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Cooperativity and its Use in Robust Control and State Estimation for Uncertain Dynamic
Systems with Engineering Applications

— Abstract —

In control engineering, model-based designs are applied to a broad variety of applications.
Here, one aims to find a balance in the modeling approach depicting the reality as detailed
as necessary while keeping the complexity as low as possible in terms of realizability. For this,
simplifications are used, e.g. in the form of approximation of nonlinearities, parameter couplings
or order reduction. Additionally, errors may occur in parameter identification due to physically
motivated phenomena, measurement effects, or possible numerical discretization errors. As a
result, basically all real-life systems are subject to uncertainties.
In the presented work, those uncertainties are regarded as intervals, where worst-case bounds
are represented by the upper and lower limit of an uncertain parameter. Novel control designs
are introduced, which are based on a linear matrix inequality approach suitable for uncertain
systems. Two extensions to state-of-the-art designs were given; the first with a constant con-
troller gain approach over the complete time horizon and a second using a gain scheduling
design over temporal subslices. Here, both rely on iterative solutions in the terms that control-
ler gains are adapted based on the reachability analysis of former simulations. This means, that
an efficient application of such methods is only realized with a reliable computation of possible
interval enclosures. State-of-the-art enclosure techniques are often subject to overestimation, a
possible solution comes in form of so-called cooperative systems. The structure of these systems
allows for a separately, point-valued evaluation of the worst-case bounds, while guaranteeing
the real value to be insight said bounds. This property can be found in numerous systems,
however, exceptions occur especially concerning models from the fields of electrical as well as
mechanical applications. To widen the applicability of cooperativity into these fields, this work
presents transformation methods to adapt the structure of the treated system in such a way
that it becomes cooperative while keeping its original stability properties. Due to the nature of
said transformations this is done for systems with purely real eigenvalues and systems including
conjugate-complex ones. As a final theoretical contribution, a state estimation is added to the
controlled system as a form of fault diagnosis. Here, two possible approaches are presented.
The first aims at keeping the structure of the controlled (and transformed into a cooperative
form) system and, hence, is called cooperative-preserving observer. A second design is oriented
on the control design making use of the duality principle, meaning that the controlled system is
transformed and a parallel model, including the observer is also transformed into a cooperative
system. Both results are then compared for the fault diagnosis to detect actuator or/and sensor
faults.
Overall, this work gives a generally applicable method combining robust control designs with
the computation of verified interval enclosures, and estimators as fault diagnosis tools. Based on
the theoretical findings, suitable application scenarios are given in the second part of this work.
Here, a constant gain controller design is applied to an electrical circuit, which is then subject to
a transformation approach with purely real eigenvalues and a cooperativity-preserving observer
design. Next, two mechanical, oscillatory systems are used to show a transformation based on
complex-conjugate eigenvalues. Fault diagnosis models are further implemented in parallel. As
an extension, the theory is applied to a fractional-order system to show that it works equally
well for such models and highlight necessary adaptions. Finally, limits of the presented methods
are acknowledged and an alternative solution is demonstrated on the example of an inverted
pendulum.
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List of Symbols

An overview on used notations in this work shall be given in the following. In general, small
letters express scalars (e.g. p ∈ R) or, if written in boldface, vectors (e.g. x). Boldfaced, capital
letters (e.g. A) are used for matrices. Intervals are denoted by square brackets, where [x] =[
[x1] . . . [xn]

]T
is an interval vector with each entry including [xi] = [xi ; xi], xi ≤ xi ≤ xi,

i = 1, . . . , n. Furthermore, the list is split into three parts according to the structure of the
presented thesis; theory, applications, and extensions. Note that supplementary, intermediate,
and auxiliary variables are not explicitly listed, but specified at the place of their first usage.

Theory

Fundamental Notation

P � 0 Positive definiteness of a matrix P
P � 0 Positive semi-definiteness of a matrix P
P ≺ 0 Negative definiteness of a matrix P
P � 0 Negative semi-definiteness of a matrix P
D Polytopic (vertex-related) representation of an uncertain dynamic

system
R Set of real numbers
C Set of complex numbers

<{.} = σ Real part
={.} = ω Imaginary part
rad {[x]} Radius of an interval [x]

diam {[x]} Diameter of an interval [x]
mid {[x]} Midpoint of an interval [x]
vol {[x]} Volume of an interval [x]
inf([x]) Infimum of an interval [x]

sup([x]) Supremum of an interval [x]
A System matrix of a continuous-time dynamic system

A (x(t)) System matrix in quasi-linear state-space representation
AC System matrix in closed-loop control of a quasi-linear state-space

representation
AO System matrix of an observer in quasi-linear state-space representation

B, b Input matrix (vector) of a continuous-time dynamic system (MIMO,
SISO)

B (x(t)) Input matrix in quasi-linear state-space representation
B Bounding box

C, cT Output matrix (vector) of a continuous-time or discrete-time dynamic
system (MIMO, SISO)

C (x(t)) Output matrix in quasi-linear state-space representation



xvi List of Symbols

Cm, cTm Measured output matrix (vector) of a continuous-time or discrete-time
dynamic system (MIMO, SISO)

D, d Feed-through matrix (scalar) of a continuous-time dynamic system
(MIMO, SISO)

D0, D1 Real-valued parameter matrices
E Matrix with all elements equal to 1

e(t) Error vector in observer design
ẋ = f (·) Function describing the dynamics of a continuous-time dynamic

system
Gw Reference transfer functions matrix

H, h Feedback gain matrix (vector) of a continuous-time state observer
(MIMO, SISO)

I Identity matrix
J Jacobian matrix

K, kT Feedback gain matrix (vector) of a continuous-time state controller
(MIMO, SISO)

N = ÃC Transformed system matrix (always Metzler)
p Vector of (uncertain) system parameters
s Laplace variable
T Sampling time/ Time constant
tk Discrete time steps

T, S Transformation matrix (into Metzler structure)

T̃, V Transformation matrix (into diagonal dominant form)
u Input vector of a continuous-time dynamic system

V (.) Lyapunov function (candidate)
vλi i-th left eigenvector of a dynamic system
wλi i-th right eigenvector of a dynamic system

v, w worst-case bounds of an uncertain state v < x < w
x(t) ∈ Rnx State vector of a continuous-time dynamic system
x̂(t), ŷ(t) State/ output estimate determined by a continuous-time observer

[X ] Domain of reachable states
y(t) ∈ Rny Output vector of a continuous-time dynamic system

ym(t) ∈ Rnm Measured output vector of a continuous-time dynamic system
(analogously the index m is used for all further occurrences in which
measured and general system outputs have to be distinguished)

z = x̃(t) ∈ Rnx Transformed state vector of a continuous-time dynamic system
γ Stability margin in control and observer design
λi i-th eigenvalue of a dynamic system
Θ Overall transformation matrix
σp Sensitivity of the system to a parameter variation p
ξ Generalized parameter vector of a dynamic system



List of Symbols xvii

Application Scenarios

Electrical Circuit

C Capacity
ii Currents with i ∈ {RS, RL, RC, C, L}
L Inductivity
Pd Desired power
Ri Ohmic resistances with i ∈ {S,L,C}
ui Voltages with i ∈ {RS, RL, RC, C, L}
u0 Input voltage

High-Bay Rack Feeder

A Cross sectional area of the beam
D Damping matrix
E Young’s modulus of the beam
h Input vector of generalized forces

IzB Second moment of area of the beam
kd damping factor
K Stiffness matrix
l Length of the beam

mi Mass of the cage, carriage, and at the tip of the beam (i ∈ {K,S,E})
M Mass matrix
q Vector of generalized coordinates
T1 time constant of the underlying velocity control
vS Velocity of the carriage
xK Vertical position of the cage
yi Horizontal position of the cage, and carriage (i ∈ {K,S})
δ Disturbance vector
η Confidence level

ΘK Mass moment of inertia of the beam
κ Dimensionless system parameter
ρ Density of the beam
ν Bending deflection of the first eigenmode

Boom Crane

d Damping coefficient normalized on mL

D Dissipation parameter
Ei Kinetic and potential energy (i ∈ {kin, pot})
Fi Force on payload and carriage (i ∈ {L,HT})
g Gravitational acceleration
l Rope length

mi Mass of crane, payload, and carriage (i ∈ {C,L,HT})
q Vector of generalized coordinates
Q Vector of external forces1

1Note that this vector is written with a capital letter to distinguish it from the vector of generalized coordinates.
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Q, R Weighting matrices
r Carriage postion
T1 Time constant
xL Vertical position of the payload
yL Horizontal position of the payload
δ Damping coefficient
φ Rope angle

Extensions

Fractional-Order System

C Capacity
i0 Terminal current of the battery
Qn Nominal battery capacity
R Ohmic resistance
u0 Terminal voltage of the battery

uOCV Open circuit voltage
uCPE Voltage of the constant phase element

η Charging/discharging efficiency
ν Fractional order
σ State of charge

Alternative Computation of Interval Enclosures–Inverted Pendulum on a Cart

a Length of the pendulum
F Accelerating force of the carriage controller
g Gravitational acceleration
m Point mass at the pendulum tip
M Carriage mass
T Final time of the exponential enclosure technique
T1 Time constant of the underlying carriage velocity controller
u Desired carriage velocity (system input)
x Vertical position of the carriage
α Pendulum angle
Λ Diagonal matrix of eigenvalues



1 Introduction

Most advanced control tasks, which rely on modeling the dynamic behavior of a system, are
often described by ordinary differential equations (ODEs)

ẋ = f(x(t),u(t),p(t)) , (1.1)

where f is a function describing the system dynamics depending on the state vector x, the
input u, and p as a vector of parameters. Note that the input and the parameters can be either
time-invariant or time-varying1. In order to generate a system model, one needs to understand
the mathematical and physical properties of the dynamic system in question. However, to find a
system model to suit specified control tasks, it has to be decided which of these properties define
the problem at hand best and whether some can be approximated — either because information
does not need to be considered for the required control goal or it is simply not possible to acquire
— to balance model-accuracy and implementation effort. Since approximation is a common tool
when working with model-based control design, basically all real-world systems are subject to
uncertainties. Simplifications can be, e.g. approximation of nonlinearities, parameter couplings
or order reduction. Furthermore, errors may occur in parameter identification due to physically
motivated phenomena, measurement effects, or possible numerical discretization errors. All of
these errors can be the source of uncertainty, which is divided into two main types, on the one
hand as

� aleatory, which is classified by environmental stochasticity meaning that results are not
repetitive. These uncertainties are quantified using probabilistic methods, such as Monte-
Carlo [6] or polynomial chaos [9] as the realization of Wiener processes. On the other
hand

� epistemic uncertainty is regarded as systematic due to lack of knowledge. Here, we assume
that those can be seen as bounded uncertainties, which means that methods to work with
are e.g. Taylor models or intervals [65].

In the presented thesis, the considered uncertainties either come from parameter variations or
from an approximated overbounding of nonlinearities and are, hence, classified as epistemic,
structured and, accordingly, bounded. In this case, the dynamic system can be treated by
interval variables. Normally, simple shapes such as zonotopes [28, 32] or intervals [21] replace
complex shaped regions in a multi-dimensional state-space to simplify the computation. In this
thesis, we make use of intervals to express the worst-case bounds as shown in Fig. 1.1 for an
example of a parameter vector p = [p1 p2]T of order n = 2.

Here, one can see that the parameter variations stretch out a whole box of possible combinations.
To account for such a scenario including all parameter realizations, the control design needs
to be robust. This describes the property of the system to tolerate such2 variations without
exceeding predetermined tolerance bounds in the vicinity of some nominal dynamic behavior
[65]. However, if robustness increases, the nominal degree of performance decreases, which

1For simplicity, time arguments for both will be omitted in the notation while always including both cases
until otherwise established.

2e.g. parameter
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Figure 1.1: Interval box p resulting from two uncertain parameters p1 and p2.

means that another trade-off between robustness and performance has to be considered. Fig. 1.1
also shows, that if the parameters depend on one another arbitrary interactions are considered,
increasing the conservativity of the robust controller further. To summarize, “the standard
objective is to find a criterion for a controller as least conservative as possible” [65].
There are several possibilities to reduce conservativity and only a few will be subject of this
thesis. However, a verified enclosure of all reachable states is often crucial not only to analyze
the system’s dynamics but also to find suitable control and observer designs. To achieve this,
a lot of the presented approaches make use of the property of cooperativity.

1.1 Cooperativity of Continuous-Time Dynamic Systems

For most control purposes, if the dynamics are linear, Eq. (1.1) is reformulated into the so-called
state-space model

ẋ = A(p)x(t) + B(p)u(t) (1.2)

with the system matrix A, the input matrix B and the output equation

y = C(p)x(t) + D(p)u(t) (1.3)

with the output matrix C and a feed-through matrix D. Advantages of this representation
include its efficiency when analyzing the system’s structural properties — e.g. stability, con-
trollability, and observability — and simplified implementation of control designs. For nonlinear
systems, however, often a quasi-linear representation of the state-space model

ẋ = A(x(t)) · x(t) + B(x(t)) · u(t) (1.4)

can be used, where the nonlinearities are shifted as variables into the describing matrices (sys-
tem, input, output and feed-through) as done in this work. Note that both matrices A(x(t))
and B(x(t)) need to be without singularities and bounded for the whole operating horizon.
This is realized by factoring out selected state variables. Note that for the transformation into
cooperative representations, Eqs. (1.2) and (1.4) are treated equally, while the methods for
control design differ in some aspects as described in Chapter 3.

The advantage of a cooperative system is that the worst-case bounds can be decoupled and then
be treated as two known systems which simplifies the computation of worst-case enclosures of
the system states with uncertain initial conditions to a large extent. Here,

A · v(t) + B · u(t) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = A ·w(t) + B · u(t) (1.5)
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with

A = inf ([A(p)]) B = inf ([B(p)])

A = sup ([A(p)]) B = sup ([B(p)])
(1.6)

holds if the terms [B] · u(t) as well as v(t) are always positive, otherwise,

v̇(t) = inf ([Ad(p)] · v(t)) + inf ([Ad(p)] · [z](t) + [B(p)] · u(t))

ẇ(t) = sup ([Ad(p)] ·w(t)) + sup ([Ad(p)] · [z](t) + [B(p)] · u(t))
(1.7)

with z(t) ∈ [z] (t) = [v(t) ; w(t)], Ad = diag(A) = A ◦ I, and Ad = A ◦ (E − I), must be
applied. A sufficient criterion for cooperativity [61] of autonomous dynamic systems

ẋ(t) = f (x(t)) , x ∈ Rn (1.8)

is that all off-diagonal elements Ji,j, i, j ∈ {1, . . . , n}, i 6= j, of the corresponding Jacobian

J =
∂f (x)

∂x
(1.9)

are strictly non-negative according to

Ji,j ≥ 0 , i, j ∈ {1, . . . , n} , i 6= j . (1.10)

This is commonly referred to as a Metzler structure [22, 33]. For such cases, it is guaranteed
that state trajectories x(t) starting in the positive orthant

Rn
+ = {x ∈ Rn | xi ≥ 0, ∀i ∈ {1, . . . , n}} (1.11)

stay in this positive orthant for all t ≥ 0 because ẋi(t) = fi (x1, . . . , xi−1, 0, xi+1, . . . xn) ≥ 0
holds for all components i ∈ {1, . . . , n} of the state vector as soon as the state xi reaches
the value xi = 0. This property is commonly also denoted as positivity of the system model
(1.8) [22,33].
In case of a Metzler structure of the matrix A, it is possible to simplify not only simulation
tasks but also the application of suitably parameterized observers or state/output feedback
controllers that can preserve cooperativity [15].

In general, dynamic systems can be described as cooperative, continuous-time models, if they
are characterized by a finite number of non-negative state variables that can be interpreted as
the nodes of a directed graph with transport terms corresponding to the graph edges. A general
system representation is given in Fig. 1.2.

state 1 state 2 state 

p11

p21

p12

pi2

p22 pnn

pnj

pinp2 j

xn(t)x2(t)x1(t)
n

Figure 1.2: Graphical representation of an autonomous dynamic system.

Transport terms are, here, proportional to both, the node variable from which the edge starts
and a non-negative (possibly state-dependent) weighting factor. Following this representation,
the ODEs can be derived by

ẋi = −
n∑
j=1

pijxi +
n∑

j=1,i 6=j

pjixj (1.12)
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with pij ∈ R, pij ≥ 0 and pji ≥ 0, i 6= j, resulting in

ẋ =


−
∑n

j=1 p1j p21 . . . pn1

p12 −
∑n

j=1 p2j . . . pn2

...
...

. . .
...

p1n p2n . . . −
∑n

j=1 pnj

x , (1.13)

where the Metzler structure [43] of the system matrix is obvious with non-negative off-diagonal
entries. For a necessary condition of additional Hurwitz stability, see Sec. 2.5.1, the diagonal
elements need to be strictly negative [17].
This structure naturally occurs in several applications in physics, biology, and (bio-)chemistry
such as

� mass transfer in fluidic compartment models [12] and pressure dynamics in hydraulic and
pneumatic networks with lumped storage elements,

� energy transfer between finite volume elements in thermal systems [47],

� compartment models of cell maturation, where the graph edges represent the growth of
bacteria or microorganisms according to the Monod kinetics [19],

� enzymatic reactions according to the Michaelis-Menten kinetics [10], or

� continuous-time Markov chain models if the state variables denote probabilities for dis-
crete model states with edge weights corresponding to the respective transition likelihoods.

However, ODEs derived by some first-principle modeling techniques like Kirchhoff’s laws for
general electric or magnetic networks with lumped parameters as well as modeling of mechani-
cal multibody systems by the application of Lagrange’s equations of second kind do not fulfill
the sufficient properties of cooperativity given in (1.9) and (1.10). To apply cooperative treat-
ment to these systems we, therefore, need to find general transformation procedures to use the
advantages in a wider field of different applications.

1.2 Aim of this Work and its General Methodology

In this work, a generally applicable method shall be derived combining robust control designs
with the computation of verified interval enclosures. Additionally, observers will be used as a
form of fault diagnosis tool, further securing the overall system dynamics to follow the require-
ments set by the user by including this system diagnosis.

final structure
with verified 

state enclosures
including

the uncertainty 
and an online 

system and sensor
fault diagnosis

cooperative
controlled
uncertain 

system model

controlled
uncertain
system 
model

uncertain
system

control transformation

observer

verified interval enclosure (v.i.e.)

observer

uncertain
parallel
model

cooperative
parallel

uncertain 
system model

transformation simulation executed
in parallel

v.i.e.

Figure 1.3: Outline of the theoretical aspects and contributions of this work.
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For this, the overall theoretical aspects will be described in the first part, basically oriented on
the structure of Fig. 1.3. Generally, a control design is firstly applied to the uncertain system.
The resulting model is then transformed into a cooperative form with which verified interval
enclosures (v.i.e.) can be computed. Those can either be used to tune the control design or as
a comparison for the sensor diagnosis, when the observer gain is computed analogously to the
controller gain following the duality principle. Here, a parallel model denotes a system repre-
sentation simulated in parallel to the actual execution of the control task. Note that throughout
this work, the reality will be called the“system”and its mathematically derived descriptions are
named “model”. The parallel model path of Fig. 1.3 can be omitted, if a cooperativity-ensuring
observer design can be applied, so that the upper path will lead to the final structure.
After the theoretical explanations, suitable application scenarios to underline the general ap-
plicability and possible adaptations will be presented subsequently.

1.3 Outline

The presented thesis consists of three parts. The first part gives an overview on theoretical as-
pects used in this work. For this, Chapter 2 represents preliminaries as a summary of selected
mathematical definitions regarding both main topics, interval arithmetics and control engineer-
ing. Subsequently, the next chapters follow the structure of Fig. 1.3 with a control synthesis
in Chapter 3, the transformation procedures in Chapter 4 and observer designs in Chapter 5
concluding the theory part. The focus of Part II lies on giving application scenarios, where the
theoretical aspects are put into a practical context. Following the findings of Chapter 4, the
results are given separately for systems with purely real eigenvalues in Chapter 6 and systems
including conjugate-complex eigenvalues in Chapter 7. Part III is dedicated to extensions of
the presented theory. Here, Chapter 8 applies the deduced control design and transformation
strategy to fractional-order systems and outlines necessary adaptations. In Chapter 9, limits of
the presented transformation are presented and an alternative solution for computing interval
enclosures is given. Chapter 10 concludes this thesis and gives an outlook on future work.
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Part I

Theory





2 Preliminaries

Throughout this thesis, a number of different techniques from various fields including computer
science, scientific computation, numerics, and control engineering will be applied. Therefore,
this chapter contains an overview of mathematical basics and state-of-the-art findings as well
as general clarifications of used technical terms. Thus, central topics of this chapter are funda-
mentals on interval arithmetic, covering basic operations, computation and arising problems,
as well as state-of-the-art computations of interval enclosures namely verified forms of temporal
Taylor series expansions. One can further find comments on sensitivity and basic information
on linear matrix inequalities. Finally, stability of dynamic systems is discussed and different
approaches to verify stability are given.

2.1 Fundamentals of Interval Arithmetic

Note that this section is limited to those aspects of interval arithmetic used in this thesis and
hence, shall not be seen as a general overview. For more detailed information, the reader is
referred to [21,36].

A real-valued scalar interval is given by

[x] = [x ; x] = [inf([x]) ; sup([x])] , x ≤ x, {χ ∈ R|x ≤ χ ≤ x} , (2.1)

where the (largest) lower bound is defined as the infimum and the (smallest) upper bound as
the supremum, respectively. The bounds are real finite values, that can be equal x = x, and
hence, representing a point-valued interval. The interval vector

[x] =


[x1 ; x1]
[x2 ; x2]

...
[xn ; xn]

 (2.2)

with n entries, assumed to be independent, is a special case of the interval matrix

[X] =


[x11 ; x11] [x12 ; x12] . . . [x1n ; x1n]
[x21 ; x21] [x22 ; x22] . . . [x2n ; x2n]

...
...

. . .
...

[xm1 ; xm1] [xm2 ; xm2] . . . [xmn ; xmn]

 . (2.3)

Note that it is also possible to define complex-valued intervals which can be visualized and
represented numerically as an interval box, see Fig. 2.1(a), or as a midpoint-radius form as in
Fig. 2.1(b).



10 Chapter 2. Preliminaries

(a) Interval box: [a] = [a1 ; a1] + j [a2 ; a2] (b) Midpoint-radius form [z] = 〈m, r〉

Figure 2.1: Visualization of complex-valued intervals.

2.1.1 Basic operations

Calculating with intervals is subject to a variety of considerations which must be obeyed in
order to apply the techniques correctly. The basic operations addition

[x1] + [x2] = [x1 + x2 ; x1 + x2] (2.4)

and subtraction
[x1]− [x2] = [x1 − x2 ; x1 − x2] (2.5)

require no further restrictions if carried out on the set of real numbers. Multiplication

[x1] · [x2] = [min{x1 x2, x1 x2, x1 x2, x1 x2} ; max{x1 x2, x1 x2, x1 x2, x1 x2}] (2.6)

and division
[x1]

[x2]
= [x1] ·

[
1

x2

;
1

x2

]
if 0 /∈ [x2] (2.7)

however, are subject to the distinctions summarized in Tabs. 2.1 and 2.2.

Table 2.1: Case distinction for multiplication.

x2 ≤ 0 x2 < 0 < x2 0 ≤ x2

x1 ≤ 0 [x1 x2 ; x1 x2] [x1 x2 ; x1 x2] [x1 x2 ; x1 x2]

x1 < 0 < x1 [x1 x2 ; x1 x2] [min{x1 x2, x1 x2} ; max{x1 x2, x1 x2}] [x1 x2 ; x1 x2]

0 ≤ x1 [x1 x2 ; x1 x2] [x1 x2 ; x1 x2] [x1 x2 ; x1 x2]

Further important describing properties of intervals are given with the interval radius

rad {[x]} =
1

2
(x− x) , (2.8)

the interval diameter
diam {[x]} = x− x = 2 · rad {[x]} , (2.9)
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Table 2.2: Case distinction for division.

x2 < 0 0 < x2

x1 ≤ 0 [x1/x2 ; x1/x2] [x1/x2 ; x1/x2]

x1 < 0 < x1 [x1/x2 ; x1/x2] [x1/x2 ; x1/x2]

0 ≤ x1 [x1/x2 ; x1/x2] [x1/x2 ; x1/x2]

as well as the interval midpoint

mid {[x]} =
1

2
(x+ x) , (2.10)

and, finally, the volume of an interval box with n intervals

vol {[x]} =
n∏
j=1

diam {[xj]} , (2.11)

where all of the Eqs. (2.8)–(2.10) are defined component-wise.

2.1.2 Computing with intervals

Not only the evaluation of basic operations differs for intervals in comparison to point values.
While some solutions may be obvious for the user, automatic computation suffers from proper-
ties inherited from the fundamental definition of outer enclosures. Two of these overestimation
occurrences will be looked into detail in this thesis.

