–34]. It is important to note that these realizations only
conditionally and approximately apply to coaxial microwave structures due to the
presence of transmission lines in their equivalent circuits represented by Fig. 4.34.
The shorter the transmission lines, the better is the approximation by a pure lossless
lumped network. Nevertheless, the distance between discontinuities in the coaxial
waveguide must be chosen sufficiently large so that equivalent circuits of individual
sections remain valid. The following topologies of coaxial microwave filters and
associated equivalent circuits are motivated by canonical realizations of rational
high-pass filter functions by means of lumped lossless ladder networks. The synthesis
of filter functions by lumped elements is outlined in Sec. 2.1.4 and further discussed
in subsequent sections. It is worthwhile to note that there is no nearly complete
theory on the synthesis of filter functions by general networks comprising lumped
and distributed elements [25, p. 18]. However, some classes of lumped distributed
ladder networks, mostly assuming unit elements of the same one-way delay, have
been investigated significantly, in [38, 120, 121] among others.

The simplest form of a lossless lumped high-pass filter is realized by alternately
applying shunt inductances and series capacitances in a chain [34, pp. 137, 151].
Each element introduces a transmission zero at the frequency of zero, thus incre-
ments the filter order by one. Typical examples are maximally flat filters also known
as Butterworth filters, or the Chebyshev filters with equiripple behavior in the pass-
band [31]. Approximate realizations of such rational filter functions may be achieved
by coaxial microwave structures of the type sketched in Fig. 4.36 together with the
equivalent circuits of each segment. Shunt inductances and series capacitances are,
respectively, realized as inductive posts and capacitive gaps according to the studies
of Secs. 4.1.1 and 4.1.2. Following the results of Sec. 4.1.6, subsequent fixings are

L1 C1 L2 C2 L3 C3 ... Cn

L1

L2

L3

(a)

jωLµ

µ=1, 2, ..., n

1

jωCν

ν=1, 2, ..., n

(b)

Fig. 4.36. (a) Cross-sectional and side view of a coaxial waveguide filter with high-pass charac-
teristics using shunt inductances and series capacitances. (b) Equivalent circuits of the inductive
posts and capacitive gaps, respectively, represented by a shunt inductance and series capacitance
two-ports. They occur in alternating order according to the discontinuities in the coaxial guide,
and are separated by transmission lines as illustrated in Fig. 4.34 to account for the waveguide
sections in between discontinuities. Subsequent inductive posts are rotated by ≥ 90 deg against
each other in the transverse plane in order to suppress coupling between them.
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rotated by αfix≥90 deg in the transverse plane in order to suppress possible coupling
which may introduce a finite inductance connected in parallel to the capacitances
Cν . Note, for a sufficiently large rotation angle αfix, the implied inductance becomes
infinite as deduced from Sec. 4.1.6. However, these empirical studies are based on
the presence of only two inductive posts. Indeed, the equivalent circuits in Fig. 4.36
apply well to the different sections of the microwave structure if it is terminated
after the capacitance C2, yielding the equivalent behavior of a fourth-order high-
pass filter. The structure could likewise start with capacitive gap before L1, to
increase the order to five. However, if more than two inductive posts are applied,
the frequency response, in particular, in the stopband is not well approximated
by considering merely series capacitances and shunt inductances between uniform
transmission lines for the equivalent circuit. Transmission zeros at finite, nonzero
frequency may occur despite a rotating angle of αfix = 90 deg between subsequent
inductive posts. Although they may be shifted to zero by increasing the angle to
αfix =180 deg, the stopband characteristics of the resultant microwave structure no-
tably differs from the asymptotic behavior of the anticipated rational filter function.
As a consequence, the equivalent circuit, if any, will be applicable only in the vicinity
of the cutoff frequency. In practice, appropriate filter functions should be restricted
to the fifth-order to allow for a synthesis using the topology shown in Fig. 4.36(a),
with the discontinuities being sufficiently represented by shunt inductances or series
capacitance according to Fig. 4.36(b).

The selectivity5 of high-pass filters can be further increased by placing some of the
transmission zeros at finite, nonvanishing frequency below the cutoff. An example
is the elliptic filter also known as Cauer filter which provides equiripple behavior
in both the stopband and passband [31] by placing all but one transmission zeros
at finite, nonzero frequencies. Two types of canonical realizations using lumped
ladder networks are very common in the literature for such filter functions, and
further discussed in the following with the focus solely on odd-order filter functions.
The reason is that the associated transfer function of even-order filter functions
according to (2.45) requires additional frequency mapping, so that an asymptotic
damping towards vanishing frequency is ensured. Note, this is a necessary condition
for a high-pass filter function to be realizable by lumped elements. Some frequency
maps are discussed, for instance, in [31].

The first canonical realization of odd-order high-pass filter functions with all but
one transmission zeros at finite, nonvanishing frequency, consists of shunt inductance
two-ports and mid-shunt ladders as shown in Figs. 4.35(a) or (d), respectively. The
elements connected in a chain occur in alternating order, with a shunt inductance
being located at either extremity. One of them yields the transmission zero at the
frequency of zero, and thus contributes to the filter order as stated by Property 2.1.2.

5Selectivity refers to the transition between stopband and passband. An increase in selectivity
means that the frequency region of the transition becomes smaller. It is closely related to the
quality factor of resonators (2.91).
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The remaining shunt inductances shift zeros of partial admittance functions as de-
scribed in Sec. 2.1.4 and referring to Property 2.1.4. The transmission zeros at finite,
nonvanishing frequency are introduced by the mid-shunt ladders, each increasing the
filter order by two according to Property 2.1.3. Such a lumped circuit realization
may be translated into a coaxial microwave structure as sketched in Fig. 4.37(a). It
is considered as an approximate realization of the original filter function within a
limited frequency range. The latter is defined by the validity range of the equiva-
lent circuits shown in Fig. 4.37(b) to represent discontinuities within the microwave
structure. Remarkably, the difference to the previous topology shown in Fig. 4.36
is given by the rotating angle αfix between subsequent inductive posts in the trans-
fer plane. Empirically, they must be rotated by αfix < 90 deg so that evanescent
multipolar modes excited by neighboring inductive posts may couple to each other.
Note, this coupling is essential for the mid-shunt ladder being an equivalent circuit.
In particular, its inductance L0ν shown in Fig. 4.37(b) is significantly influenced
by the rotating angle as Fig. 4.19(d) illustrates. Alternatively to the coaxial fil-
ter structure shown in Fig. 4.37(a), the chain may begin or end with a capacitive
gap interrupting the inner conductor of the coaxial guide. This would correspond
to a pure series capacitance yielding an additional transmission zero at vanishing
frequency. Consequently, the resultant high-pass filter is of even order.

The second canonical realization of odd-order high-pass filter functions with all but
one transmission zeros at finite, nonzero frequencies, consists of series capacitance
two-ports and mid-series ladders as shown in Figs. 4.35(b) and (c), respectively. The
elements connected in a chain occur in alternating order with a series capacitance
located at either extremity. One of them yields the transmission zero at vanishing
frequency, thus contributes to the filter order as stated by Property 2.1.2. The re-
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Fig. 4.37. (a) Cross-sectional and side view of a coaxial waveguide filter with high-pass character-
istics using mid-shunt ladders. (b) Equivalent circuits of inductive posts and capacitive gaps in
between inductive posts, respectively, represented by a shunt inductance two-port and mid-shunt
ladder. The lumped networks occur in alternating order according to discontinuities in the coaxial
guide and are separated by transmission lines as illustrated in Fig. 4.34 to account for the waveg-
uide sections in between discontinuities. Subsequent inductive posts are rotated by specific angles
against each other in the transverse plane in order to control the coupling of evanescent multipolar
modes, and thus the inductances L0ν .



166 4 Coaxial Couplers and the Synthesis of Filter Functions

maining series capacitances shift zeros of partial impedance functions as described
in Sec. 2.1.4 and referring to Property 2.1.4. The transmission zeros at finite, nonva-
nishing frequency are introduced by the mid-series ladders, each increasing the filter
order by two according to Property 2.1.3. Such a lumped circuit realization may be
translated into a coaxial microwave structure as sketched in Fig. 4.38(a). It is con-
sidered as an approximate realization of the original filter function within a limited
frequency range. The latter is defined by the validity range of the equivalent circuits
shown in Fig. 4.38(b) to represent discontinuities within the microwave structure.
The capacitive gaps along the inner conductor of the coaxial guide correspond to
the series capacitances while the characteristic transmission behavior of mid-series
ladders results from inductive posts attached to the inner conductor. They are sep-
arated from the outer one by small capacitive gaps. Similar as for the first topology,
the inductive posts are rotated against each other by αfix≥90 deg in the transverse
plane in order to suppress coupling between them. Alternatively to the coaxial filter
structure shown in Fig. 4.38(a), the chain may begin or end with an inductive post
connecting inner and outer conductor of the coaxial guide. This would correspond
to a pure shunt inductance yielding an additional transmission zero at vanishing
frequency. The resultant high-pass filter is of even order.

The topologies of Figs. 4.36, 4.37 and 4.38 cover by no means all conceivable im-
plementations of high-pass filters. They offer some conceptional ideas for coaxial
structures with a minimal number of elements or discontinuities. It is obvious that
microwave filters resting upon the third topology in Fig. 4.38(a) are not suitable
for superconducting HOM couplers since the coaxial waveguide is not filled with
solid dielectric material which can hold the electrically isolated pieces of the inner
conductor. In contrast, microwave filters based on either of the topologies shown
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Fig. 4.38. (a) Cross-sectional and side view of a coaxial waveguide filter with high-pass character-
istics using mid-series ladders. (b) Equivalent circuits of capacitive gaps along the inner conductor
and inductive posts separated from the outer conductor of the coaxial guide, respectively, rep-
resented by a series capacitance two-port and mid-series ladder. The lumped networks occur in
alternating order according to discontinuities in the coaxial guide and are separated by transmission
lines as illustrated in Fig. 4.34 to account for the waveguide sections in between discontinuities.
Subsequent inductive posts are rotated by 90 deg against each other in the transverse plane in
order to suppress coupling between them.
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in Figs. 4.36(a) and 4.37(a), are suitable candidates. Moreover, the explicit im-
plementation of mid-series ladders in coaxial structures is very much restricted by
reasonable dimensions of the inductive posts whereas both capacitance and induc-
tance of the equivalent mid-shunt ladder may be varied over wide ranges according
to the results of Sec. 4.1.6. It is worth noting that the microwave filters introduced
above should not be confused with reactance-coupled λ/2 resonators using addi-
tional capacitance to reduce their lengths [113, pp. 528]. Such structures provide
band-pass characteristics. They are not able to provide transmission zeros at finite,
nonvanishing frequency.

Furthermore, it is possible to combine mid-shunt and mid-series ladders by insert-
ing shunt inductance or series capacitance as demonstrated in [32, p. 243]. However,
such combinations are likewise unsuitable candidates for the design of HOM couplers
as they require solid dielectric material to hold electrically isolated pieces of the inner
conductor. Some prototypes discussed in Chapter 5 indeed provide combinations of
equivalent mid-shunt and mid-series ladders. However, additional fixings are intro-
duced or capacitive gaps removed to avoid floating elements. These arrangements, in
turn, compromise the filter characteristics which may be referred to as pseudo-high-
pass behavior. Two examples are depicted in Fig. 4.39. Though it is common for
designing HOM couplers, the implementation of a mid-series ladder in combination
with a shunt inductance is unsuitable for the synthesis of high-pass filter functions.
To illustrate this, the simplified circuit of Fig. 4.39(a) shall be considered. Its dual
network shown in Fig. 4.39(b) is less relevant for HOM couplers, but is mentioned
for completeness. The networks constitute the only two-combinations from the set
of basic two-ports given in Fig. 4.35, which reveal pseudo-high-pass characteristics.
Disregarding the transmission line, the network shown in Fig. 4.39(a) admits an
open-circuit impedance matrix whose elements may be directly derived from (2.27),
and are given as

z11 = z12 = z21 = z22 = jωL1
ω2
∞
ω2

0

(ω2
0 − ω2)

(ω2
∞ − ω2)

, (4.98)
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Fig. 4.39. (a) Cascade of a shunt inductance and mid-series ladder separated by a unit element
of characteristic impedance Z0 and length l0. (b) Cascade of a series capacitance and mid-shunt
ladder likewise separated by a unit element.
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where ω0 = 1/
√
L0C0 corresponds to the resonant frequency of the LC resonator

which causes a transmission zero while ω∞ = 1/
√

(L0 + L1)C0. Similarly, the net-
work shown in Fig. 4.39(b) without transmission line admits a short-circuit admit-
tance matrix whose elements may be derived from (2.26), and are given as

y11 = −y12 = −y21 = y22 = jωC1
ω2
∞
ω2

0

(ω2
0 − ω2)

(ω2
∞ − ω2)

, (4.99)

with the same expressions for ω0 and ω∞ as before. Note, the zeros of z21 and y21

generally equal the zeros of the scattering function s21, provided they are rational
as discussed in Sec. 2.1.4. Furthermore, from (2.49) and (2.50), it follows that
the common pole of the impedance and admittance functions in (4.98) or (4.99),
respectively, equals the frequency where s21 becomes unity. Hence, ω∞ corresponds
to the angular frequency of maximum power transfer. Such frequencies are also
referred to as transmission poles [26, pp. 196]. It goes without saying that

ω0 > ω∞. (4.100)

This property contradicts the natural requirement of high-pass filter functions, that
is all transmission zeros are above a desired cutoff frequency while the transmission
poles remain below. The presence of the transmission line does not change the
general validity of (4.100) as shown in Fig. 4.40 by means of an example for the
shunt inductance in combination with a mid-series ladder. However, ω∞ reduces with
increasing length of the transmission line while |s21(ω∞)| < 1, though ω∞ remains
as a local maximum for the power transfer. Referring to the transmission power gain
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Fig. 4.40. (a) Reflected and (b) transmitted power gain for an example of the circuit in Fig. 4.39(a),
with length of the unit element between shunt inductance and mid-series ladder being varied.
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depicted in Fig. 4.40(b), the microwave network of Fig. 4.39(a) provides a similar
behavior as a first order high-pass filter. This is seen from the asymptotic decrease
of 20 dB per decade towards lower frequencies below 100 MHz. For comparison, a
much simpler network merely consisting of a shunt inductance and series capacitance
yields already a second order high-pass filter. The mid-series ladder in Fig. 4.39(a)
introduces band-stop characteristics which, however, due to (4.100) reside in the
passband of the original intended first order high-pass filter. The consequence is
a sharp notch with very small bandwidth on one side and an increased insertion
loss in the passband of the resultant pseudo-high-pass filter on the other side. In
particular, the first property is often claimed as problematic for HOM couplers, since
bad tuning of the notch frequency may cause too much coupling to the fundamental
mode of the cavity, such that the coupler may overheat [115].

An example of pseudo-high-pass filters is the TESLA HOM coupler whose simpli-
fied equivalent circuit is shown in Fig. 4.41(a). Transmission lines are not included
in the model which is taken from [116, p. 101]. The capacitance C1 accounts for
the capacitively coupled feedthrough and C2 for the capacitance introduced by the
ceramic window. The transmission power gain as measured from the antenna to load
RL appears very similar to Fig. 4.40(b). Merely the order of the pseudo-high-pass
filter is increased, due to the presence of C1 which introduces another transmis-
sion zero at vanishing frequency. Nonetheless, condition (4.100) is conserved. The
same is true for the example shown in Fig. 4.33 and many other HOM coupler de-
signs [101, 114, 122]. Likewise, the prototypes considered in Chapter 5 suffer from
the combination of an equivalent mid-series ladder and shunt inductance. Note,
the reason for implementing mid-series ladders is the ease to tune their resonant fre-
quency while the shunt inductances are primarily a result of mechanical and thermal
needs. Therefore, the combination of both parts often appears to be inevitable.
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Fig. 4.41. (a) Simplified impedance model of the TESLA HOM coupler without transmission
lines [116, p. 101]. The impedance seen from the left terminal pair towards the load RL corre-
sponds to the input impedance seen from the antenna towards the coaxial output. (b) Generalized
impedance model for an HOM coupler. The high-pass characteristics is introduced by the lossless
two-port which may contain any of the elements shown in Fig. 4.35 as well as transmission lines
according to Fig. 4.34. The shunt capacitance of (a) is considered as part of the load.
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Another undesired behavior in the frequency response of coaxial HOM couplers is
due to the ceramic window used as a vacuum barrier [101, p. 41]. This part requires
particular attention in the rf design as it may significantly impact the passband be-
havior. Typically, the dielectric material provides relative permittivity numbers of
εr > 9, thus introduces a measurable capacitance between the inner and outer con-
ductor of the coaxial guide, and is accounted by a shunt capacitance in the equivalent
circuits as shown, for instance, in Figs. 4.41. However, a shunt capacitance is not
appropriate for the implementation of high-pass filters as it involves a transmission
zero at infinite frequency. Eventually, the shunt capacitance limits the bandwidth of
the filter according to the Bode-Fano Criterion [123], [41, pp. 267]. By referring to
Fig. 4.41(b), let the high-pass characteristics of the HOM coupler be described by a
linear, lossless, passive, and time-invariant two-port without specifying its internal
structure. It may contain any of the networks shown in Fig. 4.35 as well as unit
elements according to Fig. 4.34. The shunt capacitance associated with the ceramic
window is considered as part of the load. Assuming no other capacitance connected
in parallel, the Bode-Fano criterion states that

ˆ ∞
0

ln
1

|Γ (jω)|dω ≤
π

RC
(4.101)

where Γ (jω) is the reflection coefficient seen from the input of the filter towards the
load. Note, if the source impedance equals the reference impedance of the input port,
the reflection coefficient becomes the scattering function s11(jω) according to (2.40).
Condition (4.101) implies that the reflection cannot vanish over an arbitrarily wide
frequency range in the passband of the high-pass filter. A larger shunt capacitance
yields more reflection within the passband. Consequently, the goal must be to reduce
the capacitance involved by the ceramic window as much as possible.

