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Zusammenfassung 

 

Parasiten des Aquakulturkandidaten Siganus canaliculatus Park, 1797 (Percoformes: 

Siganidae) aus den Gewässern vor Oman und ihr Potenzial als Umweltindikatoren 

In der vorliegenden Arbeit wurde die Parasitenfauna von marinen herbivoren Fischen aus 

Küstengebieten des Sultanats Oman (Persischer Golf, Golf von Oman, Arabisches Meer) 

untersucht. Der Weisspunkt-Kaninchenfisch Siganus canaliculatus (Park) ist von großer 

wirtschaftlicher Bedeutung, parasitologisch jedoch kaum erfasst. Im Rahmen dieser Studie wurde 

erstmalig eine umfassende parasitologische Untersuchung an S. canaliculatus (n = 245) 

durchgeführt, wobei eine besonders diverse marine Parasitengemeinschaft dokumentiert wurde. 

Insgesamt konnten 44 Arten (ein microsporider Hyperparasit, neun Myxosporea, vier Monogenea, 

16 Digenea, ein Cestoda, vier Nematoda, vier Acanthocephala, ein Hirudinea und vier Crustacea) 

nachgewiesen werden. Die Ergebnisse ermöglichen einen Einblick in die Diversität der Arten in 

hiesigen Ökosystemen. Es konnten 16 neue Wirts- und sechs Gebietsnachweise erbracht aber vor 

allem vier neue Parasitenarten beschrieben werden. 

Umfassende morphologische Analysen mithilfe von Licht-, Rasterelektronen- sowie der 

Transmissionsmikroskopie wurden durchgeführt, um eine neue Myxosporea Art der Gattung 

Unicapsula zu beschreiben. Dabei wurden erstmalig die einzigartige Cystenstruktur und die 

Entwicklungsstadien für einen Vertreter der Gattung beschrieben. Unicapsula fatimae Al-Jufaili, 

Freeman, Machkevskyi and Palm, 2015 ist die erste Art, die auf dem Oesophagusepithel des Wirtes 

vorkommt. Zudem konnten im Rahmen der vorliegenden Arbeit Vertreter zweier Gattungen 

ancyrocephalider Monogenea erstmalig in Küstengewässern des Omans festgestellt werden. 

Vergleichende morphologische Untersuchungen sämtlicher Vertreter der Monogenea 

Glyphidohaptor und Tetrancistrum führten zu neuen Artbeschreibungen dieser Gattungen. 

Zusätzlich wurden erstmalig neben DNA/RNA Sequenzen der kleinen und großen Untereinheit 

auch die ITS-1 Region sämtlicher Ancyrocephaliden, die S. canaliculatus infizieren können, 

untersucht. Der Digenea Hysterolecithoides amurparuchini n. sp. konnte durch morphologische 

Charakteristika, molekulargenetische Analysen und den Sitzes im Wirt sowie dem neuen 

Gebietsnachweis als eine neue Art beschrieben werden. 
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Geographische Variationen in der Komposition der Parasitenfauna von S. canaliculatus 

wurden mithilfe von Cluster-Analysen und Multidimensionaler Skalierung (MDS Plot) unter 

Verwendung des Bray-Curtis Index ausgewertet. Die zoogeographische Verbreitung der Parasiten 

von S. canaliculatus war deckungsgleich mit der Unterteilung der Küstengewässer des Omans in 

drei Ökoregionen. Es konnten beispielsweise Larvalstadien des digeneen Trematoden 

Stephanostomum sp. ausschließlich aus Fischen des Persischen Golfs isoliert werden. Andere 

Parasiten wie Hysterolecithoides amurparuchini n. sp., der Digenea Preptetos sp. sowie die 

Myxosporea Kudoa spp. waren auf das Arabischen Meer beschränkt.  

Auf der Grundlage ihrer Zoogeographie wird die Nutzung dieser Parasitenarten als 

biologische Indikatoren vorgeschlagen, um unterschiedliche Populationen des Fischwirts S. 

canaliculatus in den Küstengewässern des Omans aufzeigen zu können. 

Die vorliegenden Untersuchungen ermöglichen die Bewertung der Umweltbedingungen 

mariner Ökosysteme der Küstengewässern des Omans. Detaillierte ökologische Analysen 

ermöglichen es unter Nutzung ausgewählter parasitologischer Parameter und ökologischer Indices 

anthropogen belastete Küstengebiete gezielt aufzuzeigen. Es wird deutlich, dass neben bisher 

verwendeten, auf Zackenbarschen basierenden Parasiten-Wirt-Modellen, auch die Parasitenfauna 

von S. canaliculatus ein hohes Indikatorpotenzial für Gewässerverschmutzungen aufweist. 

Insbesondere die in den Kiemen parasitierenden ancyrocephalide Monogeneen der Art 

Glyphidohaptor safiensis n. sp. und Tetrancistrum spp., der polyopisthocotylee Monogenea 

Polylabris sp. und die Crustacea Hatschekia spp. eigneten sich als aussagekräftige Bioindikator-

Arten. Der Nematoda Hysterothylacium sp. sowie der Acanthocephala Sclerocollum sp. wiederum 

konnten zum Monitoring der Gewässerverschmutzungen aufgrund ihrer Fähigkeit der 

Schadstoffakkumulation verwendet werden. 
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Summary  

 

This study aimed to investigate the parasite fauna of a marine herbivorous fish inhabiting 

the coasts of the Sultanate of Oman (Persian Gulf, Gulf of Oman, Arabian Sea). Although the white 

spotted rabbitfish, Siganus canaliculatus (Park) is a commercially important demersal fish both 

locally and regionally, knowasaledge regarding its parasite fauna is limited. For the first time in 

the region, a comprehensive parasite fauna from a single host species (n = 245) was documented, 

revealing highly diverse and species rich marine parasite community. The parasite fauna of S. 

canaliculatus consisted of one microsporidian hyperparasite, nine myxosporeans, four 

monogeneans, 16 digeneans, one cestode, four nematodes, four acanthocephalans, one hirudinea 

and four crustaceans. The results of this study provide insight into the richness and diversity of the 

marine ecosystem in the waters of Oman. Several species were reported for the first time as new 

host (16) and locality records (six). Among these, four are described and identified as new species 

to science. 

Comprehensive morphological analysis using light, scanning and transmission microscopy 

was conducted to describe a new species within the myxosporean genus Unicapsula Davis, 1924. 

Unique cyst structure and developmental stages were described for the first time from a member 

of the genus. Unicapsula fatimae n. sp. is the only species among its congeners to be reported from 

the epithelium of the host oesophagus. In the course of the present work, several members of two 

monogenean ancyrocephalid genera that are known to infect siganids were reported for the first 

time from Omani waters. Comparative morphological investigations of all known members of 

Glyphidohaptor Kritsky, Galli & Yang, 2007 and Tetrancistrum Goto & Kikuchi, 1917, resulted 

in the description of two new species one from each of the genera. In addition, DNA/RNA 

sequences of the small and large subunit as well as the Internal Transcribed Spacer 1 of all 

ancyrocephalids infecting S. canaliculatus were obtained for the first time. The comprehensive 

analysis of one of digenetic trematodes infecting S. canaliculatus resulted in the description of a 

new species within the lecithasterid genus Hysterolecithoides. Hysterolecithoides amurparuchini 

n. sp. is described as a new species based on its distinctive morphological and molecular 

characteristics, zoogeographical distribution and its site of infection.  
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Geographical variations in the composition and distribution of S. canaliculatus parasite 

fauna were evaluated using clustering and multidimensional scaling based on Bray-Curtis 

similarity measure. The zoogeographical distribution of parasites of S. canaliculatus was coherent 

with the separation of the Omani coasts into three ecoregions. For example, larval stages of the 

digenean trematode Stephanostomum sp. were only recorded from the gills of hosts collected in the 

Persian Gulf. While some parasites such as H. amurparuchini n. sp. and the digenean Preptetos sp. 

as well as the myxosporean Kudoa spp. were restricted to samples collected along the Omani coasts 

of the Arabian Sea. We suggest that these parasites could be useful as biological tags to discriminate 

different populations of S. canaliculatus in Oman.  

Finally, the survey of the parasite communities of S. canaliculatus provided an excellent 

opportunity to assess the status of the marine ecosystems in Oman. By conducting a detailed 

ecological analysis using 12 parasitological descriptors and five ecological indices of the obtained 

parasitological data, it was possible to reveal areas of anthropogenic alterations along the coasts of 

Oman. The study proved that similar to previous parasite-host models, which were based on marine 

groupers, S. canaliculatus is also a good model for the detection and monitoring of environmental 

impact in these marine ecosystem. Also, certain ectoparasites of S. canaliculatus showed great 

potential to indicate water quality. These include the gill infecting ancyrocephalid monogeneans 

Glyphidohaptor safiensis n. sp. and Tetrancistrum spp., the polyopisthocotylean monogenean 

Polylabris sp. and the crustaceans Hatschekia spp. While other parasites infecting S. canaliculatus 

were identified as more suitable as a sentinel for the monitoring of environmental pollution as 

bioaccumulators (e.g. the nematode Hysterothylacium sp. and the acanthocephalan Sclerocollum 

sp.). 
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1 Introduction 

1.1 Nature of Parasitism 

In nature, virtually all living organisms spend their lives or portions of it in different forms 

of relations between the same species or with organisms from other species (Gunn and Pitt 2012). 

Heinrich Anton de Barry (1879) defined symbiosis as a physiological relationship between two 

different organisms living in close association, commonly one living on another (Kinne 1980). 

Symbiotic relationships can take many forms depending on the nature of the interaction between 

the two participants in the relationship, whether it is beneficial, harmful, or neutral (Loker and 

Hofkin 2015). Accordingly, parasitism describes an antagonistic form of symbiosis in which one 

organism (the parasite) either harms or in some sense lives at the expense of another organism (the 

host) (Schmidt and Roberts 1977). The host receives no benefit from this association and is often 

actively injured by the parasite (Watson 1965). Damage is an essential component of parasitism, 

and it is one of the key aspects that sets it apart from other symbiotic associations such as mutualism 

and communalism (Bush et al. 2001). The forms of damage exerted by this association include 

withdrawal of life-supporting substances, modification or destruction of host functions, the 

aberration of host structure and the reduction of the ecological potential of the host (Kinne 1980).  

Parasitism is one of the most successful forms of symbiotic associations on earth (Poulin and 

Morand 2000). Various estimations suggest that at least 50% of all plants and animals are parasites 

at some stage during their life cycle (Bush et al. 2001). Conforming to the definition of parasitism, 

a ‘parasite’ is an organism living in or on another living organism and obtaining from it part or its 

entire organic nutrient or needs for existence while imposing a net of a detrimental effect on it 

(Loker and Hofkin 2015). Thereby, technically any living organism that is capable of leading a 

parasitic lifestyle can pass as a parasite. However, in its strict sense, parasitology as a field of 

science only focuses on eukaryotic animal parasites (Bush et al. 2001; Rohde 2005), particularly 

with three major groups of animals; parasitic protozoa, parasitic helminths, parasitic and vector 

arthropods (Bogitsh et al. 2005; Lucius et al. 2017). Eukaryotic animal parasites have unique 

characteristics that distinguish them from other pathogens such as physiological adaptations, 

reduction or loss of organs, an increase of reproductive capacity, modification of existing 

structures, development of new structure and modification of life history (Watson 1965). They are 

also capable of displaying a range of mechanisms to evade the immune responses of the host 
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unknown to other pathogens (Cox 1993). Furthermore, because they are highly sophisticated, 

reproduce slowly and have low genetic flexibility, animal parasites can establish long-standing 

connections using strategies different from the “hit-and-run” strategies used by many viruses and 

bacteria (Lucius et al. 2017). 

1.1.1 Parasite ecology and life cycles  

Parasites are taxonomically diverse and have evolved a variety of strategies and life history 

traits, to infect their hosts and ensure successful transmission and reproduction (Poulin 2011). 

Parasites can be defined based on their location on the hosts as ectoparasites, endoparasites and 

mesoparasites. According to Bogitsh et al. (2005) and Lucius et al. (2017), ectoparasites attach to 

the skin or other external surfaces or can be superficially embedded in the body surface. 

Endoparasites usually reside inside their hosts’ bodies, in the organs or within tissues (Lucius et 

al. 2017). Mesoparasites are mainly recorded from the aquatic realm and describe species that are 

partly imbedded inside the host tissue with other body parts hanging outside (Rohde 2005).  

Other definitions of parasites are based on the nature of the host-parasite interaction and the 

level of physiological dependency. Facultative parasites are free-living adult organisms that 

optionally adopt a parasitic lifestyle at some point in their lives (Bush et al. 2001; Bogitsh et al. 

2005), but are independent of the host for survival or completion of their life cycle (Lucius et al. 

2017). Obligate parasites are physiologically dependent on their hosts and cannot complete their 

life cycle without spending at least one developmental stage in a parasitic relationship (Schmidt 

and Roberts 1977; Bogitsh et al. 2005). They are usually parasites as adults, but their larvae could 

be either obligate or free-living (Bush et al. 2001). The term permanent parasites describe adult 

parasites that reside in their hosts throughout their development and must be transferred from one 

host to another to complete their life cycles (Chandler 1947; Schmidt and Roberts 1977). Whereas 

parasites that live on their hosts at certain stages of their development and can leave them at defined 

intervals for feeding, moulting or mating and lay eggs are known as temporary parasites (Chandler 

1947).  

Parasites life cycles differ significantly but can be generally described as monoxenous 

(direct) or heteroxenous (indirect). The monoxenous life cycle is where the parasites complete 

their developmental stages, reach maturation, and may reproduce within a single host (Loker and 

Hofkin 2015). Parasites utilising this life cycle have both parasitic and free-living life stages in 
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which the parasites are directly transmitted from one host to another host that is usually a member 

of the same host species (Lucius et al. 2017). This mode of lifecycle promotes high productivity, 

which in turn increases parasite dispersal and proliferation (Rohde 2005). Heteroxenous life cycles 

are comprehensive and intricate, require at least two hosts and are accomplished by an indirect 

transmission that involves switching hosts at different life stages (Lucius et al. 2017). The complex 

life cycles observed for many parasites that utilise multiple hosts are a result of complicated and 

integrated ecological relationships with their hosts (Bogitsh et al. 2005). 

Hosts are an essential lifeline for the parasites; according to Combes (1991), they are the 

primary ecological environment in which the parasite takes shelter, feed and reproduce and without 

it, the parasite might perish (Loker and Hofkin 2015). They are usually categorised depending on 

the role they play in the parasite’s life cycle (Gunn and Pitt 2012). All parasites require a definitive 

host in which they can reach maturity and undergo sexual reproduction. Parasites with complex 

life cycles require one or several intermediate hosts in which they complete various 

developmental stages with or without asexual reproduction, but they never develop to adults or 

reproduce sexually (Gunn and Pitt 2012). Paratenic hosts are not essential for the completion of 

a parasite life cycle. Instead, they merely act as a bridge between the infective stage/intermediate 

host and the definitive hosts (Gunn and Pitt 2012). Paratenic hosts provide a refuge for the infective 

stage of the parasite where it can persist and prolong its survival and consequently increase the 

likelihood of its transmission to a new host (Loker and Hofkin 2015). Unlike paratenic hosts, 

reservoir hosts are carriers of infective organisms, often tolerating the infection without showing 

any effect (Bogitsh et al. 2005). Reservoir hosts harbour parasites that are usually associated with 

human infections (zoonosis) (Schmidt and Roberts 1977). With such intricate, highly adaptive way 

of life, it is not surprising that parasites are incredibly successful, make up an essential component 

of the earth’s biodiversity and play critical roles in functional ecosystems (Thomas et al. 1999; 

Gomez et al. 2012).  

There is a general difference between terrestrial and marine ecosystems because the parasite 

transmission requires different pathways. In the terrestrial ecosystem, many parasitic stages are 

transmitted through insects, where the intermediate stages multiply before infecting the final host. 

A parasite vector is a micropredator that transmit infections from one host to another (Bush et al. 

2001). In the aquatic ecosystem, insects as vectors are mainly absent and leeches (Hirudinea) serve 
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as vectors for some blood protozoans (Hemmingsen 2008) or the parasites disperse directly or 

through the marine food web (see below).  

1.1.2 Marine parasitology 

Marine parasites are an integral component of marine ecosystems as they play a significant 

role in marine biodiversity, infecting hosts at different trophic levels (Palm 2004). The aquatic 

environment provides the ideal conditions for the propagation, distribution, and maintenance of 

aquatic parasites life cycles (Barber et al. 2000). As a result, almost all groups of marine animals 

ranging from the various invertebrates and vertebrates are important hosts to parasites, often with 

high prevalence and intensities of infection (Rohde 2005). In fact, among the vertebrates, fishes 

have the highest rates of parasitic infection, which is facilitated by the aquatic environment 

(Cavalcanti et al. 2012), making them essential as hosts of parasites in the aquatic ecosystems 

(Barber and Poulin 2002).  

There are estimates of the existence of more than 100,000 marine fish parasite species around 

the world, including both protozoans and metazoans (Palm 2011). So far it is not possible to 

overview such high biodiversity, especially because not all different ecosystems and regions have 

been studied for fish parasites. Parasite-host checklists assist the enrichment of the knowledge 

about marine parasite biodiversity and their host specificity at different localities (Palm and Bray 

2014). Many researchers conducted exhaustive surveys of marine parasites in definite geographical 

regions resulting in the compilation of parasite-host checklists from different regions of the world 

(Palm 2011; Palm and Bray 2014). The high number of parasites registered in these lists emphasises 

the ecological importance of marine fish parasites in the oceans (Rohde 1993). Furthermore, such 

surveys enable the estimation of the number of parasites in their respective marine habitats. For 

example, following a series of parasitological surveys, approximately 20,000 fish parasite species 

were estimated infecting the fishes of Heron Island, Australia (Rohde 1993). Similarly, based on 

an average of 3-4 metazoan parasites per fish (calculated for 13, 500 known fish species), Klimpel 

et al. (2001) estimated around 20,000 to 40,000 marine fish parasites inhabiting brackish and 

marine waters.  

Aside from their role in marine biodiversity, marine parasites have immense economic 

importance as evident by the increase of research in areas related to human health, mariculture and 

fisheries as well as ecology (Rohde 1993). Many fish parasites have been the subject of 
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investigation because of their zoonotic potential, (i.e. their ability to infect humans (Lucious and 

Poulin 2017). In recent years, fishborne zoonoses has been becoming more common due to several 

factors including the globalisation of the food supply (Chai et al. 2005) and climate changes 

(Overstreet 2013). Subsequently, numerous seafood-borne parasites have been reported from fresh 

and marine water fishes; these are mostly helminths that use humans as intermediate or definitive 

hosts (Overstreet 2013). Other marine fish parasites are of aesthetic importance for the fishery and 

aquaculture industry since they infect the musculature and body surface of many teleost and 

therefore reduce their marketability and value (e.g. the myxosporeans Kudoa spp., Moran et al., 

1999; trypanorhynch cestodes, Palm 2004). These infections can severely distort the host appreance 

causing implications for the seafood processing companies from infected wild fish stocks (Silva et 

al. 2017) as well as the mariculture industry (Moran et al. 1999; Tamaru et al. 2006). In addition 

to the problems related to the safety and quality of marine fishes, several groups of marine parasites 

correlate directly to their hosts’ health.  

The continuous increase in the demand for fish and seafood as a source of protein coupled 

with the ongoing decline of natural fisheries stocks is enforcing the expansion of aquaculture 

industry (FAO 2015). As a result, the global finfish production industry is increasing each year 

proving aquaculture to be the fastest growing food production and the most reliable supplier of 

seafood in the world (Guo and Woo 2009). However, the rapid development of mariculture industry 

and the nature of open water facilities have caused the emergence of disease outbreaks in many 

fish farms (Timi and MacKenzie 2015). Diseases, and among them parasitic disease, are one of 

the critical factors threatening the aquaculture industry (Rohde 2005). The infection of the 

Norwegian salmon farms with the parasitic copeopde Lepeophtheirus salmonis salmonis Krøyer, 

1837 alone has caused annual losses of hundreds of millions USD (Abolofia et al. 2017; Lafferty 

et al. 2015). Other representatives of various animal parasites phyla that are considered as crucial 

disease-causing agents in fish cultivation facilities include many species of ecto-protozoans 

(Basson and Van As 2006; Dickerson 2006; Buchmann 2015); Myxosporea (Feist and Longshaw 

2006; Lom and Dykova 2006; Yokoyama et al. 2013); Monogenea (Ogawa 2002; Buchmann and 

Bresciani 2006; Ogawa 2014); Digenea, especially blood flukes (Paperna and Dzikowski 2006; 

Ogawa 2014) and some species of parasitic copepoda (Johnson et al. 2004; Lester and Hayward 

2006).  
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1.1.3 Fish parasites as environmental indicators 

Despite their adverse effect on fisheries and mariculture industry, fish parasites are attracting 

increasing interest as indicators for a wide range of biological and environmental applications 

(Palm and Bray 2014). For over a century, several studies have demonstrated the usefulness of fish 

parasites from different taxonomic groups as an early warning system for the assessment of 

environmental health (Sures et al. 2017). During the last decades, there has been a considerable 

amount of research articles and reviews dealing with parasites of aquatic organisms as 

environmental indicators (Sures et al. 1999; Sures 2001; Vidal-Martinez 2007). One of the 

reasons for considering parasites as environmental indicators is that they outnumber free-living 

organisms (MacKenzie et al. 1995) and display various adaptations to the parasitic way of life in 

different types of hosts and diverse environments (MacKenzie 1999; 2008). Also, many parasites 

have heteroxenous life cycles involving several vertebrate and invertebrate intermediate hosts 

(MacKenzie 1999; 2008; Palm and Bray 2014). Thus, alterations in the populations of these 

intermediate hosts due to environmental changes or pollution could adversely impact the 

abundance or availability of the parasites and accordingly reflect environmental disturbance 

(MacKenzie 1999).  

Moreover, many parasites have delicate short-lived free-living developmental stages used for 

the parasite transmission which are highly sensitive to environmental changes (MacKenzie 1999; 

2008). Ectoparasites with monoxenous life cycle (direct) are suitable as indicators of water quality 

because of their direct contact with their environment and consequently the contaminant in the 

aquatic environment which might affect their vitality or increase their mortality rates (Galli et al. 

2001; Sures et al. 2017). Pollution can impact parasites in different ways; it can either increase or 

decrease parasitism (Sures 2006). In fact, many studies showed that parasites respond differently 

to the same pollutant (Mackenzie 2008). For this reason, fish parasites are also useful as 

environmental indicators because of the variety of ways they respond to anthropogenic pollution 

(Lafferty 1997; Sures et al. 1999; Sures 2006). Lastly, Parasites can be used as effective monitoring 

tools in environmental impact studies as they efficiently accumulate certain pollutants (e.g. heavy 

metals and trace elements) at levels much higher than those of their ambient environment and free-

living sentinels (Sures and Nachev 2015). 
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Accumulation indicators provide valuable information about the chemical state of the 

environment through their ability to concentrate toxins within their tissues (Sures et la. 1999) and 

give insight into the biological availability of this pollutant in the investigated environment 

(Nachev and Sures 2015). Several fish parasites groups were investigated for their capacity to 

accumulate pollutants in their tissues. However, intestinal helminths such as acanthocephalan and 

cestodes were the most efficient in metal concentration (Sures 2006). Due to their specific biology 

and physiology (Nachev and Sures 2015), these parasites can accumulate metals at levels several 

thousand-folds higher in their tissues than in the tissues and organs of their hosts (Sures 2004). For 

example, it was established that the freshwater acanthocephalan Pomphorhynchus laevis Zoega in 

Müller, 1776 accumulated lead at mean concentrations that were 2700 and 400 times higher than 

their host Leuciscus cephalus (Bonaparte) (Sures et al. 1999). Similarly, the freshwater cestode 

Monobothrium wageneri Nybelin, 1922 had higher lead and cadmium concentrations in their 

tissues than in their hosts Tinca tinca (Linnaeus) from Ruhr River (Palm 2011). These studies 

suggested that freshwater acanthocephalans exhibit better accumulation capacity than any other 

group of parasites and even better than free-living sentinels (Nachev and Sures 2015).  

With respect to the marine fish-parasite system, several studies demonstrated the usefulness 

of marine fish parasites as accumulation indicators. Sures and Reimann (2003) detected higher 

levels of pollutants in the marine acanthocephalan Aspersentis megarhynchus von Linstow, 1892 

in comparison to their host Nothotenia coriiceps (Richardson) and the established free-living 

accumulation indicators the bivalve Leternula elliptical (King) (Nachev and Sures 2015). While 

studies involving marine fish-acanthocephala are limited, the majority of marine system studies 

explored fish nematodes and cestodes as potential accumulation indicators (Nachev and Sures 

2015). Analysis of two heavy metals (lead (Pb) and cadmium (Cd)) in the tissue of the marine 

cestode Bothriocephalus scorpii (Müller, 1776) Cooper, 1917 and its host Scophthalmus maximus 

(Linnaeus) showed that the first accumulated higher levels of these two metals compared to the 

host muscle (Sures et al. 1997). Similarly, higher concentrations of lead and cadmium were 

established in cestodes infecting sharks and rays off Iranian coats of the Persian Gulf and Gulf of 

Oman (Malek et al. 2007; Golestaninasab et al. 2014). Research concerning marine fish-nematodes 

systems from the Gulf of Oman, Arabian Sea, Mediterranean Sea and the Atlantic Ocean indicated 

the suitability of nematodes (e.g. Hysterothylacium, Khaleghzadeh-Ahangar et al. 2011; 
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Paraphilometroides nemipteri Moravec & Shaharom-Harrison, 1989, Mazhar et al. 2014) for metal 

biomonitoring (Nachev and Sures 2015; Sures et al. 2017).  

A further application for using fish parasites as environmental indicators is their use as effect 

indicators for environmental changes (Palm 2011). Effect indicators are organisms that provide 

information about the chemical, physical, biological and ecological state of the environment 

through their presence or absence (Sures 2001; 2004). Pollution can influences fish parasite directly 

(i.e. toxicity to the parasite itself) or indirectly (i.e. effect on the intermediate, paratenic and final 

host) (Sures 2004; MacKenzie 2006). The direct influence of pollution results in reducing viability 

or survivability of the affected parasites individuals (Sures et al. 2017). The indirect influence 

causes changes in parasites diversity and composition through reduction or elimination of hosts 

(Sures e al. 2017). Several hundred articles have established that aquatic parasites display changes 

at the individual, population and community levels in relation to pollution (Sures 2004; Blanar et 

al. 2009).  

Effect indicators at the community level involves the examination of the entire parasite 

community (protozoan and metazoan) of a particular host combined with estimation of quantitative 

descriptors of parasite populations (e.g. prevalence, intensity and abundance) and communities 

(e.g. diversity, evenness and richness) to provide information on the health status of the 

environment (Palm and Bray 2014). Various researchers verified the usefulness of fish parasite 

communities as bioindicators for ecosystem health. The total abundance of parasites of apogonid 

fish hosts was investigated as a potential indicator of the environmental condition of the coral-reef 

lagoon, New Caledonia (Sasal et al. 2007). The authors established that parasite abundance 

correlated to the environmental conditions and that overall, encysted digenetic metacercariae in the 

pericardic cavity were significant indicators of the environmental conditions in the inner bays. 

Diamant et al. (1999) combined host tissue biochemical and histochemical tests with parasite 

community descriptors such as the ratio between heteroxenous and monoxenous parasites (H/M) 

and the the ratio of heteroxenous and monoxenous species richness (SH/SM) to compare the effect 

of pollution on the parasite composition and structure.  

Other studies applied different statistical multivariate analysis to test the association 

between parasite communities and environmental variables (Discriminant analyses, Valtonen et al. 
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1997; Canonical correspondence, Marcogliese et al. 2006; Constrained ordination by redundancy 

analysis (RDA), Pech et al. 2009; Vidal-Martinez et al. 2014).  

Palm and Rückert (2009) established a visual integration system to assess the health of a 

tropical marine ecosystem in Indonesia using fish parasites as bioindicators. Based on previous 

investigations of Rückert et al. (2008), three significant parasitological descriptors (prevalence of 

trichodinid ciliates (P%), ecto- to endoparasite ratio (Ec/En) and Shannon diversity index (H`) for 

endoparasite diversity) were calculated and transferred onto a positive-negative axis and were 

plotted into a star graph. The results suggested that Segara Ankan Lagoon is an impacted location 

as indicated by low endoparasite diversity, high trichodinid ciliates infections and high ecto- versus 

endoparasite ratio. The study also supports the application of star graph as an effective tool to 

visualise the variations in parasite composition of different fish hosts sampled at different locations 

in a tropical ecosystem.  

Subsequently, the system was successfully implemented as a model to various aquatic 

habitats in Indonesia. For example, the metazoan parasites of the grouper, Epinephelus 

fuscoguttatus (Forsskål) were used to monitor long-term changes in a mariculture facility in 

Thousand Islands, Indonesia (Palm et al. 2011). In this study, the variations in the prevalence of 

the Tetraphyllidean larvae Scolex pleuronectis Müller, 1788 as well as the nematodes Terranova 

sp. and Raphidascaris sp. were used as additional indicators to reveal changes in mariculture 

management and to detect environmental alterations under mariculture condition. Following the 

same methodology, Kleinertz et al. (2014) used a combination of fish health indicator (e.g. 

hepatosomatic index) with specific parasitological and ecological parameters to evaluate the 

environmental condition in two different locations off the coasts of Indonesia. The obtained results 

demonstrated regional variations in parasite composition and suggest that anthropogenic conditions 

reduce the parasite richness and the diversity of endoparasites.  

A novel environmental indicator system was designed by Neubert et al. (2016) to assess the 

environment of a heavily polluted site in Indonesia (Jakarta Bay). For this purpose, twelve 

parasitological and ecological descriptors were selected, normalised and assigned onto several star 

graphs to illustrate the environmental condition of the targeted location in comparison to the 

previously obtained data from Indonesian waters. The areas of the star graphs were then calculated 
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and plotted as a histograph that represent a “pollution light” with large areas indicating healthy 

ecosystems while small areas indicating impacted or polluted sites (Figure 1.1). 

 

Figure 1. 1 Pollution light: Areas of star graphs calculated from normalised parasitological parameters of 

Epinephelus coioides. Analysed habitats sorted in a range from good (green), medium (yellow) and poor (red) to 

assess environmental conditions of sampled Indonesian coastal waters (Source: Neubert et al. 2016). 

 

Recently, the above-mentioned methodology was effectively applied in Vietnam to estimate 

the influence of different mariculture facilities on the marine environment in the Gulf of Tokin 

(Truong et al. 2017) (Figure 1.2). Through the utilisation of protozoan and metazoan parasites of 

the grouper Epinephelus coioides (Hamilton), the study emphasises that epinephlid hosts could be 

excellent ecological models for estimation and monitoring of environmental health in various 

tropical marine systems. Also, the findings provided practical suggestion on how to reduce the 

impact of grouper mariculture facility in Vietnamese waters.  
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Figure 1. 2 Areas of star graphs calculated from normalized parasitological parameters of Epinephelus coioides, 

different aquaculture systems were compared with the natural environment, sorted in a range from good (green), 

medium (yellow) to poor (red) to assess aquaculture conditions of sampled facilities from Vietnamese coastal waters. 

(Source: Truong et al. 2017). 

 

1.1.4 History of Marine parasitology in the Sultanate of Oman 

The first parasitological investigation in the waters of Sultanate of Oman dated back to the 

19th century through the visits of the Royal Navy ship H.M.S. c Cossack to different harbours in 

the Indo-tropical region (Bassett-Smith R.N.F.Z.S.F.R.M.S. 1898). Four species of crustacean 

copepods were described Caligus platytarsis Bassett-Smith, 1898, Lepeophtheirus rotundiventris 

Bassett-Smith, 1898, Brachiella multifimbriata Bassett-Smith, 1898 (= Parabrachiella 

multifimbriata Bassett-Smith, 1896) and Pseudoclavella ovalis Bassett-Smith, 1898 (= Hatschekia 

ovalis Bassett-Smith, 1898).  

The earliest systematic marine parasitological investigations in the Sultanate of Oman was 

initiated in the late 1960s by the Russian parasitologists Mamaev Y.L. and Paruchin A.M. on board 

of the fishing research vessel “Skif”. For more than a decade (1975-1989), the survey mainly 

covered the central part of Omani coasts off the Arabian Sea including Masirah Bay, Sawqarah 

Bay, and Kuria-Muria Bay (Figure 1.3). During their investigations, a total of 64 marine fish 

species belonging to 30 families were examined. A total of 104 parasite species were registered, 



12 

 

these parasites beloning to 5 major parasite taxa Monogenea (5), Digenea (72), Cestoda (1), 

Nematoda (16) and Acanthocephala (10). The results of this investigation were documented in two 

book and some articles (in Russian) (Mamaev and Paruchin 1975; 1976; Paruchin 1976; 1989).  

 

Figure 1. 3 Sampling locations along the Omani coasts of the Arabian Sea (Masirah Island, Sawqirah, Al Halaniyat 

Islands (Kuria- Muria), black solid circles) during the Russian expeditions in 1970s by Paruchin AM and Mamaev 

YL. 

 

In the year 2009 marine parasitology investigations commenced again with the establishment 

of the Laboratory of Aquatic Parasitology (LoAP) at the Fishery Quality Control Centre, Ministry 

of Agriculture and Fisheries Wealth. For a duration of nine years (2009-2018) and through several 

research project and surveys, a total of 49 commercially important host species belonging to 22 

families were examined for parasites. These surveys resulted in the registration of a considerable 

number of parasites belonging to different taxa (197 parasites). The new collection of parasites was 

composed of the following parasites, Microsporidia (3), Myxosporea (4), Monogenea (52), 

Digenea (16), Cestoda (28), Nematoda (36), Acanthocephala (4), Crustacean (52) and Hirudinea 

(2). These parasites species were mainly registered from the Omani coasts of Gulf of Oman.  

During this period two new microcotylid monogenean were reported from Omani waters. 

Omanicotyle heterospina Yoon, Al-Jufaili, Freeman, Bron, Paladini & Shinn, 2013 was detected 
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and described from the gills of the King soldier bream Argyrops spinifer (Forsskål). This parasite 

was previously described as Bivagina heterospina Mamaev & Paruchin, 1974 from samples 

collected from Kuria Muria Bay, off Kuria Muria Islands in the Omani coasts of the Arabian Sea 

(Yoon et al. 2013). So far this monogenean is the only species reported from Omani waters 

although the host is widely distributed in the Indo-Pacific Ocean (including, Western Indian Ocean 

extending eastward to the Indo-Malayan archipelago and northern Australia, Froese and Pauly 

(2019) and was already investigated for monogenean gill parasites from other localities (e.g. 

Kritsky et al. 2000). An additional new species Microcotyle omanae Machkevskyi, Dmitrieva, Al 

Jufaili & Al Mazrooei, 2013 was described from the gills of the santer bream, Cheimerius nufar 

(Valenciennes) off the Omani coasts of the Arabian Sea.  

The compilation of all marine parasites registered from Omani waters resulted in an updated 

host-parasite list including 305 parasites species reported from a total of 113 hosts. Counts of 

species in each major parasite group showed that the digeneans are the largest group in terms of 

species richness (100 species, 32.79%). This observation coincides with that fact that digenean 

parasites are the most speciose group of metazoan endoparasites (Rohde 2005). However, the 

proportion of the Digenea in Omani waters is lower than the proportion in Hawaii (Palm and Bray 

214). This observation could be attributed to the low effort in investigation of this parasitic group 

in the beginning of marine parasitological investigation in Oman. The other parasite groups are 

represented by, in order of size: Crustacea (54 species, 17.70%), Monogenea (51 species, 16.72%), 

Nematoda (50 species, 16.39%), Cestoda (28 species,9.18%) and Acanthocephala (13 species, 

4.26%).  

The remaining parasite groups, Myxosporea (4 species, 1%), Microsporidia (3 species, 

0.98%) and Hirudinea (2 species, 0.66%) are the least represented groups (Figure 1.4). It is noted 

that the proportion of the Nematoda and Cestoda was higher in Omani waters compared to Hawaii. 

The causes of this could be simply a representation of increased sampling efforts for these taxa 

because most of the nematodes registered in Omani waters were part of a survey that focused on 

the investigation of anisakid nematodes which also resulted in the detection of cestodes.  
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Figure 1. 4 Proportion (%) of the recorded 305 fish parasites taxa from the waters of Sultanate of Oman, coasts of 

Gulf of Oman and Arabian Sea (data compiled from available literature and recent surveys) and fish parasites taxa 

in Hawaiian waters according to Palm and Bray (2014). 
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The host species included in this list amounted to 107 marine fishes representing different 

habitats, the most investigated hosts were reef-associated species (56.8%) followed by demersal 

species (17.9%). Benthopelagic and pelagic-nitric hosts came third at 2.1% of the investigated 

hosts, while the least studies hosts were bathydemersal (2.1%). Considering that about 1070 fish 

species occur in the waters of Oman (Froese and Pauly 2019), only about 10% of the fishes were 

examined so far which does not demonstrate the actual parasite diversity in this locality. According 

to Palm and Bray (2014), an estimation of about 3-4 parasite species inhabit each fish (based on 

published host-parasite checklists). Thereby, parasite richness in Omani waters could be estimated 

at 3,210-4,280 metazoan parasites (excluding Protozoa). Since the complied list doesn’t include all 

fish species and most parasite taxa are poorly represented (Microsporidia and Myxosporea), this 

list only provides a basic knowledge on the diversity of fish parasites and not a real estimation of 

parasite diversity in Oman.  

1.2 Study area 

The Sultanate of Oman (SoO) is the second largest country in the Arabian Peninsula; it is 

located in the southeastern corner of the Arabian Peninsula, northwest Indian Ocean (16.252 °N, 

54.622° E) (Figure 1.5). Its coastal line extends 3,165 kilometres (in fine scale) from the Strait of 

Hormuz in the North to the borders of the Republic of Yemen in the South. The country overlooks 

three major water bodies: the Persian Gulf , the Gulf of Oman and the Arabian Sea. Each is 

characterized by a unique environmental and oceanographic features (Sheppard et al. 1992). 

Moreover, with a 200- mile exclusive economic zone, the SoO has about 340, 000 Km2 of inshore 

and offshore waters which contains rich fishing grounds (Al-Hafidh 2006). Seven sampling sites 

were selected for this investigation based on their different geographical characteristics and 

suitability for the establishment of mariculture farms. Three sampling sites along the Arabian Sea; 

Raysut (Dhofar Governorate), Al Lakbi (Al-Wusta Governorate), Masirah Island (Al Sharqiya 

Governorate). Three locations facing the coasts of the Gulf of Oman; Muscat (Muscat 

Governorate), Sohar (Al Batinah Governorate) and Dabba (Musandam Governorate). The last 

location is Khasab (Musandam Governorate) which is the only location along the coasts of Persian 

Gulf. 
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Figure 1. 5 Map showing the Sultanate of Oman, its three water bodies and the seven locations investigated in the 

current study. 
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1.2.1 Arabian Sea  

The Arabian Sea (AS) is one of the world’s major Ocean basins, it is located at the north-

western extension of the Indian Ocean (12.2502° N, 64.3372° E), bounded by Pakistan and Iran on 

the north, Somalia and Arabian Peninsula on the west and by India on the east. The total surface 

area of this sea is 3.862 million km2 with two branches which connect it to two evaporation basins. 

One is on the south-west (Gulf of Aden) connecting the Arabian Sea to the Red Sea and another to 

the north-east (Gulf of Oman), connecting with the Persian Gulf (Carton et al. 2012). The maximum 

depth of the sea is reaching about 4,600 m and a maximum width of 2,400 km. it is characterized 

by significant shallow coastal waters, a moderate area of the continental shelf and a steep 

continental slope (Shallard et al. 2009). 

The climate of AS is highly influenced by the south-west (SW) and north-east (NE) monsoon 

events that stimulate extreme weather fluctuations resulting in dramatic physical, chemical, and 

biological changes in the upper layers of the water column (Atlas 2010). These changes affect the 

productivity of the AS making it one of the most productive regions of the oceans (Madhupratap 

et al. 1996; Goes et al. 2005). The SW monsoon period takes place during the summer from May 

to September. In this period the primary productivity is greatly enhanced by the coastal and oceanic 

upwelling events that bring cool, low salinity and nutrient-rich water to the surface of the sea 

(Barber et al. 2001), encouraging active blooming of phytoplankton as indicated by elevated 

chlorophyll-a in the sea (Piontkovski et al. 2012) (Figure 1.6). During the events of the SW 

monsoon Sea surface temperature (SST) are low and variable with values ranging between 18-28 

C° (Figure 1.7).  

In the winter season, the NE monsoon occurs between November to February, in which the 

sea surface circulation is reversed from clockwise to anticlockwise (Gaye et al. 2018). Although 

not as substantial as the SW monsoon, the events of NE monsoon also promote phytoplankton 

growth and various biochemical processes because it influences the dynamics of mixed-layers and 

on various physical and oceanographic process (Goes et al. 2005). The temperatures during the NE 

monsoon are slightly higher and less variable than during SW monsoon (Figure 1.7). Another major 

feature which influences the productivity in AS is the seasonal development of one of the most 

prominent oxygen deficient layers in the world oceans at depths between 50 to 1000 m in which 

most fish cannot live (Shallard et al. 2009).  
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Figure 1. 6 Characteristic spatial patterns of chlorophyll-a concentration (in mg m-3) in the Arabian Sea, Gulf of 

Oman and Persian Gulf. Summer monsoon, (A), Winter monsoon, (B), Intermonsoon season, s (C) and (D) (source: 

Piontkovski et al. 2013). 

 

1.2.2 The Gulf of Oman 

The Gulf of Oman (GoO) is a semi-enclosed bathymetric triangular basin (Piontkovski et al. 

2012) that is located in the subtropical zone of the Arabian Peninsula between 22° N and 26° N 

and 56° E and 62° E (Pous et al. 2004). It stretches from the Straits of Hormuz to the eastern tip of 

the Arabian Peninsula at Ras Al-Hadd (Al-Hashmi et al. 2012). GoO is about 480 km long and has 

a total surface area of 94,000 km2. The narrowest point in GoO is at the eastern end of the strait of 

Hormuz (30 km) and the widest part is the end where it joins the Arabian Sea (370 km) (Walters 

and Sjoberg 1990). Bathymetry of GoO is characterized by a narrow continental shelf that has a 

gentle slope with increasing depths towards the south-eastern part reaching 3000 m (Piontkovski 

et al. 2012).  
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The climate in GoO is influenced by the hydrodynamics of the area which is driven mostly 

by monsoonal winds (SW and NE monsoon) and by the seasonal inflow and outflow of waters 

from the Persian Gulf (Persian Gulf Water mass) and the Indian Ocean (Indian Ocean Surface 

Water mass) (Piontkovski et al. 2012; Al-Azri et al. 2014) (Figure 1.8). During the summer, highly 

saline, oxygen-rich, and warm Persian Gulf Water mass (PGW) enters GoO through the Strait of 

Hormuz resulting in a coastal plume and formation of eddies and filaments of this plume (Al Azri 

et al. 2014). At the same time, a relatively fresh Indian Ocean Surface Water (IOSW) enters the 

Gulf of Oman on its northern side (Piontkovski et al. 2012). Another feature of the GoO during the 

summer monsoon is the formation of the Ras al Hadd Front, which acts as a liquid barrier between 

the GoO and AS. Furthermore, although the manifestation of SW monsoon is more pronounced in 

the southern region of GoO, its effect has been observed in GoO in the form of cool waters injected 

into the sea (Al Azri et al. 2010). Thus, in the summer the temperatures in GoO are cooler, ranging 

between 30 to 34 C°, while the productivity in GoO is minimal in comparison to those of the AS 

(Figure 1.6). 

During the NE monsoon the Oman coastal current (the East Arabian Current) moves to a 

south-eastward flow and seasonal upwelling occurs in the Iranian coasts of GoO (Piontkovski et 

al. 2012). With the reversal of the above-mentioned current, the Ras Al Hadd Front becomes poorly 

pronounced or decays entirely and numerous eddies are formed instead (Piontkovski et al. 2011). 

These eddies aid in transporting of phytoplankton blooms to the coasts of GoO (Al Azri et al. 

2014). Additionally, convective mixing in this season leads to decrease in SST and a well-mixed 

water column (Al Azri et al. 2010). The productivity of GoO is therefore significant during the 

winter due to the influence of NE monsoon events (Piontkovski et al. 2012; Al Azri et al. 2014) 

(Figure 1.6). 

1.2.3 Persian Gulf 

The Persian Gulf (PG), is an “L” shaped shallow and narrow, semi-enclosed marginal basin. 