Dependency problem

On the occurrence of identical interval variables, the computation will replace the basic op-
eration with the respective interval evaluation without acknowledging their dependency. This
would lead to a too pessimistic solution as, e.g. in a diameter calculation of the enclosure for
the interval difference [x]− [x] as

diam {[x]− [x]} = 2 · diam {[x]} (2.12)

instead of diam {[x]− [x]} = 0. Note that there are no inverse elements to addition and
multiplication in naive interval evaluation, further complicating calculations used for control
engineering because of irreversibility of the operations.1

However, algorithmic approaches to reduce the dependency problem include

� Symbolic reformulations, e.g. for univariate polynomials such as

[f ]([x]) = 2 · [x]− [x] · [x] with [x] = [−1 ; 2] (2.13)

1. [f ]([x]) = 2 · [x]− [x] · [x] = [−6 ; 6]

2. [f ]([x]) = 2 · [x]− [x]2 = [−6 ; 4]

3. [f ]([x]) = −([x]− 1) · ([x]− 1) + 1 = [−3 ; 3]

4. [f ]([x]) = −([x]− 1)2 + 1 = [−3 ; 1],

1A standard for interval arithmetic is defined in 1788–2015 — IEEE Standard for Interval Arithmetic.
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� Taylor series expansions

f(x) ∈ f(xm) +

(
n−1∑
i=1

∂if(x)

∂xi

∣∣∣∣∣
xm

· ([x]− xm)i

i!

)
+
∂nf(x)

∂xn

∣∣∣∣
[x]

· ([x]− xm)n

n!
(2.14)

with2 xm = mid {[x]} accounting for interval-based enclosures of all possible truncation
errors,

� Branch&Bound-Algorithms

1. Splitting of the original interval into disjoint (except for the bounds) subintervals

2. Using the fundamental enclosure property (monotony of enclosure)

[x̃] ⊆ [x] ⇒ f([x̃]) ⊆ f([x]) (2.15)

3. Evaluation of the function with general methods for the subintervals

4. Building the hull over the whole range of values,

� Use of the property of monotony of the function f(x)

∂f

∂x

∣∣∣∣
x∈[x]

< 0 ⇒ f ∈ [f(x) ; f(x)] (2.16)

∂f

∂x

∣∣∣∣
x∈[x]

> 0 ⇒ f ∈ [f(x) ; f(x)] (2.17)

– efficiently combined with Branch&Bound-Algorithms

– component-wise applicable for multiple interval arguments as well as vector-valued
functions, and

� Definition of contractors, see [21].

Wrapping effect

Typically, complex shaped regions in a multi-dimensional state-space enclosing the flow of a
set of ODEs or of discrete-time difference equations are replaced by simple shapes such as
zonotopes [28, 32] or intervals [21]. Interval boxes, as shown in Fig. 1.1 as an order n = 2
example for Eq. (2.2) are set to be axis-aligned for the computation. When computing with
these interval boxes, they may rotate and distort as shown in Fig. 2.2, second step.

Figure 2.2: Wrapping effect: The initial interval box (left) is overestimated due to axis-
alignment.

Since generally, computations are done with axis-aligned boxes, a wider box is built around the
originally rotated box, leading to overestimation and hence, to (interval) bounds that are much
wider than the actually reachable set.

2When expressed component-wise, this is also applicable trivially for vector-valued functions.
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Simulation tool

Note that for a calculation on a CPU not all real values can be represented exactly as a
finite-precision floating-point number of, e.g. data type double, which is why directed outward
rounding of the interval bounds is used. All computations in this work are done in MATLAB
using INTLAB (INTerval LABoratory toolbox) for reliable computing [57].

2.2 State-of-the-Art Computation of Interval Enclosures of
all Reachable States: Taylor Series Expansion

A task for interval computation in control engineering is the computation of state enclosures,
which can be used, e.g. for analyzing the system in general in terms of reachability, safety, and
feasibility of trajectories as well as for optimizing controller gains based on the state evolution,
or verifying controller as well as observer designs.

Stage 1

Consider the nonlinear, time-invariant dynamic system (1.8) to be described at some discrete-
time sampling instants, so that x(tk) ∈ [xk]. Now, a bounding box [Bk] can be determined
which contains all possibly reachable states for t ∈ [tk ; tk+1]. This is done with the Picard
iteration, see [14],

Φ([Bk]) := [xk] + [0 ; T ] · f([Bk]) (2.18)

initialized with [Bk] := [xk]. On the one hand, if Φ([Bk]) ⊂ [Bk], the iteration is continued
with [Bk] := Φ([Bk]) until all interval diameters in the vector

diam {Φ([Bk])} = sup (Φ([Bk]))− inf (Φ([Bk])) (2.19)

become practically identical to the diameters of the interval [Bk]. On the other hand, for
Φ([Bk]) 6⊂ [Bk], [Bk] needs to be inflated before Eq. (2.18) is re-evaluated.

Stage 2

With this bounding box obtained by the Picard iteration, outer state enclosures at the time
instant tk+1 are received by the temporal Taylor series

[xk+1] = [xk] +
λ∑
i=1

T i

i!
f (i−1)([xk]) + [Ek] , (2.20)

where typically [xk+1] := [xk+1] ∩ [Bk] ⊂ [Bk], of order λ with the guaranteed interval bounds
[xk] for t = tk and the enclosure

[Ek] =
T λ+1

(λ+ 1)!
f (λ)([Bk]) (2.21)

of the temporal discretization error. Note that the expressions f (i) in Eqs. (2.20) and (2.21)
are the i-th order total derivatives of f with respect to time (proportional to the corresponding
Taylor coefficients of the solution xk+1). The described interval enclosure (2.20) corresponds
to the fundamental enclosure technique published in [40] and represents a common tool —
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except for the applied QR preconditioning in VNODE, VNODE-LP3 or AWA [31]— for
the computation of interval enclosures of all reachable states. It will be used as a comparison
method for a simulation-based gain-scheduled control design in this work.

2.3 Comments on Sensitivity

A common tool to handle intervals is their division into subintervals, c.f. the Branch&Bound-
Algorithms of Sec. 2.1.2, which is then followed by building the hull over these subintervals to
get to a tight solution. This is often done to counteract overestimation. The question now is,
how to divide these intervals in an efficient manner. Efficiency — in this case — means to use
the least necessary amount of subintervals to keep the effort as low as possible. This becomes
even more important if the system has more than one uncertain parameter and we need to
decide which to divide more often [18]. For this, a logical and simple approach is to consider
the parameter with the most influence on the system. This is sometimes a question of physical
knowledge of a real system, but can also be evaluated mathematically by making use of the
so-called differential sensitivity [65]. In general, sensitivity describes the system’s robustness
against any kind of influence, whether it be external disturbances or parameter variations. As
already mentioned, in this work, we will focus on the latter and furthermore restrict ourselves
to sensitivity of eigenvalues. In [65], differential sensitivity, which is also called small-scale
robustness, is described as a local characteristic defined by partial derivatives of first order with
respect to a parameter p. Here, the derivative

sp =
∂A

∂p

∣∣∣∣
p=p0

(2.22)

characterizes the behavior of the system A in an infinitesimal vicinity of the nominal point p0. If

Eq. (2.22) is expanded to a parameter vector p with p =
[
p1 p2 . . . pnp

]T
, a sensitivity vector

sp is obtained, where its entries are a direct measure to judge the influence of the parameters
on the system. This can also be transferred to deduce information on the parameter influence
on eigenvalues, which will be required later in the presented thesis. In practice, it is sometimes
difficult for real-life applications to derive the sensitivity symbolically, in analogy to Eq. (2.22)
for

sp =
∂λ(p)

∂p
. (2.23)

Hence, Eq. (2.23)4 is expanded to

sp =
∂λ(p)

∂p
= (I⊗w)

∂A

∂p
(I⊗ v) , (2.24)

where I is the identity matrix, w the left eigenvector and v denotes the right eigenvector
corresponding to the eigenvalue λ. Based on this information, obviously, parameters with
higher sensitivity and large diameters will be subdivided more often than the others. Examples
of this will be given in Chapters 4 and 7 of Part II.

3This QR preconditioning tries to find coordinate systems in which the boxes are axis-aligned. This may help
in reducing the wrapping effect, however, if fitting coordinate systems can not be found, this may have the
opposite effect.

4For the calculation rules see A.1.
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2.4 Linear Matrix Inequalities and Their Use in Control
Engineering

Consider a symmetric matrix A(p) that affinely5 depends on certain variable parameters p ∈ R.
The question is whether it is possible to choose those parameters in such a way that the
eigenvalues’ real parts

<{eig(A(p))} < 0 (2.25)

become negative. Here, Linear Matrix Inequalities (LMIs) can be generally applied to a variety
of problems considering the following [58]

� For positive definite LMIs N(p) � 0, M(p) = −N(p) ≺ 0 holds.

� Matrix variables may appear as unknowns e.q. as P in the Lyapunov inequality

ATP + PA ≺ 0 (2.26)

� If the maximum eigenvalue of the matrix A is λmax(A(p)), then <{λmax(A(p))} < 0 is
equivalent to Eq. (2.26). Conditions on p are therefore generally defined by a non-smooth
function. However, the solution set of Eq. (2.26) is always convex which allows for solving
LMIs with adequate numerical algorithms.

A common tool for converting nonlinear (quadratic) inequalities into LMIs is the so-called Schur
complement formula (A.3), where

A−BC−1BT � 0 with C � 0 (2.27)

can be reformulated into [
A B
BT C

]
� 0, A = AT , C = CT . (2.28)

This concept of LMIs is old and was firstly used for control engineering in 1940, where re-
searchers tried to apply the Lyapunov theory (Section 2.5.2) for control applications [7]. How-
ever, LMIs were then solved by pen and paper and, hence, only applicable to low order problems.
Recent developments in computer science opened LMIs to a broader field of applications, where
nowadays different problems can be solved. In this work, LMIs are used either to solve a variety
of (convex) optimization problems or to ensure robust stability of uncertain systems. While
working with LMIs, the goal is to construct the inequalities describing the considered problem
in such a way that there exists a feasible solution to them. The difficulty herein, therefore, lies
in formulating suitable LMIs. All problems in this thesis were solved by the Matlab toolbox
Sedumi [62] in combination with Yalmip [30].

2.5 Analyzing Stability of Dynamic Systems

Although there are many definitions of stability, the general idea is to determine if a system is
“well behaved in some conceivable sense”[35]. To consider this, one needs a more mathematically
defined way to decide on the system’s behavior. For the sake of simplicity, we will refrain
ourselves from the general stability theory and focus on the concept in control engineering.
Here, mainly the stability of states corresponding to the system representation of Eq. (1.2)

5A(p) is affine in p if A(p) = A0 +
∑np

i=1 pi ·Ai.
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is considered. This idea is based on idle states or equilibrium points, where a stable system
remains in its equilibrium state if not acted upon by an external disturbance with ẋ = 0.
An idle state xs of a dynamic system (1.8) is stable, if for an ε > 0 there is a finite δ = δ(ε) > 0,
where

‖x(0)− xs‖ < δ and ‖x(t)− xs‖ < ε for all t ≥ t0 . (2.29)

Otherwise, the idle state xs is unstable. Additionally, an idle state xs is called attractive6, if
there is a finite δ1 > 0, where

‖x(0)− xs‖ < δ1 and lim
t→∞

x(t) = xs . (2.30)

If both Eqs. (2.29) and (2.30) hold and the idle state xs is stable and attractive, it is called
asymptotically stable. Figure 2.3 shows examples of the behavior for a stable and an asymp-
totically stable system, respectively. Here, one can clearly see that the trajectory starting in
x(0) = x0 remains inside the sphere with radius ε and in case of an asymptotically stable system
additionally converges into the idle state xs.

(a) Idle state xs is stable. (b) Idle state xs is asymptotically sta-
ble (stable and attractive).

Figure 2.3: Stability of the idle state on the basis of Eqs. (2.29) and (2.30).

The physical meaning of stability can be displayed in the resulting dynamics of a system, which
should — in case of stable systems — not grow beyond their limits or even — in case of
asymptotic stability — come to a rest. The total energy of a system provides a measure for this
behavior. If the total energy does not increase, the system is stable. For asymptotic stability,
the total energy will even decrease, e.g. due to an irreversible transformation of potential or
kinetic into thermal energy in a mechanical system. Although there are several possibilities to
prove stability of a dynamic system, the following summary will only cover a selection of them.
All given theorems are used throughout this thesis for different kinds of stability as explained
above.

6convergent
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2.5.1 Proofs of stability part I: linear systems

A simple stability statement for linear systems with crisp parameters7 is to determine the
location of all eigenvalues of the system

ẋ = Ax . (2.31)

If all eigenvalues lie in the open left half plane, meaning that all real parts are negative <{λi} < 0
with i ∈ {1, . . . , n}, the system is asymptotically stable. For unstable systems, at least one real
part of the eigenvalues is positive or eigenvalues of multiplicity two lie on the imaginary axis,
and in case of stability one real eigenvalue or the real part of a conjugate-complex pair becomes
zero (i.e. marginal stability), see Fig. 2.4.

(a) asymptotically stable (b) stable (c) unstable

Figure 2.4: Stability on the basis of eigenvalue locations for a system n = 3 with one real
eigenvalue and a conjugate-complex pair.

Hurwitz criterion

This criterion makes use of the coefficients of the characteristic polynomial

p(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 , (2.32)

which corresponds to p(s) = det(sI−A) without pole-zero cancellation. Here, a so-called n×n
Hurwitz-matrix is given by

H =



an−1 an−3 an−5 . . . a1 0 0 0 . . . 0
an an−2 an−4 . . . a2 a0 0 0 . . . 0
0 an−1 an−3 . . . a3 a1 0 0 . . . 0
0 an an−2 . . . a4 a2 a0 0 . . . 0
...

. . .
...

0 . . . 0 an−1 an−3 an−5 . . . a3 a1 0
0 . . . 0 an an−2 an−4 . . . a4 a2 a0


(2.33)

with its principal minors Di, i = 1, .., n according to

H =


|an−1| an−3

an an−2

an−5

an−4

0 an−1 an−3

. . .

. . .

. . .
...

...
...

. . .

 , (2.34)

7Note that this is also valid for systems with uncertain parameters, if these parameters are unknown but
otherwise time-invariant, i.e., constant.
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which means

D1 = an−1 , D2 = det

(
an−1 an−3

an an−2

)
, . . . . (2.35)

Theorem 2.5.1 (Hurwitz criterion)
All zeros of the characteristic polynomial (2.32) have a negative real part, if and only if both of
the following conditions are satisfied

1. Necessary condition: All coefficients ai are positive

ai > 0 with i ∈ {0, . . . , n} .

2. Necessary and sufficient condition: The n principal minors Di of the matrix H are positive

Di > 0 with i ∈ {1, . . . , n} .

Since the sufficient condition is also necessary, it is possible to only check the second condition.
If the sufficient condition is not met, the regarded system is not asymptotically stable. However,
this criterion will not give any information on which eigenvalue violates the conditions and to
which extent. It therefore is a simple method to investigate whether all real parts lie in the
open left half plane.

Kharitonov criterion

For a system of order n, where the interval coefficients ai of the polynomial (2.32) vary inde-
pendently

ai ∈ [ai ; ai] with ai > 0

in a bounded interval, stability is given if all polynomials

p1(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + . . .

p2(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + . . .

p3(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + . . .

p4(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + . . .

are independently proven to be Hurwitz stable. Besides the disadvantages of whatever stability
proof used for the individual polynomials (e.g. Hurwitz), this approach involves a rather high
conservatism for the regarded intervals if the coefficients ai depend on each other and is therefore
not used in this thesis.

Gershgorin circles

This approach estimates the placement of eigenvalues without knowing the exact value. It is
therefore another interval representation directly applicable to uncertain systems. Here, the
midpoint of a Gershgorin circle and its respective radius are

<{λi} ≤ aii︸︷︷︸
midpoint

+
n∑

j=1,j 6=i

|aij|︸ ︷︷ ︸
radius

(2.36)
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where due to the constellation of the quadratic n× n matrix

A =


a11 a12 . . . a1j

a21 a22 . . . a2j
...

...
. . .

...
ai1 ai2 . . . aij

 (2.37)

holds. If all complete circles lie in the open left half plane, it is proven, that the system
is asymptotically stable. However, this may be a conservative approach since the worst-case
scenarios are assumed for the eigenvalues, but overestimation may cause an asymptotically
stable system to seem indistinguishable. Nevertheless, an exact knowledge of the eigenvalues is
not needed.

2.5.2 Proofs of stability part II: nonlinear systems

The following methods generally allow for a consideration of nonlinear systems. This also
includes possibilities to handle the stability of linear time-invariant (LTI) systems.

Lyapunov Criterion

On a former note, the total energy was considered as a measure for stability. Since it may be
difficult to directly calculate the total energy of a system and its temporal variation, Lyapunov8

extended his theory and replaced the positive definite energy function E(x) with a more general
function V (x), also positive definite. This is called the direct method. Stability or asymptotic
stability is given, if the time derivative V̇ (x) is negative semi-definite [29] or definite, respec-
tively, along the trajectories. A function V (x) fulfilling this, is called a Lyapunov function with
its time derivative

V̇ (x) =

(
∂V

∂x

)T
· dx

dt
=

(
∂V

∂x

)T
· f(x) . (2.38)

In the following, the equilibrium point xs = 0 is assumed for simplicity; however, for an arbitrary
equilibrium xs 6= 0, it can be shifted by transforming the respective coordinate system with

x = x̃ + xs (2.39)

resulting in
˙̃x = f(x)|x=x̃+xs

with x̃s = 0 . (2.40)

Definition 2.5.1 (Local Lyapunov stability)
If xs = 0 is the equilibrium point9 of a dynamic system ẋ = f(x(t)), f : D 7→ Rn and if
V : D 7→ R is a continuously differentiable function, the equilibrium point xs = 0 is locally
(asymptotically) stable, if

1. V (0) = 0

2. V (x) > 0 for all x ∈ D \ {0} and

3a. V̇ (x) < 0 for all x ∈ D \ {0} or

3b. V̇ (x) ≤ 0 for all x ∈ D \ {0}, respectively,

is fulfilled.

8Aleksandr Lyapunov, 1857–1918
9Here, xs = 0 holds without loss of generality.
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However, this does not indicate any information about the region of attraction of the equilibrium
point and is only a sufficient criterion. For an equilibrium point to be globally asymptotically
stable, it must be stable and all possible trajectories of the system must converge to it for
t→∞. For this, the continuously differentiable function V : D 7→ R also needs to be radially
unbounded, which means V (x)→∞ for ‖x‖ → ∞, resulting in the following definition.

Definition 2.5.2 (Global Lyapunov stability)
If x = 0 is the equilibrium point of a dynamic system ẋ = f(x(t)), f : Rn 7→ Rn and if
V : Rn 7→ R is a continuously differentiable function, the equilibrium point xs = 0 is globally
(asymptotically) stable, if

1. V (0) = 0

2. V (x) > 0 for all x ∈ Rn \ {0}
3. V (x)→∞ for ‖x‖ → ∞ and

4. V̇ (x) < 0 for all x ∈ Rn \ {0}
is fulfilled.10

Note that an LTI system is stable if and only if it is quadratically stable. Often, a quadratic
Lyapunov function according to

V (x) =
1

2
xTPx (2.41)

for x 6= xs = 0 or, according to Krasowskij’s approach, the following Lyapunov candidate may
be suitable

V (x) = f(x)T f(x) . (2.42)

For nonlinear time-variant systems, the reader is referred to [35]. For general applicability and
in order to numerically determine Lyapunov function candidates V (x), the so-called Lyapunov
inequality on P may be used, which is a special form of an LMI [7]. A system (2.31) is
quadratically stable if there exists a constant positive definite matrix P = const. such that

ATP + PA ≺ 0 (2.43)

holds. Here, for a quasi-linear model, global stability can be proven. However, a linearized
system matrix reduces this to local stability. Note that the quadratic stability proof of Eq. (2.43)
also holds for systems with time-varying parameters according to [7]. Concerning uncertain
dynamic systems, a convex polytopic representation of parameter uncertainty according to

D =
{

[A(ξ),B(ξ)]
∣∣∣[A(ξ),B(ξ)] =

nν∑
ν=1

ξv · [Aν ,Bν ] ;
nν∑
ν=1

ξν = 1; ξν ≥ 0
}

(2.44)

is used. To proof stability, a joint Lyapunov function V or — in case of quadratic stability —
a positive matrix P has to be found for the union of all vertex systems ν ∈ {1, . . . , nν}.

2.5.3 User-defined stability with Γ-regions

For a proof of stability of linear and quasi-linear systems, so-called Γ-regions are defined as
subsets of the complex left half plane

Γ := {s ∈ C
∣∣FΓ(s) ≺ 0} , (2.45)

10Note that for selected points, requirement 4. can be expanded to V̇ (x) ≤ 0 see [29].
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see [1], with the linear matrix expression

FΓ(s) = D0 + sD1 + s̄DT
1 , (2.46)

again, with s as the Laplace variable and s as its conjugate complex. Here, negative definiteness
FΓ ≺ 0 of the matrix in Eq. (2.46) needs to be fulfilled for all eigenvalues of the closed-loop
system. The matrix inequality according to Eq. (2.45) and Eq. (2.46) is reformulated into
another LMI in the following manner: If the set of all eigenvalues of a real-valued system
matrix A is included in the interior of the region Γ, a positive definite matrix P = PT � 0 can
be determined that satisfies the matrix inequality

D0 ⊗P + D1 ⊗ (AP) + DT
1 ⊗ (AP)T ≺ 0, (2.47)

see [7, 59] and also Lyapunov stability [20] according to Eq. (2.43). Here, ⊗ is the Kronecker
matrix product, see A.2, and P defines a Lyapunov function V (x) > 0, see Eq. (2.41), with
which stability of the autonomous dynamic system Eq. (2.31) can be proven, because (2.47)
corresponds to V̇ (x) < 0 along the trajectories outside the equilibrium.

User-defined Γ-stability regions can be composed of ellipses, hyperbolas, parabolas, cones, and
strips in the complex plane, where for each of them the real-valued parameter matrices D0 = DT

0

and D1 have to be adjusted properly in Eq. (2.46). A selection of possible regions is shown in
Fig. 2.5.

={s}

<{s}

s−s0

Figure 2.5: Possible stability regions. Absolute stability margin: vertical lines with the Γ-
stability region on its left-hand side; limited bandwidth: dotted vertical line (or
alternatively circle/ellipse) with stability region on the right-hand side of the bound-
ary; minimum damping ratio: dashed lines; combination of minimum damping with
absolute stability margin γ = s0: hyperbolas (dashed-dotted) with opening to the
left [24].

If the boundary of the stability domain Γ consists of multiple parts, all corresponding LMIs
(2.47) need to be satisfied simultaneously. For example, to consider the absolute stability margin
γ = s0 > 0, corresponding to the design criterion that <{s} < −s0 holds for all eigenvalues of
the closed-loop control system, the Γ-region is chosen according to

FΓ = 2γ + s+ s ≺ 0 (2.48)

and thus, corresponds to the setting D0 = 2γ and D1 = 1. Note that pure Hurwitz stability,
meaning <{s} < 0 in Eq. (2.45), is trivially included in this formulation by choosing γ = 0.
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3 Control Synthesis

As stated in Chapter 1, a dynamic system (1.1) is given in a state-space model representation
(1.2). Generally, a state feedback controller is designed according to

u = −Kx (3.1)

with a constant gain K, or as an adaptive controller by means of extended linearization tech-
niques [4] for quasi-linear state-space representations of nonlinear systems (1.4) given by

u = −K(x) · x . (3.2)

This means that for a closed-loop system — omitting all arguments — and integrating (3.1)
into (1.2)

ẋ = Ax−Bu = Ax−BKx = ACx (3.3)

with
AC = (A−BK) (3.4)

holds. An easy way to calculate a suitable controller gain matrix K is based on Lyapunov
stability, see Sec. 2.5.2. For this, the original LMI regarding Lyapunov stability (2.43) is
interpreted for the closed-loop representation with Eq. (3.4) according to

(A−BK)T ·P + P · (A−BK) ≺ 0 . (3.5)

Here, P is a matrix defining a Lyapunov function candidate

V (x) =
1

2
xTPx > 0 (3.6)

for x 6= xs = 0, with which stability of the dynamic system ẋ = Ax can be proven according
to Section 2.5.2. Since Eq. (3.5) is a bilinear problem formulation with multiplicative coupling
of the unknown K and P, a reformulation into an LMI is necessary. For this, Eq. (3.5) is left
and right multiplied by P−1 so that

P−1 ·
[
(A−BK)T ·P + P · (A−BK)

]
·P−1 ≺ 0 . (3.7)

This can be expanded into

P−1 · (A−BK)T + (A−BK) ·P−1 ≺ 0 (3.8)

or rather
P−1AT −P−1KTBT + AP−1 −BKP−1 ≺ 0 . (3.9)

With a linearizing change of variables according to

Q : = P−1 , Y := KP−1 ,

P = Q−1 , K = YP as well as YT = P−1KT ,
(3.10)
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the respective LMI is expressed as

QAT −YTBT + AQ−BY ≺ 0 . (3.11)

In this chapter, two basic designs of feedback controllers will be presented. The first will search
for a constant controller gain K in terms of Eq. (3.1) accounting for all uncertainties by means
of either uncertain parameters composed in the parameter vector p or uncertain states x as
a joint solution for all possible scenarios over the whole time horizon. For this, Eq. (3.11) is
reformulated for p ∈ [p] into

Q̃ (A(p)−B(p)K)T + (A(p)−B(p)K) Q̃ ≺ 0 (3.12)

with Q̃ = Q̃T � 0 as a stability requirement for the closed-loop dynamics. To replace the
continuum of parameter dependencies p, a polytopic model including the worst-cases of all
vertex matrices is evaluated with the help of suitable LMIs, see Section 3.1. Since this means
a quite large overestimation, adjustments in the modeling are introduced to reduce this in
Section 3.2. Novel control designs extending the method of Sec. 3.1 are given in Section 3.3.