4.3.3 Equivalent Circuit Synthesis

Using the results of Sec. 4.1 and the topological considerations of the previous sec-
tion, a first attempt of synthesis based on the insertion loss method is presented.
Unlike the design approach by Haebel and Gerigk resting on two frequencies being
independently treated in terms of transmission or rejection, a prescribed attenua-
tion over the entire interesting frequency range is taken as the basis. Thus, the
different treatments of the fundamental mode and high-order modes are covered by
an approximation problem. In addition to these specific frequencies, the anticipated
filter response may further be specified by attenuation limits for the stopband and
passband. Referring to Fig. 2.6, let a linear, lossless, passive, and time-invariant
two-port be inserted between a source and load characterized by the resistances R1

or R2, respectively. The first may correspond to a mode specific radiation resistance
of the antenna while the latter may be considered as the characteristic impedance of
the coaxial cable at the output of the HOM coupler. Then, the insertion loss given
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in units dB is calculated as [34, p. 63],

α = −10 log |s21(jω)|2 = −10 log 4
R1

R2

|H(jω)|2 (4.102)

using either the transmission power gain |s21(jω)|2 or, via (2.44), the squared mag-
nitude of the transfer function |H(jω)|2. Both are defined on the imaginary axis in
the complex s-plane introduced in (2.2). Note, the transfer function H(s) defined
in the entire complex plane is the analytic continuation of H(jω) similar to (2.53).
Likewise, s21(s) corresponds to the analytic continuation of s21(jω). Regarding the
frequency response of a high-pass, attenuation thresholds may be defined as [26,
pp. 197]

α(ω) ≥ αmin, if 0 ≤ ω ≤ ωs, (4.103)
α(ω) ≤ αmax, if ωp ≤ ω ≤ ∞, (4.104)

where ωs and ωp are the edge frequencies of the stopband or passband, respectively,
provided ωs < ωp and αmin > αmax. Figure 4.42 illustrates the insertion loss of a
transfer function with one transmission zero at finite, nonzero frequency, which cor-
responds to a conjugated complex pair, and two real zeros at ω=0. A more intuitive
expression provides the filter function D(s) according to the definition (2.45), since
its zeros and poles are entirely located on the imaginary axis, and correspond to
the frequencies at which the insertion loss becomes infinite or vanishes, respectively.
Referring to the example in Fig. 4.42, the filter function may be written as

D(s) = c1
(s2 + ω2

∞1)(s2 + ω2
∞2)

s2(s2 + ω2
01)

, (4.105)
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Fig. 4.42. Insertion loss of a high-pass filter as function of the angular frequency. The attenua-
tion limits in the stopband and passband according to (4.103) and (4.104) are highlighted. The
corresponding transfer function provides zeros at s = ±jω01 and twice at s = 0.
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where c1 is a real constant determined by the attenuation limit in the passband.
For the design of an HOM coupler, it is obvious to choose ω01 as the fundamental
mode frequency, so that the filter provides purely imaginary input impedance at this
frequency and ideally no power is transmitted. In contrast, the frequencies ω∞1 and
ω∞2 may be located in the vicinity of those HOMs which are particularly of con-
cern. The transition region which refers to the distance between the stopband and
passband edges ωs, ωp, depends on the attenuation thresholds according to (4.103)–
(4.104), and order of the rational filter function in (4.105). In other words, the
distance of the first concerned HOM from the fundamental mode frequency specifies
the filter order as the transition region reduces with increasing order. The theoretical
limit for the transition region at a given order is discussed in Sec. 4.3.4.

Following the procedure described in Sec. 2.1.4, the rational filter function is
realized as a lumped lossless network whose structure is directly seen from the poles
in (4.105). A suitable canonical network is shown in Fig. 4.43(a). Each real pole
or conjugated complex pole pair corresponds to a transmission zero of the network.
By referring to Property 2.1.3, the conjugated complex pole pair at s = ±jω01 is
introduced by the mid-shunt ladder with ω01 = 1/

√
L01C01. Prior to this, either

of the shunt inductance L1 or L2 is considered to shift the zero of the particular
partial admittance function to ω01 according to Property 2.1.4. The remaining
shunt inductance as well as series capacitance C2 yield the two transmission zeros
at s = 0 according to Property 2.1.2. Consequently, the high-pass filter is of fourth
order, as already expected from the filter function (4.105).

The idea is to approximate the frequency response of the derived lumped circuit
by a generalized network which likewise serves as an equivalent circuit for a coaxial
microwave structure. According to Sec. 4.3.2, shunt inductances, series capacitance,
and mid-shunt ladder may be associated with certain discontinuities in a coaxial
guide. However, they need to be separated by transmission lines in order to account
for the waveguide sections in between. The resultant generalized network of the
considered example is shown in Fig. 4.43(b). It may equally describe the scattering
properties of a coaxial filter with the topology shown in Fig. 4.37, assuming that

jωL1 jωL21

jωC01

jωL01

1

jωC2

(a)

Z1,l1 Z2,l2 Z3,l3 Z4,l4 Z5,l5

jωL1 jωL21

jωC01

jωL01

1

jωC2

(b)

Fig. 4.43. (a) Lumped network realization of the filter function D(s) as given in (4.105) with
one transmission zero at finite, nonzero frequency and two at zero. (b) Equivalent circuit of a
corresponding coaxial microwave structure as an approximate realization of the same filter function.
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the cascade of discontinuities terminates after the second capacitive gap which pro-
vides C02. Note, the inductance L02 becomes infinite due to the missing subsequent
inductive post. Finally, the methods discussed in Secs. 4.1.2 and 4.1.6 are used to
adjust all discontinuities in the coaxial guide. The characteristic impedance of each
waveguide section is specified beforehand. In particular, the characteristic imped-
ances of the first and last section must equal the source or load resistance R1, R2,
respectively, to not introduce additional reflections due to impedance mismatch.

In the current stage of development, no systematic correction of the lumped circuit
elements due to the presence of transmission lines is taken into account. This is
beyond the present treatise. Notwithstanding, towards vanishing distances between
discontinuities along the microwave structure, hence if l2, l3, l4 → 0, it is obvious
that such corrections become marginal. The question is, how small these distances
can be made, keeping in mind that the equivalent circuit must remain valid. To
answer this question, the impact of transmission lines on the frequency response of
some practical examples is analyzed in the subsequent section.

4.3.4 Elliptic Filters

Elliptic filters are based on rational functions with equiripple behavior in both the
stopband and passband. Given a minimum required insertion loss in the stopband
and a corresponding maximum acceptable value in the passband, equiripple rational
functions yield the steepest transition, thus, filters with largest selectivity. It is
important to note that this is true for rational functions of fixed order, being realized
with a finite number of lumped circuit elements. Analytical methods to involve
transmission lines in the realizations are limited to special cases, for instance, using
unit elements of a unique one-way delay [121]. Disregarding transmission lines in the
equivalent circuits of microwave filters as discussed in Sec. 4.3.2, the design procedure
introduced in the previous section will be drawn by means of two examples, each
providing quasi-elliptic filter characteristics. The impact of transmission lines is
studied independently of the synthesis in order to discuss the needs for eventual
improvements of the latter one.

As common in filter theory, the design originates from a normalized low-pass filter.
For this purpose, let the complex frequency s=σ+jω be transformed with respect
to the geometric mean of the stopband and passband edges according to

p = Σ + jΩ =

√
ωpωs

σ + jω
=

√
ωpωs

σ2 + ω2
(σ − jω), (4.106)

Note, the frequency mapping conserves the positive real characteristic of impedance
and admittance functions as discussed in Sec. 2.1.1. Though, strictly speaking not
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correct but more convenient, let the imaginary parts be related as

Ω =

√
ωpωs

ω
, (4.107)

keeping in mind that the positive jω axis maps onto the negative axis and vice
versa. The filter function of a normalized elliptic low-pass of odd order n admits the
form [31]

D(p) = c1p

(n−1)/2∏

ν=1

p2 +Ω2
∞ν

Ω2
∞νp

2 + 1
, (4.108)

where n = 3, 5, 7, . . .. Apart from the zero at vanishing frequency, the reciprocal of
each finite zero corresponds to a pole according to

Ω0ν =
1

Ω∞ν
. (4.109)

This relationship, also known from Zolotarev functions, is a necessary condition for
the equiripple behavior [34, p. 65]. That is all minima of attenuation in the stopband
are equal. Likewise, all maxima of attenuation in the passband are equal as shown
in Fig. 4.44 by means of a fifth-order elliptic low-pass filter. The zeros are calculated
by Jacobian elliptic sine functions as

Ω∞ν = k sn (2νK/n, k) , (4.110)

where K is the complete elliptic integral of the first kind with the modulus k = Ω−2
s ,
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Fig. 4.44. Characteristics of a fifth-order elliptic low-pass filter. (a) The pole and zero distribution
of the filter function D and corresponding transfer function H. (b) Sketch of the insertion loss
with equiripple behavior in both, the pass- and stopband. Characteristic frequencies of zero and
infinite attenuation Ω0ν , Ω∞ν , are highlighted together with the maximum acceptable attenuation
in the passband αmax and the minimum required attenuation in the stopband αmin.
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and may be written as

K = K(k) =

ˆ π
2

0

dϑ√
1− k2 sin2 ϑ

(4.111)

The factor c1 in (4.108) is specified by the maximum acceptable insertion loss in
the passband amax. Detailed design formulas as well as the minimum filter order to
satisfy the predefined attenuation threshold in the stopband, amin, are given in A.3.

Two examples will be considered in the following. The first one, a third-order
high-pass filter, is designed for an attenuation of at least 30 dB below 0.787 GHz.
Above the passband edge frequency of 1.191 GHz, a maximum attenuation of 3 dB
is tolerated. Note, the frequencies are chosen such that a transmission zero occurs
at 0.704 GHz while the maximum power transfer is achieved at 1.331 GHz. The first
corresponds to the frequency of the fundamental mode and the latter corresponds
to the frequency of the dominant higher-order mode, both with respect to the high-
β SPL cavity. With the same intention of having the minimum and maximum
power transfer at the particular mode frequencies, a fifth-order high-pass filter is
designed for an attenuation of at least 60 dB below 0.734 GHz. Above the passband
edge frequency of 1.276 GHz, a maximum attenuation of 3 dB is tolerated. For
convenience, the source and load resistances R1 and R2 are chosen to be equal. The
value of 90.24 Ω results from the characteristic impedance of a coaxial line according
to (2.67), provided the diameters of inner and outer conductor are 10 mm and 45 mm,
respectively. Note, these are realistic dimensions for SPL HOM couplers.

As in the previous section, the topology of the lumped network is directly seen
from the filter function given in (4.108). The frequency mapping according to (4.107)
merely swaps and scales the passband and stopband frequency regions. Transmission
zeros are transformed into transmission poles and vice versa. In particular, the pole
at infinity in (4.108) becomes a transmission zero at s=0. Figure 4.45 shows suitable
canonical network realizations of the third- and fifth-order elliptic filter function
D(p), with the normalized complex frequency variable being mapped onto the s-
plane according to (4.106). Each real pole or conjugated complex pole pair of D(s)
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Fig. 4.45. Canonical lumped network realizations of filter functions each of the form (4.108) taking
into account (4.106), i. e. the frequency map. (a) Third-order and (b) fifth-order high-pass filter.



176 4 Coaxial Couplers and the Synthesis of Filter Functions

corresponds to a transmission zero of the network. Only one shunt inductance yields
the transmission zeros at s = 0 while the mid-shunt ladder tuned by remaining shunt
inductances, causes the transmission zeros at finite, nonvanishing frequency. The
resulting lumped circuit parameters are summarized in Table 4.3 for both examples.
Calculations are outlined in Sec. A.4.

Table 4.3. Circuit parameters and approximations of different high-pass realizations.

parameter unit third-order elliptic filter† fifth-order elliptic filter‡
lumped equivalent lumped equivalent§

L1 [nH] 4.190 4.274 3.680 3.698
L01 [nH] 18.730 17.822 22.922 23.187
C01 [pF] 2.727 2.761 2.228 2.232
L2 [nH] 4.190 4.274 2.816 2.834
L02 [nH] 61.474 61.074
C02 [pF] 1.952 1.954
L3 [nH] 3.388 3.369

† Specifications are fs=0.787 GHz, αmin =30 dB, fp=1.191 GHz, αmax =3 dB, R1 =R2 =90.24 Ω.
‡ Specifications are fs=0.734 GHz, αmin =60 dB, fp=1.276 GHz, αmax =3 dB, R1 =R2 =90.24 Ω.
§ Element values are derived from two partial networks, each consisting of one mid-shunt ladder
and the neighboring shunt inductances according to Sec. 4.1.6.

By inserting a uniform transmission line at each dashed highlighted terminal pair
in Fig. 4.45, the resulting networks may be considered as equivalent circuits of coax-
ial microwave structures, provided the topology sketched in Fig. 4.37 applies. De-
pending on the length and characteristic impedance, the impact of such distributed
elements on the intended frequency response, that is the frequency response of the
original lumped network, can be very different. Some arbitrary examples are shown
in Fig. 4.46 assuming unit elements of identical characteristic impedance and length.
It is difficult to predict the impedance of each coaxial section in between the dis-
continuities of the microwave structure without numerical simulations. The studies
carried out in Sec. 4.1.6 reveal resistances which are generally below the analytical
value obtained from (2.67). One explanation might be reactance coupling between
the transmission line and adjoined inductive post as discussed in Sec. 4.1.5. From
Figs. 4.16(a) and 4.17(a), it may be deduced that the effective impedance of the
concerned unit elements approaches zero as their length becomes smaller.

In general, inserting unit elements in the lumped networks of Fig. 4.45 as described
before will cause larger attenuation at some frequencies within the passband such
that the intended threshold values αmax cannot be guaranteed anymore. Charac-
teristic in the presence of the distributed elements is the shift of transmission poles
towards lower frequencies, that is where the insertion loss becomes zero. As these
frequencies are typically associated with potentially dangerous HOMs, this property
becomes particularly important for the synthesis. Already a length of 5 mm and
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effective impedance of 40 Ω commonly considered for all unit elements in between
the lumped elements of the networks sketched in Fig. 4.45 cause the frequency of
transmission poles to be shifts by more than 100 MHz. This is shown in Fig. 4.46.

Figures 4.47 and 4.48 show approximate realizations of the third-order, or respec-
tively, fifth-order elliptic filter function as coaxial microwave structures. The designs
result from iterative simulations, with the geometry being gradually changed, so that
fitted circuit parameters approximately match the desired ones in Table 4.3. The
parameter model elaborated in Sec. 4.1.6 applies to one capacitive gap along the
inner conductor which is enclosed by two inductive posts. This matches exactly the
needs of the third-order filter whose equivalent circuit is well represented by (4.34)–
(4.36) together with the reciprocity condition (2.33). Consequently, lumped and
distributed elements of the equivalent circuit may be derived by solving the min-
imization problem (4.37). The corresponding values of the finalized geometry are
listed in the fourth column of Table 4.3. The distance between inductive posts is
much reduced to minimize the frequency shift of the transmission pole. Nonethe-
less, a remaining shift of 103 MHz is observed. The insertion loss is well within the
predefined limits. The minimum attenuation in the stopband is slightly lower than
for the lumped network but still above αmin = 30 dB.