It is located in an arid region of the Middle East between the Arabian Peninsula and Iran (L'Hégaret 

et al. 2013) extending between 24° N and 30° N and 48° E and 56° E (Pous and Carton 2004). The 

PG is bounded to the north by flatlands (the delta of Iranian and Iraqi rivers), to the north-east by 

the Zagros mountains, and to the south-west by the desert of Saudi Arabia (Pous et al. 2012). The 

surface area of the PG is 239,000 km2 with its broadest region of shallow water off the coast of the 
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United Arab Emirates (UAE) (Reynolds 1993). The maximum width of the PG is 338 km, and the 

length to its northern coast is 1000 km with a maximum depth of 120 m near the Straits of Hormuz 

(L’Hégaret et al. 2013). The Persian Gulf is separated from the GoO by the Strait of Hormuz, which 

is 56 km wide at its narrowest point (Reynolds 1993).  

The climate and marine environmental conditions in the PG are among the most extreme on 

the planet (Naser 2013). The basin is characterized by low hydrodynamic energy, relatively shallow 

depths, high evaporation rates, extremely fluctuating surface temperatures, high salinities; and 

minimal water exchange (Khan 2007). Sea surface temperatures exceed 34 ºC in summer and can 

be less than 15 ºC in winter (Rezai et al. 2004), while salinities can be as great as 45 ppt reaching 

up to 60 ppt in some parts of the PG (Rezai et al. 2004). As a result of these extreme conditions, it 

is reported that flora and fauna of the PG are living close to the limits of their environmental 

tolerance (Price et al. 1993). The main water masses that influence the PG are the oceanic water 

flowing from the GoO and the outflow from the rivers located in the north-western end of the 

Iranian coast (Bjerkeng 2000). The other major event in the PG is the formation of one of the most 

saline water masses in the world, the PGW. The movement of this water mass affects the stability 

of the Indian Ocean’s thermocline and introduces oxygen-rich water into GoO (Figure 1.7) at 

depths that are marked by extreme oxygen-depletion caused by the decay of surface layer primary 

production (Swift and Bower 2003). 
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Figure 1. 7 Variations of sea surface temperature in the three water bodies during the two main seasons. South-West 

monsoon, (A). North-East monsoon, (B). (Source: Gaye et al. 2018). 
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Figure 1. 8 The system of currents and water mass transport along the Omani coast. Two parallel lines (1) 

demarcate the location of the Ras Al Hadd frontal zone formed by the confluence of currents (3 and 4). Arrows (2-4) 

indicate the direction of the main currents (in summer through fall period). (2): inflow of the Indian Ocean Water 

mass, (3): outflow of the (Arabian Gulf) Persian Gulf Water mass, and (4): Oman Coastal Current (East Arabian 

Current) (Source: Piontkovski et al. 2012). 

1.3 Rabbitfishes (Family: Siganidae Forsskål, 1775) 

1.3.1 Taxonomy  

Class  Actinopterygii 

Order  Perciformes 

Suborder Acanthuroidei 

Family Siganidae Forsskål, 1775 

Siganidae is a family of marine herbivorous fishes that are commonly known as rabbitfishes 

or spinefoots. They belong to the suborder Acanthuroidei (Actinopterygii: Perciformes) and are 
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closely related to three families within this suborder, the Luvaridae, Zanclidae and Acanthuridae 

(Pitt 1997; Tang et al. 1999). Formerly, siganids were regarded as members of the genus Teuthis 

(Linnaeus), however, this genus was suppressed by Woodland (1972, 1973) in favour of the genus 

Siganus (Forsskål) (Lam 1974; Duray 1998). Woodland (1983), discussed the zoogeographical 

distribution and species richness of siganids, reporting 27 species of siganids belonging to one 

genus Siganus and two subgenera Siganus and Lo (Seale). The latter was previously assigned to 

accommodate five species of siganid that have prominent, tubular snouts (Borsa et al. 2007). 

However, in his revision of the family, Woodland (1990) considered that the differences in snout 

shape between Lo and Siganus were not sufficiently clear to recognize them as two different genera 

(Borsa et al. 2007) and thus regrouping all known siganids into a single genus. Currently, with the 

addition of new species to the genus, Siganus consists of 29 nominal species (Woodland and 

Anderson 2014).  

1.3.2 Morphology 

Siganids exhibit uniformity in their morphological characteristics, such as the number of fin 

spines and rays, teeth shape and teeth count (Randall and Kulbicki 2005; Woodland and Anderson 

2014). They all have XIII dorsal fin spines (ten soft rays) and VII anal fin spines (nine soft rays) 

(Woodland 1990). The spines of all fins are strong with a groove on each side bearing venom 

glands (Randall and Kulbicki 2005). The pelvic fins have two spines (one inner and one outer, with 

three soft rays in between), a character unique to this fish family (Woodland 1990). These fishes 

are also distinctive among other marine fishes for possessing two spines on their pectoral fins, 

which are separated by three soft rays (Jaikumar 2012). All known siganids have small, identical, 

compressed incisiform teeth on a single row (Woodland 1990; Jaikumar 2012). The snout is 

rounded or tabulate, jaws not protrusible, the mouth is small and terminal (Woodland 1990). Their 

skin is leathery with very small cycloid scales, giving the appearance of a scale-less surface (Duray 

1998).  

The colours of siganids species vary from drab, without patterns to bright with complex, 

ornate pattern (Randall and Kulbicki 2005). The drab-coloured siganids are known for their 

resistance to variations in salinity and temperatures, and the brightly coloured siganids are sensitive 

to physio-chemical changes (Duray 1998; Gorospe and Demayo 2013). Furthermore, fishes 

belonging to this family can be grouped into three clades based on their body shapes; deep bodied 
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species, slender-bodied species and streamlined, spindle-shaped species (Woodland and Anderson 

2014). Like many marine fishes, siganids have separate sexes; though, sexual dimorphism is not 

obvious. However, there are some reports indicating that adult females are usually larger than males 

(Darsono 1993). 

1.3.3 Habitat and distribution 

Siganids are exclusively marine occurring in the littoral and sublittoral zones of the oceans 

(Gorospe and Demayo 2013) where they are associated with all types of coastal habitats that are 

known to support herbivorous fishes (Hoey et al. 2013). These include coral reefs, the surrounding 

grass flats, and other algae-rich environments, such as mangroves and rocky shores (Tyler and 

Bannikov 1997; Borsa et al. 2007). Two siganids, the orange-spotted rabbitfish, Siganus guttatus 

(Bloch) and the vermiculated rabbitfish, S. vermiculatus (Valenciennes), are an exception since 

they have been reported to enter freshwater rivers and lakes (Darsono 1993). Adult and juvenile 

siganids are demersal occupying shallow waters, while larvae are pelagic inhabiting the waters 

beyond the out reef (Duray 1998).  

Originally, siganids are native to the western Indian and Pacific oceans. The highest siganids 

species richness was recorded in the Indo-Malayan area and the lowest was from French Polynesia, 

while East Africa occupies an intermediate position (Woodland 1983). The natural geographical 

distribution of siganids extends from the Persian Gulf (Grandcourt et al. 2007; Al-Qishawe et al. 

2014) through the Arabian Sea (Al-Marzouqi et al. 2009), Red Sea (Mehanna and Abdallah 2002), 

East Africa to Polynesia (Quinitio and Castor-Saan 2008), southern Japan (Houque et al. 1999) and 

northern Australia (Pitt 1997; Fox et al. 2009, Hoey et al. 2013). However, there are no records of 

siganids from Hawaii and Eastern Island (Woodland 1983). About a century ago, two species, 

namely the marbled rabbitfish S. rivulatus (Forsskål) and the dusky rabbitfish S. luridus (Rüppell) 

invaded the eastern Mediterranean Sea from the Red Sea through the Suez Canal where they 

became successfully established among other invasive marine species (Bariche 2006; Shakman 

2008). The expansion of the geographical distribution of these fishes in the Mediterranean Sea is 

an ongoing process, with the latest accounts reaching as far as the western Mediterranean, further 

widening the geographical range of siganids (Ounifi–Ben Amor et al. 2016).  
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1.3.4 Life cycle and feeding ecology 

Siganids are known to grow moderately quickly, reaching sexual maturity at one year of age 

when their sizes reach 160-200 mm in length (Woodland 1990). Most siganids have a fixed 

spawning season (Lam 1974) with one or two peaks per year (Pitt 1997). Only S. guttatus was 

reported to spawn year-round (Hara et al. 1986). Spawning usually follows the lunar periodic cycle 

some siganids spawning either on the new moon (e.g. the whitespotted rabbitfish S. canaliculatus 

Park, 1797, the streamlined rabbitfish S. argenteus (Quoy & Gaimard), S. luridus and S. rivulatus) 

or the full moon (the golden-lined rabbitfish S. lineatus (Valenciennes) and little rabbitfish S. spinus 

(Linnaeus) (Houqe et al. 1999; Soliman and Yamaoka 2010). Other studies that are related to the 

spawning behaviour showed that siganids have specific spawning grounds such as tidal and marine 

flowering plants flats, fringing reefs and near mangrove areas (Duray 1998). Siganids breed in 

aggregations, where large females release up to 500 000 transparent, eggs at one spawning 

(Darsono 1993). Except for the eggs of S. argenteus which are floating and non-adhesive, the eggs 

of the majority siganids species are demersal, strongly adhesive, small, and spherical with many 

oil globules (Duray 1998). 

Siganids are diurnal herbivores, feeding actively during the day and hiding in reef cervices 

at night (Kamukuru 2009). Hoey et al. (2013), differentiated four types of siganids based on their 

dietary compositions: (1) browsers that mainly feed on brown, leathery macroalgae; (2) croppers 

that feed on red and green algae; (3) mixed feeders that feed on mixed algal material, cyanobacteria, 

detritus and sediment, and (4) sponge feeders. Extensive investigations exploring the natural diet 

and feeding habits of siganids have been conducted to determine their potential for mariculture and 

to understand their ecological impact as invasive species (Bos et al. 2016). In summary, siganids 

feed on a wide range of macroalgae, such as seaweed of the phylum Chlorophyta (green algae), 

Rhodophyta (Red algae), Phaeophyceae (brown algae) and less frequently on seagrass of the 

phylum Magnoliophyta (Westernhagen 1973; Pitt 1997; Sabour and Lakkis 2007; Azzurro et al. 

2007; Al Marzouqi et al. 2009). Moreover, they are also reported to feed on cyanobacteria (blue-

green algae) (Bos et al. 2016) and Heterokontophyta (golden and brown algae) (Azzurro et al. 

2007). The factors influencing feeding preferences in siganids are; the morphological characteristic 

of the macroalgae, the type of defensive chemicals of the macroalgae, the specific feeding 

behaviour of species, its jaw morphology and the nutrient assimilation mode of the siganid species 

(You et al. 2014).  
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Non-macrophytic taxa were also reported from the stomachs of several siganids, including 

an array of organisms such as epiphytic diatoms, hydrozoans, and detritus from the stomach of S. 

rivulatus (Karagitson et al. 1986), Euphausiaceae and gastropods from S. luridus (Stergiou 1988). 

Dowidar et al. (1992) also reported bryozoans, crustaceans, polychaetes, and molluscs from S. 

rivulatus collected off the Egyptian coast (Bariche 2006). The stomach of S. luridus in Italy 

contained amphipods and foraminiferans (Azzurro et al. 2007). In addition, sponges, fish larvae, 

crustacean larvae and siliceous spicules were also reported from the stomachs of some siganids 

(Lam 1974). Sand was reported in considerable amounts from specimens collected in Egypt and 

Greece (Bariche 2006).  

1.4 Siganidae fisheries and aquaculture 

1.4.1 Global fisheries overview  

Several species of schooling siganids are excellent fishes for human consumption and are 

regarded as valuable traditional food for locals due to their delicacy and high nutritional value (Xu 

et al. 2011). They are considered an important source of income for local fisheries in many Indo-

Pacific countries (Lam 1974; Tseng and Chan 1982; Darsono 1993) and in some parts of the eastern 

Mediterranean (Bariche 2004; El-Dakar et al. 2011), where they are commercially exploited 

providing significant contributions to the artisanal fisheries in these countries (Bariche 2004). 

Siganids are captured by a variety of fishing methods, such as seining (Lam 1974), fish corrals and 

intertidal fence nets (Grandcourt et al. 2006), trammel and gill nets (Bilecenoglu and Kaya 2002), 

dome-shaped wire traps (Grandcourt et al 2006; Jaikumar 2011), basket traps (Wambiji et al. 2009) 

and bagnets (Soliman and Yamaoka 2010). In Guam and Palau, fishermen capture siganids at night 

by spearing individual fish (Lam 1974).  

According to the latest fishery statistics from The Food and Agriculture Organization (FAO), 

the total global Siganidae fisheries production from the four major fishing areas established by 

FAO (Western Indian Ocean (WIO), Eastern Indian Ocean (EIO), Mediterranean and Black Sea 

(MBS) and Western Central Pacific Ocean (WCP) was more than for the year 2017 was 116,112 

tonnes accounting to an increase of 18% from the previous year (98,388 tonnes tonnes) (Figure 

1.9). In general, throughout the period between 1950-2017 the global fishery production of 

Siganidae can be characterised as irregular with periods of decline and growth in total catches and 

trends of yearly increments. The yearly global Siganidae catches remained low and stable and not 
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exceeding 1000 tonnes between 1957 to 1967 (except for the year 1963). This period was followed 

by a steady increase in the global fishery production reaching almost 10 folds in the year 1975 in 

comparison to 1965. Within three decades the global Siganidae fisheries production reached three 

times the total catches of the year 1975. Since then, there has been a steady growth in the catch 

production with an average increment of about 20% between 2010 and 2017 (Figure 1.9).  

 

Figure 1. 9 Global annual fisheries total production of Siganidae from 1957-2017 (Source: FAO 2019). 

 

Based on fishing areas, the majority of the world’s siganids are caught in WCP (more than 

70% of the cumulative global fisheries capture production (1957-2015)), followed by WIO (about 

25%). The least catches were recorded from EIO (about 2%) and MBS (less than 2% of the 

cumulative global fisheries capture production) (Figure 1.10). The total catches from each region 

mirrored the zoogeographical distribution of siganids in the world's oceans. The biggest quantity 

of cumulative catches from WCP area was recorded from the Philippines accounting to more than 

70% of the area’s total global fishery captures. In the Philippines, S. rivulatus is the main target for 

the commercial fishery in Pujada Bay due it is immense abundance in this location (Nanual and 

Metillo 2008). In Lagonoy Gulf, three species, S. canaliculatus, S. spinus and S. argenteus 

constitute about 90% of the total siganid catch (Soliman et al. 2009). These catches contributed to 

approximately 10%-15% of the total fish catch of the Gulf's annual fishery production of 23,000 

mt/yr (Soliman et al. 2009).   
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The main siganid fishery contribution from the WIO region originated from the United 

Republic of Tanzania, with a cumulative total catches exceeding 100,000 tonnes since 1950 (about 

27% of the total catch in the region) (FAO 2017). In East Africa, wild siganids are an integral 

component of the artisanal fishery along the African coasts (Kamukuru 2009). Together with 

lethrinids, siganids comprised about 31% of the total reef fish landings along the Kenyan coast 

over the last five years of the 1990’s (Wambiji et al. 2009). Moreover, during the 2004-2005 period, 

siganids constituted 85% of total catches from basket traps placed in the Dar es Salaam Marine 

Reserve (Kamukuru 2009). In western Kenya, S. sutor (‘tafi’) is the most abundant and important 

catch in the artisanal fishery (Agembe, 2012), contributing to 180 tonnes of artisanal fishery 

landings (Wambiji 2013).  

The lowest siganid fishery production was recorded from countries in the eastern and western 

Mediterranean seas. According to the latest FAO fisheries statistics (FAO 2017), the cumulative 

capture quantity of siganids from the MBS region was about 27,000 tonnes. The highest production 

was recorded from the Mediterranean waters of Egypt, amounting to 60% of total cumulative 

fishery capture production from MBS (16,772 tonnes). In the eastern Mediterranean, siganids have 

been successfully integrated into the local fisheries becoming one of the main components of 

commercial catches (Papaconstantinou 1990; Bilecenoglu and Kaya 2002; Cicek and Avsar 2015). 

Furthermore, in some eastern Mediterranean countries, siganids have been successfully introduced 

to local markets where they have become commercially valuable (Saoud et al. 2008; Shakman et 

al. 2009). In contrast, although siganids are very abundant in Foumi Island, Greece, they are 

considered as low value and are often discarded as bycatch (Pennington et al. 2013). Similarly, the 

same aversion to this species occurs among local consumers in Cyclades Island off Italy (Giakoumi 

2013).  
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Figure 1. 10 Regional cumulative Siganidae production from the four major fishing areas from 1950-2015 (Source: FAO 2019). 
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1.4.2 Siganus canaliculatus fisheries in the Sultanate of Oman 

The siganid fishery in Oman is represented by two species, S. canaliculatus which dominates 

the catches and the streaked rabbitfish S. javus (Linnaeus) (Al-Marzouqi et al. 2009). Both species 

are part of the artisanal and coastal fisheries both in the GoO and AS (Al-Marzouqi 2013). The 

majority of siganid catch production comes from the traditional artisanal fisheries with 

contributions reaching 97% of the total catch (MoAF 2015). In the coasts of Oman, artisanal 

fishermen harvest siganids using gillnets, traps, beach seines and by industrial trawlers (Al-

Marzouqi et al. 2013). Although siganids are not as popular as other demersal fishes, such as 

lethrinids and sparids, their landings and production value have exhibited a yearly increase, 

indicating that they are becoming more targeted by fishermen (Figure 1.11). Within a decade, the 

total catches of siganids increased from 1155 tonnes in 2005 to more than 3000 tonnes in 2015 

with an estimated value of 1. 956 million RO (~ 5 million USD) (MoAF 2015).  

 

Figure 1. 11 Siganid fisheries capture production and value (USD $) in Oman from 2000-2015 (sources: MoAF 

2015). 

The main siganid fishing grounds in Oman are located in the AS with contributions 

amounting to 66% (2066 tonnes) and 26% (815 tonnes) of total landings of the year 2015, 

respectively. However, it has been reported that the catches of siganids exceeded the maximum 

sustainable yield in some seasons during the 2005-2014 period, which indicates overexploitation 

of this fishery (El-Barr 2016). Thus, better resource management and mariculture will likely be 

required to prevent overexploitation of this valuable fishery resource. 
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1.4.3 Global Siganidae mariculture  

The feasibility of farming siganids was first accepted in the 1960s (Lam 1974; May and 

McVey 1977; Duray 1998). However, only after the ‘Siganid Mariculture Implementation 

Conference,’ which was held at the Hawaii Institute of Marine Biology in 1972, the potential to 

develop siganid mariculture was acknowledged (Bryan 1975). Since then, a significant number of 

studies have been conducted on various aspects of siganid rearing and propagation. Siganids 

attracted the attention of mariculturists and investors around the globe because they possess key 

attributes that facilitate raising them in captivity. Primarily, they are highly esteemed as an 

excellent fish for seafood consumption in many counties in the Pacific, the western Indian Ocean 

and eastern Mediterranean (Lam 1974; May and McVey 1977; Darsono 1993; Gorospe and 

Demayo 2013). Siganids are also regarded as desirable candidates for mariculture because they can 

easily shift from herbivory to omnivory in captivity (El-Dakkar et al. 2011). Many experimental 

studies have shown that siganids can tolerate cultivation at high stocking densities and that they 

have excellent tolerance to high temperature and salinity (Lam 1974; Ghanawi et al. 2010). Also, 

the fast growth rate of some siganid species, such as S. guttatus and S. vermiculatus, makes them 

ideal for mariculture (Shirinabadi et al. 2013; Gorospe and Demayo 2013). 

The earliest attempts to breed siganids initiated from the Philippines by Manacop (1937) for 

S. canaliculatus (Juario et al. 1985). Since then, researcher steadily experimented on siganid 

breeding and mariculture (Von Westernhagen 1974; Von Westernhagen and Rosenthal 1976; 

Duray 1998). For instance, S. guttatus from the Philippines, has been frequently investigated 

concerning its potential for mariculture (Alcala and Luchavez 1980; Juario et al. 1985; Hara et al. 

1986; Avila and Juario 1987; Ayson 1989; Parazo 1990; Quinitio and Sa-An 2008; Rabia 2016). 

This siganid is currently regarded as a good alternative to the milkfish Chanos chanos (Forsskål) 

for grow-out culture because it is as efficient as the milkfish in converting plant material into animal 

protein (Abalos 2015) and it commands a higher market price than milkfish (Ayson et al. 2014). 

Furthermore, because S. guttatus is euryhaline, it can be easily reared with the giant tiger prawn 

Penaeus monodon (Fabricius) instead of tilapia, which is less valuable in the Philippines than S. 

guttatus (Ayson et al. 2014). Besides, under captivity S. guttatus is able to spawn repeatedly all 

year round with the application of hormonal treatments (Hara et al. 1986).  
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Thus, S. guttatus is currently grown in at commercial scales in polyculture-pond systems 

(Angeles et al. 2014) with P. monodon or in floating net-cages (due to their natural tendency to 

clean algae from cage surfaces) (Ayson et al. 2014). This characteristic also makes S. guttatus 

favourable for culturing with milkfish because their algae cleaning ability helps improve water 

circulation inside the cages (Rabia 2016). According to the latest fisheries statistics, in 2017 

maricultural production of siganids in the Philippines reached 148.8 tonnes in brackish-water-pond 

polyculture systems and 45.5 tonnes in floating-net cages (FAO 2019). 

Research on siganid mariculture was conducted in Palau in the 1970s (Tsuda and Bryan 1973; 

Bryan et al. 1974; Bryan and Madraisau 1977), resulting in the establishment of a successful, large-

scale hatchery production facility at the Micronesia Mariculture Demonstration Centre, which 

produced thousands of siganid fry for Palauan fish farmers (May and McVey 1977). However, 

factors such as high production costs, low local market prices for siganids and high transportation 

costs have probably been responsible for hindering the development of a viable commercial 

Siganus mariculture industry in Palau (May and McVey 1977). 

Other species of siganids have also been considered as suitable candidates for mariculture 

(e.g. S. rivulatus) in Lebanon (Saoud et al. 2008a; 2008b), Cyprus (Stephanou and Georgiou 1999), 

Israel (Ben-Tuvia et al. 1973; Popper 1973; Popper and Gundermann 1975; Popper et al. 1979), 

Egypt (El-Dakar et al. 2007; 2010) and Syria (Ibrahim et al. 2008). Also, S. canaliculatus was 

regarded to be suitable for mariculture by researchers in the United Arab Emirates (Yousift et al. 

1999; 2005a; 2005b), Tanzania (Bwathondi 1982) and Indonesia (Tacon et al. 1990). However, 

there are currently no commercial siganid farms in any of these countries. 

1.4.4 Potential of Siganus canaliculatus mariculture development in Oman  

The Sultanate of Oman with its long beaches, distinctive environmental features and 

geographical structures is ideal for developing various types of mariculture facilities. The Omani 

government recognised this and organised a strategic plan to help develop and establish regulations 

to manage the industry. Thus far, several sites along the Omani coast have already were chosen, 

and various fish and shellfish species were selected as potential candidates for mariculture (Atlas 

2010). The selection of these species is based on scientific research that studied both local and 

international demands for various fishes, their biological efficiencies, marketability, and hardiness. 

Potential candidate species included gilthead seabream, Sparus aurata (Linnaeus), European 
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seabass Dicentrachus labrax (Linnaeus), the thinlip grey mullet Liza ramada (Risso) and to a lesser 

extent, the orange-spotted grouper Epinephelus coioides (Hamilton) and the yellowfin seabream 

Acanthopagrus latus (Houttuyn). More recently, additional species were considered as candidates 

for mariculture, including the santer seabream Chemerius nufar (Cuvier & Valenciennes) and the 

sandfish sea cucumber, Holothuria scabra (Jaeger). Moreover, the country is considering 

promoting the development of shrimp, tilapia, and abalone aquaculture industry. 

Although not initially included among mariculture species candidates for Oman, S. 

canaliculatus should also be considered. Unlike those mentioned above, non-native species, S. 

canaliculatus is already a popular food fish in Oman, is in high demand in local markets, and has 

a good market value (Al-Marzouqi et al. 2011). Furthermore, although siganids are herbivorous, 

they exhibit omnivorous feeding habits in captivity and can be fed a wide variety of food (El-

Dakkar et al. 2011). For example, studies have shown that laboratory-reared S. canaliculatus feed 

on a wide variety of feed, such as chicken pellets, cooked rice, dried shrimp and even fish scraps 

(Darsono 1993). Additionally, S. canaliculatus has been proven to be hardy, in that it tolerates 

drastic changes in salinity and temperature (Duray 1998). It also tolerates environmental stresses, 

frequent handling by humans and crowded conditions (Saoud et al. 2008a). S. canaliculatus is 

relatively fast-growing, reaching maturity within one year (Al-Ghais 1993). In fact, it is suggested 

that it mature more rapidly in captivity than in the wild (Duray 1998). 

1.5 Parasites of the Siganidae 

The literature on parasites of siganids is patchy and scattered, with the majority of it being 

of taxonomic or descriptive nature. Many of the available literature focuses on a certain taxon or 

are limited to few taxa that are known from siganids. To date, extensive parasite fauna 

investigations were conducted on few species of siganids (Diamant and Paperna 1986; Martens 

and Moens 1995; Geets and Ollevier 1996; Geets et al. 1997), while the parasite fauna of many 

siganids is largely unknown. The present thesis aims to describe the parasite fauna of the 

whitespotted rabbitfish, S. canaliculatus from the coasts of the Sultanate of Oman, focusing on the 

Myxosporea, Monogenea and Digenea. For the purpose of this thesis, only these major fish 

parasites groups will be discussed in this chapter. For the other major groups, it is referred to (Palm 

2004; Cestoda), (Anderson 2000; Nematoda), (Taraschewski 2005; Amin 2013; Acanthocephala), 
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(Moodie 2005; Microsporidia), (Boxshall 2005; Copepoda and Isopoda), (Govedich et al. 2005; 

Hirudinea (leeches)).  

1.5.1 The Myxosporea 

The myxosporeans are a diverse and widely distributed parasitic members of the phylum 

Cnidaria, including more than 2000 registered species distributed among 60 genera (Bartošová et 

al. 2009). The history of taxonomic classification of these parasites has been controversial. 

Previously they were classified as protozoans; however, extensive molecular studies confirmed 

that myxosporeans are in fact, metazoans (Yokoyama et al. 2012). Myxosporeans are considered 

as metazoans because their development involves multicellular differentiation of the valvogenic, 

capsulogenic and sporoplasmic cells, which does not conform to the unicellular definition of 

Protista (Rohde 1995).  

The majority of myxosporeans are reported from marine and freshwater fishes (Lom and 

Dykova 2006) with some exceptional occurrences from amphibians and aquatic birds (Longshaw 

et al. 2005; Bartošová et al. 2009). Most species of myxosporeans are harmless to their hosts. 

Nevertheless, some are regarded as serious pathogens to cultured and wild fish populations, causing 

considerable problems for mariculture and fishery industries worldwide, including mass mortality 

(Sterud et al. 2007; Feist and Longshaw 2008; Yokoyama et al. 2012), degradation of host 

marketability due to external deformation and muscle liquification (Feist and Longshaw 1995; 

Kent 2001; Yokoyama et al. 2012), reduction in productivity (Alvarez-Pellitero and Sitjà-Bobadilla 

1993; Adlerstein and Dorn 1998; Al-Jahdali and El-Hassanine 2010) and abnormal host behaviour 

(McElroy et al. 2015). Based on the number of valves present, myxosporeans are divided into 

Bivalvulida, which are mature spores that exhibit two valves, and Multivalvulida, with three or 

more valves (Lom and Dykova 2006). Myxosporeans are further divided into coelozoic and 

histozoic myxosporeans (Feist and Longshaw 2006). Coelozoic species are those that infect the 

body cavity, gallbladder, bile ducts and the urinary tract. In contrast, histozoic species live in a 

variety of intercellular and sometimes intracellular tissues (Lom and Dykova 2006). 

To date, species belonging to four genera of myxosporeans have been recorded from siganids. 

Diamant and Paperna (1986) reported species of Zschokkella Auerbach, 1910, Ceratomyxa 

Thélohan, 1892, Ortholinea Shulman, 1962, and Kudoa Meglitsch, 1947 from three siganids (S. 

argenteus, S. rivulatus and S. luridus). Subsequently, the highly pathogenic species, Zschokkella 
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icterica Diamant & Paperna, 1992 was described from the hepatic ducts and gallbladder of S. 

luridus caught off the Gulf of Eilat (Diamant and Paperna 1992). The histozoic species, Zschokkella 

helmii Abdel-Ghaffar, Ali, Al Quraishy, Entzeroth, Abdel-Baki, Al Farraj & Bashtar, 2008, was 

described from the gallbladder walls of S. rivulatus caught off the Saudi coasts of the Red Sea 

(Abdul-Ghaffar et al. 2008). Recently, the histozoic myxosporean, Ortholinea saudii Abdel-Baki, 

Soliman, Saleh, Al-Quraishy & El-Matbouli, 2015, was described from the kidneys of the above-

mentioned host (Abdel-Baki et al. 2015). The only multiuvalid myxoporean reported from siganids 

is Kudoa iwatai Egusa & Shiomitsu, 1983 a systemic myxosporean that is known to infect a variety 

of host tissues and organs, including muscle, brain, eye and visceral organs (Diamant et al. 2005; 

Diamant et al. 2010).  

1.5.2 The Monogenea  

Monogenean flatworms are among the most problematic and pathogenic metazoan parasites 

in fish farms (Thoney and Hargis 1991). Monogeneans are hermaphrodites and are mostly 

ectoparasites of marine and freshwater fishes. They infect their host’s outer surfaces, including 

gills, skin, and fins and, less commonly, the buccal, branchial and nasal cavity linings (Ogawa 

2014). A few monogenea are endoparasites; occurring in organs, such as the oesophagus, cloaca, 

urinary tract, and heart (Buchmann and Bresciani 2006). Because monogenea have a monoxenous 

cycle, which does not require intermediate hosts, they tend to be highly host-specific (Perkins et 

al. 2009). Fifty-three families of monogenean are presently recognised (Whittington 2004) with an 

estimated species richness of 25000 species (Buchmann and Lindenstrøm 2002). These worms 

attach to their hosts using the opisthaptor. This is a posterior attachment organ consisting of hooks, 

clamps, suckers, friction pads, surface spines, cement glands, or a combination of these organs 

(Rohde 1993). Based on the morphology of the opisthaptor, monogeneans are classified into two 

main subclasses: the Monopisthocotylean and the Polyopisthocotylean. The Monopisthocotylean 

feed on host epithelium cells with an attachment organ consisting of a single, symmetrical 

attachment unit (Whittington 2006). Polyopisthocotyleans are exclusively blood feeders possessing 

attachment organs that bears numerous sclerotized clamps (Whittington 2006; Feist and Longshaw 

2008; Perkins et al. 2009). 

The importance of these parasites lies in their ability to propagate rapidly in systems where 

hosts are held in captivity at high densities, such as in fish farms and aquaria (Thoney and Hargis 
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1991). This group of parasites usually lead to high morbidity and mortality of cultured fish stocks, 

which in turn cause major economic losses in commercial aquaculture farms (Buchmann and 

Bresciani 2006). Monogenean parasites can cause mortality directly or indirectly by triggering 

secondary infections associated with bacterial and viral pathogens introduced by these flatworms 

(Rubio-Godoy 2007). It has been documented that the feeding and attachment modes of monogenea 

can have an adverse effect on the tissues of infected hosts, including erosion of skin epithelia, 

thinning of the epidermis, vacuolar degeneration and infiltration of mononuclear cells, hypertrophy 

and cell proliferation (Buchmann and Bresciani 2006; Rubio-Godoy 2007). 

The first account of a monogenean parasite registered on a siganid was of the genus 

Tetrancistrum Goto & Kikuchi, 1917 to accommodate a species of a monopisthocotylean 

monogenean collected from the gills of S. fuscescens (Goto and Kikuchi 1917). Since then, seven 

members of this genus were reported from other siganids from various localities (Paperna 1972; 

Young 1986; Martens and Moens 1995; Kritsky et al. 2007b). More recently, two additional 

ancyrocephalid genera were reported exclusively from siganids (Lim 2002; Kritsky et al. 2007a): 

Glyphidohaptor Kritsky, Galli & Yang, 2007 and Pseudohaliotrema Yamaguti, 1953. Several 

members of the Polyopisthocotylean monogenean genus, Polylabris Euzet & Cauwet, 1967, were 

also described from gills of siganids: Polylabris sigani Dillon, Hargis & Harrises, 1983 from 

Siganus oramin (= S. canaliculatus) and P. mamaevi Ogawa & Egusa, 1980 from S. stellatus 

(Tingbao et al. 2007). P. bengalensis Sailaja & Madhavi, 2011 was recently described from S. 

canaliculatus and S. javus (Sailaja and Madhavi 2011). In addition, unidentified gyrodactylids 

species were reported from the Red Sea (Diamant and Paperna 1984). A new genus of viviparous 

marine gyrodactylid, Acanthoplacatus Ernst, Jones & Whittington, 2001, was erected to 

accommodate seven species of gyrodactylids detected on the fins and skin of siganid fishes 

collected from the Great Barrier Reef, Australia (Ernst et al. 2001). 

1.5.3 The Digenea  

Digenea is a subclass of the phylum Platyhelminthes, comprising the most speciose group of 

metazoan endoparasites, consisting of more than 2500 nominal genera and 18 000 registered 

species, according to a database compiled by the Natural History Museum in London (Cribb 2001; 

Gibson 2006). Digenea are taxonomically divided into three groups, based on the morphology of 

their cercariae: Strigeida, Echinostomatidae and Plagiorchiidae (Gibson 2006). The majority of 
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digeneans inhabits the gastrointestinal tract of their fish hosts, but may also occur in various other 

body cavities, organs, and tissues (Gibson 2006). These worms have a complex life cycle that 

typically involves a mollusc, a second intermediate host being either an invertebrate or a vertebrate, 

and a final, definitive host which is always a vertebrate (Cribb et al. 2001). An exception to this 

rule are species of the genus Aporocotyle, which require a polychaete annelid for larval 

development (Paperna and Dzikowski 2006).  

Adult intestinal digeneans are generally considered harmless to their hosts even when they 

are encountered in high numbers (Paperna and Dzikowski 2006). On the other hand, extra-

intestinal digeneans, such as blood flukes, are potentially highly pathogenic and might cause high 

mortalities to their hosts (Paperna and Dzikowski 2006; Ogawa 2014). Moreover, some digenetic 

infections can affect the marketability of fish by producing obvious damage to their host’s external 

surface or by producing cysts in the muscles and skin, which both render the fish undesirable to 

consumers (Paperna and Dzikowski 2006). Digeneans are the most extensively investigated group 

of marine parasites infecting siganids. To date, 27 species of digenea in 18 genera and nine families 

have been reported from siganids (Yamaguti 1953, Madhavi 1972; Diamant and Paperna 1986; 

Barker et al. 1993: Bray and Cribb 1996; Arthur and Lumanlan-Mayo 1997; Bray and Cribb 2000; 

Bray and Cribb 2001; Hall and Cribb 2004; Shih et al. 2004; Hassanine and Gibson 2005; Al-

Jahdali and Hassanine 2012).  

1.6 Objectives 

1. The investigated siganid Siganus canaliculatus harbours a rich parasite fauna, including 

species new to science.  

2. The parasite fauna of Siganus canaliculatus from Omani waters is similar to the parasite 

fauna of the siganids from other regions. 

3. Importance of S. canaliculatus in the life cycle of aquatic parasites 

4. New host and locality records from the Sultanate of Oman extend the range of distribution 

of Indian Ocean parasites into the Persian Gulf, Gulf of Oman and the Arabian Sea.  

5. The parasite infracommunity of Siganus canaliculatus is influenced by the three different 

water bodies, Persian Gulf, Gulf of Oman, and the Arabian Sea. 

6. Parasites of Siganus canaliculatus in Omani waters can be used as biological indicators for 

environmental health in the region 
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7. Several parasites species from Siganus canaliculatus are of fisheries and mariculture 

importance.  

1.7 Thesis structure 

This thesis consists of seven chapters. Chapter one introduces the concept of parasitism in 

nature and discusses general terminology and important definitions concerning Parasitology. This 

is followed by an overview into the field of marine parasitology and the different aspects that are 

intertwined within this multifaceted field of science. The history of marine parasitology in the 

Sultanate of Oman is briefly discussed. Information about the oceanographical condition of the 

study area are provided. General information regarding the marine teleost family Siganidae are 

given including, geographical distribution, importance to fisheries, feasibility for mariculture both 

globally and locally. This is followed by a summary on some fish parasites reported from siganids, 

with an emphasis on three major parasite groups. Chapter two deals with the description of a new 

myxosporean parasite belonging to the genus Unicapsula. Morphological, ultrastructural, and 

molecular methods are used to identify Unicapsula fatimae n. sp. within the genus. In chapter 

three two species of the ancyrocephalid monogeneans are reported from the investigated host, one 

as a new species to science and the other as a new host and locality records from the waters of 

Oman.  

Comparative morphological analysis using light and laser confocal microscopy were used to 

identify and describe Tetrancistrum labyrinthus n. sp. infecting the gills of S. canaliculatus. In 

chapter four, a combination of morphological and molecular methods was used to describe the 

ancyrocephalid monogenean Glyphidohaptor safiensis n. sp. infecting the gills of S. canaliculatus. 

The chapter provides new molecular data on ancyrocephalid monogenea and sheds light on the 

phylogenetic relationships of siganid ancyrocephalid and other closely related marine 

ancyrocephalid. The digenean fauna of siganids is discussed in chapter five with a taxonomic 

description of a new digenean species Hysterolecithoides amurparuchinii n. sp. together with 

molecular data of the small subunit DNA region. The new species is the third species to be reported 

from a siganid host. In chapter six, ecological analysis of parasitological data obtained from S. 

canaliculatus and multivariate statistical methods were used to evaluate the marine environment in 

Oman. For the first time star graphs based on 12 parasitological descriptors were constructed to 

visualize environmental condition of the investigated localities.  
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A general discussion is provided in chapter seven which includes the diversity and 

composition of S. canaliculatus parasite fauna, insights into the zoogeographical distribution of the 

parasites reported from S. canaliculatus and other siganids. Chapter seven also discusses the 

potential risk of some parasites as a threat in the sustainability of S. canaliculatus mariculture 

industry. In chapter eight the future prospect of marine parasitology and obstacles hindering its 

development were discussed. Possible solutions to overcome these obstacles are also suggested. In 

summary, the work conducted in the present thesis is one of its kind in the region which provides 

detailed information on parasite fauna of an herbivorous marine host and establishes a baseline for 

a host-parasite database on the country. The findings of this thesis will contribute in the ongoing 

monitoring of marine environment in Omani waters and will aid in the detection of potential 

pathogens that could impact the development of the mariculture industry in the country.  
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2 Morphological, ultrastructural, and molecular description of Unicapsula 

fatimae n. sp. (Myxosporea: Trilosporidae) of white-spotted rabbitfish 

(Siganus canaliculatus) in Omani waters 

Abstract 

Investigations regarding the parasite fauna of wild white-spotted rabbitfish (Siganus canaliculatus) 

Park, 1797 revealed white, spherical, loosely attached cysts measuring 896 (375-1406) μm in 

diameter in the inner endothelial wall of the oesophagus and stomach. Mature spores inside these 

cysts corresponded to the original description of spores belonging to the genus Unicapsula Davis, 

1924. Unicapsula fatimae n. sp. spores were 6.23 (5.60-6.60) μm in length and 6.80 (6.12-7.39) 

μm in width. The length of large polar capsule was 2.62 (2.18-2.97) μm and width was 2.65 (2.32-

2.90) μm, and the extended large polar capsule filament length was 15.50 (11.71-19.99) μm. 

Transmission electron microscope images of the plasmodia revealed a complex cyst structure that 

was unique among other Unicapsula spp. Ultrastructural details of the host-parasite interface and 

developmental stages of a species from the Unicapsula genus are described for the first time. 

Histology of an infected oesophagus revealed some abnormalities and changes in the host tissue 

around the infection site, including hypertrophy of host oesophagus epithelial cells and hyperplasia 

of host glandular tubules. The parasite presented here has been added to the genus Unicapsula 

using comparative morphological analysis and ultrastructural investigations supported by small 

subunit ribosomal DNA (SSU) molecular analysis. 

 

1 

 

 

 

                                                 
1 This was published as: Al-Jufaili S.H., Freeman M.A., Al-Nabhani A., Machkevskyi V.K. & Palm H.W. (2015). 

Morphological, ultrastructural, and molecular description of Unicapsula fatimae n. sp. (Myxosporea: Trilosporidae) 

of whitespotted rabbitfish (Siganus canaliculatus) in Omani waters. Parasitology Research, 115(3):1173-84. 
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2.1 Introduction 

Myxosporea are a class of fascinating, microscopic, metazoan aquatic parasites belonging to 

phylum Cnidaria (Kent et al. 2001; Lom and Dykova 2006). Since their discovery, they have 

attracted much attention because of their mysterious and complex life cycles (Anderson et al. 2000; 

Marton and Eszterbauer 2011), enigmatic phylogeny (Whipps et al. 2004; Fiala 2006; Evans et al. 

2010), and negative impact and pathogenicity on wild (Yokoyama and Itoh 2005; Burger et al. 

2008; Dykova et al. 2011; Buchmann et al. 2012) and cultured (Katharios et al. 2014; Tossavi et 

al. 2015; Yuan et al. 2015) fish stocks. Although extensively investigated among various marine 

and freshwater fish hosts, there are few valid records of myxosporean parasites infecting wild and 

reared siganids worldwide. These are limited to few records from the Egyptian, Saudi Arabian, and 

Israeli coasts of the Red Sea. The highly pathogenic Zschokkella icterica s Diamant & Paperna 

1992 was reported in the gallbladder of wild Siganus luridus, Siganus rivulatus, and Siganus 

argenteus in Israel (Diamant and Paperna 1986; Diamant 1992). Zschokkella helmii Abdel-Ghaffar, 

Ali, Al Quraishy, Entzeroth, Abdel-Baki, Al Farraj & Bashtar 2008 was recorded from the gall 

bladder of S. rivulatus from the Red Sea, Egypt (Abdel-Ghaffar et al. 2008).  

Some unidentified ceratomyxids were observed from the gallbladder of S. rivulatus from 

Israel (Diamant 2010) and Egypt (Abdel-Ghaffar et al. 2008). An unidentified Ortholinea species 

from the urinary bladder of S. rivulatus caught off Israeli waters (Diamant 2010) and Ortholinea 

saudii Abdel-Azeem, Abdel-Baki, Soliman, Saleh, Al-Quraishy & El-Matbouli, 2015 was isolated 

from the kidney of S. rivulatus from the Kingdom of Saudi Arabia off the Red Sea (Abdel-Baki et 

al. 2015). To date, the only multivalvulid myxosporean reported from a siganid is Kudoa iwatai 

Egusa & Shiomitsu, 1983, a species known to cause systematic infection in cultured S. rivulatus 

from Israel (Diamant et al. 2005; Diamant 2010). Members of the genus Unicapsula Davis, 1924 

are multivalvulids belonging to the family Trilosporidae, which accommodate myxosporean 

parasites that have three valves, each bearing a polar capsule (Lom and Dykova 2006). Unicapsula 

species are unique among other Trilosporidae because only one of the three polar capsules is fully 

developed and functional, whereas the remaining two are rudimentary and barely visible (Alama-

Berjamo et al. 2009; Miller and Adlard 2013).  

Since the description of the genus and the type species a total of 12 species of Unicapsula 

have been recorded from different localities and a wide range of marine host species (Naidjenova 
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and Zaika 1970; Schubert et al. 1975; Sarkar 1984; Sarkar 1999; Diebakate et al. 1999; Miller and 

Adlard 2013; Tomochi et al. 2014).  

Similar to their closely related group, the Kudoidae, some members of Unicapsula have been 

associated with negative impact on their hosts mostly associated with aesthetic issues involving 

macroscopic pseudocysts or myoliquefaction (Lester 1982; Alama-Berjamo et al. 2009; Miller and 

Adlard 2013). Although the majority of species belonging to this genus has been detected from the 

musculature (Miller and Adlard 2013; Tomochi et al. 2014), some have been detected from other 

organs such as the gills (Diebakate et al. 1999), kidney (Sarkar 1999), and urinary bladder 

(Naidjenova and Zaika 1970). Although marine parasitological investigations in the Arabian 

Peninsula region dates to the 1980s, the investigation of myxosporean parasite fauna only started 

recently. This results in the description of several new species being recorded from various marine 

hosts, caught off the coasts of the Kingdom of Saudi Arabia (Red Sea and Arabian Gulf) (Zhang 

et al. 2014; Mansour et al. 2014; 2015a; 2015b). The present study describes a new species of 

Unicapsula using morphological, ultrastructural, histological, and molecular characterization, 

infecting the oesophagus and stomach endothelium of S. canaliculatus. 