3.1 Robust LMI-Based Control Synthesis

Robustness is achieved in terms of an overapproximation of the (quasi-)linear system model
by a polytopic uncertainty representation, see [59]. Generally, all uncertainties are treated
as bounded parameter intervals, resulting in parameter-dependent system and input matrices
A (p) and B (p). By introducing the vector ξ = [ξ1 . . . ξν ]

T , the polytopic model can be
represented by

D =
{

[A(ξ),B(ξ)]
∣∣∣[A(ξ),B(ξ)] =

nν∑
ν=1

ξv · [Aν ,Bν ] ;
nν∑
ν=1

ξν = 1; ξν ≥ 0
}

(3.13)

as a convex combination of extremal system models in (3.12) and suitably chosen vertex matrices
Aν = Aν(p) and Bν = Bν(p), where each of them depends on the vector of independent
parameters p ∈ Rnp which influence the matrices A and B in an affine way. Those are contained
in the interval box

[p] =
[
p ; p

]
(3.14)

with the component-wise defined bounds p
i
≤ pi ≤ pi, i ∈ {1, . . . , np}. An evaluation of A (p)

and B (p) for each of the vertices

P =



p

1

p
2
...
p
np

 ,

p1

p
2
...
p
np

 , . . . ,

p1

p2
...
pnp


 =

{
p〈1〉, . . . ,p〈nν〉

}
(3.15)

results in vertex systems, which number nν = 2np is determined by the collection of independent
parameters. All nν vertex systems need to be taken into account for the robust control design.
To formulate a generally applicable method, we make use of the so-called Γ-region as explained
in Section 2.5.3. Here, user-defined stability regions1 are given in the form of (2.46). To achieve
stability, the negative definiteness of FΓ ≺ 0 needs to be satisfied for all eigenvalues of the
system in consideration. To apply LMI design techniques, the inequality FΓ ≺ 0 needs to be
reformulated.
1such as ellipses, hyperbolas, parabolas, cones, and strips in the complex plane, see Sec. 2.5.3 and [1]
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Theorem 3.1.1
If all eigenvalues of a real-valued system matrix A lie within the interior of the region (2.46),
a positive definite matrix P = PT � 0 exists that fulfills the matrix inequality [59]

D0 ⊗P + D1 ⊗ (AP) + DT
1 ⊗ (AP)T ≺ 0 , (3.16)

which is based on Eq. (2.43).

Again P is a matrix defining a Lyapunov function (3.6). The inequality (3.16) can be used for
a direct control design. Analogously to Eqs. (3.7)–(3.11),

D0 ⊗P + D1 ⊗ (ACP) + DT
1 ⊗ (ACP)T ≺ 0 (3.17)

with (3.4), is multiplied left and right by I⊗P−1 resulting in

I⊗P−1 ·
(
D0 ⊗P + D1 ⊗ (ACP) + DT

1 ⊗ (ACP)T
)
· I⊗P−1 ≺ 0 . (3.18)

Taking into account the calculation rules given in A.2, the left side product is(
D0 ⊗ I + D1 ⊗ (P−1ACP) + DT

1 ⊗AT
C

)
· I⊗P−1 ≺ 0 , (3.19)

while the right side product leads to

D0 ⊗P−1 + D1 ⊗ (P−1AC) + DT
1 ⊗ (AT

CP−1) ≺ 0 . (3.20)

Since eig(AC) = eig(AT
C) holds, we use

D0 ⊗P−1 + D1 ⊗ (P−1AT
C) + DT

1 ⊗ (ACP−1) ≺ 0 (3.21)

instead, resulting in

D0 ⊗P−1 + D1 ⊗
(
P−1(AT −KTBT )

)
+ DT

1 ⊗
(
(A−BK)P−1

)
≺ 0 , (3.22)

which is then expanded to

D0 ⊗P−1 + D1 ⊗
(
P−1AT −P−1KTBT

)
+ DT

1 ⊗
(
AP−1 −BKP−1

)
≺ 0 . (3.23)

With, again, a linearizing change of variables, see Eq. (3.10), this leads to

D0 ⊗Q + D1 ⊗ (QAT
ν −YTBT

ν ) + DT
1 ⊗ (AνQ−BνY) ≺ 0 (3.24)

as the set of LMIs used to calculate the controller gain considering Lyapunov stability for
the user-defined Γ-region. Here, the index ν ∈ {1, . . . , 2np} denotes all possible vertices. For
a robust stability of the uncertainty representation (3.13)–(3.15) with eigenvalues that are
compatible with the domain FΓ ≺ 0 defined in (2.46), a joint solution Q � 0, Y of the
LMI (3.24) for each of said vertices needs to be found.

3.1.1 Adding optimality criteria

Additionally to this, other optimality criteria such as robust H2 and H∞ tasks [65] can be taken
into account by the same LMI-based design framework as shown in the following. For this, we
consider the extended system to be

ẋ(t) = Ax(t) + B1w(t) + B2u(t) . (3.25)
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Here, A, x and u are the already known system matrix, state vector, and input vector, respec-
tively. The matrix B2 is the input matrix, while B1 denotes the disturbance input matrix and
w the disturbance vector. For the H∞ control design, additionally,

y∞(t) = C∞x(t) + D∞1w(t) + D∞2u(t) (3.26)

with the considered output y∞, its output matrix C∞ as well as the respective feedthroughs
D∞1 for the disturbance and D∞2 for the input, holds. Analogously,

y2(t) = C2x(t) + D22u(t) (3.27)

is given for the H2 control design with its respective output matrix and feedthrough.

LMI representation of the H2 control design

The H2-norm can be comprehended as a description of the signal energy relating a respective
input to the output. For the control design,

||Gw→y2(s)||22 = γ2
2

!
= min (3.28)

is desirable, where Gw represents the reference transfer functions matrix. Depending on the
investigated signal, this norm can either be maximized, if necessary, or minimized if the distur-
bance input is investigated, e.g. as canceling to white noise or as an input signal representing
a disturbance. In this work, the latter is done and, hence, the H2-norm is minimized and
implemented by [

QAT −YTBT
2 + AQ−B2Y B1

BT
1 −I

]
≺ 0 (3.29)

as well as [
Q QCT

2 −YTDT
22

C2Q−D22Y Z

]
� 0 (3.30)

while minimizing trace{Z} < γ2
2 .

LMI representation of the H∞ control design

Describing the maximal amplification of the amplitude for each possible combination of inputs
and outputs, the H∞-norm can be used to minimize the control effort by complying with

||Gw→y∞(s)||∞ < γ∞ . (3.31)

This is implemented by including the LMIQAT −YTBT
2 + AQ−B2Y B1 QCT

∞ −YTDT
∞2

BT
1 −γ∞I DT

∞1

C∞Q−D∞2Y D∞1 −γ∞I

 ≺ 0 , (3.32)

while minimizing γ∞ within the algorithm calculating the controller gain.
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3.2 Reduction of Overestimation in the Polytopic Models

In the previous section, the polytopic model (3.13) was given by an axis-aligned box by consid-
ering Eq. (3.15). However, there are different representations of a polytopic model which will
be discussed in this section. For this, Eq. (3.13) is reformulated into a more general description

D = conv{Aν} =
{
D =

nν∑
ν=1

ξv ·Aν ;
nν∑
ν=1

ξν = 1; ξν ≥ 0, ν = 1, 2, . . . , nν

}
(3.33)

with

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 . (3.34)

The axis-aligned approach takes into account all uncertain entries regardless of their dependence
of one another. In the worst case, this leads to 2(m×n) vertex matrices. Of course, this can be
reduced to the actual number of uncertain entries, however, overestimation will still occur.
In previous works, possibilities to reduce this overestimation have been presented for linear
systems as in [13] as well as for nonlinear systems, see [11].

3.2.1 Analysis of linear systems

As a linear system, an investigation of the following example

A =

[
1 δ2

−3δ1 −0.5δ2 − δ1

]
(3.35)

with δ1 = [0.3 ; 1.5] and δ2 = [5 ; 10] will be shown. Applying the axis-aligned approach as
before, the polytopic model is given by 23 = 8 vertex matrices2 considering three independent
uncertain entries, a12 = δ2, a21 = −3δ1, and a22 = −(0.5δ2 + δ1) in the matrix A. This leads to
Fig. 3.1, where an axis-aligned box of the relation between a21 and a22 is represented.

Figure 3.1: Example of an axis-aligned box for two uncertain entries for a linear system.

2as there is one known entry
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Here, the black box represents the interval evaluation of (3.35). One can clearly see that due
to the relation in the presented example entry a22 is widely overapproximated. A possibility to
reduce this, is the so-called affine-linear approach, presented in [13]. Here, the dependency of
the entries will be taken into account explicitly. For this, Eq. (3.35) is reformulated into

A =

[
1 0
0 0

]
+ δ1 ·

[
0 0
−3 −1

]
+ δ2 ·

[
0 1
0 −0.5

]
. (3.36)

Through their dependency, the number of vertex matrices reduces to 2np , where np is the
number of actual uncertain parameters. For the given example, np = 2, so that the system can
be described by 22 = 4 vertex matrices instead of 8. The reduced box, again for the relation
between a21 and a22, is shown in Fig. 3.2.

Figure 3.2: Example of an axis-aligned box for two uncertain entries considering their depen-
dency in an affine-linear way.

Obviously, if done for nonlinear cases as their reformulation into the structure of Eq. (3.36),
this would yield to a lot of overapproximation. The next section presents a possible solution to
avoid that.

3.2.2 Analysis of nonlinear systems

As a numerical example for a nonlinear system

A =

[
0 1

− sin(δ) −0.5 + δ2

]
(3.37)

with δ = [0.3 ; 1.5] is investigated. Applying the axis-aligned approach, the convex hull over
a21 an a22 is presented by Fig. 3.3.

The idea is to linearize the matrix and then apply the methods from the previous subsection.
For this, a Taylor linearization according to

A(i)(ϕ) ≈ A(ϕ)
∣∣∣
ϕ=mid{[δi]}

+
∂A(ϕ)

∂δ

∣∣∣
ϕ=mid{[δi]}

(ϕ−mid {[δi]}) (3.38)

for i = 1, . . . , Nl linearization points of [δi] ∈
[
δi ; δi

]
with δi−1 ≤ δi and δi ≤ δi+1, cf. (2.14)

is applied. For each of those points i, j = 1, . . . , 2(m×n) vertex matrices are given in the worst
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Figure 3.3: Example of an axis-aligned box for two uncertain entries for a nonlinear system.

case.3 Obviously, choosing Nl has a rather big influence as the difference between Fig. 3.4(a)
and 3.4(b) shows. However, a fine gridding would not be necessary, if (3.38) is evaluated with
intervals instead of midpoints as in a verified Taylor linearization according to

A(i)(ϕ) ∈ A(ϕ)
∣∣∣
ϕ=mid{[δi]}

+
∂A(ϕ)

∂δ

∣∣∣
ϕ=[δi]

([δi]−mid {[δi]}) (3.39)

again for i = 1, . . . , Nl linearization points. Here, small boxes would result, including the
complete range. Nevertheless, a rougher gridding could lead to large boxes.

(a) Larger number of linearization points Nl. (b) Smaller number of linearization points
Nl.

Figure 3.4: Example of calculating a polytope using Taylor linearization and a convex hull.

However, the resulting union of vertex matrices is not guaranteed to be convex due to the
gridding of the nonlinear relation. Hence, a convex hull is built using the Matlab function
convhulln(). This function makes use of the quickhull algorithm, see [3] resulting in the
polytope

D =
{
convhulln(A

(i)
j )
}

= {A1,A2, . . . ,ANl} . (3.40)

3Again assuming that all matrix entries are unknown.
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In Fig. 3.4, the black axis-aligned boxes result from the vertex matrices A
(i)
j given by black

triangles. The convex hull calculated by convhulln is given in dark gray with its respective
vertex matrices marked as dark gray stars.
Advantages of this method include

� Expansion to higher dimensions possible,

� Dependency of uncertain parameters is included,

� Prevention of non-physical combinations by choice of Nl, and

� Linearization is already given for quasi-linear systems.

The disadvantage lies in the high number of vertex matrices, which means that a compromise
between a tight enough enclosure and the resulting least possible number of vertex matrices
needs to be found.

The above methods were measures to reduce overestimation occurring due to the modeling. In
the following, an extended control design is presented aiming to reduce the conservativity of
the control, especially in case of uncertainty due to nonlinearity.

3.3 Reducing Conservativity by Means of Gain Adaptation

As already mentioned, nonlinear systems are represented in a quasi-linear form in this work, see
Eq. (1.4), and a suitable controller gain is given as (3.2) using extended linearization techniques.
Since the state dependency is treated as an uncertainty, the controller gain calculated by the
LMIs must cover the whole range of possible states. Due to the asymptotic stability, however,
it is clear that this range needs to contract to the desired equilibrium for the controlled system.
This leads to the idea to use this information to reduce conservativity in the controller gains
by excluding those states from the synthesis that will not be reached. For this, we make use
of two different approaches. A first, which will compute a constant gain for the complete time
horizon, and a second, subdividing the time horizon into time slices with the aim of further
reducing conservativity in each of those steps. Both procedures are also explained in [27].

3.3.1 Constant gain with robustness over the whole time horizon

For the first approach, the information gained over the complete time horizon is used in the
following way.

� Firstly, a controller gain Kini is computed for the interval domain of the initial states.
Those are set by the user and usually contain the complete controllable domain including
all assumed reachable states[

X (0)
]

=
[
X̌
]

for t ∈ [t0 ; tf ] . (3.41)

� With the help of enclosure techniques to be discussed in this work, all reachable states[
X̌
]

are predicted for the whole time horizon.

� For a rough outer enclosure of the desired operating domain, this enclosure
[
X̌
]

is inflated
and then,

� subsequently tightened to the actually reachable interval domains via recalculating the
controller gain.
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Here, if [
X (i+1)

]
⊆
[
X (i)

]
⊆
[
X̌
]

(3.42)

holds, the next iteration of the controller gains K(i+1) is calculated using the hull over all
intervals of the state considering the whole time horizon as the new less conservative interval
bounds, see Fig. 3.5. Note that this demands a verified computation of the interval enclosures,
which will be addressed in Chapter 4.

t

[
X (i+1)

][
X̌
] [

X (i)
]

[x] (t)

x(t)

Figure 3.5: Illustration of the basic control approach for a scalar state variable.

Until the optimal solution with the smallest amount of conservativity regarding the controller
gains is reached or if a final number of runs has been done, this scheme is repeated, see the
structure in Fig. 3.6.

Set
[
X̌
]

as the initial state domain
[
X (0)

]
, i := 0

Final number of runs has not been reached i ≤ N ∨
[
X (i+1)

]
⊆
[
X (i)

]
Compute a robust stabilizing controller gain K = K(i) (according to the previous specifications, cf.

Sec. 2.5.3) for the parameters [p] corresponding to the complete state interval [X ] := [X (i)] which the
system matrix depends on4

Calculate the interval enclosures for the complete time horizon t = [t0 ; tf ]

Set the hull over all interval enclosures [X (i)] =
⋃

t∈[t0 ; tf ]

[x] (t) as the new state domain

Increment the loop counter i := i+ 1, output: gain K = K(i)

Figure 3.6: Interval-based gain adaptation procedure for Approach 1.

This first approach can still be very conservative, which leads to the need of optimization in
terms of a temporal series of controller gains in the next section.

3.3.2 Gain scheduling design over temporal subslices

Instead of a constant controller gain over the complete time horizon, this approach uses a
sequence of control matrices Kk, k ∈ {0, 1, 2, . . .}, for fixed sampling times T = tk+1 − tk. In

4Note that for the first run, this step is omitted and Kini is used as a controller gain.
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analogy to the approach presented in Section 3.3.1, the interval box

[X ] (tk+1) = [X k+1] (3.43)

denotes a verified enclosure of all states reachable at the point of time t = tk+1. A general idea,
presented in [23], is based on the fact that asymptotically stable convergence to the desired
operating point X s = 0 w.l.o.g.5 for t→∞ is ensured by the gain Kk if the system model (1.4)
is time-invariant. Here, the aim is to acquire state enclosures for which the prediction result
[X k+1] is a true subset of [X k] in all vector components according to

0 ∈ [X k+1] ⊂ [X k] . (3.44)

If [X k+1] 6⊂ [X k], it cannot be proven that the interval width reduces in each of the vector
components and, hence, the controller gain Kk is adapted to satisfy desired stability, robust-
ness, and optimality criteria for the complete prediction step t ∈ [tk ; tk+1]. Applying this
for sufficiently large t, interval widths between two subsequent time steps should contract, as
shown schematically in Fig. 3.7.

[x](tk)

[x](tk+1)

[x](tk+n)

x t
controller gains

need to be adapted use of constant
feedback gain

Figure 3.7: Principle of the control approach for a scalar state variable.

This was investigated for a practical application in [23], where, as expected, the gains remain
constant in the vicinity of the equilibrium after a certain time. As an extension to this, the time
steps can be chosen to not be constant but rather result from an intelligent step size control
considering the individual behavior of time regions of the system, which have similar responses
and subdividing only those with wider intervals. The procedure is schematically shown in
Fig. 3.8.

t

[
X (i+1)

][
X̌
] [

X (i)
]

[x] (t)

tζ tζ+1 tf

x(t)

Figure 3.8: Illustration of the control approach for a scalar state variable.

This step-size control will later be extended with a strategy determining the most appropriate
step size automatically. The approach with fixed and constant step sizes leads to an even longer

5without loss of generality
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computation time than for the approach in Section 3.3.1. Analyzing the implementation, it
becomes clear that the most consuming part of the computation lies within solving the LMIs
for wide interval boxes. It is therefore evident, to divide the time horizon, so that various
controller gains are used in the transient phase with wide interval boxes, while the later phase
with its tight interval boxes is dominated by constant controller gains, see Fig. 3.8. To include
this, the implementation of the previous approach in Sec. 3.3.1 is extended to Fig. 3.9.

Set
[
X̌
]

as the initial state domain
[
X (0)

]
, i := 0

Compute a robust stabilizing controller gain Kini (according to the previous specifications, cf. Sec. 2.5.3)
for the parameters [p] corresponding to the complete state interval which the system matrix depends on

Calculate the interval enclosures for the complete time horizon t = [t0 ; tf ]

Set the hull over all interval enclosures [X (i)] =
⋃

t∈[t0 ; tf ]

[x] (t) as the new state domain

Analyze the sequence of interval enclosures for optimal switching points and get the respective list of time
steps tlist ∈ {tζ}, ζ ∈ {1, . . . , ζend}6

End of new time vector has not been reached tf 6= tlist(ζend)

Set simulation time to t0 = tlist(ζ) and tf = tlist(ζ + 1)

Final number of runs has not been reached i ≤ N ∨
[
X (i+1)

]
⊆
[
X (i)

]
Compute a robust stabilizing controller gain K = K(i) (according to the previous specifications) for

the parameters [p] corresponding to the complete state interval [X ] := [X (i)] which the system
matrix depends on

Calculate the interval enclosures for the complete time horizon t = [t0 ; tf ]

Set the hull over all interval enclosures [X (i)] =
⋃

t∈[t0 ; tf ]

[x] (t) as the new state domain

Increment the loop counter i := i+ 1, output: gain K = K(i)

Figure 3.9: Interval-based gain scheduling procedure for Approach 2.

Here, an initial run of the first approach sets all parameters and finds a suitable division of the
time horizon into time slices displaying the changes best. The new boxes featuring the hull over
all reachable states are computed for each of the time steps tζ analogously to the first approach
as shown in Fig. 3.6. Here, the very first run for each part of the time horizon, resulting from
the subdivision before, is done with the initially chosen interval domain of the complete time
horizon. By, again, repeating the computation for a specified number of iteration steps or until
an optimal controller gain is found, the interval widths are gradually reduced with each iteration
step adapting the controller gains. When the optimum for the current time step is found, the

6Here, ζend is defined by the user.
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procedure moves on to the next time slice until the final time of the complete time horizon is
reached.

3.4 Conclusion

This chapter presented control strategies for uncertain systems. Here, a state feedback control
strategy was implemented with an LMI-based calculation of suitable controller gains. Uncer-
tainty was given either by parameter uncertainty or by the state-dependency of quasi-linear
representations of nonlinear dynamic systems. For both, different polytopic repesentations
were discussed with respect to their enclosure properties regarding mathematical overestima-
tion of given parameter variations. Considering this, constant controller gains were calculated,
which were valid over a whole predefined time horizon. However, since the uncertainty given
by state-dependency changes when applying the stabilizing controller, a new iterative control
was introduced for such systems. Here, it was differentiated between a constant controller gain
over the whole predefined time horizon, which is subsequently reduced for each rerun of the
whole simulation and a gain scheduling design over temporal subslices also taking into account
different phases of the control. In the next step, a transformation into a cooperative form will
take place to determine reliable interval enclosures for the reruns used in this Chapter. Fig. 3.10
shows the progress so far in the overall approach in relation to Fig. 1.3.

final structure
with verified 

state enclosures
including

the uncertainty 
and an online 

system and sensor
fault diagnosis

cooperative
controlled
uncertain 

system model

controlled
uncertain
system 
model

uncertain
system

control transformation

observer

verified interval enclosure (v.i.e.)

observer

uncertain
parallel
model

cooperative
parallel

uncertain 
system model

transformation simulation executed
in parallel

v.i.e.

Figure 3.10: Outline of the theoretical aspects of this work - Step 1.



4 Transformation of Non-Cooperative
Dynamical Systems into a Cooperative
Form

As introduced in Chapter 1, cooperativity yields a lot of advantages which can be used in control
engineering to improve computability of interval enclosures for state trajectories. Here, we make
use of the decoupling of lower and upper bounds and, hence, can implement our tasks on two
separate crisp systems as shown in Eq. (1.5). Assuming the system model is controllable and
the desired operating state is set to x = xs = 0 w.l.o.g. for the steady-state input u = us = 0,
a feedback controller with the gain K is introduced as established in the previous Chapter 3
according to

u = −Kx or u = −K(x) · x , (4.1)

respectively, leading to a state-space representation

ẋ = (A(x)−B(x) ·K(x)) · x = AC(x) · x . (4.2)

The presented approach now needs to make sure that asymptotic stability is not lost while
additionally gaining cooperativity. So, for a system to be asymptotically stable and cooperative,
it needs to fulfill two main requirements: the system matrix has to be both, Metzler and
Hurwitz, simultaneously. In other words, the continuous-time system matrix must have non-
negative entries outside its diagonal, but definitely negative ones on the diagonal itself. For
observers, an uncertain system was already transformed into ODEs with a Metzler system
matrix, e.g. in [43]. Due to the duality principle, this procedure can also be used for state
prediction to be used in the control design. In general, a transformation corresponds to

z(t) = Θ−1x(t) with ż(t) = N · z(t) , (4.3)

where Θ is invertible and N is Metzler. For general applications without diagonally dominant
system matrices, the transformation consists of Step 1

z̃(t) = T̃−1x(t) (4.4)

to get a diagonally dominant system matrix and Step 2

z(t) = T−1z̃(t) = T−1 · T̃−1x(t) = (T̃ ·T)−1x(t) (4.5)

to ensure a Metzler structure, resulting in the overall transformation matrix Θ, which may
be a time-invariant or time-varying matrix. This distinction is based on the eigenvalues of
the system, where for a system with purely real eigenvalues a time-invariant matrix denoted
by Θ = V · S is sufficient, while systems with complex-conjugate pairs require time-varying
transformation matrices further given with Θ = T̃ · T. In the following, the procedure is
shown for exactly known systems and then extended to uncertain systems due to the previous
distinction.
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4.1 Crisp Parameter Systems

For a general description, the system matrix AC in Eq. (4.2) is considered as exactly known,
constant and purely linear. In [43], this was done for an observer approach. There, a procedure
similar to sensor placement is used to find a similarity transformation of AO = A−HCm into a
matrix R that has the same eigenvalues as the system matrix AO. The sensor placement could
be found in the choice of two vectors eT1 and eT2 . If they can be chosen so that the pairs (AO,eT1 )
and (R,eT2 ) are observable, it is possible to calculate a transformation matrix Θ = G−1F with

F =

 eT1
...

eT1 An−1
O

 and G =

 eT2
...

eT2 Rn−1

 . (4.6)

Due to the duality principle, it is also possible to use the procedure in [43] to transform a con-
trolled system, if the pairs (AC, e1) and (R, e2) are controllable setting AC = AO into Eq. (4.6),
respectively. In that case, the virtual sensor placement becomes an actuator placement and

FC =
[
e1 ACe1 . . . (AC)n−1e1

]
(4.7)

holds. Since the basic idea is, as mentioned, the identity of the eigenvalues, their importance
for the transformation becomes clear. This underlines the fact that only stabilized or already
originally stable systems should be transformed into a cooperative form to avoid shifting the
eigenvalues later on and, hence, making the calculated transformation matrix invalid. The
authors of [43] propose to make R a lower triangular matrix with the eigenvalues of AC on
the main diagonal and positive elements below the main diagonal for systems with purely real
eigenvalues. As a numerical example, the following system is considered. Let the stable system
matrix be

A−BK = AC =

 0 1 0
−4 −4 1
−1 0 0

 (4.8)

with the purely real eigenvalues s1 = −2.618, s2 = −1 and s3 = −0.382 enforced by a controller
gain K. Following the presented approach, R is set to be

R =

−2.618 0 0
1 −1 0
1 1 −0.382

 (4.9)

with a virtual actuator placement ensuring the controllability property of e1 =
[
1 0 0

]T
and

e2 =
[
0 0 1

]T
. Although if the pair (A,B) is controllable1, those vectors always exist. Con-

trollability can be proven with the help of a Kalman controllability matrix, see B.2. Addition-
ally, the similarity transformations FCACF−1

C and GCRG−1
C yield the canonical controllability

forms2 of AC and R where

FCACF−1
C = GCRG−1

C =

 0 1 0
0 0 1
−1 −4 −4

 (4.10)

1or (A,C) is observable, respectively
2Note that the system matrix in canonical observability form is the transposed of the system matrix in canonical

controllability form, underlining the applicability to both observer and controller design interchangeably.
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holds. The resulting transformation matrix is

Θ = GC
−1FC =

 5.8541 4.2361 −1.6180
−5.4721 −3.2361 1.6180

1 0 0

 (4.11)

leading to a transformed system matrix

R = ΘACΘ−1 =

−2.618 0 0
1 −1 0
1 1 −0.382

 . (4.12)

For systems with an order n ≤ 3 this works reasonably well because a fitting structure for R can
be found manually. However, finding a suitable matrix R becomes difficult for systems with
higher orders or with several multiple eigenvalues as well as conjugate-complex eigenvalues.
Additionally, if interval uncertainty is present in the matrix to be transformed, this procedure
typically is not applicable. To extend the idea to uncertain system models, approaches for
systems with both real and conjugate-complex eigenvalues are presented in the next sections.