For the fifth-order filter, it is proposed to consider each mid-shunt ladder combined
with adjoined shunt inductances individually. Each subunit consisting of a capacitive
gap along the inner conductor enclosed by two inductive posts is adjusted in order
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Fig. 4.46. Insertion loss as a function of frequency (a) for the third-order elliptic filter as shown in
Fig. 4.45(a), and (b) for the fifth-order elliptic filter as shown in Fig. 4.45(b). The corresponding
values of lumped elements are listed in the third or fifth column of Table 4.3, respectively. Different
modifications are compared, with equal unit elements being inserted at each dashed highlighted
terminal pair of the corresponding network. The length l of the unit elements is varied from zero
which means the original network, to 10 mm while the characteristic impedance is fixed to 40 Ω.
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Fig. 4.47. (a) Microwave structure to approximate the frequency response of a third-order elliptic
high-pass filter. (b) Attenuation as given by the lumped network in Fig. 4.45(a) in black and the
approximation by the coaxial structure in blue. Deviations are caused by transmission lines.

to approximate element values of the lumped circuit as shown in Fig. 4.45(b). The
fitted parameter values of both partial microwave structures are listed in the sixth
column of Table 4.3. The subsequent connection required additional modification
of the rotation angles between inductive posts in order to achieve the attenuation
curve as shown in Fig. 4.48(b). In comparison to the previous example, it was
found that the distance between neighboring fixings must be notably larger so that
the equivalent circuits of Fig. 4.37, representing the discontinuities in the coaxial
guide, remain valid as discussed in Sec. 4.3.2. The equiripple behavior is apparent.
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Fig. 4.48. (a) Microwave structure to approximate the frequency response of a fifth-order elliptic
high-pass filter. (b) Insertion loss as given by the lumped network in Fig. 4.45(b) in black and the
approximation by the coaxial structure in blue. Deviations are caused by transmission lines.
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However, the insertion loss is increased by approximately 5 dB in both the stopband
and passband. This example illustrated the limits of pure lumped networks for the
design of coaxial microwave filters. A rigorous consideration of generalized networks
involving lumped and distributed elements to ensure fair approximations of the
anticipated microwave structures is essential even for relatively short transmission
lines. For instance, the lumped elements of the equivalent circuit may be adjusted
in the presence of predefined transmission lines prior to any electromagnetic field
simulation and model fitting. This problem opens up another research topic not
further discussed here: the synthesis of filter functions by means of generalized
networks [38, 120].

4.4 Summary of the Results

The scattering properties of various discontinuities and obstacles in coaxial waveg-
uides have been investigated, some of which provide unexpected behavior that is
not documented in the literature. Particularly interesting for the implementation
of high-pass filters is the microwave structure discussed in Sec. 4.1.6, due to the
similarity of its equivalent circuit with a third-order canonical high-pass realization
providing a transmission zero at finite, nonvanishing frequency, together with the
fact that equivalent circuit parameters may be adjusted over a larger range of vari-
ation. Analyses of the mid-shunt ladder by means of analytical field calculations
remain for future work.

A first attempt has been demonstrated to develop a generally applicable system-
atic procedure to design coaxial filters given a filter or transfer function. Unlike the
design procedure developed by Haebel and Gerigk as outlined in Sec. 4.3.1, which
rests on reactance-coupled λ/2 resonators being often very bulky, the aforesaid ap-
proach suggests reducing waveguide sections between the discontinuities as much as
possible. The limit is given by the applicable range of the considered equivalent cir-
cuit, and might be very different as shown by the considered examples in Sec. 4.3.4.
The examples direct to a new class of compact coaxial HOM couplers with minimum
number of discontinuities. The design procedure requires further refinement, for in-
stance, more control of the transmission poles, the prediction of effective impedance
by which the transmission lines in the equivalent circuit are characterized, or the
synthesis of generalized networks consisting of lumped and unit elements.

Another aspect important for the rf design of HOM couplers involves the antenna
which is characterized by the radiation resistance and parasitic reactive components
associated with the excitation of evanescent modes. In contradiction to standard
literature about microwave engineering such as [29, 41], accessible tutorials on the
design of HOM couplers [24, 101, 118] discount the important role of the radiation
resistance, and thereby miss the possibility that the coaxial line may be mismatched
to the antenna. Furthermore, the filter component of an HOM coupler should not
be considered as a means of compensating the antenna reactance since the latter is
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partially dominated by discontinuities in the circular waveguide on which the coupler
is mounted. An example is the observation of field cancellation phenomena in cutoff
tubes as discussed in Sec. 4.2.4. Thus, a proper design is not only restricted to the
antenna shape of the HOM coupler but also involves careful considerations of the
entire coupling region. Depending on the design, this may involve the cavity, cutoff
tube, or eventual apertures. Referring to the cutoff tubes of high-β SPL cavities, it
has been shown that transmission zeros with respect to the TM01 mode propagation
occur at frequencies sufficiently far away from the TM011 frequency band. Certainly
this circumstance permits the use of coaxial HOM couplers. The next chapter
discusses various other design aspects on the way towards a first prototype.



5 Coupler Design and Testing

The previous chapter has dealt with fundamental design considerations of coaxial
HOM couplers with the focus on scattering properties. In addition to this initial
step, the particular design needs to optimize the multipacting behavior, allow the
heat load to be investigated, minimize the mechanical complexity, and maximize
the tolerances in order to keep the cost at a reasonable level. Due to this multi-
physical problem, the topological approach to a coupler design is quite heuristic,
and hence requires comparison with other topologies. Typically, the final design
results from several iterations accounting for the different physical aspects. This
chapter presents a total of six coaxial couplers applied to the high-β SPL cavity.
Initially, they are optimized in terms of rf characteristics, also taking into account
fundamental mechanical limitations. These designs were then assessed in terms of
robustness and tunability, external quality factors of concerned HOMs, heat load,
and multipacting. Simulation results for final designs are presented together with
measurements carried out on three prototypes. Subsequent analyses belong to what
is thought of as ‘standard’ considerations for the design of HOM couplers, and may
similarly be found, for example, in [16, 116].

5.1 Conceptional Designs and Prototypes

Similar to the characterization of low-pass filters by a set of effective parameters [34,
p. 137], coaxial HOM couplers may be classified by (i) the antenna type, (ii) the
order of complexity disregarding unit elements in the equivalent circuits, and (iii)
the number of transmission zeros at finite, nonvanishing frequency. The antenna
can be either of the types sketched in Fig. 4.21, i. e. probe (P), closed loop (CL),
or open-loop (OL). For example, the coupler denoted as P 05 02 combines a probe
antenna with a fifth-order coaxial filter providing two transmission zeros at finite,
nonvanishing frequency. Naturally, all couplers are intended to provide high-pass or
pseudo-high-pass characteristics. Hence, a differentiation by the filter kind is not
needed. Although the classification introduced above neither specifies attenuation
limits in the stopband and passband nor allows a specific topology to be derived for
the microwave structure, it is sufficient to distinguish between the design approaches
introduced in the following. They serve as a basis for all subsequent analyses whose
results for the most part are published in [117].
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5.1.1 Topological Approaches

Figure 5.1 provides a survey of the various design approaches referred to in this
chapter. It shows the longitudinal cross-section for each design, with the outer
conductor being merely represented by a boundary. A perspective view of the P 06 02
coupler is illustrated in Fig. 5.2 together with the set of geometrical parameters.
All designs underlie certain mechanical limitations and preferences: (i) The tube
diameter of the outer conductor is fixed to 45 mm according to the specifications of
the high-β SPL cavity. (ii) The diameter of the inner conductor should preferably
be large in order to facilitate the fabrication, particularly if the antenna requires
active cooling. That is, if a coolant such as liquid helium flows through it. However,
a larger cross section of the inner conductor reduces the space inside the tube,
and ultimately decreases the scope of shunt inductances associated with fixings as
studied in Sec. 4.1.1. Thus, a trade-off must be defined. (iii) The HOM couplers
are mounted on cutoff tubes using rotatable flanges. Referring to the drawing of
the high-β SPL cavity in Fig. A.2, the distance between flange and cutoff tube
amounts 41 mm on the fundamental mode coupler side and 46 mm on the tuner
side. Consequently, any fixing of the inner conductor must be located above the
flange connection. Note, the design approaches as sketched in Fig. 5.1 penetrate
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Fig. 5.1. HOM coupler design approaches for the high-beta SPL cavity. The dashed line indicates
the flange. The designs are classified in accordance to (i) the antenna type which is either a probe
(P), closed loop (CL), or open-loop (OL). (ii) The order of complexity disregarding unit elements
in the equivalent circuits. (iii) The number of transmission zeros at finite nonvanishing frequency.
Correspondingly, the notations are (a) P 04 01, (b) P 05 02, (c) P 06 02, (d) OL 04 01, (e) OL 06 02,
(f) CL 04 01. Depending on the considered cutoff tube, the antennas penetrate by 15 mm or
20 mm, respectively, on the tuner or fundamental mode coupler side. The darker appearing parts
highlighted in crosshatch correspond to the ceramic windows of the feedthroughs.
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the cutoff tube by 15 mm or 20 mm, respectively, on the tuner or fundamental mode
coupler side. (iv) The distance between the cutoff tube and coaxial output of the
HOM coupler is constrained to 200 mm.

The topologies of the P 04 01 and OL 04 01 couplers shown in Figs. 5.1(a) and (d)
are essentially redesigns of the LHC HOM couplers [101] adapted to the needs of
the high-β SPL cavity. The frequency response of both designs is characterized
by a single transmission zero at the cavity’s fundamental mode frequency, which
is caused by an equivalent mid-series ladder. Depending on the particular coupler,
the latter is either realized as inductive post in combination with a capacitive gap
to the outer conductor, or as open-loop antenna. Topological extensions of both
coupler designs with increased order of complexity led to the microwave structures
sketched in Figs. 5.1(b), (c), and (e). Particularly interesting is the combination of
equivalent mid-series and mid-shunt ladder which causes two transmission zeros at
finite, nonvanishing frequency for each of these designs. The implementation of mid-
shunt ladders follows Sec. 4.1.6. Finally, the CL 04 01 coupler depicted in Fig. 5.1(f)
with a closed loop antenna is originated from the TESLA HOM coupler [58]. A single
transmission zero is introduced by the waveguide section above the feedthrough in
combination with the capacitive gap between inner conductor and top plate. In
the vicinity of the transmission zero an equivalent behavior of a mid-series ladder
is approximately restored. The advantage of this design lies in the tunability of the
frequency at which the transmission zero occurs [58, 124]. A closed loop antenna is
only reasonable if the mounting point is close to the cutoff tube. In Fig. 5.1(f), both
fixings are below the flange whose position is marked by the zero level. Shifting
the fixings above this level would spoil the whole rf performance. For this reason
the TESLA HOM coupler and its adaptations to other projects, for instance, SNS,
CEBAF, and ILC, are directly welded onto the cutoff tube [1, 125, 126]. Although
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Fig. 5.2. Parameter set of the P 06 02 coupler [117]
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the design shown in Fig. 5.1(f) is not an option for a mountable SPL HOM coupler,
it extends the scope of different design approaches being studied and compared with
respect to the various physical aspects.

5.1.2 Design Process for the Microwave Filter

To begin with, each coupler was initially designed on the basis of reactance coupled
λ/2 resonators using the method of Haebel and Gerigk as outlined in Sec. 4.3.1.
Strictly speaking, the procedure considers only the filter component of the particular
HOM coupler which is illustrated in Fig. 5.3 by means of the P 06 02 design. Given
the results of Sec. 4.1, it may equivalently be described by the network shown in
Fig. 5.4, with the coaxial output at the terminal plane θ2 being terminated by the
characteristic impedance of the attached coaxial cable.

Initial values for the lengths and characteristic impedances of individual trans-
mission lines, shunt inductances, and optional series capacitances are derived from
a predefined design frequency ω∞ related to concerned HOMs according to (4.87),
and a parameter k given by (4.89) accounting for the coupling between adjacent
λ/2 resonators. Referring to Fig. 5.2, the implied equivalent circuit parameters are
related to various geometrical parameters, such as the diameters of inner conductor
pieces, d1, d2, and their displacement from the center, s1, lengths of waveguide seg-
ments, `1, ..., `4, the capacitive gap g3, as well as diameters d3, d4 and corresponding
lengths of both fixings. To allow for the desired band-stop characteristics in the
vicinity of the fundamental mode frequency provided by the cavity, transmission
zeros at finite, nonvanishing frequency are invoked using mid-series and mid-shunt
ladders. Their capacitance and inductance are obtained from a predefined frequency
of the intended transmission zero and earlier solved circuit parameters associated
with the band-pass filter according to (4.96)–(4.97). Again by referring to Fig. 5.2,
these parameters are implicitly related to the capacitive gaps g1 and g2, the length
`5 and width w5 of the capacitive plate, the diameters d3, ..., d5, and corresponding
lengths of inductive posts. In addition, the equivalent circuits of all HOM couplers

θ1 θ2
mid-series ladder shunt inductances

mid-shunt ladder
series capacitance

ceramic window

antenna
coaxial
output

Fig. 5.3. Longitudinal cross-sectional view of the P 06 02 coupler. Only the filter part and
feedthrough are considered. The antenna penetrating into the cutoff tube is not shown.
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need to account for the relatively high shunt capacitance between the inner and
outer conductor at the feedthrough, which is due to the ceramic window. Follow-
ing the Bode-Fano criterion (4.101) in Sec. 4.3.2, this capacitance denoted as C2 in
Fig. 5.4, should be made as small as possible. Though, it may be adjusted within
reasonable limits to fine tune the frequency response with respect to individual HOM
frequencies.

After obtaining an initial set of geometrical parameters, the particular design is
further refined on the basis of numerically calculated scattering functions for the
three-dimensional problem. Given the example in Figure 5.3, the scattering matrix
is evaluated with respect to the terminal planes θ1 and θ2, with the incident and
reflected waves being normalized to the characteristic impedance associated with
TEM mode propagation at the particular terminal plane. Figure 5.5 provides a
qualitative comparison between the microwave structure sketched in Fig. 5.3 and its
equivalent network shown in Fig. 5.4. The input impedance at the terminal plane θ1

normalized to 1 Ω is illustrated for three parameter variations correspondingly ap-
plied to each model while assuming that the coaxial output at the terminal plane θ2

is matched. The equivalent circuit model describes reasonably well the relationship
between the coupler geometry and filter characteristics, so that it permits directing
an iterative optimization process using numerical simulations. However, it is impor-
tant to differentiate between the geometric lengths `1 and `2 related to waveguide
sections in Fig. 5.2 and the length l1 and l2 which are associated with transmission
lines in the equivalent circuit of Fig. 5.3. The latter do not include the electric
thickness of adjacent inductive posts. Similarly, the gap distance g2 in Fig. 5.2 may
slightly impact the inductance of the mid-shunt ladder such that its impact on the
frequency response is not exactly the same as the reciprocal of the capacitance C3

in the equivalent circuit.
Taking into account the potentially dangerous HOMs listed in Table 3.6, the mi-

crowave filter is intended to provide a large transmission power gain in the vicinity
of 1330 MHz, 2085 MHz, and 2464 MHz. Prior to this is the rejection of the funda-
mental cavity mode at 704.4 MHz, which requires an insertion loss in the order of
α > 100 dB. In the view of circular accelerators, it is further necessary to incorpo-
rate significant dipole modes as listed in Table 3.7. Corresponding microwave filters
are intended to reveal passband edges already at around 920 MHz.

jωL01

1

jωC01

jωL1 jωL2

jωL02

1

jωC02

1

jωC1

1

jωC2

Z1,l1 Z2,l2 Z3,l3 Z4,l4 Z5,l5 Z6,l6 Z7,l7

RL

θ1 θ2

Fig. 5.4. Equivalent lumped circuit model of the P 06 02 coupler.
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The optimization of filter characteristics involves numerous geometrical parame-
ters which hinder applying exhaustive parameter variations for the particular mi-
crowave structure. In the following, some general design recommendations are drawn
by referring to the example shown in Fig. 5.2 and the corresponding equivalent cir-
cuit of its filter part in Fig. 5.4. To begin with, it is preferable to adjust the diameters
d3, d4, and corresponding lengths of the fixings which are related to the shunt in-
ductances L1 and L2. For this purpose, the procedure outlined in Sec. 4.1.1 may
be used. Note, a displacement of the inner conductor from the center described by
the parameter s1 allows for larger shunt inductances without greatly reducing the
diameters d3 and d4. Afterwards, the lengths `1 and `2 may be adjusted to frequen-
cies of concerned HOMs, since these parameters significantly influence the passband
behavior of the filter. Components related to equivalent mid-series and mid-shunt
ladders may initially be designed using the models introduced in Secs. 4.1.6 and 4.1.7.
Subsequent adjustments for the capacitance or inductance of the particular LC res-
onator are necessary to ensure that the corresponding transmission zero occurs at
the desired frequency.

To complete the HOM coupler design, the formerly evaluated model of a mi-
crowave filter is extended by an antenna penetrating into the cutoff tube. As dis-
cussed in Sec. 4.2, radiation resistances are adjusted to achieve the desired power
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Fig. 5.5. Input impedance normalized to 1 Ω obtained from (a)-(c) numerical simulations for the
microwave structure shown in Fig. 5.3 using ansys® hfss™ [94], and (d)-(f) analytic calculations
of the equivalent circuit shown in Fig. 5.4. The port at the coaxial output is assumed to be
matched. Associated parameters are varied in the range from −20 % (light blue) to +20 % (dark
blue) relative to their nominal values.
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transfer between waveguide modes present in the cutoff tube and coaxial output of
the HOM coupler. Since the entire design of the high-β SPL cavity was fixed in
advance, only the antenna shape and its penetration depth into the cutoff tube are
free to choose. Consequently, the possibilities to compensate any parasitic reactance
provided by the antenna are very limited. Furthermore, eventual transmission zeros
due to the cutoff tube are marginally influenced by the antenna shape. Note, the
model extension implies moderate but important readjustments of the filter part, in
particular, with respect to equivalent mid-series and mid-shunt ladders.