2.2 Material and methods 

2.2.1 Host sampling 

Fish were bought as live or moribund from local fish markets and landing sites along the 

coast of the Sultanate of Oman from November to December 2012. Thirty-five fish were obtained 

from Khasab landing site measuring 22.5-36.5 cm in total length and 140-562.2 g in weight, 35 

fish from Dabba local fish market (24.1-37.4 cm total length, 169.6-660.8 g in weight), 35 fish 

from Sohar local fish market (24.5-42.5 cm total length, 233.5-976.5 g in weight), 35 fish from 

Muttrah local fish market (31-39 cm total length, 320.3-690.5 g in weight), 35 fish from Masirah 

landing site (29.5-40.7 cm total length, 355-963.6 g in weight), 35 fish from Lakbi landing site 

(25.1-34.4 cm total length, 207.6-465.5 g in weight), and 35 fish from Raysut local fish market 

(29.1-41.4 cm total length, 320.6-801.9 g in weight). Once obtained, individual fish were 

immediately placed in plastic bags, labelled, and transported to the laboratory on ice (4 °C) or as 

immediately frozen samples (-20 °C). Fish were either examined directly after arrival in the 

laboratory or stored at -40°C until further examination. Additional samples were obtained from 
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fresh fish from Salalah (year 2013) and Muscat (year 2014) and examined immediately for 

histology and EM analyses. 

2.2.2 Parasitological examination and parasite collection 

Thawed fish were dissected, and all organs and body fluids were examined for presence of 

ecto- and endoparasites (Palm and Bray 2014). For detection of myxosporean parasites, 

microscopic slides were prepared from smears of the brain, liver, kidney, spleen, contents of 

gallbladder, and urinary bladder, and were initially observed at ×200-400 magnification using a 

Zeiss Axio Scope. A1 compound microscope. The oesophagus, stomach, and intestine were cut 

open and examined for myxosporean cysts under Zeiss Stereo microscope (Discovery. V8). Gills 

were separated from the arches and observed under a stereomicroscope for cysts on the gill 

filaments. The operculum cover, buccal cavity, and abdominal cavity were examined through a 

magnifying daylight lamp at ×1.75 magnification (Daylight®). On the detection of cysts or free 

spores, their location, and numbers (for the cysts) were noted and their dimensions were obtained. 

2.2.3 Unicapsula n. sp. spore morphology and measurements 

Cysts that were detected from an infected oesophagus were photographed, and their diameter 

was measured using a Zeiss stereo microscope (Discovery. V8) equipped with an AxioCam HRc 

digital camera, using Axio Vision Rel. 4.8 software at ×1-×12 magnifications. Subsequently, 

individual cysts were separated from the infected tissues and a spore suspension was prepared by 

carefully disrupting the cysts using a sterile needle to release free spores in the physiological saline-

filled small Petri dish (30 mm in diameter). A drop of prepared spore suspension was placed on a 

microscopic slide and was studied using an Olympus BX63 compound light microscope, equipped 

with an Olympus DP72 digital camera. Spores were observed using Nomarski differential 

interference contrasting illumination at magnification of ×200-1600, using oil immersion to study 

and describe the morphology of mature spores.  

Several photomicrographs were obtained using Olympus CellDimension© imaging software 

to obtain measurements of mature spores according to Alama-Bermejo et al. (2009). In addition, 

spore apical length and width were obtained as shown in (Figure 2.1B). Measurements of polar 

filaments were obtained using the polyline function to obtain the most accurate full length of the 

polar filaments. Because the rudimentary polar capsules of Unicapsula spp. are difficult to observe 
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using light microscope, accurate measurements of the diameter rudimentary polar capsule were 

obtained from scanning electron microscopy (SEM) images only. 

 

Figure 2. 1 Line drawings depicting mature spores of Unicapsula fatimae n. sp. frontal view, (A) and apical view, 

(B). Scale bars A and B=5 μm 
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2.2.4 Histology and host–parasite relationship 

Infected and uninfected host oesophageal tissues with parasite cysts were fixed in either 

10% buffered formalin or Bouin fixative for histological analysis of the host-parasite interactions. 

Tissues were processed using standard histological techniques and 5-μm thick sections were 

produced using a microtome. Sections were stained with haematoxylin and eosin (H&E) to study 

the host inflammation response, and cover slips were applied using the mounting medium DePex. 

Further slides were studied, and photomicrographs were obtained and investigated for cyst 

structure, histopathology, and host-parasite interaction. 

2.2.5 Scanning electron microscopy imaging 

For SEM, spore suspensions in physiological saline were centrifuged in 1.5 ml eppendorf 

tubes at 2000 rpm for 5 min to allow sedimentation of the spores to the bottom of the tube. After 

the supernatant was removed, pelleted spores were prepared for SEM as follows. The spore pellet 

was fixed in 2.5% glutaraldehyde for a maximum of 3 h and was briefly vortexed to mix with the 

fixative. The fixed spore suspension was transferred to a syringe attached to a membrane filter 

holder and passed through a 13-mm diameter, 0.4-μm Whatman® nuclepore track-etch membrane 

filter, followed by two rinses in 100mMsodium cacodylate buffer pH 7.2, each for 15 min. Further, 

the spores were post-fixed in 1% osmium tetroxide in 100 mM sodium cacodylate buffer for 30 

min and were washed with distilled water for 15 min. The spores were dehydrated in an ascending 

series of ethanol (25, 50, 75, 95, and 100%), each for 5 min. The membrane was removed from the 

holder, critical point dried, mounted onto aluminium stubs, sputter coated with gold, and viewed 

with a Jeol JSM 5600 LV SEM microscope at 60 Kv. 

2.2.6 Transmission electron microscopy imaging 

Isolated cysts were fixed with 2.5% glutaraldehyde in 1.0 M phosphate buffer (pH7.4) and 

were washed several times with the same buffer. The washed cysts were post-fixed in osmium 

tetroxide in 1.0 M phosphate buffer and dehydrated in an ascending acetone series from 30 to 100 

%. The cysts were embedded in epoxypropane by adding a 1:1 ratio of epoxy resin and acetone, 

1:3 ratio of epoxy resin and acetone ratio, and full-strength epoxy resin three times. The cysts were 

transferred to fresh resin in molds and dried for 48 h at 60 °C. Semithin sections were obtained 

from the cysts and were stained with 1 % toluidine blue for 1 min and mounted. Once the desired 

region of the cysts was observed, ultrathin sections were cut, mounted on grids, and stained with 
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uranyl acetate and lead citrate. Grids were examined in a JEM 2100F field emission electron 

microscope (JEOL Ltd). 

2.2.7 DNA analysis and phylogeny 

Infected tissues and parasite cysts were fixed in 95% ethanol and given into DNA lysis buffer 

for molecular analyses. Total DNA was extracted using a GeneMATRIX DNA isolation kit (EURx, 

Poland) following the tissue protocol and used as templates in subsequent PCRs. Small subunit 

ribosomal DNA (SSU rDNA) of parasites was amplified using the general myxosporean primers 

according to the methodology described by Freeman et al. (2008) and the Kudoa-specific primers 

Kud-80f and Kud-730r (Kristmundsson and Freeman 2014), utilizing the same polymerase chain 

reaction (PCR) conditions. PCRs were conducted on parasite DNA from 4 fish and performed in 

triplicate. PCR products of the expected sizes were recovered using a GeneMATRIX PCR product 

extraction kit (EURx, Poland) and sequencing reactions were performed using BigDyeTM 

Terminator cycle sequencing chemistry, utilizing the same oligonucleotide primers that were used 

for the original PCRs.  

DNA sequencing was performed in forward and reverse directions for all PCR products, and 

nucleotide BLAST searches were performed for each sequence read to confirm a myxosporean 

origin (Zhang et al. 2000). Contiguous sequences were obtained manually using CLUSTAL X and 

BioEdit (Thompson et al. 1997; Hall 1999). CLUSTAL X was used for the initial SSU rDNA 

sequence alignments of the novel sequence and 19 other histozoic marine myxosporean parasites. 

Phylogenetic analyses were performed using the maximum likelihood methodology in PhyML 

(Guindon et al. 2010) with the automatic smart model selection [selection criterion: Akaike 

Information Criterion (AIC)], running the general time-reversible substitution model (GTR+G6+I) 

with 1000 bootstrap repeats. 

2.3 Results 

Whitish, spherical, loosely attached cysts measuring 896 (375-1406) μm in diameter (n=50) 

were detected from the oesophageal and stomach inner lining of several S. canaliculatus, caught 

off Omani waters. The cysts contained myxosporean spores that had similarities to those from the 

genus Unicapsula Davis 1924 (Lom and Dykova 2006; Alama- Bermejo et al. 2009). The infection 

intensity ranged from 1 to 18 cysts per hosts (Figure 2.1A-C 2A-C), with numerous cysts are of a 

sample from Muscat Governorate collected in 2014). In some cases, several empty cysts were 



47 

 

detected, which probably represented ruptured mature cysts (Figure 2.1 C). The cysts were detected 

in hosts from 5 out of 7 assigned sampling locations. The highest prevalence was from Al- Lakbi 

landing site with 17 of 35 examined fish infected. 

 

Figure 2. 2 A Heavily infected oesophagus of Siganus canaliculatus collected from Muttrah local fish market 

showing numerous Unicapsula fatimae n. sp. cysts (>100 cysts detected), (A). Close-up of a portion of the infected 

oesophagus showing the variable sizes of the cysts and several empty cysts, (B). C Magnified portion of the 

oesophagus showing two full cysts (asterisk) and two empty cysts (arrow heads), (C). Scale bar 3mm for B and 500 

μm for C. 

2.3.1 Taxonomical description 

U. fatimae n. sp. from oesophageal and stomach endothelium of white-spotted rabbitfish S. 

canaliculatus (Park). Based on the information obtained from the shape of cysts, morphological, 

ultrastructural, molecular data of mature spores, site of infection, tissues tropism, host type, and 

geographical locality, we confirm that the Unicapsula species described herein is unique among 

the previously described Unicapsula spp. 
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Class Myxosporea 

Order Multivalvulida 

Family Trilosporidae Shulman, 1959 

Genus Unicapsula David, 1924 

Species U. fatimae n. sp. 

Type host: S. canaliculatus Park, 1797 (Siganidae) 

Type locality: Dhofar Governorate (Raysut fish market), Arabian Sea, The Sultanate of Oman 

Other localities: Al-Wusta Governorate (Al-Lakbi landing site), Al- Sharqiya Governorate 

(Masirah Island), Muscat Governorate (Muttrah fish market), and Musandam Governorate 

(Dabba landing site) 

Site of infection in the host: Myxosporean cysts attached to the endothelium lining of host 

oesophagus and stomach. 

Prevalence: 11 out of 35 from Dhofar Governorate (31%), 17 out of 35 from Al-Wusta region 

(48.6%), 4 out of 35 from Al Sharqiya region (11%), 3 out of 35 from Muscat Governorate (8.6%), 

0 out of 35 from Sohar city, 2 out of 32 from Dabba (5.7%), and 0 out of 35 from Khasab city off 

the Persian Gulf. 

Material deposited: Glycerine–gelatine fixed spores on microscope slides MPM21011, 

MPM21012 and MPM 21013 

Etymology: The species name, fatimae, is given in honour of my mother Fatima Al-Jufaili for 

her never-ending support and tireless care throughout my life. 

Description 

The description is based on 41 individual mature spores from thawed material. Spores 

trifolium with one large functional semi-spherical polar capsule and two smaller rudimentary polar 

capsules that are sometimes visible using light microscope (Figure 2.3B). Sutural lines, which are 

not easy to observe with light microscope, divide the spore into three valves, one slightly larger 
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than the other two. Mature spores 6.23 (5.60-6.60) μm in length, 6.80 (6.12-7.39) μm in width. The 

large polar capsule length was 2.62 (2.18-2.97) μm and width was 2.65 (2.32-2.90) μm. The length 

of the extended large polar capsule filament (n=26; Figure 2.3C) was 15.50 (11.71-19.99) μm. 

Polar filament tapering sometimes double turns at the anterior part (Figure 2.3D). Turns of the large 

polar capsule filament were partially visible at ×1000 magnification with oil immersion; however, 

the number of turns was difficult to detect. Additional measurements were obtained from the spore 

apical view (Figure 2.1B); the apical length was 5.11 (4.45-5.76) μm and apical width was 5.41 

(4.45-6.26) μm. 

 

Figure 2. 3 Mature spores of Unicapsula fatimae n. sp., (A). Some mature spores of U. fatimae n. sp. with visible 

rudimentary polar capsules (arrows), (B). Apical view of U. fatimae n. sp. spores with extruded polar filament, (C). 

Extruded polar filament of U. fatimae n. sp. tapering to the anterior portion and with double turns (arrow heads), 

(D). Scale bar for all images =5 μm. 
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Remarks  

Morphological data obtained from this study showed that U. fatimae n. sp. was 

morphologically comparable to what is termed as the sub-spherical Unicapsula species that include 

Unicapsula andersenae Miller & Adlard, 2013, Unicapsula seriolae Lester, 1982, Unicapsula 

pflughfelderi Schubert, Sprague & Reinboth, 1975, Unicapsula galeata Naidjenova & Zaika, 1970, 

Unicapsula shulmani Aseeva & Krasin, 2001, Unicapsula pacifica Aseeva & Krasin, 2001, 

Unicapsula setoensis Tomochi, Li, Tran, Yanagida & Sato, 2014 and Unicapsula chirocentrusi 

Sarkar, 1984, and was morphologically distinct from all other Unicapsula species. U. andersenae 

from Argyrosomus japonicas (Temminck & Schlegel), Acanthopagrus australis (Günther); 

Eleutheronema tetradactylum (Shaw), Lutjanus russellii (Bleeker) and Sillago ciliata (Cuvier) 

from Australia was genetically the most closely related species to U. fatimae n. sp. in the BLAST 

search with approximately 97% similarity. However, spore size, diameter of the large polar 

capsule, and length of the polar filament of U. andersenae were considerably smaller compared to 

U. fatimae n. sp.  

In addition, the general shape of U. andersenae was more spherical compared to the trifolium 

shape of the new species. Although the general shape of U. seriolae is remarkably similar to U. 

fatimae n. sp., comparative morphological data revealed that the size of the polar capsule and polar 

filament of this species were much larger than those of U. fatimae n. sp. In addition, a comparison 

of the SEM images of the two parasites revealed that the rudimentary polar capsule of the former 

is located differently than in U. fatimae n. sp. Furthermore, molecular data, infection site, and type 

host differentiate U. seriolae from the new species. Spores of U. pflugfelderi were three fourth the 

size of U. fatimae n. sp. and the length of the extended polar filament was one half compared to U. 

fatimae n. sp. In addition, host type, infection site, and species locality further distinguish U. 

pflugfelderi from the new species. Because the description of U. galeata is poor, it was rather 

difficult to distinguish it from the new parasite species. However, superficial morphological 

comparison between the two species and site of infection for the new taxon (muscle tissue vs 

oesophagus tissue) and its host (Parupeneus ciliatus (Lacépède) vs S. canaliculatus) could be used 

to distinguish between the two species. Both U. shulmani and U. pacifica were excluded because 

of their larger spore size (U. shulmani 7.3-8.6 μm and U. pacifica 7.8-10.3 μm), type host 
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Albatrossia pectoralis (Gilbert), infection site (U. shulmani: urinary bladder and U. pacifica: 

muscles), and geographical locality.  

The recently described U. setoensis had a slightly smaller spore size and shorter polar 

filament compared with U. fatimae n. sp. However, spore shape with the permanently extended 

polar filament and shell valve arrangement of U. setoensis separates it from all previously recorded 

Unicapsula species and from the new taxon described herein. Finally, U. chirocentrusi can be 

differentiated from the new species by the general shape of the mature spore in addition to its site 

of infection and type of host. With regard to the remaining Unicapsula species, they can be easily 

distinguished from U. fatimae n. sp. by their unique spore shapes, infection site, and geographical 

locality U. pyramidata (Naidjenova and Zaika 1970), U. marquesi (Diebakate et al. 1999), U. 

muscularis (Davis 1924) and U. maxima (Sarkar 1999). Because most of the Unicapsula species 

are very simple in their spore morphology with a few that exhibit unique features, there is a 

requirement to re-describe some Unicapsula species and to include ultrastructural and molecular 

data to better understand and differentiate previously described species and facilitate identification 

of new ones. 

2.3.2 Scanning electron microscopy 

The sutural line is clearly visible and forms a Y shape on the frontal and dorsal view, dividing 

the three valves almost equally (Figure 2.4A). Rudimentary polar capsules were visible as leaf-

shaped protrusion structures immediately under the large polar capsule, measuring 0.8 (0.7-0.9) 

μm in diameter. Compared with the only available SEM images of two Unicapsula species, the 

rudimentary polar capsules were similar to those of U. pflugfelderi in their shape and size (Alama-

Bermejo et al. 2009). 
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Figure 2. 4 SEM images of the apical pole view of a mature spore, showing the position of the large functional polar 

capsule and two rudimentary polar capsules immediately below it. The capsulogenic cells bearing the rudimentary 

polar capsule can be seen as two protrusions that take a leaf shaped form, A. The sutural lines form a Y shape on 

both the apical pole and basal pole view dividing the three valves equally, B. Scale bar for A, B= 1.0 μm, 2.0 μm and 

1.0 μm, respectively. 

 

2.3.3 Transmission electron microscopy 

Semi-thin sections of the cysts revealed that they are divided into an endoplasm (EN; Figure 

2.5A) and ectoplasm (EC; Figure 2.5A). A thin layer of darkly stained fibrous membrane was 

located outside the ectoplasm (arrows). A wall of host-originated connective tissue (CT; Figure 

2.5A) is observed surrounding the plasmodia and separating it from host epithelial tissue (HT; 

Figure 2.5A); more details of the composition of host tissue complex surrounding the cysts is 

provided in the histology section. Ultrastructural details of the plasmodia observed using 

transmission electron microscope revealed more information regarding the composition of the 

membrane surrounding the ectoplasm (Figure 2.5B). The membrane was a multi-layered 

membrane unit that contained numerous branches or channels facing towards the ectoplasm. We 

assume that they could be pinocytotic channels (PiC) or passages that may aid in transporting 

nutrients into the plasmodia. These channels formed a web-like structure and contained several 

vacuoles of various sizes and shapes. In some areas, the host nucleus can be observed to be trapped 

in the complex membrane (Figure 2.5B). Immediately next to the complex membrane, the 

ectoplasmic region is observed containing several mitochondria and electron dense lipid droplets 

(Figure 2.5C).  
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Sporogenesis was asynchronous with both generative cells and presporogenic stages located 

at the periphery of the plasmodia and mature spores at the centre. The earliest stages of the parasites 

are single nucleated cells of various sizes (possibly generative cells). Pansporoblasts were also 

observed and young spores with capsular primordium and primordium of rudimentary polar 

capsules (Figure 2.5D) were seen in the ectoplasm region of the plasmodia. Mature spores were 

composed of three shell valves, one containing a large polar capsule possessing a fully functional 

polar filament and two contained two bodies, which were similar to the polar capsule; however, 

they were much smaller and had reduced polar filaments (Figure 2.6A). The polar capsule was 

composed of an inner lucent layer and an outer electron dense layer similar to other Unicapsula 

spp. and other myxosporean parasites.  

Electron dense bodies were detected near the opening of the polar capsule and anterior to the 

rudimentary polar capsules. It was not easy to determine the exact number of turns of the polar 

filament for this species; however, after studying several images, the number of turns was estimated 

to be between two and one half and three turns. The sporoplasm of this parasite contained what 

appeared to be two adjacent nuclei in a single sporoplasm (Figure 2.6C). A closer look at the 

sporoplasm and the two nuclei revealed the presence of another membrane surrounding one of the 

nuclei, which we think could be the second sporoplasm, as mentioned by earlier authors (Schubert 

et al. 1975; Lester 1982; Alama-Bermejo et al. 2009) (Figure 2.6D). 
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Figure 2. 5 Semi-thin section through a cyst showing the division of the cyst complex into several layers, the 

endoplasmic region (EN), ectoplasmic region (EC), peripheral membrane (arrows), connective tissue (CT), and host 

tissue (HT), (A). Ultrathin section of the plasmodia showing a close-up of the plasmodia and host interface with 

details of the peripheral membrane which is located between the ectoplasmic region and the connective tissue wall, 

(B); note the host cell (asterisk) with the nucleus (HN) trapped inside the membrane and the several arms or web- 

like structure which possibly could be pinocytotic channels (PiC), (C). Details of the ectoplasmic region with several 

single nucleus GC generative cells, PS Pansporoblasts, mi mitochondria, lipid droplets, and young spores. Young 

spore with a developing polar capsule or CP capsular primordium of the large polar capsule, (D). Furthermore, 

note the two structures (arrows), which appear to be primordium of the RCP rudimentary polar capsules, (D). Scale 

bar for B, C, D=1.0, 2.0, and 1.0 μm, respectively. 



55 

 

 

Figure 2. 6 Section through a mature spore showing the large polar capsule and the two rudimentary polar capsules 

with what appears to be a rudimentary polar filament, (A). Section through a mature polar capsule with the 

filaments showing 2 and half turns and the opening of the polar capsule, (B). Section through the sporoplasm of 

some mature spores showing the two adjacent nuclei, (C). Close-up of the sporoplasm showing the two nuclei and 

indicating the second membrane which could be a secondary sporoplasm (arrow heads) within the main sporoplasm, 

(D). Scale bars: A - D=0.2 and C= 0.5 μm. 

 

2.3.4 Plasmodia gross morphology and histology 

The cysts of U. fatimae n. sp. were localized on the mucosal surface of the oesophagus and 

occasionally on the gastric mucosa. The gross morphology shows that the cysts were attached to 

the host using a stalk that appears pedunculated (Figure 2.7A, white arrowhead). The cyst itself 



56 

 

was surrounded with a layer of host-derived tissue and appeared to be loosely attached to the inner 

lumen of the host oesophagus (Figure 2.7A). Histological sections of infected tissues with the cysts 

revealed that the cyst is composed of a multiple, complex structure consisting of a layer of folded 

hypertrophic host epithelial cells, a wall of host connective tissue, and a fibrous membrane 

separating the plasmodia from the host connective tissue. The function of the folded epithelial 

tissue layer is unknown, but its formation could be used by the parasite to protect itself and/ or to 

maintain a supply of nutrients to the plasmodia.  

Histology of the stalk structure showed that it is composed of host epithelial cells, glandular 

tubules, and connective tissue. No inflammatory reaction could be detected in histological sections; 

however, some abnormalities were observed in the host tissue near the site of the infection. The 

mucosal tissue near the cysts was thicker than the normal tissue distant from the cysts and showed 

hyperplasia of glandular tubules and epithelial cells accompanied by hypertrophy of epithelial cells. 

In addition, it appears that the cysts begin developing within the submucosa and glandular tubule 

region of the host oesophagus tissue. This observation is supported by observation of epithelial 

cells formed inside the glandular tubule regions and in some sections by the appearance of an island 

of host originated tissues (epithelial and glandular cells) observed in the submucosal region of the 

host oesophagus. 
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Figure 2. 7 Gross morphology of Unicapsula fatimae n. sp. Cyst showing part of the host oesophageal tissue, the 

stalk (peduncle) by which the parasite is attached on to the host tissue and the spherical plasmodia that is 

surrounded by host tissue (white arrow head), (A). Histological section through U. fatimae n. sp. host complex 

showing the structure of the oesophagus tissue near the infection site and the position of the stalk structure and cyst 

complex, (B). Close-up of the cyst complex showing the hypertrophic folded host oesophagus epithelial cells (HE) 

and glandular tubules (GT) that comprise the stalk formation, (C). The formation of an abnormal structure (asterisk) 

within the submucosal region of the oesophagus, (D). Scale bars: A= 500 μm, B=600 μm, and C= 400 μm. 
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2.3.5 DNA and molecular analysis 

An almost complete SSU rDNA sequence of 1653 bp was obtained for the U. fatimae n. sp. 

and the sequence was deposited in GenBank (Accession Number: KT894108). The sequences of 

the four strains of Unicapsula were 100 % identical. Submission to BLAST searches of the 

contiguous sequence showed that the closest relative in the databases were other Unicapsula spp. 

with similarities ranging between 90 and 98 %. The closest match was a sequence for Unicapsula 

sp. infecting the muscle of A. japonicus from Australia (GenBank Accession No. AY302725). The 

SSU rDNA of 20 histozoic marine myxosporeans were used for phylogenetic analysis and the 

maximum likelihood topology was based on 1828 informative characters to produce a tree (Figure 

2.8).  

The resulting tree showed that the Trilosporidae are robustly supported from node A, as a 

monophyletic sister group to the Kudoidae and, together, they form the Multivalvulida. All 

available sequences of Unicapsula spp. are fully supported and form node B within Trilosporidae. 

The new taxon is placed in a fully supported sister clade with Unicapsula fatimae n. sp. and U. 

andersenae forming a monophyletic group. In addition, both U. setoensis and U. pyramidata 

formed another monophyletic sister group within the Unicapsula. Basal to the Multivalvulida are 

the Monomyxidae and Gastromyxidae, Enteromyxum leei was used as an outgroup. 
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Figure 2. 8 Maximum likelihood topology of 20 histozoic marine myxosporean SSU rDNA sequences using PhyML. 

Tree shows the phylogenetic relationship between the species of Unicapsula based on the available Unicapsula and 

the closest matches of SSU rDNA sequences available on GenBank NCBI. Numbers at the nodes represent bootstrap 

support values; nodes with no numbers are fully supported. 

2.4 Discussion 

A comprehensive morphometric comparison of all described Unicapsula species supports 

the view that the species presented in this article is a novel addition to the genus. This is the first 

record of the genus Unicapsula in Omani waters. Compared with previously described Unicapsula 

species, U. fatimae sp. n. is the only species among them to be found infecting the smooth muscles 

of a fish and the only one that forms spherical cysts. These two features alone strongly distinguish 

the new taxon from all previously described species. Further details of morphological features 

obtained through light microscopy and electron microscopy distinguish the new parasite from its 

congeners. Some ultrastructural details regarding Unicapsula species were provided by Schubert 

et al. (1975), Lester (1982), and Alama-Bermejo et al. (2009), both Schubert et al. (1975) and 
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Alama-Bermejo et al. (2009) stated that the plasmodia of their respective Unicapsula species were 

divided into ectoplasmic and endoplasmic regions, whereas the ultrastructural description of Lester 

(1982) lacked such information. Similar to what has been described for the Unicapsula species and 

other histozoic myxosporeans (Ali et al. 2003; Azevedo et al. 2013), the plasmodia of U. fatimae 

n. sp. were divided into ectoplasmic and endoplasmic regions. However, unlike what is known 

from its congeners, it exhibited a more complex structure and contained cytoplasmic organelles 

and generative cells of the parasite, whereas Alama-Bermejo et al. (2009) described the 

ectoplasmic region of U. pflugfelderi as being smooth. In his description of U. pflugfelderi, 

Schubert et al. (1975) mentioned brief information with respect to the host–parasite interface, 

where he noted some channels near the periphery of the ectoplasm that were suggested to be 

pinocytotic channels.  

Investigations regarding the host–parasite interface in myxosporean infections in fish were 

reported extensively for the genera Myxobolus (Ali et al. 2003; Milanin et al. 2010) and Henneguya 

(Matos et al. 2005; Lovy et al. 2015). These studies report the presence of a fibrous single or double 

membrane unit with some pinocytotic activity at the periphery of the ectoplasm, and the appearance 

of several vesicles or vacuoles within the membrane and observation of some host cells in the 

vicinity of the membrane. For the first time, the present study presents some details regarding the 

host–parasite interface membrane reported from the genus Unicapsula. Similar to what has been 

reported by these authors, U. fatimae n. sp. plasmodia had a fibrous membrane separating the 

plasmodia from the host tissue. The membrane of this parasite was complex and had a rather 

extensive network of web-like structures near the ectoplasmic region. Because many vesicles were 

observed on the membrane and supported by the occasional presence of host cells trapped in the 

membrane, U. fatimae n. sp. plasmodia may feed off host cells via the process of pinocytosis.  

Ultrastructure studies of U. fatimae n. sp. plasmodia revealed information regarding the 

developmental stages of this new parasite that were similar to what is known to other myxosporean 

parasites (Ali et al. 2003; Adriano et al. 2009). This is the first description of developmental stages 

from a species in the genus Unicapsula. The earliest stages that could be seen were of single 

nucleated cells, which could be generative cells. From what was observed, it appears that 

sporogenesis was achieved by cell in cell development of generative cells to form a pansporoblast.  
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This form of spore development was similar to what is observed in other myxosporean 

parasites (Abdel-Baki et al. 2015). The capsular primordium of the large polar capsule was 

observed in young spores often without any signs of formation of the rudimentary polar capsule. 

This could indicate that the formation of the larger polar capsules precedes the formation of a 

rudimentary polar capsule. Details of mature spores agreed to what has been described for other 

Unicapsula species (Schubert et al. 1975; Diebakate et al. 1999; Lester 1982 and Alama-Bermejo 

et al. 2009). The aforementioned authors recorded the presence of two sporoplasms in the 

respective Unicapsula species in their articles. In the present study, two nuclei were observed to 

be adjacent to each other, with one of them included in a membrane within the sporoplasm. We 

think that this is similar to what was described in the abovementioned studies, although slightly 

different. This feature of the sporoplasm may be a genus specific feature, which is exhibited only 

in Unicapsula species.  

Histological investigations of the infected oesophagus tissue did not reveal any inflammatory 

response induced by the parasite at the site of infection. However, the formation of the cyst complex 

and plasmodia peduncle induced some notable abnormalities in the host tissue; these changes could 

possibly impair the function of oesophageal tissue. The possible negative impact of U. fatimae n. 

sp. on its host could also be emphasized by the high intensity of parasites noted on some hosts with 

>100 cysts recorded in one host (samples collected from Muttrah city in 2014). In addition, the 

occurrence of several “empty” cysts indicates the release of mature spores into the lumen of the 

host oesophagus, suggesting a possibility of parasite dispersion within the same host in the case of 

a direct life cycle. Further histological investigations are required to confirm the impact of this 

parasite on the host. Because S. canaliculatus is intended as a suitable candidate for the aquaculture 

industry in the Sultanate of Oman, a high prevalence and intensity of this parasite could be a 

possible to the future development of sustainable aquaculture in Oman. 
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3 Species of Tetrancistrum Goto & Kikuchi, 1917 (Monogenea: 

Ancyrocephalidae) from the gills of the white-spotted rabbitfish, Siganus 

canaliculatus (Park) (Perciformes: Siganidae) off Omani coasts, with a 

description of Tetrancistrum labyrinthus n. sp. 

Abstract 

Tetrancistrum labyrinthus n. sp. is described from the gills of the marine herbivorous fish Siganus 

canaliculatus (Park) found in the Western Indian Ocean (Sea of Oman and Arabian Sea). 

Comparative morphological analyses of all previously described species of Tetrancistrum Goto & 

Kikuchi, 1917 confirmed the distinct status of T. labyrinthus n. sp. The new species closely 

resembles T. suezicum Paperna, 1972 and T. oraminii Young, 1967 in the morphology of the male 

copulatory organ. However, it can be distinguished by possessing a thin handle-like anterior basal 

flange and a compound accessory piece that is composed of a tapering rod-shaped anterior part and 

a large cylindrical, elongated posterior part. The new species can be further distinguished from 

other Tetrancistrum species by its highly sclerotized and complex disc-shaped vaginal vestibule. 

This is the first record of Tetrancistrum from the Sea of Oman and Arabian Sea, and the fourth of 

nominal species of Tetrancistrum known to parasitize Siganus canaliculatus (Park). In addition, T. 

indicum Paperna, 1972 is re-described here with an updated locality record. 

 

 

 

 

 

2 

                                                 
2 This was published as: Al-Jufaili S.H. & Palm H.W. (2017). Species of Tetrancistrum Goto & Kikuchi, 1917 

(Monogenea: Dactylogyridae) from the gills of the whitespotted rabbitfish, Siganus canaliculatus (Park) 

(Perciformes: Siganidae) off Omani coasts, with a description of Tetrancistrum labyrinthus n. sp. Systematic 

Parasitology, 94(7):809-818. 
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3.1 Introduction 

The Siganidae is a small family of marine fishes commonly known as rabbitfishes 

(Perciformes: Siganidae) that inhabit coral reefs in the tropical and subtropical Indo-Pacific region 

(Woodland 1990). Species of three genera of ancyrocephalid monogeneans are known to infect 

rabbitfishes: Tetrancistrum Goto & Kikuchi, 1917; Glyphidohaptor Kritsky, Galli & Yang, 2007 

and Pseudohaliotrema Yamaguti, 1953 (see Kritsky et al. 2007a). Tetrancistrum was the first genus 

of ancyrocephalid reported from a siganid host (Goto and Kikuchi 1917). The genus was erected 

to accommodate T. sigani Goto & Kikuchi, 1917 recorded from Siganus fuscescens (Houttuyn) off 

Japan and towards the Philippines (see Kritsky et al. 2007b). This was followed by the description 

of T. nasonis Young, 1967 and T. oraminii Young, 1967 from the gills of species of the 

Acanthuridae and Siganidae, respectively, in Australian waters, and the placement of T. fusiforme 

(Yamaguti 1953) [formerly Pseudohaliotrema (Pseudohaliotrematoides) fusiforme Yamaguti, 

1953] to the genus (Young 1967). In their revision of the genus, Kritsky et al. (2007b) placed in 

Tetrancistrum four species of Pseudancyrocephalus Yamaguti, 1968. In addition, Kritsky et al. 

(2007b) elevated Pseudohaliotrematoides polymorphus eilaticus Paperna, 1972, P. polymorphus 

indicus Paperna, 1972 and P. polymorphus suezicus Paperna, 1972 all reported from off East Africa 

and the Red Sea to species rank and transferred them to Tetrancistrum. 

Currently, the genus includes 16 species from Indian-Pacific waters, nine of which were 

isolated from siganids, five from acanthurids (Perciformes: Acanthuridae) and two from lutjanids 

(Perciformes: Lutjanidae) (Kritsky et al. 2007b). During a comprehensive investigation of the 

parasite fauna of S. canaliculatus from Omani waters, two species of Tetrancistrum were recovered 

from the gills. This is the first report of the genus Tetrancistrum from the waters of Oman and an 

expansion of the locality range for T. indicum Paperna, 1972. The present study aims to provide a 

morphological description of a new species of Tetrancistrum based on the general morphology and 

morphometric analysis of the male copulatory organ (MCO) and haptoral armaments. The 

information obtained within the framework of this study justifies the recognition of T. labyrinthus 

n. sp.  
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3.2 Materials and methods 

3.2.1 Sample collection and processing  

Between November and December 2012, 245 white-spotted rabbitfish, Siganus 

canaliculatus, were purchased alive from local fishermen along the coasts of the Sultanate of 

Oman. Thirty-five fish were purchased from each of seven locations: Khasab fishing harbour 

(26.1644°N, 56.2426°E); Dabba fish market (25.6365°N, 56.2538°E); Sohar fish market 

(56.7075°N, 24.3461°E); Muscat fish market (23.5859°N, 58.4059°E); Masirah Island fishing 

harbour (20.3173°N, 58.6916°E); Al-Lakbi fishing harbour (18.113°N, 56.3255°E); and Raysut 

fish market (16.9698°N, 53.9814°E). The fish were morphologically identified using the guidelines 

of Randall (1995) and FAO identification sheets (FAO 1983). The gills were excised from the fish, 

then gill arches were separated and placed in a small Petri dish filled with filtered seawater and 

examined under a dissecting microscope. Parasites were detached from the gill filaments using a 

fine needle and kept in filtered sea water at 4°C until fixation. 

3.2.2 Morphological investigation 

Entire ancyrocephalid were fixed (unflattened) using AFA (alcohol: formalin: acetic acid) or 

4% neutral buffered formalin. Fixed specimens were stained overnight with Mayer’s paracarmine, 

differentiated with drops of acid alcohol solution (70% ethanol with 3% HCL), dehydrated in a 

graded ethanol series (70-100%), cleared in clove oil and mounted in Canada balsam. To study 

sclerotized structures, whole mounts were prepared using compressed, unfixed samples stained 

with acetocarmine (Machkevskyi et al. 2013). Measurements are in micrometres and are given as 

the range followed by the mean and the number (n) of structures measured in parentheses. Body 

length includes the haptor. Measurements of the copulatory complex, anchors and hooks, as well 

as the description of the new species are according to Kritsky et al. (2007b). Illustrations were 

prepared with the aid of a camera lucida attached to an Olympus BX63 motorized compound light 

microscope with differential interference contrast (DIC) optics and were digitalized using Adobe 

illustrator CC 2015.3 and the program Inkscape 0.48.2.-1 (Scalable Vector Graphics 2011). 

3.2.3 Comparative morphological analysis 

Voucher specimens were obtained from the Natural History Museum, London, UK (T. sigani, 

BMNH 1992.7.28.90-92; T. polymorphum Paperna, 1972, BMNH 2007.1.3.46-48; and T. suezicum 

Paperna, 1972, BMNH 2007.1.3.43), Meguro Parasitology Museum, Tokyo, Japan (T. sigani, 
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MPM 18853; T. polymorphum, MPM 18851; T. strophosolenus Kritsky, Galli & Yang, 2007, MPM 

18850; and T. suezicum, MPM 18854) and Queensland Museum Brisbane, Australia (T. sigani, 

QMG225792 and QMG227593). In addition, micrographs of parasites were obtained from the US 

National Parasite Collection, Beltsville, Maryland for comparison (T. yamaguti Kritsky, Galli & 

Yang 2007, MPM 23010), and T. fusiforme Yamaguti, 1953 (USNPC 99363). 

3.2.4 Confocal microscopy 

Several 95% ethanol-fixed specimens were examined using a confocal laser scanning 

microscope following the procedure described in Galli et al. (2006) and Marchiori et al. (2015). 

The images were obtained using a Leica TCS SP2 confocal microscope equipped with an inverted 

Leica DMIRE2 microscope and a PL APO 363 oil immersion objective (numerical aperture 5 1.4) 

at the Live Cell Imaging Centre, Department of Biology, Rostock University. 

3.3 Results  

Family Ancyrocephalidae Bychowsky & Nagibina, 1968 

Genus Tetrancistrum Goto & Kikuchi, 1917 

Tetrancistrum labyrinthus n. sp. 

Type-host: Siganus canaliculatus (Park) (Perciformes: Siganidae), white-spotted rabbitfish. Type-

locality: Sea of Oman, off Muscat City (23.0000°N, 58.0000°E), Sultanate of Oman. Other 

localities: Sea of Oman, off Khasab fishing harbour (26.1644°N, 56.2426°E), Dabba fish market 

(25.6365°N, 56.2538°E). Arabian Sea, off Masirah fishing harbour (20.4711°N, 58.8153°E), off 

Al-Lakbi fishing harbour (18.113°N, 56.3255°E); Raysut fish market (16.5500°N, 54.0100°E). 

Sultanate of Oman (November and December 2012). 

Type-material: Berlin Natural History Museum (ZMBE. 7436: the holotype; ZMBE. 7438: five 

paratypes; ZMBE. 7439: seven paratypes). Meguro Parasitology Museum, Tokyo, Japan (MPM. 

Coll. No. 20960: three paratypes). 

Site in host: Gills. 

Prevalence: Khasab fishing harbour: 29% (10 out of 35 fish); Dabba fish market: 77% (27 out of 

35 fish); Sohar fish market: 0% (0 out of 35 fish); Muscat fish market: 74% (26 out of 35 fish); 
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Masirah Island fishing harbour: 86% (30 out of 35 fish), Al-Lakbi fishing harbour: 88% (31 out of 

35 fish); and Raysut fish market: 94% (33 out of 35 fish). 

ZooBank registration: To comply with the regulations set out in article 8.5 of the amended 2012 

version of the International Code of Zoological Nomenclature (ICZN, 2012), details of the new 

species have been submitted to ZooBank. The Life Science Identifier (LSID) for Tetrancistrum 

labyrinthus n. sp. is urn:lsid: zoobank.org:act:CC65584E-3721-46EC-8A0C-D5D 66806D4A1. 

Etymology: The specific name (labyrinthus) refers to the disc-shaped, maze-like, complex vaginal 

vestibule that is unique to the species described herein. 

3.3.1 Description (figures 3.1, 3.2, 3.3) 

[Based on 23 specimens.] Body leaf-like; trunk broad; cephalic region and peduncle narrow, 

tapered. Body 1,142-2,190 (1,552; n = 23) long, with smooth tegument and greatest body width at 

base of germarium, 374-647 (465; n = 23). Cephalic lobes well developed; each head organ 

comprises several groupings of terminations of cephalic-gland ducts; large bilateral groups of 

cephalic glands present posterolateral to pharynx. Eyespots absent; accumulations of minute 

chromatic granules common; isolated granules scattered throughout cephalic region. Mouth 

midventral, subterminal at head organs, opens into buccal tube. Buccal tube extends posteriorly 

along midline to pharynx to form buccal cavity. Pharynx muscular, elongated, ovate, 58-113 x 48-

71 (79 x 60) (n = 21). Intestinal caeca bifurcating posterior to pharynx, with diverticula, terminating 

blindly posterior to gonads (difficult to observe in most specimens). 
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Figure 3. 1 Tetrancistrum labyrinthus n. sp. ex Siganus canaliculatus. (A), Holotype, ventral view; (B), Male 

copulatory organ, dorsal view; (C), Ventral anchor; (D), Dorsal anchor; (E), Ventral bar; (F), Dorsal bar. Scale-

bars: A, 500 µm; B, E, F, 20 µm; C, D, 10 µm 
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Germarium pretesticular, relatively large, flask shaped, 91-210 (154; n = 23) long, 116-210 

(163; n = 23) wide at base. Ootype receives vaginal duct and bilateral common vitelline ducts; 

uterus expands distally. Vaginal vestibule disc-shaped, heavily sclerotized, 36-62 (44; n = 23) wide. 

Vaginal vestibule composed of complicated, irregular network of rows (5-6) of stiffened, pointed 

structures (this sclerotized structure supports the opening of the vaginal aperture, which is a 

prominent cup-shaped muscular sack; Figure 3.3). Vaginal duct straight, slightly dilated in some 

specimens; vitellarium dense. Testis single, large, subspherical, 112-260 x 134-264 (223 x 197) 

(n= 23). Vas deferens leaving anteromedial region of testis, turning left to germarium; prostatic 

reservoirs large; seminal vesicle forming inverted ‘‘J’’ towards left side of copulatory complex; 2 

bulbous prostatic reservoirs dorsal to copulatory organ, each emptying into base of MCO via 

individual ducts. Copulatory complex comprising sigmoid MCO tube, a thin handle-like anterior 

basal flange (Figure 3.2), accessory piece marginally hinged with MCO comprising 2 connected 

parts, a tapering rod-shaped anterior part and a large cylindrical, elongated posterior part. 

Copulatory complex 75-111 (95; n = 23) long. 

 

Figure 3. 2 Photomicrographs of Tetrancistrum labyrinthus n. sp. ex Siganus canaliculatus. Male copulatory organ, 

dorsal view. Light microscope image;(A). Confocal microscope image, (B). Arrows indicate the handle-like anterior 

basal flange. Scale-bars: 20 µm 
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Figure 3. 3 Photomicrographs of Tetrancistrum labyrinthus n. sp. ex Siganus canaliculatus. Vaginal vestibule, 

ventral view. (A), Phase contrast image showing the disc shape of a flattened vaginal vestibule; (B), Carmine-stained 

specimen showing the rows (5-6) of the stiffened structures that make up the vaginal vestibule; (C), Confocal 

microscope image showing the complexity of the vaginal vestibule; (D), 3D-reconstruction of the vaginal vestibule 

showing the prominent cup-shaped vaginal pore. Scale-bars: 20µm. 

 

Haptor 54-216 (108; n = 23) long, 41-196 (66; n = 23) wide. Haptoral hooks absent. Ventral 

and dorsal anchors typical of the genus; ventral anchor 77-108 (91; n = 21) long, base 26-35 (33; 

n= 13) wide, dorsal anchor 75-115 (103; n = 20) long, base 21-32 (27; n = 15) wide. Dorsal anchor 
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with superficial root tip and delicate shaft. Ventral bar 18-33 (26; n = 22) long, stout, with inwardly 

pointed tips and protruding middle part, forming a ‘‘crab-shape’’. Dorsal bar straight, grooved with 

terminal expansions 20-39 (31; n = 23) long. 