4.2 Systems with Purely Real Eigenvalues

An extension of the previous section was proposed by the authors of [15], generalizing the
presented method to applications for time-varying systems and systems with uncertainties. For
that, the element-wise defined inequality

Za −∆ ≤ Z := AC ≤ Za + ∆ (4.13)

is used to express the uncertain system matrix [A]C with the (symmetric) worst-case bounds
of all its entries ∆. Here, Za = ZT

a is the midpoint matrix, which is assumed to be symmetric
in what follows. As previous, we search for a Metzler matrix R = µEn − Γ with the same
eigenvalues as Za. Here, µ ∈ R is a constant and Γ ∈ Rn×n a diagonal matrix, where Γ = ρIn
with ρ > µ and the identity matrix I of order n. Additionally, En ∈ Rn×n is a matrix with all
elements equal to 1. According to [15], the following theorem holds.

Theorem 4.2.1
If

eig(R) = eig(Za) , (4.14)

an orthogonal matrix S ∈ Rn×n exists, such that STZS or ΘTZΘ, respectively, is Metzler. This
holds, if µ > n||∆||max, where ||∆||max denotes the maximum absolute value of ∆.

Although this approach makes the procedure more generally applicable, finding the transforma-
tion matrix S is still not trivial in several practical cases. To solve this issue, the approach is con-
verted into a computationally feasible optimization problem formulated with LMI constraints,
as also shown in [24], to systematically compute the time-invariant similarity transformation.

For the first step, finding Za and ∆, two cases are distinguished. For systems with a diagonally
dominant system matrix, Za is chosen to represent the diagonal entries of the original. Yet, if
the initial system matrix is not diagonally dominant, a new system matrix

ÂC = V−1ACV (4.15)
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is defined, where the element-wise computed interval midpoint matrix mid{[A]C} is transformed
into a diagonal structure (except for numerical round-off errors). Here, the matrix V is defined
by the floating-point approximation of the n linear independent real-valued eigenvectors of
mid{[A]C}, if they exist. After the transformation of Eq. (4.15), where round-off errors in the
matrix inversion are handled by the use of interval arithmetic software libraries, Za is set to be
a diagonal matrix with the asymptotically stable, real eigenvalues of mid{[A]C}. In both cases,
∆ is given by ∆ = δ · En with the worst-case bounds represented by

δ = max (|[A]C − Za|) or δ = max
(
|[Â]C − Za|

)
, (4.16)

respectively. Note that in Eq. (4.16) the maximization is carried out over all matrix entries
after determining their absolute values in an element-by-element manner and the abs value
operation for interval matrices defined as in Intlab. For the next step, the remarks from [15]
are taken into account, including that µ? = n||∆||max marks the lower bound for µ. Further
remarks are reformulated into the requirements

R = STZaS , (4.17)

stating the equality of the eigenvalues, and

STS = I , (4.18)

ensuring orthogonality of the transformation matrix. To formulate these constraints into an
optimization problem that calculates a suitable matrix S, LMIs, see Chapter 2, are introduced.
Hence, the aforementioned Eqs. (4.17) and (4.18) are relaxed into the positive definite matrix
inequalities

−R + STZaS � 0 (4.19)

and
I− STS � 0 . (4.20)

To bound the norm of S from both, below and above, the signs of these inequalities are chosen
as given in Eqs. (4.19)–(4.20) due to opposite signs of the quadratic terms in S. These quadratic
matrix inequalities can be converted into linear ones by the application of the Schur complement
formula (see A.3) according to [

−R ST

S −Z−1
a

]
� 0 (4.21)

and [
I ST

S I

]
� 0 , (4.22)

respectively. Here, R is again defined as

R = µ̄En − Γ , µ̄ > µ . (4.23)

The midpoint matrix to be transformed is assumed to be asymptotically stable if the LMI
constraints

Γ � 0 and RTQ + QR ≺ 0 (4.24)

with Q � 0, e.g., here, set to Q = I are fulfilled. To find a unique solution corresponding to
Eqs. (4.19) and (4.20), the LMIs (4.21)–(4.24) are solved for S, the diagonal matrix3 Γ, and
the scalar µ̄ together with a minimization of the cost function

J = tr(Γ) + tr(ZaS− S̆R)− κ · tr(S̆TS− I) (4.25)

3Note that the matrix is not restricted to identical entries for all diagonal elements.
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with the problem-dependent parameter κ > 0. Here, the first term minimizes the entries
of Γ, while the second and third minimize Eqs. (4.19) and (4.20), respectively, to meet the
requirements of Eqs. (4.17) and (4.18). At the global minimum, Eqs. (4.19) and (4.20) are almost
identical to Eqs. (4.17) and (4.18). Note that, the minimization of Eq. (4.25) in combination
with the iterative solution of the LMIs in Eqs. (4.19) and (4.20) leads to the same results as
the direct solution of the equality problem (4.17) and (4.18). The optimization task is solved in
an iterative manner, to make the cost function (4.25) linear in S. Here, S̆ denotes the solution
of the last successful evaluation of the LMI-constrained optimization task. Additionally to the
original approach [25], a line-search rule µ+ = µ + ∆µ with ∆µ > 0 gradually increasing the
initial µ < µ? until µ becomes equal to the desired value µ?, is implemented to enhance the
numerical convergence. This is done, because the solution for µ = 0 corresponds to the known
starting point S = I, specifying the initialization S̆ = I. An overview of the solution procedure
can be seen in Fig. 4.1.

Determine the controlled system matrix AC with AC ∈ [A]C

Find initializing eigenvalues and eigenvectors for the midpoint of [A]C and keep them constant for the whole
solution procedure

Determine Za and ∆ to fulfill Eq. (4.13), possibly after transforming [A]C into diagonally dominant form
(transformation matrix V)

Set the initial transformation matrix to S = I, S̆ = I for µ = 0

Initialize µ and S̆ with the result of the last successful solution of the LMIs (4.21)–(4.24) in combination
with the cost function (4.25)

Z
Z
ZZYes

Is there a solution to the LMIs and is J small enough to guarantee the desired
Metzler property?

�
�
��

No

Set µ+ = µ+ ∆µ

µ := µ+

Adjust µ and S̆ by small perturbations to
enhance the solution quality

while µ < µ?

Output the complete transformation matrix Θ = VS (see Eqs. (4.3)–(4.5)) of the two-stage transformation
procedure according to (4.15) and (4.17).

Figure 4.1: LMI-based computation of the transformation matrix Θ.

Be reminded, that V corresponds to T̃ and S to T of the general transformation formulation

of Eq. (4.5). Furthermore, the transformation can lead to unstable realizations of
[
Ã
]

C
due to

overestimation, which needs to be considered in the following.
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4.2.1 Numerical examples

Example 1

A numerical example complying with Eq. (4.13) is introduced as

Za =

[
−0.632 0

0 −4.368

]
and ∆ =

[
0.8 0.8
0.8 0.8

]
. (4.26)

These numeric values correspond to those in [15] to allow for a comparison with or rather to
perform a validation of the optimization method presented in this work. Here, the original
system matrix

AC =

[
−0.632− 0.8 sin(t) 0.5 cos(3t)

0.7 cos(2t) 0.3 sin(t)

]
(4.27)

was extended by a feedback controller, so that AC becomes diagonally dominant and, hence,
does not need to be altered before the transformation into a Metzler matrix. If µ is set to equal
the value given in [15] (µ = 1.8), the presented approach calculates the same entries for

Rµ=1.8 =

[
−2 1.8
1.8 −3

]
(4.28)

and

Sµ=1.8 =

[
−0.796 −0.605
0.605 −0.796

]
(4.29)

as given in [15]. However, if an optimization of µ is included, the optimal value is calculated to
be µ = µ? = 1.6 and, hence, the entries of the transformation matrix deviate slightly from the
ones before in Eq. (4.29)

Sµ=1.6 =

[
−0.871 0.492
0.492 −0.871

]
, (4.30)

but are still in the solvable range. This outlines the importance and possibilities given by
the value of µ regarding the variety of possible solutions for the transformation matrix S and
explains the procedure of adapting µ along the iterative solution procedure as shown in Fig. 4.1.

Example 2

If the system matrix is not diagonally dominant as in

[A]C =

[
0 1
−1 [−3.5 ; −2.5]

]
, (4.31)

a transformation of its midpoint into diagonal form becomes necessary. To achieve this, real-
valued eigenvalues and eigenvectors are calculated for the midpoint matrix. Obviously, the
eigenvalues λi are

Λ =

[
−0.382 0

0 −2.618

]
= Za . (4.32)

The corresponding eigenvectors V are used for a transformation into diagonally dominant form,
see Eq. (4.15), so that the new system matrix results in (here and afterwards the infima and
suprema are displayed after outward rounding)

[Â]C =

[
[−0.467 ; −0.297] [−0.224 ; 0.224]
[−0.224 ; 0.224] [−3.204 ; −2.033]

]
. (4.33)
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According to Eq. (4.16), the uncertainty is bounded by δ = 0.5854. Hence, the lower bound of
µ results in µ? = 1.17. To visualize that the novel LMI-based transformation procedure also
works for larger bounds of the uncertain quantities, this value is replaced by µ = 1.25 ·µ?. The
application of the solution procedure summarized in Fig. 4.1 leads to the transformation matrix

VS =

[
0.976 −0.218
−0.488 0.873

]
(4.34)

and to the new, stable and Metzler, system matrix

˜[A]C = S−1V−1 [A]C VS ∈
[
[−0.500 ; −0.357] [0.191 ; 0.448]

[0.000 ; 0.639] [−3.143 ; −1.999]

]
(4.35)

for both µ = µ? as well as µ = 1.25 ·µ?. Finally, a check if overestimation has lead to instability
is necessary. Here, the critical matrix for which stability needs to be verified in this case is the
supremum matrix sup{[Ã]C}.

4.3 Systems with Conjugate-Complex Eigenvalues

In contrast to the previous section, for most uncertain systems with conjugate-complex eigen-
values only time-varying transformations are possible [37,43]. While previously the uncertainty
was treated in the system matrix itself, here, it is mapped into the location of the eigenvalues.
If the system matrix is evaluated for the whole range of parameters, this leads to a variability
of the real and imaginary parts of conjugate-complex eigenvalues, which can be seen in Fig. 4.2
for an illustrative example for a system of order n = 2.

Figure 4.2: Possible locations of conjugate-complex eigenvalues.

Here, the vertices marked by asterisk symbols represent the location of the worst-case eigenval-
ues λi with i ∈ {1, . . . , n} for all possible vertex matrices. Those allow for axis-parallel boxes as
a convex outer interval hull described by the extremal real and imaginary parts [σi] = [σi ; σi]
and [ωi] = [ωi; ωi] to describe the uncertain system matrix in a polytopic form. When n is the
(even) number of states and since two eigenvalues make up a conjugate-complex pair, assume

ñ =
n

2
guaranteed mutually disjoint conjugate-complex eigenvalue pairs. Eigenvalues cannot

be distributed accordingly, if boxes as in Fig. 4.2 overlap. Hence, it is essential for the following
approach that the eigenvalues are disjoint. In that case, there is a transformation matrix

T̃ =
[
T̃1, . . . , T̃ñ

]
, where T̃j ∈

[
T̃j

]
= [<{[vλj]},={[vλj]}] (4.36)
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with j ∈ {1, . . . , ñ} consisting of interval enclosures for the real and imaginary parts of the
eigenvectors of an uncertain system. The computation will be addressed at the end of this
and in the subsequent sections. Extrema of the conjugate-complex eigenvalues are obtained by
building the hull over their real and imaginary parts

[σj] = [min(σj) ; max(σj)] and

[ωj] = [min(ωj) ; max(ωj)] .
(4.37)

Applying that transformation, a block diagonal transformed system matrix is obtained as

Ã = blkdiag
(
Ã1, . . . , Ãñ

)
with Ãj ∈

[
Ãj

]
=

[
[σj] [ωj]
−[ωj] [σj]

]
(4.38)

representing the so-called real-valued Jordan canonical form. Here, the advantage lies in a
direct display of real and imaginary parts of the eigenvalues. The time-varying transformation
is done by

z = T−1(t) · z̃ (4.39)

with
T−1(t) = blkdiag

(
T−1

1 (t), . . . ,T−1
ñ (t)

)
= TT (t) (4.40)

and the orthogonal blocks

Tj ∈ [Tj] =

[
cos([ωj]t) sin([ωj]t)
− sin([ωj]t) cos([ωj]t)

]
(4.41)

for j ∈ {1, . . . , ñ}. Here, the outer interval enclosures of the imaginary parts of all eigenvalues
containing the exact angular frequencies according to the relation ω∗j ∈ [ω∗j ] ⊆ [ωj] are taken
into account to evaluate Eq. (4.41). Since the structure of the transformed system matrix (4.38)
is known, the evaluation of this matrix is only necessary for

i) proving that the transformation leads to a system matrix in Metzler form and

ii) to determine enclosures [z] (0) of the initial states as a function of [x] (0) for verified
simulations (and respectively for a backward transformation of the computed results for
t > 0).

The state-space representation of the related differential equation (4.39) is calculated on the
basis of the product rule of differentiation resulting in

ż = ṪT (t) · z̃ + TT (t) · ˙̃z =

[[
dTT (t)

dt
+ TT (t)Ã

]
T(t)

]
z = N · z . (4.42)

Applying this and symbolic simplifications in terms of the exact values ω∗j to the transformed
system matrix N, it can be shown that it is Metzler with the real parts of the eigenvalues on
the diagonal according to

N = blkdiag (σ1I, . . . , σñI) , I =

[
1 0
0 1

]
. (4.43)

Considering interval values corresponding to Eq. (4.42), the diagonal elements of Eq. (4.43) are
replaced by the lower and upper interval bounds to obtain the bounding systems. Since N is
evaluated for the eigenvalues, Hurwitz stability is verified if the suprema are negative σj < 0.

As previously mentioned, T̃ from Eq. (4.36) needs to be determined. For this, we need to
find the hull over all eigenvectors. However, the evaluation of the eigenvectors for the vertices
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of a polytopic system model does not lead to the extremal values of the corresponding vector
components from which a convex interval hull can be formed. A possible solution is to use
the function verifyeig of Intlab [57], see also Section 2.1.2, after subdividing the interval
parameter domains of [A]C for smaller subintervals

[
p〈κ〉
]
⊆ [p] with κ ∈ {1 . . . L} and then

normalizing to length 1 (using the Intlab routine norm). This subdivision is done, since the
axis-parallel box over the np vertex matrices would be too conservative. One then uses the hull
over all subintervals for the presented approach. This leads to two problems addressed in the
following.

4.3.1 Division strategies for the parameters

In general, small subintervals are chosen as a countermeasure against overestimation in the
eigenvalue and eigenvector computation. The aim here is to permit more variability inside
the parameter boxes. However, this comes with higher calculation costs, which means, that
we need to find a measure to subdivide the system’s parameter intervals in an effective way
without producing more subintervals than necessary. To tackle this, one can use a sensitivity
analysis as described in Sec. 2.3. The higher the sensitivity of one uncertain parameter, the
more subdivisions of this parameter we need in comparison to the rest. However, how many
subintervals are needed depends on the system at hand and cannot be answered generally. Here,
physical observations should be considered. After all, all those subintervals need to be emerged,
which brings us to the next subsection.

4.3.2 Choosing the hull with the least amount of overestimation

Generally, the hull over all subintervals denotes the interval eigenvectors which are used to get
T̃. However, overestimation can occur in case of coupled parameters, if those are — unphysically
— treated as decoupled. Since the final goal is to find the transformed states, three possibilities
to calculate the initial state intervals accounting for these subintervals arise:

1. Using the hull over all eigenvectors corresponding to Eqs. (4.37) and (4.36) resulting in
the transformation matrix

T̃ =
[
T̃1, . . . , T̃ñ

]
with (4.44)

T̃j ∈

[
L⋃
κ=1

[
<{[vλj]〈κ〉}

]
,
L⋃
κ=1

[
={[vλj]〈κ〉}

]]
(4.45)

and

Tj ∈

 cos

(
L⋃
κ=1

[ωj]t

)
sin

(
L⋃
κ=1

[ωj]t

)
− sin

(
L⋃
κ=1

[ωj]t

)
cos

(
L⋃
κ=1

[ωj]t

)
 (4.46)

for Eqs. (4.40) and (4.41), while finally computing [z] = [Θ]−1 · [x] with [Θ] =
[
T̃
]
· [T] (t).

2. Using the hull over all transformation matrices

[Θ] =
L⋃
κ=1

[
Θ〈κ〉

]
=

L⋃
κ=1

([
T̃〈κ〉

]
·
[
T〈κ〉

])
(4.47)

to calculate [z] = [Θ]−1 · [x].
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3. Calculating the hull over all transformed initial (t = 0) state subintervals

[z] =
L⋃
κ=1

[
z〈κ〉
]

with
[
z〈κ〉
]

=
[
Θ〈κ〉

]−1 · [x] . (4.48)

When not using the third approach, the evaluation of Eqs. (4.44)–(4.47) can lead to excessively

wide bounds for T̃ ∈
[
T̃
]

if the complete possible domain is considered. If these bounds are too

wide, the interval-valued inverse
[
T̃
]−1

of
[
T̃
]

does not exist. A countermeasure is calculating

the inverse as

[
Θ−1

]
=

L⋃
κ=1

[
inv
(
Θ〈κ〉

)]
=

L⋃
κ=1

[
inv
([

T〈κ〉
])
· inv

([
T̃〈κ〉

])]
(4.49)

to reduce overestimation. If this also fails, a possible alternative could be to include the complex,
uncertain eigenvector structure directly in the transformation matrix T̃ ∈ Cn×n, rendering
Eq. (4.36) respectively, into

T̃ =
[
T̃1, . . . , T̃ñ

]
, where T̃j =

[
[vλj] ,

[
v∗λj
]]

. (4.50)

This would lead to a complex block diagonal matrix

Ã = blkdiag
(
Ã1, . . . , Ãñ

)
∈ Cn×n (4.51)

with

Ãj ∈
[
Ãj

]
=

[
[σj] +  · [ωj] 0

0 [σj]−  · [ωj]]

]
. (4.52)

Besides omitting the time-varying transformation as the system matrix in Eq. (4.52) is already
Metzler, another advantage is the decoupled structure of the diagonal matrix Ã. This permits
us to compute the interval enclosures in the new complex-valued coordinate frame symboli-
cally. Now, the interval [x0] of initial states needs to be transformed into the new coordinates

[z0] =
[
T̃
]−1

· [x0] as above. Then, the simulation is performed using

ż = Ãz , (4.53)

and the results are, after that, transformed backwards into [x] =
[
T̃
]
· [z]. Limits of this

approach will be discussed in Chapter 9, cf. [44,55].

4.3.3 Numerical example

A numerical example for the presented approach is given by the system model

[A]C =

[
0 1

−a21 −a22

]
with a21 = sin(δ) and a22 = 0.5 + δ2 , (4.54)

where δ is not exactly known but bounded with δ = [0.3 ; 0.7]. Fig. 4.3 presents a distribu-
tion of the eigenvalues computed by gridding the intervals. Here, at first, the parameters a21

and a22 were chosen to be independent — see black dots in Fig. 4.3 — and, hence, gridded
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Figure 4.3: Distribution of eigenvalues for the numerical example with conjugate-complex eigen-
values.

separately. This independence, however, reflects the reality poorly. As a countermeasure, δ
is gridded instead, followed by a calculation of the parameters a21 and a22 accounting for the
dependence, which results in the gray dots in Fig. 4.3. It becomes clear that accounting for the
parameter dependence can reduce overestimation drastically. For educational purposes, both
approaches will be used for the transformation, despite the fact that for a real-life application,
the approach considering the dependency is favorable. Since the sensitivity analysis for this
scenario is trivial, because of only one uncertain parameter, there is no need to separately
compute it and the reader is referred to the real-life application in Section 7.2. The number
of subintervals is, hence, chosen arbitrarily for this numerical example. Next, the possibilities
to reduce overestimation by building different hulls over those subintervals is considered. Fur-
thermore, both transformations, the real-valued approach from Eqs. (4.36)–(4.42) as well as the
complex-valued transformation of Eqs. (4.50)–(4.53) are performed.
At first, simulations for the real-valued transformations are given, where Fig. 4.4 shows the
results for the first example, using independent parameters, while Fig. 4.5 takes into account
the dependency. Both times, parameters were gridded into Nl = 10 subintervals. Here, both
states are shown with their calculated interval bounds ([x1] in 4.4(a) as well as in 4.5(a) and
[x2] in 4.4(b) and 4.5(b)) as well as with their respective interval diameters (diam {[x1]} in
4.4(c) as well as in 4.5(c) and diam {[x2]} in 4.4(d) and 4.5(d)). Additionally, as the states are
coupled, the interval volume is given in 4.4(e) and 4.5(e). Note that since the eigenvalues are
complex, the system is oscillating which is visible when the interval enclosures widen again after
deflating in the first phase. This phenomenon can also be seen in the interval diameters and
is amplified when overestimation is bigger in the first place. However, in the proximity of the
stable operating point, the interval widths are deflating rapidly for both reductions. Obviously,
the less conservative system deflates faster. Considering the different approaches for building
the hull over the subintervals, one can clearly see the reduced overestimation, where the most
conservative is Approach 1 followed by 2, and, with best results regarding the overestimation,
Approach 3. Naturally, when considering the system with already lower overestimation, differ-
ences are not that strong. Given the results of applying the complex-valued transformation for
this numerical example in Fig. 4.6 without considering the dependency and in Fig. 4.7 with the
dependency, it becomes clear that this approach produces more overestimation when the pa-
rameter is gridded into the same number of Nl = 10 subintervals. In fact, the simulation results
for independent parameters produced such wide intervals that a fair comparison is not possible
even if Nl is increased, which would also come with a much higher computational effort. Note
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that Fig. 4.6, therefore, shows the results with a different axes scale as Figs. 4.4, 4.5 and 4.7.
This is omitted in the case of considering the dependency, so that a gridding of Nl = 10 was
applied, see Fig. 4.7. Reasons for the increased overestimation may lie in the fact that for the
backward transformation into the original coordinates x, only the real part is considered and
all information concerning the imaginary part is lost. However, for systems were a real-valued
transformation is difficult to find — especially if concerning the inversion one might run into
numerical problems — the complex-valued method may present an alternative.
To conclude, when using the approach with complex conjugate eigenvalues, it is necessary to
include the most possible knowledge of the regarded system. If using general procedures, which
are not application-specific, overestimation may increase especially for strongly nonlinear and
high dimensional systems. This thought process is further explained in the applications in
Part II, especially Chapter 7. This approach would be equally able to solve problems with
purely real eigenvalues. However, this comes with larger overestimation than in Sec. 4.2 for the
reasons given previously.