5.1.3 Prototypes

The finalized designs shown in Fig. 5.1 are a result of several design iterations
intended to improve the monopole and dipole coupling, reduce the rf sensitivity
against mechanical tolerances, to ensure stable operations under reasonable thermal
and structural conditions, as well as to suppress multipacting barriers. The various
aspects are discussed in subsequent sections mostly on the basis of numerical simula-
tions and, in part, verified by measurements using the prototypes shown in Fig. 5.6.
A preliminary version of the P 06 02 coupler depicted in Fig. 5.6(a) was fabricated as
a three-dimensional print made of plastic and covered by a copper layer of approx-
imately 0.1 mm thickness. The same technique applies to the OL 06 02 prototype
shown in Fig. 5.6(c). Furthermore, a solid prototype of the finalized P 06 02 design
was fabricated. It is made of copper and equipped with a rotatable stainless steel
flange as illustrated in Fig. 5.6(b). Details of the mechanical design are given in
Sec. A.5. Note, the printed prototypes provide a relatively high surface roughness

(a) (b) (c)

Fig. 5.6. Prototypes of HOM couplers for the high-β SPL cavity. (a) Preliminary three-dimensional
printed version of the P 06 02 coupler. (b) Solid prototype of the finalized P 06 02 coupler made of
copper. (c) Three-dimensional print of the OL 06 02 coupler while mounting on the cutoff tube.
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of 240 µm as measured by the maximum height of the surface profile. Though, not
being suitable for measurements under vacuum and cryogenic temperatures, these
prototypes allow the characterization of scattering properties and external coupling
factors at room temperature. The solid copper prototype of the P 06 02 further
permits to analyze the rf behavior at different environment conditions.

5.2 Filter Characteristics and Mode Coupling

The following analyses refer to rf characteristics of the various designs introduced in
Sec. 5.1, with the focus on modal transmission power gains, the frequency sensitivity
of transmission zeros, as well as external quality factors associated with concerned
HOMs of the high-β SPL cavity. The configuration shown in Fig. 5.7 serves as a
reference for subsequent simulations and measurements. The latter were carried
out using one of the SPL cavity prototypes fabricated out of copper. Probe an-
tennas attached to the terminal planes θ2 and θ4 allow the evaluation of the power
transmitted from the coaxial port of the HOM coupler at the terminal plane θ3

through the cutoff tube to the beam pipe, or through the cavity to the fundamental
mode coupler, respectively. The internally considered terminal plane θ1 is useful for
simulation studies and optimizations of the coupler geometry without involving the
cavity. Unless otherwise stated, the HOM coupler is located on the tuner side as
sketched in Fig. 5.7(a). Not shown in the sketch, the cavity provides an aperture
across from the terminal plane θ4, which is likewise foreseen for an HOM coupler.
Note, the details of the cavity geometry including both cutoff tubes are provided in

θ2 θ1

θ4

θ3
tuner side

fundamental mode
couper side

(a)

HOM coupler

probe antenna
(tuner side)

high-β
SPL cavity

VNA

(b)

Fig. 5.7. Configuration to characterize the frequency response of the HOM coupler as well as
external quality factors for individual resonant modes. (a) Sketch of the set-up, with probe antennas
being attached to the terminal planes θ2 and θ4. The HOM coupler is located at the terminal plane
θ3 on the tuner side. The internal terminal plane θ1 is considered for simulations. (b) Measurement
of the transmission power gain between the terminal planes θ2 and θ3.
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Sec. A.2. In addition, all HOM couplers are oriented such that the capacitive plate
of their mid-series ladder is perpendicular to the longitudinal axis of the cavity un-
less otherwise stated. That is, the capacitive plate faces the viewer in Fig. 5.7(a).
Simulations are carried out using cst studio suite® [91].

5.2.1 Frequency Response

Figs. 5.8(a) and 5.9(a) show the simulated transmission power gain with respect to
the TM01 mode being considered at the terminal plane θ1, and TEM mode prop-
agation at the terminal plane θ3 according to the configuration shown in Fig. 5.7.
The particular frequency response provides a first impression of how efficient trans-
verse magnetic monopole modes in the cavity may be damped by the different HOM
couplers. The frequencies of concerned HOMs listed in Table 3.6 are highlighted in
dashed gray. Not relevant for SPL but for the sake of completeness, Figs. 5.8(b)
and 5.9(b) show the simulated transmission power gain assuming the TE11 mode
at the terminal plane θ1 while the TEM mode propagation at the terminal plane
θ3 remains. Figs. 5.8 and 5.9, respectively, refer to the designs with probe or loop
antennas. Transmission zeros occurring in the vicinity of 2 GHz are caused by the
cutoff tube following the studies of Sec. 4.2.4.

Apart from the antenna type, the previously introduced notations for the different
design approaches become apparent from their frequency responses. The P 05 02 and
P 06 02 couplers in Fig. 5.8(a) as well as the OL 06 02 design in Fig. 5.9(a) feature
two finite transmission zeros close to the frequency of the fundamental cavity mode,
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Fig. 5.8. Transmission power gain between the circular waveguide ports of the cutoff tube towards
the cavity and the coaxial output of the HOM coupler for different designs using probe antennas.
In dashed gray, the frequency of concerned HOMs listed in Table 3.6 and 3.7. Shown are only
those which provide (a) TM01X or (b) TE11X characteristics.
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i. e. 704.4 MHz. This allows for a sufficiently high insertion loss over considerably
larger frequency ranges than achieved by remaining designs. Quantitative predic-
tions of the stopband region as measured by an insertion loss of α > 100 dB are
listed in Table 5.1 for the different couplers. They range from few megahertz up to
more than 200 MHz. Besides the better rejection, those couplers with higher filter
order also show a steeper transition between stop- and passband, which possibly
allows the inclusion of HOMs of the first dipole passband at around 930 MHz in the
design process, as shown in Figs. 5.8(b) and 5.9(b). However, the combination of an
equivalent mid-series and mid-shunt ladder to introduce two transmission zeros at
finite, nonvanishing frequency forms a more complex microwave structure in com-
parison to those revealing merely one equivalent mid-series ladder. Consequently,
the fabrication becomes more challenging. More welds are required which increases
the risk of vacuum leaks. Likewise, the cleaning and surface preparation become
more difficult.

The transmission power gain at frequencies of concerned monopole modes in the
TM011, TM022, and TM031 bands around 1330 MHz, 2089 MHz, and 2464 MHz, re-
spectively, is comparable between all designs as depicted in Figs. 5.8(a) and 5.9(a).
Referring to Fig. 5.9(b), the designs involving open-loop antennas are characteristic
for their dipole coupling, in particular, with respect to the TE111 band at around
930 MHz. The modified TESLA design CL 04 01, though providing the same filter
order and number of finite transmission zeros as the OL 04 01 coupler, is not suit-
able to achieve equally good rf transmission in the frequency region associated with
TE111 modes of the cavity.
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Fig. 5.9. Transmission power gain between the circular waveguide ports of the cutoff tube towards
the cavity and the coaxial output of the HOM coupler for different designs using loop antennas. In
dashed gray, the frequency of concerned HOMs listed in Table 3.6 and 3.7. Shown are only those
which provide (a) TM01X or (b) TE11X characteristics.
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Table 5.1. Sensitivity of frequency responses referred to Figs. 5.8(a) and 5.9(a).

design parameter ∂f01/∂x
† ∂f02/∂x

† αmax
‡ ∆f100

§

[MHz/mm] [MHz/mm] [dB] [MHz]
P 04 01 g1 383.77 5 to 25
P 05 02 g1 246.67 138.01 91.52 to 115.38 85 to 180

g2 129.29 7.08 84.67 to 111.42 85 to 172
P 06 02 g1 180.74 177.71 121.93 to 98.71 135 to 215

g2 70.84 47.73 106.71 to 121.49 137 to 155
CL 04 01 g1 692.53 5 to 17
OL 04 01 g1 155.74 < 1 to 5
OL 06 02 g1 251.93 −5.27 101.86 to 122.84 130 to 220

g2 126.75 136.00 128.86 to 106.62 137 to 160

† Sensitivity of the transmission zero with respect to a change of the particular gap distance.
‡ Minimum insertion loss within the frequency range given by two transmission zeros.
§ Frequency span of the stopband as measure by a minimum insertion loss of α = 100 dB.

The insertion losses seen in Figs. 5.8(a) and 5.9(a) appear throughout larger than
15 dB even in the passbands. This is due to the fact that corresponding monopole
modes do not propagate through the larger waveguide section of the cutoff tube
but rather behave evanescently. Consequently, the power extraction of concerned
HOMs is significantly limited by the cutoff tube which eventually hinders achieving
the required external coupling coefficients. This is further discussed in Sec. 5.2.3. In
addition, it is worthwhile to mention that all design approaches reveal pseudo-high-
pass behavior as outlined in Sec. 4.3.2. Though not shown in Figs. 5.8 and 5.9, each
frequency response provides narrow-band band-pass characteristics below 500 MHz,
which is parasitic.

Given the different frequency responses in Figs. 5.8(a) and 5.9(a), the P 06 02
and OL 06 02 couplers achieve the best rf performance also in terms of robustness
later discussed in Section 5.2.2. Figure 5.10 shows the transmission power gain of
corresponding rapid prototypes as measured between the terminal planes θ2 and
θ3 according to the configuration shown in Fig. 5.7, with TEM mode propagation
being considered at each port. The measurements agree reasonably well with the
simulations. Unlike before, the simulation models involve the cavity. The insertion
loss around 704.4 MHz was found well above 100 dB for both designs.

The preceding studies dealt with filter characteristics of individual HOM couplers
mounted on the cutoff tube at the tuner side as sketched in Fig. 5.7(a). Similar re-
sults are obtained if the corresponding coupler is mounted on the opposite extremity
of the cavity. The slightly different cutoff tube on the fundamental mode coupler
side provides a transmission zero at somewhat lower frequency as listed in Table 4.2.
In addition, the HOM coupler is placed 30 mm farther away from the cavity leading
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Fig. 5.10. Simulated and measured transmission power gain for different HOM coupler prototypes
considered at the terminal plane θ3 while applying a probe antenna at the terminal plane θ2

following the configuration shown in Fig. 5.7. (a) P 06 02 coupler and (b) OL 06 02 coupler. The
measurements were carried out using the rapid prototypes shown in Fig. 5.6(a) and (c).

to generally lower transmission power gains with respect to Figs. 5.8 and 5.9.

5.2.2 Sensitivity Analysis

The mechanical tolerances of HOM couplers should not be smaller than ±0.2 mm to
limit the cost of fabrication. By applying small perturbations on geometrical param-
eters of the various coupler designs, the impact on the specific frequency responses
shown in Figs. 5.8(a) and 5.9(a) is studied. Most sensitive parts are related to the
capacitances of equivalent mid-series and mid-shunt ladders due to relatively small
gap distances partially being <1 mm. Consequently, the rejection of the fundamen-
tal mode may be very sensitive to uncertainties in these parameters, in particular,
for those designs providing only one transmission zero at finite, nonvanishing fre-
quency to form the stopband. Important results of the sensitivity studies are listed
in Table 5.1. The parameters g1 and g2, respectively, refer to the gap distance of
the mid-series and mid-shunt ladder, if any, as illustrated in Fig. 5.2 for the P 06 02
design. The geometrical parameters are varied in a range of ±0.3 mm. Linear de-
pendencies are found in all cases within ±0.1 mm. Referring to the stopband region
∆f100 characterized by an insertion loss > 100 dB, couplers comprising more than
one transmission zero at finite, nonvanishing frequency to form the stopband, are
found to be very robust. In contrast, the rf reflections provided by the P 04 01,
OL 04 01, and CL 04 01 couplers at 704.4 MHz appear highly sensitive to the gap
distance g1. Hence, a precise tuning during the installation is mandatory.
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5.2.3 External Coupling Factors

The present section focuses on the damping of HOMs, which is quantified by the
external quality factor following the definition (2.93). Studies on longitudinal beam
dynamics presented in Sec. 3.4 recommend external quality factors of Qext≤105 for
all concerned HOMs listed in Table 3.6. Figure 5.11(a) shows the corresponding
values for modes of the TM011 and TM022 passbands obtained from eigenmode sim-
ulations, with the particular HOM coupler being mounted on both extremities of
the high-β SPL cavity. The antenna is inserted by 20 mm into the cutoff tube on
either side. Note, the relatively large insertion was found to be necessary in order
to ensure Qext≤ 105 for all concerned HOMs. The results are comparable between
all coupler designs with few exceptions. Referring to Fig. 5.11(b), the damping of
some TE111 and TM110 dipole modes appears considerably larger in the presence of
the OL 06 02 coupler than for the other designs.

External quality factors for modes up to 2.1 GHz are further measured at room
temperature, i.e. 293 K, using the prototype cavity shown in Fig. 5.7(b). Given
the configuration in Fig. 5.7(a), the probe antenna attached to the terminal plane
θ4 serves as a reference antenna. Scattering functions are evaluated between the
terminal planes θ3 and θ4 using a VNA while the terminal plane θ2 is shortened.
The procedure adopted from [52, 127] may be drawn as follows: At first, the loaded
quality factor QL is determined from the resonant frequency and 3 dB bandwidth of
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Fig. 5.11. Simulated external quality factors for selected modes of the high-β SPL cavity, with the
particular HOM coupler being considered on either extremity. The antenna is inserted by 20 mm
into the cutoff tube, each. (a) Modes of the TM011 and TM022 monopole bands. (b) Modes of the
first two dipole bands. Those values highlighted in blue refer to designs which have been selected
for the fabrication of prototypes according to Sec. 5.1.3.
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the measured transmission power gain |s34|2. Next, the coupling coefficients of the
reference antenna and HOM coupler κref , κhom, are derived from the corresponding
reflected power gains at resonance using (2.94). Alternatively, the coupling coeffi-
cients may be obtained from the diameter of the particular Q-circle in the Smith
chart as described in [52]. The latter option is typically less sensitive to random
errors. Finally, the intrinsic quality factor is obtained from (2.92) which allows
evaluating the external quality factor implied by the HOM coupler using (2.93).

Resulting external quality factors for modes of the first four monopole passbands
are shown in Fig. 5.12. Potentially dangerous HOMs of Table 3.6 are highlighted in
blue. Deviations between measurements and simulations are primarily due to cavity
imperfections. Note, the cavity was several times deformed and subsequently tuned
in previous tests such as described in Sec. 3.5.4. Furthermore, in the case of a very
low coupling, the error associated with the reflection type measurement becomes
significant. This appears easily at room temperature. A possible way to bypass this
problem and to achieve reliable results for those coupling factors requires a stronger
coupled reference antenna. Rather than using the standing wave ratio as described
before, the coupling coefficient provided by the HOM coupler is calculated as [128]

κhom =
|s34|2

4κref

(κref + 1)2
− |s34|2

, (5.1)
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Fig. 5.12. Measured and simulated external quality factors for different HOM coupler prototypes
mounted on the high-β SPL cavity according to Fig. 5.7. (a) Solid prototype of the P 06 02 design
according to 5.6(b). (b) Rapid prototype of the OL 06 02 design according to 5.6(c). The HOM
couplers are installed on the tuner side, each with an insertion depth of 15 mm into the cutoff tube.
Potentially dangerous HOMs are highlighted in blue.
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at the particular mode frequency. By referring to Fig. 5.12(a), concerned modes of
the TM011 passband provide external quality factors slightly above the threshold of
Qext =105. Corresponding values for the OL 06 02 coupler highlighted in Fig. 5.12(b)
range from 2× 104 to 2× 105. Although the simulations suggest somewhat lower
values, the measured external quality factor of the TM022 5/5π mode at 2089 MHz
was found in the order of Qext = 106 for both couplers. The results underline the
need of two couplers, one on each cutoff tube of the high-β SPL cavity with an
insertion depth between 15 mm to 20 mm.

Finally, the dependency of external quality factors on the coupler orientation
is investigated. The results for HOMs of concern are summarized in Fig. 5.13.
An angle of α = 0 means that the individually considered coupler is mounted on
the cutoff tube such that the capacitive plate of its equivalent mid-series ladder is
aligned perpendicular to the longitudinal axis of the cavity. This is according to the
configuration sketched in Fig. 5.7(a) where the capacitive plate faces the viewer. At
α =−90 deg, the capacitive plate ought to face the cavity cells. Correspondingly,
the plate faces the beam pipe at α = 90 deg. For each angle, the capacitance of
the equivalent mid-series ladder has to be readjusted to ensure nearly the same
insertion loss at the frequency of the fundamental mode. Referring to Fig. 5.13, the
P 06 02 and OL 06 02 couplers behave notably differently with respect to the angle
α. Naturally, designs comprising a loop antenna are more sensitive to changes of the
orientation. Surprisingly, even in case of the P 06 02 coupler, the external quality
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Fig. 5.13. Measured external quality factors of concerned HOMs listed in Table 3.6 as functions
of the rotation angle. (a) Solid prototype of the P 06 02 design according to 5.6(b). (b) Rapid
prototype of the OL 06 02 design according to 5.6(c). The HOM couplers are installed on the tuner
side, each with an insertion depth of 15 mm into the cutoff tube. Error bars are related to the
different methods used to evaluate coupling coefficients via (2.94) and (5.1). Markers correspond
to the geometric mean of the solutions obtained from the different methods.