Remarks 

Comparative analyses of available descriptions of Tetrancistrum spp. showed that the 

morphometric data of the newly described species are similar to those of its congeners. In addition, 

some features of the copulatory complex and haptoral structures in T. labyrinthus n. sp. are similar 

to those of both T. suezicum and T. oraminii. The major differences in the copulatory complex 

which sets T. labyrinthus n. sp. apart from T. suezicum and T. oraminii, are the shape of the MCO 

tube and the anterior basal flange, and the shape and composition of the accessory piece. The MCO 

of T. labyrinthus n. sp. closely resembles that of T. oraminii, with both having a flared and ruffled 

anterior opening. However, the MCO of T. labyrinthus n. sp. is sigmoid and shorter in comparison 

to the slender ‘‘J-shaped’’ MCO of T. oraminii. In addition, the copulatory complex of the new 

species can be distinguished from that in both T. oraminii and T. suezicum by possessing an 

accessory piece that is composed of two connected parts. Further, the shape of the anterior basal 

flange of the male copulatory organ of the new species and its unique vaginal vestibule are two 

additional features that separate T. labyrinthus n. sp. from all previously described congeners. 

Comprehensive analyses of all previous descriptions of Tetrancistrum spp., examination of several 

voucher specimens and laser confocal microscope images obtained in this study confirmed that this 

unique composition of the vaginal vestibule is only exhibited by T. labyrinthus n. sp. 

Tetrancistrum indicum Paperna, 1972 

Host: Siganus canaliculatus (Park) (Perciformes: Siganidae), white-spotted rabbitfish. 

Localities: Sea of Oman, off Khasab fish harbour (26.1644°N, 56.2426°E); Dabba fish market 

(25.6365°N, 56.2538°E); Muscat fish market (23.0000°N, 58.0000°E); Sohar fish market 

(56.7075°N, 24.3461°E). Arabian Sea, off Masirah fishing harbour (20.4711°N, 58.8153°E); off 

Al-Lakbi fishing harbour (18.113°N, 56.3255°E); Raysut fish market (16.5500°N; 54.0100°E), 

Sultanate of Oman (November and December 2012). Voucher material: Berlin Natural History 

Museum (ZMBE. 7437: three non-type specimens; ZMBE. 7440: five non-type specimens); 

Meguro Parasitology Museum (MPM. Coll. No. 20961: six non-type specimens). 
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Site in host: Gills. 

Prevalence: Khasab fishing harbour: 83% (29 out of 35); Dabba fish market: 71% (25 out of 35 

fish); Sohar fish market: 3% (1 out of 35 fish); Muscat fish market: 49% (17 out of 35 fish); 

Masirah fishing harbour: 89% (31 out of 35), Al-Lakbi fishing harbour: 97% (34 out of 35 fish); 

Raysut fish market: 100% (35 out of 35 fish). 

3.3.2 Description (Figures 3.4, 3.5, 3.6) 

[Based on 20 specimens.] Body fusiform in some specimens; trunk broad with distinct indent 

found in most specimens near vaginal vestibule opening; cephalic region and peduncle narrow, 

tapered. Body 1,571-2,600 (2,013; n = 20) long, tegument smooth. Greatest body width above level 

of germarium, 315-581 (462; n = 20). Cephalic lobes well developed; each head organ comprises 

several groupings of terminations of cephalic gland ducts. Mouth midventral, subterminal at level 

of head organs, opens into buccal tube. Buccal tube large, with large opening extending posteriorly 

along midline to pharynx, forming buccal cavity. Pharynx elongate, ovate, 82-153 x 53-101 (115 

x 76) (n = 20). Intestinal caeca bifurcating posterior to pharynx, with diverticula, terminating 

blindly posterior to gonads. Single pair of eyespots seen in some specimens; accumulations of 

minute subovate chromatic granules common; isolated granules scattered throughout cephalic 

region. 

Germarium pretesticular, conical, forming a cap anterior to testis, 222 (140-350; n = 20) long, 

87-217 (87; n = 20) wide at base. Ootype receives vaginal duct and bilateral common vitelline 

ducts; uterus expanded distally; vaginal vestibule elongated, slightly sclerotized tube with 

meandering vaginal duct; vitellarium dense. Testis small, subspherical, 216-290 x 139-231 (250 x 

200) (n = 20) wide; vas deferens leaving anteromedial region of testis, passing left to germarium; 

prostatic reservoirs small; seminal vesicle forming inverted ‘‘J’’ towards left side of copulatory 

complex; 2 bulbous prostatic reservoirs dorsal to copulatory organ, each emptying into base of 

MCO via an individual duct. Copulatory complex simple, comprising MCO, anterior basal flange 

and accessory piece, 103-165 (139; n = 20) long. Haptoral hooks absent in adults. Ventral and 

dorsal anchors typical of the genus; ventral anchor 93-104 (98; n = 17) long, base 22-34 (28; n = 

17) wide. Dorsal anchor 102-115 (108; n = 17) long, base 20-35 (29; n = 16) wide. Ventral bar 

short, 23-38 (29; n = 17), with inwardly pointed tips and protruding middle part forming a crab-

like shape. Dorsal bar straight, 24-44 (36; n = 17) long, with terminal expansions. 
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Figure 3. 4 Tetrancistrum indicum Paperna, 1972 ex Siganus canaliculatus. (A), Whole mount, ventral view; (B), 

Male copulatory organ, ventral view; (C), Ventral anchor; (D), Dorsal anchor; (E), Ventral bar; (F), Dorsal bar. 

Scale-bars: A, 500 lm; B, E, F, 20 µm; C, D, 10 µm 
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Remarks 

The second Tetrancistrum species isolated from the same hosts in this study was the largest 

of all previously described Tetrancistrum. Paperna (1972) described T. indicum as ‘‘very large 

worms’’ and provided a single length measurement (1,690 µm). In contrast, the measurements of 

the voucher specimens provided by Geets et al. (1997) were smaller (see Kritsky et al. 2007b). 

These differences could be due to the limited number of voucher specimens or the different method 

of whole-mount preparation used by the authors of the voucher slides. Thus, comparative 

morphological analysis was only possible for the male copulatory organ of both specimen sets. 

Specimens of both sets, i.e. the voucher specimens by Geets et al. (1997) and the specimens 

obtained in the present study, possess a heavily sclerotized ‘‘J-shaped’’ MCO tube, curved distally 

towards the anterior part of the tube. The anterior basal flange of the specimens from both sets is a 

foot-like structure engulfing the MCO tube. The accessory piece is composed of two connected 

pieces, a thick rod-shaped anterior piece and a short subquadrate posterior piece. In addition, 

flattened specimens prepared in this study showed some variations of the MCO tube (terminal flare 

of anterior portion) and in the posterior portion of the accessory piece that are similar to those 

depicted by Paperna (1972).  

This observation confirms the conclusion of Kritsky et al. (2007b) that variations of the T. 

indicum MCO is caused by different methods used for preparation of the whole mounts (Figure 

3.5). In conclusion, the description of T. indicum by Paperna (1972) and the analysis of the 

copulatory complex in the voucher specimens of Geets et al. (1997) (deposited as T. sigani and 

then considered as T. indicum by Kritsky et al. (2007b)) alongside the MCO of the present samples 

confirm that the specimens investigated herein are T. indicum. 
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Figure 3. 5 3D reconstructions of confocal microscope images of the male copulatory organ (MCO) of 

Tetrancistrum indicum showing variations of the MCO tube. Narrow MCO tube; (A). Wide and flared MCO tube, 

(B). Scale-bars: 20 µm. 

 

 

Figure 3. 6 Vaginal vestibule of Tetrancistrum indicum, ventral view. Photomicrograph of a stained specimen;(A). 

Line drawing showing the simplicity of the vaginal vestibule of T. indicum in comparison to the one depicted in T. 

labyrinthus n. sp., (B). (Figure 3. 3). Scale-bars: 100 µm. 
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3.4 Discussion 

Including the new species described in this study, Tetrancistrum currently contains 17 

species. Although members of Tetrancistrum share many similarities, they also exhibit great 

variations in their copulatory complexes, thus the description of new species relies heavily on the 

morphology of these structures. Tetrancistrum labyrinthus n. sp. described in the present study can 

be easily distinguished from its congeners by the shape and composition of the copulatory complex 

and by the unique vaginal vestibule. These two features of T. labyrinthus n. sp. remained constant 

in all specimens studied here, regardless of the method used for preparation of the whole mounts. 

Examination of various voucher specimens and the present material confirmed that these two 

features of T. labyrinthus n. sp. are unique to the new species and not a result of artefact, aberration, 

or misinterpretation of the current material. In addition, although the previous authors (Kritsky et 

al. 2007b) did not provide further details about the structure of the vaginal vestibule of other 

Tetrancistrum species, the vaginal vestibule of the species described in this study is a key feature 

that distinguishes it from all previously recorded Tetrancistrum spp. This conclusion is supported 

by the comparative examination of various voucher specimens and by laser confocal images 

obtained of the vaginal vestibule of the species described herein (Figure 3.5). 

Aside from two unconfirmed records of Tetrancistrum parasitizing lethrinids (Tetrancistrum 

lutiani Tubangui, 1931 and T. lebedevi Gupta & Sharma, 1982), members of Tetrancistrum seem 

to be limited to two teleost families, the Siganidae and Acanthuridae (see Kritsky et al. 2007b). 

These host families are closely related; both are assigned to the suborder Acanthuroidei, along with 

four other families (Tang et al. 1999). Siganidae are distributed in the Indo- Pacific region, and the 

family consists of a single genus and two subgenera (Woodland 1983; Randal and Kulbicki 2005) 

with a total of 29 known species (Froese and Pauly 2016). In comparison, the Acanthuridae is a 

larger family which includes eight genera and more than 80 known species (Sun et al. 2011). Young 

(1967) proposed that Tetrancistrum might be restricted to Siganidae and is only occasionally found 

on acanthurids. However, Kritsky et al. (2007b) suggested that Tetrancistrum likely originated 

from the Acanthuroidei. It is noteworthy that at least 29 species of acanthurids (mainly from family 

Zanclidae and genus Acanthurus) have been previously investigated for monogeneans, yielding 25 

species of Haliotrema Johnston & Tiegs, 1922 and no records of Tetrancistrum spp. (Sun et al. 

2007; Sun et al. 2011; 2015). Yet, the examination of only three members of the acanthurid genus 
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Naso (Lacépède) (see Young 1967; Kritsky et al. 2007b) resulted in the description of five species 

of Tetrancistrum.  

Similarly, the detailed host parasite checklist from Hawaiian fish lists three Naso species 

hosting five Tetrancistrum species while the other 15 sampled acanthurids were free of these 

monogeneans (Palm and Bray 2014). This might suggest that members of Tetrancistrum are 

restricted to the genus Naso within the acanthurids. However, the current knowledge of the host 

range and geographical distribution of Tetrancistrum is not sufficient to draw conclusions on the 

evolutionary history, geographical distribution, or host specificity of members of this 

ancyrocephalid genus. For example, some species of Tetrancistrum were reported from 

unidentified siganid hosts (Kritsky et al. 2007b), synonymy exists within the siganids (Froese and 

Pauly 2016) and only few members of the acanthurid genus Naso were investigated for 

ancyrocephalid monogeneans (Young 1967; Kritsky et al. 2007b; Palm and Bray 2014). Thus, 

examination of more Tetrancistrum from siganid hosts as well as from hosts of the genus Naso 

sampled from additional localities, revision of hosts that were reported to harbour Tetrancistrum 

and phylogenetic analyses of Tetrancistrum species is warranted. In addition, the fact that members 

of Tetrancistrum seem to be restricted to only two teleost genera (Siganus and Naso) from two 

different families, makes them of great interest for the study of host-parasite co-evolutionary 

relationships. 
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4 Glyphidohaptor safiensis n. sp. (Monogenea: Ancyrocephalidae) from the 

White-spotted rabbitfish Siganus canaliculatus (Park) (Perciformes: 

Siganidae) from Oman, with notes on its phylogenetic position within the 

Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968 

Abstract 

A new ancyrocephalid monogenean is described from the gills of wild White-spotted rabbitfish 

Siganus canaliculatus (Park) based on morphological and molecular analyses. Glyphidohaptor 

safiensis n. sp. can be distinguished from its congeners by its body size, the size and composition 

of its male copulatory organ (MCO) and the shape of ventral and dorsal anchors. The new species 

presents the largest body length and width among its congeners. Also, the MCO is the largest 

among Glyphidohaptor spp., though it most closely resembles that of Glyphidohaptor 

phractophallus. In comparison to G. phractophallus Kritsky, Galli & Yang, 2007, the MCO tube 

of the new species is less curved and equipped with a longer and narrower basal flange. The ventral 

and dorsal anchors of G. safiensis n. sp. have shorter roots compared with the congeners. Partial 

large subunit (LSU), small subunit (SSU) and complete internal transcribed spacer region 1 (ITS1) 

rDNA of the new species and two species of Tetrancistrum Goto & Kikuchi, 1917 from the same 

host and locality were sequenced and phylogenetically analysed. Comparison of the ITS1 rDNA 

sequences obtained for G. safiensis n. sp. with the only available sequence of another member of 

Glyphidohaptor yielded 99% similarity to G. plectocirra Paperna, 1972, confirming the generic 

identity of the species described herein. The LSU rDNA analysis grouped it with Tetrancistrum sp. 

from the gills of Siganus fuscescens from Australia, indicating a possible misidentification of the 

latter. Sequences of the SSU rDNA of the new species were most similar to Pseudohaliotrema 

sphincteroporus, demonstrating the close relatedness of these genera within the Ancyrocephalidae. 

This is the first record of the genus Glyphidohaptor from S. canaliculatus and from the Persian 

Gulf, the Gulf of Oman and the Arabian Sea. 

3 

                                                 
3 This article was submitted as: Al-Jufaili S.H., Machkevskyi V.K., Al-Kindi U.H. & Palm H.W. (submitted). 

Glyphidohaptor safiensis n. sp. (Monogenea: Ancyrocephalidae) from the White-spotted rabbitfish Siganus 

canaliculatus (Park) (Perciformes: Siganidae) from Oman, with notes on its phylogenetic position within the 

Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968. 
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4.1 Introduction 

The Siganidae is a monotypic family of inshore and reef-associated tropical and subtropical 

fishes consisting of 29 valid species, all from the Indo-Pacific region (Froese and Pauly 2018). 

Several authors have investigated the parasite fauna of siganids reporting high parasite diversity 

(e.g. Diamant and Paperna 1986; Martens and Moens 1995; Geets and Ollevier 1996; Geets et al. 

1997; Shih and Jeng 2002; Aloo et al. 2004; Hassanine and Al Jahdali 2007). To date, a total of 18 

siganid species were investigated for monogenean parasites, resulting in identification of the 

species belonging to the polyopisthocotylean genus Polylabris Euzet & Cauwet, 1967 (Yang et al. 

2006; Sailaja and Madhavi 2010) and four monopisthocotylean genera, including three genera of 

ancyrocephalids (Goto and Kikuchi 1917; Young 1968; Paperna 1972; Lim 2002; Kritsky et al. 

2007a; 2007b; Kritsky and Galli 2007) and one viviparous gyrodactylid (Ernst et al. 2001). The 

ancyrocephalid genus Glyphidohaptor Kritsky, Galli & Yang, 2007 was erected by Kritsky et al. 

(2007a) to accommodate Glyphidohaptor plectocirra Paperna, 1972 which was initially described 

as Pseudohaliotrema plectocirra Paperna, 1972 (= Tetrancistrum plectocirra Lim, 2002) from 

Siganus luridus (Ruppell) and Siganus rivulatus (Forsskål) from the Gulf of Aqaba (Eilat, Red 

Sea). Two further species were described from the Great Barrier Reef from five siganid hosts, 

Glyphidohaptor phractophallus Kritsky, Galli & Yang, 2007 from Siganus fuscescens (Houttuyn) 

and G. sigani Kritsky, Galli & Yang, 2007 from S. doliatus (Guérin-Méneville), S. lineatus 

(Valenciennes), S. punctatus (Schneider & Forster) and S. corallinus (Valenciennes) (Kritsky et al. 

2007a). Other reports include an unidentified Glyphidohaptor sp. from the gills of an unknown 

Siganus sp. from Macassar, Sulawesi (Indonesia) (Kritsky et al. 2007a). 

The class Monogenea has been subject of several major molecular phylogenetic studies 

(Justine et al. 2002). Molecular-based phylogenetic relationships of the Platyhelminthes, including 

the Monogenea, were carried out utilising RNA and DNA gene sequences (Mollaret et al. 1997; 

Campos et al. 1998; Littlewood et a. 1999; Olson and Littlewood 2002). Mollaret et al. (2000a) 

investigated the phylogenetic relationships between the two main subclasses of the Monogenea 

(Polyopisthocotylea and Monopisthocotylea) using the large subunit region (LSU) of rDNA. 

Subsequently, several authors analysed the phylogenetic position of families within their 

representative subclasses (Jovelin and Justine 2001; Chisholm et al. 2001a; Justine et al. 2002; 

Simkova et al. 2003; Simkova et al. 2006; Perkins et al. 2009). Other researchers explored the 

origin and evolution of monogeneans (Bentz et al. 2001; Bentz et al. 2003; Mendlova and Simkova 
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2014; Theisen et al. 2017; 2018). Furthermore, a number of authors evaluated the phylogenetic 

position of the ancyrocephalid genera (e.g. Haliotrema Johnston & Tiegs, 1922, Euryhaliotrema 

Kritsky & Boeger, 2002, Haliotrematoides Kritsky, Yang & Sun, 2009 and Pseudempleurosoma 

Yamaguti, 1965) through analyses of the small subunit SSU and LSU regions of the rDNA 

(Plaisance et al. 2005; Wu et al. 2007; Dang et al. 2010; Garcia-Vasquez et al. 2015; Mendoza-

Palmero et al. 2015; Theisen et al. 2017; 2018). The internal transcribed spacer regions 1 (ITS-1) 

region was often exploited to explore the intraspecific speciation and variability within species 

(Simkova et al. 2004; Kaci-Chaouch et al. 2008; Simkova et al. 2013; Kmentová et al. 2016). 

Additionally, some studies were devoted to address more specific issues related to monogenean 

phylogenetic such as hybridization and confirmation of morphologically based phylogenetics 

(Barson et al. 2010; Chisholm et al. 2001b; Fehlauer-Ale and Littlewood 2011; Poisot et al. 2011; 

Schoelinck et al. 2012; Marchiori et al. 2015; Rozhkovan and Shedko 2015; Theisen et al. 2017; 

2018). 

Although the identification and description of new species of monogeneans is traditionally 

made through morphological characterization (Desdevises et al. 2000), the combination of 

molecular data with morphological analysis for the description of new species is becoming more 

common (e.g. Freeman and Ogawa 2010; Bullard et al. 2015; Soo et al. 2015; Theisen et al. 2017; 

2018). To date, only a few numbers of sequences are available from ancyrocephalid infecting 

siganids. The first gene sequence from a monogenean infecting siganids was provided by Mollaret 

et al. (1997). The authors analysed the LSU rDNA sequence of Tetrancistrum sp. obtained from S. 

fuscescens caught off Heron Island, Queensland, Australia, without providing any morphological 

information of this species. Later on, the SSU and LSU rDNA sequences of Pseudohaliotrema 

sphincteroporus Yamaguti, 1953 were obtained by Littlewood & Olson (2001) and used to evaluate 

the molecular phylogenetic relationships of families within the Monogenea. In addition, sequences 

of the SSU rDNA region of Tetrancistrum nebulosi Young, 1967 (= T. sigani Goto & Kikuichi, 

1917) were deposited in GenBank by Wang et al. (2014) and Ummey et al. (2015). Furthermore, a 

comparison of the genetic variations in populations of G. plectocirra was investigated by utilising 

the Cytochrome c oxidase I (Cox1) and the ITS-1 gene regions (Stefani et al., 2012).  

During a survey of the parasite fauna of Siganus canaliculatus (Park) from Omani waters, a 

new species of Glyphidohaptor was recovered. The objectives of the present study were to provide 
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a morphological description of the new species and to explore the phylogenetic relationships within 

the Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968 based on the LSU, SSU, and ITS-

1 regions of ribosomal DNA, focusing on Glyphidohaptor, Pseudohaliotrema Yamaguti, 1953 and 

Tetrancistrum Goto & Kikuchi, 1917. 

4.2 Material and methods 

4.2.1 Sample collection and examination 

A total of 245 White-spotted rabbitfish, Siganus canaliculatus (Perciformes: Siganidae), 

were purchased alive from local fish markets from seven locations along the coasts of the Sultanate 

of Oman (see Table 1). Fish were morphologically identified by using the guidelines of Randall 

(1995) and FAO identification sheets (1984). Fish specimens were transported on ice to the facility 

of the Laboratory of Aquatic Parasitology at the Fishery Quality Control Centre, Sultanate of 

Oman. The hosts were either immediately subjected for parasitological examination or frozen at -

40 °C for subsequent investigation. Upon dissection, gills were excised; arches were separated, 

placed in a petri dish with filtered seawater and examined under a dissecting microscope. Parasites 

were detached from the gill filaments by means of fine needles and kept in filtered seawater at 4 

°C prior to fixation. Monogenean whole mounts were prepared from unflattened AFA (alcohol: 

formalin: acetic acid) or 4% neutral buffered formalin-fixed worms, stained with Mayer’s 

paracarmine, cleared in clove oil and mounted onto slides with Canada balsam. 

Measurements, all in micrometres, are given as the mean followed by the range and number 

(n) of structures measured in parentheses. Body length includes that of the haptor; measurements 

of the copulatory complex, anchors and hooks and the description of the new species are according 

to Kritsky et al. (2007a). Illustrations were prepared with the aid of a camera lucida attached to an 

Olympus BX63 motorised light microscope with Nomarski differential interference contrast optics 

(DIC) and digitalised using Adobe illustrator CC 2018. and the program Inkscape 0.92.2 (Scalable 

Vector Graphics, 2). 
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Table 4. 1 Sampling localities and coordinates 

Locality Coordinates Water Body 

Khasab fishing harbor  26.1644°N; 56.2426°E Persian/Arabian gulf 

Dabba fish market 25.6365°N; 56.2538°E Gulf of Oman 

Sohar fish market  24.3783274, 56.7398163 Gulf of Oman 

Muttrah fish market 23.0000°N; 58.0000°E Gulf of Oman 

Masirah Island 20.4711°N; 58.8153°E Arabian Sea 

Al-Lakbi fish harbor 18.113°N; 56.3255°E Arabian Sea 

Raysut fish market 16.5500°N; 54.0100°E Arabian Sea 

 

4.2.2 Comparative morphological analysis 

Voucher slides were obtained from the British Natural History Museum (G. phractophallus 

BMNH 2006.8.8.13-14, G. sigani BMNH 2006.8.8.11-12), Meguro Parasitology Museum (G. 

phractophallus MPM 18828, G. sigani MPM 18829) and the Queensland Museum (G. 

phractophallus QMG227443, QMG227444, QMG227445, QMG227446 and QMG 227447), G. 

sigani (QMG227453, QMG 227454, QMG 227457, QMG G227460, QMG G227461) respectively. 

In addition, micrographs of selected parasites were obtained for comparison purposes 

(Glyphidohaptor sp. MPM 22839 and MPM 22837 and G. plectocirra USNPC 98587, USNPC 

98588, USNPC 98590, USNPC 98591). 

4.2.3 Confocal microscopy 

Several 95% ethanol preserved specimens were stained with one step Gomori’s Trichrome 

kit (Morphisto, Frankfurt, Germany), mounted in Histochoice (Amresco, Solon, OH, USA), and 

imaged using a Carl Zeiss LSM780 confocal fluorescence microscope and a PL APO 63 × 1.4 oil 

immersion lens following the procedure of Marchiori et al. (2015). Three-dimensional (3D) stacks 

of the diagnostic features were acquired with a typical voxel size of 66 × 66 × 500 nm (XYZ). The 

samples were excited using a DP55 561 laser (AOTF 3%) and a main beam splitter 488/561. 

Spectral emissions (566 to 694) were detected using the internal PMT detector (grain 800). Three 

dimensional images were obtained from a z-stack of 300 planes and the 3D rendering option in 

ZEN software. 
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4.2.4 DNA extraction and PCR amplification 

Monogeneans infecting S. canaliculatus were preserved in 95% ethanol for molecular 

analysis. Total genomic DNA was extracted from individual worms using QIAamp mini DNA kit 

(Qiagen) according to the manufacturer's instructions with some modification. Due to the small 

size of the worms investigated in this study and in order to increase the DNA yield, for the final 

step in the DNA extraction protocol, the extracted DNA was eluted with 200 μl of elution buffer 

and incubated for 10 minutes at room temperature before final spin and collection of genomic 

DNA. The obtained DNA was then completely dried using a Concentrator plus/Vacufuge®Plus 

(Eppendorf), re-suspended with 40 μl elution buffer, then stored in a -20 ˚C freezer. This helped to 

increase the yield of extracted DNA.  

The concentration of the obtained DNA was quantified (i.e., ng/μl) using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Waltham Massachusetts). Polymerase chain reaction 

(PCR) amplification for partial SSU rDNA (18s region) were performed in 20 μl reaction volume 

containing 10 pmol of forward 390f (5ʹ-AGA GGG AGC CTG AGA AAC G-3ʹ) and reverse 870r 

(5ʹ-GTT GAG TCA AAT TAA GCC GCA-3ʹ) primers, and ~10 ng of DNA template using 

illustra™ puReTaq Ready-To-Go PCR beads (0.2 ml tubes, 96 reactions). After initial denaturation 

at 98 ˚C for 5 min, samples were subjected to 40 cycles of amplification (denaturation at 95 ˚C for 

30 s, primer annealing at 55 ˚C for 45 s, and extension at 72 ˚C for 1 min, followed by 7 min 

terminal extension at 72 ˚C (Freeman et al. 2013). For amplification of the D1-D2 domain of the 

LSU rDNA the primers C1 (5ʹ-ACCCGCTGAATTTAAGCAT-3ʹ) and D2 (5ʹ-

TGGTCCGTGTTTCAAGAC-3ʹ) were used, following Mendlova et al. (2010) with some 

modification (annealing temperature was changed to 60 ˚C to avoid formation of pseudogenes).  

All PCR reactions were performed in 30 μl reactions containing 5 pmol of each primer and 

~30 ng of concentrated genomic DNA in illustra™ puReTaq Ready-To-Go PCR beads. The 

following amplification condition was utilised: an initial denaturation at 94 °C for 2 min, followed 

by 40 cycles of amplification (denaturation at 94 °C for 20 s, primer annealing at 60 °C for 30 s, 

and extension at 72 °C for 1 min 30 s, followed by final elongation at 72 °C for 10 min). 

Furthermore, partial SSU rDNA and entire ITS1 regions were amplified in one round using the 

primers S1 (5ʹ-ATTCCGATAACGAACGAGACT-3ʹ) and IR8 (5ʹ- 

GCTAGCTGCGTTCTTCATCGA-3ʹ) that anneal to the 18S and 5.8S rDNA genes, respectively 
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(Simkova et al. 2003). Each amplification reaction was performed in a final volume of 35 μl 

containing 10 pmol of each primer and ~30 ng of genomic DNA using illustra™ puReTaq Ready- 

To-Go PCR beads (0.2 ml tubes, 96 reactions). The amplification conditions followed Simkova et 

al. (2013). All obtained PCR products (1 μl) were viewed on a 0.8% agarose gel stained with 

ethidium bromide. 

4.2.5 Phylogenetic analyses 

Contiguous sequences of the investigated worms were obtained manually using BioEdit (Hall 

1999). Sequences were aligned using Clustal W (Thompson et al. 1994) implemented in MEGA 

v.7 (Molecular Evolutionary Genetics Analysis version 7; Kumar et al. 2016). After alignment, the 

ends of aligned sequences were trimmed to reduce excessive data. Newly obtained sequences were 

subjected to a Blast search in GenBank, and ancyrocephalids sequences that showed the highest 

similarity to the recently acquired data were retrieved from GenBank and used for the phylogenetic 

analysis (see Table 2). Phylogenetic trees were reconstructed utilising three different datasets. The 

first analysis used the partial LSU (D1-D2 domain) dataset containing 20 ancyrocephalid ingroup 

taxa and Thaparocleidus asoti Yamaguti, 1937 (Wu et al. 2007) as the outgroup.  

The second analysis used the SSU data from 15 ancyrocephalid species, and Lamellodiscus 

donatellae Aquaro, Riva & Galli, 2009 as an outgroup. The third dataset was the combined partial 

SSU and the complete ITS1 rDNA sequences of the species investigated plus G. plectocirra 

sequences (accession numbers: HE601931, HE601932 and HE601933), while 

Parancyrocephaloides daicociused Yamaguti, 1938 was used as an outgroup. Phylogenetic 

analyses were performed based on best fit model in MEGA version 7 (Kumar et al. 2015). The 

robustness of the inferred phylogeny was assessed using a bootstrap procedure with 1,000 

replications (Wu et al. 2005). 
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Table 4. 2 List of monogenean species used for phylogenetic analysis in this study with their GenBank Accession 

numbers.  

Species included SSU LSU ITS-1 

Acolpenteron ureteroecetes    EF650054 

Bravohollisia gussevi KJ571007 DQ157665  

Bravohollisia maculatus SYSU20060429-3 KJ571018 KJ571008  

Bravohollisia parvianchoratus  KJ571009  

Bravohollisia plectorhynchus SYSU20060502-2 KJ571019 KJ571010  

Bravohollisia rosetta   KJ571011  

Bravohollisia tecta SYSU20060429-4 KJ571020 KJ571012  

Caballeria intermedius  KJ571013  

Euryhaliotrema johnii  EU836214 EU836193  

Euryhaliotrema perezponcei JN054405 HQ615996  

Euryhaliotrema sp. 3 YS-2008 EU836215 EU836194  

Euryhaliotrema sp. HBDD DQ537346 DQ537374  

Euryhaliotrematoides annulocirrus EU836216 EU836195  

Euryhaliotrematoides microphallus AY820606 AY820617  

Euryhaliotrematoides sp. 2 YS-2008  EU836218 EU836197  

Euryhaliotrematoides sp. LSJ-2011  JF938069 HQ615997  

Glyphidohaptor plectocirra   HE601933 

Glyphidohaptor plectocirra   HE601932 

Haliotrema cromileptis EU523144 EU523146.  

Haliotrema platycephali  FJ767866  

Lamellodiscus donatellae FN296214   

Parancyrocephaloides daicoci    LC176447 

Protogyrodactylus amacleithrium FM251947   

Protogyrodactylus hainanensis  DQ157653  

Pseudodactylogyroides apogonis AB065115   

Pseudohaliotrema sphincteroporus AJ287568 AF382058  

Tetrancistrum nebulosi  HM545910   

Tetrancistrum nebulosi  KT267177   

Tetrancistrum sp.  AF026114  

Thaparocleidus asoti  DQ157669  

Thylacicleidus sp.   AJ490169 

 

 



85 

 

Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968 

Genus Glyphidohaptor Kritsky, Galli & Yang, 2007 

Glyphidohaptor safiensis n. sp. 

Type host: White-spotted rabbitfish, Siganus canaliculatus (Park) (Siganidae). 

Type locality: Sea of Oman, off Muscat City (23.6249° N, 58.5624° E) 

Other localities: Sea of Oman, off Khasab fishing harbour (26.1644°N; 56.2426°E), off Dabba fish 

market (25.6365°N; 56.2538°E); Arabian Sea, off Masirah Island (20.4711°N; 58.8153°E), off Al-

Lakbi fish harbour (18.113°N; 56.3255°E), and off Raysut fish market (16.5500°N; 54.0100°E), 

Sultanate of Oman (November and December 2012). 

Type-material: Berlin Natural History Museum (ZMB Monogenea 7434: one specimen, the 

holotype; ZMB Monogenea 7435: five paratypes). Meguro Parasitology Museum, Tokyo, Japan 

(MPM. Coll. No. 20959: nine paratypes). 

Site in host: Gills. 

Prevalence: Khasab fishing harbour: 29 out of 35 fish (83%); Dabba fish market: 33 out of 35 fish 

(94%); Muscat fish market: 34 out of 35 fish (97%); Masirah Island: 34 out of 35 fish (97%); Al-

Lakbi fish harbour: 34 out of 35 fish (97%); Raysut fish market: 35 out of 35 fish (100%). 

ZooBank registration: To comply with the regulations set out in article 8.5 of the amended 2012 

version of the International Code of Zoological Nomenclature (ICZN 2012), details of the new 

species have been submitted to ZooBank. The Life Science Identifier (LSID) for Glyphidohaptor 

safiensis n. sp. is urn:lsid:zoobank.org:act: (XXXX). 

Etymology: The specific name (safiensis) recognises the Arabic local name of the host (Safi). 

4.3 Description (Figures 4.1, 4.2) 

[Based on 23 adult specimens]. Body fusiform, slightly flattened dorso-ventrally, 926-1326 

(1113; n = 21) in total length (Figure 4.1A); greatest width 217-313 (266; n = 21) at level of gonads, 

tegument smooth. Cephalic lobes well developed; each head organ consisting of groupings of 

terminations of cephalic-gland ducts posteriolateral to the pharynx. Pharynx a muscular, glandular 
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bulb 43-67 (54; n = 21) long and 37-49 (43; n = 21) wide, spherical to subovate. Eyespots absent; 

chromatic granules scattered throughout the cephalic region and interior trunk. Mouth subterminal, 

midventral at level of head organs, opening into buccal tube. Buccal tube extending posteriorly 

along 

body midline to pharynx. Intestinal caeca bifurcating posterior to pharynx, confluent, lacking 

diverticula. Testis fusiform, 173-258 (217; n = 21) long and 35-78 (61; n = 21) wide. Germarium 

pyriform, 64-132 (96; n = 19) long and 21-43 (32; n = 19) wide. Vaginal vestibule (Figure 4.1B) 

slightly sclerotized, sub-oval; vaginal opening 39-52 (45; n = 16) long, 26-33 (30; n = 6) wide. 

Vaginal tube sinuous or coiled, with a frayed opening at the end, 44-70 (54; n = 6) long. Male 

copulatory organ (MCO), tubular, slightly curved, enclosed in heavy sheath, with an arched sub-

basal flange (Figure 4.2A), 58-76 (64; n = 21) long. Accessory piece rod-shaped, anteriorly 

flattened, with reniform plate-like projection. Haptor 41-58 (51; n = 20) long and 84-131 (118; n = 

20) wide. Ventral anchor 48-57 (53; n = 11) long, base 29-36 (32; n = 11) wide (Figure 4.1D); 

dorsal anchor 54-63 (58; n = 10) long, base 24-33 (28; n = 10) wide (Figure 4.1C); ventral bar 34-

46 (40; n = 10) long (Fig. 1E); dorsal bar 37-48 (40; n = 8) long (Figure 4.1F); and hooks 11-12 

(11; n = 18) long (Figure 4.1G). 
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Figure 4. 1 whole mount drawing of Glyphidohaptor safiensis n. sp. ex Siganus canaliculatus. Holotype, ventral 

view, (A). Vaginal Vestibule, ventral view;(B). Dorsal anchor; (C), Ventral anchor; (D). Ventral bar; (E). Dorsal 

bar; (F). Hook, (G). Scale-bars: A, 200 μm; B-G, 20 μm 
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Remarks 

G. safiensis n. sp. can be differentiated from all known species of Glyphidohaptor by its 

slightly curved MCO and the presence of a semi-circular structure distal to the basal flange (Fig. 

2B). This structure is unique to the new species described herein and was not observed in any other 

species of the genus. The accessory piece further distinguishes the new species from its congeners. 

Similar to G. plectocirra and G. sigani Kritsky, Galli & Yang, 2007, the accessory piece of G. 

safiensis n. sp. was rod shaped. However, the accessory piece of G. safiensis n. sp. is distally 

expanded and flattened. Furthermore, the shape of ventral and dorsal anchors of G. safiensis n. sp. 

is different by having shorter roots in comparison to those of other species within the genus (Figure 

4.3). 

 

Figure 4. 2 The male copulatory complex of Glyphidohaptor safiensis n. sp. ex Siganus canaliculatus.Confocal 

microscope image showing the semi-circular structure positioned distally to the fan-shaped basal flange (arrow), 

(A). A drawing of male copulatory organ, dorsal view. BF, Basal flange; PLP, Plate-like projection; AP, Accessory, 

arrow head showing the semi-circular structure distal to the basal flange, (B). Scale-bars: A and B 20 μm. 
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Figure 4. 3 Comparison of the dorsal and ventral anchors of Glyphidohaptor safiensis n. sp. ex Siganus 

canaliculatus. Ventral anchor overlay with ventral anchors of G. sigani, G. plectocirra and G. phractophallus, (A). 

Dorsal anchor overlay with dorsal anchors of G. sigani, G. plectocirra and G. phractophallus, (B). Scale-bars: A 

and B, 20 μm. 

4.4 Phylogenetic position of Glyphidohaptor safiensis n. sp. using the SSU dataset 

The length of the partial SSU sequences of the investigated monogeneans in the present study 

was 890 bp for Glyphidohaptor safiensis n. sp. and about 900 bp for both Tetrancistrum labyrinthus 

Al-Jufaili & Palm, 2017 and T. indicum Paperna, 1972. The Basic Logical Alignment Search Tool 

(BLAST, HTTP:// www.ncbi.nlm.nih.gov/BLAST) results showed that G. safiensis n. sp. is 96% 

similar to P. sphincteroporus Yamaguti, 1953, and both sequences of Tetrancistrum spp. 

investigated in this study showed 98% and 99% similarity to T. nebulosi Young, 1967 (=T. sigani 

Goto & Kikuchi, 1917) (accession number: KT267177) and 98% similarity to T. nebulosi 

(accession number: HM545910). The Maximum-likelihood tree based on Kimura two parameters 

distance, gamma distributed with invariant sites constructed using the SSU data set revealed that 

G. safiensis n. sp. and P. sphincteroporus formed a separate clade clustering as sister taxa with a 

bootstrap value of 69%. The newly generated SSU rDNA sequences of the two Tetrancistrum spp. 

and the available SSU rDNA sequence of T. nebulosi (only one sequence was used, accession 
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number: HM545910) formed a well-supported monophyletic clade within the marine 

Ancyrocephalids. Whereas the clade containing Glyphidohaptor and Pseudohaliotrema was sister 

to the clade comprising members of Bravohollisia Bychowsky & Nagibina, 1970. In the 

Tetrancistrum clade, T. labyrinthus clustered with T. nebulosi as sister species, while T. indicum 

was basal to the two species. 

 

Figure 4. 4 Maximum-likelihood tree based on Kimura two parameters distance, gamma distributed with invariant 

sites inferred from analysis of SSU rDNA sequences of 15 species of ancyrocephalid monogeneans. 

4.5 Phylogenetic position of Glyphidohaptor safiensis n. sp. using the LSU dataset 

For the LSU rDNA gene, sequences reaching about 851 bp were successfully generated from 

G. safiensis n. sp., and 856 bp and 863 bp sequences were generated for T. indicum and T. 

labyrinthus, respectively. The highest similarity to G. safiensis n. sp. was with the LSU rDNA 

sequence of Tetrancistrum sp. collected from S. fuscescens from Australia (97% similarity), which 

was deposited by Mollaret et al. (1997). As for the Tetrancistrum spp. investigated in this study, 
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the closest match generated by BLAST search was with species of Euryhaliotrema Kritsky & 

Boeger, 2002, especially to Euryhaliotrema perezponcei Garcia-Vargas, Fajer-Ávila & Lamothe-

Argumedo, 2008. The resulting neighbour joining tree that was constructed using the LSU gene 

data (Fig. 5) showed that G. safiensis n. sp. formed a well-supported sister species relationship with 

Tetrancistrum sp. (100% bootstrap value), while the two species G. safiensis n. sp. and 

Tetrancistrum sp. showed a close phylogenetic relationship to P. sphincteroporus, forming a sister 

taxon (bootstrap value of 89%).  

The species of Tetrancistrum from the Gulf of Oman formed a well-supported monophyletic 

clade within the Ancyrocephalidae. The Tetrancistrum spp. clade was a sister group to the clades 

comprising Euryhaliotrema and Euryhaliotrematoides Plaisance & Kritsky, 2004. Phylogenetic 

position of Glyphidohaptor safiensis n. sp. using a partial SSU + ITS1 dataset Approximately 994 

bp were generated for the partial 18s rDNA, 5.8s, and complete ITS-1 region of rDNA of 

Glyphidohaptor safiensis n. sp. This sequence was 99% similar to the only available sequence from 

another Glyphidohaptor member in GenBank, G. plectocirra (accession number: HE601931, 

HE601932 and HE601933). Sequences of the same rDNA region obtained from Tetrancistrum 

species showed 98% similarity to the SSU sequence of T. nebulosi. 
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Figure 4. 5 Phylogenetic tree inferred from 28s rDNA based on General time reversible model using 20 species of 

ancyrocephalid monogeneans. 

4.6 Discussion 

4.6.1 Differential diagnosis 

The three formerly described species within the genus Glyphidohaptor share many 

similarities in their morphological characters and in the features of their sclerotized organs 

(haptoral sclerites and MCO). The new species described in the present study also exhibited 

considerable morphological resemblance to its congeners. However, it displayed variations that 

support the designation of a new species. Primarily, the body length of G. safiensis n. sp. was larger 

than of G. phractophallus and double the body length of both G. plectocirra and G. sigani. The 

body of the new species was twice wider than its congeners. The haptor length of G. safiensis was 

in the range of other members of the genus while the width was slightly wider. Except for G. 

plectocirra which exhibited the smallest dorsal and ventral anchors, the measurements of the 
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remaining Glyphidohaptor spp. were overlapping and comparable. Thus, size independent 

comparative analysis of the anchors shape and form was found to be helpful in differentiating 

species that show no clear variations in the size of the haptoral sclerites. Illustrations of anchors 

overlay of all known Glyphidohaptor spp. proved that size alone isn’t sufficient to distinguish 

between different members of Glyphidohaptor. 

The MCO of the new species was the largest among its congeners. The Male copulatory 

complex of all members of Glyphidohaptor is composed of a basally articulated MCO that is 

equipped with a basal flange and an accessory piece with a plate-like projection (Kritsky et al. 

2007). The shape of the MCO is variable among species of the genus. Both G. phractophallus and 

G. sigani have an arced MCO, G. plectocirra displays a straight MCO and G. safiensis n. sp. 

exhibits a slightly curved MCO tube. The sheath surrounding the tube is heavy and robust in all 

Glyphidohaptor species (including the new species) except for G. sigani which is thin and slightly 

sclerotized. The basal flange of all Glyphidohaptor species is fan-shaped, with some species-

specific variations among members of the genus. Though, this structure is relatively elongated in 

G. safiensis n. sp. The accessory piece of Glyphidohaptor spp. appears to be the most suitable 

structure to differentiate between species of the genus. This structure of the accessory piece is 

unique to each Glyphidohaptor species. In G. phractophallus it is flat and blade-like with the distal 

part wrapping around the MCO tube. G. sigani displays a rod-shaped accessory piece with a bifid 

proximal end while the accessory piece of G. plectocirra is distally pointed. G. safiensis n. sp. has 

a rod-shaped accessory piece that is distally expanded and flattened. Finally, all Glyphidohaptor 

species possess a plate-like projection that is positioned along the proximal half of the accessory 

piece. The plate-like projection of G. safiensis n. sp. is large and reniform. 

4.6.2 Diversity of Glyphidohaptor spp. 

Prior to this study Glyphidohaptor spp. was only reported from the Great Barrier Reef and 

the Red Sea. Several micrographs of Glyphidohaptor sp. from an unknown Siganus sp. from 

Macassar, Celebes, deposited by Yamaguti (1953) were obtained for comparative analysis. It was 

noted that this species is unlike any of the previously described members of Glyphidohaptor and 

does not resemble the new species described herein. Thus, it is possible that this undescribed 

species could be another new species of Glyphidohaptor, thereby extending the geographical 

distribution of these worms. Geets et al. (1997) reported an unidentified species of 
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Pseudohaliotrema from the gills of Siganus sutor (Valenciennes) off East Africa. It is noteworthy 

that two of the three ancyrocephalid genera recorded from siganids, Glyphidohaptor and 

Pseudohaliotrema, are restricted to this fish family (Kritsky et al. 2007a).  

However, Glyphidohaptor exhibits a wider geographical range and has been registered from 

both, reef-associated and coloured siganids (e.g. S. corallinus, S. doliatus, S. lineatus and S. 

punctatus) and drab coloured off-reef siganids (e.g. S. luridus, S. fuscescens and S. rivulatus). On 

the other hand, members of Pseudohaliotrema are so far geographically restricted to Eastern Indian 

Ocean and Western Pacific and seem to be limited to the deep-bodied reef-associated siganids (Lim 

2002; Kritsky et al. 2007a). Given that the misidentification of Glyphidohaptor and Tetrancistrum 

species as members of Pseudohaliotrema was a common misconception among researchers 

(Kritsky et al. 2007b) and based on the geographical restriction of members of Pseudohaliotrema, 

we believe that the registration of Pseudohaliotrema sp. from S. sutor by Geets et al. (1997) from 

East Africa is probably another misidentification of a Glyphidohaptor species. Collection of new 

material from East Africa is deemed necessary to confirm this statement. 