4.4 Extension to Systems with Mixed Eigenvalues: Real and
Conjugate-Complex

Since the previous approach of Sec. 4.3 is equally applicable to both eigenvalue forms, an
extension of it is developed in this section. For that, assume that the list of mutually distinct
eigenvalues contains ñ < n

2
complex pairs, leading to n∗ = n − 2ñ ≥ 0 real eigenvalues. For

general applicability, the eigenvalues are sorted in such a way that all complex pairs are listed
first, see also [49]. Now, the block diagonal structure of Eq. (4.38) is rewritten so that

Ã = blkdiag
(
Ã1, . . . , Ãñ+n∗

)
(4.55)

is given, where a pair of conjugate-complex eigenvalues with ωi = −ωi+1, i ∈ {1, 3, . . . , 2ñ− 1},
leads to the known second part of Eq. (4.38) with j ∈ {1, 2, . . . , ñ}, while an uncertain real
eigenvalue (i ∈ {2ñ+ 1, 2ñ+ 2, . . . , n}) is reflected by

Ãj ∈ [σi] , j = i− ñ . (4.56)

The respective transformation matrix formerly given in Eq. (4.36) changes into

T̃ =
[
T̃1, . . . , T̃ñ+n∗

]
(4.57)

again with the second part of Eq. (4.36) for j ∈ {1, 2, . . . , ñ} and

T̃j ∈
[
T̃j

]
= [vλj] , j = i− ñ , (4.58)

for the real eigenvalues i ∈ {2ñ + 1, 2ñ + 2, . . . , n}. The time-varying transformation changes
from (4.40) to

S(t) = blkdiag (S1(t), . . . ,Sñ+n∗(t)) =
(
S−1(t)

)T
(4.59)

with the orthogonal blocks as in Eq. (4.41) for j ∈ {1, 2, . . . , ñ} and

Sñ+1 = . . . = Sñ+n∗ = 1 . (4.60)

The state-space representation of the related differential equation (4.42) still holds and the
transformed system matrix becomes Metzler according to

[N] = blkdiag ([σ1] · I, . . . , [σñ] · I, [σñ+1] , . . . , [σñ+n∗ ]) with I =

[
1 0
0 1

]
. (4.61)
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(a) Interval enclosures of state x1 (b) Interval enclosures of state x2

(c) Interval diameters of state x1 (d) Interval diameters of state x2

(e) Volume of the n = 2 interval box

Figure 4.4: Comparison of three approaches — independent treatment of parameters a21 and
a22 — real-valued transformation:

1. T̃ =
[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]〈κ〉}

]
,
L⋃
κ=1

[
={[vλj ]〈κ〉}

]]
– dotted,

2. [T] =
L⋃
κ=1

[
T〈κ〉

]
– dashed, 3. [z] =

L⋃
κ=1

[
z〈κ〉

]
– solid.
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(a) Interval enclosures of state x1 (b) Interval enclosures of state x2

(c) Interval diameters of state x1 (d) Interval diameters of state x2

(e) Volume of the n = 2 interval box

Figure 4.5: Comparison of three approaches — dependent treatment of parameters a21 and a22

— real-valued transformation:

1. T̃ =
[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]〈κ〉}

]
,
L⋃
κ=1

[
={[vλj ]〈κ〉}

]]
– dotted,

2. [T] =
L⋃
κ=1

[
T〈κ〉

]
– dashed, 3. [z] =

L⋃
κ=1

[
z〈κ〉

]
– solid.
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(a) Interval enclosures of state x1 (b) Interval enclosures of state x2

(c) Interval diameters of state x1 (d) Interval diameters of state x2

(e) Volume of the n = 2 interval box

Figure 4.6: Comparison of three approaches — independent treatment of parameters a21 and
a22 —complex-valued transformation:

1. T̃ =
[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]〈κ〉}

]
,
L⋃
κ=1

[
={[vλj ]〈κ〉}

]]
– dotted,

2. [T] =
L⋃
κ=1

[
T〈κ〉

]
– dashed, 3. [z] =

L⋃
κ=1

[
z〈κ〉

]
– solid.
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(a) Interval enclosures of state x1 (b) Interval enclosures of state x2

(c) Interval diameters of state x1 (d) Interval diameters of state x2

(e) Volume of the n = 2 interval box

Figure 4.7: Comparison of three approaches — dependent treatment of parameters a21 and a22

— complex-valued transformation:

1. T̃ =
[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]〈κ〉}

]
,
L⋃
κ=1

[
={[vλj ]〈κ〉}

]]
– dotted,

2. [T] =
L⋃
κ=1

[
T〈κ〉

]
– dashed, 3. [z] =

L⋃
κ=1

[
z〈κ〉

]
– solid.
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4.5 Conclusion

In this chapter, possibilities were investigated to transform a non-cooperative dynamical sys-
tem into a cooperative form. Since this is valid for autonomous systems, the controlled system
matrix was taken into account. The resulting system matrix has either purely real eigenvalues,
where a suitable point-valued transformation matrix can be found based on optimality criteri-
ons formulated by LMIs, or it includes complex-conjugate eigenvalues, where the cooperative
form can be determined symbolically and the respective interval-valued transformation matri-
ces are calculated accordingly. Additionally, approaches to reduce resulting overestimation in
those matrices were presented using knowledge about the system. Finally, a complex-valued
transformation was given as an alternative, if point-valued matrices are difficult to find for the
system in question. However, for the presented numerical example, the complex-valued trans-
formation resulted in much wider intervals, especially, when parameter dependencies were not
considered.
Note that an additional feedforward control would have to be transformed separately. Fur-
thermore, when constructing the final signal, positivity of the overall system must be ensured
following the rules specified in Eqs. (1.5)–(1.7). In the next and final step, the system will be
augmented by an observer as a fault diagnosis tool. Fig. 4.8 shows the progress so far in the
overall approach in relation to Fig. 1.3.
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Figure 4.8: Outline of the theoretical aspects of this work - Step 2.
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5 Observer Synthesis

States and disturbances, which are not measured whether because of physical or technical
restrictions or because of cost factors, can be estimated by an observer. Additionally, in con-
trast to measured values, observed variables are less affected by noise and therefore sometimes
preferable. Generally, when included, the system is augmented to1

˙̂x = Ax̂ + H(ym − y) with y = Cmx̂ (5.1)

resulting in
˙̂x =

(
A−HCm

)
x̂ + Hym , (5.2)

where Cm denotes the relation of the measured state variables with the system states in contrast
to the output matrix C, which refers to a general (controlled) output. This means, that adding
state-of-the-art observers to a cooperative system may destroy its structure and, hence, its
property of cooperativity.

5.1 Cooperativity-Preserving Observer

A possible solution to preserve cooperativity is to find an observer gain where2(
A−HCm

)
· v̂(t) + υ = ˙̂v(t) ≤ ˙̂x(t) ≤ ˙̂w(t) =

(
A−HCm

)
· ŵ(t) + ω (5.3)

holds with

υ = inf (H [ym])

ω = sup (H [ym])
(5.4)

accounting for possible worst-case bounds of measurements resulting in an uncertain measure-
ment vector [ym] = ym + [−∆ym ; ∆ym], cf. [50], and

A = inf (A([p]))

A = sup (A([p])) .
(5.5)

In [48], three methods were presented, which are used in this work and shall be explained in
this section. The first requirement, as usually, is the system matrix

AO(p) = A(p)−HCm = A(p)−H (5.6)

to be asymptotically stable, checked analogously to Eq. (2.43) with

AO(p) ·PO + PO ·AT
O(p) ≺ 0 , (5.7)

1B · u is to be added for non-autonomous systems.
2Again, under the assumption of v̂ ≥ 0
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and to be, furthermore, Metzler according to the conditions that all off-diagonal elements are
non-negative for all possible parameter combinations. If A is Metzler and stable, an obvious
choice is

H = (KCm)T (5.8)

with

K = diag {κ} (5.9)

and

κ =
[
κ1 . . . κm

]
, where κi > 0, i ∈ {1, . . . ,m} , (5.10)

when AO ∈ Rn×n resulting in

H = HCm = CT
mKCm (5.11)

with Cm ∈ Rm×n and

H =

{
κi for i = j

0 else
(5.12)

with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} as the simplest possibility. However, the parameteriza-
tion can be optimized according to the next section.

5.1.1 Optimized observer parameterization

Considering the difference between estimated and true values for both, lower and upper state
bounds, the error vector

e =

[
v̂ − v
ŵ −w

]
(5.13)

is obtained. The resulting ODEs

ė =

[
A−HC 0

0 A−HC

]
e +

[
H
H

]
ζ (5.14)

denote the estimation errors in dependence of a measurement tolerance vector ζ, where ζ ∈
[−∆ym ; ∆ym], see also [46]. To account for a comparison of those measurement errors ζ and
the weighted, with ν > 0, state diameter (ŵ − w) − (v̂ − v), we make use of the augmented
system output3

y∞ =

[
0 0
−ν · I ν · I

]
e +

[
I
0

]
ζ = C∞e + D∞ζ . (5.15)

Accordingly, an LMI-based optimization problem

L(Θ) :=

 Θ H POCT
∞

HT −I DT
∞,1

C∞PO D∞,1 −γ2
∞I

 ≺ 0 (5.16)

is formulated for both extremal systems Θ ∈ {Θ,Θ}, where

Θ := AO ·PO + PO ·AT
O

Θ := AO ·PO + PO ·A
T

O

(5.17)

3inspired by the H∞-norm
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with

AO = inf (AO([p]))

AO = sup (AO([p])) .
(5.18)

Here, a suitable Lyapunov function candidate is denoted by a joint — valid for both Θ and Θ
— weighting matrix PO = PT

O � 0. Analogously to the control approach, a linearizing change
of variables

QO = QT
O = P−1

O � 0 with YT
O = QOH = P−1

O H (5.19)

rearranges Eq. (5.16) into the design LMI

M(Σ) :=

 Σ YT
O CT

∞
YO −I DT

∞,1
C∞ D∞,1 −µ∞I

 ≺ 0 (5.20)

for both Σ ∈
{
Σ,Σ

}
,

Σ := QOA−YT
OC + ATQO −CTYO

Σ := QOA−YT
OC + A

T
QO −CTYO

(5.21)

with
µ∞ := γ2

∞ ≥ 0 , (5.22)

which can be used for the observer design taking into account all former considerations and,
in addition, minimizes µ∞. To ensure cooperativity of the estimation error dynamics, the
element-wise defined inequality constraint

col
(

(A− Q̌−1
O )YT

OC ◦ (E− I)
)
≥ 0 (5.23)

needs to be satisfied with ◦ indicating the Hadamard product, see Appendix A.4. Note that
Eq. (5.23) has to be solved iteratively due to the nonlinearity.

Applying Eqs. (5.20)–(5.23), the observer matrix H can be fully determined. However, a
simplified version is achieved, when taking into account the considerations of Eqs. (5.8)–(5.10).
The LMIs (5.20) as well as (5.21) turn into

N (Ξ) :=

 Ξ Q̌O · (KC)T CT
∞

(KC) · Q̌O −I DT
∞,1

C∞ D∞,1 −µ∞I

 ≺ 0 (5.24)

with Ξ ∈
{
Ξ,Ξ

}
according to

Ξ := QOA− Q̌OCTKC + ATQO −CTKCQ̌O

Ξ := QOA− Q̌OCTKC + A
T
QO −CTKCQ̌O

(5.25)

with Q̌O representing the matrix QO computed in the previous solution stage to regain linearity
in the LMI. To summarize, this leads to three possible observer parameterizations according to

1. The observer gain H is determined by Eqs. (5.20) with (5.21), which minimizes the H∞
criterion (5.22) for the augmented output (5.15). Ensuring the Metzler property, con-
straint (5.23) is introduced, where Q̌O is used to represent the matrix QO computed in
the previous solution stage. Here, an identity matrix with the respective dimensions is
used to initialize QO in the first step.
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2. Find optimal gain values κi > 0 for the structure presented in Eqs. (5.8)–(5.10) as solution
of the LMIs in (5.24) with (5.25) which also minimizes the H∞ criterion (5.22) for the
augmented output (5.15). However, we do not need to take into account the inequality
constraint in (5.23), because the pre-defined structure of H = (KCm)T is already Metzler.
To ensure that (5.25) is linear despite multiplicative coupling of QO and K, the solution
is again determined iteratively.

3. Find optimal gain values κ1 = . . . = κm > 0 using the same approach as in the previous
parameterization (2.).

Which observer approach is best, needs to be determined for each application scenario individ-
ually without predefinable indicators. However, due to their similar implementation, they can
be switched against one another quite easily. As stated above, this approach does not include
anything else as point-valued entries in the matrix C, which means that this is not possible
to apply directly to systems which where either transformed by interval-valued matrices or by
complex-valued ones. However, an inclusion into the LMIs would be possible, but presumably
less efficient than the following alternative.

5.2 Alternative Solution: LMI-based Observer

If the cooperativity-preserving approach is not applicable, i.e., in case of conjugate-complex
eigenvalues, which lead to interval-valued or complex-valued transformation matrices according
to Sec. 4.3, an alternative solution presents itself in form of an LMI-based observer similar to
the control approach. Here, the idea is to not only calculate the controller gains but also a
suitable observer before a transformation is applied.
Applying the duality principle on the presented control approach, (3.24) becomes

D0 ⊗QO + D1 ⊗ (QOAν −YT
OC) + DT

1 ⊗ (AT
ν QO −CTYO) ≺ 0 (5.26)

with a linearizing change of variables, similar to (3.10), of

PO = Q−1
O , HT = YOPO ,

QO = P−1
O , YO = HTP−1

O as well as YT
O = P−1

O H ,
(5.27)

accordingly. There is, furthermore, the possibility to add the H∞-norm, analogously to the
approach in Chapter 3, by includingQOA−YT

OC + ATQO −CTYO YT
O CT

∞
YO −I DT

∞1

C∞ D∞1 −γ2
∞I

 ≺ 0 (5.28)

with

C∞ =

[
0
ρI

]
and D∞1 =

[
I
0

]
, (5.29)

where ρ is a weighting factor and γ∞ is minimized.

5.3 Conclusion

This chapter completes the overall theoretical approach of Fig. 1.3 by presenting observer
strategies to be used as a fault diagnosis tool operating on the closed-loop system model either
for sensors or for the system itself.



5.3. Conclusion 57

Firstly, a method to add an observer while preserving cooperativity was presented complying
to the structure in Fig. 5.1. Here, three different methods were considered, working with
LMIs to find optimal solutions for the observer gain H. There are cases, however, where such
a cooperativity-preserving observer cannot be applied e.g. due to an inefficient increase of
complexity by a complex-valued output matrix Cm.
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Figure 5.1: Outline of the theoretical aspects of this work - Path 1.

For such systems, an additional solution was given complying to the structure given in Fig. 5.2.
Based on the duality principle, those systems are treated analogously to the control design,
meaning that the observer is calculated to find a suitable parallel model, which is then trans-
formed. A subsequent parallel simulation of both the controlled cooperative system and the
cooperative parallel model presents comparable outputs which can be used for a diagnosis.
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Figure 5.2: Outline of the theoretical aspects of this work - Path 2.

However, this approach often means larger overestimation due to the two-sided transformation
concerning both the controlled as well as the parallel system, see Chapter 7, while in the case
of a cooperativity-preserving structure one transformation step can be omitted. Obviously, this
step should especially be avoided when dealing with originally cooperative systems derived by
first principle modeling. It is to be seen as a last resort if a cooperativity-preserving observer
cannot be found, e.g. due to infeasible LMI problems.
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Part II

Application Scenarios





6 Electrical Circuit - An Example for
Systems with Purely Real Eigenvalues

As an example for applications with purely real eigenvalues, electrical circuits are considered in
this chapter. Note that to fulfill this eigenvalue requirement, parameters are chosen accordingly.
In a first scenario, a simple RLC network is subject to treatment with the presented methods,
including an LMI-based control design, a transformation into cooperativity and a cooperativity-
preserving observer. The latter can be used as a tool for fault diagnosis of the measurements
used in the control. Afterwards, this network will be extended to analyze the behavior with
time varying parameter uncertainties. Finally, a down-step converter is considered based on
the findings of the simple RLC network.

6.1 A Simple RLC Network

At first, the system’s dynamical behavior is described by a derivation of the mathematical
modeling. It is based on the model in Fig. 6.1.

Figure 6.1: Simplified model.

A variable load is summed up to RS = R̃S + ∆RS, where ∆RS is implemented as a series
connection of various resistances that can be activated and deactivated by semi-conductive
switches. Additionally, ŘL = R0+RL combines a limiting resistance R0 and the inner resistance
RL of the real inductivity. There are two voltage loops, which are described by

uE = uŘL
+ uL + uRC

+ uC (6.1)

and
uC + uRC

= uRS
(6.2)

as well as Kirchhoff’s node equation with

iRS
+ iC = iL . (6.3)

The component equations for all Ohmic resistances are represented by

uRi = Ri · iRi (6.4)
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with i ∈ {L, S,C}, while the inductivity is given by

uL = L · d

dt
iL (6.5)

and the capacity by

iC = C · d

dt
uC . (6.6)

The differential equations for the physical storage variables result in

d

dt
iL =

1

L

[
−
(
ŘL +

RSRC

RS +RC

)
· iL −

(
1− RC

RS +RC

)
· uC + uE

]
(6.7)

as a relation for variations of the magnetic field energy and in

d

dt
uC =

RS

C (RS +RC)
· iL −

1

C (RS +RC)
· uC (6.8)

for changes of the electric field energy. Those physical storage variables serve as the system’s
states, so that x1 = iL is represented by the current and x2 = uC by the voltage. The resulting
state-space representation is given by

ẋ =

−
1

L

(
ŘL +

RSRC

RS +RC

)
1

L

(
RC

RS +RC

− 1

)
RS

C (RS +RC)
− 1

C (RS +RC)

 · x +

 1

L

0

 · uE (6.9)

with the output equation

y = uRC
+ uC =

[
RSRC

RS +RC

1− RC

RS +RC

]
· x (6.10)

according to Fig. 6.1. The required parameters are given in Table 6.1. Note that the system is

Table 6.1: Parameters of the low-power electrical circuit.

Variable Unit/Value Meaning

L 1 H Inductivity1

C 2 mF Capacity

RS [0.1 ; 3] Ω Ohmic resistance of the load2

RC [0.1 ; 0.6] Ω Parasitic Ohmic resistance of the capacity2

RL 100 Ω summed up Ohmic resistance of the inner resis-
tance of the inductivity and a limiting resistance

designed to provide an electrical load resistance up to 12 Ω. However, since we want to restrict
ourselves to a system with purely real eigenvalues, the locations of the eigenvalues are evaluated
in dependence of the electrical load resistance RS. Fig. 6.2 shows the result with real parts on
the left in 6.2(a) and imaginary parts on the right in 6.2(b).

1To apply such large inductance values in a small-power network, it is implemented with the help of a gyrator
circuit that turns capacitors into virtual inductors with non-zero internal resistances [63], see C.1.

2These values are given in interval representation, because of uncertainty due to tolerances and variability
within the range.
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(a) Real parts of the eigenvalues (b) Imaginary parts of the eigenvalues

Figure 6.2: Change of eigenvalues according to the load resistance: The case of RC = 0.1 Ω is
depicted with a dashed line and RC = 0.6 Ω with a solid line.

One can clearly see a change of the system’s behavior due to the dependence on the load
resistance. These changes are called bifurcation points, where — in this case — the two real
eigenvalues become a conjugate-complex pair only to change again into two distinct purely real
eigenvalues. This change of system behavior can also occur in nonlinear systems. To show that
this point may vary with variable parameters, the system was evaluated for RC = 0.1 Ω with
a dashed line and RC = 0.6 Ω with a solid line. To guarantee purely real eigenvalues for the
given example, the load will be restricted to RS = [0.1 ; 3] Ω, i.e., to resistances smaller than
the left bifurcation point.

6.1.1 Robust state-feedback control

A control design is now determined with the approach of Chapter 3 for the system (6.9) with the
parameters of Table 6.1. For this linear system, the interval box is given by the two independent
parameters RS and RC and, hence, the approach of an axis-aligned box, see Fig. 3.1, is applied.
To force the eigenvalues to stay purely real, a sufficiently large damping ratio, see Fig. 2.5, is
introduced as described in Sec. 2.5.3. For this, the matrices in Eq. (2.46) are set to

D0 = 0 and D1 =

[
sin(θ) cos(θ)
− cos(θ) sin(θ)

]
(6.11)

with a minimization of θ up to θ =
π

8
subsequently showing that the resulting eigenvalues are

purely real. This leads to
kT =

[
1.211 0.291

]
· 104 (6.12)

as a solution for the controller gains resulting in

[A]C =

[
[−1.223 ; −1.221] [−0.291 ; −0.290]

[0.001 ; 0.751] [−0.251 ; −0.013]

]
· 104 (6.13)

as the numerical representation of the controlled system matrix. The eigenvalue locations are
given in Fig. 6.3.
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Figure 6.3: Distribution of eigenvalues for the controlled system.

6.1.2 Transformation

Since the system matrix (6.13) is not Metzler, but all eigenvalues are purely real, the trans-
formation according to Sec. 4.2 is applied. Note that an internal random initialization of the
algorithm to solve the respective LMIs can lead to different results if executed multiple times.
Therefore, to find the optimal solution, the transformation algorithm is repeated as long as a
tighter interval can be found with the same controller gain. Due to the non-diagonally domi-
nant form for the presented case, the resulting transformation matrix is determined by means
of the two-stage approach in Sec. 4.2 according to

Θ = VS =

[
0.7768 −0.5841
−0.9680 −0.2714

]
, (6.14)

cf. Eq. (4.34). With that, the system in cooperative form becomes

ÃC ∈
[
[−0.428 ; −0.260] [0.218 ; 0.286]

[0.540 ; 0.763] [−1.015 ; −0.925]

]
· 104 . (6.15)

The simulations are done for a time horizon of 30 ms with the initial states

x(0) ∈
[
[0 ; 5 · 10−3]

[0 ; 5]

]
. (6.16)

Table 6.2 gives the calculated hulls of the interval enclosures for both states.

Table 6.2: Hulls of interval enclosures over the whole time horizon of 30 ms.

step iL in A iL in A uC in V uC in V

1 −2.879897 2.884897 −0.001743 5.001743
2 −2.879542 2.884542 −0.001731 5.001731

The algorithm is implemented to repeat the calculation at least 10 times. If the calculated
intervals are tighter than the ones before, they are added to the list as a new optimum. Hence,
the table shows only two successful steps as the reasoning that the optimum was found. Since
no further reduction occurred after the second step, the optimal solution was found and the
algorithm was aborted and further executions were canceled.
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6.1.3 Numerical results

For a reliable classification of the presented method using cooperative systems, it is compared
with a state-of-the-art Taylor series expansion [23, 39] of order 2 without preconditioning the
state equations by a QR factorization or similar method.

Figure 6.4: Comparison of the presented method relying on cooperativity in a dashed line and
a state-of-the-art Taylor series prediction in gray for the state variable iL.

Fig. 6.4 shows the predicted progress of the first state iL. Due to the transformation, there is
still overestimation when applying the method based on cooperativity, although both bounds
reach the desired operating point in under 20 ms. In contrast to that, the Taylor series expansion
fails fastly to predict reasonable states. Note that the Picard iteration included in this method
is based on a discrete Euler procedure as presented in Sec. 2.2. This means that discretization
errors are also added to the occurring wrapping effect. The chosen method, here, are 300 steps
to discretize the time horizon of 30 ms, resulting in a discretization time of T = 0.1 ms. For
fast dynamics, this can range from being difficult for an online prediction of state intervals up
to sometimes becoming impossible even for an offline prediction.

Figure 6.5: Comparison of the presented method relying on cooperativity in a dashed line and
a state-of-the-art Taylor series prediction in gray for the state variable uC.

As one can see in this case, the system’s fast dynamic, see also the eigenvalue distribution in
Fig. 6.3, renders an offline prediction by the simple Taylor series-based method impossible due
to overestimation. Mathematically, the overestimation can slightly be improved by choosing
a faster discretization time of, e.g. 1 µs, which would result in a reduced discretization error
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of the Euler procedure and, hence, influence the overall approximation. However, this only
underlines the fact that this is even more impractical for real life applications. A possible
advantage could be found when intersecting both solutions. As the Taylor approximation has
slightly tighter results for the bounds of the starting phase, an intersection may lead to an
improvement regarding the tight enclosure of the state. This does not hold for the second state
uC, which can be found in Fig. 6.5, because here, the cooperativity-based method is not subject
to high overestimation in the initial interval and, hence, is not wider than the Taylor-based
approach. Figs. 6.6 and 6.7 show the respective states in their transformed coordinates, where
one can clearly see cooperativity and positivity of the system.

Figure 6.6: Prediction of the state variable z1 in transformed coordinates.

Figure 6.7: Prediction of the state variable z2 in transformed coordinates.

6.1.4 Observer

So far, the measurements of the states are assumed to be directly available for the controller.
As mentioned before, an observer is added to the system as a fault diagnosis tool to evaluate
those measurements. Additional applications may be the estimation of the load resistance as
well as the deduction of component failures. In the present case, the controller acts on the basis
of state measurements alone and the observer is purely instated as a separate system diagnozing
the closed-loop system dynamics. Since adding a state-of-the-art observer would destroy the
cooperative structure, the cooperativity-preserving observer according to Chapter 5 with an
optimized parameterization of case 2 from Sec. 5.1.1 is added. The resulting system matrix
is obviously still Metzler due to the fact that the structure of the observer gain vector h is
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predefined. Note that the output vector cT of Eq. (6.10) also needs to be transformed into the
new coordinates, resulting in

hc̃T =

[
0.0389 0.1372
0.1372 0.4849

]
(6.17)

with c̃T = cT (VS)−1, to calculate the observed system ÃO = ÃC − hc̃T . Fig. 6.8 shows a
possible application of this observer.

Figure 6.8: Use of the cooperativity-preserving observer as a fault diagnosis tool.

Here, two usages are possible. Firstly, a system fault diagnosis could be given when checking
if xC ∈ [x̂C]. Secondly, a sensor fault is detected by comparing the output of the observer [ŷ]
with the measured output of the system ym.

6.2 Adding a Time-Varying Parameter: Power-Dependent
Load Resistance Variation

As already mentioned, the system is equally solvable when the parameter changes over time,
because those variations are already included in the prior example. However, if the corre-
sponding values of this parameter as well as their respective time instants are known, tighter
enclosures may be reached with the application of gain adaptation designed controllers similar
to the approach presented in Sec. 3.3.2. For this, a power-dependent load resistance variation
is implemented. It is based on the idea that with a constant input a certain power level can
be held. This complies to reality, where the consumer defines the amount of power needed. To
implement this, one must determine the necessary resistance RS for the desired power Pd. To
calculate the respective desired load resistance, a simulation was done according to Fig. 6.9.