196 5 Coupler Design and Testing

factor of the TM022 5/5π modes at 2089 GHz varies strongly with the rotation angle.
This is in part due to the transmission zero provided by the cutoff tube (Table 4.2),
as well as due to the slightly bended probe antenna as shown in Fig. 5.6(b). The
results may suggest optimal angles of 30 deg and −15 deg for the P 06 02 or OL 06 02
coupler, respectively. It is important to note that these conclusions apply only with
respect to the considered HOMs.

5.3 Thermal Behavior

Thermal analyses are performed to evaluate the risk of thermal quenches on the sur-
face of superconducting HOM couplers, and to define cooling requirements, eventu-
ally introducing additional thermalization loads which need to be taken into account
for the thermal budget of the cryomodule. Figure 5.14 illustrates the assembled
SPL cryomodule with the focus on the HOM coupler being mounted across from
the fundamental mode coupler. Unlike the cutoff tube on the tuner side, the helium
vessel houses the entire cutoff tube on the depicted extremity. Apart from the heat
transferred to the helium bath at 2 K, the thermal loads for the HOM coupler are
determined by the power deposition on the surface due to the presence of electro-
magnetic fields in combination with a finite, nonzero surface resistance, and the
static thermal conduction through the coaxial cable intended to transmit rf power
to a load outside the cryomodule. Both phenomena are studied in the following,
in part, with additional thermalization loads being applied to the coupler as illus-
trated in Fig. 5.14(b) by the thermalization bar. In addition, the impact of thermal
contraction on the stopband characteristics during the cool down is investigated.
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Fig. 5.14. (a) Schematic sectional view of the SPL cryomodule, with the HOM coupler opposite
to the fundamental mode coupler (not shown). As the cavity, the cutoff tube on this extremity is
immersed in liquid helium at 2 K. (b) Details of the HOM coupler based on the P 06 02 design.
The red elbow corresponds to the rf connector and cable at the coaxial output. The copper bar
on left is supposed to thermalize the coupler.
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5.3.1 Dynamic Heat Load by Surface Currents

In contrast to normal conducting applications, the focus lies on peak temperatures
rather than average heat losses. Once the coupler quenches, i. e. it becomes normal
conducting, the dissipated rf power on the surface rises by orders of magnitude due
to the abrupt increase of the surface resistance as outlined in Sec. 2.2.3. As such,
the coupler may potentially burn and melt in parts [1, 129]. Depending on the op-
erating conditions, the power dissipation may vary widely. Quantitative predictions
of the dissipated power are ambiguous since it strongly depends on beam excited
modes discussed in Sec. 3.4. Furthermore, the surface resistance typically underlies
uncertainties, some of which will be introduced by the surface preparation. Both
aspects require measurements and statistics to make a reasonable estimate of the
dissipated power. Instead of calculating the temperature distribution based on dis-
tinct assumptions for the surface resistance, it is proposed to evaluate temperature
ranges in correlation with the surface resistance. From those results, conditions are
deduced at which the coupler can operate stably.

To begin with, the surface currents on the particular HOM coupler associated
with the fundamental mode and concerned higher-order modes are computed from
eigenmode simulations using ansys® hfss™ software [94]. As in Sec. 5.2.3, the
model involves the high-β SPL cavity, with the particular coupler being considered
on both extremities. The antenna is inserted by 20 mm into the cutoff tube on
either side. Figure 5.15 represents a selection of magnetic field patterns for different
coupler designs and modes. The surface current associated with the n-th mode may
be well described by

I2
s,n =

{

∂Ωhom

Hn(r) ·H∗n(r) dA, (5.2)

where ∂Ωhom corresponds to the surface of the HOM coupler involving the inner
and outer conductor. Let n=0 be referred to the fundamental mode while an index
larger one ought to be associated with individual HOMs.

Referring to Fig. 5.15(a), the magnetic field associated with the fundamental mode
is mainly concentrated at the loop or probe antenna penetrating into the cutoff
tube. Corresponding peak values of the electric and magnetic field strengths are
summarized in Table 5.2 assuming the nominal accelerating gradient of 25 MV/m
provided by the cavity. Between the designs, the surface current Is,0 varies by 30 %.
Note, field maxima and surface currents are significantly higher throughout for the
HOM coupler on the tuner side due to the fact that this coupler is located closer to
the cavity than the coupler on the opposite cutoff tube.1

Other than the fundamental mode, the selected HOMs shown in Fig. 5.15(b)
are scaled such that the extracted power at the coaxial output equals 1 W. Given
this normalization, corresponding surface currents summarized in Fig. 5.16 appear

1Details of the cavity design including cutoff tubes are given in Sec. A.2.



198 5 Coupler Design and Testing

significantly lower than those obtained for the fundamental mode, which are listed
in Table 5.2. The situation may become different if a maximum extracted power
of 100 W is assumed. Note, this limit was found to be reasonable in the view of
longitudinal beam dynamic studies presented in Sec. 3.4.5. It is important to remark
that an extracted power in this order requires the frequency of individual HOMs to be
close to harmonics of bunch pattern frequencies. In addition, the surface resistance
quadratically increases with the frequency as discussed in Sec. 2.2.3. Thus, for the
TM022 mode at 2.086 GHz, the resistance is higher by almost one order of magnitude
than for the fundamental mode. Note, the quadratic increase with the frequency is
well observed for frequencies below 10 GHz [130]. Thus, depending on the detailed
conditions, HOMs may have a notable impact on the overall rf surface loss.

Given the modal surface currents according to (5.2), and the frequency dependence
of the surface resistance, let the dissipated power density be defined as

∂

∂A
Pd,n(r, R0) ≤ R0

2

N∑

n=0

(
ωn
ω0

)2

Hn(r) ·H∗n(r), r ∈ ∂Ωhom, (5.3)

with R0 being the homogeneous surface resistance at 704.4 MHz. Due to uncertain-
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Fig. 5.15. (a) Magnetic field of the fundamental mode on the surface of different HOM couplers.
Fields are scaled such that the considered high-β SPL cavity provides the nominal accelerating
gradient of 25 MV/m. (b) Magnetic field of different higher-order modes on the surface of the
P 06 02 coupler. Fields are scaled to an extracted power of 1 W at the coaxial output.
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Table 5.2. Fundamental mode properties related to the HOM coupler surface.

design left cavity side† right cavity side‡
(Fig. 5.1) |E|pk |B|pk I0

§ Pext
§ |E|pk |B|pk I0

§ Pext
§

[MV/m] [mT] [A] [mW] [MV/m] [mT] [A] [mW]
P 04 01 13.29 10.19 69.25 14.907 3.36 3.56 24.82 0.962
P 05 02 18.64 14.04 87.88 0.494 4.56 4.59 31.56 0.043
P 06 02 18.15 14.42 94.24 0.045 4.58 5.23 33.80 0.011
CL 04 01 16.37 12.68 64.32 3.427 8.21 6.28 31.00 0.766
OL 04 01 9.64 11.91 70.49 4.412 4.51 6.03 35.29 0.455
OL 06 02 9.54 12.32 71.81 0.210 4.53 6.30 35.99 0.108
† HOM coupler is attached on the side of the tuner.
‡ HOM coupler is attached on the side of the fundamental mode coupler.
§ Values are related to a duty cycle of 10 %.

ties, it is considered as a free parameter rather than being quantitatively predicted.
Note, the assumption of a homogeneous distribution is very simplified. As outlined
in Sec. 2.2.3, the surface resistance strongly depends on the temperature which gen-
erally varies over the coupler surface. Consequently, the upper limit of (5.3) may
be considered as conservative if R0 is associated with the peak temperature Tmax on
the coupler surface. Apart from the fundamental mode, let the sum in (5.3) involve
those modes addressed in Fig. 5.16(a). To provide worst case conditions, let the as-
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Fig. 5.16. Modal surface currents for HOM couplers on the tuner side as calculated from simulated
eigenmodes using (5.2). (a) Monopole and (b) dipole modes of concern for the high-β SPL cavity,
each normalized to 1 W extracted power at the coaxial output of the individually considered design.
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sociated fields be scaled such that the extracted power at the coaxial output of the
coupler equals 100 W in total, with the particular HOMs being weighted according
to their geometric shunt resistances as listed in Table 3.6.

Due to relatively low peak magnetic fluxes in Table 5.2, R0 may sufficiently be
described by the resistance associated with the BCS theory in (2.99), that is Rbcs.
Note, the residual resistance Rres for bulk niobium can be estimated to few nanoohms
which is much lower than Rbcs [131]. In accordance to (2.95)–(2.98), let R0 be
considered as a function of the frequency ω0, peak temperature on the coupler
surface, Tmax, and the residual resistance ratio RRR, according to

R0 ' Rbcs(ω0, Tmax,RRR). (5.4)

Finally, Tmax is obtained from static thermal analyses, provided the heat flux given
by (5.3) and the fixed cavity temperature of 2 K. Optionally, thermalizations at the
outer conductor of the coupler are considered, similar to the configuration shown in
Fig. 5.14(b). The thermal conductivity of niobium varies significantly with the resid-
ual resistance ratio. For this reason, the subsequent analyses consider bulk niobium
of two different purities, that are RRR=60 associated with a thermal conductivity
taken from [132], and RRR=300 with the corresponding thermal conductivity found
in [133]. Further details on the model including boundary conditions and materi-
als, can be found in [117]. The peak temperature resulting from simulations using
ansys® software [134], may be considered as a function of the reference surface
resistance R0 and material purity according to

Tmax = max
r
{T(r, R0,RRR)}, r ∈ ∂Ωhom. (5.5)

Instead of solving the implicit problem given by (5.4) and (5.5) directly, a graphical
approach is applied. This allows the deduction of conditions for a stable operation.

Figure 5.17 shows the results of thermal studies for the P 06 02 design assuming
both the low and high RRR values. It depicts the simulated maximum temperature
on the coupler surface as a function of the reference surface resistance R0 according
to (5.5). Because of notably larger surface currents, the HOM coupler is considered
on the tuner side (Table 5.2). Furthermore, three conditions are compared. In the
first scenario, the thermalization bare of Fig. 5.14(b) ought to be disregarded while
in the second and third scenarios, the outer conductor of the HOM coupler is ther-
malized via the additional copper bar at 4 K or 2 K, respectively. In order to find
the solutions which fulfill (5.4) and (5.5), the inverse function of the BCS surface
resistance2 is depicted for three different frequencies to allow for uncertainties. The

2The BCS surface resistances are related to the properties of bulk niobium. They were cal-
culated as in [135] for a critical temperature of Tc = 9.2 K, a superconducting energy gap of
∆ = 1.85kBTc referring to strong coupling, a London penetration depth of λL = 32 nm and the
mean free path being correlated to the material purity according to ξ=2.7 RRR.
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latter are highlighted in gray. Referring to the simulated temperatures highlighted
in blue in Fig. 5.17, their interceptions with the gray zones yield most likely a ther-
mal equilibrium. If due to any transitional effect such as pressure fluctuations, a
non-equilibrium state left from the gray zone is taken, then the temperature would
rise until entering in an equilibrium state, if any. On the other hand, the temper-
ature would decrease if a state right from the gray zone is taken. For example in
Fig. 5.17(a), the coupler will never have a stable temperature below 4.2 K, provided
it is thermalized at 4 K. In contrast, without the thermalization bar, the tempera-
ture could always return to close to 2 K as long as R0 < 5 µΩ. Note, in general, a
thermalization at 4 K seems inefficient. Using a thermalization bar at 2 K, the cool-
ing mechanism acts only for Tmax>6 K. Referring to RRR=60 in Fig. 5.17(a), the
results indicate a stable operation up to a temperature of 8± 0.5 K and R0≤10 µΩ.
The thermalization at 2 K may allow half a degree more and twice the surface resis-
tance. Since surface resistances in this order are very high and unlikely, the coupler
would generally operate at temperatures close to 2 K. For RRR = 300 shown in
Fig. 5.17(b), the peak temperature may not even exceed 2.1 K up to surface resis-
tances of R0 > 0.1 mΩ in a non-equilibrium state. By applying a safety margin, a
temperature range of T ≤7 K on the coupler surface may be deduced from Fig. 5.17
in order to ensure a stable operation. It is important to remark that this threshold
remains valid in the presence of additional loads, for instance, the static thermal
conduction through the rf cable as considered next.
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Fig. 5.17. Maximum temperature on the P 06 02 coupler surface versus the surface resistance for
different thermalization conditions. The HOM coupler is considered on the tuner side of the cavity.
The critical temperature of 9.2 K is highlighted in dashed. For comparison, the BCS resistance
as calculated in [135] is depicted for different frequencies. A thermal equilibrium is likely to only
exist within the gray highlighted zones. (a) RRR=60. (b) RRR=300.
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5.3.2 Static Heat Load by Thermal Conduction

The rf cable highlighted in Fig. 5.18 is intended to transmit power associated with
parasitic HOMs to a load outside the cryomodule. However, the thermal conduction
and additional rf losses along the coaxial line add another heat load to the HOM
coupler, which is investigated in the following.3 This section presents some of the
results reported in [136]. They refer to the P 06 02 design considered on the funda-
mental mode coupler side. Unlike the power deposition on the coupler surface caused
by electromagnetic field as discussed in Sec. 5.3.1, static conduction through the rf
cable significantly impacts the thermal load of the coupler. This may be easily seen
from the simplified one-dimensional problem of heat transfer due to steady-state
thermal conduction. Disregarding rf losses, the rate of heat flow Φcon is given by the
temperature gradient and thermal conductivity k along the cable according to

Φcon =
A

L

ˆ z2

z1

k(T )
dT

dz
dz =

A

L

ˆ T2

T1

k(T )dT, (5.6)

where A and L refer to the cross-sectional area or length of the cable, respectively.
Given the data in [136, 137], for a coaxial cable of L = 1.2 m length whose outer
conductor is made of corrugated copper while the inner conductor corresponds to
a copper-clad aluminum wire with cross-sectional areas of 6.4 mm2 or 18.1 mm2,
respectively, the rate of heat flow becomes approximately 2.5 W between the HOM
coupler at T1 = 2 K and the environment outside the cryomodule at T2 = 293 K.

(a)

2K thermalization

50K thermalization

coaxial output
HOM coupler

coaxial output
cryo module

(b)

Fig. 5.18. (a) Schematic sectional view of the SPL cryomodule showing the rf cable connected to
the HOM coupler on the tuner side. (b) Detailed view of the rf cable with several intercepts to
thermalize the outer conductor so that the thermal load on the coupler is reduced.

3The studies are mainly carried out by J. Apeland and may be considered as a continuation
and refinement of initial investigations presented in [117].
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To reduce the thermal load on the coupler, several heat intercepts are added along
the cable as illustrated in Fig. 5.18(b). They are supposed to thermalize the outer
conductor at temperatures of 2 K or 50 K.

Temperature profiles for the inner and outer conductor of the final configuration
are shown in Fig. 5.19. They are obtained from static thermal analyses using an-
sys® software [134]. Note, all the loads of Sec. 5.3.1 are involved in the simulations.
A copper bar attached to the outer conductor of the HOM coupler on one side and
a 2 K helium supply line on the other side as illustrated in Fig. 5.14, allow ther-
malizing the coupler at the corresponding temperature. Unlike Sec. 5.3.1, only the
scenario of a 2 K thermalization is discussed. In addition, rf losses within the cable
are accounted by a constant attenuation per unit length. The values α=0.25 dB/m
and α=0.53 dB/m are chosen such that the corresponding losses are respectively at
least twice or four times as high as for common low-loss coaxial cables with foam-
dielectric if operating at the frequency of 1 GHz and room temperature [137, 138].
Referring to Fig. 5.19, the maximum temperature gradient between inner and outer
conductor occurs at the second 50 K thermalization seen from the coupler. Depend-
ing on the predefined cable attenuation, it is in the order of 60 K or 94 K, which is
considered as acceptable. Note, thermalizing the inner conductor, for instance, by
using sapphire as dielectric material [10], is relatively complex and should only be
considered if it is absolutely necessary.