4.6.3 Molecular characterisation 

The current study provides the first phylogenetic analyses of three marine ancyrocephalids 

genera that are known to infect siganids. These three genera show affinities to each other and 

affinities to other monogeneans within the marine Ancyrocephalidae. The analysis of the SSU 

rDNA dataset revealed that Glyphidohaptor and Pseudohaliotrema formed a separate clade within 

the marine Ancyrocephalidae and clustered as sister taxa. Kritsky et al. (2007a) stated that within 

the order Ancyrocephalidae, only Glyphidohaptor and Pseudohaliotrema displayed a germarium 

lying to the right of the anterior portion of the testis and suggested that this feature is apomorphic 

and that they are phylogenetically related. In addition, the geographical distribution and natural 

occurrence of these two genera further support this finding (Kritsky et al. 2007a). Future 

investigations including the molecular analysis of all known members of the two genera, in addition 

to their relationships with their representative hosts, could provide some fascinating insight into 

the host-parasite phylogenetic relationships and co-evolution.  

On the other hand, Tetrancistrum species, which are found on both siganids and members of 

the Acanthuridae genus Naso (Lacépède), formed a distinct monophyletic group within the group 

of Ancyrocephalidae that includes Pseudohaliotrema, Haliotrema and Glyphidohaptor spp. 
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Tetrancistrum species formed a sister group with the clade containing Pseudohaliotrema and 

Glyphidohaptor as proposed by Kritsky et al. (2007a). All of the Tetrancistrum species included 

in this tree are from siganids; they were divided into two groups, one composed of T. nebulosi (= T. 

sigani) and T. labyrinthus and a separate group containing T. indicum. At the current state of 

knowledge, it is not clear what main characters are responsible for this phylogenetic division within 

members of Tetrancistrum. Obtaining additional molecular data from other members of 

Tetrancistrum from siganid and nasoid hosts will help to clarify the factors influencing the 

formation of these molecular divisions. The findings of the current study suggest that the SSU 

rDNA is a reliable marker to understand phylogenetic relationships between Ancyrocephalids.  

The data obtained from the LSU rDNA region of the worms investigated in the current study 

revealed that G. safiensis sp. n. disclosed highest similarity to the sequence of Tetrancistrum sp. 

deposited by Mollaret et al. (1997). Since molecular divergence among species representing 

different genera is usually higher than that among species representing the same genera within the 

family (Wu et al. 2007), it can be suggested that the Tetrancistrum sp. analysed by Mollaret et al. 

(1997) is actually a species belonging to Glyphidohaptor rather than Tetrancistrum. However, re-

evaluation of the species analysed by Mollaret (1997) will require confirmation before drawing 

any conclusions. Subsequently, the obtained sequences of Tetrancistrum species were always 

clustering as a separate monophyletic group regardless of the type of data set used in the molecular 

analyses. This observation supports the notion that Tetrancistrum sp. analysed by Mollaret et al. 

(1997) is a member of Glyphidohaptor, and most probably it is G. phractophallus since it is the 

only species reported from S. fuscescens so far.  

This finding needs to be further investigated and confirmed by morphological and molecular 

analysis of Glyphidohaptor and Tetrancistrum type specimens from S. fuscescens in Australia. The 

tree constructed from the ITS-1 dataset was not very informative since only a few sequences were 

available for comparison. However, the sequences obtained of this region and the resultant tree 

confirms the validity of the new species described herein as a member of Glyphidohaptor. 

Acknowledgements We are grateful to the Ministry of Agriculture and Fisheries Wealth, Sultanate 

of Oman, for the TRC Project ORG-EBR_11-TRC grants, to Laura Machkevska for her help with 

the illustrations, to the owner of the YouTube channel (Chiworld1234) for his beneficial adobe 

illustrator tutorials which helped me to achieve the digital drawings for this paper. Also, we would 



96 

 

like to extend my thanks to Prof. Kazuo Ogawa (Meguro Parasitological Museum), Mrs Eileen 

Harris (British Natural History Museum), Mrs Patricia Pilitt, (US National Parasite Collection), Dr 

Mal Bryant (Queensland Museum) for the voucher specimens loans and worm micrographs. In 

addition, I would like to thank Dr. Juan Luis Ribas of the Servicio de Microscopía Centro de 

Investigación, Tecnología e Innovación at the Universidad de Sevilla, for his outmost help and 

kindness with obtaining the Confocal microscopy images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

5 Hysterolecithoides amurparuchinii n. sp. (Lecithasteridae: 

Hysterolecithinae) from white spotted rabbitfish Siganus canaliculatus from 

the Arabian Sea, Sultanate of Oman.  

Abstract 

Worms affiliated with the genus Hysterolecithoides Yamaguti, 1934 were collected exclusively 

from the oesophagi of the white spotted rabbitfish Siganus canaliculatus (Park) (Siganidae) off the 

Omani coasts of the Arabian Sea. Comparative analyses of all valid species of Hysterolecithoides 

reveal that the new species is morphologically distinct from their congeners based on general 

morphological features, definitive host(s) and geographical locality. They also differed from 

species reported from other siganids (e.g. H. epinepheli and H. frontilatus) in the body length (mean 

length = 5350 µm vs 1919 µm - 4494 µm (H. frontilatus) and 4192 µm (H. epinepheli); and body 

width (mean width = 1633 µm vs 532 µm - 1294 µm (H. frontilatus) and 1166 µm, (H. epinepheli), 

forebody as % of length (46.5% = 30.3% -36.4vs 40%) and the distance of testes from the ventral 

suckers (mean distance of testes to ventral sucker = 136 µm vs 29 µm (H. frontilatus) and 46 µm 

(H. epinepheli). Newly obtained molecular data of the highly conserved small subunit (SSU) rDNA 

matched these worms to Hysterolecithoides guangdongensis Wu, 2000 sequences obtained from 

S. fuscescens off Chinese waters with 99% similarity. The large subunit (LSU) rDNA revealed 

98% similarity to H. frontilatus and H. epinepheli and 87% similarity to Machidatrema chilostoma 

(Machida, 1980) León-Règagnon, 1998. This is the third record of a member of Hysterolecithoides 

from the Western Indian Ocean region, and the first registration exclusively from the oesophagi. 

From a phylogenetic point of view, molecular data obtained in this study supports the 

morphological description of Hysterolecithoides amurparuchinii n. sp. as a new species within the 

genus.  

Key words: digenea, Hysterolecithoides, Siganus canaliculatus, Oman, Arabian Sea. 
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4 This article will be submitted as: Al Jufaili Sarah Hamoud, Machkevskyi Vladimir, Palm Harry Wilhelm (20..) 

Hysterolecithoides amurparuchinii n. sp. (Lecithasteridae: Hysterolecithinae) from white spotted rabbitfish Siganus 

canaliculatus from the Arabian Sea, Sultanate of Oman. 
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5.1 Introduction  

Digenean trematodes are the most frequently investigated group of fish parasites known to 

infect siganid hosts. The review of available literature indicates that siganids harbor a diverse 

assemblage of digeneans which infect various organs. To date, thirty species of digenean trematode 

belonging to nine families have been reported from siganids (Madhavi 1972; Diamant and Paperna 

1986; Barker et al. 1993; Nahhas and Wetzel 1995; Arthur and Lumanlan-Mayo 1997; Bray and 

Cribb 2000; Bray and Cribb 2001; Nahhas and Sey 2002; Hall and Cribb 2004; Hall and Cribb 

2005; Shih et al. 2004; Hassanine and Gibson 2005; Al-Jahdali and Hassanine 2012). 

Hysterolecithoides Yamaguti, 1934 (Lecithasteridae Odhner, 1905) a trematode genus infecting 

the intestine and stomachs of tropical marine fishes is also reported from siganid hosts. Like other 

hysterolecithins, members of Hysterolecithoides are characterized by having a ventral sucker in the 

middle of body, gut-caeca ending blindly near posterior extremity. Testes two, pre-ovarian, in 

anterior half of the hindbody. Seminal vesicle tubular, occasionally elongate saccular in forebody. 

A vitellarium with 2-7 subglobular, entire or irregular masses (Bray and Cribb 2000; Gibson et al. 

2006). 

The genus was created to accommodate H. epinepheli Yamaguti, 1934 infecting the Hong 

Kong Grouper Epinephelus akaara (Temminck & Schlegel). Subsequently, several species were 

described from marine fishes belonging to different teleost families. In their revision of the genus, 

Bray and Cribb (2000) validated and recognized five nominal species in addition to the type-

species; H. frontilatus (Manter, 1969) Yamaguti, 1971; H. pseudorosea (Bravo-Hollis 1956) 

Yamaguti, 1971; H. manini Yamaguti, 1970; H. zebrasomatis Yamaguti, 1970 and H. 

multiglandularis Tang, Shi & Guan in Tang, Shi, Cao, Guan & Pan, 1983. Members of the genus 

are widely distributed in the Indo-Pacific region occurring from the Indian coasts of the Arabian 

Sea, Hawaii to the eastern Pacific coasts of Mexico (Bray and Cribb 2000).  

The taxonomic history of species infecting siganids is complex. For example, H. frontilatus 

which was originally described as Theletrum frontilatum Manter, 1969 and was later placed in 

Hysterolecithoides by Yamaguti (1971). Shen (1982) established a new genus Oligolecithoides 

with its species O. trilobatus which was later synonymized with H. epinepheli by Bray and Cribb 

(2000). Both H. epinepheli and H. frontilatus were registered from several siganid hosts, some of 

which are reported only by their generic name. Furthermore, some of the siganid hosts attributed 
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to these worms do not exist in the respective geographical locality. For example, H. frontilatus 

reported from Moreton Bay, Australia was registered from S. rivulatus which according to 

Woodland (1990) is limited to East Africa and the Red Sea.  

During a survey of the parasite fauna of the white spotted rabbitfish S. canaliculatus from 

three water bodies along the coasts of the Sultanate of Oman, members of the digenean genus 

Hysterolecithoides were isolated from the oesophagi of S. canaliculatus sampled from localities 

situated along the Arabian Sea. The present study aims to identify the species of Hysterolecithoides 

of S. canaliculatus of Omani waters based on comparative morphological analysis and molecular 

data of the small subunit (SSU) and large subunit (LSU) rDNA. 

5.2 Materials and methods 

One-shot S. canaliculatus sampling was carried out in 2012, at the seven sampling localities 

along the coasts of the Sultanate of Oman; Raysut, Al-Lakbi, Masirah, Muscat, Sohar, Dabba, 

Khasab. Freshly frozen hosts were subjected to parasitological analyses according to Palm and 

Bray (2014). Obtained trematodes were fixed with either 10% formalin or 70% ethanol for 

morphological investigations and in molecular grade 96% ethanol for molecular analysis. The 

collected parasites were stained by Mayer's paracarmine and a modified aceto-carmine method 

(Machkevskyi et al. 2013). For comparative morphological analysis several slides of H. epinepheli 

and H. frontilatus were obtained from Meguro Parasitology Museum, Tokyo, Japan 

(22850SY6026; 23558SYB108) and from Natural British History Museum (BMNH 1999. 1. 25. 

15; BMNH 1999. 1. 25. 11). Description is based on the Bray and Cribb (2000). Additional 

measurements were obtained in the present study including, distance of sinus-sac to ventral sucker, 

distance of posterior of ventral sucker to anterior of testes, distance of testes to ovary, distance of 

posterior of ventral sucker to ovary, distance of ovary to posterior extremity and distance of 

vitellarium to posterior extremity (Table 5.3). 

Further histological analysis of the obtained worms was carried out according to standard 

procedure for tissue samples. Histological sections and whole mount preparations were examined 

using the Olympus U-LHEAD microscope, equipped with digital camera Olympus DP73 and 

Olympus cellSens Dimension software.  
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For molecular analysis, total genomic DNA was extracted from individual worms using 

QIAamp mini DNA kit (Qiagen) according to the manufacturer's instructions. The concentration 

of the obtained DNA was quantified (i.e., ng/μl) using a NanoDrop spectrophotometer (Thermo 

Fisher Scientific, Waltham Massachusetts). Partial SSU rDNA was amplified using the primers 

WormA (5′-GCG AAT GGC TCA TTA AAT CAG-3′) and WormB (5′-CTT GTT ACGACT TTT 

ACT TCC-3′) according to Palm et al., (2009). To amplify the D1-D2 domain of the LSU rDNA, 

the primers C1 (5ʹ ACCCGCTGAATTTAAGCAT-3ʹ) and D2 (5ʹ-TGGTCCGTGTTTCAAGAC-

3ʹ) were used following Mendlova et al. (2010). Purified PCR products were sent to Apical 

Scientific (Selangor, Malaysia) for sequencing using the same amplification primers. Generated 

sequences manually edited and contigs were assembled using BioEdit 7.2.  

Sequences that displayed the highest matches on BLAST 

(http://www.ncbi.nlm.nih.gov/blast) were downloaded to infer the phylogeny of the worms 

obtained in the present study. For the SSU tree, 30 sequences of digenean belonging to the families 

Hemiuridae (14 species) and Lecithasteridae (11 species) were used for phylogenetic analyses. In 

this tree the digenean Hemiperina manteri Crowcroft, 1947 (Gonocercidae) was used as an 

outgroup (Sokolov et al. 2018). For the construction of the LSU phylogenetic tree sequences of 39 

digeneans were used. These include members of three subfamilies within the family 

Lecithaseridae; Hysterolecithinae (four species), Quadrifoliovariinae (six species) and 

Lecithasterinae (nine species). Seven subfamilies within the family Hemiuridea; Bunocotylinae 

(three species), Opisthadeninae (one species), Lecithochiriinae (two species), Plerurinae (one 

species), Dinurinae (one species), Elytrophallinae (one species) and Aphanurinae (one species).  

The selected Maximum likelihood model estimated for the SSU tree was Kimura-2-

paramaters with Gamma distribution and for the LSU tree the General Time Reversible model was 

estimated as the best fit model to infer phylogenetic relationships within lecithasterids. The branch 

support was estimated using 1000 bootstrap replicates.  

 

 

 

http://www.ncbi.nlm.nih.gov/blast
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Table 5. 1 List of hemiuroid taxa and their accession code in GenBank that were incorporated into the phylogenetic 

analysis. 

   GenBank accession number 

Species Subfamily SSUrDNA LSUrDNA 

Family: Hemiuridae       

Aphanurus mugilus Aphanurinae  LT607804-LT607806 LT607807-LT607808 

Bunocotyle progenetica Bunocotylinae  DQ354369 DQ354365 

Dinurus longisinus  Dinurinae  AJ287501 AY222202 

Lecithocladium cristatum Elytrophallinae MF539756   

Lecithocladium excisum Elytrophallinae AJ287529 AY222203 

Hemiuridae sp.   KM401885   

Merlucciotrema praeclarum Plerurinae  AJ287535   

Opisthadena sp. Opisthadeninae AJ287549 AY222198 

Saturnius sp. Bunocotylinae  DQ354370   

Saturnius gibsoni  Bunocotylinae    KJ010542 

Robinia aurata  Bunocotylinae  DQ354371 DQ354367 

Family: Lecithasteridae       

Aponurus laguncula Lecithasterinae  KY471301   

Aponurus sp. DTJL-2006 Lecithasterinae  DQ354372 DQ354368 

Aponurus sp. AK-2010 Lecithasterinae    HQ713441 

Bilacinia australis Quadrifoliovariinae    AY897568 

Hysterolecithoides epinepheli Hysterolecithinae  MH625963 MH625962-MH625964 

Hysterolecithoides frontilatum Hysterolecithinae  AF029813 MH628310 

Hysterolecithoides guangdongensis  Hysterolecithinae  HM545901   

Hysterolecithoides amurparuchinii n. sp. Hysterolecithinae  Present study Present study 

Hysterolecithoides amurparuchinii n. sp. Hysterolecithinae  Present study Present study 

Hysterolecithoides amurparuchinii n. sp. Hysterolecithinae    Present study 

Hysterolecitha nahaensis Hysterolecithinae  AF029811   

Lecithaster gibbosus Lecithasterinae  AJ287527 AY222199 

Lecithophyllum botryophoron Lecithasterinae  AY222107 AY222205 

Lecithaster salmonis  Lecithasterinae    MH625979, MH625980 

Lecithaster gibbosus Lecithasterinae  AJ287527 AY222199 

Lecithaster mugilis Lecithasterinae  LN865007 LN865016 

Lecithaster sudzuhensis Lecithasterinae  LN865013 LN865022 

Lecithaster sp.  Lecithasterinae    MH625978 

Lecithaster sayori  Lecithasterinae    MH625977 

Lecithaster confusus isolate  Lecithasterinae    MH625973, MH625975 
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Table 5.1 (continued.) 

 

5.3 Results 

Digeneans, identified as Hysterolecithoides sp., were detected exclusively in the oesophagi 

of S. canaliculatus from three sampling locations along the Omani coasts of the Arabian Sea.  

Family Lecithasteridae Odhner, 1905 

Subfamily Hysterolecithinae Yamaguti, 1958 

Genus Hysterolecithoides Yamaguti, 1934 

Hysterolecithoides amurparuchinii n. sp.  

Type-host: Siganus canaliculatus (Park) (Perciformes: Siganidae), white-spotted rabbitfish. 

Type-locality: Arabian Sea, Off Raysut fish market (16.5500°N, 54.0100°E). Sultanate of Oman 

(November and December 2012). 

Prevalence: from Raysut fish market (63%), from Al-Lakbi, and Masirah (60%). No 

Hysterolecithoides sp. were detected from sampling sites located in the Gulf of Oman (Muscat, 

Sohar and Dabba) and Persian Gulf (Khasab). 

 

  GenBank accession number 

Species  Subfamily SSUrDNA LSUrDNA 

Machidatrema chilostoma Hysterolecithinae  AY222106 AY222197 

Quadrifoliovarium maceria Quadrifoliovariinae    AY897566 

Quadrifoliovarium pritchardae  Quadrifoliovariinae    AY897567 

Quadrifoliovarium quattuordecim Quadrifoliovariinae    AY897565 

Quadrifoliovarium simplex Quadrifoliovariinae    AY897564 

Thulinia microrchis Hysterolecithinae  AF029812   

Unilacinia asymmetrica Quadrifoliovariinae    AY897569 

Outgroups       

Family: Gonocercidae        

Hemiperina manteri Gonocercinae  AY222105   

Family: Azygiidae       

Otodistomum cestoides Azygiinae   AY222187 
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ZooBank registration: 

Etymology: The specific name (amurparuchinii) is in honor of Dr. Amur Paruchin who initiated 

systematic investigation of fish parasites in the Sultanate of Oman. 

5.3.1 Description (Figure 5.1) 

Based on (31) whole mounts and serial histological sections obtained from seven adult 

specimens. Body massive, spindle-shaped (Figure 5.3A). Tegument unarmed. Maximum body 

width anterior to ventral sucker. Oral and ventral suckers globular or slightly transversely oval. 

Oral sucker subterminal, 1.55-1.97 (1.72) times smaller than the ventral sucker. The anterior lobe 

distinct. Ventral sucker in posterior half of body (it’s center is post-equatorial by 4.2% of body 

length). Prepharynx absent. Pharynx small, close to base of oral sucker. Oesohagus distinct. Сaeca 

reach well into hindbody; termination asymmetrical, but usually obscured by eggs when uterus is 

fully formed. Testes 2, small, subglobular, asymmetrical, below posterior edge of ventral sucker. 

Two thin, transparent vasa efferentia extend from testes, entering separately into seminal vesicle. 

Seminal vesicle elongate, tubular, sinuous, overlapping ventral sucker, narrows posteriorly 

to sinus-sac to form pars prostatica. Pars prostatica, tubular, arcuate, shorter than seminal vesicle, 

runs dorsally to sinus-sac. Sinus-sac oval, thick-walled, with obliquely intersecting muscular fibers, 

posterior region thicker than anterior (Figure 5.3B). Internal hermaphroditic duct bipartite, joining 

inside sinus sac. Ductus ejaculatorius enters sinus-sac and merges with metraterm to form 

hermaphroditic canal. Sinus organ funnel-shaped, turned inward or protruding outward, depending 

on parasite physiological state, everted organ smooth, telescopic. Excretory pore opens 

subterminally 1.5% from posterior extremity. Excretory bladder cylindrical, relatively narrow, 

widens proximally, it extends to anterior margin of ventral sucker, divides into two lyre-shape arms 

that end blindly at level of midpoint of pharynx, distal part thick, ensheathed by cluster of glandular 

cells most noticeable on laterally positioned worms and histological sections (Figure 5.1A and B). 
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Figure 5. 1 Laterally positioned Hysterolecithoides amurparuchinii n. sp., ex Siganus canaliculatus showing the 

proximally thickened wall of the excretory pore, (A). Histological section of laterally positioned worms showing the 

structure of the distal portion of the excretory bladder, (B). Scale bars: A= 50, B=20 μm. 

Ovary, oval slightly larger than testes, distinctly separated from testes, submedian. Vitellarium 

consists of 2-7 rounded follicles (most often 3-4) massed together ventrally, adjacent behind ovary. 

Uterine seminal receptacle and Mehlis’ gland’s not observed. Uterus posterioventral, posterior to 

testes. Uterus reaches end of caeca in most individuals, not reaching posterior end of body, such 

that terminal part of excretory vesicle visible. Of 100 gravid specimens, only one had its uterus 

completely filling hindbody. Eggs oval, slightly flattened, with clearly discernible embryo. Genital 

atrium funnel-shaped. Genital pore median, slightly protruding. Anterior to atrium, a disc shaped 

aperture is observed (Figure 5.2).  
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Figure 5. 2 The oval, disc shaped aperture anterior to the atrium of Hysterolecithoides amurparuchinii n. sp., ex 

Siganus canaliculatus, arrow head. Scale bar: 50 µm.  
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Figure 5. 3 Hysterolecithoides amurparuchinii n. sp., ex Siganus canaliculatus. Holotype, (A), Ventral view; (B), 

Terminal genitalia, SS, Sinus sack, PP, Pars prostatica, SV, Seminal vesicle. Scale bars: A= 1mm, B= 200 μm. 
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Remarks 

Comparative morphological analyses of the material obtained in the present study with all 

known Hysterolecithoides species indicates that Hysterolecithoides amurparuchinii n. sp. is most 

similar to those reported from other siganids (i.e. H. epinepheli and H. frontilatus). They share 

several common features. Namely, the body width of all three species is about one-third to body 

length. Also, unlike other species within the genus (e.g. H. manini and H. zebrasomatis) the testes 

of these three species are asymmetrical and bilateral, and the ventral sucker is located in middle 

body. However, these species differ in many aspects concerning their morphology (Table 5.2), 

which is based on the data from Yamaguti (1953), Manter (1969), Bray and Cribb (2000) as well 

as loaned voucher specimens from museums.  

The body length of H. amurparuchinii n. sp. is 1.22-2.04 and 1-1.28 times larger than H. 

frontilatus and H. epinepheli, respectively. Body width of our worms is 1.33-2 and 1.13-1.48 times 

wider than H. frontilatus and H. epinepheli, respectively. The forebody length of the species 

described herein is 2.12-2.57 times longer than H. frontilatus. Although the minimum forebody 

length of our worms is 0.84 times shorter than the minimum forebody length of H. epinepheli, the 

maximum forebody length is 2.32 longer. Pre-Oral lobe length of H. amurparuchinii n. sp. is 1.38-

2.24 times longer than in H. frontilatus. In comparison to H. epinepheli only the maximum Pre-

oral lobe length of H. amurparuchinii n. sp. is longer (150 µm vs 69 µm). Oral sucker length of H. 

amurparuchinii n. sp. is 1.38-1.56 and 1.06-1.57 times bigger than H. frontilatus and H. epinepheli, 

respectively. The oral sucker width of our worms is 1.41-1.49 times wider than H. frontilatus. 

However, only the maximum width is 1.51 times wider than H. epinepheli.  

The distance of the intestinal bifurcation to ventral sucker of our species is 2.35-2.58 and 1-

1.88 times longer than H. frontilatus and H. epinepheli, respectively. The distance of the genital 

pore to the ventral sucker of H. amurparuchinii n. sp. is 2.39-2.97 times longer than in H. 

frontilatus. Only the maximum distance of the genital pore to ventral sucker of our worms is longer 

than H. epinepheli (1.58 times longer). The Sinus-sac of H. amurparuchinii n. sp. is 1.37-1.39 x 

1.01-1.10 times bigger than H. frontilatus. The maximum size of the Sinus-Sac of H. 

amurparuchinii n. sp. is 1.10 x 1.39 times larger than H. epinepheli. The size of the ventral sucker 

of our species is also larger than H. frontilatus (1.30-1.98 times longer and 1.25-1.75 times wider). 

In the case of H. epinepheli the maximum size of ventral sucker was smaller than in our species. 
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The vitellarium of H. amurparuchinii n. sp. is 1.08-1.26 larger and 1.06-1.51 wider than H. 

frontilatus. In comparison to H. epinepheli the vitellarium of H. amurparuchinii n. sp. is 1.05-1.56 

longer and 1.22-2.78 wider.  

Furthermore, the number of vitellarium masses in our species varied from 2-7 (most 

predominate 4-5). In H. frontilatus, species with 3 vitelline masses were most dominant (Bray and 

Cribb 2000). In H. epinepheli specimens available at our disposal (ex Siganus fuscescens, Japan), 

the vitellaria had a distinct "flower" shape. In five out of six specimens, it consisted of 7 vitelline 

mass. It was also noted that the value of width as % of body length of our species is bigger than H. 

frontilatus (1.20-1.29 times). The minimum width as % of the percentage of body length of our 

worms was comparable to that of H. epinepheli, but the maximum was larger (1.37 times). The 

forebody of H. amurparuchinii n. sp. is distinctively longer than H. frontilatus (1.21-1.82 times) 

and H. epinepheli (1.37 times larger for maximum value). The sucker width ratio of our worms is 

smaller than H. frontilatus by 0.29-0.72 times. The PVR as % of the length of our worms is 0.55-

0.68 times smaller than of H. frontilatus. The PUR as % of body length of H. amurparuchinii n. 

sp. is smaller in comparison to H. frontilatus by 0.39-0.75 times. The Excretory pore to posterior 

extremity as % of length in H. amurparuchinii n. sp. is shorter than H. frontilatus (0.48-0.65 times) 

and H. epinepheli (0.20-0.91 times).  

The additional measurements that were obtained from our material and the loaned museum 

slides show further differences between the three species (Table 5.3). For example, the distance of 

the Sinus-sac from the ventral sucker of H. amurparuchinii n. sp. was 699-1346 µm in comparison 

to 357-802 µm in H. epinepheli and 110-189 µm in H. frontilatus). The ovary of H. amurparuchinii 

n. sp. were positioned (300-964 µm) away from the ventral suckers compared to H. epinepheli 

(131-488 µm) and H. frontilatus (48-250 µm). Finally, the comparative construction of some 

members of all three species to the same scale shows the extent of the variations in organ ratios, 

especially the position of the ventral sucker to the body equator, distance of the testes to the ventral 

sucker, distance of the testes to the ovary and the relative overall size of all three species (Figure 

5.4).  
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Table 5. 2 Comparative measurements of all Hysterolecithoides spp. that are known to infect siganid hosts based one data obtained in the present study and those 

of Manter (1969), Yamaguti (1953), Bray & Cribb (2000) and loaned slides from MPM.  

  

Hysterolecithoides 

amurparuchinii  

n. sp.    

Hysterolecithoides  

frontilatus  

Hysterolecithoides 

epinepheli 

  

Siganus  

canaliculatus   

Siganus 

 nebulosus   

Siganus  

doliatus    

Siganus 

doliatus   

Siganus 

 sp.   

Siganus  

sp.   

Siganus 

fuscescens 

  

Arabian Sea 

Oman   

Morten Bay 

Australia   

Lizard IS, 

Australia   

New  

Caledonia   

New 

Caledonia   Makassar   Japan 

  Present study, n= 31   Bray & Cribb (2000)   Manter 1969   

Yamaguti 

1953   Yamaguti 1938 

  Min Max Mean   Min Max Mean   Min Max Mean   Min Max Mean   Min Max  Min Max   Min Max Mean 

Body Length 2509 6983 5350   1232 3275 1919   4457 4531 4494   2528 3895 3458   2489 5719  2500 4400   3160 5457 4192 

Body Width 733 2206 1633   366 827 532   1272 1315 1294   715 1248 966   627 1653  650 1250   868 1489 1165 

Forebody length 1039 5125 2512   489 1224 696   1439 1507 1473   795 1272 1047   855 1995      1239 2208 1674 

Pre-oral lobe length 13 150 54   12 52 27   102 109 106   6 103 52          26 69 45 

Oral sucker length 223 625 462   161 325 231   367 386 377   277 400 333      210 340   288 397 346 

Oral sucker width 241 705 509   162 316 228   380 399 390   280 388 342   301 502  260 380   347 468 406 

Pharynx L 77 213 143   63 116 84   161 163 162   103 155 134   107 147  65 110   102 154 127 

Pharynx W 96 373 184   63 116 83   147 148 148   99 155 135   134 167  84 120   113 157 135 

Intestinal bifurcation to ventral 

sucker 620 2463 1637   264 791 428   902 954 928   393 734 638          620 1309 927 

Genital pore to ventral sucker 377 1632 1122   158 473 241   483 549 516   213 411 308          468 1030 660 

Sinus sac length 105 323 244   77 167 104   126 155 141   155 232 188   96 208  110 160   112 226 167 

Sinus sac width 59 212 141   58 115 81   109 123 116   122 181 158   88 192  110 150   84 145 110 

Ventral sucker length 470 1066 830   238 490 347   684 689 687   580 818 691          519 763 642 
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 Table 5.2 continued 

 

 

Hysterolecithoides 

amurparuchinii 

n. sp.  

Hysterolecithoides 

frontilatus   

 

Hysterolecithoides 

epinepheli 

 

Siganus  

canaliculatus   

Siganus 

nebulosus  

Siganus 

 doliatus  

Siganus 

doliatus  

Siganus  

sp.  

 Siganus  

sp.  

Siganus 

fuscescens 

 

Arabian Sea 

 Oman  

Morten Bay 

Australia  

Lizard IS, 

Australia  

New 

Caledonia  

New 

Caledonia  

 

Makassar  Japan 

 Present study, n= 31  Bray & Cribb (2000)  Manter, 1969  

 Yamaguti 

1953  Yamaguti 1938 

 Min Max Mean  Min Max Mean  Min Max Mean  Min Max Mean  Min Max   Min Max  Min Max Mean 

Ventral sucker width  473 1096 873   270 535 393   752 779 766   599 869 701   536 874   460 750   565 796 673 

Left testis  length 80 356 224  71 206 135  180 232 206  96 230 144      90 210  291 343 321 

Left testis  width  83 344 218  97 219 146  238 245 242  103 232 175      75 180  178 287 239 

Right testis length 89 358 242  71 200 141  193 251 222  97 206 146         255 306 280 

Right testis width 118 294 211  84 225 147  238 263 251  126 245 167         200 251 225 

Right testis to ovary 16 667 305  0 22 1  97 90 94  0 225 70         46 551 254 

Ovary length  85 273 197  70 206 121  238 251 245  121 232 156      90 150  167 282 242 

Ovary width  97 323 212  86 225 151  277 328 303  131 277 177      90 200  233 374 314 

Vitellarium length  117 538 354  109 406 213  354 426 390  174 290 239      75 150  272 512 411 

Vitellarium width 184 511 371  122 431 219  444 483 464  182 354 237      66 200  242 418 344 

Post-vitalline region length (PVR) 453 1612 1004  277 1081 521  1402 1510 1456  599 1404 1205         647 1473 1030 

Post-uterine region length (PUR) 102 908 252  145 274 220  206 258 232  245 684 476         240 575 337 

Short caecum (left) to posterior 

extremity  

125 468 250 

 

193 313 254 

 

451 586 519 

 

341 882 522 

    

 

   

171 297 262 

Long caecum (right) to posterior 

extremity  

107 313 214 

 

133 261 203 

     

232 521 372 

    

 

   

219 383 290 

Excretory pore to posterior extremity 21 152 83  23 90 45  39 58 49  24 88 55         58 179 109 
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Table 5.2 continued  

 

 

 

Hysterolecithoides  

amurparuchinii  n. sp.  

Hysterolecithoides  

frontilatus  

 Hysterolecithoides  

epinepheli 

 

Siganus  

canaliculatus   

Siganus 

nebulosus  

Siganus  

doliatus  

Siganus  

doliatus  

Siganus 

 sp.  

 Siganus  

sp.  

Siganus 

fuscescens 

 

Arabian Sea 

Oman  

Moreton Bay  

Australia  

Lizard IS  

Australia  

New 

Caledonia  

New  

Caledonia  

 

Makassar  Japan 

 Present study, n= 31  Bray & Cribb (2000)  Manter, 1969   Yamaguti 1953  Yamaguti 1938 

 Min Max Mean  Min Max Mean  Min Max Mean  Min Max Mean  Min Max   Min Max  Min Max Mean 

Egg length 20 33 27  19 25 22  16 23 20  22 28 25  24 25   21 27  22 32 26 

Egg width 10 18 15  10 13 12  13 14 14  12 15 13  12 13   12 15  12 16 13 

Width as % of length  25.92 42.70 30.66  21.60 32.80 27.90  28.50 29.00 28.80  25.10 33.20 27.90         26.57 31.26 27.90 

Forebody as % of length  32.39 75.69 46.48  31.90 41.70 36.40  31.80 33.80 32.80  26.80 34.60 30.30         38.01 42.73 39.94 

Suckers width ratio 0.44 1.97 0.59  1.51 1.88 1.73  1.95 1.98 1.97  1.78 2.72 2.05  1.62 2.00      1.58 1.72 1.66 

Oral sucker: pharynx ratio 1.00 4.88 2.90  2.47 3.43 2.57  2.57 2.71 2.64  2.28 2.94 2.55         2.65 3.50 3.02 

PVR as % of length 10.81 27.65 18.81  19.80 33.50 26.70  31.50 33.30 32.40  23.70 40.90 34.70         19.76 26.99 24.05 

PUR as % of length  1.79 15.14 4.88  5.04 16.30 12.00  4.62 5.69 5.16  7.04 20.10 13.70         4.40 14.59 8.56 

Excretory pore to posterior  

extremity as % of length 

0.34 3.00 1.54 

 

1.25 2.75 2.37 

 

0.88 1.28 1.08 

 

0.70 2.47 1.60 

    

 

   

1.66 3.29 2.54 
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Table 5. 3 Additional measurements obtained from slides of Hysterolecithoides amurparuchinii n. sp. and the slides of H. epinepheli and H. frontilatus obtained 

from museums.  

 Additional measurements    H. amurparuchinii n. sp.   H. frontilatus 

  

  H. epinepheli 

    min max Mean   min max mean   min max mean 

Distance of sinus-sac to ventral sucker   699 1346 974   110 189 150   357 802 521 

Distance of posterior of ventral sucker to anterior of testes   0 296 136   0 111 29   0 104 46 

Distance of Testes to ovary   0 421 290   0 208 66   0 247 85 

Distance of Testes to posterior body   1339 2118 1812   850 1628 1288   1098 1418 1245 

Distance of posterior of ventral sucker to ovary   300 964 625   48 250 162   131 488 322 

Distance of ovary to posterior extremity   974 1593 1352   745 1520 1128   851 1306 1080 

Distance of vitellarium to posterior extremity by   738 1306 1038   556 1323 941   645 1023 829 
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Figure 5. 4 A size invariant comparison of, (A); H. amurparuchinii n. sp., B; H. epinepheli and C; H. frontilatus 

illustrating the variations in the arrangements of some body organs (ventral sucker, testes, ovary and vitellarium) in 

the three species. Scale bar: 500 µm.  
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5.3.2 Molecular analysis 

Contiguous sequences of the SSU and LSU regions of Hysterolecithoides amurparuchinii n. 

sp. were generated from three adult worms isolated from the oesophagi of the investigated hosts. 

The partial SSU was 1753 bp long, and the partial LSU was 930 bp long. The BLAST analyses of 

the generated sequences revealed a similarity of 99% to the SSU sequence of H. guangdongensis 

(accession code: HM545901) obtained from S. fuscescens off Chinese waters. The LSU sequence 

generated in the current study matched to H. frontilatus (accession code: MH628310) and H. 

epinepheli (accession code: MH625962-MH625964) both with 98% similarity, differing by 14 

bases. The obtained sequences also matched to another hysterolecithin trematode Machidatrema 

chilostoma (Machida, 1980) León-Règagnon, 1998 (accession code: AY222106) with 86% 

similarity.  

Six groups can be observed in the constructed SSU tree, the first group (A), consisted of 

representative of several hemiurid subfamilies (Aphanurinae, Elytrophallinae, Dinurinae, 

Lecithochiriinae and Plerurinae). The lecithochiriin Lecithochirium caesionis Yamaguti, 1942 

clustered with the plerurin Plerurus digitatus (Looss, 1899) Looss, 1907. The plerurin 

Merlucciotrema praeclarum Manter, 1934 was distant from P. digitatus. The dinurin Dinurus 

longisinus Looss, 1907 clustered with the elytrophallin Lecithocladium Lühe, 1901. In group (B) 

the lecithasterin genus Lecithaster Lühe, 1901 formed a monophyletic clade, while the lecithasterin 

Lecithophyllum botryophoron Olsson, 1868 was distant. The relationship between these two genera 

is poorly resolved with low statistical nodal support. The hemiurid Opisthadena sp. was clustered 

with the lecithasterid Aponurus Looss, 1907 in group (C). in group (D), the lecithasterid genera 

Hysterolecitha Linton, 1910 and Thulinia Gibson & Bray, 1979 formed a sister to the hemiurid 

bunocotylin (Robinia aurata Pankov, Webster, Blasco-Costa, Gibson, Littlewood, Balbuena & 

Kostadinova, 2006), Saturnius sp. and Bunocotyle progenetica Chabaud & Buttner, 1959. Group 

(E) consisted of two hysterolecithin lecithasterid genera Hysterolecithoides and Machidatrema. 

These two were closely related and were clustered together as sister taxa. All species of 

Hysterolecithoides were clustered as a monophyletic group that was basal to M. chilostoma with 

high nodal support (90), group (E). Also, H. amurparuchinii n. sp. was basal to H. frontilatus and 

H. guangdongensis. Didymozoid trematodes formed a monophyletic cluster, group (F).  
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Figure 5. 5 The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-

parameter model for SSU data set. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites (5 categories (+G, parameter = 0.5754)). The analysis involved 30 nucleotide sequences. Codon 

positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. 

There were a total of 180 positions in the final dataset.  

 

The LSU based phylogeny tree is divided into three major clades. Clade one is further 

subdivided into three groups (A), (B) and (C). Species of Hysterolecithoides formed a strongly 

supported monophyletic group. Sequences of H. amurparuchinii n. sp. were phylogenetically 

distant from those of H. epinepheli and H. frontilatus. Also, M. Chilostoma is a sister taxon to 

Hysterolecithoides in group (A). Group (B) consisted of all bunocotylid species. In group (C) the 

monophyletic subfamily Quadrifoliovariinae with its genera Quadrifoliovarium Yamaguti, 1965, 

Bilacinia Manter, 1969 and Unilacinia Manter, 1969 formed a monophyletic clade and Bilacinia 

was a sister taxon to it. Group (D) was composed of two lecithasterin genera Aponurus and 

Lecithophyllum Odhner, 1905. They were closely related and formed sister taxa with a strong 

statistical support. Group (E) contained several subfamilies within the family Hemiuridea. Using 

the LSU dataset memebers of the genus Lecithaster formed a monophyletic clade that was distant 

from other lecithasterids in group (F). 
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Figure 5. 6 The evolutionary history was inferred by using the Maximum Likelihood method based on the General 

Time Reversible model for the LSU data set. A discrete Gamma distribution was used to model evolutionary rate 

differences among sites (5 categories (+G, parameter = 0.6817)). The rate variation model allowed for some sites to 

be evolutionarily invariable ([+I], 21.9904% sites). The analysis involved 39 nucleotide sequences. Codon positions 

included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There 

were a total of 576 positions in the final dataset.  
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Table 5. 4 measurements of all species of Hysterolecithoides spp. infecting non-siganid hosts 

Species name  

Hysterolecithoides 

pseudorosea 

Hysterolecithoides 

manini 

 

Hysterolecithoides 

zebrasomatis 

 

Hysterolecithoides 

multiglandularis 

Hysterolecithoides 

yamaguti 

Host  Cirrtitus virulatus Acanthurus sandvicensis Zebrasoma veliferum Leiognathus brevirostris Serranus flavocaeruleus 

Author Bravo-Hillis, 1956 Yamaguti, 1970 Yamaguti, 1970 Tang et al., 1983 Gupta and Dwivedi, 2006 

Locality Mexico Hawaii Hawaii southern Fujian, China Ernakulam coast, Kerala 

  n= 1 n= 2 n= 2  n= 2 

  Min Max Min Max Min Max Min Max 

Body Length 1860 2100 3350 1000 2700 813 1189 3200 4360 

Body Width 500 300 400 200 400 256 391 1020 1140 

Forebody length 500       1400 1480 

Pre-oral lobe length          

Oral sucker length 138 110 120 50 100 70 98   

Oral sucker width 165 120 150 80 130 45 78   

Pharynx L 47 70  50 70 24 30 90 110 

Pharynx W 62   60 90 24 30 110 130 

Intestinal bifurcation to ventral sucker          

Genital pore to ventral sucker          

Sinus sac length  80  116    630 770 

Sinus sac width  58  58    100 200 

Venral sucker length 545 240 300 150 240 195 240 550 650 

Ventral sucker width 165     180 231 580 680 

Left testis  legnth  120 160 90 210 150 162 200 250 

Left testis  width   100 120 70 180 108 144 110 130 

Right testis length      144 159 120 270 
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Table 5.4 (continued.) 

Species name  Hysterolecithoides 

pseudorosea 

Hysterolecithoides  

manini 

Hysterolecithoides 

zebrasomatis 

Hysterolecithoides 

multiglandularis 

Hysterolecithoides 

yamaguti 

Host  Cirrtitus virulatus Acanthurus sandvicensis Zebrasoma veliferum Leiognathus brevirostris Serranus flavocaeruleus 

Author Bravo-Hillis, 1956 Yamaguti, 1970 Yamaguti, 1970 Tang et al., 1983 Gupta and Dwivedi, 2006 

Locality Mexico Hawaii Hawaii southern Fujian, China Ernakulam coast, Kerala 

  n= 2    

  Min Max Min Max Min Max Min Max 

Right testis width      105 117 120 160 

Ovary length   100 210 80 170   140 180 

Ovary width   100 150 70 160   180 200 

Vitellarium length   220 340     100 140 

Vitellarium width  150 270     100 180 

Post-vitalline region length (PVR)          

Post-uterine region length (PUR)          

Egg length  27-29 21 31 21 26 27 30 20 30 

Egg width  14-17 12 19 10 14 12 15 40 50 

Width as % of length   14.29 11.94       

Forebody as % of length         31.88 26.15 

Suckers width ratio 1:2.92 1:2  1.2      

Oral sucker: pharynx ratio          

PVR as % of length          

PUR as % of length          

Excretory pore to posterior extremity  

as % of length          
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5.4 Discussion  

The morphological characteristics that are used to distinguish between Hysterolecithoides 

species are limited. However, based on the morphological and molecular data that were obtained 

in the present study it is recognized that the species investigated herein is different from all known 

members of Hysterolecithoides, including those which are known from other siganid hosts. For 

instance, many morphological parameters of Hysterolecithoides amurparuchinii n. sp. were 

different from H. pseudorosea which was described from the giant hawkfish Cirrhitus rivulatus 

(Valenciennes) off the Pacific coast of Mexico. The most distinguishing feature was the enormous 

ventral sucker of the latter which separates it from H. amurparuchinii n. sp. and from other 

members within the genus. The two species that were reported from Hawaiian waters (i.e. H. 

manini and H. zebrasomatis) can be differentiated from the species presented herein by their 

definitive host species (both reported from acanthurids) and their geographical locality (Hawaii, 

where siganids are absent). Further, the bodies of these two species are narrower and shorter, while 

the shape was different compared to our worms (cylindrical vs spindle shape). In addition, the 

position and arrangement of testes was also different (tandem, H. manini and H. zebrasomatis vs 

parallel, H. amurparuchinii n. sp.). 

As for H. multiglandularis, it has a vitellarium that consists of multiple globular masses 

(about 17) which distinguishes this species from all members of the genus and the species described 

herein. Furthermore, the ratio of suckers width is larger in H. multiglandularis in comparison to 

our worms (2.35-2.57 vs 1.55-1.96). Lastly, although H. amurparuchinii n. sp. most closely 

resembles H. epinepheli and H. frontilatus which are both registered on siganid hosts, 

comprehensive morphological analysis revealed that it is noticeably different from these two 

species. Various morphological characteristics were useful to separate the species described herein 

from the aforementioned species (Table 5.2).  