Figure 6.9: Determination of the desired load resistance RSd.

Here, the constant voltage input is set to 5 V and A and b are point-valued. The corresponding
states are computed by following Eq. (6.9). Those states can now be used to calculate the desired
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load resistance RSd by reformulating

Pd = uRS
· iRS

= RS · i2RS
= RS · (iL − Cu̇C)2 (6.18)

into

RSd =
Pd

(iL − Cu̇C)2
(6.19)

and taking into account Eq. (6.8). Since calculated intervals need to match the restrictions of
the test rig in question, a saturation is introduced to keep 0.1 Ω < RSd < 2.9 Ω. Additionally,
only discretized values are realizable, which is why the parameter was rounded to the nearest
possible value.

Figure 6.10: Resulting temporal variability of the desired load resistance RSd over the complete
time horizon of 10 s.

Fig. 6.10 shows the resulting time-dependent load resistance for a desired power of Pd = 3 mW
taking into account realizable steps of 100 ms on the test rig in question. The simulation was
done over a time horizon of 10 s and, hence, including 100 steps. Note that the switching is
purely time-dependent with crisp values for RS for each time step, which leaves only RC as an
uncertain parameter.

Figure 6.11: Predicted state enclosure for the first state iL over the complete time horizon of
10 s including 100 variations of RSd.
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With another simulation, predicted state enclosures shall now be computed based on the switch-
ing signal. This is done for each time step and its respective value for RSd according to the
idea presented in Sec. 3.3.2, where a gain scheduling control was designed for temporal sub-
slices. Note, those slices are temporally predefined after establishing the sequence of the desired
load resistance, which, hence, remains valid over the whole subslice. The results are given in
Fig. 6.11 for the current iL as the first state and in Fig. 6.12 for the second state uC.

Figure 6.12: Predicted state enclosure for the second state uC over the complete time horizon of
10 s including 100 variations of RSd.

Note that, again, the initial state is given by Eq. (6.16). This holds for the first time step.
For the following time steps, the calculated enclosure at the end of the prior time step acts
as the initial state. The control design is fast in reaching the stationary point and keeps the
dynamics there despite the continued variations of the parameter. Additionally, the predicted
enclosures tighten fast owing to the fact that in contrast to the two uncertainties from before
only one parameter remains uncertain and, hence, overestimation due to the transformation
can be reduced. Furthermore, an incremental updating of the transformation matrix according
to

Ti = T−1
i−1 ·∆T (6.20)

is applied. Here, the actual transformation matrix is calculated using the information from the
step i− 1 from before as a basis for the next step i.

6.3 Down-Step Converter

Finally, a real-life application for such an electric circuit is considered. This comes in form of
a down-step converter. Those systems are widely applied in electronics to reduce the output in
contrast to the input voltage, which is necessary for a number of applications such as

� notebooks; to provide the processor supply voltage

� battery chargers

� semiconductors and

� LED flashlights

to name a few. Fig. 6.13 shows the electrical circuit of a down-step converter.

To realize this as a test rig, further requirements on the system are introduced to guarantee
general applicability. Besides a student-friendly and cheap structure in terms of a breadboard
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Figure 6.13: Down-step converter.

setup, low voltages and currents are necessary. Furthermore, we want to make sure that exten-
sions can easily be added. Note that, if used as a down step converter, this electric circuit is
subject to a fixed duty cycle.

Figure 6.14: Test rig set up.

The requirements lead to the structure shown in Fig. 6.14, which highlights the similarities to
the simple electric circuit system considered in the first part of this chapter. Here, a down-step
converter is combined with a fuse for protection while the variable load RS = R̃S +∆RS, and the
connectable additional resistor R̃C to influence the break-away point of the root locus are kept.
Subsequently, the model derived by the simplified circuit in Eq. (6.9) can be used again. In this
case, the states for the two operating modes u0 = 0 V or u0 = 5 V shall be predicted based on
the system’s inherent asymptotic stability using the cooperative form. Hence, in a first step,
the system (6.9) is transformed into a cooperative form. Following the general procedure, the
states then can be computed in the new coordinates with

˙̃x = Θ−1AΘ · x̃ + Θ−1b · u0 (6.21)

and afterwards be transformed back into the original coordinates analogously as before. With
the transformation procedure presented in this work, the resulting cooperative system matrix
is

Â ∈
[
[−1.055 ; −0.557] [0.010 ; 0.818]

[0.228 ; 0.599] [−0.849 ; −0.246]

]
· 104 . (6.22)

Checking the eigenvalues with

λi = eig
(

sup
(
Â
))

, (6.23)

however, reveals a problem in terms of a positive real part λ2 = 0.316 · 104, which shows
that the new system matrix contains unstable realizations in addition to obviously stable ones
(λ1 = −1.119 · 104). Applying the Gershgorin circle theorem underlines this potential loss of
stability. Since the original system is stable, this loss must result from overestimation in the
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transformation step. Techniques to reduce this overestimation were presented in [51] and are
briefly summarized here. A first possible solution was found by applying an interval-valued
transformation matrix similar to systems including complex-conjugate eigenvalues, see Sec. 4.3.
Here, the advantage of a diagonal structure may help in reducing the overestimation.

For this, the parameter boxes of the uncertain parameters RC and RS were subdivided in a
chessboard-like manner and interval-valued eigenvalues were obtained. Figs. 6.15 and 6.16
show the predicted states iL and uC, respectively. The simulation was done for 75 ms.

Figure 6.15: Predicted state enclosure for the down-step converter: iL using a diagonal structure.

For this simulation, RC was subdivided 200 times and RS 500 times. This resulted in the
interval-valued eigenvalues of

[σ1] = [−115.15 ; −100.1]

[σ2] = [−2500 ; −124.2] .
(6.24)

Figure 6.16: Predicted state enclosure for the down-step converter: uC using a diagonal struc-
ture.

To find even tighter enclosures and avoid the loss of stability, [51] presented an algorithm, which
uses a subdivision-based collection of local, point-valued coordinate transformations. There,
the parameter space is partitioned into certain subdomains created by the algorithm. Then,
point-valued transformations are obtained for each subdomain, where temporal variations of
parameters are only admissible within each of the resulting parameter boxes. In reducing
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the parameter variation, overestimation is naturally decreased. A manually chosen value N
determines into how many subintervals an uncertain parameter is split if necessary. Here,
necessity arises either if a transformation into Metzler form cannot be found after a certain
predefined wall clock time or if instability after the transformation is detected despite the fact
that stability of the system model was proven beforehand. Those subdomains are then again
partitioned into smaller ones until admissible, unique transformation matrices are found for
each subdomain. Figs. 6.17 and 6.18 show the result of applying this to the presented scenario
of the down-step converter for N = 10 with dashed lines and N = 50 with solid ones. Both
yield significantly tighter state enclosures as shown in Figs. 6.15 and 6.16.

Figure 6.17: Predicted state enclosure for the down-step converter: iL using two different num-
bers of subdivision.

Figure 6.18: Predicted state enclosure for the down-step converter: uC using two different num-
bers of subdivision.

Be reminded, that for this approach there is no joint transformation matrix for all possible
parameter variations. Since the interval hull over all individual state enclosures represents
the solution, the validity of the computed bounds is restricted to variations of the parameters
within each of the subdomains determined by the parameter boxes. Those boxes and, hence,
admissible subdomains are given in Fig. 6.19, for both N = 10 in Fig. 6.19(a) and N = 50
in Fig. 6.19(b). Obviously, the increased number of splitting results in more and subsequently
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smaller subdomains. However, those smaller subdomains do not necessarily yield tighter interval
bounds as the simulations of the predicted states show. Hence, an arbitrary increase of the
parameter N does not lead to favorable simulation results. A possible optimization of this
parameter may help and should be investigated in future work as also stated in [51].

(a) Splitting with N = 10 (b) Splitting with N = 50

Figure 6.19: Resulting subdomains determined by the parameter boxes.

Note that for all applied simulations Eqs. (1.5)–(1.7) are used accordingly.
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7 Oscillations in Mechanical Engineering -
Two Examples for Systems Including
Complex Eigenvalues

A broad number of mechanical systems are subject to oscillations. Sometimes those can be
desired, i.e., in a shaker to separate coarser material from finer particles, but in other cases
oscillations need to be damped to reduce material wear or guarantee safety measures. This
chapter will deal with two applications, where oscillations are attenuated by the controller.
The first one regards a high-bay rack feeder as a linear system with uncertain parameters in
the system matrix, while the second scenario deals with a boom crane as a nonlinear example.
The latter includes uncertain parameters as well as a state dependency in the system matrix of
a suitable quasi-linear state-space representation.

7.1 Oscillation Attenuation for a High-Bay Rack Feeder

Rack feeders are widely used as an operating system for automatic performances in high-bay
warehouses, which are built in terms of light-weighted structures into height rather than covering
too much space horizontally. Obviously, those systems can be improved by control to efficiently
follow a trajectory while simultaneously reducing structural oscillations. This would lead to
reduced transport times and, hence, increase transshipment capacity.

7.1.1 Modelling

In Fig. 7.1, the structure of the considered high-bay rack feeder is shown. It is based on an
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Figure 7.1: Mechanical model of the stacker crane.
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existing prototypical test rig at the Chair of Mechatronics at the University of Rostock, which
was built for mimicking the reality. For this, a carriage with the mass mS moves along a track
carrying a double beam. Additionally, a mass mK imitating a cage is mounted on said beam
moving vertically along. A control-oriented modeling was already developed in [2,54]. Here, the
system is considered as an elastic multibody model consisting of the three rigid bodies already
mentioned; the carriage, an end mass mE at the tip as well as the additional mass of the cage,
and a spatially distributed Bernoulli beam as an elastic component. The latter is defined by
the mass moment of inertia θK , the density ρ, the cross sectional area A, Young’s modulus E,
the second moment of area IzB, and the length l. To describe the time-varying vertical position
xK(t) of the cage on the beam, a dimensionless system parameter

κ (t) =
xK (t)

l
(7.1)

is formulated and assumed to be measured. A one-dimensional Ritz ansatz

v1 (x, t) = ¯̄v1 (x) v1 (t) with ¯̄v1 (x) =
3

2

(x
l

)2

− 1

2

(x
l

)3

(7.2)

accounts for the bending deflection of the beam structure by the corresponding elastic degree
of freedom for the first bending mode, which is suitable for small bending. The second-order
ordinary differential equation model

Mq̈ (t) + Dq̇ (t) + Kq (t) = g · (FSM (t)− FSR (t)) (7.3)

is derived by applying Lagrange’s equations of second kind, cf. [60] with the mass matrix M,
the damping matrix D, the stiffness matrix K, and the input vector of generalized forces g.
The generalized force itself is given by the difference of the actuation force of the carriage FSM
as well as a friction force FSR acting opposite to the direction of motion. Here, the vector of
generalized coordinates consists of

q (t) =
[
yS (t) v1 (t)

]T
, (7.4)

the carriage position and the bending deflection of the considered first eigenmode. The test rig
in question is equipped with an underlying velocity control operating on the electric drive for
the carriage with mass mS. This means, that the resulting dynamics for ÿS can be replaced by
the first-order lag dynamics

T1ÿS (t) + ẏS (t) = vS (t)− vS0 (7.5)

with the time constant T1 and the usually small velocity disturbance vS0. However, experiments
show that this velocity control does not display the real dynamics completely, which happens
due to inertia couplings via the reaction forces from the beam motion backward to the carriage.
In [2], an observer-based estimation for vS0 was implemented to account for that. Another
approach is presented in the following. Here, vS0 is neglected and the resulting imperfection
in the dynamics of the underlying velocity control will be added to the original uncontrolled
dynamics with an uncertain factor η, which specifies a level of confidence, that is put in the
underlying velocity control. The assumption that the underlying velocity control displays the
model with an accuracy of 80− 97% results in

η = [0.8 ; 0.97] . (7.6)
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For the sake of compactness, time arguments are omitted in the following. Finally, when
substituting the ODE (7.5) into (7.3), the equations of motion are given by

q̈ = −M−1Kq−M−1Dq̇ + M−1g vS + e . (7.7)

Here, vS is the desired carriage velocity acting as the new control input u. The original inputs are
compensated for by choosing the mistrust of the underlying control to be larger than necessary
as well as in an additional error vector e, which adds bounded noise to the accelerations of the
system. The mistrust or rather the level of confidence of the controller is also included in the
mass and damping matrices. The modified mass matrix

M(η) =

[
(1− η) ·m11 + η · T1 (1− η) ·m12

m12 m22

]
(7.8)

includes

m11 = mS + ρAl +mK +mE ,

m12 =
3

8
ρAl +

mKκ
2

2
(3− κ) +mE ,

m22 =
33

140
ρAl +

6ρIzB
5l

+
mKκ

4

4
(3− κ)2 +mE .

(7.9)

The damping matrix corresponds to

D(η) =

[
η 0

0 3kdEIzB
l3

]
, (7.10)

while the stiffness matrix is represented by

K =

[
0 0
0 k22

]
(7.11)

with

k22 =
3EIzB
l3

− 3

8
ρAg − 3mKgκ

3

l

(
1 +

3κ2

20
− 3κ

4

)
− 6mEg

5l
. (7.12)

Lastly, the input vector of generalized forces is given by g =
[
η 0

]T
. Table 7.1 summarizes all

parameters of the considered test rig.

7.1.2 Control

For the system to be controlled by a robust LMI-based feedback controller vS = −kT ·
[
qT q̇T

]T
with the approach of Chapter 3, it is transformed into its state-space representation

ẋ =

[
0 I

−M−1K −M−1D

] [
q
q̇

]
+

[
0

M−1g

]
vS +

[
0
δ

]
(7.13)

with a parameter uncertainty in M and D due to their dependence on η and a disturbance
δ > 0 influencing both acceleration terms. Here, δ1 also includes ignored values from vS0 while
δ2 covers modeling errors in terms of worst-case bounds, e.g. ignored dynamics of higher order.
In the considered scenario, κ is assumed to be a constant parameter given by κ = 0.75. For
this example, the Γ-region, see Eq. (2.45) and Fig. 2.5, is given by an absolute stability margin
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Table 7.1: Parameters of the high-bay rack feeder.

Variable Unit/Value Meaning

A 6 · 10−4 m2 cross sectional area of the beam

l 1.07 m length of the beam

ρ 2.7 · 103 kg
m3 density of the beam

E 70 · 109 N
m2 Young’s modulus of the beam

IzB 1.2 · 10−8 m4 the second moment of area of the beam

mK 0.95 kg mass of the cage

mS 2 kg mass of the carriage

mE 0.9 kg end mass at the tip of the beam

kd 1.1 · 10−3 N
m

damping factor

T1 7 · 10−3 s time constant of the underlying velocity control

of γ = 4, thus the setting of the matrices in Eq. (2.46) corresponds to D0 = 2γ and D1 = 1.
With the controller gain

kT =
[
2.44 · 102 −3.90 · 102 42.52 12.24

]
, (7.14)

the controlled system matrix results in

AC = (A−BK)

=


0 0 1 0
0 0 0 1

[a31] [a32] [a33] [a34]
[a41] [a42] [a43] [a44]


with

a31 ∈ [−2.570 ; −0.339] · 103

a32 ∈ [0.678 ; 9.740] · 103

a33 ∈ [−4.584 ; −0.606] · 102

a34 ∈ [−1.281 ; −0.160] · 102

a41 ∈ [0.432 ; 3.274] · 103

a42 ∈ [−1.992 ; −0.105] · 104

a43 ∈ [0.772 ; 5.838] · 102

a44 ∈ [0.191 ; 1.617] · 102 .

(7.15)

The eigenvalue placement is given in Fig. 7.2, where one can clearly see that the system is
stable since all real parts lie in the open left half plane.

A detailed view for the slower eigenvalues is given in Fig. 7.3. Obviously, the required stability
margin is robustly satisfied by design.

7.1.3 Transformation

The transformation is done using a real-valued transformation matrix according to Sec. 4.3
with Eqs. (4.36)–(4.42). A respective system matrix (4.43) results in

ÃC ∈


[ã11] 0 0 0

0 [ã22] 0 0
0 0 [ã33] 0
0 0 0 [ã44]
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Figure 7.2: Distribution of eigenvalues for the controlled system AC.

Figure 7.3: Distribution of eigenvalues for the controlled system AC — enlarged view.

with the closed-loop matrix entries

[ã11] = [−2.681 ; −0.148] · 102

[ã22] = [9.503 ; −5.503]

[ã33] = [ã44] = [17.242 ; −8.465] .

When applying a complex-valued transformation according to Sec. 4.3 with Eqs. (4.50)–(4.52),
the result would change to

ÃC ∈


[ã11] 0 0 0

0 [ã22] 0 0
0 0 [ã33] 0
0 0 0 [ã44]


with the closed-loop matrix entries

[ã11] = 〈−1.414, 1.267〉 · 102

[ã22] = 〈−7.503, 2.000〉
[ã33] = 〈−12.853 + 45.445, 12.307〉
[ã44] = 〈−12.853− 45.445, 12.307〉 .
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Note that the solution is given in the midpoint-radius form, see Fig. 2.1(b), where the radius
is rounded upward to the number of displayed digits. In the present case, the real-valued
transformation produces less overestimation and is therefore used for the simulations in the
following. However, the complex-valued transformation provides a useful information regarding
the eigenvalues. Here, it becomes clear that for an unfavorable partitioning into subintervals,
the overall system matrix may become unstable due to overestimation. This is to be considered,
when analyzing the system and designing the transformation.

7.1.4 Numerical results

Using the transformation from the previous section and Approach (3) of 4.3.2, the interval
enclosures are calculated. Note that a common approach with the state-of-the-art Taylor series
expansion is difficult due to the wrapping effect since the evaluation of the n symbolically given
system matrices using standard interval techniques for the chosen interval of η yields a solution
that includes unstable eigenvalues of the system matrix. A comparison is, therefore, not fair
for this specific example since the system neither reaches the desired operating point yS0 = 0 m
nor produces useful interval widths, as can be seen in Fig. 7.4.

Figure 7.4: State prediction for the carriage position yS with a Taylor series expansion of order
2 for a shortened time horizon of 50 ms.

The simulation was done with an initial uncertainty of yS = [0.1 ; 0.3] m, which also holds
for the cooperativity-based approach. It is given in Fig. 7.5. In contrast to the Taylor series
expansion, both decoupled bounds of the cooperativity-based method converge rapidly to said
stationary operating point due to the efficient controller and the resulting asymptotic stability
of the system.1 As in previous examples, there is a small deviation from the true2 state in the
starting phase. Again, this is due to overapproximation in the transformation and stems, in this
example from Eqs. (4.36)–(4.43) and the resulting overestimation of the complex eigenvalues.
Combining both Taylor series expansion and cooperativity-based methods, however, would
not be possible in this scenario since no stable matrix could be found to be used in the Taylor
series expansion. Nevertheless, the overestimation problem of the cooperativity approach in the
starting phase occurs in a very short time interval of approximately 0.19 s till realistic values

1Note that implementing a feedforward control, this asymptotic stability would be reduced to input to state
stability (ISS). This is due to bounded uncertainty in the mass matrix M, which typically imposes uncertainty
in the stationary system gain.

2The rack feeder in question is a small-scale model on a 1.5m test rig.
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Figure 7.5: Upper and lower bound of the interval for the carriage position yS for all t ∈ [0 ; tf ]

— regarding the test rig — are reached in the interval-based simulation. To emphasize the
meaning of this, the response times of the presented cooperativity-based method are compared
with a grid-based simulation for the parameter η. The original system was simulated with ten
equally spaced grid-points included in the interval of η. In Table 7.2, times show when the
specified deviation to the stationary point yS = 0 is reached in each approach.

Table 7.2: Comparison of response times for the interval computation vs. a parameter gridding.

deviation

computation via ≤ 0.1m ≤ 0.05m ≤ 0.01m

gridding 0.15 s 0.25 s 0.51 s

interval 0.51 s 0.63 s 0.93 s

Despite the fact that the gridding method predicts shorter settling times, the problem in grid-
ding is to find suitable values to include all worst cases. In contrast to that, the interval method
definitely includes such cases as it is oriented on the slowest time constant of the overall sys-
tem. Considering this big advantage, it can be shown that except for the starting phase, the
response time of the controlled system can be estimated well by means of the interval proce-
dure. However, it may happen that for some cases, this too long starting phase increases the
settling time unnecessarily. This happens, e.g. for an implementation of variable values for κ
to predict states based on a gain scheduling control for a given trajectory for κ. For now, κ was
implemented as a constant parameter, yet, as Eq. (7.1) shows, it may vary over time, which is
not considered in the presented scenario. As it is, the presented method is not usable for this
extension. Nonetheless, a look-up table connecting κ values to their respective controller gain
could help in solving this if the parameter κ can be measured accurately.

7.1.5 Observer

For the given example a cooperativity-preserving controller is difficult to implement due to the
fact that the considered system already leans towards numerical instability. As mentioned in
Chapter 5, a possible solution is to calculate the observer for the original system and transform
the overall system including the observer into cooperative form. For this, the observer gain is
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calculated using the method in Sec. 5.2 for the closed-loop to follow

AO = AC −HCm , (7.16)

where

Cm =

[
1 0 0 0
0 1 0 0

]
(7.17)

assuming that the carriage position as well as the bending deflection can be measured. Corre-
sponding to the Γ-region of the control design, the observer is implemented with an absolute
stability margin of γ = 6. Hence, the resulting observer gain

H =


25.63 25.95
3.33 26.08

380.00 987.95
119.07 −1.35 · 103

 (7.18)

was calculated, so that the overall system matrix becomes

ACO = (AC −HCm)

∈


−25.63 −25.95 1 0
−3.33 −26.08 0 1
[a31] [a32] [a33] [a34]
[a41] [a42] [a43] [a44]

 (7.19)

with

a31 ∈ [−2.950 ; −0.719] · 103

a32 ∈ [−0.194 ; 8.032] · 103

a33 ∈ [−458.335 ; −60.617]

a34 ∈ [−128.004 ; −16.049]

a41 ∈ [0.313 ; 3.154] · 103

a42 ∈ [−1.765 ; 0.015] · 104

a43 ∈ [77.203 ; 583.741]

a44 ∈ [19.101 ; 162.687] .

(7.20)

in comparison to (7.15). The resulting new eigenvalue locations are shown in Fig. 7.6.

Figure 7.6: Distribution of eigenvalues for the controlled and observed system ACO.

In contrast to this approach, [53] presented a stochastical method in terms of a Kalman filter.
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7.1.6 Transformation of the parallel model

For this model, a real-valued transformation matrix was found for the given uncertain parameter
η in Eq. (7.6). The system matrix (4.43) then results in

ÃCO = N ∈


[ã11] 0 0 0

0 [ã22] 0 0
0 0 [ã33] 0
0 0 0 [ã44]

 (7.21)

with the closed-loop matrix entries

[ã11] = [−265.161 ; −32.225]

[ã22] = [−22.523 ; −16.198]

[ã33] = [ã44] = [−34.711 ; −19.234] .

7.1.7 Numerical results of the parallel simulation

Now, a parallel model is simulated to account for a comparison with the controlled system
to use it as a fault diagnosis tool for the controlled system. The presented parallel model
already considers the impact of the controller by Eq. (7.19), however, an additional uncertainty
regarding the input errors is implemented with an actuator inaccuracy ∆u resulting in

˙̂x =
(
AC −HCm

)
· x̂ + Hym + B∆u , (7.22)

cf. Eqs. (5.3) and (5.4). Here, measurements result from the midpoint of the predicted states
of the controlled system ym = Cmmid {[xC]}+∆ym with an added sensor inaccuracy of ∆ym ∈[
[−5 · 10−4 ; 5 · 10−4] [−1 · 10−6 ; 1 · 10−6]

]T
and ∆u ∈ [−1 · 10−5 ; 1 · 10−5].

Figure 7.7: Use of the observer with a parallel model as a fault diagnosis tool.

The resulting time course of the observed carriage position is given in Fig. 7.8.

Here, a fault would be detected if those bounds are exceeded by the system motion. Note that
the smaller — in comparison to Sec. 7.1.4 — starting interval of yS,m = [0.199 ; 0.201] m was
used for the simulation of the parallel model.
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Figure 7.8: Upper and lower bound of the interval for the observed carriage position ŷS for all
t ∈ [0 ; tf ]

7.2 Oscillation Attenuation of a Boom Crane Load

Similar to the first application scenario of this chapter, oscillations of a boom crane load in-
crease the transport time while reducing the security of the overall process. A controlled boom
crane furthermore facilitates the handling for the operator. The task is, hence, an oscillation
attenuation for the boom crane’s payload.

7.2.1 Modeling

A schematic representation of the system is given in Fig. 7.9.

FH

FA

mHT

mL

mC

yL

y

x

xL

r

ϕ l

Figure 7.9: Schematic representation of a boom crane with the generalized coordinates of the
position r and the angle φ.