The profiles depicted in Fig. 5.19 approximately apply to both residual resistance
ratios addressed in the previous section. However, the temperature on the coupler
surface as shown in Fig. 5.20 considerably differs between niobium of RRR = 60
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Fig. 5.19. Temperature of inner and outer conductor along the coaxial cable according to the
configuration of Fig. 5.18(b), with the intercepts being highlighted by dashed lines. Cable losses
of (a) α=0.25 dB/m and (b) α=0.53 dB/m are considered as well as loads of Sec. 5.3.1.
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and RRR = 300 due to the higher thermal conductivity of the latter one. It is
important to note that the simulations assume perfect thermal contacts everywhere.
Consequently, the heat transfer through the rf cable is conservatively estimated.
Referring to Fig. 5.20(a), even in the presence of lower rf losses along the coaxial
cable, the peak temperature at the antenna tip clearly exceeds the previously defined
limit of 7 K for RRR=60. Indeed a value of RRR=300 is required to ensure that the
coupler remains superconductive during operation even for a larger cable attenuation
as depicted in Fig. 5.20(b). The only exception is the inner conductor part attached
to the feedthrough shown at the top of Fig. 5.14(b). Temperatures of more than
20 K in this region favor the fabrication of this component out of copper. Table 5.3
summarizes the thermal loads and the rates of heat flow at each thermalization
for the different scenarios related to rf losses in the cable. Note, the values only
marginally vary between the considered residual resistance ratios as found in [136].

The results underline the need of thermalizing the HOM coupler. A relatively
simple integration of a thermalization bar as previously described appears sufficient.
It is not necessary to foresee internal cooling pipes within the antenna to be actively
cooled by liquid helium at 2 K [16, 101].
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Fig. 5.20. Temperature distribution on the coupler surface as a result of the power deposition by
electromagnetic fields, the static thermal conduction through the rf cable and thermalization bar
as well as the constant temperature of the cutoff tube being immersed in liquid helium at 2 K. In
addition, cable losses of (a) α= 0.25 dB/m and (b) α= 0.53 dB/m are considered. For each case,
two different thermal conductivities of niobium according to the RRR value are compared.
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Table 5.3. Power considerations.

probe case study 1 case study 2 case study 3
α=0 dB/m α=0.25 dB/m α=0.53 dB/m

dissipated rf power on coupler† 0.062 W 0.062 W 0.062 W
dissipated rf power in cable - 6.800 W 13.600 W
cutoff tube at 2 K −0.559 W −1.029 W −1.407 W
thermalization braids at 2 K −0.492 W −0.846 W −1.105 W
cable thermalization at 2 K −1.788 W −2.442 W −3.141 W
total at 2 K −2.839 W −4.317 W −5.653 W
first cable thermal. at 50 K 1.592 W 0.441 W −0.950 W
second cable thermal. at 50 K −1.949 W −4.197 W −6.474 W
total at 50 K −0.357 W −3.756 W −7.424 W
ambient at 293 K 3.133 W 1.210 W −0.585 W

† Estimate from the previous studies assuming the HOM coupler operates stable in the super-
conducting state and extracts about 100 W in total at the coaxial output.

5.3.3 Impact of Thermal Contraction

The impact of thermal contraction on the frequency response, in particular, with re-
spect to stopband characteristics in the vicinity of the fundamental mode, is another
important design aspect of HOM couplers. This section presents computational and
experimental studies on this subject using the test facility shown in Fig. 5.21.

Similar to Sec. 3.5.3 the frequency response of the filter part slightly alters when
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vessel filled
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Fig. 5.21. (a) Test stand to characterize the frequency response of the HOM coupler during cool-
down. The coupler is located on the bottom side of the four-way cross while both rf output ports
are connected to form a coaxial waveguide on which the HOM coupler is mounted. One of the
rf output ports is reflection-free terminated. The remaining port on the top side of the four-way
cross is preserved for the vacuum valve. (b) The assembly plunged into the nitrogen bath at 77 K.
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cooling the coupler from room temperature, i. e. 293 K down to the operating tem-
perature of 2 K. In addition, the ambient environment changes from normal air
with 50 % humidity and atmospheric pressure to vacuum, which alters the relative
permittivity εr and, thus, the frequency as well [109]. The multi-physics problem
is examined by numerical simulations using ansys® apdl™ macros [139], with
the details being reported in [140]. Quantitative predictions are in part verified
by experimental studies using the solid prototype shown in Fig. 5.6(b). In order
to measure the frequency response under vacuum and cryogenic temperatures, the
coupler is mounted on a custom-built four-way cross as shown in Fig. 5.21(a). The
cross is further equipped with an inner conductor connecting the rf outputs to mimic
a coaxial waveguide on which the coupler is mounted. The remaining port on the
top of the four-way cross in Fig. 5.21(a) is preserved for the vacuum valve. Further
details of the assembly can be found in Sec. A.5. The facility is cooled down to 77 K
by liquid nitrogen as depicted in Fig. 5.21(b). Since the coupler is fabricated out of
copper it is not reasonable to apply liquid helium at 2 K. Moreover, approximately
90 % of the expected structural contractions occur from 293 K to 77 K [141, pp. 26].

Figure 5.22 shows the simulated and measured transmission power gain between
the coaxial port of the HOM coupler and one of the coaxial ports provided by the
four-way cross while the other one is reflection-free terminated. Measurements and
simulations agree reasonably well and reveal positive frequency shifts of 2 MHz to
3 MHz for the finite transmission zeros associated with the equivalent mid-series
and mid-shunt ladders. The corresponding simulated structural displacements are
depicted in Fig. 5.23(a). The displacement field appears relatively homogeneous
since the stainless steel flange provides nearly the same thermal contraction as the
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Fig. 5.22. (a) Simulated and (b) measured transmission power gain |s21|2 between the coaxial
port of the P 06 02 coupler prototype and one of the coaxial ports provided by the four-way cross
according to Fig. 5.21(a). In blue, vector fits applied on measured data.
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Fig. 5.23. Simulated contraction of the P 06 02 coupler including the stainless steel flange. The
displacements in y-direction are scaled by a factor of 10 to illustrate the contraction with respect
to room temperature, i. e. 293 K. (a) Solid copper prototype as shown in Fig. 5.6(b) cooled down
to 77 K. (b) Equivalent coupler made of niobium and cooled down to 2 K.

outer and inner conductor parts of the HOM coupler made of copper. The situa-
tion becomes very different if niobium is considered instead of copper for the latter
one. Note, niobium is characterized by a thermal expansion coefficient being ap-
proximately half the corresponding value provided by copper or stainless steel [142,
p. 111]. As a consequence, the capacitive gap of the mid-series ladder becomes dis-
torted in the region of the flange when cooling the structure from 293 K down to
2 K. This is illustrated in Fig. 5.23(b) by means of numerical simulations for the
P 06 02 coupler made of niobium and equipped with a stainless steel flange. The
corresponding frequencies of finite transmission zeros decrease by approximately
3 MHz during the cool-down, which is in contrast to the qualitative temperature
dependence observed in Fig. 5.22. A similar behavior is observed for the OL 06 02
design with negative frequency shifts in the order of 8 MHz to 9 MHz.

5.4 Multipacting

The phenomenon of an avalanche-like growth of free electrons, first observed by
Henneberg [143], occurs frequently during rf conditioning of cavities and couplers.
It requires free electrons to be resonantly driven by an rf field such that the cavity
wall or coupler surface is repetitively impacted at nearly the same locations. Under
this condition, secondary-emission processes may lead to a resonant growth of free
electrons. The temperature rapidly rises at the affected locations which ultimately
causes excessive rf losses, in particular, for superconducting applications. Since mul-
tipacting may considerably extend the processing time of an rf device (soft barriers)
or even limit its performance (hard barrier), it should be assessed in the design
phase.
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In order to evaluate conditions under which multipacting may occur, the equa-
tion of motion for electrons exposed to an electromagnetic field is usually solved
numerically. Analytical solutions exist only for relatively simple problems such as
the harmonic field between parallel plates of infinite size [17, pp. 189] or the TEM
mode propagating through a coaxial waveguide of infinite length [144]. The problem
of interest is given by the fundamental mode being excited in the high-β SPL cavity
while investigating particle trajectories within the HOM coupler attached on the
tuner side. During the rf conditioning phase, there is no beam present which may
excite any HOMs. Thus, it is reasonable to focus on the fundamental mode, only.
Furthermore, it can be assumed that eventual multipacting barriers will likewise ap-
ply if the same coupler is considered at the opposite cutoff tube, however, at slightly
higher field levels due to the larger distance from the cavity.

Numerical simulations are carried out using ace3p [145, 146]. At first the electro-
magnetic field is calculated from an eigenmode simulation. Subsequent statistical
analyses by means of 104 to 105 macro-particles being tracked over 50 to 100 rf cy-
cles, allow exploring resonant particles which repetitively impact the coupler surface
at approximately the same locations. Due to limited computational resources, the
second part is split over several independent simulations. For this purpose, let the
particular coupler be partitioned into subdomains such as sketched in Fig. 5.24(a)
for the P 06 02 design. Then, the initial particle emission succeeds from a fraction
of the coupler surface, only, which is given by the individually considered region.
Furthermore, each simulation incorporates three separate field scans to cover a total
range for the accelerating gradient from 5 kV/m to 30 MV/m.

cutoff tube

region 1 region 1

region 2 region 2

region 3 region 3

region 4 region 4

region 5 region 5

region 6 region 6

(a)

0 500 1000 1500 2000
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1.0

1.5

2.0
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Cu (ECSS)
Nb (300 deg bake)
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(b)

Fig. 5.24. (a) Partition of the coupler surface to provide local initial field emissions. (b) Secondary-
emission yield (SEY) for different materials and treatments as a function of the incident electron
energy as found in [91].
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Secondary-emission processes are described by probabilistic models with charac-
teristic parameters, such as, the secondary-emission yield (SEY) δ and emitted-
energy spectrum of secondary electrons [147]. Only the first parameter is used for
the numerical studies, which is defined as the ratio of the secondary electron current
Is emitted from the surface, and the corresponding incident electron beam current
I0 according to

δ =
Is
I0

. (5.7)

The yield varies with the kinetic energy of incident electrons as shown in Fig. 5.24(b)
for different materials and treatments. The data are extracted from the material
library provided in [91]. They apply for an incident angle of 0 deg which is a rea-
sonable assumption in the view of electric field lines being quasi perpendicular to
the superconductive surface. Referring to Fig. 5.24(b), the SEY of niobium after
300 degC baking is larger than unity for an incident electron energy between 80 eV
and 2000 eV. In this regime, the emission of secondary electrons is possible and may
favor an exponential growth of charged particles.

The subsequent analyses refer to the P 06 02 and OL 06 02 couplers as well as
modifications of them. The electron growth within couplers is studied for copper
and niobium after 300 degC baking to compare different yields. Resonant particles
as indicator for multipacting are identified in three distinct locations on the coupler
surface for both designs. They are separately assessed in the following. Similar
analyses can be found, for example, in [85, 104, 148–150].

5.4.1 Mid-Series Ladder

Resonant particles may occur between the capacitive plate of the equivalent mid-
series ladder and the outer conductor of the HOM coupler. This is shown in Fig. 5.25
for various designs, with macro-particles being initially emitted from surfaces of
‘region 2’ according to Fig. 5.24(a). The corresponding incident energy of these
resonant particles as well as the average electron enhancement after 70 rf cycles are
shown in Fig. 5.26.

The capacitive plate of the original P 06 02 design depicted in Fig. 5.25(a) is char-
acterized by relatively small curvature radii at the boundary. Resonant particles
are observed at accelerating gradients from 0.1 MV/m to 0.35 MV/m. However, the
corresponding incident energy is well below 80 eV which means that, on average,
no secondary electrons are emitted from the surface if referring to niobium after
300 degC baking. Instead, incident particles will be absorbed as indicated by the
average electron enhancement being less that unity in Fig. 5.26(b). Unlike nio-
bium, an incident electron energy in the order of 25 eV to 50 eV can be sufficient
to emit secondary electrons from a copper surface. A maximum average electron
enhancement of approximately 1.25 is found in this case. The capacitive plate of
the modified P 06 02 design depicted in Fig. 5.25(b) provides larger curvature radii
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(a) plate 1 (b) plate 2 (c) plate 3

Fig. 5.25. Resonant particles highlighted in red between the outer conductor and the capacitive
plate of the equivalent mid-series ladder. Three different geometries with respect to the capacitive
plate are compared. (a) Original P 06 02 design. (b) Modified P 06 02 design with increased radius
of curvature. (c) Modified OL 06 02 design with increased radius of curvature.

at the boundary than in the previously considered model. It permits a further re-
duction of the incident electron energy of resonant particles to values below 30 eV.
As a result, the average electron enhancement becomes close to unity for copper
and below 0.5 for niobium. Likewise before, the capacitive plate of the modified
OL 06 02 design depicted in Fig. 5.25(c) is characterized by large curvature radii at
the boundary. Compared to the previous designs, the observed resonant particles
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Fig. 5.26. (a) Incident electron energy and (b) average electron enhancement after 70 rf cycles
for resonant particles shown in Fig. 5.25. Darker markers refer to average growth rates obtained
for niobium after 300 degC baking while the lighter colors are related to copper according to the
characteristic SEYs shown in Fig. 5.24(b).
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occur over a larger field range from 0.1 MV/m to 0.8 MV/m, which is owed by the
loop antenna. Nevertheless, the average electron enhancement remains below unity
for niobium. Consequently, multipacting seems to be well suppressed in the vicinity
of equivalent mid-series ladders.

5.4.2 Mid-Shunt Ladder

Similar to the previous case of the equivalent mid-series ladder, resonant particles
may occur between the capacitive plates of the equivalent mid-shunt ladder as il-
lustrated in Fig. 5.27 for various designs, with the macro-particles being initially
emitted from surfaces of ‘region 5’ according to Fig. 5.24(a). All designs are related
to the P 06 02 coupler. The incident energy of resonant particles and corresponding
average electron enhancement after 70 rf cycles are shown in Fig. 5.28.

The capacitive plate on the right-hand side of the original P 06 02 design depicted
in Fig. 5.27(a) is characterized by a concave profile. Resonant particles occur in this
region for accelerating gradient between 10 MV/m to 17 MV/m, with an incident
electron energy being partially above 80 eV. A multipacting barrier emerges for
niobium at field levels approximately from 14 MV/m and 17 MV/m, which is indi-
cated in Fig. 5.28(b) by the average electron enhancement being larger than unity.
The geometry is successively adapted in order to ultimately suppress multipacting
in this region while maintaining filter characteristics of the coupler. As shown in
Fig. 5.27, the capacitive plate on the right-hand side was changed from the original
concave profile to a flat profile and then to a convex one. In the latter case, the
field level at which resonant particles may occur is significantly reduced to approxi-
mately 3 MV/m to 5 MV/m, while there incident electron energy falls below 80 eV.

(a) concave (b) flat (c) convex

Fig. 5.27. Resonant particles highlighted in red between the capacitive plates of the equivalent
mid-shunt ladder. Different geometries with respect to the capacitive plate on the right-hand
side are compared, each related to the P 06 02 coupler. (a) Original design with a concave plate,
(b) modified design with a flat plate, and (c) modified design with a convex plate.
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Fig. 5.28. (a) Incident electron energy and (b) average electron enhancement after 70 rf cycles
for resonant particles shown in Fig. 5.27. Darker markers refer to average growth rates obtained
for niobium after 300 degC baking while the lighter colors are related to copper according to the
characteristic SEYs shown in Fig. 5.24(b).

Consequently, the average electron enhancement is throughout lower than unity for
niobium. Note, the same modification with slightly different dimensions is applied
to the OL 06 02 coupler with equal success.

Trivia: The vertically oriented capacitor at the top of the designs shown in
Fig. 5.27 is not affected by multipacting. It was modified barely because of me-
chanical reasons, such as, a larger gap size.

5.4.3 Antenna

Finally, resonant particles may occur between the inner and outer conductor of
the HOM coupler close to the probe or loop antenna. This is shown in Fig. 5.29
for various designs, with macro-particles being initially emitted from surfaces of
‘region 1’ according to Fig. 5.24(a). The incident energy of these resonant particles
which appear at the rear side of the antennas, and corresponding average electron
enhancement after 70 rf cycles are shown in Fig. 5.30.

The probe antenna of the original P 06 02 design depicted in Fig. 5.29(a) permits
resonant particles at field levels from 13 MV/m to 18 MV/m, with the incident elec-
tron energy being widely spread from 50 eV to 1800 eV. Despite the large average
electron enhancement of around 1.3, most of the particles reveal a very short life
time of less than 15 rf cycles, hence no electron growth in the long term is possible.
A slight modification of the probe antenna which is shown in Fig. 5.29(b) provides
qualitatively the same behavior as before but at lower accelerating gradients, that
is approximately from 7 MV/m to 13 MV/m. As for the original probe antenna, the
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(a) antenna 1 (b) antenna 2 (c) antenna 3

Fig. 5.29. Resonant particles highlighted in red between the inner and outer conductor at the rear
side of the antenna. Three different geometries are compared with respect to the antenna shape.
(a) Original P 06 02 design using a probe antenna. (b) Modified P 06 02 design with increased
thickness of the antenna tip. (c) Original OL 06 02 design using an open-loop antenna.

interpretation as multipacting is vague due to the fact that most of the particles ul-
timately slip out of resonance after a certain amount of rf cycles [150]. The situation
becomes very different for the open-loop antenna of the OL 06 02 design depicted in
Fig. 5.29(c). Resonant particles are observed at accelerating gradients from around
17 MV/m to 22 MV/m and above 27 MV/m. The second regime is characterized
by incident energies which clearly favor secondary-emission processes for niobium.
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Fig. 5.30. (a) Incident electron energy and (b) average electron enhancement after 70 rf cycles
for resonant particles shown in Fig. 5.29. Darker markers refer to average growth rates obtained
for niobium after 300 degC baking while the lighter colors are related to copper according to the
characteristic SEYs shown in Fig. 5.24(b).
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However, since the cavity is operated at 25 MV/m, any multipacting barrier beyond
this field level is regardless. Hence, the design is acceptable with respect to the
specifications.