Given that our finding is from the western Indian Ocean, it is important to discuss other 

occurrences in this region. Such records include that of Hafeezullah and Dutta (1980) who reported 

H. frontilatus from an unidentified fish host as well as from S. oramin (=S. canaliculatus) from 

Coromandel Coast, Gulf of Mannar. The worms described by the above mentioned authors are 

considerably larger than both H. frontilatus and H. epinepheli, while many of the body parameters 

overlap with our worms (e.g. body size, sucker width ratio, width as a percentage of body length 



120 

 

and forebody as a percentage of body length). It is observed from the illustrations that the 

arrangement of the main body organs such as the position of the testes and ventral sucker is also 

similar to our worms. Thereby, it is possible to theorize that the worms reported by Hafeezullah 

and Dutta (1980) are the same as the species obtained in the present study. Unfortunately, the 

description of Hafeezullah and Dutta (1980) is insufficient to confirm the accurate identity of the 

worms reported in their study. Thus, new material will be required to confirm this speculation and 

preferably molecular data should be obtained to support the taxonomical status of this worm.  

Additionally, information regarding another species of the genus were published by Gupta 

and Dwivedi (2006). H. yamagutii was described from another epinephelid host Serranus 

flavocaeruleus (=Epinephelus flavocaeruleus, Lacépède) from Kerala, Indian Ocean. The 

description of this species is based on only two specimens, using limited morphological 

justifications (Table 5.4) and the type-slides were unattainable for comparative analysis (Argawal, 

personal communication). The above mentioned authors distinguished H. yamagutii from its 

congeners by its large Sinus-sac, number of vitelline masses and the presence of dermal gland in 

the anterior half of the body. The body size (length and width) of H. yamagutii overlapped with 

our worms. However, we didn’t notice any dermal glands in our worms and the vitelline masses 

were more than in H. yamagutii (H. amurparuchinii n. sp., 2-7 masses). Based on this, we 

tentatively consider H. yamagutii as species inquirendum because there isn’t sufficient justification 

for this species.  

Some members of Hysterolecithoides exhibit wide geographical and host range, while some 

are more restricted. For example, H. epinepheli was registered in hosts of the Serranidae family (1 

species), Carangidae (1 species) and Siganidae (3 species). In contrast, H. frontilatus is found 

exclusively in the family Siganidae (4 species). H. pseudorosea occurs in the family Cirrhitidae (1 

species). Both H. manini and H. zebrasomatis are registered on Acanthuridae. Aside from siganids 

and acanthurids, all remaining host families are taxonomically and ecologically distant. The 

available literature suggests that hysterolecithin lecithasterids are commonly reported from 

acanthurid, siganids, and pomacentrids. Thus, the occurrence of Hysterolecithoides species in 

serranid and carangid hosts might be accidental. This confirmation of this proposition will require 

the knowledge of the infection levels and intensities in these hosts.  
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Geographically, H. epinepheli is the most widely distributed species of the genus. It was 

recorded from the Temperate Northern Pacific region (Mie and Hyogo Prefecture, Japan) and from 

the Central Indo-Pacific region including Hainan Island, Guangdong Province (China), Sulawesi 

(Indonesia) and most recently from Halong Bay (Vietnam). H. frontilatus is more restricted 

occurring only in the Central Indo-Pacific region (Queensland, Australia, New Caledonia, Bray 

and Cribb (2001)) and recently South China Sea off Vietnam, Atopkin et al., (2018) (also in the 

Central Indo-Pacific region). The remaining 4 species were registered from single localities in the 

Temperate Northern Pacific (H. multiglandularis from southern Fujian, China), Eastern Indo-

Pacific (H. manini and H. zebrasomatis from Hawaii) and Tropical Eastern Pacific (H. pseudorosea 

from Mexico). However, their respective hosts exhibit a wider geographical range which might 

result in registration of new locality records for these worms and consequently the expansion of 

their geographical range.  

For example, Acanthurus sandvicensis (= A. triostegus Linnaeus) has a wide range of 

geographical distribution which includes the entire Indo-Pacific region but excluding the seas 

around the Arabian Peninsula (Froese and Pauly 2018). Likewise, Zebrasoma veliferum (Bloch) 

has a distribution range spanning through the Western Indian Ocean and the Pacific Ocean (Froese 

and Pauly 2018). In case of our worms, the geographical distribution of its host S. canaliculatus 

includes the Western and Central Indo-Pacific region. However, of all the investigated localities in 

the present study, H. amurparuchinii n. sp. was limited to the southern region of Oman (coasts of 

Arabian Sea). Moreover, despite the fact that several siganids were previously investigated for 

parasites in the region of Arabian Sea and Red Sea (e.g. Diamant and Paperna 1986; Martens and 

Moens 1996; Geets and Ollevier 1997; Hassanine and Gibson 2005; Al-Jahdali 2013), none of 

these authors recorded any members of Hysterolecithoides from their hosts. Thus, considering the 

limited distribution of H. amurparuchinii n. sp., it can be assumed that these worms are 

geographically isolated and are endemic to the waters of Oman.  

Interestingly, the results of our molecular analysis revealed that the SSU rDNA of 

Hysterolecithoides amurparuchinii n. sp. was 99% similar to the SSU sequence of a digenean 

species referred to as H. guangdongensis in NCBI GenBank database. These sequences were 

submitted by Wang et al. (2010) of worms obtained from S. fuscescens sampled from Zhanjiang 

sea area off Chinese waters. The original description of H. guangdongensis indicates that it was 
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formerly placed in the genus Oligolecithoides (Wu 2000). However, there is no taxonomic 

justification supporting the transfer of O. guangdongensis to Hysterolecithoides (Dr Bray, personal 

communication). In comparison to the description of Wu (2000), our worms are larger (maximum 

length reaching 5085 µm in H. guangdongensis), the width as a percentage of body length is larger 

(20.40-24.94% in H. guangdongensis), and the sucker width ratio is smaller (2.14-2.94, in H. 

guangdongensis).  

The morphological distinction between the two species is further supported by the molecular 

and phylogenetic information obtained in the present study. Although usually highly conservative, 

the phylogenetic analysis of the small subunit sequences obtained from our worms indicated no 

inter-specific variations within members of the same species (all obtained sequences were 100% 

identical). However, a difference of 14 bases was detected between our worms and H. 

guangdongensis. It was observed that the alignment of the V4 region of all available SSU 

sequences of Hysterolecithoides species (Figure 5.5) shows that the sequence of H. frontilatus ex 

S. nebulosus which was submitted by Blair et al. (1998) was only identical to H. guangdongensis. 

Atopkin et al. (2018) concluded that H. frontilatus ex S. nebuloses and H. guangdongensis are both 

synonyms of H. epinepheli by comparing their SSU sequences.  

However, using the LSU data the sequences of H. frontilatus which were submitted by 

Sokolov et al (2018) showed that it is slightly distant from H. epinepheli. This could propose that 

the LSU sequences of H. epinepheli ex S. fuscescens and H. frontilatus ex S. fuscescens are 

obtained from two distinct species. However, in their article, Atopkin et al. (2018) provided 

morphological evidence proving that the location of the distal part of the pars prostatica can be 

variable within the same species. It is noteworthy that our comprehensive morphological 

comparisons with all available data of H. frontilatus and H. epinepheli as well as the comparative 

measurements obtained from voucher slide and the additional measurements indicate that there are 

some morphometric variations between H. epinepheli and H. frontilatus.  

These variations are most noticeable in the space between the two testes, position of ventral 

sucker relative to body length and the length of forebody as a percentage of body length (in H. 

epinepheli it is 1.41-1.02 times longer than H. frontilatus) (Figure 5.4). This observation might 

indicate that the trajectory of the distal part of the par prostatica alone isn’t sufficient to differentiate 

between species of Hysterolecithoides. Thus, it is suggested to reconfirm these observations by 
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conducting a morphological analysis of these two species incorporating the additional 

measurements used in this study which further distinguish the three species as well as using 

molecular analysis to discern these speculations.  

In conclusion, the morphological information obtained in the present study is consistent with 

the molecular data in justifying the consideration of H. amurparuchinii n. sp. as a new species to 

the genus Hysterolecithoides. 
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6 Parasite communities of herbivorous Siganus canaliculatus (Perciformes: 

Siganidae) from the Sultanate of Oman and their potential to indicate 

marine ecosystem health 

Abstract 

For the first time, the parasite fauna of the herbivorous white-spotted rabbitfish, Siganus 

canaliculatus (Park) was used to study ecosystem health. Parasitological data of 210 host 

specimens from six sampling sites along the coasts of the Sultanate of Oman were analysed. 

Geographical variations in the parasite community along the Indian Ocean (Arabian Sea) until the 

Persian Gulf were detected by using multidimensional scaling (nMDS) and analyses of similarity 

(ANOSIM). Selected parasitological parameters and ecological indicators were utilised as 

biological descriptors, visualising the status of the marine environment. The resulting star graph 

identified Sohar inside the Gulf of Oman with its extensive industrial zone (including 

petrochemicals industry), as an affected location with less parasite diversity and mainly negative 

parasite descriptors, demonstrating environmental disturbance at this sampling site. The best 

environmental conditions based on the parasite fauna of S. canaliculatus were detected in two 

locations from the southern Omani coast in the Arabian Sea (Raysut and Masirah), followed by 

(Muscat) in the Gulf of Oman and (Khasab) in the Persian Gulf. This result demonstrates the 

effectiveness of the parasite community of an herbivorous marine fish as a bioindicators to evaluate 

the environmental conditions in the Sultanate of Oman. It provides the first baseline data for future 

studies regarding the use of fish parasites as bioindicators for ecosystem health in this less sampled 

region. 

 

Keywords: Biological indicators, Siganus canaliculatus, Gulf of Oman, pollution, fish parasites 
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Sultanate of Oman and their potential to indicate marine ecosystem health 
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6.1 Introduction 

The coastal zones are among the most dynamic regions in the world Oceans, although they 

only occupy 20% of the planet´s surface. They provide valuable resources by contributing to 

roughly 25% of the global biological production and supporting major important fisheries grounds 

(Norse 1993). About 70% of the world cities are located along the coasts with the inhabitants 

amounting to more than 40% of the global population and 75% of the world’s largest urban 

agglomerations (Choudri et al. 2016). Consequently, the coastal ecosystems can be considered as 

the most vulnerable systems on earth due to constant exposure to anthropogenic stress and 

environmental degradation (Palm et al. 2011).  

The Sultanate of Oman is situated in the south-eastern tip of the Arabian Peninsula. It has a 

vast coastline of 3,165 km (in fine-scale) extending from the entrance of the Persian Gulf (Strait of 

Hormuz) to the south of the western Arabian Sea near the borders of the Yemen Republic. The 

shores of Oman are surrounded by three water bodies from north to south: The Persian Gulf, the 

Gulf of Oman and the Arabian Sea. The Omani coastal waters are known for their high productivity 

and biodiversity due to their various habitats including intertidal mudflats, seagrass, algal beds, 

mangroves and coral reefs (DGNC 2010). However, recent developments and urbanisation 

combined with the unsustainable use of coastal resources have put substantial pressure onto the 

Omani coastal zones resulting in notable degradation of the marine ecosystems and a decline in 

natural resources and biodiversity (Choudri et al. 2016).  

So far, most marine pollution monitoring programs in the country focused on direct analyses 

of chemical and physical parameters in sediment and water samples (e.g. Fowler et al. 1993; de 

Mora et al. 2003; 2004; 2005; Tolosa et al. 2005; Al-Rashdi and Suliman 2013). However, aquatic 

ecosystem health can also be indirectly assessed by using bioindicators (Palm et al. 2011). These 

organisms (free-living or parasitic) react sensitively to environmental conditions and change, 

leading to a wide range of applications, such as fish stock separation, feeding ecology, migration 

as well as environmental health indication (Palm 2011). Considering that aquatic parasites respond 

to anthropogenic pollution and environmental changes in a variety of ways, they are used to 

monitor aquatic ecosystem health (Sures 2001). Many studies have demonstrated their 

effectiveness to detect trace elements, heavy metals, eutrophication, pesticides and hydrocarbons 

in the environment (see Sures 2001). Several authors combined the changes in the structure of 
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parasite communities with physical, chemical, biochemical and histochemical analyses to assess 

environmental health (e.g. Barker et al. 1994; Diamant et al. 1999; Galli et al. 2001a; Chapman et 

al. 2015).  

Palm and Rückert (2009) developed a method to visualise environmental differences between 

habitats using an array of selected fish parasitological descriptors and ecological parameters. A 

series of subsequent publications emended and successfully applied this method and utilized 

grouper parasites as biological indicators for different natural habitats (see Palm and Bray 2014), 

polluted sites (Neubert et al. 2016) and aquaculture localities in Indonesia (Palm et al. 2011) and 

Vietnam (Truong et al. 2017), respectively. The present study aims to apply this method for the 

assessment of six sampling sites along the coasts of Oman. For the first time this methodology is 

applied for the parasite community of a marine herbivorous fish, Siganus canaliculatus, of the 

family Siganidae. Non-metric multidimensional scaling (nMDS) analyses as well as the 

composition of the infra- and component parasite communities (see Holmes and Price (1986) and 

Bush et al. (1997)) were applied to demonstrate zoogeographical variation. With the help of 12 

parasitological descriptors, diversity parameters and the star graph, the environmental status of 

each sampling site could be visualised.  

6.2 Materials and methods  

6.2.1 Host collection and examination 

A total of 210 siganids were collected from six sampling sites along the coasts of Oman 

(Figure 6.1, Table 6.1). Samples were divided into two major geographical regions: North (Khasab, 

Dabba, Sohar and Muscat) and South of Al-Hadd cape (Masirah and Raysut). Furthermore, samples 

were subcategorised into three water bodies from north to south: Persian Gulf (PG), Gulf of Oman 

(GoO) and Arabian Sea (AS). These waters bodies correspond to three ecoregions according to the 

Marine ecoregions of the worlds (MEOW) system of Spalding et al. (2007). 
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Figure 6. 1 Sampling localities for whitespotted rabbitfish, Siganus canaliculatus along the coast of Oman. 
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Table 6. 1 Siganus canaliculatus collected from six localities off Oman. 

Sampling 

site 

Code Coordinates Sampling 

zone 

Water 

body 

Total 

length (cm) 

Total weight 

(g) 

Mean parasite 

abundance 

Khasab PG-1 26.1644°N; 

56.2426°E 

North Persian 

Gulf 

30±0.51 308±15.47 81±34.15 

Dabba  GoO-1 25.6365°N; 

56.2538°E 

North Gulf of 

Oman 

31±0.51 331±16.96 159±81.00 

Sohar GoO-2 24.3461°N; 

56.7075°E 

North Gulf of 

Oman 

34±0.86a 536±15.62 63±45.18 

Muscat GoO-3 23.5859°N; 

58.4059°E 

North Gulf of 

Oman 

34±0.34a 485±15.62 619±264.08 

Masirah AS-1 20.3173°N; 

58.6916°E 

South Arabian 

Sea 

35±0.61a 593±30.28 552±198.14 

Raysut AS-2 16.9698°N; 

53.9814°E 

South Arabian 

Sea 

32±0.53 418±19.19 777±246.69 

 

Hosts were transported to the laboratory in a thermal box, where they were deep frozen at -

40°C. Upon examination, the total length (TL) and total weight (TW) of each fish were measured 

prior to dissection. Body surface, gills, branchial and body cavities, viscera (oesophagus, stomach, 

intestine, liver, gallbladder, spleen, heart, gonads and mesenteries), kidneys and musculature were 

examined with the aid of a ZEISS Stemi DV4 Stereo Microscope following Palm and Bray (2014). 

Due to the inability to quantify the abundance of microparasites (Microsporidians and 

Myxosporeans), only the incident and infection site of these parasites were noted. 

Isolated parasites were collected, quantified and preserved in either 70% ethanol, 4% 

formalin or 95% ethanol for molecular identification. Helminths were stained with Acetic carmine 

or Mayer’s paracarmine, differentiated, dehydrated, cleared in clover oil and mounted in Canada 

balsam. Nematodes were dehydrated in gradual ethanol series and transferred in 100% glycerine. 

Crustaceans were dehydrated and transferred onto Canada balsam. Obtained parasites were 

identified to the lowest taxonomic level possible, following available literature (Diamant and 
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Paperna 1986; Schmidt and Paperna 1978; Baker et al. 1993; Amin and Nahhas 1994; Martens and 

Moens 1995; Nahhas and Wetzel 1995; Bray and Cribb 1996; Geets and Ollevier 1996; Geets et 

al.1997; Bray and Cribb 1998; Bray and Cribb 2000; Bray and Cribb 2001; Sey et al. 2003; Yuniar 

et al., 2007; Tingbao et al. 2007; Kritsky et al. 2007a; Kritsky et al. 2007b; Amin and Van Ha 

2011). 

6.2.2 Parasitological and ecological parameters 

For each sampling site, a variety of diversity parameters were calculated. These included the 

Shannon index of species diversity (Shannon 1948), Pielou index of evenness (Pielou 1966) and 

Berger-Parker index of dominance (Berger and Parker 1970). The ecto- to endoparasite ratio which 

was calculated according to Rückert et al. (2009a), included microsporidian and myxosporean 

parasites as present/absent data (Palm and Rückert 2009). The diversity indices of the metazoan 

parasites fauna were calculated from the abundance data of both ecto- and endoparasites (excluding 

microparasites such as Microsporea and Myxosporea). To investigate geographical variations 

among sampling sites, parasitological parameters (prevalence (P), mean intensity (mI) and mean 

abundances (mA)) for both infracommunity (parasites in individual hosts) and component 

communities (parasites in host population) were calculated according to Bush et al. (1997). 

Uninfected fishes as well as parasites with less than 10% prevalence, were omitted from the 

subsequent statistical multivariate analyses to remove possible satellite parasites (Carvallho et al. 

2015; Pereira et al. 2014; Henriquez and Gonzalez et al. 2012). 

6.2.3 Statistical analyses  

To compare the characteristics of the parasite communities of S. canaliculatus, multivariate 

analyses was performed on the abundance data for the infracommunity level and on the prevalence 

data for the component community level using Primer program (release 7, Primer-E Ltd. Ivybridge, 

Devon, UK). Nonmetric multidimensional scaling (nMDS) was performed to visualize 

geographical variations in the composition of the S. canaliculatus parasite fauna. For multivariate 

analyses at the infracommunity level, microsporidian and myxosporean data were excluded from 

the analyses because it is not possible to calculate their abundance (Kleinertz and Palm 2015). Prior 

to the analyses, infracommunity abundance data were log-transformed (log (x+1)) to reduce the 

impact of the dominant species on those with low abundances. To compare geographical variation 

in parasite communities, a similarity index was constructed using the Bray-Curtis similarity 
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measure. Furthermore, a hierarchical agglomerative clustering was applied to the infra- and 

component communities using group-average linking.  

One-way analyses of similarity (ANOSIM) were conducted on infracommunity abundance 

data with Bray-Curtis similarity measure to identify the differences in parasite species composition 

between the zones, water bodies and sampling sites (Table 6.1). In addition, routine similarity 

percentage analyses (SIMPER, Clarke 1993) was applied to test which parasite species contributed 

most to the differences in parasite infracommunities of S. canaliculatus with Bray-Curtis analyses, 

according to Bell and Barnes (2003). For the component community level, prevalence data of all 

recorded parasites (including microparasites) were used for the similarity index analyses, and 

nMDS was performed by using untransformed prevalence data with Bray-Curtis similarity index. 

6.2.4 Visual integration 

Visual integration of the obtained data sets was calculated using selected diversity and 

parasitological descriptors following Palm and Rückert (2009), Kleinertz and Palm (2015), Neubert 

et al. (2016) and Truong et al. (2017). To illustrate the star graphs, the prevalence of seven different 

parasite taxa (The myxosporeans Ceratomyxa spp., the monogenean Glyphidohaptor sp., the 

digeneans Opisthogonoporoides sp. and Gyliauchen spp., the acanthocephalan Scllerocullom sp., 

the nematode Hysterothylacium sp. and the copepod Hatschekia sp.) were used. The total Berger-

Parker dominance index, total Shannon diversity index and Shannon diversity index for 

endoparasites, Pielou’s Evenness index and ecto/endoparasite ratio were normalized onto a range 

of zero to 100 (Neubert et al. 2016). This is based on the assumption, that high values indicate 

natural environmental conditions and are oriented to the outer circle of the star graph and low 

values indicate affected environmental conditions and are oriented to the inner circle of star graph. 

For this reason, the Berger-Parker index was inversed to reflect the above assumption (Neubert et 

al. 2016). 

6.3 Results  

6.3.1 Parasite fauna and composition  

Including the parasites with less than 10% prevalence, the parasite fauna of S. canaliculatus 

examined in the present study consisted of a total of 48 species. These belonged to the following 

taxa: one hyperparasite microsporidian, 13 myxosporeans, four monogeneans, 15 digeneans, one 
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cestode, four nematodes, four acanthocephalans, one species of Hirudinea and five crustaceans. Of 

the myxosporeans detected in the present study, Ceratomyxa spp. were the most predominant with 

a prevalence ranging from 20-69%. The ancyrocephalid monogeneans Glyphidohaptor safiensis 

Al-Jufaili, Machkevskyi, Al-Kindi & Palm, (unpublished) and Tetrancistrum spp. were the most 

predominant ectoparasites, with high prevalence ranging between 83-100% and 80-100 

respectively. Among the endoparasites, the digenean Opisthogonoporoides sp. was the most 

prevalent with infection levels ranging between 46-66%. The highest total parasite abundance was 

recorded from Raysut sampling site (mean = 778.6 ± 246.7) and the lowest from Sohar (mean = 

63.7 ± 45.2; Table 6.1). The richness varied across the sampled sites, the highest richness was 

recorded from Raysut and the lowest from Sohar with almost half of the value of the Raysut (Table 

6. 2). All examined hosts were infected with at least one parasite taxa, except for some specimens 

from Sohar (n = 17). 

6.3.2 Diversity indices  

The Shannon diversity index varied between sampling locations, ranging from (0.83) Sohar 

to (2.19) Raysut. Similar results were obtained for the Shannon diversity index for endoparasites, 

with the value recorded from Sohar being less than half of Raysut (0.82 vs 1.79). The Pielou index 

was also lowest in Sohar (0.36), while Khasab and Raysut had the highest value (0.72). The Ec/En 

ratio was highest in Dabba and lowest in Sohar (0.50 and 0.0, respectively). The Berger-Parker 

index of dominance recorded in Sohar was about three times higher than from Raysut (0.65 vs 

0.19; Table 6. 2). 
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Table 6. 2 Prevalence % (P), mean intensity (mI), mean abundance (mA) and diversity indices of whitespotted rabbitfish, Siganus canaliculatus parasites that 

were used for the multivariate statistical analyses collected from six locations off Oman (excluding parasites with 10% prevalence). Parasite used as 

environmental descriptors are marked with asterisk. 

Water Body Persian Gulf Gulf of Oman Arabian Sea 

Sampling site Khasab Dabba Sohar Muscat Masirah Raysut 

Parasite/Diversity index P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA 

Microsporidia sp.1 

(hyperparasite) (Mi) 

3 ˗ ˗ 11 ˗ ˗ 3 ˗ ˗ 51 ˗ ˗ 6 ˗ ˗ 11 ˗ ˗ 

Zschokkella sp. (My) 3 ˗ ˗ 29 ˗ ˗ 11 ˗ ˗ 51 ˗ ˗ 23 ˗ ˗ 17 ˗ ˗ 

Ceratomyxa spp. (My)* 63 ˗ ˗ 31 ˗ ˗ 40 ˗ ˗ 20 ˗ ˗ 37 ˗ ˗ 69 ˗ ˗ 

Unicapsula fatimae (My) 0 ˗ ˗ 6 ˗ ˗ 40 ˗ ˗ 9 ˗ ˗ 11 ˗ ˗ 31 ˗ ˗ 

Ortholinea spp. (My) 29 ˗ ˗ 14 ˗ ˗ 11 ˗ ˗ 29 ˗ ˗ 49 ˗ ˗ 40 ˗ ˗ 

Kudoiidae indet. (My) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 60 ˗ ˗ 49 ˗ ˗ 

Glyphidohaptor safiensis (M)* 83 9(1-54) 7.80 94 49(1-373) 47.00 0 ˗ ˗ 97 135(5-524) 131.00 97 52(2-282) 50.10 100 74(2-255) 75.00 

Tetrancistrum spp. (M) 89 5(1-28) 4.37 94 17(1-126) 16.00 0 ˗ ˗ 80 42(1-257) 34.00 97 48(2-197) 47.90 100 92(15-315) 94.60 

Polylabris sp. (M) 11 4(1-8) 0.50 6 1(1) 0.10 0 ˗ ˗ 11 4(1-8) 0.50 31 2(1-4) 0.50 49 2(1-6) 0.90 

Hexangium spp.(D) 0 ˗ ˗ 3 4(4) 0.1 6 2(1-2) 0.1 54 59(8-215) 9.40 26 14(2-76) 6.8 11 10(2-27) 0.20 

Gyliauchen spp.(D)* 11 4(1-11) 0.40 0 ˗ ˗ 0 ˗ ˗ 80 17(1-112) 47 80 112(12-366) 102.80 80 92(2-357) 81.60 

Opisthogonoporoides sp.(D)* 49 43(2-119) 21.80 0 ˗ ˗ 46 70(6-279) 32.00 49 332(56-1327) 161.00 54 35(4-87) 25 66 169(7-673) 103.10 

Schikhobalotrema sp. (D) 6 12(8-15) 0.70 0 ˗ ˗ 0 ˗ ˗ 20 24(4-110) 4.80 60 54(6-237) 47.8 94 115(6-1100) 77.80 

Hapladena ljadovi (D) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 6 6(1-10) 0.3 43 10(2-41) 4.70 23 6(2-12) 1.50 

Thulinia sp. (D) 3 1(1) 0.03 0 ˗ ˗ 0 ˗ ˗ 34 4(1-8) 1.3 20 4(1-6) 0.90 63 14(1-112) 9.20 

Aponurus sp. (D) 0 ˗ ˗ 0 ˗ ˗ 3 1(1) 0.00 17 5(2-15) 0.8 26 5(2-13) 1.50 37 6(2-31) 2.00 

Hysterolecithoides sp. (D) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 60 10(1-29) 6.20 63 5(1-28) 3.60 
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Table 6.2 (continued) 

Water Body Persian Gulf Gulf of Oman Arabian Sea 

Sampling site Khasab Dabba Sohar Muscat Masirah Raysut 

Parasite/Diversity index P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA 

Preptetos sp.(D) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 40 3(1-6) 1.10 31 3(1-8) 1.00 

Unisaccus sp. (D) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 31 58(6-326) 16.70 9 5(1-11) 0.10 

Stephanostomum spp. (D) 43 20(1-110) 8.8 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 

Sclerodistomidae indet. adult (D) 0 ˗ ˗ 17 3(1-7) 0.4 6 1(1) 0.1 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 

Otobothrium sp.(C) 3 1(1) 0.90 3 19(19) 0.50 0 ˗ ˗ 40 90(10-316) 36.10 0 ˗ ˗ 11 2(1-6) 0.30 

Hysterothylacium sp. (N)* 14 10(3-22) 1.40 6 35(4-66) 2.00 3 3(3) 0.10 66 12(2-59) 8.00 14 2(1-7) 0.60 20 11(1-31) 2.00 

Capillaria sp.(N) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 14 113(49-280) 16.2 23 11)1-55) 3.80 17 8(1-32) 1.60 

Procamallanus sp. (N) 0 ˗ ˗ 3 1(1) 0.00 3 3(3) 0.10 26 31(2-113) 8.10 26 14(2-44) 4.20 91 62(3-420) 48.80 

Nematode indet. Larvae (N) 31 8(2-23) 0.00 6 5(3-6) 0.30 20 2(1-4) 0.40 6 2(1-2) 0.10 0 ˗ ˗ 0 ˗ ˗ 

Sclerocollum sp.(A)* 66 20(2-186) 13.30 66 65(3-218) 42.50 14 108(4-280) 15.50 29 19(2-44) 5.50 26 14(2-44) 4.20 34 27(3-84) 13.70 

Acanthocephala sp. 2 (A) 0 ˗ ˗ 23 13(1-46) 3.10 11 8(3-12) 0.90 40 16(2-45) 6.30 0 ˗ ˗ 40 34(8-100) 14.90 

Acanthocephala indet. cystacanth 23 4(1-11) 0.90 37 24(1-129) 9.00 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 

Acanthocephala sp. 3 (A) 20 3(1-10) 0.50 29 6(1-21) 1.8 6 1(1) 0.10 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 

Hatschekia spp.(Cr)* 29 2(1-6) 0.70 14 3(1-10) 0.50 0 ˗ ˗ 77 9(1-47) 6.90 14 14(7-24) 2.30 100 34(1-175) 36.00 

Caligus spp.(Cr) 0 ˗ ˗ 0 ˗ ˗ 0 ˗ ˗ 3 1(1) 0.00 94 114(9-670) 90.90 40 2(1-5) 1.00 

Gnathiidae indet. sp.(pranzia 

larvae) (Cr) 

11 1(1-2) 0.10 6 2(1-2) 0.10 0 ˗ ˗ 3 17(17) 0.50 11 1(1-2) 0.20 14 1(1-2) 0.20 

Ecto-to endoparasite ratio (Ec/En)* 0.36 0.50 0.10 0.44 0.44 0.41 

Shannon index of species diversity 

H` (total)* 

1.90 1.50 0.83 1.93 2.08 2.19 
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Table 6.2 continued 

Water Body Persian Gulf Gulf of Oman Arabian Sea 

Sampling site Khasab Dabba Sohar Muscat Masirah Raysut 

Parasite/Diversity index P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA P% mI(I) mA 

Shannon index of species 

diversity H` (endoparasites)* 

1.48 1.00 0.82 1.61 1.67 1.79 

Berger-Parker index of 

dominance d`(total)* 

0.34 0.38 0.65 0.34 0.25 0.19 

Pielou index of evenness J` 

(total)* 

0.72 0.58 0.36 0.63 0.71 0.72 
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6.3.3 Multivariate analyses  

The multidimensional scaling and ANOSIM of infracommunities revealed a slight separation 

of northern and southern samples (ANOSIM, R = 0.36, P = 0.001) (Figure 6.1A). The stress value 

of 0.2 indicates a reliable observation. When considering the three water bodies, samples obtained 

from AS aggregated and clustered together with a clear separation from the other sampling sites. 

Samples collected from both GoO and PG showed a more scattered and irregular distribution 

(ANOSIM, R = 0.42, P = 0.001) (Figure 6.1B), while PG was not different from GoO (R = 0.074, 

P = 0.37) but both PG and GoO were significantly different to AS (R = 0.91, P = 0.001 and R = 

0.33, P = 0.001, respectively). As for individual sampling locations (Figure 6.1C), samples that 

were obtained from Raysut and Masirah (AS- southern region) were clustered with each other. 

Samples obtained from Muscat showed more similarity to samples from the southern region than 

to the samples collected from the same water body (Sohar and Dabba from GoO). Khasab samples 

which are the only samples obtained from PG, showed a more dispersed distribution while samples 

collected from Sohar were completely separated from all other samples. Overall, ANOSIM 

indicates a significant difference between all studied sampling sites (R = 0.68 at P= 0.01). 
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Figure 6. 2 Nonmetric multi-dimensional scaling plot of the parasite infracommunity of 193 specimens of Siganus 

canaliculatus from Omani waters using Bray-Curtis similarity index, North and South,(A), water bodies (PG- 

Persian Gulf, GoO- Gulf of Oman and AS- Arabian), (B), sampled locations, (C).  
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The nMDS and cluster analyses based on the total parasite prevalence data of S canaliculatus 

at the component community level using Bray-Curtis (untransformed) similarity measure (Figure 

6. 2) revealed similar observations with the separation of the sampling sites into four clusters. Fish 

sampled from Raysut and Masirah sampling sites (South, AS) were clustered together showing 

strong association with 80% similarity. Samples from Muscat (North, GoO) were closest to both 

samples from the southern region with 60% similarity. Samples obtained from Dabba (North, GoO) 

were not similar to any of the other two samples that were obtained from the same water body 

(Sohar and Muscat, both North, GoO). Instead, samples obtained from Dabba showed higher 

similarity to those obtained from Khasab (North, PG) at 60% similarity level. Sohar samples were 

noticeably separated from all other samples. The stress levels of 0.0 on the figure indicate a parasite 

community composition that is substantially different from random. 

With regard to SIMPER analyses, parasites contributing most to the dissimilarities did not 

reach very high percentage, indicating that several of the parasite species contributed similarly to 

the differences between the zones and habitats. The parasite species contributing the most to the 

geographical and regional differences at the infracommunity level was Schikhobalotrema sp. with 

11.21% contribution at the zone level (north vs south). Between the different waterbodies, 

Glyphidohaptor sp. contributed with 14.75% to the dissimilarities between PG and GoO. 

Hatschekia spp. contributed with 11.59% to the dissimilarities between PG and AS. Lastly, 

Schikhobalotrema sp. contributed to the dissimilarity between GoO and AS at 11.16%. At the 

component community level, Glyphidohaptor sp. contributed to 16.61% of the dissimilarity 

between the two zones (north and south), it also contributed with 26.95% to the dissimilarity 

between PG and GoO. Gyliauchen spp. contributed with 18.38% and 15.91% to the dissimilarity 

between PG and AS, GoO and AS, respectively. 
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Figure 6. 3 Nonmetric multi-dimensional scaling plot based on the prevalence data of the component parasite 

communities of Siganus canaliculatus from six locations using Bray-Curtis similarity measure on untransformed 

data. 

6.3.4 Biological descriptors and visual integration  

Twelve descriptors from S. canaliculatus were evaluated as potential bioindicators for 

ecosystem health in Omani waters. The prevalence of seven parasite taxa and five diversity indices 

were chosen to visualize the obtained results in a star graph (Table 6.3). The largest star graph area 

was calculated for Raysut sampling site (25.4) followed by Masirah sampling site (19.2) and 

Muscat (16.4). Sohar sampling site had the smallest star graph area calculated in this study (0.9), 

(see Figure 6.3). To illustrate the environmental conditions based on the parasitological descriptors 

between the sampled locations, a pollution light following Neubert at al. (2016) is presented in 

figure 4 (x-axis range until 30 instead of 27). Analysed habitats assigned in a range from good 

(green), medium (yellow) and poor (red) to assess environmental conditions of studied Omani 

coastal waters. 
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Table 6. 3 Parasitological and diversity descriptors of Siganus canaliculatus selected as bioindicators for the assessment of marine ecosystems in the Sultanate of Oman. 

Prevalence (%) data are followed by the normalized data in brackets. 

Sampling site   Khasab 

(PG-1) 

 Dabba 

(GoO-1) 

 Sohar 

(GoO-2) 

 Muscat 

(GoO-3) 

 Masirah 

(AS-1) 

 Raysut 

(AS-2) 

Water body  Persian Gulf  Gulf of Oman  Arabian Sea 

Ceratomyxa spp. (p%)  63 (88)  31 (24)  40 (41)  20 (0)  40 (41)  69 (100) 

Opisthogonoporoides sp. (p%)  49 (57)  0 (0)  46 (53)  49 (57)  86 (100)  66 (77) 

Gyliauchen spp. (p%)  11 (14)  0 (0)  0 (0)  54 (68)  80 (100)  80 (100) 

Sclerocollum sp. (p%)  66 (100)  66 (100)  14 (0)  29 (28)  26 (22)  51 (72) 

Hysterothylacium sp. (p%)  14 (18)  6 (5)  3 (0)  66 (100)  17 (23)  20 (27) 

Glyphidohaptor safiensis (P%)  83 (83)  94 (94)  0 (0)  97 (97)  97 (97)  100 (100) 

Hatschekia spp. (p%)  29 (29)  14 (14)  0 (0)  77 (77)  94 (94)  100 (100) 

Ecto- to endoparasite ratio (Ec/En)  0.36 (66)  0.50 (100)  0.10 (0)  0.44 (84)  0.44 (84)  0.41 (78) 

Shannon index of species diversity H` (total)  1.90 (79)  1.50 (49)  0.83 (0)  1.93 (81)  2.08 (92)  2.19 (100) 

Shannon index of species diversity H` (endoparasites)  1.48 (68)  1 (18)  0.82 (0)  1.61 (81)  1.67 (88)  1.79 (100) 

Berger-Parker index of dominance d`(total)  0.34 (66)  0.38 (58)  0.65 (0)  0.34 (67)  0.25 (85)  0.19 (100) 

Pielou index of evenness J` (total)   0.72 (100)  0.58 (62)  0.36 (0)  0.63 (77)  0.71 (96)  0.72 (100) 
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Figure 6. 4 Visual integration of seven parasitological and five diversity descriptors that were selected as 

environmental indicators of ecosystem status in Sultanate of Oman.  
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Figure 6. 5 Pollution light: the histogram represents calculated star graphs areas that were obtained from 

normalized parasitological and diversity parameters of Siganus canaliculatus parasite communities from six 

locations. The colour scheme reflects the status of the environment based on the parasite descriptors. 

 

6.4 Discussion 

6.4.1 Parasite descriptors for environmental health 

The parasite fauna of the whitespotted rabbitfish Siganus canaliculatus was speciose, with 

48 different ecto- and endoparasites. Of these, seven were considered useful to characterize the 

faunistic differences between the sampled locations and habitats. The use of myxosporean parasites 

as bioindicators is not as common as other endoparasites because they seem to show contrasting 

reaction to pollution or contaminants. Also, their occurrence depends on the considered host 

species, life cycle, and the type of contamination (Marcogliese and Cone 2001). For example, Khan 

and Thulin (1991) reported an increase of the gallbladder infecting myxosporean Ceratomyxa 

acadiensis Mavor, 1916 influenced by elevated petroleum aromatic hydrocarbons (PAH) levels 

(Palm 2011). The enrichment of oligochaete alternate hosts induced by high levels of faecal 

coliforms influenced an increase of prevalence of myxosporean infecting the cyprinid Notropis 

hudsonius (Clinton) (Marcogliese and Cone 2001). Similarly, the prevalence of Henneguya 

guanduensis Thelohan, 1892 infecting the catfish Hoplosternum littorale (Hancock) was higher in 
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polluted areas in comparison to less polluted sites (Dias et al. 2017). Recently, Truong et al. (2017) 

recorded an increase of Ceratomyxa infection levels from hosts sampled at a poorly managed 

mariculture site. The findings of Diamant et al. (1999) contrasted the above observations. These 

authors noted that the prevalence of Ceratomyxa spp. infecting the gallbladder of S. rivulatus was 

lower in polluted areas. In the present study the prevalence of Ceratomyxa spp. was relatively high 

at all investigated locations (highest in AS (Raysut) and PG (Khasab)), possibly distinguishing 

these water bodies.  

Some ectoparasites can show parallels to free-living stages of endoparasites such as cercariae 

and coracidia, since they are in direct contact with the environment and toxic substances might 

affect their vitality or increase their mortality rates (Galli et al. 2001b; Sures et al. 2017). This 

makes them suitable effect indicators for water quality (Sures 2001). Several studies suggested a 

negative relation between monogenea and environmental disturbance. Among these Diamant et al. 

(1999) and Dzikowski et al. (2003) reported a significant reduction of monogeneans in polluted 

sites. Similarly, Sanchez-Ramirez et al. (2007) noted a decrease of the abundance of the 

monogenean Cichlidogyrus sclerosus Paperna & Thurston, 1969 at high concentrations of 

polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and heavy metals. In the 

present study, complete disappearance of all monogenean (including Glyphidohaptor safiensis) 

were noted on hosts collected from Sohar even though these parasites were relatively abundant in 

the remaining sampling areas. This is unusual observation suggests high levels of environmental 

disturbance at Sohar sampling site, enabling the use of the monogeneans G. safiensis as a 

bioindicator in Omani waters.  

Palm (2011) and Sures et al. (2017) stated that the prevalence of digeneans in their 

intermediate and definitive hosts are inversely related to the degree of pollution and disturbance of 

the aquatic ecosystem. Siddal et al. (1994) reported a reduction of the digenean Zoogonoides 

viviparus (Olsson, 1868) Odhner, 1902 prevalence in snails due to sewage sludge (Lafferty 1997). 

Diamant et al. (1999) noted the absence of all gut parasites from Siganus rivulatus (Forsskål & 

Niebuhr) sampled from disturbed sites. Galli et al. (2001b) noted that high levels of eutrophication 

limited the existence of the digeneans Asymphylodora tincae Modeer, 1790 and Diplostomum 

spathaceum Rudolphi, 1819. Furthermore, Vidal-Martínez et al. (2003) found a significant 

negative correlation between DDT concentrations and the intensity of a digenean metacercaria 
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Mesostephanus appendiculatoides Price, 1934. In the present study, the Digenea 

Opisthogonoporoides sp. showed relatively high mean abundance and high prevalence throughout 

the sampling sites. However, it was absent from Dabba sampling site. As for Gyliauchen spp. it 

was absent from both Dabba and Sohar sampling sites. These observations could be linked to 

unfavourable water conditions, reduction or absence of the required intermediate host(s) or changes 

in the food web dynamics at both sites. Consequently, we chose Gyliauchen spp. and 

Opisthogonoporoides sp. as bioindicators, since they were recorded frequently with relatively high 

abundances from most of the other sampling sites. 

Lafferty (1997) described a positive relation between nematodes and eutrophication, thermal 

effluent and crude oil. The meta-analyses conducted by Vidal-Martinez et al. (2010) also revealed 

a positive relation between the nematode populations and eutrophication, but reported a negative 

impact due to pulp-mill and crude oil. In contrast, Blanar et al. (2009) reported no significant 

relationship between any form of pollutants and nematode populations. However, Diamant et al. 

(1999) noted that nematodes infecting S. rivulatus were limited to undisturbed sites. Similarly, the 

nematode Cucullanus heterochrous Rudolphi, 1802 infecting the midgut of the European flounder 

Platichthys flesus L. (Linnaeus) had significantly higher prevalence in an unpolluted site off 

Helgoland in the German Bight (Broeg et al. 1999). In a tropical region, Kleinertz et al. (2014) and 

Neubert et al. (2016) reported significant reduction in endoparasitic helminths such as the nematode 

Raphidascaris sp. from polluted sites. Our findings support this observations, where the nematode 

Hysterothylacium sp. had lowest incidence at Sohar (both prevalence and intensity) and highest 

records at Muscat. In order to interpret the variations in abundance and prevalence of 

Hysterothylacium sp. between the sampling sites, further information on the diversity and 

distribution pattern of the potential intermediate hosts in Omani waters will be required. 

The infection levels of acanthocephalans were previously used as bioindicators for 

anthropogenic alterations. Kussat (1969) observed that the infection levels of two 

acanthocephalans Octospinifer macilentus Van Cleave, 1919 and Neochinorhynchus cristatus 

Lynch, 1936 in the freshwater catfish Catostomus commersoni (Lacépède) increased with higher 

concentrations of industrial and domestic waste (Galli et al. 2001b). Galli et al. (2001) reported 

that the prevalence of the acanthocephalan Acanthocephalus anguillae Müller, 1780 was highest 

in heavily polluted sites, while the acanthocephalan Pomphorhynchus laevis Müller, 1776 from the 
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same host was highest in non-polluted areas. Schludermann et al. (2003) found that the prevalence 

of P. laevis was lower from heavily polluted sites. Similarly, both Kleinertz et al. (2014) and 

Neubert et al. (2016) reported the reduction or complete elimination of acanthocephalans in the 

investigated parasite communities under polluted conditions. It is obvious that acanthocephalans 

can react positively or negatively to the changing environment. In the present study, Sclerocollum 

sp. was chosen as a useful bioindicators because it was detected from all sampling sites with 

different prevalence, the highest being in Khasab and Dabba and lowest from Sohar. The exact 

cause of this variation in Sclerocollum sp. populations remains unclear and might be connected to 

the abundance and distribution of benthic amphipods which act as intermediate hosts 

(Taraschewski 2005). Also, Sclerocollum sp. can be used as accumulation indicators because it 

fulfils the criteria required for sentinels as suggested by Sures (2004). 

Ectoparasitic copepods are also sensitive to changes in water quality, often with negative 

relation to different types of pollution (Galli et al., 2001a). The copepods Achtheres percarum 

Nordmann, 1832 and Caligus lacustris Steenstrup & Lütken, 1861 were completely absent from 

sites that were closest to the point of pulp mill effluent discharge (Overstreet and Thulin 1991). 

The prevalence of three species of crustacean ectoparasites Lerneocera branchilais Linnaeus, 

1767, Lepeophtheirus pectoralis Müller, 1776 and Acanthochondria sp. infecting P. flesus L. were 

consistently lower in the most polluted sites (Elbe estuary, German Bight) (Broeg et al. 1999). 

Unger and Palm (2016) noted the absence of ectoparasites from cultured rainbow trout 

Oncorhynchus mykiss (Walbaum) in the western Baltic Sea, indicating the strong influence of the 

variable and changing conditions in this mesohaline waters on ectoparasites.  