A mass of a payload mL is connected by a rope of length l to a moving carriage mHT . Here,
the rope length is variable and is, hence, chosen as an uncertain parameter. Like in Sec. 7.1,
Lagrange’s equations of second kind

d

dt

(
∂L

∂q̇(t)

)
− ∂L

∂q(t)
+
∂D

∂q̇
= Q , (7.23)

are used to derive the equations of motion. The Lagrange function represents the difference of
kinetic and potential energy

L = Ekin − Epot . (7.24)
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Here, the overall kinetic energy of the system is

Ekin = Ekin,HT + Ekin,L

=
1

2
mHT ṙ

2(t) +
1

2
mL ·

[(
ṙ(t) + l cos(φ(t))φ̇(t)

)2

+
(
l sin(φ(t))φ̇(t)

)2
]
,

(7.25)

while the potential energy is described by

Epot = Epot,L = mLlg cos(φ(t)) . (7.26)

Furthermore, the vector of external forces consists of

Q =
[
FA 0

]T
(7.27)

with the force FA acting on the carriage. Internal velocity-proportional dissipation of the
payload energy is included with the help of a dissipation term using the Rayleigh function

D =
1

2
δφ̇2 . (7.28)

Evaluating Lagrange’s equations (7.23) with the vector of generalized coordinates

q =
[
r(t) φ(t)

]T
results in the two equations of motion

(mHT +mL) r̈ +mLl cos(φ)φ̈−mLl sin(φ)φ̇2 = FA (7.29)

and
mLl cos(φ)r̈ +mLl

2φ̈+mLlg sin(φ) + δφ̇ = 0 . (7.30)

Again, an underlying velocity control for the carriage is employed, where

T1r̈(t) + ṙ(t) = v(t) (7.31)

replaces Eq. (7.29). A state-space representation

ẋ =


0 0 1 0
0 0 0 1
0 0 − 1

T1
0

0 −g·si(φ)
l

cos(φ)
T1l

−d

x +


0
0
1
T1

− cos(φ)
T1l

 u (7.32)

with

si(φ) =
sin(φ)

φ
(7.33)

is derived for the state vector

x =

[
q
q̇

]
∈ R4 (7.34)

consisting of the vector of generalized coordinates and their respective velocities. Here, the
desired carriage velocity v denotes the input u. Uncertain parameters are the rope length l and
the damping coefficient d = δ

mL
as well as the state-dependency of φ, which is also treated as

an interval-bounded uncertainty. Since φ is included in combination with a cosine function in
entries in A(x) and equally in b(x) as well as in combination with a sinc-function3 in A(x),
two independent parameters

p1 =
g · si(φ)

l
with si(φ) =

sinφ

φ
, and p2 =

cos(φ)

T1 · l
(7.35)

3Here, in the not normalized form.
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are included to account for this parameter dependency. Replacing the respective matrix entries,
the parameter-dependent system matrix and input vector

A(p) =


0 0 1 0
0 0 0 1
0 0 − 1

T1
0

0 −p1 p2 −d

 and b(p) =


0
0
1
T1

−p2

 , (7.36)

are obtained.

7.2.2 Control

To account for a more robust approach as in the previous examples, worst-case scenarios as-
suming independent parameters p1 and p2 are considered to parameterize a robust control.
Afterwards, the transformation, and hence, the simulation is done with finer intervals also
considering partially dependent parameters as explained in Sec. 3.2. This means that the re-
ality is overapproximated by the simulation scenario which is robustly controlled by an even
higher overapproximation accounting for a secure enclosure of the reality and its eventual devi-
ations from the model. For this, the controller is calculated for the following interval-bounded
parameters of4

[φ] = [−0.1 ; 0.1] rad

[l] = [0.1 ; 0.5] m

[d] = [0.3 ; 1.5] Nm · s .
(7.37)

Here, the LMI-based controller includes a stability margin of γ = 0.1 and the H2-norm with no
disturbances B1 = 0, see Eqs. (3.29)–(3.30). In the presented case, the H2-norm is used as a
robust LQR (linear-quadratic regulator) design with

J =
1

2

∫ ∞
0

(
xTQx + uTRu

)
dt (7.38)

and

C2 =

[
0

Q 1
2

]
and D22 =

[
R 1

2

0

]
, (7.39)

where Q = diag(
[
1 0.1 1 0.1

]
) and R = 1, cf [1]. With those specifications, the controller

gains result in
kT =

[
0.01 −0.13 −0.94 −0.16

]
. (7.40)

Additionally, a further successful stability proof was done for a widened angle interval of [φ] =
[−1 ; 1] rad, resulting in the controlled system matrix

AC =


0 0 1 0
0 0 0 1
a31 a32 a33 a34

a41 a42 a43 a44

 (7.41)

with

a31 ∈ [−0.197 ; −0.196]

a32 ∈ [2.625 ; 2.626]

a33 ∈ [−1.254 ; −1.253]

a34 ∈ [3.048 ; 3.049]

a41 ∈ [0.392 ; 1.970]

a42 ∈ [−124.356 ; −24.812]

a43 ∈ [2.495 ; 12.540]

a44 ∈ [−31.683 ; −6.565] .

(7.42)

4Note that those parameters comply with a scaled model of a real boom crane [52].
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7.2.3 Transformation

As mentioned, smaller intervals

[φ] = [−0.1 ; 0.1] rad

[l] = [0.4 ; 0.5] m

[d] = [0.5 ; 1.2] Nm · s
(7.43)

representing the domain of operation as a subset of the stabilized state domain for the system
will be used for the transformation. The controlled matrix then becomes

AC =


0 0 1 0
0 0 0 1
a31 a32 a33 a34

a41 a42 a43 a44

 (7.44)

with

a31 ∈ [−0.197 ; −0.196]

a32 ∈ [2.625 ; 2.626]

a33 ∈ [−1.254 ; −1.253]

a34 ∈ [3.048 ; 3.049]

a41 ∈ [0.392 ; 0.493]

a42 ∈ [−31.089 ; −24.812]

a43 ∈ [2.495 ; 3.135]

a44 ∈ [−8.821 ; −6.565] .

(7.45)

For this example, we want to find an intelligent approach to subdivide the system parameters
as requested in Sec. 4.3. In the modeling, a parameter independency is introduced by choosing
p1 and p2. Hence, the current system (7.36) has three independent parameters: p1, p2 and d.
However, both p1 and p2 depend on the same length l, which is not considered, when both
parameters p1 and p2 are subdivided independently. To include this, l is chosen to be gridded,
then the parameters are calculated and finally gridded again. An extension to this is obviously
to introduce a further subdivision of the parameter φ, omitting the subdivision of p1 and p2 and
hence, reduce the effort by one subdivision. This results in three different approaches, namely

(a) subdivision of p1, p2 and d

(b) subdivision of l, p1, p2 and d

(c) subdivision of φ, l, and d.

The variation of the positions of eigenvalues for the different approaches is shown in Fig. 7.10.
Here, the effect of the different approaches becomes clear and it is obvious why Approach
(c) is the least conservative routine. On an additional note, it avoids a transition between
complex-conjugate and real eigenvalues. Now, to subdivide the parameters, one could choose
an arbitrary number of subintervals, where an obvious, easy choice could be Lnp = L3, or we
make use of a sensitivity analysis as mentioned in Secs. 2.3 and 4.3. For the transformation of
the controlled system, the first method is applied and all parameter intervals were subdivided
with L = Lφ = LL = Ld = 25.

Consisting of a complex-conjugate pair of eigenvalues as well as two real ones, the resulting
system matrix

N =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 (7.46)
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Figure 7.10: Distribution of eigenvalues of the controlled system (without the observer): (a) –
black, (b) – dark gray and (c) – light gray.

with

σ1 = σ2 ∈ [−4.321 ; −3.155]

σ3 ∈ [−1.242 ; −1.221]

σ4 ∈ [−0.194 ; −0.192]

(7.47)

is Hurwitz and Metzler.

7.2.4 Numerical results

For the calculation of the interval enclosures, it is furthermore important to chose the right
hull over the L3 small subintervals resulting from a gridding with Approach (c) with the least
amount of overestimation as explained in Sec. 4.3.

Figure 7.11: Interval enclosure for the state φ – approaches from Sec. 4.3.2: 1. T̃ =
[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]}〈κ〉

]
,
L⋃
κ=1

[
={[vλj ]}〈κ〉

]]
– dotted5, 2.

[
T̃
]

=
L⋃
κ=1

[
T̃〈κ〉

]
–

dashed, 3. [z] =
L⋃
κ=1

[
z〈κ〉

]
– solid.

5Here, the linear interpolation is used for a better visualization.
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Exemplary for the angle φ, Fig. 7.11 shows a comparison of all three methods for the uncertain
initial states

x(0) =


[0.1 ; 0.2] m

[−0.1 ; 0.1] rad
[0.01 ; 0.02] m · s−1

[0.05 ; 0.08] rad · s−1

 , (7.48)

testing the robustness of the control design. A detailed view is given in Fig. 7.12, zoomed in
on the starting phase.

Figure 7.12: Zoomed in interval enclosure for the state φ – approaches from Sec. 4.3.2: 1. T̃ =[
T̃1, . . . , T̃ñ

]
with T̃j ∈

[
L⋃
κ=1

[
<{[vλj ]}〈κ〉

]
,
L⋃
κ=1

[
={[vλj ]}〈κ〉

]]
– dashed-dotted, 2.[

T̃
]

=
L⋃
κ=1

[
T̃〈κ〉

]
– dashed, 3. [z] =

L⋃
κ=1

[
z〈κ〉

]
– solid.

For the presented case, there is not much difference in the resulting interval enclosures. However,
Approach (3), which is included as a solid line in Figs. 7.11 and 7.12, is the least conservative.
This can be explained by the semi-distributivity of interval-based set representations, where
it becomes clear, that building hulls too early in the algorithm enhances the interval of the
final result. On an additional note, if wide intervals are included it is difficult to compute the
inverted transformation matrix. This means, that Approach (1) can be — as it is the case in the
presented application scenario — impossible to apply. It is then recommendable to calculate the
inverse transformation matrix for each subinterval and build the hull over those, cf. Eq. (4.49).

Figure 7.13: Interval enclosure for the state φ: comparison of Approach (3) from Sec. 4.3.2 and
a state-of-the-art Taylor series expansion.
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Finally, Fig. 7.13 shows a comparison of the presented method and a state-of-the-art Taylor
series expansion. In contrast to the examples before, the presented cooperativity-based method
does not start with a much too wide interval but still tightens when the operating point is
reached. However, the Taylor series expansion continues to widen with increasing time due
to the wrapping effect. In conclusion, solely using the cooperativity-based interval enclosure
works for this specific example, but a combined method would be preferable again.

7.2.5 Observer

Here, the measured output is

Cm =

[
1 0 0 0
0 1 0 0

]
, (7.49)

because the measured variables are the position of the moving carriage r and the rope angle
φ. Again, the cooperativity-preserving method of Chapter 5 is difficult to apply. Hence, the
LMI-based approach presented in Sec. 5.2 was used to calculate the observer gain before a
transformation of the overall system. However, we will make use of another method in contrast
to the rack feeder. For this, the observer gains are calculated for the open loop6 according to
AO = A−HCm and result in

H =


0.391 2.142
−0.073 26.946
12.373 −83.305
−48.290 3.872 · 103

 (7.50)

using the same intervals as for the control design, see Eq. (7.37). Furthermore, a stability
margin of γ = 0.2 was added. Repeating the stability proof from before for the widened angle
interval, the new system matrix of the parallel model results in

AO = (A−HCm)

=


−0.391 −2.142 1 0
0.073 −26.946 0 1
−12.373 83.305 −20.000 0
a41 a42 a43 a44

 (7.51)

with

a41 ∈ [48.290 ; 48.291]

a42 ∈ [−3.970 ; −3.888] · 103

a43 ∈ [21.612 ; 200.000]

a44 ∈ [−1.500 ; −0.300] .

(7.52)

7.2.6 Transformation of the parallel model

Again, the tighter intervals from Eq. (7.43) are used for the transformation. The observed
system matrix then becomes

AO =


−0.391 −2.142 1 0
0.073 −26.946 0 1
−12.373 83.305 −20.000 0
a41 a42 a43 a44

 (7.53)

6in contrast to the closed-loop approach from Sec. 7.1.5



7.2. Oscillation Attenuation of a Boom Crane Load 91

with

a41 ∈ [48.290 ; 48.291]

a42 ∈ [−3.897 ; −3.891] · 103

a43 ∈ [39.800 ; 50.000]

a44 ∈ [−1.200 ; −0.500] .

(7.54)

Since it is already known that the least conservative results are produced with Approach (c),
this is the only subdivision applied for this transformation. Hence, the parameters φ, l, and d
are subdivided accordingly. Note that in contrast to before, a sensitivity analysis was used to
determine a suitable subdivision routine. It was shown that the eigenvalues were most sensitive
to a change of parameter l. Hence, different distributions for each parameter were chosen
accordingly, so that

Lφ = Ld = 10

Ll = 25
(7.55)

was applied resulting in L = Lφ · Ll · Ld = 2, 500 subintervals. In contrast to a straight
implementation of L3 = 253 = 15, 625 subintervals, the simulation time was reduced drastically.
Fig. 7.14 shows the variation of the positions of all eigenvalues for Approach (c).

Figure 7.14: Distribution of eigenvalues of the overall system: Approach (c) – black.

As one can clearly see from the distribution of the eigenvalues, the system consists of two real
eigenvalues and one conjugate-complex pair. Hence, the system matrix

ÃO = N =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 (7.56)

is obtained with

σ1 = σ2 ∈ [−14.608 ; −14.151]

σ3 ∈ [−18.501 ; −18.270]

σ4 ∈ [−1.034 ; −1.029]

(7.57)

from the transformation described in Sec. 4.3 and is clearly Metzler and Hurwitz. Note, the
complex-conjugate pairs result in equal real parts for σ1 and σ2.
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7.2.7 Numerical results of the parallel model

In the next step, the parallel model is simulated to account for a comparison with the controlled
system. The aim, here again, is to use the observer as a fault diagnosis tool for the controlled
system. However — as already mentioned —, we will have a look into an approach differing
from Sec. 7.1 to achieve this. Here, the parallel model is simulated with the measurements7, so
that8

˙̂x =
(
A−HCm

)
· x̂ + Bu + Hym , (7.58)

cf. Eqs. (5.3) and (5.4). Since, the observer approach in (7.58) was done for the open loop, the
controller must be added in another way. To account for this, the input is given by

u = −kTx , (7.59)

while the result from Sec. 7.1.4 is used as x = xC and

ym = Cmmid {[xC]}+ ∆ym (7.60)

with

∆ym ∈
[
[−1 · 10−3 ; 1 · 10−3]
[−1 · 10−3 ; 1 · 10−3]

]
. (7.61)

Fig. 7.15 shows the resulting structure of the overall system. Note that once again, different
outputs can be compared for a fault diagnosis.

Figure 7.15: Use of the observer with a parallel model as a fault diagnosis tool.

However, for the presented scenario measurement errors shall be detected. For this, Fig. 7.16
shows the resulting interval enclosure for the observed angle φ. Note that the findings of
Sec. 7.2.4 are applied and the parallel simulation will be done by using only the third Approach

7which are the results of the controller simulation in the presented case
8in original coordinates
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with building the hull over the L = 2500 small subintervals with [z] (0) =
L⋃
κ=1

[
z〈κ〉
]

(0). Here,

the uncertain initial states are chosen as in (7.48).

Figure 7.16: Interval enclosure of the parallel simulation for the state φ – approach 3:

[z] =
L⋃
κ=1

[
z〈κ〉

]
.
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Part III

Extensions





8 Comments on Fractional-Order Systems

Fractional-order models (FOM) were introduced because some systems cannot be described
adequately by integer-order models due to their non-standard dynamical behavior, which can
appear when the system is subject to e.g. long memory or hereditary effects, such as electrical
conductance of biological systems or batteries. This also means that fractional-order systems
(FOS) are different to integer-order systems in their properties. Hence, certain well-known
methods can be applied likewise but others need to be adapted with exceptions and/or ex-
tensions to be equally valid for FOS. This section will discuss those peculiarities focusing on
requirements for the proposed methods of this work and their resulting reformulations.
A Caputo definition is chosen because of its advantage that initial conditions have to be con-
sidered only for the state vector at t = 0 [41]. A fractional system model is given by

x(ν) = f(x,u) (8.1)

with the state vector x ∈ Rn and the control vector u ∈ Rm. Here, if the order ν is equal for
all states, the system is called commensurate otherwise it is non-commensurate. A state-space
representation with polytopic uncertainties can be formulated as

x(ν) = A(p) · x + B(p) · u (8.2)

y = C(p) · x + D(p) · u, (8.3)

where A(p), B(p), C(p) and D(p) depend on uncertain parameters p. Again, with imple-
menting a feedback controller of the form u = −K (x) · x (analogously to Eq. (3.2)) with
vanishing feed-forward action, the closed-loop system becomes asymptotically stable. As al-
ready mentioned, then, the desired steady-state operating point is assumed to be x = xs = 0
for u = us = 0. When considering commensurate FOS — with equal order ν for all states
— this is very similar to integer-order systems. However, it still leaves a difficulty regarding
the stability region of FOS. This region differs not only from integer-order systems but also
whether fractional orders of 1 < ν < 2 or 0 < ν < 1 are considered. For the latter, the stable
region extends into the right half plane according to Fig. 8.1(a), but systems with fractional
orders of 1 < ν < 2 have smaller regions in contrast to integer-order systems and correspond
to the stability region in Fig. 8.1(b).

8.1 LMI-Based Robust Control

Since the stability region is not the same as for standard dynamical systems, the LMI-based
control of Sec. 3.1 needs to be adapted. In [16], a suitable formulation was published, which
shall be used in the following. Basically, the idea was to treat the stability domain as a union
of two half planes, resulting from rotating the left half plane with angles of ϕ = ±(1 − ν)π

2

for the case of 0 < ν < 1 and with ϕ = ±(ν − 1)π
2

for 1 ≤ ν < 2, respectively. Applying
the polytopic model (3.13) for each of the vertices (3.15) including the vector of independent
parameters, Eq. (3.11) and, hence, Eq. (3.24) are expressed as

(rX + r∗X∗)TAT
ψ + Aψ(rX + r∗X∗)−YTBT

ψ −BψY ≺ 0 (8.4)
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(a) 0 < ν < 1 (b) 1 ≤ ν < 2

Figure 8.1: Stability regions of a fractional-order system.

or including user-defined specifications of the Γ-region as

D0⊗(rX+r∗X∗)+D1⊗((rX+r∗X∗)TAT
ψ−YTBT

ψ)+DT
1 ⊗(Aψ(rX+r∗X∗)−BψY) ≺ 0 . (8.5)

Again, this needs to be evaluated simultaneously for all ψ ∈ {1, . . . , nψ}. Note that the matrix
X = XH is Hermitian which means that

X = XR + jXI = XT
R − jXT

I (8.6)

holds for X � 0. Here, XR and XI represent the symmetric real and skew-symmetric imaginary
parts, respectively, and

r =

{
ej(1−ν)π

2 if 0 < ν < 1

ej(ν−1)π
2 if 1 ≤ ν < 2

(8.7)

as well as r∗ and X∗ as their respective conjugate-complex. Analogously to Eq. (3.10), the
controller gain matrix is calculated by

K = Y(rX + r∗X∗)−1 . (8.8)

The reader is referred to [16] for further information.

8.2 Application Scenario: Battery

As mentioned, a real-life application of fractional-order models is e.g. a battery system, which is
analyzed in the following. The structure of the equivalent circuit representation of this battery
system, which was derived based on [64], is shown in Fig. 8.2. Here, the base is given by a
first-order RC-model, where the commonly used standard capacitor is replaced by a constant
phase element (CPE, see C.2). Two energy storage elements describe the battery’s dynamics,
namely the dynamic behavior of the CPE voltage given by

u
(ν)
CPE(t) = − 1

RC
uCPE(t) +

1

C
i0(t) , (8.9)
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Figure 8.2: Battery structure with a constant phase element (CPE), the open-circuit voltage
uOCV, and the terminal current of the battery i0.

where R and C are the element parameters and i0 is the terminal current of the battery. Here,
the fractional order is set to ν = 0.5, which is close to the actual value identified by [64].
Secondly, the state of charge (SOC) σ can be described as the integer-order ODE

σ̇(t) = − η

Qn

i0(t) (8.10)

with the charging/discharging efficiency η and the nominal battery capacity Qn. This would
lead to a state vector with two elements, i.e., the CPE voltage and the SOC. However, an
incommensurate system would result with different differentiation orders. A remedy comes in
terms of an implemented auxiliary relationship with σ(0.5) = σf , obtaining

σ(0.5)(0.5)
= σ

(0.5)
f = σ̇. (8.11)

As a general note, the number of auxiliary variables that have to be introduced to change
an incommensurate system into a commensurate one relates to finding the greatest common
divisor of all orders in the common fractional order. In the presented example, ν = 0.5 already
presents the greatest common divisor of the orders in Eqs. (8.9) and (8.10). Note that in this
case 0 < ν < 1 holds, which means that we will refer to those specifications as given before,
e.g. Fig. 8.1(a). The resulting state-space representation is

x(0.5) =

−
1
RC

0 0

0 0 1

0 0 0

x +

 1
C

0
− η
Qn

 u = A(p)x + bu , (8.12)

with the state vector

x =

VCPE

σ
σf

 (8.13)

and the system input u = i0. The output equation is omitted here because it has no direct effect
on the presented methods. The parameter values, which where identified by [64], are listed in
Table 8.1. To additionally account for aging, an uncertainty is added in the Ohmic resistance
of the CPE. In the given example, both transformation methods presented in Chapter 4 can be
applied with a small modification regarding the control design. This will be explained in greater
detail in the next subsections, before both simulation results are compared to each other.
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Table 8.1: Parameters of the battery.

Variable Unit/Value

C 615.93 F

η 0.74

Qn 18 · 104 C

R [0.51 ; 1.51] Ω

8.2.1 Transformation on the basis of conjugate-complex eigenvalues

Applying the control design explained above, the controller gain vector

kT =
[
0.0067 −0.0066 −2.0008

]
· 104 (8.14)

is calculated by Eq. (8.4) without any further requirements on the Γ-region, fulfilling the sta-
bility requirement of the position of eigenvalues complying to Fig. 8.1(a). Hence, the controlled
system matrix becomes

[A]C =

 [a1] 0.1077 32.4842
0 0 1

0.0003 −0.0030 −0.0823

 (8.15)

with [a1] = [−0.1121; −0.1099]. Its eigenvalues result in one real eigenvalue and a conjugate-
complex pair. Incontrovertible, the transformation is done with the method presented in
Sec. 4.3. After this transformation, the new system matrix results in

[N] =

[a1] 0 0
0 [a2] 0
0 0 [a2]

 with (8.16)

[a1] = [−0.1916; −0.1903]

[a2] = [−0.0014; −0.0009] ,

which is Metzler while still being asymptotically stable according to the design requirements
(8.4). As mentioned, this approach can result in larger overestimation for the real eigenvalue.
As a countermeasure, the specialized transformation for purely real eigenvalues shall be applied.

8.2.2 Transformation on the basis of real eigenvalues

Obviously, all eigenvalues need to be shifted into a real form to apply this transformation. A
closer look at the system (8.12) reveals that the purely real eigenvalue is connected to the first
state leaving only the other two to be shifted. As a first and simple choice, the respective gain
for the first state is set to k1 = 0 resulting in a controller gain

kT =
[
0 −0.0066 −2.0008

]
· 104 (8.17)

of the output feedback law instead of Eq. (8.14). Of course, the stability has to be proven again
for the changed, new controlled system

[A]C =

[a]1 0.1077 32.4842
0 0 1
0 −0.0030 −0.0824

 (8.18)
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with [a]1 = [−0.0032; −0.0010]. This is done by reducing Eq. (8.4) to

(rX + r∗X∗)TAT
ψ + Aψ(rX + r∗X∗) ≺ 0 , X � 0 , (8.19)

where the vertex matrices under application of the partial state feedback controller are denoted
by Aψ. An analysis shows that the system is not only still asymptotically stable but also
all eigenvalues are purely real. Hence, the approach of Sec. 4.2 is applied and results in the
transformed system matrix

[N] =

[a]1 0 0
0 [a]2 0
0 0 [a]3

 with (8.20)

[a]1 = [−0.0016; −0.0016]

[a]2 = [−0.0003; −0.0003]

[a]3 = [−0.0787; −0.0787] .

Noticeable, the interval widths, which are nearly given by point intervals with an interval width
smaller than 1 · 10−14, definitely undercut the larger ones for the first approach with mixed
eigenvalues. This only highlights the conservatism of the first approach, which is visualized in
the next section.

8.2.3 Simulation results

For this example, the simulations are only used to verify the presented approaches. Nevertheless,
they are equally suitable for already mentioned tasks such as, e.g. state prediction in order to
optimize the control or observer design by a simulative feasibility analysis or to perform an
analysis of the sets of reachable states. A simulation of fractional-order systems is commonly
done with a Grünwald-Letnikov definition, see [41], which is also the basis of the discretized
implementation used in the presented case. Here, for k = 0

x(k + 1) = [∆T νA + diag(ν)I] x(k) + ∆T ν Bu(k) (8.21)

and for k ≥ 1

x(k + 1) = [∆T νA + diag(ν)I] x(k)

−
N+1∑
i=2

(−1)i
(
ν

i

)
x(k + 1− i) + ∆T ν Bu(k)

(8.22)

holds. Still, ν is the fractional order, whereas the sampling time is given by ∆T and
(
ν
i

)
corresponds to the Newton binominal coefficient(

ν

i

)
=

Γ(ν + 1)

Γ(i+ 1)Γ(ν − i+ 1)
(8.23)

generalized to real numbers with the Gamma function [38]

Γ(ν) =

∫ ∞
0

ξ(ν−1)e−ξ dξ . (8.24)
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Any occurring discretization errors were not subject of this work and are, therefore, not further
analyzed.1 A comparison of both presented methods is done for the relevant states, the voltage

over the CPE and the SOC. The initial state vector was set to x0 =
[
0 0.75 0

]T
and a

discharge process was enabled for 100 s to an SOC σ = 0.4.