5.5 Summary of the Results

The various design aspects of HOM couplers foreseen for the high-β SPL cavity have
been presented. The topological approach for a coupler design is quite heuristic in
the view of this multi-physical problem, which is why different designs have been
extensively compared to each other after individual optimizations.

HOM couplers providing solely one transmission zero at finite, nonvanishing fre-
quency being tuned to the fundamental mode are highly sensitive to manufacturing
tolerances and structural deformations. The high sensitivity which manifests in the
rejection of the fundamental mode, applies to the P 04 01, OL 04 01, and CL 04 01
couplers shown in Fig. 5.1. It is worthwhile to note that most of the superconducting
HOM couplers found in practice belong to this class and require a precise tuning
of the particular band-stop filter during the installation to avoid excessive rf losses
when it comes to operation [1]. In contrast, the somewhat more complex P 05 02,
P 06 02, and OL 06 02 couplers form the stopband by two transmission zeros at finite,
nonvanishing frequency. They achieve the required reflection for the fundamental
mode over notably large frequency ranges of more than 100 MHz. Such couplers are
found to be very robust against manufacturing errors and structural deformations,
for instance, due to thermal contraction.

External coupling factors of concerned HOMs are, in part, difficult to push below
Qext = 105 independent of the coupler design. This is primarily due to the cutoff
tubes providing too large distances between the cavity and aperture foreseen for
the HOM coupler. The particular probe or loop antenna must be inserted into the
cutoff by 15 mm to 20 mm to guarantee the desired mode damping.

The thermal behavior of all considered couplers is similar and dominated by the
static thermal conduction through the rf cable rather than by the electromagnetic
field inside the cavity. A thermalization at 2 K on the coupler tube and further heat
intercepts on the rf cable are required to sufficiently reduce the thermal load for the
coupler. No active cooling of the antenna by internal pipe flows is needed.

Finally, slight modifications of the favored P 06 02 and OL 06 02 couplers allowed
the initially observed multipacting barriers to be suppressed reasonably well for
the relevant field levels while keeping the filter characteristics. For comparison,
adopted designs of the TESLA coupler are typically characterized by relatively large
multipacting barriers [150, 151].

Several prototypes have been fabricated and tested by means of low-power rf mea-
surements. Though, they fulfill the expectations from simulations to a large extent,
the fabrication of a solid prototype made of niobium and associated experiments
remain open as important development steps towards a final design.
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This work was motivated by the question of how to design coaxial HOM couplers.
Of interest were both the general case and the particular context of the CERN SPL
study. Potentially dangerous HOMs have been identified, damping requirements
derived, and power levels estimated for the particular case. A first and major con-
tribution to systematically design coaxial microwave filters on the basis of abstract
filter or transfer functions has been worked out. It enables both the design of the
filter part of HOM couplers and fundamental predictions about the topology. Var-
ious couplers adapted to the needs for high-β SPL cavities have been assessed in
terms of filter characteristics, HOM damping, mechanical tolerances and robustness
as well as thermal loads and multipacting. Some of the computational analyses are
validated by prototype measurements.

The specifications of couplers are defined on the basis of potentially dangerous
HOMs. For SPL, these are characterized by a frequency close to harmonics of
the bunch or pattern frequencies. Their impact on the beam, which is primarily
manifested by the emittance growth in the longitudinal phase space along the linac,
has been investigated in detail with the result of applying a minimum damping of
Qext ≤ 105 for all concerned modes. Each coupler must sustain at most 100 W of
extracted power if the TM011 3/5π mode at ∼ 1759 MHz in the medium-β SPL
cavity and the TM031 5/5π mode at ∼ 2464 MHz in the high-β SPL cavity remain
sufficiently far away from the fifth or, respectively, seventh harmonic of the bunch
frequency. A recommendation is made to carefully revise and monitor the frequencies
of both HOMs during the cryomodule assembly and operation.

The frequency and geometric shunt resistance of potentially dangerous HOMs are
typically obtained from eigenmode simulations of the given cavity. The analyses
of longitudinal and transverse beam coupling impedances permit another approach
to derive these quantities for many modes from the corresponding wake potential.
A particular difficulty occurs if the wake potentials are only available in truncated
form as this introduces artificial harmonics in the impedance spectra. For resonant
structures, the latter may be approximated under certain conditions by an expression
of the form

f(s) =
∞∑

n=1

(
cn

s− an
wn(s) +

cn
s− a∗n

w∗n(−s)
)
, (6.1)

with the complex frequency variable s while the pole and residue an, cn, are as-
sociated with the frequency, geometric shunt resistance, and quality factor of the
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particular mode n. Artificial harmonics due to the truncation in time domain are
taken into account by the weighting functions,

wn(s) = 1− exp [−(s− an)t′] , (6.2)

where t′ refers to the time after which the wake potential is truncated. An extended
formulation of vector fitting has been worked out which notably simplified the ap-
proximation problem (6.1) to a linear least square and eigenvalue problem, being
iteratively solved. It enables the evaluation of multiple resonances in the frequency
spectrum of truncated time signals, such as scattering matrices derived from time-
domain simulations, or longitudinal and transverse wake potentials simulated by
particle bunches which pass a cavity at the speed of light. The problems may be
quite diverse. For the particular case, resulting mode parameters agree reasonably
well for conventional eigenmode simulations and the novel approach on the basis of
wake field simulations.

The design process of coaxial HOM couplers has been redefined in various aspects
concerning the filter characteristics of coaxial microwave structures and mode cou-
pling, which is not only restricted to the antenna shape. Typically, the design of
HOM couplers is derived from a predefined topology adapted to a few potentially
dangerous HOMs using numerical simulations, but the presented work aims at the
synthesis of filter or transfer functions by means of coaxial microwave structures
comprising certain discontinuities.

The synthesis is based on equivalent circuits generally given by a finite cascade of
lumped, lossless two-ports and unit elements as sketched in Fig. 6.1. Each disconti-
nuity excites evanescent modes, some of which may be able to extend their influence
to the neighboring obstacles depending on the distance. It was empirically found
that the structure of Fig. 6.1 remains valid over a wide frequency range even in the
presence of evanescent mode coupling between adjacent discontinuities. Given the
particular equivalent circuit model of a coaxial waveguide segment, it is possible to
adjust individual equivalent lumped and distributed elements by directed geometri-
cal changes such that a desired frequency response is approximated. The procedure
has been demonstrated by means of two examples, a third-order and fifth-order el-
liptic high-pass filter, both adapted to the requirements of the high-β SPL cavity.

LLN#1 LLN#2 LLN#N

Z1, l1 Z2, l2 ZN , lN ZN+1, lN+1

Fig. 6.1. Cascade of lossless lumped networks (LLN) and unit elements in alternating order to
equivalently represent coaxial waveguides with multiple discontinuities.
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The results are already very promising and well within the specifications. There are
various procedural aspects with the potential of improvements, in particular, the
synthesis of generalized networks consisting of lumped and unit elements. These
methodical enhancements form the basis of future work.

Particularly interesting for the design of coaxial high-pass filters is the microwave
structure shown in Fig. 6.2. It is characterized by two inductive posts connecting the
inner and outer conductor as well as a capacitive gap by which the inner conductor
is interrupted at the center. It was found that the capacitance creates a resonant
circuit together with an inductance connected in shunt. The latter is most likely
attributed to the coupling between evanescent modes, and may be adjusted over
several orders of magnitude by changing the rotation angle or distance between
both fixings. This allows the introduction of a transmission zero at any reasonable
frequency, for instance, at the operating frequency of a cavity. To the author’s best
knowledge, these phenomenological findings open up completely new research topics
in microwave theory and await field theoretical analyses and explanations.

In addition to the filter characteristics of coaxial HOM couplers, the phenomenon
of transmission zeros inherent to cutoff tubes has been assessed. The formation of
standing waves in cutoff tubes may cause at distinct frequencies no or very moderate
power to be transmitted between the cavity and HOM coupler. This is particularly
problematic if the cavity reveals potentially dangerous HOMs at such frequencies
as they may not be sufficiently damped, no matter how the coupler is designed.
The developed theory aids the designing of cutoff tubes and possibly enables the
suppression of transmission zeros in the frequency range of interest. Referring to
cutoff tubes of the high-β SPL cavity, the frequencies of concerned HOMs and
particular transmission zeros are sufficiently far apart.

Finally, HOM couplers have been analyzed and optimized in a more general con-
text for the high-β SPL cavities. In addition to the characteristic rf behavior, the
designs of several HOM couplers have been investigated and compared in terms of

Z0,
l0
2 Z0,

l0
2Z1, l1 Z2, l2

θ1 θ2θ′1 θ′2

2∆1 2∆2

ri

ro

αfix

(a)

jωL1 jωL2

Z1, l1 Z2, l2Z0,
l0
2 Z0,

l0
2

1

jωC0

jωL0

θ1 θ2θ′1 θ′2

(b)

Fig. 6.2. (a) Cross-sectional and side view of a coaxial structure with two fixings between the inner
and outer conductor. The fixings are modeled as cylinders with the radii rfix1 and rfix2. They are
rotated against each other in the transverse plane by the angle αfix. The inner conductor of the
central waveguide section is interrupted by a distance dgap. (b) Equivalent circuit model.
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rf sensitivity to mechanical tolerances and structural deformations, the thermal be-
havior due to rf surface losses and static thermal conduction through the rf cable, as
well as multipacting barriers. The different designs may be grouped in conventional
couplers as used for LHC or TESLA cavities and new proposals which partially ap-
pear more complex. The latter are characterized by a very low sensitivity for the
fundamental mode rejection and much steeper transition between stop and pass-
band. The thermal behavior of all considered couplers is similar and dominated by
the static conduction through the rf cable intended to transmit rf power outside
the cryomodule. Additional thermalizations are required to ensure a stable oper-
ation. Furthermore, slight modifications of selected designs allow ultimately the
multipacting barriers to be suppressed reasonably well for the relevant field levels
while keeping the filter characteristics.
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Appendix

A.1 Eigenmodes in a Circular-Cylindrical Cavity

A circular-cylindrical cavity with beam pipe apertures left open similar to Fig. 2.11
is considered. It serve as a benchmark for impedance analyses in Sec. 3.3.3 based
on vector fitting. As in [99], the diameter and length of the cavity are chosen to
be 153 mm and 100 mm, respectively. The equivalent parameters of the circular-
cylindrical beam pipe are 10 mm and 15 mm, respectively, on either side of the cav-
ity. Table A.1 lists the first 16 resonant monopole modes with transverse magnetic
characteristics.

Table A.1. Monopole modes in the pillbox cavity with left-opened beam pipe ports.
mode n fn [GHz] (R/Q)n [Ω] Qn

TM010 1.49988 192.53 3335
TM011 2.12042 100.18 2758
TM012 3.35188 22.60 3319
TM020 3.44360 7.15 4804
TM021 3.75644 30.99 3423
TM022 4.56613 51.81 3490
TM013 4.73988 7.77 3481
TM030 5.39928 4.22 4888
TM031 5.60545 17.98 3352
TM023 5.66403 39.52 3315
TM014 6.17988 4.10 3123
TM024 6.91378 23.24 2737
TM033 7.02755 4.15 2665
TM040 7.35760 5.44 3550
TM015 7.64179 1.83 2212
TM042 7.94758 7.46 1961

A.2 Geometrical Parameters of SPL Cavities

The rotational symmetric SPL cavities are characterized by conjugated elliptic arcs
in the longitudinal cross-sectional plane. Accordingly, they are denoted as elliptic
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cavities. Figure A.1 shows the longitudinal cross section of a half-cell defined by
the half axes of two ellipses, the length of the half-cell, lhc, as well as the iris and
equator radii r1, r2. Both types of SPL cavities consists of five cells. The half-
cells at both extremities slightly differ in their geometrical parameters from those in
between. The parameters are listed in Table A.2 for each SPL cavity and half-cell
type. Figure A.2 shows the assembly of the high-β SPL cavity involving details of
cutoff tubes and ports. Further information are accessible in [19, 23, 88].

b2

a2 b1

a1

lhc

r2

r1r
z

Fig. A.1. Longitudinal cross-sectional view of an elliptic cavity half-cell. The highlighted dashed
profile is defined by the half axes of two ellipses as well as the iris and equator radii r1 and r2,
respectively. The dotted dashed line represents the rotational axis or beam line.

Table A.2. Geometrical parameters of five-cell SPL cavities [19, 23].

parameter medium-β SPL cavity high-β SPL cavity
(Fig. A.1) left† mid right‡ left† mid right‡

a1 15.15 14.26 13.17 18.50 22.10 18.50
b1 25.00 23.53 21.73 24.90 35.10 24.90
a2 41.62 47.10 53.02 74.45 77.50 74.45
b2 39.53 44.75 55.67 83.27 77.50 76.89
lhc 69.00 69.00 69.00 103.07 106.47 103.07
r1 40.00 48.00 60.00 65.00 64.60 70.00
r2 184.67 184.67 184.67 190.786 190.786 190.786

† Half end-cell on the side of the tuner.
‡ Half end-cell on the side of the fundamental mode coupler.
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Fig. A.2. Assembly of the high-β SPL cavity [19].
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A.3 Design Formulas for Elliptic Filters

Let the squared magnitude of a strictly proper transfer function associated with a
normalized low-pass filter, be of the form

|H(jΩ)|2 =
c0

1 + |D(jΩ)|2 =
c0

1 + ε2|D̃(jΩ)|2
, (A.1)

with real constants c0, ε, and the normalized frequency Ω. The latter one is defined
by the condition ΩpΩs = 1 with Ωs > Ωp, that is the passband edge frequency
Ωp equals the reciprocal of the stopband edge frequency Ωs. Furthermore, let the
magnitude of the normalized filter function |D̃(jΩ)| be ≤ 1 for 0 ≤ Ω ≤ Ωp. By
introducing the insertion loss given in units dB according to [34, p. 63],

α(Ω) = −10 log |s21(jΩ)|2 = −10 log 4
R1

R2

|H(jΩ)|2, (A.2)

to characterize the power transmission between a source and load of resistances R1

and R2, respectively, the requirements on the anticipated low-pass are formulated
as

α(Ω) ≤ αmax, if 0 ≤ Ω ≤ Ωp, (A.3)
α(Ω) ≥ αmin, if Ωs ≤ Ω ≤ ∞. (A.4)

The following considerations are focused on elliptic filters of odd order n. Note, the
transfer function of even-order filter functions requires additional frequency map-
ping, so that an asymptotic damping towards infinite frequency is ensured as this
is a necessary condition for a transfer function to be strictly proper, and thus to
be realizable by reactive lumped elements. Some frequency maps are discussed, for
instance, in [31]. The filter function of a normalized elliptic low-pass of odd order n
admits the form

D̃(p) = c̃1p

(n−1)/2∏

ν=1

p2 + a2
2ν

a2
2νp

2 + 1
, (A.5)

where n = 3, 5, 7, . . .. It represents the analytic continuation of D(jΩ) in the entire
complex p-plane [35, pp. 60]. Since D̃(0) = 0 and s21(0) = 1, it follows from (A.1)
and (A.2) that c0 = 0.25R2/R1. Apart from the zero at vanishing frequency in (A.5),
finite zeros Ω∞ν and poles Ω0ν are related according to Ω∞ν = Ω−1

0ν = a2ν . The
solutions aν given by Jacobian elliptic sine functions as

aν = k sn (νK/n, k) , (A.6)

correspond alternately to the roots and extreme values of the filter function in the
passband. Consequently, every second solution is used in (A.5). Referring to (A.6),
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K is to the complete elliptic integral of the first kind with the modulus k = Ω−2
s ,

and may be written as

K = K(k) =

ˆ π
2

0

dϑ√
1− k2 sin2 ϑ

. (A.7)

The filter function as given in (A.5) is characterized by equiripple, that is the mag-
nitude of all extreme values in the passband are equal and normalized to one. Like-
wise, the magnitude of all extreme values in the stopband are equal. Consequently,
the scaling factor c̃1 may be derived from any of the conditions |D̃(jaν)| = 1 with
ν = 1, 3, . . . , n. It can be shown that [31]

c̃1
−1 =

1

an

(n+1)/2∏

ν=1

a2
2ν−1. (A.8)

The maximum acceptable insertion loss in the passband, amax, further specifies the
constant ε according to

ε2 = 100.1αmax − 1. (A.9)

To simultaneously ensure the minimum required attenuation in the stopband, amin,
the order of the rational function D̃(p) must be chosen as

n ≥
⌈
K(
√

1− k2
1)

K(
√

1− k2)

K(k)

K(k1)

⌉
, (A.10)

with the attenuation thresholds being accounted by the discrimination factor k1

according to

k2
1 =

100.1αmax − 1

100.1αmin − 1
, (A.11)

while k = Ω−2
s is sometimes referred as selectivity factor.