Members of the copepod genus Hatschekia Poche, 1902 are also useful as bioindicators. For 

example, Carreras-Aubets et al. (2011) reported the absence of the copepod Hatschekia mulli Van 

Beneden, 1851 from its host, the red mullet Mullus barbatus (Linnaeus) sampled from an anthropo-

impacted site. Neubert et al. (2016) reported the complete absence of Hatschekia sp. from polluted 

site off Jakarta Bay. In the present study Hatschekia spp. (applied for the first time to the star graph 

system) were recorded from all investigated sampling sites (unpolluted) with moderate infection 

levels, but were absent from the polluted site Sohar showing a clear influence of water quality on 

this parasite.  
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6.4.2 Ecological descriptors  

The Shannon diversity indices (excluding microparasites), Berger-Parker index, Evenness 

and the ecto- to endoparasite ratio index were used to indicate environmental disturbance at the 

sampling sites, following Neubert et al. (2016) and Truong et al. (2017). Many researchers recorded 

correspondence between low parasite species richness and diversity with environmental 

disturbance or pollution such as low pH levels (Cone et al. 1993; Marcogliese and Cone 1996; 

Halmetoja et al. 2000), organic pollution (Dusek et al. 1998; Galli et al. 2001b) and anthropogenic 

pollution (Rückert et al. 2008; Palm and Rückert 2009). In the present study, both total and 

endoparasite Shannon diversity indices were used as bioindicators, assuming that a healthy, 

functioning and resilient ecosystem is a system that is diverse and rich in parasite species (Sures et 

al. 2017). The index values were lowest at Sohar and highest at Raysut. This was most likely related 

to the low parasite richness and abundance that was observed in Sohar compared with the other 

locations.  

Galli et al. (2001b) and Schludermann et al. (2003) reported high Berger-Parker index values 

from non-polluted sites. Contrasting observations were recorded by Kleinertz and Palm (2015) 

reporting highest Berger-Parker index value from a polluted site (Segara Ankan Lagoon) and the 

lowest from the healthy site (Bali). Similarly, Neubert et al. (2016) reported high Berger-Parker 

index value of (0.99) for endoparasites from the polluted area (Jakarta Bay) and lowest value from 

the less polluted (0.57). In the present study, total Berger-Parker index of dominance were highest 

at Sohar (0.65) and lowest at Raysut sampling site (0.19). This is reflected by the lower diversity 

and the predominance of few parasite species that was observed in Sohar. This finding is in 

agreement with the original definition of the index where a low diversity is associated with a 

disturbed environment, resulting in high Berger-Parker index value (Caruso et al. 2007). 

Low evenness indicates an increase in the predominance of generalists or more tolerant 

species in a parasite community (Johnson and Roberts 2009). Thus, a parasite community with 

high evenness values is rich in species and exhibits an even distribution of parasites. Galli et al. 

(2001b) investigating the parasite fauna of chub Leuciscus cephalus (Linnaeus) reported a high 

evenness value at the river site with the highest eutrophication. Similarly, Schludermann et al. 

(2003) reported the highest evenness from the cyprinid barbel Barbus barbus (Linnaeus) sampled 

from river sites with the highest level of heavy metal pollution. Contrasting findings were reported 
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from several species of groupers off Indonesian waters, where consistently higher evenness index 

values (Pielou evenness index for endoparasites) were reported from non-polluted areas (Kleinertz 

et al. 2014; Kleinertz and Palm 2015; Neubert et al. 2016). In the current study, the highest total 

evenness index was recorded from Khasab and Raysut (0.72) followed by Masirah (0.71). While 

Sohar sampling site had the lowest recorded evenness index (0.36). This could be interpreted by 

the overall low species richness and the domination (uneven distribution of abundance) of few 

parasites (e.g. Sclerocollum sp.) in the parasite community of hosts sampled from Sohar.  

The ecto- to endoparasite ratio index indicates that a parasite fauna with low endoparasites 

and consequently high Ec/En ratio represents an unnatural parasite infracommunity in a predatory 

fish species, such as groupers (Palm and Rückert 2009). Findings of Kleinertz and Palm (2015) 

and Neubert et al. (2016) both reported high Ec/En ratios in heavily polluted areas for the grouper 

Epinephelus coioides (Hamilton). Similar observations were obtained on some non-predatory hosts 

from the same region. Rückert et al. (2008) reported a low Ec/En value of (1.8) from the 

omnivorous Scatophagus argus (Linnaeus) sampled from non-polluted areas compared to a high 

value of (5) from polluted sites. Also, Palm & Rückert (2009) recorded high Ec/En ratio from the 

herbivorous Mugil cephalus (Linnaeus) (4.5 and 5.7) sampled from a polluted site (Segara Anakan 

Lagoon). In comparison to the observations above, the Ec/En parasite index value were generally 

lower in most of the sampling areas investigated in the present study. It was drastically reduced in 

Sohar (0.0), linked to the complete absence of all ectoparasites. In S. canaliculatus the naturally 

diversity and abundance of endoparasites is high. Bray & Palm (2014) listed Ec/En ratios for 

different fish families and demonstrated that beside the environment, the fish species itself strongly 

influences this index. Because we had an herbivorous fish with a unique feeding ecology, different 

results concerning its Ec/En ratio compared with the groupers from earlier studies are evident.  

6.4.3 Geographical variation in parasite communities along the Omani coast  

Geographical variations were detected for the infection indices and diversity parameters 

between the zones, water bodies and sampling sites. Different geographical and oceanographical 

conditions occur along the coasts of Oman. The coast is hydrologically divided into the North-east 

(including GoO and PG) and the South-west (AS) region by the Ras/Cape Al-Hadd frontal zone. 

This frontal zone acts as a boundary that separates the water masses between the two regions (North 

and South) (Piontkovski et al. 2011). However, the frontal zone is a seasonal phenomenon and is 
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strongly pronounced especially during summer and gradually decays in fall (Piontkovski et al. 

2011). This causes interaction between the two zones and may explain the low correlation value 

that was detected by ANOSIM and an overlap of the parasite fauna of some hosts from GoO with 

samples from AS.  

We observed that the waterbodies PG and GoO clustered together in the cluster analysis and 

MDS, with no significant difference in the parasite composition (ANOSIM). This is caused by their 

geography (relatively shallow semi-enclosed basins subject to extreme conditions) and 

connectivity between both systems. The GoO is a subtropical basin that has variable depths ranging 

from 70 m (towards the Strait of Hormuz) until 3,000 m (in its oceanic part) (Piontkovski et al. 

2012). During Northeast Monsoon in winter, cooler water masses coming from the AS oceanic 

regions pass through the GoO towards the PG (cooling effect) (Piontkovski et al. 2011). This event 

causes the formation of a conventional up-welling and mesoscale eddies as a result of decreased 

water temperatures. The occurrence of the conventional up-welling enriches the surface water and 

aids flourishing phytoplankton blooms and growth of macrophytes (Jupp 2002). In contrast, the 

Southwest Monsoon during summer induces outflow of a high saline water mass coming from PG, 

which results in high water temperatures and low oxygen levels, low primary production and 

decreasing fishery catches (Piontkovski et al. 2012; Wang et al. 2013). The PG is both shallow and 

narrow with an average depth of 36 m (Cavalcante et al. 2016) and is considered as one of the 

harshest marine environments in the world due to prevailing natural stressors, with high salinity 

levels, temperatures, UV exposure, and reduced levels of pH (Naser 2011; de Mora et al. 2003; 

2004). These extreme conditions are accompanied by weak development of phytoplankton and 

macrophytes (Jupp 2002) and consequently lower biodiversity.  

There was high significant difference between the water bodies from the PG and GoO 

compared with the AS. The Arabian Sea is influenced by the event of one of the most powerful up-

welling in the world during the South-west (summer) Monsoon (Jupp 2002), lowering the salinity 

and water temperatures below 20˚C, enriching the surface waters with nutrients followed by 

increased primary production of phytoplankton and high levels of chlorophyll-A (Piontkovski et 

al. 2012). Consequently, the AS has high productivity and higher marine biodiversity of e.g. 

macrophytes (Jupp 2002), mollusks (Al-Siyabi pers. comm.) and fish (MoAF 2015). This is 
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reflected by the highest parasite species richness and biodiversity in the AS, and might also explain 

the site “exclusive” species Hysterolecithoides sp., Preptetos sp. and Kudoiidae indet.  

6.4.4 Visualization of environmental health 

Neubert et al. (2016) linked the star graph area to the environmental conditions of the 

respective location. In their study, the lowest star graph area was calculated from Jakarta Bay (0.3) 

which was described as a highly disturbed environment and the highest star graph area was 

calculated from Balinese water (24.2) as a relatively healthy environment according to Kleinertz 

et al. (2014). Since Sohar (GoO) had the smallest star graph area while Raysut (AS) had the largest 

area, it is suggested that Sohar is under the strong influence of environmental disturbance. This 

assumption is supported by the information resolved from the above discussed parasitological 

parameters and ecological indicators. It is worth mentioning that Sohar is has one of the largest 

industrial areas in Oman known as the Sohar Industrial Zone (SIZ) (Al-Sawai 2015; Al-Wahaibi 

and Zeka 2015). SIZ is a coastal industrial estate that operates a wide range of petrochemical, metal 

based and agricultural industries (Al-Wahaibi and Zeka 2015; Jupp et al. 2017).  

Some studies have indicated the availability of trace elements and heavy metals in the 

environment at SIZ and the surrounding areas (Al-Shuely et al. 2010; Al-Rashdi and Sulaiman 

2013). Furthermore, a recent study revealed elevated levels of several heavy metals such as Cd, Cr 

and Pb from sediment samples collected from SIZ and adjacent areas (Al-Sawai 2015). However, 

no information is available regarding the distribution and levels of heavy metals and contaminants 

in the fishing grounds in Sohar. Thus, it is advisable to conduct a multidisciplinary investigation in 

Sohar fishing harbor and fishing grounds to evaluate the physical and chemical characteristics of 

the environment as well as the collection and analyses of different organisms (also fish parasites) 

to test their potential as bioindicators in the bioassay.  

6.4.5 Conclusions 

The present study highlights the usefulness of selected parasites of S. canaliculatus as 

bioindicators for the assessment of environmental health along the coasts of Oman. The suitability 

of applying the star graph method as a tool to visualize differences and possibly changes in the 

ecosystems is supported. Thereby, combining regular monitoring programs of the Omani coastal 

areas with the presented methodology is recommended in order to evaluate and observe the 

environmental status in the different regions. Furthermore, the additional use of the same 
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endoparasites from S. canaliculatus (e.g. Sclerocollum sp. and Hysterothylacium sp.) as potential 

bioaccumulators for long-term monitoring programs is also advised. We herewith emphasize the 

importance of ecological parasitology in order to evaluate environmental quality and changes in 

marine ecosystems. This method can be applied for environmental monitoring programs to support 

management measures by different stakeholders, contributing to governmental initiatives on 

coastal zone management, national legislation and marine ecosystem protection regulations in the 

Sultanate of Oman. 
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7 General Discussion 

The main objectives of the present thesis were to investigate the parasite fauna of an 

herbivorous reef-associated fish belonging to the teleost family Siganidae from the waters of the 

Sultanate of Oman, describe the less known parasite species and apply its parasites as bioindicators 

for marine ecosystem health. The White-spotted rabbitfish Siganus canaliculatus was chosen, 

based on its high local commercial value and promising prospect for the development and 

diversification of the mariculture industry in the country. Carried out at seven localities along the 

entire Omani coast, this study is the first comprehensive investigation of fish parasites from the 

three water bodies surrounding the Sultanate of Oman. The selection of these localities was based 

on their potential as future aquaculture sites as well as their geographical and oceanographical 

differences. More than 40 different taxa of marine parasites were identified from S. canaliculatus, 

including several new locality (6), host records (16) as well as novel species to science (4). 

Together with the previously obtained parasite-host data (see chapter 1, section 1.6), the results of 

the present study indicate a highly diverse parasite fauna in the waters of Oman. Additionally, 

ecological analyses of the parasitological data revealed geographical variations in the composition 

and structure of S. canaliculatus parasite communities. This is in agreement with the documented 

different geographical and oceanographic conditions of the three investigated water bodies. Finally, 

parasites of S. canaliculatus have the potential to be utilized as biological indicators for the host 

stock populations and the environmental health status. Therefore, the present study strongly 

emphasizes the importance of fish parasitological investigations in the region. 

7.1 Parasite community of Siganus canaliculatus in Omani waters. 

In comparison to other siganids which have been previously investigated (e.g. S. rivulatus, 

S. luridus, S. argenteus, S. sutor and S. doliatus) (Diamant and Paperna 1986; Geets et al. 1996; 

Geets and Ollevier 1997; Martens and Moens 1995; Kleeman 2001), the parasite fauna of S. 

canaliculatus from Omani waters is more diverse and is characterized by the predominance of 

myxosporeans and digenetic trematodes. The parasite community of S. canaliculatus in the present 

study consisted of one microsporidian hyperparasite, 13 myxosporeans, four monogeneans, 15 

digeneans, one cestode, four nematodes, four acanthocephalans, one species of Hirudinea and five 

crustaceans. Prior to this investigation, only five species of metazoan parasites were known 

infecting S.  canaliculatus in Omani waters. The first marine parasite reported from S. 

canaliculatus is the microcotylid monogenea Polylabris gerres Mamaev & Paruchin, 1976 (=P. 
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mamaevi Ogawa & Egusa, 1980) from the Gulf of Masirah, coast of Arabian Sea (Mamaev and 

Paruchin 1976; Tingbao et al. 2007). Paruchin (1978) reported the digenean Hapladena ljadovi 

Paruchin, 1978 from Souqarah Bay, coast of Arabian Sea. This digenean is only reported from S. 

canaliculatus inhabiting the waters of Oman. Other records included the digeneans Hysterolecitha 

sigani Manter, 1969 (=Thulinia microrchis (Yamaguti, 1934) Bray, Cribb & Barker, 1993), 

Gyliauchen papillatus Goto & Matsudaira, 1918 and the camallanid nematode Procamallanus 

annulatus Yamaguti, 1955 all from Souqarah Bay (Paruchin 1989).  

In the present study several other species were reported for the first time from this host. An 

unidentified microsporidian hyperparasite invading the plasmodia of Zschokkella sp. was detected 

from the gallbladder of S. canaliculatus with prevalence ranging between 3-51% (see chapter 6). 

To our knowledge, so far only three species of microsporidian hyperparasites are known to infect 

myxosporeans. Diamant and Paperna (1986) reported the microsporidian Nosema ceratomyxae 

Diamant & Paperna, 1985 invading the plasmodia of Ceratomyxa sp. in the gallbladder of S. 

rivulatus from the Red Sea. Two unidentified microsporidian hyperparasites were detected from 

two myxosporean species (Leptotheca fugu Tun, Yokoyama, Ogawa & Wakayabashi, 2000 and 

Enteromyxum fugu Tun, Yokoyama, Ogawa & Wakayabashi, 2002) infecting cultured tiger puffer, 

Takifugu rubripes (Temminck & Schlegel) (Freeman 2005). Preliminary molecular investigation 

of our microsporidian hyperparasite suggests that it is different from the above mentioned species 

and might be a new species within the microsporidian genus Pleistophora Gurley, 1893 or Glugea 

Thélohan, 1891.  

Among the 13 species of myxosporeans recorded in S. canaliculatus one belonged to the 

genus Zschokkella, four to Ceratomyxa, three to Ortholinea, three to Kudoa and one to Latyspora 

Bartošová, Freeman, Yokoyama Caffara & Fiala, 2011. Species belonging to the first four of these 

myxosporean genera were already reported from siganids of the Red Sea (Diamant and Paperna 

1986; Diamant and Paperna 1992; Diamant et al. 2005; Abdel-Ghaffar et al. 1998; Abdel-Baki et 

al. 2015). Myxosporean parasites resembling members of the currently monospecific genus 

Latyspora were detected in the kidney parenchyma of S. canaliculatus. Latyspora scomberomori 

Bartošová, Freeman, Yokoyama Caffara & Fiala, 2011 was described from the kidney tubules of 

the scombrid host the Indo-Pacific mackerel, Scomberomorus guttatus (Bloch & Schneider) 

sampled from Malaysia (Bartošová et al. 2011). The species recorded in the present study showed 
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some morphological differences (such as, spore shape and size) to L. scomberomoi indicating that 

it might be a new species in the genus. In addition, the present finding represents the first 

registration of a member of this genus from a siganid host.  

Also, within the present study, a new myxosporean species of the genus Unicapsula Davis, 

1924 was described. Unicapsula fatimae Al-Jufaili, Freeman, Machkevskyi & Palm, 2015 is the 

13th member described since the erection of the genus. Unlike other members of the genus which 

mostly infect the musculature (striated muscles) of their hosts (excluding U. maxima which infects 

the kidney parenchyma and U. marquesi infecting the gill filaments), the new species is the only 

member of the genus infecting the oesophagus epithelium lining (smooth muscles) of its host. In 

addition, with its spherical shape that is attached to the inner lining of the host’s oesophagus with 

a peduncle (see chapter 2), the cyst structure and composition was also unique to U. fatimae among 

all other members of the genus. So far this species is the only member of the genus which is 

reported from an herbivorous marine fish.  

Myxosporeans are categorized as heteroxenous parasites with complex life cycle that involve 

annelid worms (polychaetes and oligochaetes in marine waters) and byrozoans (in freshwater) as 

intermediate hosts (Eszterbauer et al. 2015). The life cycle of marine myxosporeans is achieved 

through the infection of fish hosts with actinospores as a result of ingesting annelid worms 

(Alexander et al. 2015). Although the life cycles of myxosporeans infecting S. canaliculatus are 

unknown, it is can be assumed that the richness of myxosporean parasites in S. canaliculatus is 

linked to the abundance and availability of oligochaete or polychaete in Omani waters. Also, this 

observation might also suggest that S. canaliculatus inhabiting Omani waters is actively preying 

on these worms as part of its diet.  

Digenean trematodes are the most extensively investigated group of parasites in siganids 

from various localities in the Indo-Pacific region (Yamaguti 1953, Madhavi 1972; Diamant and 

Paperna 1986; Barker et al. 1993: Bray and Cribb 1996; Arthur and Lumanlan-Mayo 1997; Bray 

and Cribb 2000; Bray and Cribb 2001; Hall and Cribb 2004; Shih et al. 2004; Hassanine and Gibson 

2005; Al-Jahdali and Hassanine 2012). They exhibit two or three-host life cycles that involve 

molluscs as obligatory first intermediate host, crustaceans as optional second intermediate host and 

a vertebrate definitive host (Cribb et al. 2001). As an additional finding, while sampling the fish 

parasites from the stomach, a range of different amphipods and copepods as prey items were 
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detected in the stomach contents (Figure 7.1). Among the detected digeneans from S. canaliculatus, 

members of the digenean family Lecithasteridae (e.g. Aponurus, Thulinia and Hysterolecithoides) 

exhibit lifecycles that involve a gastropod as the first intermediate host and a copepod as the second 

intermediate host to reach the teleost definitive host (Bray et al., 1999). The occurrence of adult 

lecithasterid digeneans in S. canaliculatus is justified by the various copepods in its stomach.  

The remaining species include representatives of the digenean families Haplopridae (e.g. 

Unisaccus Martin, 1973) and Haplosplanchnidae (e.g. Schikhobalotrema Skrjabin & 

Guschanskaja, 1955) as well as members of the genera Gyliauchen and Hexangium, which conduct 

life cycles involving the ingestion of encysted metacercaria that are attached to aquatic vegetation 

(Williams 1994; Al-Jahdali and El-Said Hassanine 2012; El-Said Hassanine et al. 2016; Huston et 

al. 2016). Thereby, the richness of digenean parasites in S. canaliculatus can be linked to the 

diverse prey items found in the host diet of the sampled fish as well as the evolutionary adaptation 

of the parasites to the host´s feeding ecology. 

 

Figure 7. 1 Examples of some species of benthic crustaceans detected as prey items in the stomachs of Siganus 

canaliculatus from Omani waters (additional findings). Scale bar for all figures = 500 µm. 
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A new digenean trematode, Hysterolecithoides amurparuchinii n. sp. (Al-Jufaili et al., b), is 

also described within the present study. Members of the genus Hysterolecithoides were reported 

from different siganids hosts (e.g. S. fuscescens, S. doliatus as well as S. canaliculatus) (Yamaguti 

1934; Yamaguti 1953; Hafeezullah and Dutta 1980; Hafeezullah 1990; Bray and Cribb 2000; 

Gupta and Dwivedi, 2006). However, comparative morphological analyses supported with 

molecular data indicated that the species detected from Omani waters is different from those 

reported from other localities (Al-Jufaili et al., b). Furthermore, although different siganids were 

also investigated from Persian Gulf (UAE coasts, El-Naffar et al. 1992), Red Sea (Diamant and 

Paperna 1986; Hassanine and Gibson 2005; Hassanine and Al-Jahdali 2007; Al-Jahdali 2013) as 

well as from Kenyan waters (Geets and Ollevier 1996; Martens & Moens, 1995; Aloo, 2004), this 

large digenean was not reported from these localities. This indicates that the distribution of 

members of the genus Hysterolecithoides does not extend to the Persian Gulf, Red Sea and Eastern 

coasts of Africa. This suggestion is further emphasized by the limited distribution of H. 

amurparuchinii n. sp. along the coasts of Oman (it was regionally restricted to the southern region 

of Oman, Arabian Sea).  

Likewise, the availability of non-macrophytes prey items in the diet of S. canaliculatus 

favours the occurrence of other endoparasites such as nematodes and acanthocephalans, which also 

utilize benthic and pelagic crustaceans such as amphipods as intermediate hosts. For example, the 

raphidascaridid nematode Hysterothylacium aduncum Rudolphi, 1802, which is globally 

distributed and exhibit a wide host range, has been reported to use various benthic and pelagic 

crustaceans (e.g. calanoid or harpacticoid copepod, amphipods and euphausiids) as first 

intermediate and teleosts as definitive hosts (Køie 1993; Gonzalez 1998; Marcogliese 2002; 

Klimpel and Rückert 2005). Although the identity of the Hysterothylacium species detected in the 

present study is not yet confirmed it can be postulated that its lifecycle follows the same pattern as 

other Hysterothylacium spp. Similarly, the life cycle of the camallanid nematode Procamallanus 

sp. requires copepods as intermediate hosts (Anderson 2000). The first moult of this parasite takes 

place inside the copepod intermediate host and the last two moults take place in the fish (Akinsanya 

and Otubanjo 2005).  

Earlier workers reported three acanthocephalan genera from siganids. Diplosentis Tubangui 

& Masilungan, 1937, Neorhadinorhynchus Yamaguti, 1939 and Sclerocollum Schmidt & Paperna, 
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1978. Diplosentis amphacanthi Tubangui & Masilungan, 1937 is only known from S. canaliculatus 

from the Philippines (Arthur and Lumanlan- Mayo, 1997). Members of the genus 

Neorhadinorhynchus were reported from Fiji Island (S. vermiculatus, Amin and Nahhas 1994), 

Taiwan (S. fuscescens, Shih et al. 2010) and Vietnam (S. fuscescens, Amin and Van Ha 2011). 

Acanthocephalans belonging to the genus Sclerocollum have been reported from various siganids 

from different regions (Diamant and Paperna 1986; Geets and Ollevier 1996; Martens and Moens 

1995; Hassanine and Al Jahdali 2007; Pichelin et al. 2016). In the present study four species of 

acanthocephalans (three adults and one cystacanth larvae) were registered in S. canaliculatus.  

Acanthocephalans also develop through heteroxenous life cycles involving amphipods or 

copepods as intermediate hosts and a vertebrate definitive host (Taraschewski 2005). For example, 

recently the life cycle of the acanthocephalan Sclerocollum saudii was found to involve the 

gammarid amphipod Megaluropus agilis Hoek, 1889 as an intermediate host. The infection occurs 

when S. rivulatus ingests the infected amphipod, which is abundant on algae and seagrass (Al 

Jahdali et al. 2015). Thus, the richness of acanthocephalans in S. canaliculatus emphasizes the role 

of crustaceans in the transmission pathways of endoparasites and the influence of host feeding 

behaviour on parasite diversity.  

The gill parasite community of S. canaliculatus consisted of seven taxa of ectoparasites. 

Members of three monogenean genera, were registered from S. canaliculatus in the present study. 

Among them, two new ancyrocephalid monogenean belonging to the specialist genera 

Glyphidohaptor and Tetrancistrum were described based on morphological and molecular 

analyses. The prevalence and intensities of members of these two genera was consistently high 

along the coasts of Oman (except for one sampling site, see chapter 6), compared to other studies 

(e.g. Martens and Moens 1995; Geets et al. 1997; Diamant et al. 1999). Such high prevalence and 

intensities indicate that these parasites are typical for this host. Although S. canaliculatus was 

previously examined for these monogeneans from several localities in the Indo-Pacific region (e.g. 

Kritsky et al., 2007a; 2007b), Glyphidohaptor safiensis n. sp. (Al Jufaili et al., xxxx) and 

Tetrancistrum labyrinthus Al Jufaili & Palm, 2017, are so far only reported from the waters of the 

Sultanate of Oman indicating that they are endemic. 

The remaining ectoparasites taxa included Hatschekia spp., Caligus spp., Gnathia sp. and 

unidentified Hirudinea species. Hatschekia spp. were the most abundant ectoparasites in the 
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parasite fauna of S. canaliculatus with moderate infection levels ranging between 14-100% (see 

chapter 6). This high infection level is a common phenomenon among members of this genus 

(Hermida et al. 2012). It is also worth mentioning that members of this copepod genus are so far 

only detected from S. sutor (Kenyan waters of Indian Ocean), S. luridus sampled from Red Sea, 

Gulf of Eilat and S. canaliculatus (Sultanate of Oman, present study). Caligus species are widely 

distributed in the Indo-Pacific region. However, prior to this study, they were only recorded from 

siganids sampled from Kenyan waters (Martens and Moens 1995; Geets et al. 1997), the 

Philippines (Arthur and Lumanlan- Mayo 1997) and from Indonesia (Yuniar et al. 2007).  

In S. canaliculatus sampled from Omani waters, caligids were mainly reported from the 

southern region (Raysut and Masirah, Arabian Sea). This might be linked to the availability of 

favourable environmental conditions (such as water temperature and quality) for the occurrence of 

these parasites in these regions. The pranzia larvae of the isopod Gnathia sp. were encountered in 

S. canaliculatus with moderate infection levels (P% 3-14) and low intensities (see chapter 6). They 

were also detected from S. sutor from Kenyan waters (Martens and Moens 1995; Geets et al. 1997; 

Aloo 2004) and from S. luridus, S. rivulatus as well as S. argenteus from the Red Sea (Diamant 

and Paperna 1986) with moderate intensities. Hirudinea were only reported from siganids sampled 

from the Red Sea (S. rivulatus and S. argenteus, Diamant and Paperna 1986), from Indonesia (S. 

javus, Rückert et al. 2007) and from S. canaliculatus from Omani waters. 

With the high number of parasite taxa recorded from S. canaliculatus in Omani waters 

(n= 48), at least four of them new to science, it can be concluded that the unique environmental 

conditions of the water bodies of the Sultanate of Oman (see section 1.2) and its highly diverse and 

rich marine ecosystems harbour many unexplored and less known fish parasite species. This 

supports the Working hypothesis 1 that “the investigated siganid Siganus canaliculatus 

harbours a rich parasite fauna, including species new to science”. 

7.2 Composition of Siganus canaliculatus parasite fauna 

The number of parasites taxa recorded during the present study was significantly higher than 

any known report from other siganids. Diamant & Paperna (1986) reported a total of (27) protozoan 

and metazoan parasites from S. rivulatus, (24) from S. luridus and (18) from S. argenteus. The 

investigations conducted on S. sutor off the Kenyan coasts resulted in the registration of (16) 

metazoan ecto- and endoparasites (Martens and Moens1995; Geets and Ollevier 1996; Geets et al. 
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1997; Aloo 2004). Kleeman (2001) reported a total of (26) metazoan parasites infecting S. doliatus 

off the coasts of eastern Australia, of which 19 were ectoparasites (Rohde 2005). From the data 

obtained in the present study and the available literature of siganid parasite fauna, the ecto- 

endoparasites ratio of siganids (including microparasites) ranged between 2.71 (S. doliatus, 19 

ectoparasites vs seven endoparasites) to 0.20 (S. argenteus, three ectoparasites vs 15 endoparasites) 

with a mean value of 0.86 (calculated from previously investigated siganids, including the present 

study) (Figure 7.2).  

 

Figure 7. 2 Percentage of ecto- and endoparasites calculated from five species of siganid hosts. Ecto- endoparasite 

ratio values (Ec/En) of each host are presented on each stacked bar. 

 

According to Palm & Bray (2014), stationary, common coral reef fishes have high Ec/En 

ratio as a result of high diversity of specialized ectoparasites. Thus, the unusually high ecto- 

endoparasite ratio (Ec/En) observed in S. doliatus could be linked to its habitat preference (coral-

rich areas of lagoons and seaward reefs, Froese and Pauly, 2019) as well as low latitude gradient 

(Rohde 2005). The Ec/En ratio of S. sutor was also high (1.29) probably because of the low 

diversity of endoparasites in this host (7 taxa). For the remaining siganids, the values of ecto- 

endoparasite ratio (ranging between 0.2-.0.49) were within the values of other reef-associated 

marine herbivores inhabiting Hawaiian water such as mugilid (0.33), blennid (0.67) and kyphosids 

(0.50) (Palm and Bray 2014). Herbivorous reef-associated kyphosid hosts sampled from the Great 

Barrier Reef harboured 21 species of highly specialised digeneans (Manter 1966). Similarly, 

mullets are known as hosts for numerous digeneans and other endoparasites (Paperna and 
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Overstreet 1981). This suggest that siganids, as well as other tropical marine herbivores, do not 

follow the general notion that herbivorous hosts have an impoverished endoparasite fauna 

(Diamant 1989).  

From the available data obtained in the present study (see Figure 7.3) it is established that S. 

canaliculatus has the highest proportion of myxosporean parasites (27.1%, 13 species) in 

comparison to the other siganids. Among the investigated siganids, only four species were reported 

to harbour myxosporean parasites (S. punctatus, S. rivulatus, S. luridus and S. argenteus) (Diamant 

and Paperna 1986; Lester and Sewell 1989; Abdel-Ghaffar et al. 2008; Abdel-Baki et al. 2015). 

Information on the parasite fauna of other siganids were compiled from available literature and 

check-lists (Jones and Hine 1983; Arthur and Lumanlan-Mayo 1997; Ho et al. 2004; Anshary et 

al. 2013; Nahhas and Wetzel 1995; Bray and Cribb 2000; Yuniar et al. 2007; Lester and Sewell 

1989) which mainly focused on metazoan macroparasites (excluding protozoans, microsporidians 

and myxosporeans). These data do not demonstrate the actual diversity of the myxosporean parasite 

fauna in these hosts. Thus, future comprehensive investigations on the parasite fauna of siganids 

with a focus on microparasite (protozoans, microsporidians and myxosporeans) could reveal a 

myxosporean fauna that is comparable to that of S. canaliculatus.  

Although the richness of monogenean parasites is mostly the same among most siganids (S. 

rivulatus (4), S. luridus (4), S. sutor (3) and S. canaliculatus (4)), the highest proportion of 

monogeneans was recorded in S. sutor (26.3%). This high value of monogenea proportion in S. 

sutor could be caused by the overall low richness of parasites and the limited number of taxonomic 

groups (6 groups) recorded in this host.  

The predominant parasite taxa in all siganids were the digeneans, with S. sutor and S. 

canaliculatus showing the highest proportion (31.6 and 31.3%, respectively) of the total parasite 

fauna. The proportion of digeneans was also high in the parasite fauna of siganids sampled from 

the Red Sea (except for S. luridus). The high proportion of digeneans in these hosts could be related 

to the abundance of benthic organisms that act as intermediate hosts (Machado et al. 1996). Also, 

all above mentioned species (excluding S. luridus) are categorized as siganids that are associated 

with off-reef shallow waters (Woodland, 1990). Thus, similarities in the habitats of these fishes 

could reflect similar feeding behaviour, which in turn explains the resemblances in the proportion 

of digenean parasites in these three species (Sasal et al., 1999). The relatively low proportion of 



159 

 

digeneans in S. sutor could be attributed to its limited habitat range and its close association with 

the coral shelters (Diamant 1989).  

The proportion of acanthocephalans was highest in S. canaliculatus (8.3%). With a richness 

of 4 species of acanthocephalans (one as a cystacanth), it is considered as the only siganid known 

to harbour such diversity of acanthocephalans. Since acanthocephalans utilize amphipods as 

intermediate hosts in their life cycles, the richness of acanthocephalans in S. canaliculatus could 

be linked to the abundance of amphipods in Omani waters. In addition, it can be linked to its feeding 

behaviour and habitat preference.   

 

Figure 7. 3 Relative proportions (%) of the main parasite taxa making up the parasite fauna of five siganids. The 

results are based on parasite richness in each taxon. Mo (Monogenea), Di (Digenea), C (Cestoda), N (Nematoda), A 

(Acanthocephala), Cr (Crustacea), H (Hirudinea). 

 

The composition of the parasite fauna of S. canaliculatus is similar to other siganids from 

other localities because they share several genera of fish parasites. Among these are the digeneans 

Gyliauchen, Opisthogonoporoides, Hexangium, Schikhobalotrema, Thulinia and Aponurus 

(Madhavi 1972; Diamant and Paperna 1986; Lester and Sewell 1989; Geets and Ollevier 1996; 

Martens and Moens 1995; Arthur and Lumanlan-Mayo 1997; Geets et al. 1997). Furthermore, 
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many of these genera are also shared with other reef-associated fishes such as acanthurid 

(Opisthogonoporoides, Hexangium and Gyliauchen), scarid (Schikhobalotrema) and chaetodontid 

(Aponurus), indicating phylogenetic relatedness and ecological similarities. The monogeneans 

Glyphidohaptor, Tetrancistrum and Polylabris genera were reported on other siganids from 

different regions of the world (Goto and Kikuichi 1917; Young 1967; Diamant and Paperna 1986). 

This indicates that the generic composition of the parasites fauna in siganids is reflected by 

similarities in the feeding spectrum (mainly herbivorous with occasional ingestion of various 

microbenthos (see section 1.3.4), habitat of these fishes (shallow water, reef associated), 

zoogeographical distribution (Indo-Pacific region) as well as host phylogeny. Consequently, the 

parasite fauna of Siganus canaliculatus from Omani waters is similar to the parasite fauna of 

siganids from other regions (Working hypothesis 2). 

7.3 Importance of Siganus canaliculatus in the life cycle of aquatic parasites 

Because of the presence of helminths larval stages (cestodes, digeneans and acanthocephalan 

cystacanths), S. canaliculatus also act as an intermediate or paratenic host. According to Alves & 

Luque (2001), fish hosts harbouring helminths larval stages are categorized as intermediate trophic 

level in the marine food web. The obtained results also suggest that S. canaliculatus plays an 

important role in the transmission of endoparasites to several definitive hosts, including piscivores 

fishes, seabirds, and elasmobranchs. For example, the gill arches of several S. canaliculatus were 

infected with yellowish, spherical cysts that harboured metacercaria of the digenean 

Stephanostomum Looss, 1899 (Figure 7.4). Metacercaria of this worm are commonly localized in 

the musculature, fins and skin of their intermediate hosts (Al-Zubaidy 2011). To our knowledge, 

the occurrence of the larval stages embedded in the bony gill arches is unusual and prior to this 

study it has been only reported from the gills of the bream Dentex dentex (Linnaeus) from the 

Mediterranean Sea (Gonzales et al. 2004). Adult Stephanostomum spp. are known to infect the 

intestine of warm water marine teleost such as carangids or scombrids (Bray and Cribb 2008) 

suggesting that S. canaliculatus is an intermediate host and might be a prey item for these large 

fishes.  

Larval trematodes were also extracted from white spherical cysts localized on the skin, fins 

and gill filaments of several specimens of S. canaliculatus. Inside these cysts were larval 

trematodes resembling members of the digenean genus Scaphanocephalus Jägerskiöld, 1903 with 
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their wing-like anterior expansion (Figure 7.5). Species belonging to this genus, which currently 

comprises three species that are specialists and mature inside the small intestine of ospreys (fish-

eating birds of the family Pandionidae) (Tubangui 1933; Foronda et al. 2009). Scaphanocephalus 

spp. are widely distributed with records including North America, Asia, Africa and Europe 

(Hoffman, 1953; Schmidt & Huber, 1985; Foronda et al., 2009). This is the first report of this 

digenean from the Omani coasts and the first from a marine herbivorous fish, proposing that S. 

canaliculatus is a prey item for these sea birds.  

  

Figure 7. 4 Gill arch of Siganus canaliculatus infected with yellowish cysts of Stephanostomum sp. metacercaria, 

(A). A specimen of Stephanostomum sp. extracted from the cysts, (B). Scale bar, A=1000µm and B= 500 µm. 
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Figure 7. 5 White spot disease, with whitish cysts covering the body surface of Siganus canaliculatus sampled from 

Al Wusta region, (A). Magnification of one of the cysts on the fins of the infected host, (B). An extracted 

metacercaria of Scaphanocephalus sp., (C). Scale bars, B 500 µm; C 200 µm.  
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Larval stages of a species of trypanorhynch Cestoda were detected from S. canaliculatus in 

the present study. The presence of trypanorhynch cestode Otobothrium sp. plerocercoids in the 

intestinal wall of S. canaliculatus indicate that this it is an intermediate host for these worms and 

that it is targeted by elasmobranches. The typical life cycle of Trypanorhyncha involves two 

intermediate hosts including a copepod as first intermediate host, euphausiids or schooling fish as 

second intermediate hosts and elasmobranchs as final hosts (Palm 2004). Final hosts of these small 

Otobothrium species are especially sharks belonging to the families Carcharhinidae and 

Sphyrnidae (Beveridge and Justine 2007). The plerocercoids of these trypanorhynchs are known 

to parasitize the musculature of several teleosts, elasmobranchs, and squids causing undesirable 

changes (Palm and Overstreet 1999). In the present study, the infection site was exclusive to the 

lining of the digestive tract of S. canaliculatus.  

Numerous cystacanth were isolated from the mesenteries of S. canaliculatus. These are larval 

stages of acanthocephalans that do not undergo further development into adults suggest that S. 

canaliculatus is a paratenic host for these worms. Since it was not possible to identify the 

cystacanth during this study, the definitive host for this acanthocephalan remains unknown. 

However, it is worth mentioning that this is the first documented registration of cystacanth from a 

siganid host. This underlines the working hypothesis three Importance of S. canaliculatus in the 

life cycle of aquatic parasites and consequently, its importance for the marine ecosystem of 

the coasts of Oman.  
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Figure 7. 6 Intestinal epithelium of Siganus canaliculatus infected with plerocercoids of the trypanorhynch cestoda 

Otobothrium sp., (A). Magnification of the tear-drop shaped blastocyst, (B). Plerocercoids extracted from 

blastocysts, (C). Scale bars, A= 500 µm, B= 200 µm, C= 100 µm.  
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7.4 Zoogeography of the parasites of Siganus canaliculatus 

Marine zoogeography deals with the distributional patterns of aquatic organisms in the 

world’s Oceans. The earliest attempt to summaries the zoogeographical distribution of marine 

organisms was that of Forbes and Godwin-Austin (1859) (Hedgpeth 1957). Since then, several 

efforts have been made to investigate the zoogeographical distribution of various marine 

organisms, including fishes, invertebrates and corals. However, most of these investigations 

neglected the ecological and historical distribution of marine fish parasites (Rohde 1984). One of 

the earliest works dealing with the zoogeographical distribution of marine fish parasites were those 

of Manter (1940), focusing on the marine trematodes of the tropical American Pacific. His work 

was followed by many comparable investigations on marine fish digenea, monogenea and 

Nematoda (Manter 1955; Szidat 1961; Manter 1967; Lebedev 1969; Fischthal 1972; Campbell 

1990).  

To describe the biogeographical distribution pattern of marine organisms, different systems 

were established to divide the world’s ocean into regions and provinces (Ekman 1953; Briggs 1974; 

Spalding et al. 2007). In the present study, the system of the Marine Ecoregions of the World 

(MEOW) established by Spalding et al. (2007) was used to discuss the zoogeographical distribution 

of the parasites of S. canaliculatus. This system divides the world’s Oceans into 12 realms, 62 

provinces and 232 ecoregions. According to this map, the Sultanate of Oman is included in the 

Western Indo-Pacific realm and is subcategorised into three ecoregions (Persian Gulf, Gulf of 

Oman and Arabian Sea). For the purpose of this section the patterns of the geographical distribution 

of S. canaliculatus parasites will be described at the level of the 12 realms as established by 

Spalding et al. (2007). This section will discuss the zoogeographical distribution of some members 

belonging to three parasite groups (Myxosporea, Monogenea and Digenea).  
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Figure 7. 7 The 12 realms of the world’s oceans according to the (Marine Ecoregions of the World) after Spalding et 

al. (2007). 

 

7.4.1 Myxosporea  

Zschokkella species have been frequently recorded from fresh and marine hosts from various 

locations around the world (Mackenzie and Kalavati 2014). Most Zschokkella species have been 

reported from the Temperate North Atlantic (e.g. Yemmen et al. 2013; Rocha et al. 2013; Yurakhno 

and Ovcharenko 2014). Reports from the Western Indo-Pacific are limited to three species (Sarkar 

1996; 2012), among them only one is registered from a Siganid host (Diamant and Paperna 1986). 

Prior to the present study, three species of siganids (S. rivulatus, S. luridus and S. argenteus) from 

the Red Sea. The present study extends both the host and locality range of the genus Zschokkella. 

So far, this is the first and only record of a member of this genus from the waters of Persian and 

the Gulf of Oman.  

Ceratomyxa are well known from marine fishes in various regions of the world Oceans with 

most species being reported from the North Atlantic (Mackenzie and Kalavati 2014). Only one 

unidentified species of Ceratomyxa was reported from siganid of the Red Sea (Diamant and 

Paperna 1986; Abdel-Ghaffar et al. 2008). In the present study, S. canaliculatus harboured at least 

three different forms of ceratomyxid myxosporeans presenting the first registration of this genus 

from the Gulf of Oman and from S. canaliculatus. Other species of Ceratomyxa were already 
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reported from other localities along the Persian Gulf from non siganid host (Saudi Arabia, Mansour 

et al. 2015). 

With the description of a new species within the genus Unicapsula, the present study reports 

the first registration of this genus from a siganid host, expanding the host family range and 

emphasizing on the wide host range exhibited by species of this genus. To date members of this 

genus have been reported from hosts belonging to three teleost orders; perciformes, gadiformes 

and pleuronectiformes. Twelve species of Unicapsula species are known from hosts belonging to 

the following marine teleost families; Nemipteridae, Scianidae, Carangidae, Centracanthidae, 

Sparidae, Polynemidae, Lutjanidae, Sillaginidae, Mullidae, Macrouridae, Gobiidae and 

Pleuronectidae (Miller et al. 2013; Tomochi et al. 2014). In addition of the new species from S. 

canaliculatus, the majority of Unicapsula species were reported from the Indo-Pacific (seven 

species from both Western Indo-Pacific and Central Indo-Pacific) and from the Temperate 

Northern Pacific (five species). The other regions, i.e. tropical Atlantic and Temperate northern 

Atlantic provide only one record of Unicapsula species, while no species were recorded from the 

Arctic and the Southern Ocean.  

Among the species of the genus, U. andersenae is the most generalist species being reported 

from five different hosts belonging to five different families. However, it is only recorded from 

one region (CIP) so far. Two Unicapsula species exhibit wider geographical distribution. The first 

is U. pyramidata, which is currently known from two nemipterid hosts (Nemipterus japonicus 

(Bloch) and Scolpsis monogramma (Cuvier)). The first of the two hosts displays a distribution 

range that covers the entire WIP and some parts of the CIP (though it does not spread beyond 

northwestern Australia). The second one has a more restricted distribution that does not reach 

beyond the Andaman Sea (northeastern Indian Ocean). Unfortunately, the registration of U. 

pyramidata by Naidjenova & Zaika, 1970 does not specify the exact locality on the Indian Ocean. 

However, parasitological surveys conducted in the Gulf of Oman, reveal that the geographical 

range of this parasite extends to the western limit of the Indian Ocean (Al Jufaili, unpublished data).  