Figure 8.3: Simulation of the voltage over the constant phase element (CPE) for t ∈ [0; 100] s
— gray: the Jordan-form 4.3, black: transformation with purely real eigenvalues.

In Fig. 8.3, the first state, namely the voltage of the constant phase element is shown. The
behavior for the system with purely real eigenvalues is given in black and results in a line
coinciding with the nearly point interval-valued matrix with very small variations of the upper
vs. lower bound of the interval. The Jordan form approach in Sec. 4.3 is given as a gray area.
The same color code holds for the next Fig. 8.4, where the SOC is presented.

Figure 8.4: Simulation of the SOC σ, zoomed in for t ∈ [0; 5] s — gray: the Jordan-form 4.3,
black: transformation with purely real eigenvalues.

Here, the time horizon was limited to a few seconds in the beginning while it was also simulated
for 100 s. This is done to highlight the differences of both approaches, because this would be

1For additional information, the reader is referred to [56,64] as well as to [34] and [45]. Here, those discretization
effects were investigated on the basis of a verified interval analysis by employing a Picard iteration scheme
directly on the fractional-order system.
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hard to see in the overall time horizon since the intervals are very tiny.
Keeping in mind the different controller gains, the different outcomes are expected. One can
see, that with (8.17) the system overshoots a little less than with (8.14). However, both stabilize
the system at the desired point in a decent time horizon. Again, the transformation of purely
real eigenvalue systems yields the smaller interval diameters.

This shows that with small modifications, the presented methods in this work for integer-order
systems are equally applicable to fractional-order systems. The two main concerns, here, are
to make the state-space system commensurate and adapt the stability region for the robust
control and/or observer design. The simulation of a real-life application scenario validates
these statements.
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9 Alternative Computation of Interval
Enclosures

As already mentioned in Chapter 4, the cooperativity-based calculation of interval enclosures
is limited in its applicability. An obvious reason occurs, when the evaluation of Eq. (4.36) leads

to excessively wide bounds for T̃ ∈
[
T̃
]
. For such too wide bounds, an interval-valued inverse[

T̃
]−1

of
[
T̃
]

does not exist or induces an excessive blow-up of the bounds due to the wrapping

effect. This may happen after using the union over submatrices
[
T̃
]

=
⋃
I

[
T̃I

]
resulting from a

domain splitting to enclose the inverse T̃−1 ∈
⋃
I

[
T̃−1
I

]
with less overestimation. Additionally,

a numerical instability in terms of a blow-up of interval enclosures may happen due to this

conservative calculation of
[
T̃
]
. Hence, an alternative to the computation of interval enclosures

is given in the following based on findings of [27].

9.1 Exponential Interval Enclosure Technique

While an exponential state enclosure technique was already developed in [54], a combination
with LMI-based approaches for robust control parameterization was added in [26]. Here, an
exponential interval enclosure for the true solution x∗(t) to an IVP with ẋ = f (x) with x ∈ Rn

and t0 = 0 is defined as

x∗(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0) , [xe] (0) = [x0] (9.1)

with
[Λ] := diag[λi] , i = {1, . . . , n} . (9.2)

In this, the coefficients λi ∈ R introduced in Eqs. (9.1) and (9.2) are calculated using an iteration
scheme in the context of an extended version of ValEncIA-IVP presented in [54, 55]. This
scheme is based on a Picard iteration

x∗(t) ∈ [xe]
(κ+1) := [xe] (0) +

t∫
0

f
(

[xe]
(κ) (s)

)
ds , (9.3)

in which the exact solution is substituted by the exponential state enclosures (9.1). The resulting
formula is differentiated with respect to time leading to

ẋ∗(t) ∈ [Λ](κ+1) · exp
(

[Λ](κ+1) · t
)
· [xe] (0) = f

(
exp
(

[Λ](κ) · t
)
· [xe] (0)

)
(9.4)

as a fixed-point iteration scheme. To account for the complete time interval t ∈ [t] = [0 ; T ],
the expression

ẋ∗([t]) ∈ [Λ](κ+1) · exp
(

[Λ](κ+1) · [t]
)
· [xe] (0)

= f
(

exp
(

[Λ](κ) · [t]
)
· [xe] (0)

) (9.5)
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replaces the evaluation of (9.4). If the iteration processes of Eqs. (9.4) and (9.5) converge,

[λi]
(κ+1) ⊆ [λi]

(κ) and [Λ](κ+1) ⊆ [Λ](κ) (9.6)

as well as
exp
(

[Λ](κ+1) [t]
)
⊆ exp

(
[Λ](κ) · [t]

)
(9.7)

hold. Following [54,55], the iteration formula

[λi]
(κ+1) :=

fi

(
exp

(
[Λ](κ) · [t]

)
· [xe] (0)

)
exp

(
[λi]

(κ) · [t]
)
· [xe,i] (0)

, i ∈ {1, . . . , n}, (9.8)

is obtained for the interval parameter [λi] of the desired state enclosure by applying further
reformulations of Eq. (9.5) as well as the convergence properties in (9.6) and (9.7). However,
the involved division only holds for 0 6∈ [xe,i], which is why the value 0 has to be excluded from
the state enclosure or handled in another way in the computation of Eq. (9.8). Finally, the
result of the iteration in (9.8)

x∗(t) ∈ [xe] (t) := exp ([Λ] · T ) · [xe] (0) (9.9)

is the solution of all reachable states at the end of the considered integration horizon t = T .
Here, [Λ] is composed of the result obtained in the final iteration step. In [54], it is stated that
requirements for a maximization of efficiency of the exponential enclosure approach include a
domination by asymptotically stable, linear dynamics and a decoupling of the state equations.
This means, that for systems with conjugate complex eigenvalues a simple transformation into
real Jordan canonical form does not meet the latter requirement. Nevertheless, [27] proposes
a solution in using the complex Jordan canonical form. The point being that a transformation
of a point-valued realization embedded in the uncertain system model into this form maintains
the decoupling properties approximately. This holds for both linear and nonlinear systems with
uncertain parameters, which can be decoupled approximately if the matrix of the eigenvectors of
the system’s Jacobian, evaluated at the corresponding interval midpoints is used to perform the
coordinate transformation before the application of Eq. (9.8). Note that the transformation has
to be performed backwards into the original coordinates after the computation of the complex-
valued state enclosures. In [26, 49, 54, 55] further information is given. Although the basic
simulation routine according to Eq. (9.1)–(9.9) published in [54, 55] was done with a fixed,
time- and state-independent integration step size, [26] extended the method by a simple step-
size control strategy, guaranteeing numerical efficiency of the exponential enclosure technique.
Said step-size control strategy determines the most appropriate step size T = Tk according to

Tk = max

{
tmin,

1

10
·min
i∈I∗

{
inf

{
−1

< ([λi])

}}}
, (9.10)

for k ∈ {2, 3, . . .}, while the value T1 is set to the user-defined value T1 = tmin. The time
instants, where the controller should change, are calculated on the basis of the step size Tk
from Eq. (9.10) by

i∗ =

⌈
L

ζend

⌉
, (9.11)

where L is the number of all discretization steps from before and ζend is the number of user-
defined controller steps, see Sec. 3.3.2. Furthermore, I∗ denotes the index set for all states and
respective parameter enclosures i ∈ {1, . . . , n} for which the relation 0 6∈ [λi] holds. Here, [λi]
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are in the decoupled linear case the enclosures of the eigenvalues of the system and generally
correspond to the results of the iteration that was performed during the evaluation of the state
enclosures according to (9.8) for the last temporal discretization slice [t] = [0 ; Tk−1]. Here, the
initial point of time of each slice is shifted to zero w.l.o.g. for time-invariant ODEs, cf. (9.8).
The adaptation of the integration step size T results in a sequence {T1, T2, . . .}. Instead of an
equidistant grid tk = k · T that would have to be adjusted to the fastest time constant for the
complete simulation time horizon,

tk =
k∑
j=1

Tj (9.12)

determines the points of time t = tk, where state enclosures are computed.

9.2 Application Scenario: Inverted Pendulum

For this method, the stabilization of an inverted pendulum in its upright position shall be the
respective benchmark application as depicted in Fig. 9.1.

α(t)

x(t)

F M

m
input force F
desired velocity u

Figure 9.1: Control of an inverted pendulum on a moving carriage.

A pendulum of length a = 0.2 m is mounted at the horizontal foot-point position x on a
carriage of the mass M , which itself moves along a track. The deflection of the pendulum from
its unstable upright equilibrium is denoted by the angle α. A massless rod with its mass m
located in the tip of the pendulum describes the pendulum in good accuracy. Following this,
the system can be described by two nonlinear autonomous second-order differential equations,
namely

ma2 · α̈−ma · cos(α) · ẍ−mga · sin(α) = 0, (9.13)

with the gravitational acceleration g = 9.81 m
s2

, and

(M +m) · ẍ−ma · cos(α) · α̈ +ma · sin(α) · α̇ = F , (9.14)

where F is the actuation force applied to the carriage into the positive direction of motion
x. An underlying velocity control for the carriage is implemented in the form of a first-order
lag behavior with the time constant T1 = 0.05 s. In contrast to the high-bay rack feeder
in Sec. 7.1, this describes the presented pendulum system well since reaction forces of the
pendulum dynamics on the carriage can be neglected. Hence, the expression (9.14) can be
replaced fully by

T1 · ẍ+ ẋ = u , (9.15)
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where u and ẋ represent the desired and actual carriage velocities, respectively. A quasi-linear
state-space representation

ẋ =


0 0 1 0
0 0 0 1

g·si(α)
a

0 0 − cos(α)
T1a

0 0 0 − 1
T1

x +


0
0

cos(α)
T1a
1
T1

 u ,

y =
[
−a · si(α) 1 0 0

]
x , si (α) =

sin(α)

α
,

(9.16)

with the state vector x =
[
α x α̇ ẋ

]T
and the system input u is used to express the overall

system dynamics.

9.2.1 Control design

Similar to Sec. 7.2, two independent parameters

p1 =
g · si(α)

a
and p2 =

cos(α)

T1 · a
(9.17)

are introduced to replace the matrix entries of (9.16) depending on the pendulum angle α,
which also represents the uncertainty, again as a state dependency of the system. With this,
a polytopic uncertainty representation (3.13) is obtained to find a convex combination of ex-
tremal system models. This results in a parameter-dependent system matrix and input vector
according to

A(p) =


0 0 1 0
0 0 0 1
p1 0 0 −p2

0 0 0 − 1
T1

 and b(p) =


0
0
p2
1
T1

 . (9.18)

Initially, the control should hold for the interval [α] =
[
−π

2
+ ε ; π

2
− ε
]

leading to the initial
state interval

[x](0) =


[α](0)

0
0
0

 (9.19)

with [α](0) = [α(0) ; α(0)]. Note that for α = π
2

as well as for α = −π
2

controllability is lost,
which is the reason why a small ε > 0 is introduced.

In the following, both control procedures (i) a constant gain over the whole time horizon as well
as (ii) a gain scheduling design over temporal subslices shall be implemented. Since both control
designs rely on a tight enclosure of predicted state intervals, a verified computation of those
is needed. However, for the presented example, a transformation into a cooperative form is
not possible because of too wide intervals and a resulting non-invertible transformation matrix.
Therefore, the exponential enclosure technique is used to determine the interval enclosures.
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Approach 1: Constant gain with robustness over the whole time horizon

The result of applying the control design of Approach 1 presented in Sec. 3.3.1 is shown in
Fig. 9.2, exemplary for the third run (N = 3).

Figure 9.2: Interval enclosure for the pendulum angle α for all t ∈ [0 ; tf ] — Approach 1.

The system’s dynamics are not only successfully stabilized in its operating point by the con-
troller, but also the interval diameter is decreasing once the operating point has been reached.
Table 9.1 gives numerical results for the sequence of controller gains and the hull over the angle
intervals for t ∈ [0 ; tf ].

run i K
[
X (i)

]
1

k1 k2 k3 k4 inf sup

1 96.54707 15.3023677 -0.472897180 -4.99555847 -0.1521028 1.0481524366

2 94.68120 15.0066626 -0.463765567 -4.89774783 -0.1721871 1.0481472189

3 94.68119 15.0066613 -0.463765526 -4.89774740 -0.1721838 1.0481472163

Table 9.1: Simulation results for Approach 1: Controller gains and enclosure of the first state
variable, where underlined digits highlight the values identical between two successive
iterations.

The reader is reminded that this approach’s main part is based on the repetition of controller
gain calculations for the complete time horizon, see Fig. 3.6. The first run is, hence, done with
the initial state interval resulting in the most conservative controller gains. The interval box
describing the interval enclosure over the complete time horizon appearing in the first run

[
X (i)

]
1

is used to calculate the second run’s controller gains. Due to this less conservative interval box,
the controller gains decrease, which also happens in the third run. For this scenario, a further
reduction is not possible, which means that the optimal solution has been found.

Approach 2: Gain scheduling design over temporal subslices

The second approach, described in Sec. 3.3.2 is now analyzed, see Fig. 3.9. For this, Fig. 9.3
shows the results of the simulation. Here, the procedure also makes use of the step-size control
strategy given in Eq. (9.10), where the calculated time slices are highlighted by dashed lines in
Fig. 9.3.
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Figure 9.3: Interval enclosure for the pendulum angle α for all t ∈ [0 ; tf ] — Approach 2.

A comparison with Fig. 9.2 confirms that the time instants of the step-size control strategy are
generally well chosen. One can see, that up until approximately 1 s the hull over all possible state
intervals is very wide. Hence, the control strategy divides the time slices in this section more
often than afterwards, because the dynamics, here, is more stiff than close to the steady state.
Since in the last time part after reaching the operating point, the state does not really change
much, this section is not subdivided again. Unfortunately, Approach 2 does not provide an
improved control accuracy for the presented application scenario, which can be seen in Fig. 9.3
in the widened intervals in contrast to Fig. 9.2.
However, additional information can be received in terms of a simulation-based verification
of the contraction property towards the asymptotically stable equilibrium. For this, Fig. 9.4
shows, when certain components of the state vector are mapped into themselves.

t1 0.002
t2 0.004
t3 0.007
t4 0.009
t5 0.075
t6 0.395
t7 0.716
t8 1.028
t9 1.334
t10 5.000

Figure 9.4: Approach 2: Interval boxes for α and α̇ for each predefined time step tζ (depicted
on a logarithmic temporal axis).
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Here, the interval boxes are depicted exemplarily for α and α̇ over the time horizon tf . Obviously,
due to the step-size control strategy, comparable enclosures are only available for the fixed
time steps tζ , see Eqs. (9.10)–(9.11), which are the points of time where the controller gains
change, see the table in Fig. 9.4. Those time steps tζ are featured logarithmically for simplified
reading, because — as already mentioned — much denser time steps where needed for the
beginning phase. Herein may also lie the problem of using this approach for the presented
application scenario. For small time steps — as it is the case here —, the exponential enclosure
is unnecessary conservative. This happens due to the involved transformation of the model into
an approximately decoupled form and results in the large intervals, especially for the starting
phase in Fig. 9.3. Still, the simulation shows a stabilizing behavior of the system. Additionally,
interval enclosures are getting tighter by exploiting the step size selection according to Eq. (9.10)
once the system gets close to the equilibrium.
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10 Conclusions and Outlook

A lot of dynamical systems are subject to uncertainty whether it be willingly due to e.g.
approximations made by the practitioner or be it unwillingly due to e.g. measurement noise.
Either way, it has to be distinguished if those uncertainties have to be considered or if they can
be retained in further approximations, e.g. if the control is robust enough. However, robust
design can be cautious or too conservative, which is why it needs to be balanced with theoretical
considerations and simulation tests. Nevertheless, there are systems, where experimental tests
are costly, both economically and/or timely. Especially, for systems with big time constants,
where the duration of experiments exceeds practicable solutions, it makes sense to calculate the
dynamics beforehand. If this means including said uncertainties, those computations may be
difficult.

10.1 Conclusions

In the presented thesis, uncertainties were considered to be bounded and, hence, given by inter-
vals. Since computing the worst-case enclosures of the state intervals is a difficult task mainly
because of the appearance of the wrapping effect which produces numerical overestimation, the
main part of this thesis focused on finding solutions for that. It was noted that cooperativity
may present a powerful tool to compute the worst-case bounds as two separate crisp parameter
systems. However, since not all system models are naturally cooperative when derived by the
first principle, a possible solution presents itself by finding a suitable transformation for these
originally non-cooperative systems which fulfills the properties in another coordinate system.
Literature on this is clear about the fact that possible approaches need to distinguish between
systems with purely real eigenvalues and systems containing conjugate-complex ones, render-
ing the transformation matrix time-invariant or time-varying, respectively. The latter can be
further differentiated into real-valued and complex-valued matrices. Each presenting a unique
possibility to find the best transformation for a specific application scenario.
Additionally, this work presented robust control strategies. Basically, all controller designs
make use of an LMI approach taking into account the worst-case bounds given by a polytopic
model. Normally, this model includes worst-case bounds given by axis-aligned parameter boxes.
However, methods to reduce the overestimation of these models were presented. A first con-
trol approach aims at reducing the control effort by subsequently decreasing the initial interval
bounds. The idea stems from the fact that a physically possible state interval may be reduced
if a control is applied and hence, the worst cases come closer together. A second control design
can be seen as an extension to this, where controller gains were calculated not for the whole
simulation horizon but for shorter time spans. In such a way, the control effort may be reduced
resulting in tighter state intervals especially for the stationary phase.
Finally, an estimator was introduced to realize a fault diagnosis for the given systems. Here, it
was assumed that measurements were fully available to the controller but a parallel model was
implemented to check those measurements for faults. For this, two approaches were considered.
At first, a cooperativity-preserving structure was introduced were the observer can be directly
applied into the controlled and transformed system. A second observer design makes use of
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the duality principle and is introduced as a parallel model computing possible state enclosures
— again with a transformation into a cooperative system — which then can be used to detect
system as well as measurement faults. However, the results of those observers could also be
used in a closed-loop system like in [46].
All in all, the presented work considers those theoretical aspects and underlines the findings
with suitable application scenarios. Note that those scenarios are chosen to be simple, aca-
demically systems to give the reader a number of different examples to validate the theoretical
approaches. None of the given exemplary applications would be impossible to handle purely
based on standard non-interval techniques, neither for cost decisions nor for safety reasons.
However, they give a good overview on the possibilities and try to name a number of necessary
adaptations for implementing the approaches on further real-life applications.

10.2 Outlook

In future work, the presented methods could be extended, e.g. to include a further reduction
of overestimation in a polytopic model regarding complex systems, where a lot of uncertain
parameters need to be taken into account. For this, [11] presented an approach, which is based
on the assumption that the analyzed entries are related linear but an affine-linear approach will
be very difficult due to the complexity of the system. The general idea is that there exists a
coordinate system, where an axis-aligned box represents a tight enclosure of all possible com-
binations. The aim is, hence, to find this coordinate system, build the convex hull and then
transform the whole system back into its original coordinates.
Another addition may be the already mentioned combination of the Taylor series expansion
and the presented cooperativity-based method. This could help in reducing the overestimation
especially of the starting phase of the cooperativity-based approach.
Finally, the presented methods could be used as a form of reachability analysis regarding both,
the controller and the observer. With that, a realization as an optimal trajectory planer be-
comes possible and it could be further used as a parameter identification for uncertain systems.
Additionally, the findings could be used to implement a predictive control reworking the meth-
ods in [44] with the new cooperativity-based approach.



A Mathematical Explanations

A.1 Calculation Rules for Partial Derivations

∂A

∂B
=
∑
ij

E
(r×s)
ij ⊗ ∂A

∂Bij

(A.1)

with A ∈ R(n×m) and B ∈ R(r×s), see [65].

A.2 Kronecker Product

Definition A.2.1 (Kronecker product)
For two matrices A ∈ Rm×n and B ∈ Rp×q the direct (tensor) Kronecker product, written
A⊗B, is defined to be the partioned matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 = [aijB]m,ni,j=1 ∈ Rmp×nq . (A.2)

Basic calculation rules are

(A⊗B) (C⊗D) = (AC)⊗ (BD) (A.3)

(A⊗B)T = AT ⊗BT . (A.4)

For further information see [42].

A.3 Schur Complement

Definition A.3.1 (Schur complement)
Nonlinear (quadratic) matrix inequalities may be converted into an LMI form using the Schur
complement, where

A−BC−1BT � 0 with C � 0 (A.5)

can be reformulated into [
A B
BT C

]
� 0, A = AT , C = CT . (A.6)
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A.4 Hadamard Product

Definition A.4.1 (Hadamard product)
For two matrices A ∈ Rm×n and B ∈ Rm×n the Hadamard product is defined as

A ◦B = (aij · bij) =


a11 · b11 a12 · b12 . . . a1n · b1n

a21 · b21 a22 · b22 . . . a21 · b21
...

...
. . .

...
am1 · bm1 am2 · bm2 . . . amn · bmn

 ∈ Rm×n . (A.7)

Fundamental calculation rules are

A ◦ (B ◦C) = (A ◦B) ◦C (A.8)

a (A ◦B) = (aA) ◦B = A ◦ (aB) (A.9)

A ◦B = B ◦A (A.10)

(A + B) ◦C = A ◦C + B ◦C as well as A ◦ (B + C) = A ◦B + A ◦C (A.11)

(A ◦B)T = AT ◦BT . (A.12)



B Basics of Control Engineering

B.1 Kalman Controllability Criterion

Definition B.1.1 (Kalman controllability criterion)
The system (A,B) of order n is fully controllable according to Kalman, if the matrix

QC =
[
B AB A2B An−1B

]
(B.1)

has full rank, where
rank(QC) = n (B.2)

holds. For a single input system, it is sufficient to examine det(QC) 6= 0 for proving full
controllability. Note that this also holds for B(p) and A(p), if p = const.

B.2 Kalman Observability Criterion

Definition B.2.1 (Kalman observability criterion)
The system (A,C) of order n is controllable according to Kalman, if the matrix

QO =


C

CA
CA2

...
CAn−1

 (B.3)

has full rank, where
rank(QO) = n (B.4)

holds. For a single output system, it is sufficient to examine det(QO) 6= 0 for proving full
observability. Note that this also holds for B(p) and A(p), if p = const.
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C Physical Assumptions

C.1 Replacing an Inductivity by a Gyrator

It is sometimes desirable to implement high inductivities in electrical circuits with low volt-
ages/currents/energies. However, it may be difficult to find such suitable inductivities. If that
is the case, it is possible to replace a pure inductivity by a gyrator,see [5], as shown in Fig. C.1.

+
-
+

Figure C.1: Replacement of a real inductivity by a gyrator.

Here, the mathematical relation is given by

L = R̃C · CL · ŘL . (C.1)

This means, that instead of an inductivity, two capacities and an Ohmic resistance are added
into the electrical circuit.

C.2 Constant Phase Element

A constant phase element is an equivalent electrical circuit component, which models the be-
havior of an imperfect capacitor by a double layer. It’s mathematical definition is given by

ZQ =
1

Q0(jω)n
. (C.2)

Here, an ideal capacity would be presented by setting n = 1 and Q0 = C, whereas with a
constant phase element 0 < n < 1 holds. This is done in order to include, e.g. aging effects,
rough surfaces, or a distribution of reaction rates. For more information see [8].
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Mehrgrößensysteme. Springer–Vieweg, Wiesbaden, 2020.

[14] Yves Deville, Micha Janssen, and Pascal Van Hentenryck. Consistency Techniques for
Ordinary Differential Equations. In Proc. of the International Conference on Principles
and Practice of Constraint Programming, pages 162–176, Pisa, Italy, 1998. Springer–Verlag.



122 Bibliography
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Springer–Verlag, London, 2001.

[22] Tadeusz Kaczorek. Positive 1D and 2D Systems. Springer–Verlag, London, 2002.

[23] Julia Kersten, Andreas Rauh, and Harald Aschemann. Interval Methods for the Imple-
mentation and Verification of Robust Gain Scheduling Controllers. In Proc. of 22nd Inter-
national Conference on Methods and Models in Automation and Robotics (MMAR), pages
791–796, Miedzyzdroje, Poland, 2017.

[24] Julia Kersten, Andreas Rauh, and Harald Aschemann. Interval Methods for Robust Gain
Scheduling Controllers. Granular Computing, 2018.

[25] Julia Kersten, Andreas Rauh, and Harald Aschemann. State-Space Transformation of Un-
certain Systems with Purely Real and Conjugate-Complex Eigenvalues Into a Cooperative
Form. In Proc. of 23rd International Conference on Methods and Models in Automation
and Robotics (MMAR), Miedzyzdroje, Poland, 2018.

[26] Julia Kersten, Andreas Rauh, and Harald Aschemann. Application-Based Discussion of
Verified Simulations of Interval Enclosure Techniques. In Proc. of 24th International Con-
ference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje,
Poland, 2019.

[27] Julia Kersten, Andreas Rauh, and Harald Aschemann. Verified Interval Enclosure Tech-
niques for Robust Gain Scheduling Controllers. Acta Cybernetica, 24(3):467–491, 2020.
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