A.4 Examples for Filter Synthesis

The realization of elliptic filters is sketched in the following by means of two exam-
ples. For convenience, the source and load resistances R1 and R2 are considered to
be equal and normalized to 1 Ω. Note, the resultant lumped circuit elements may be
scaled afterwards according to any desired reference resistance. The value of 90.24 Ω
used in Sec. 4.3.4, results from the characteristic impedance of a coaxial line accord-
ing to (2.67), provided the diameters of inner and outer conductor are 10 mm and
45 mm, respectively. The stop- and passband edge frequencies for both examples
are chosen such that the resulting transfer function provides a transmission zero at
0.704 GHz and a transmission poles at 1.331 GHz. These values, respectively, corre-
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spond to the frequencies of the fundamental and dominant high-order mode of the
high-β SPL cavity.

A.4.1 Third-Order Elliptic High-Pass Filter

Let the elliptic high-pass filter be specified by the stopband edge of fs = 0.787 GHz
and passband edge of fp = 1.191 GHz. Furthermore, the insertion loss must not be
less than αmin = 30 dB within the stopband while being at most αmax = 3 dB for
frequencies above the passband edge.

Following (4.107), the edge frequencies with respect to the normalized low-pass fil-
ter are Ωp = 0.812 89 and Ωs = 1.230 18. The selectivity factor becomes k = Ω−2

s =
0.660 79 while (A.11) yields a discrimination factor of k1 = 3.156 36× 10−2. The
minimum order required to satisfy the attenuation thresholds follows from (A.10),
and is given by n = 3. With the zeros and poles as the solutions of elliptic sine
functions according to (A.6), the rational filter function with equiripple behavior in
pass- and stopband becomes

D(p) ∝ p
p2 + 0.727 392

0.727 392p2 + 1
. (A.12)

After determining the scaling factors according to (A.8) and (A.9), the transmission
power gain satisfies

|s21(p)|2 =
1 + 1.058 19p2 + 0.279 94p4

1− 9.225 01p2 − 38.591 09p4 − 36.733 64p6
. (A.13)

It is seen that its zeros coincide with the purely imaginary poles in (A.12) being
located at ±jΩ01 with Ω01 = 1.374 78. The conjugated complex pair occurs twice
due to the squared property of the transmission power gain. Following the procedure
described in Sec. 2.1.4, the reflected power gain is calculated as

s11(p)s11(−p) =
−10.283 20p2 − 38.871 03p4 − 36.733 64p6

1− 9.225 01p2 − 38.591 09p4 − 36.733 64p6
. (A.14)

By assigning all zeros and poles of the left half plane to s11(p), the reflection coeffi-
cient becomes

s11(p) = ± 3.206 74p+ 6.060 83p3

1 + 3.874 76p+ 2.894 38p2 + 6.060 83p3
. (A.15)

Referring to Fig. 2.6, each choice of s11(p) yields a different input impedance Z in,1(p)
seen from the source towards the load resistance R2. Note, this has consequences on
the topology of the resulting lumped network. Choosing the negative sign in (A.15)
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and inserting in (2.58), the input impedance normalized to R1 = 1 Ω satisfies

Z in,1(p) =
1 + 0.668 02p+ 2.894 38p2

1 + 7.081 50p+ 2.894 38p2 + 12.121 66p3
. (A.16)

Since the denominator of (A.12) is an even function of p, the elements of the open-
circuit impedance matrix are identified according to (2.60). The impedance functions
normalized to R1 = R2 = 1 Ω are given as

z11(p) =
1 + 2.894 38p2

7.081 50p+ 12.121 65p3
, (A.17)

z22(p) =
1 + 2.894 38p2

7.081 50p+ 12.121 65p3
, (A.18)

z21(p) =
1 + 0.529 09p2

7.081 50p+ 12.121 65p3
. (A.19)

To derive a ladder network realization of the two-port, the driving point imped-
ances z11 and z22 are expanded into continued fractions. The procedure rests on
Properties 2.1.1–2.1.4 of positive real functions and the alteration between imped-
ance and admittance functions as outlined in Sec. 2.1.1. Since z11 = z22, the resulting
network must be symmetric and no private poles are available in either of the driving
point impedances. The expansion may be sketched by means of z11 as follows. Since
the degree of the denominator is larger than the degree of the numerator polyno-
mial, the reciprocal of the impedance function is considered as the starting point. A
partial admittance is removed so that the remainder provides zeros at p = ±jΩ01.
After taking the reciprocal of the remainder, the corresponding conjugated complex
pole pair is removed according to Property 2.1.3. Again taking the reciprocal of the
new remainder, the obtained admittance function reveals a single pole at p = ∞,
which can be associated with a shunt capacitance. The resulting network is shown
in Fig. A.3(a). By mapping the complex p-plane associated with the normalized

0.282p−1 0.282p−1

1.263p−1

0.668p

(a)

sL1 sL2

1

sC01

sL01

(b)

Fig. A.3. (a) Canonical lumped network realization of the normalized low-pass filter function D(p)
as given in (A.12) with one transmission zero at finite, nonzero frequency and another one at
p = ∞. (b) Transformed network after mapping the complex p-plane onto the s-plane according
to (4.106) taking into account the specified stop and passband edge frequencies fs, fp.
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low-pass according to (4.106) onto the s-plane in which the high-pass filter is de-
fined with the desired stop and passband edge frequencies fs, fp, the transformed
network of Fig. A.3(b) is obtained. Note, capacitances become inductances and vice
versa. The final element values are listed in Table A.3 for two different reference
resistances.

A.4.2 Fifth-Order Elliptic High-Pass Filter

Let the elliptic high-pass filter be specified by the stopband edge of fs = 0.734 GHz
and passband edge of fp = 1.276 GHz. Furthermore, the insertion loss must not be
less than αmin = 60 dB within the stopband while being at most αmax = 3 dB for
frequencies above the passband edge.

Following (4.107), the edge frequencies with respect to the normalized low-pass fil-
ter are Ωp = 0.758 33 and Ωs = 1.318 68. The selectivity factor becomes k = Ω−2

s =
0.575 07 while (A.11) yields a discrimination factor of k1 = 9.976 29× 10−4. The
minimum order required to satisfy the attenuation thresholds follows from (A.10),
and is given by n = 5. With the zeros and poles as the solutions of elliptic sine
functions according to (A.6), the rational filter function with equiripple behavior in
pass- and stopband becomes

D(p) ∝ p
(p2 + 0.727 682)(p2 + 0.474 682)

(0.727 682p2 + 1)(0.474 682p2 + 1)
. (A.20)

After determining the scaling factors according to (A.8) and (A.9), the transmission
power gain satisfies

|s21(p)|2 =
1 + 1.5097p2 + 0.808 41p4 + 0.180 12p6 + 0.014 235p8

1− 34.066p2 − 449.34p4 − 2020.1p6 − 3772.9p8 − 2499.1p10
. (A.21)

It is seen that its zeros coincide with the purely imaginary poles in (A.20) being
located at ±jΩ01 and ±jΩ02 with Ω01 = 1.374 23 and Ω02 = 2.106 68. Each con-
jugated complex pair occurs twice due to the squared property of the transmission
power gain. Following the procedure described in Sec. 2.1.4, the reflected power gain
is calculated as

s11(p)s11(−p) =
−35.575p2 − 450.15p4 − 2020.3p6 − 3772.9p8 − 2499.1p10

1− 34.066p2 − 449.34p4 − 2020.1p6 − 3772.9p8 − 2499.1p10
.

(A.22)
By assigning all zeros and poles of the left half plane to s11(p), the reflection coeffi-
cient becomes

s11(p) = ± 5.9645p+ 37.735p3 + 49.991p5

1 + 7.7160p+ 12.736p2 + 42.438p3 + 21.683p4 + 49.991p5
. (A.23)
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Table A.3. Lumped circuit parameters of elliptic high-pass realizations.

parameter unit third-order elliptic filter† fifth-order elliptic filter‡

R1,2 [Ω] 1 90.24 1 90.24
L1 [H] 4.643× 10−11 4.190× 10−9 4.078× 10−11 3.680× 10−9

L01 [H] 2.076× 10−10 1.873× 10−8 2.540× 10−10 2.292× 10−8

C01 [F] 2.461× 10−10 2.727× 10−12 2.010× 10−10 2.228× 10−12

L2 [H] 4.643× 10−11 4.190× 10−9 3.121× 10−11 2.816× 10−9

L02 [H] 6.812× 10−10 6.147× 10−8

C02 [F] 1.761× 10−10 1.952× 10−12

L3 [H] 3.755× 10−11 3.388× 10−9

† Specifications are fs=0.787 GHz, αmin =30 dB, fp=1.191 GHz, αmax =3 dB.
‡ Specifications are fs=0.734 GHz, αmin =60 dB, fp=1.276 GHz, αmax =3 dB.

Referring to Fig. 2.6, each choice of s11(p) yields a different input impedance Z in,1(p)
seen from the source towards the load resistance R2. Note, this has consequences on
the topology of the resulting lumped network. Choosing the negative sign in (A.23)
and inserting in (2.58), the input impedance normalized to R1 = 1 Ω satisfies

Z in,1(p) =
1 + 1.7515p+ 12.736p2 + 4.7022p3 + 21.683p4

1 + 13.681p + 12.736p2 + 80.173p3 + 21.683p4 + 99.982p5
. (A.24)

Since the denominator of (A.20) is an even function of p, the elements of the open-
circuit impedance matrix are identified according to (2.60). The impedance functions
normalized to R1 = R2 = 1 Ω are given as

z11(p) =
1 + 12.736p2 + 21.683p4

13.681p+ 80.173p3 + 99.982p5
, (A.25)

z22(p) =
1 + 12.736p2 + 21.683p4

13.681p+ 80.173p3 + 99.982p5
, (A.26)

z21(p) =
1 + 0.754 84p2 + 0.119 31p4

13.681p+ 80.173p3 + 99.982p5
. (A.27)

To derive a ladder network realization of the two-port, the driving point imped-
ances z11 and z22 are expanded into continued fractions. The procedure rests on
Properties 2.1.1–2.1.4 of positive real functions and the alteration between imped-
ance and admittance functions as outlined in Sec. 2.1.1. Since z11 = z22, the resulting
network must be symmetric and no private poles are available in either of the driv-
ing point impedances. The expansion succeeds in the analogue way as described in
Sec. A.4.1. The resulting network is shown in Fig. A.3(a). By mapping the com-
plex p-plane associated with the normalized low-pass according to (4.106) onto the
s-plane in which the high-pass filter is defined with the desired stop and passband
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0.248p−1 0.190p−1 0.228p−1

1.545p−1

0.818p

4.143p−1

0.933p

(a)

sL1 sL2 sL3

1

sC01

sL01

1

sC02

sL02

(b)

Fig. A.4. (a) Canonical lumped network realization of the normalized low-pass filter function D(p)
as given in (A.20) with two transmission zeros at finite, nonzero frequency and another one at
p = ∞. (b) Transformed network after mapping the complex p-plane onto the s-plane according
to (4.106) taking into account the specified stop and passband edge frequencies fs, fp.

edge frequencies fs, fp, the transformed network of Fig. A.3(b) is obtained. Note,
capacitances become inductances and vice versa. The final element values are listed
in Table A.3 for two different reference resistances.

A.5 HOM Couplers and Facilities

In the frame of this thesis, a solid coaxial coupler was fabricated out of copper. Like-
wise, a stainless steel four-way cross was fabricated to characterize the frequency
response of HOM couplers foreseen for SPL cavities. The corresponding mechanical
drawings were created by F. Pillon on the basis of rf models. Figures A.5 and A.6
show some details of the different assemblies. They present a reference for visual-
ization and discussions in Chapter 5.
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Fig. A.5. Prototype of the P 06 02 coupler fabricated out of copper.
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Fig. A.6. Assembly of the four-way cross to measure the frequency response of SPL HOM couplers.



Symbols
an, ān poles of the transfer or helper function (introduced on p. 48)
b magnetic induction
c0 velocity of light in vacuum
cn, c̃n residues of the transfer or helper function (introduced on p. 48)
d electric displacement
e electric field intensity
ei unit vector along the coordinate axis i
f frequency
hamb convection heat transfer coefficient to the ambient (introduced on p. 50)
h magnetic field intensity
j electric current density
j imaginary unit (square root of -1)
jmn, j

′
mn n-th root of the Bessel function of first order and m-th mode or its first derivative

k(T ) thermal conductivity, generally temperature dependent
k, kz wave number, general or in longitudinal direction (introduced on pp. 24, 29)
k‖, k‖,n total or modal loss factor (introduced on p. 40)
k⊥, k⊥,n total or modal kick factor (introduced on p. 40)
kB Boltzmann constant
n unit normal vector to the surface ∂Ω
p normalized complex frequency variable (p = Σ + jΩ)
q electric charge of a particle or bunch of particles
r position vector from the origin (r = xex + yey + zez)
s complex frequency variable (s = σ + jω)
u displacement vector field
w‖, w⊥ longitudinal or transverse wake potentials (introduced on p. 35)
wn weighting function (defined on p. 67)
B phasor of a time-harmonic magnetic induction
D(s) filter function (defined on p. 19)
D phasor of a time-harmonic electric displacement
E phasor of a time-harmonic electric field intensity
F (s) immittance function (introduced on p. 11)
H(s) transfer function (defined on p. 19)
H phasor of a time-harmonic magnetic field intensity
J phasor of a time-harmonic electric current density
P, Ploss, Pext power, power loss, or extracted power due to coupling mechanisms
Q, Q0, QL, Qext quality factor, in general, intrinsic, loaded, or external (p. 31)
(R/Q)n, (R/Q)‖,n, (R/Q)⊥,n geometric shunt resistance, in general, longitudinal, or trans-

verse, each for the mode n (defined on pp. 38, 39)
RRR residual-resistance ratio (introduced on p. 32)
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Rs surface resistance (real part of Zs)
Rbcs Surface resistance according to the BCS theory (introduced on p. 33)
Rn shunt resistance for the mode n (defined on p. 38)
SWR voltage standing wave ratio (introduced on p. 32)
Tc critical temperature, for niobium Tc = 9.2 K

V
(n)
‖ , V

(n)
⊥ longitudinal or transverse voltage for a particle passing a cavity which is excited
by the n-th mode (defined on p. 38)

Y (s) admittance function (introduced on p. 10)
Yc characteristic admittance of a transmission line (introduced on p. 24)
Z(s) impedance function (introduced on p. 10)
Z0 impedance of free space (Z0 ≈ 377 Ω)
Z‖, Z⊥ longitudinal or transverse beam coupling impedance (defined on p. 35)
Zc characteristic impedance of a transmission line (introduced on p. 24)
Zs surface impedance (defined on pp. 28, 32, and 46)
κ coupling coeffiecient (defined on pp. 32, 194)
S scattering matrix (defined on p. 18)
T transmission or ABCD matrix (defined on p. 16)
Y short-circuit admittance matrix (defined on p. 15)
Z open-circuit impedance matrix (defined on p. 15)
αT temperature dependent linear thermal expansion coefficient (introduced on p. 51)
β(ω) imaginary part of the wave propagation constant (introduced on p. 24)
β ratio of velocity to the speed of light c0

ε0, ε permittivity constant (ε0 ≈ 8.854 pF/m), material specific permittivity
ε, ε0 longitudinal effective emittance, in general or at the linac input
λ wave length
λL London penetration depth (introduced on p. 32)
µ0, µ vacuum permeability (µ0 ≈ 1.256 µH/m), or material specific permeability
ω angular frequency
ρ electric charge density in a volume
σ(s) helper function to fit a transfer function (introduced on p. 48)
σ electrical conductivity
θ(x) Heaviside step function
θ terminal pair, terminal plane, or port
ξ mean free path of a single electron (introduced on p. 33)
ζ relative longitudinal coordinate to the bunch center (introduced on p. 33)
N collection of complex terminal voltages and currents to define network (p. 9)
U , Ue, Um stored energy, in general, in electric, or in magnetic field
∆E (m) total energy error of a bunch in the m-th cavity (defined on p. 41)
∆φs synchronous phase error (introduced on p. 41)
∇ nabla operator
Ω, ∂Ω domain or boundary of the domain
aH,AH conjugate transpose of the vector a or matrix A
aT,AT transpose of the vector a or matrix A
I identity matrix
= imaginary part of
< real part of
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