The other wide spread specie is U. seriolae which displays a wider host and a greater 

distribution range than any of its congeners. This species is known from two hosts belonging to 

two distant families, the Yellowtail amberjack Seriolae lalandi (Valenciennes) and the Malabar 

grouper Epinephelus malabaricus (Bloch & Schneider) both of these hosts are known for their 
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wide distribution range that spans the entire Indo-Pacific Ocean. So far, it has been recorded off 

Australian and Japanese waters from tropical and temperate regions (CIP, Temperate Australia and 

TNP). The remaining species are more restricted in their geographical distribution and seem to 

coincide with the distribution of their hosts. For example, U. pacifica and U. shulmani were 

recorded from a one host species from Okhotsk Sea, while U. marquesi was only recorded from 

Tropical Atlantic region off of Senegal. In conclusion, only few records of Unicapsula exists to 

date, it can be postulated that the origin of this genus is the Indian Ocean and then it spread to the 

Pacific Ocean where the second highest richness was detected. Future descriptions of new species 

together with phylogenetic data of existing and less known species will give more insight into this 

interesting genus. 

7.4.2 Monogeneans  

The majority of the parasites infecting siganid follow the same distribution patterns as their 

hosts and are confined in the Indo-Pacific region (excluding the Eastern Indo-Pacific) and to the 

Northern Temperate Atlantic as a result of lessepsian migration. Among these parasites is the 

specialist ancyrocephalid monogenean genus Glyphidohaptor which is entirely restricted to siganid 

hosts (Kritsky et al. 2007a). These worms were registered from localities from the Central, Western 

Indo-Pacific region (including localities investigated in Omani coasts) to the Northern Temperate 

Atlantic, but were surprisingly absent from hosts sampled from the South China Sea (CIP) (Kritsky 

et al. 2007a) (see chapter 4). Members of the genus Tetrancistrum which are detected from both 

siganid and acanthurid hosts, are reported throughout the range of their respective hosts distribution 

which also includes Hawaii (Eastern Indo-Pacific) (Goto and Kikuichi 1917; Paperna 1972; Young 

1986; Kritsky et al. 2007b). 

Among the detected monogenean species in S. canaliculatus, an unidentified species of the 

polyopisthocotylean genus Polylabris was detected from the Omani coasts of Persian Gulf, the 

Gulf of Oman and the Arabian Sea. According to Hayward (1996) in his revision of the genus, the 

highest richness of members from the monogenean genus Polylabris was reported from the 

Temperate Australia marine realm (nine species). The second richest diversity came from the WIP 

(five species) from Kuwait, Oman and India. Both the EIP (Hawaii) and CIP regions have a single 

record of a representative of this genus. To date, only one member of Polylabris was registered 

from the Atlantic Ocean (both Temperate Northern Atlantic and Tropical Atlantic regions).  
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Although monogeneans are generally highly host specific either infecting one host or several 

members from the same genus, some members of Polylabris were recorded from different species 

of the same host genus. For example, Polylabris sillaginae was recorded from 11 out of the 34 

currently known members of the family Sillaginidae (Hayward 1996). This species occurs mainly 

from the Australian coasts of the Central Indo-Pacific and Temperate Australia with in additional 

record from Thailand, Indonesia and New Caledonia. The distribution pattern of P. sillaginae is in 

accordance with the geographical distribution of its final hosts. Many of the sillaginids known to 

harbor P. sillaginae are endemic to Australian waters or are limited to the coasts of Temperate 

Australian marine ecoregion (e.g. Sillaginodes punctate (Cuvier), Sillago bassensis (Cuvier), 

Sillago flindersi (McKay)). The occurrence of P. sillaginae from the CIP marine realm might be a 

reflection of the distribution of S. sihama, which is the most widespread sillaginid, covering the 

entire WIP and CIP marine realm. This might propose that P. sillaginae have spread to the CIP 

with S. sihama and suggests a possibility of registration of new locality records along the 

geographical range of this host.  

Similarly, P. tubicirrus was originally exclusively reported from closely related sparids that 

are known to occur in the Temperate Northern Atlantic and Tropical Atlantic ecoregion (Hayward 

1996). However, with the spread of mariculture of the gilthead seabream Sparus aurata, expanded 

its natural host and geographical range (Silan et al. 1985). This indicates, that under mariculture 

facilities some species of Polylabris might have the potential to expand their host and geographical 

range. Other Polylabris specie which were reported from sparids have a wider distribution, crossing 

from the Japanese Temperate Northern Pacific region (P. japonicas, Ogawa and Egusa 1980) all 

the way to the Kuwaiti coasts of Persian Gulf in the WIP region (P. angifer and P. acanthopagri, 

Mamaev and Paruchin 1976).  

To date, four members of the genus Polylabris have been recorded from siganids namely P. 

virgatarum Tubangui, 1931 which was described from S. virgatarum from the Philippines 

(Hayward 1996), P. mamaevi Ogawa and Egusa, 1980 originally described from S. stellatus from 

Omani coasts of Arabian Sea (Hayward 1996) and from S. fuscescens from Chinese waters (Yang 

et al. 2006); P. sigani Dillon, Hargis & Harrises,1983 was described from S. fuscescens in Australia 

waters (Hayward 1996). The latter was also previously reported from the Red Sea from S. rivulatus 

(Diamant et al. 1999), but was confirmed as Polylabris cf. mamaevi later on (Pasternak et al. 2007). 



170 

 

Recently P. bengalensis Sailaja & Madhavi, 2011 was described from S. canaliculatus and S. javus 

off Bay of Bengal (Sailaja and Madhavi 2011). The geographical distribution of the members of 

the genus known from siganids correlates with the distribution of their siganid hosts in the Indo-

Pacific (CIP and WIP) regions and from the Temperate Northern Atlantic region of the 

Mediterranean Sea. 

7.4.3 Digeneans  

Several digenean parasites were previously registered from S. canaliculatus from different 

localities including the digeneans belonging to the genera Opisthogonoporoides Madhavi, 1972, 

Hexangium Goto & Ozaki, 1929, Aponurus Looss, 1907 and Hysterolecithoides Yamaguti, 1934 

(Madhavi 1972; Arthur and Lumanlan-Mayo 1997; Bray and Cribb 2000; Nahhas 2002). Members 

of Opisthogonoporoides which was originally described from the Indian coasts of the Indian Ocean 

have been recorded from several localities in the WIP, from the Red Sea (Diamant and Paperna 

1986), Kenyan coats of Indian Ocean (Geets and Ollevier 1996; Martens and Moens 1995; Aloo 

2004) and from temperate Australian waters (TA) (Lester and Sewell 1989). The findings of the 

present study extend the host (S. canaliculatus) and locality range of (Arabian Sea, Gulf of Oman 

and Persian) of this genus.  

Species belonging to the trematode genus Hysterolecithoides were reported from hosts 

species of different families and from various regions of the world Oceans (Yamaguti 1953; Bravo-

Hollis 1956; Yamaguti 1971; Tang et al. 1983; Bray and Cribb 2000). Because these digeneans are 

found from other non siganid hosts families (e.g. Cirrhitidae, Acanthuridae, Serranidae and 

Carangidae), the distribution range is not confined to the Indo-Pacific region but extends to the 

Tropical Eastern Pacific, Temperate Northern Pacific as well as Eastern Indo-Pacific where 

siganids are absent (see chapter 1). With the identification of a new species within 

Hysterolecithoides in the present study, the geographical distribution of this genus is extended 

further into the WIO region. 

The digenean genus Schikhobalotrema currently accommodates 26 species infecting the 

gastrointestinal cavity of fishes belonging to 14 families (Huston et al. 2017). The majority of the 

species were reported from shallow tropical and subtropical reef inhabiting teleost hosts such as 

Scaridae (nine species) and Acanthuridae (five species). Zoogeographical distribution of these 

worms follows a latitude gradient with an apparent trend of an increasing richness and host range 
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at lower latitude as proposed by Rohde (1984). The highest species richness and host diversity was 

recorded from the South American coasts of tropical Atlantic with 13 representatives of the genus 

registered from a total of 29 host species (WoRMS, 2019). The lowest richness of these worms 

was recorded from the Temperate Northern Atlantic region (two species from three hosts, Love 

and Manter 1983; Gibson and Costa; Keser et al. 1997). Furthermore, the geographical distribution 

of Schikhobalotrema species mirrors and conforms to the distributions of their hosts. For example, 

most of the host species harbouring members of Schikhobalotrema are endemic to their respective 

regions and are of neotropical origin (e.g. from the Tropical Atlantic the majority of the species 

were recorded from scarid hosts that are only known from their respective region). This indicates 

that this genus probably originated from neotropical scarid hosts. In the Indo-Pacific species of 

Schikhobalotrema are mainly known from acanthurid hosts (four species) that were sampled from 

Hawaiian waters.  

So far, there are only two records of Schikhobalotrema from the WIP both from the Kuwaiti 

coasts of the Persian Gulf (Abdul-Salam and Khalil 1987; Nahhas and Sey 1998). The registration 

of an unidentified species of Schikhobalotrema from S. canaliculatus in the present study is 

regarded as the third record from the WIP and registration from a siganid host. It is likely that the 

increase in the investigation effort in the Indo-Pacific region and the examination of more 

acanthurid hosts will change the current state of knowledge on the zoogeographical distribution of 

members of this genus. In conclusion, for all these parasite taxa, “new host and locality records 

from the Sultanate of Oman will extend the range of distribution of Indian Ocean parasites 

into the Persian Gulf, Gulf of Oman and the Arabian Sea, supporting working hypothesis 

four. 

7.5 Parasites of Siganus canaliculatus as biological indicators 

Variations in the composition of parasites in terms of prevalence, abundance and richness in 

different geographical locations from different aquatic systems were documented (Cremonte and 

Sardella 1997; Bagge et al. 2004; Costa et al. 2009; Hutson et al. 2011; Mateu et al. 2014). 

According to many researchers, these variations can be explained by various biotic and abiotic 

factors such as oceanographic conditions (Rohde 1993; Bagge et al. 2004; Poulin 2007; Hutson et 

al. 2011). Oceanographic conditions such as temperature, salinity, depth and specific features of 

habitat may influence the composition of monoxenous ectoparasite fauna (Gonzalez et al. 2008; 
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Timi et al. 2010). The distribution of heteroxenous endoparasites also depends on the 

environmental conditions as well as the host distribution and density (Pereira et al., 2014). This is 

because the availability of suitable definitive and intermediate hosts that are required to complete 

the life cycle of these parasite is likely to be affected by these conditions (Poulin 2007; Timi et al. 

2010). Likewise, by creating zoogeographical barriers, oceanographic conditions can restrict 

parasite dispersal (especially, infective larval stages), which in turn causes the differences in 

parasitic fauna between the geographical zones (Gonzalez et al. 2008; Timi et al. 2010; Jacobson 

et al. 2012).  

Together with Analysis of similarities (ANOSIM), multidimensional scaling (nMDS) was 

used to graphically describe the qualitative (compositional) and quantitative (structural) difference 

in parasite infra- and component communities between the two sampling zones (north and south), 

the three water bodies (PG vs GoO vs AS) and each sampling sites along the coasts of Oman (Al-

Jufaili et al. ….c). The analysis (which was based on parasite abundance data) showed a slight 

separation between the north and south zones which was supported with ANOSIM (R = 0.36, P = 

0.001) with an average dissimilarity of 70.86% as calculated with similarity percentages 

(SIMPER). According to Lee et al. (2000), “the Findlater Jet in the atmosphere and the Ras Al 

Hadd frontal zone, both set up a boundary which makes the Gulf of Oman (GoO) dynamically 

isolated from the western Arabian Sea (AS)” (Piontkovski et al. (2011). Therefore, the separation 

between the two zones might be a consequence of an oceanographic barrier and differences in 

the physical-chemical condition between the two zones. This observation was similar to those of 

Gonzalez et al. (2008) who attributed the variations in the endoparasites fauna of hosts sampled 

from two regions along the Chilean coasts to the occurrence of differing oceanographic conditions 

and the formation of transitional zone caused by the Eastern South Pacific Intermediate Waters. 

Similarly, Vales et al. (2011), observed variations in parasite communities’ descriptors and indices 

between two zones in Argentinian water as a consequence of a latitudinal gradient in oceanographic 

condition in the study area. 

Physical, chemical and biological oceanographic conditions such as cyclonic eddy activities, 

upwellings, currents, nutrient abundance and chlorophyll concentrations can influence the structure 

and composition of free-living organisms as well as marine parasites. In the present study, 

distinctive groupings of S. canaliculatus parasite communities could be assembled according to 
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waterbodies surrounding Oman. Several studies established that the three water bodies surrounding 

the Sultanate of Oman vary in terms of temperature, salinity, depth and productivity (Pous et al. 

2004a; Pous et al. 2004b; Piontkovski and Al-Jufaili 2013). In fact, according to Spalding et al. 

(2007), the three waterbodies are categorized as three distinct ecoregions. However, the parasite 

community of hosts sampled from the Persian Gulf (PG) and the Gulf of Oman (GoO) were not 

significantly different (ANOSIM R= 0.074, P= 0.37). Both PG and GoO are less productive and 

are characterized with similar geographical and oceanographic features (see chapter 1, section 1.2).  

Also, the seasonal inflow of Persian Gulf Water mass (PGWM) might facilitate the 

connectivity of these waterbodies and probably the sharing of aquatic biota which is reflected 

through the similarities in the parasite composition and the marked overlap between samples from 

these waterbodies (Figure 6.1B). In contrast, The Arabian Sea coasts of Oman which surrounds the 

southern zone (Masirah and Raysut) is more productive than the other two waterbodies due to the 

seasonal upwelling events (see chapter 1, section 1.2). This phenomenon influences the primary 

marine productivity in this water body and consequently the availability and occurrence of a diverse 

species of free-living organisms that could act as intermediate hosts for parasites (see Jacobson et 

al. 2012).  

Site to site variations in parasite fauna of S. canaliculatus occurred in terms of ecological 

indices and parasitological parameters. The nMDS analysis of sampling sites (Figure 6.1C) showed 

that the parasite structure and composition between the sampling sites were significantly different 

(R= 0.678, P< 0.01, Stress= 0.2). The separation is probably a consequence of ecological habitat 

features between the sites and occurrence of site-specific parasites species. Among the registered 

parasites, certain endoparasites were limited in their distribution to the certain sites along the 

Omani coasts. For example, species of Hysterolecithoides sp., Preptetos sp. and Kudoa spp. were 

only reported from hosts sampled from the Arabian Sea coasts of Oman (see chapter 6, section 

6.4.3). Stephanostomum spp. metacercaria were only registered from hosts sampled from the 

Persian Gulf (Khasab). This observation could imply, that there are more than one population of S. 

canaliculatus along the coasts of Oman. Thus, parasites of S. canaliculatus could be useful as 

biological tags to separate between siganid stocks. It is evident that “The parasite 

infracommunity of Siganus canaliculatus is clearly influenced by the three different water 
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bodies defined by (Persian Gulf, Gulf of Oman and Persian Gulf), supporting working 

hypothesis 5. 

Numerous studies have examined the relationship between parasites and pollution proving 

that different groups of fish parasites are valuable tools to monitor environmental status in marine 

and freshwater ecosystems around the world. According to the results of these studies, fish parasites 

are a good choice as indicators for the detection and evaluation of environmental changes through 

fluctuations in their intensities, abundance and distribution patterns (Lafferty 1997; Sures 2004; 

Vidal-Martinez et al. 2003; Sasal et a. 2007). The usefulness of fish parasite as bioindicators is 

based on their sensitivity to biotic and abiotic factors in their hosts’ environment. Also because 

they react to pollutants in different manners, fish parasites can be used as biomarker, effect or 

accumulation indicators (Sures 2004).  

Previously, carnivorous epinephelid groupers were used for the assessment of environmental 

impact in tropical marine ecosystems through visual integration of the parasite parameters into a 

star graph (e.g., Kleinertz et al. 2014; Kleinertz and Palm 2015; Neubert et al. 2016, Thuong et al. 

2017). Following Neubert et al. (2016) and Truong et al (2017), twelve parasitological descriptors 

were selected from the parasite fauna of S. canaliculatus to assess the condition of marine 

ecosystem along the coasts of Oman. These included the prevalence of seven parasites species 

(Glyphidohaptor safiensis n. sp., Hatschekia sp., Gyliauchen p., Ceratomyxa spp., 

Opisthogonoporoides sp., Sclerocollum sp. and Hysterothylacium sp.) and five ecological indices 

(Berger Parker index of dominance, Pielou index of evenness, Shannon diversity and ecto- 

endoparasites ratio). The prevalence of the selected parasites was previously used by several 

authors to indicate anthropogenic pollution (Diamant et al. 1999; Dzikowski et al. 2003; Kleinertz 

et al. 2014; Neubert et al. 2016). These authors demonstrated that the reduction of complete 

elimination of these parasites was directly linked to alterations and disturbance in the investigated 

localities.  

Ecological indices measure changes in the parasite fauna structure and compositions through 

changes in richness and diversity. Generally, these indices are reduced under pollution conditions. 

With values ranging between 0 to 1, the Berger-Parker index of dominance characterizes the 

dominance of a respective parasite species within the sampled host population (Palm et al. 2011) 

by calculating the proportional abundance of only the most abundant species in the population 
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(Morris et al. 2014). Higher values correspond to lower diversity (Patrício et al. 2009), an 

observation that is usually associated with disturbed environmental conditions (Caruso et al. 2007).  

Pielou’s index of evenness is a measure of the level of numerical equality in the distribution 

of abundances of species that occur within a host population in a specific area (Pielou 1966). Thus, 

low evenness index value is an indicator of an increase in dominance of generalists or more tolerate 

species in a parasite community (Johnston and Roberts 2009) and consequently, disturbed 

environmental conditions. In the Gulf of Tokin, Vietnam, net cage mariculture facilities had the 

highest Berger-Parker index and the lowest evenness value in comparison to natural and pond 

mariculture facility (Truong et al. 2017). These authors linked the dominance of certain parasites 

species (e.g. the monoxenous monogenean Pseudorhabdosynochus spp.) with bad management 

and water quality in net cage farming sites. Similarly, the Berger-Parker index was highest and the 

Pielous index was the lowest in Sohar in comparison to other sites (attributed to the dominance of 

Sclerocollum sp.). This observation is linked to the reduction of parasite richness through the 

elimination of suitable intermediate hosts (highlighted with reduction of endoparasites diversity) 

and the absence of ectoparasites (related to high levels of contaminants). 

All above mentioned parasitological descriptors were used for the visualization of 

environmental health in the marine ecosystem of Oman through star graphs and pollution traffic 

light. Large star graph areas were calculated from Raysut (25.42), Masirah (19.18) and Muscat 

(16.38). All parameters and indices values in these locations were the highest in comparison to 

other sampled localities. This might reflect the good water quality, high productivity, and suitable 

habitat for parasites of S. canaliculatus (seagrass beds, sheltered reefs and abundance of 

intermediate hosts). On the other hand, the localities located in the north zone had lower star graph 

areas which is linked to the naturally harsh marine environment (Khasab (13.09), Persian Gulf, see 

chapter 1 section 1.2), Dabba (8.03) (which is the nearest location to Sohar and probably impacted). 

However, the lowest star graph was calculated form Sohar because of depauperate diversity and 

richness and accompanied with reduced parasitological and ecological parameters. This 

observation can only be explained by extremely unnatural environmental conditions associated 

with high levels of pollution. Thus, the use of S. canaliculatus and not groupers as a model for 

environmental assessment in the Sultanate of Oman, emphasizes that parasites of Siganus 
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canaliculatus in Omani waters can be used as biological indicators for environmental health 

(Working hypothesis 6). 

7.6 Risk assessment of parasites of Siganus canaliculatus for mariculture industry 

Marine diseases are a natural part of ocean ecosystems, and many have significant economic 

consequences for fisheries or aquaculture (Murray and Peeler 2005; Lafferty et al. 2015). Parasitic 

outbreaks in mariculture facilities are a major restriction against expanding the aquaculture industry 

(Huston et la. 2007; Sanchez-Garcia et al. 2014). Protozoan and metazoan parasites have a serious 

impact on global finfish and shellfish aquaculture by constraining production, sustainability, and 

economic viability (Shinn et al. 2015). Financial losses on a farm can be direct (e.g. mortality, 

increased management costs, marketability issues) or indirect (through concerns over welfare, 

increase disease and legislative burdens, potential quarantine difficulties) (Paladini et al. 2017).  

Several taxa of fish parasites can impose health problems in different mariculture facilities. 

Ectoparasites with direct monoxenous life cycles and high production rate (e.g. monogenean and 

parasitic crustaceans), would pose the greatest threat to the mariculture industry (Hemmingsen and 

Mackenzie 2001, Huston et al. 2007; Shinn et al. 2015). This is due to their rapid reproduction and 

ability to directly infect the hosts and the enhancement of direct transmission under mariculture 

conditions (Huston et al. 2007). Heteroxenous endoparasites with simple life cycles or those with 

water-borne infectious stage (species of myxosporeans and some digeneans), are also a threat to 

the mariculture industry (Paladini et al 2017).  

In the present study, parasites of S. canaliculatus were evaluated for their potential as threats 

to the development of siganid mariculture industry in the Sultanate of Oman. According to Huston 

et al. (2007) and Sanchez-Garca et al. (2014), risk assessment involves hazard identification, the 

probability of parasite establishment and proliferation and the consequence of parasite 

establishment and proliferation in the farm. The consequence of parasite establishment for S. 

canaliculatus in mariculture facilities was estimated using the four categories indicating the degree 

of potential damage caused by the parasite. According to Sanchez-Garca et al. (2014), parasites 

presenting all four factors entail extreme consequence; three factors imply high consequence; two 

factors moderate consequence; one factor low consequence; no factors negligible consequence. 

Parasites which were considered of negligible consequences were not included in the table (see 

Appendix 1). Based on these criteria, S. canaliculatus that may become problematic in mariculture 
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belonged to the following taxa Myxosporeans (5), Monogenea (3), Digenea (2), Nematoda (2) and 

Crustacea (2).  

The estimation of the probability of establishment is composed of combining the level 

exposure and pathway assessment (Huston et al. 2007; Sanchez-Garcia et al. 2014) (Appendix 

2). The level of exposure of farmed fish to wild infected fishes depends on the geographical 

distribution of the parasites (Huston et al. 2007). The assessment of the infection pathways of S. 

canaliculatus parasites was based on the possible life cycles of these parasites. The final 

quantitative risk ranking was achieved by using a numerical risk matrix as shown in appendix 3. 

Only parasites exhibiting risk ranking from (6-25) will be discussed in the following section.  

7.6.1 Myxosporean parasites 

Several myxosporean species are of economic importance to the mariculture and fisheries 

industry due to their pathogenicity to their hosts and their ability to directly infect through fish-to-

fish transmission (Alvarez-Pellitero and Sitjà-Bobadilla 1993; Rigos et al. 1999). With the 

continuous development of the mariculture industry, outbreaks of myxosporean origin are expected 

to become more frequent and therefore impend the industry. Representatives of certain genera are 

well recognized as serious disease causing agents in cultured and wild fish populations. For 

example, muscle infecting myxosporeans belonging to Kudoa, Henneguya Thélohan, 1892 and 

Unicapsula can cause the appearance of unpleasant white cysts or spoilage of the muscle texture 

(Moran et al. 1999b). Myxosporeans infecting organs such as the brain (Myxobolus Bütschli, 1882), 

gills (Henneguya), reproductive organs (e.g. species of Sphaerospora Thélohan, 1892) and 

intestinal epithelium (Enteromyxum Palenzuela, Redondo & Alvarez-Pellitero, 2002) are among 

some of the important pathogens in maricultured fish hosts around the world. Infections of the 

kidney and urinary tract of teleost hosts caused by myxosporeans are also common and in many 

cases are highly pathogenic (Feist 1997). 
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Table 7. 1 Potential parasite risk analysis for Siganus canaliculatus mariculture along the coasts of Oman 

 

Parasite taxa Exposure Pathway Probability Consequence Risk Ability to treat 

Myxosporea            

Zschokkella sp.  High Moderate Moderate Low 6 Noa,b 

Ceratomyxa spp. High Extreme* Extreme Moderate 15 Noa,b 

Latyspora sp. Low  Moderate Negligible Low 2 Noa,b 

Ortholinea spp. High Moderate Moderate Low 6 Noa,b 

Unicapsula fatimae High Moderate Moderate Low 6 Noa,b 

Kudoa spp. Low Extreme* Moderate Moderate 9 Noa,b 

Monogenea            

Glyphidohaptor safiensis High High High Low 8 Yesa 

Tetrancistrum spp. High High High Low 8 Yesa 

Polylabris sp. High Extreme* Extreme Moderate 15 Yesa 

Digenea            

Preptetos sp. Low Low Negligible Low 2 Yesa,b 

Stephanostomum spp. Negligible Low Negligible Moderate 3 Yesa,b 

Nematoda            

Hysterothylacium sp.  High Extreme* Extreme Moderate 15 Yesa,b 

Nematode indet. Larvae  Moderate Low Negligible Moderate 3 Yesa,b 

Procamallanus sp.  High Low Low Low 4 Yesa,b 

Crustacea            

Caligus spp. Moderate Extreme* High Moderate 12 Yesa 

Gnathiidae indet. sp.(pranzia larvae)  High Extreme* Extreme Moderate 15 Yesa,b 
*parasites genera/species that were reported from marine farm facilities 

aHuston et al. 2007 

bSanchez-Garca et al. 2014 
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Members of the genus Ceratomyxa are mostly coelozoic, parasitizing the gallbladder of 

marine fishes (Gunter 2009). Some species of Ceratomyxa are reported as pathogenic causing 

histopathological damage to the gallbladder of farmed hosts (Alvarez‐Pellitero and Sitjà-Bobadilla 

1993; Alama-Bermejo et al. 2011). Also, Ceratomyxa species reported from wild siganid by 

Diamant and Paperna (1986) were pathogenic to their host causing acute desquamation of 

gallbladder epithelium and chronic congestion and distention of the hepatic biliary canaliculi. In 

addition, a case of high levels or mortality were reported from hormone treated farmed D. puntazzo 

(Katharios et al. 2007). Thus, Ceratomyxa species that were detected in the present study are 

considered as potential hazard to the development of S. canaliculatus mariculture in Oman. The 

risk imposed by these parasites is ranked as moderate.  

Some species of Zschokkella are also known as pathogenic causing enlargement of hepatic 

ducts, lowering duct epithelium and pericholangitis (Z. russelli, Davies 1985). Similarly, Bucher 

et al. (1992) reported proliferation and considerable distension of the ducts as well as metaplastic 

flattening of the duct epithelium caused by Z. nova Klokacewa, 1914. One of the most pathogenic 

species of Zschokkella was reported from the gallbladder of wild S. luridus sampled from the Red 

Sea caused severe hepatic necrosis, ascites and jaundice (Z. icterica, Diamant and Paperna 1992). 

Other than congested hepatic ducts that was associated with Zschokkella sp. infection in wild S. 

canaliculatus, no apparent pathological signs were detected in the gallbladder or the infected hosts. 

Therefore, the risk imposed by this parasite is ranked as low, however further histopathological 

investigated should be carried out to discern any possible risk to the development of S. 

canaliculatus mariculture. 

Members of the genus Unicapsula usually infect the musculature of their hosts and are 

associated with reduction of their quality and marketability (Al-Jufaili et al. 2015). Spores of 

Unicapsula fatimae detected in the present study were isolated from cysts located on the 

endothelium lining of S. canaliculatus oesophagus with localized histological changes at the site 

of cysts attachments (Al-Jufaili et al. 2015). Therefore, at this stage of the investigation and due to 

insufficient data on the biology of this parasite, U. fatimae are considered as low risk for the 

development of S. canaliculatus mariculture.  

In the present study, several specimens of S. canaliculatus were presented with enlarged 

urinary bladders that were filled with opaque urine (Figure 7.8). Subsequently, an infection with 
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multiple species of Ortholinea was detected from these hosts. Although species of Ortholinea were 

previously reported from S. rivulatus (Diamant 2010; Abdel-Baki et al. 2015) none of these records 

report such apparent gross clinical observations from their hosts. Furthermore, while both male and 

female S. canaliculatus were infected with these myxosporeans, only male hosts exhibited 

abnormalities of their reproductive organs (Figure 7.7). To our knowledge, this is the first report 

of members of Ortholinea being associated with gross clinical signs and abnormalities of the 

reproductive organs. The incident reported herein indicates possible pathological changes caused 

by this infection and thus ranking this parasite as low risk to S. canaliculatus mariculture. In 

addition, the abnormalities of the male reproductive organs suggest that these parasites are sex 

selective in their pathogenicity and might cause damage to the male reproductive organs.  

 

Figure 7. 8 A heavily infected urinary bladder of Siganus canaliculatus showing a swollen bladder filled with 

opaque urine, (A). Dissected infected urinary bladder of a male host exhibiting urine filled bladder and abnormally 

discoloured testes, (B). Scanning electron microscopy images of three different forms of Ortholinea spores detected 

from the infected urine of Siganus canaliculatus in the present study, (C). Scale bars, A= 2 mm, B= 4 mm and C= 

2µm.  
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Since its description from the Red Sea bream Pagrus major (Temminck & Schlegel) (Egusa 

and Shiomitsu 1983), the multivalvulida myxosporean Kudoa iwatai Egusa & Shiomitsu, 1983 has 

been recorded from 19 wild and cultured fish hosts belonging to 13 families (Diamant et al. 2005; 

Burger and Adlard 2011). The low host specificity and production of cysts in the musculature 

makes this parasite of great importance for the fisheries and mariculture industry. In addition, the 

infection with K. iwatai is not restricted to the musculature but can establish in several infection 

sites (Diamant et al. 2005). Kudoa species with a systematic infection type (e.g. effecting several 

organs of the host) can be pathogenic to their hosts under mariculture conditions (Kudoa lutjanus, 

Wang et al. 2005). In the present study, white, spherical cysts belonging to K. iwatai were detected 

on the gill operculum of some S. canaliculatus specimens. Thus, although the infection level was 

relatively low, the occurrence of these parasites could be detrimental to the development of siganid 

mariculture industry as these parasites can negatively impact the quality and health of the infected 

hosts. The risk of this parasite to S. canaliculatus is estimated as moderate due to its potential 

pathology, ability to reduce marketability, and occurrence in mariculture facilities.  

Future histological analyses are required to determine the presence or absence of pathological 

reactions induced by this parasite in S. canaliculatus. The registration of K. iwatai in Omani water 

is not limited to the current study, in fact this parasite has been reported from other local hosts 

including the gold-lined seabream Rhabdosargus sarba (Forsskål) (Al-Jufaili, unpublished data) 

indicating that these hosts could serve as natural reservoir for these parasites and may facilitate 

their transmission to mariculture facilities.  

 

Figure 7. 9 White cysts of Kudoa iwatai infecting the muscles of Siganus canaliculatus, (A). Fresh preparations of 

Kudoa iwatai spores, (B). Scale bars, A 500 µm and B 10 µm. 
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7.6.2 Monogenean ectoparasites  

Monogenean fish parasites are frequently associated with major economic losses in warm 

water mariculture facilities (Paperna et al. 1984; Gonzalez et al. 2004; Ernst et al. 2002) because 

farming conditions encourage the transmission and propagation of these ectoparasites (Diamant et 

al. 1999). Besides high prevalence, the infection with monogeneans is usually accompanied with 

viral and bacterial secondary infections (Rubio-Godoy 2007). In mariculture facilities, several 

monopisthocotylean and polyopisthocotylean monogeneans were the cause of severe mortalities 

under mariculture conditions. Among these, capsalids of the genera Neobenedenia and Benedenia 

in Japan and Australia (Ogawa 1995; Deveney et al. 2001; Ogawa 2006; Whittington and Chisholm 

2008), Sparicotyle chrysophrii in wild and cultured Mediterranean sparids (Sitjà‐Bobadilla et al. 

2010; Antonelli et al. 2010), Microcotyle sebastis in cultured Korean rockfish, Sebastes schlegeli 

(Hilgendorf) (Kim et al. 1998; 2000; 2001).  

Infections with Monopisthocotylea are commonly associated with secondary infections due 

to the damage caused by attachment method and feeding mechanisms (Rubio-Godoy 2007). Some 

of the pathology caused by infection with these worms include excessive mucus secretion, erosion 

of the epithelium, gill hyperplasia, impairment of gill respiratory function (Whittington 2006). 

Monopisthocotylean ancyrocephalid monogeneans infecting S. canaliculatus are regarded as low 

risk although they infected S. canaliculatus with relatively high infection levels and intensities (see 

chapter 6). This is because the infected hosts did not show any signs of pathological changes nor 

clinical symptoms associated with these worms. However, knowing that the prevalence and 

intensity of such monogeneans can increase under culture conditions, several aspects of the life 

and biology of these monogeneans should be investigated. 

The blood-feeding polyopisthocotyleans are frequently linked to anaemia, gill hyperplasia, 

loss of lamella structure, clubbing of fusion of gill filaments and haemorrhage (Gonzalez et al. 

2004; Rubio-Godoy 2007). Cases of mortalities caused by members of Polylabris were recorded 

in farmed Sparus aurata in France (Silan et al. 1985) and in cultured siganids in Israel (Paperna 

1984). Polylabris tubicirrus, which naturally infect sparids of the genus Diplodus (Rafinesque), 

expanded its host range under culture conditions (Ogawa 2014). According to Paperna (1984), 

Polylabris cf mamaevi imposed a major problem to farmed S. rivulatus and S. luridus where 

infected hosts were emaciated and suffered from anaemia accompanied with low haematocrit 
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value. This species is well established in siganids inhabiting the WIO and Mediterranean Sea 

(Geets et al 1997; Martens and Moens 1995; Diamant and Paperna 1986, Pasternik et a l. 2007; 

Paperna 1972).  

Wild S. canaliculatus investigated in the current study were infected with Polylabris sp. with 

relatively moderate infection levels (6-71%). Provided that members of the family Microcotylidae 

are known as blood-feeders and for producing filamented eggs will easily entangle in nets, the 

consideration of Polylabris sp. as a potential threat to the future siganid mariculture should not be 

neglected. Because of its possible pathogenicity, potential to cause mortality, its monoxenous life 

cycle and its establishment in mariculture facilities in other localities, Polylabris sp. risk to 

mariculture is ranked as moderate. Future investigations involving the identification of Polylabris 

sp., studies of its biology and experimental infection trials should be implemented to assess their 

role as possible disease-causing agents in Omani siganid mariculture facilities.  

7.6.3 Nematode worms  

Pathological alterations were observed in the flounder Paralichthys isosceles (Jordan) caused 

by infection with Hysterothylacium sp. (Knoff et al., 2012). Also, larval nematode of the genus 

Hysterothylacium caused massive necrosis and fibrosis of the liver of their siganid hosts (Diamant 

and Paperna 1986). These parasites which are usually trophically transmitted parasites have been 

reported from several mariculture farms which might indicate utilization of alternative transmission 

pathways (see Lima dos Santos and Howgate 2011). In addition, some species of Hysterothylacium 

have been reported as potential zoonotic (González-Amores et al. 2015). In the present study, 

Hysterothylacium sp. were detected in the mesentery of S. canaliculatus at prevalence ranging from 

3-66% (Al Jufaili et al. …c). Based on the pathological and zoonotic effect of some species of this 

genus and their possibility to establish in mariculture facilities, Hysterothylacium sp. infecting S. 

canaliculatus poses moderate risk for development of its mariculture.  

7.6.4 Crustacean ectoparasites 

Many marine parasitic copepods, especially those belonging to families such as Ergasilidae, 

Caligidae, Sphyriidae and Pennelidae, are considered to be economically important, particularly 

those that parasitize on commercially important wild and cultured fish (Boxshall 2005; Lester 

2005; Lester and Hayward 2006; Webber et al. 2010). These parasites can damage their hosts 

directly by their attachment mechanisms or indirectly by their feeding behaviours (Boxshall 2005; 
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Lester 2005). The mechanical damaged imposed by these crustaceans include noticeable 

pathological changes on the infected hosts’ tissues, such as hyperplasia, local lesions, hypertrophy 

and pressure necrosis, etc. (Boxshall 2005; Lester 2005, Lester and Hayward 2006). In addition, 

feeding activities of these parasites might cause surface lesions, damage to epidermis, 

haemorrhaging (leading to anaemia), mortality (especially with fry and juvenile hosts), reduction 

of productivity, stunted growth and alterations in host behaviour (Boxshall 2005; Lester 2005). 

Furthermore, some skin infecting copepods exert an adverse impact on the value and marketability 

of infected fish (Boxshall 2005; Lester 2005; Lester and Hayward. 2006). 

Infections with crustacean ectoparasites were registered on wild and captive siganid hosts. 

Ho et al. (2004) reported four caligid species (Caligus epidemicus, C. quadratus, Pseudocaligus 

uniartus and Lepeophtheirus sigani) infecting S. guttatus in the Philippines. Three species of 

crustacean ectoparasites were reported from wild S. javus off Indonesian waters with low infection 

intensities (C. quadratus, C. epidemics and Ergasilus sp.) (Yuniar et al. 2007). Vinobaba (2010) 

reported the occurrence of the ergasilid copepods on S. lineatus and S. canaliculatus caught off 

Batticaloa Lagoon in Sri Lanka. The histopathological investigations of this incident revealed 

extensive tissue damage due to the attachment and feeding behaviour of ergaslids. Such damages 

included hyperplasia, atrophy, and mucous cell proliferation, resulting in mass mortalities of these 

fishes (probably due to improper functioning of their gills). The impact of three caligids, Caligus 

epidemicus Hewitt, 1971, Pseudocaligus uniartus Ho, Kim, Cruz-Lacierda & Nagasawa, 2004 and 

Lepeophtheirus sigani Ho, Kim, Cruz-Lacierda & Nagasawa, 2004 on their host S. guttatus was 

thoroughly described by Cruz-Lacierda et al. (2011), which included severe erosion, haemorrhage 

of body surface and mortality. Anshary and Muyassar (2013) described the pathology of P. uniartus 

infecting S. guttatus cultured in Indonesia. In the present study, at least three different caligids 

species have been reported from S. canaliculatus off Omani waters. Considering the above-

mentioned impact of caligids on their hosts, the identification, assessment and review of the biology 

and life cycles of caligids infecting S. canaliculatus is crucial to prevent threats to the future siganid 

mariculture industry in the Sultanate of Oman.  

With more than 110 registered species (WoRMS 2019), Gnathia are ubiquitous marine and 

estuarine ectoparasites of teleosts and elasmobranchs (Jones et al. 2007). Several species are 

reported as harmful to wild and farmed hosts, causing mortalities due to skin lesions and anaemia 
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(Gonzalez et al. 2004). Grutter et al. (2011) reported reduced swimming ability, high rate of oxygen 

consumption and low survivability of juvenile damselfish Pomacentrus amboinensis (Bleeker) due 

to the infection with Gnathia aureumaculosa Ferreira, Smit, Grutter & Davies, 2009. In their risk 

assessment study, Sanchez-Garca et al (2014) listed G. vorax as posing moderate risk to Diplodus 

puntazzo (Walbaum) mariculture in western Mediterranean because of its low specificity and 

potential pathogenicity to cultured marine fish. Although Gnathia species were found with low 

infection level in the gills of S. canaliculatus (3-14%, Al Jufaili et al. …c), due to their known 

documented pathogenicity, ability to establish and proliferate in fish farms as well as causing 

mortality, Gnathia are ranked as moderate risk to S. canaliculatus. Because of their abundance in 

sheltered habitats (e.g. coral reefs and sponges, Smit and Davies 2004), more studies about the 

distribution of Gnathia larvae in Omani waters should be conducted before choosing sites for the 

development of mariculture farms. Several parasites species from Siganus canaliculatus are of 

mariculture importance (Working hypothesis 7). 
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8 Future prospect 

The present thesis emphasizes on how poorly developed is the field of marine parasitology in 

the Sultanate of Oman. It also highlights the main challenges that are believed to hinder the progress 

of this field in the country. Some of the main perspectives that must be considered in the future are 

increase basic and applied research activities, training of highly skilled staff, enhancing outreach, 

implementation of biosecurity and issues related to seafood quality and safety.  

8.1 Improving basic research activities 

According to the available literature and data obtained in the present study, it is clear that the 

biodiversity of aquatic parasites (marine and freshwater) in Oman is largely unknown. So far only 

a fraction (about 10%) of the fish species known to inhabit the waters of Oman have been examined 

for parasites (mostly teleost fishes) while elasmobranches and shellfishes remain unstudied. Also, 

many landing sites, especially remote ones, are not included in parasitological surveys. Thus, future 

studies should focus on including more host species and from different marine habitats along the 

coasts of Oman (e.g. Deepwater fishes). Also, to have a better estimation of the actual biodiversity 

of aquatic parasites an updated parasite-host checklist should be established using the existing 

data and those which were obtained in the present study. The list should be published in peer-

viewed journal to facilitate knowledge sharing. Furthermore, more attention should be given to 

poorly investigated fish parasite groups (e.g. protozoans, microsporidians and myxosporeans). In 

addition, taxonomic description of the parasites to species level using standardized morphological 

methods should be supported with molecular identification (fish parasite barcoding). For a better 

understanding the role of parasites in the ecosystems and their interaction with their hosts, special 

attention should be dedicated to investigations of the life cycle of parasites in Omani waters.  

8.2 Human resources development  

Based on the current status of marine parasitology in the country, there is a crucial need of 

skilled and qualified personnel to work in this field in Oman. Therefore, it is necessary to develop 

training plans catered for the development of students and employees (government and private 

sectors) in marine parasitology. This can be achieved through creation of a university curriculum 

directed towards marine parasitology as part of fisheries and marine sciences courses. The main 

goal of these courses is to ensure that the students obtain the required theoretical knowledge and 

practical experience in the basic aspects of marine parasitology. In addition, intensive internships 
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should be provided to individual university and college students. Also, special workshops and 

training programs should be developed for fishermen, aquarists, seafood inspectors, fish farmers 

and staff working in the fish processing companies on detection and identification of fish parasites. 

Focus on capacity building and creation of a team of local experienced professional on various 

aspects of marine parasitology. 

8.3 Conducting Applied research  

The field of marine parasitology is an interdisciplinary science since it encompasses different 

subjects of science (Marcogliese 2008). Among the applications for fish parasites are their use in 

environmental studies (as bioindicators for pollution) and fisheries (as biological tags for stock 

discrimination). Through the results obtained in the present study it was clear that fish parasites are 

good bioindicators for the evaluation and assessment of aquatic ecosystems and habitat in Omani 

waters (chapter 6). Further investigation should focus on applying the star graph method using 

other fish-parasites models (e.g. groupers). Also it is suggested to include other species of fish 

parasites as potential bioindicators and to expand the sampling localities to other regions along the 

coast of Oman, especially areas which are likely to be exposed to pollution. Future marine 

pollution monitoring programs in the Sultanate of Oman should include fish parasites as effect 

and accumulate indicators to monitor the environment on a regular basis. In addition, the 

bioaccumulation ability of various fish parasites should be tested for different pollutants (heavy 

metal, Polychlorinated biphenyls (PCBs) and pesticides) to establish marine host-parasite systems 

as bioaccumulation indictors. There is a need to conduct laboratory toxicology experiments to 

investigate the effect of pollutants on different fish parasites.  

Fish parasites have been used as biological tags to provide information on various aspects of 

host biology including fish stock separation, fish recruitment migrations, fish diet and feeding 

behaviour, and host phylogenetics and systematics (Williams et al. 1992). The results obtained in 

the present study (chapter 6) indicate that at least two populations of S. canaliculatus exist in the 

waters of Oman, suggesting that some parasites of S. canaliculatus (e.g. Hysterolecithoides sp. and 

Preptetos sp.) can be used for stock discrimination. Before implantation of these parasites as 

biological tags, thorough multidisciplinary approach related to oceanography, fish morphology and 

biology should be considered. Also, additional fish parasite surveys should be carried out to 

identify more biological tags for stock assessment especially for commercially important hosts 
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(e.g. large pelagics such as the widely distributed and vulnerable Narrow-barred Spanish mackerel 

Scomberomorus commerson (Lacépède). The use of fish parasites together with other stock 

assessment techniques (e.g. biomarker, otolith microchemistry and artificial tags) in a holistic 

approach (Catalano et al. 2014) could be useful in the development of sustainable fisheries 

policies in Oman.  

8.4 Mariculture 

With the prospective expansion of the mariculture industry in the Sultanate of Oman there is 

an urgent need to investigate and identify local parasites species infecting potential mariculture 

candidates and determine which could pose as a threat to the development of this vital sector. Thus, 

the application of qualitative and quantitative risk analyses for mariculture candidate host 

species is crucial to recognize the risk associated with the occurrence of parasites of these hosts. 

With the implementation of risk assessment in Oman it is possible to identify parasites that might 

decrease profitability through mortality, morbidity and loss of marketability (Huston et al. 2007). 

Also, health surveillance and monitoring programs should be implemented to obtain information 

on the geographical distribution (for both parasites and their hosts), parasite life cycle and 

pathogenicity. Parasites that are registered as a result of these monitoring programs should be 

reported to World Organisation for Animal Health (OIE). Finally, to achieve sustainable 

mariculture production in Oman, biosecurity measures should be applied to mariculture facilities 

to improve diagnostic, detection and disease management methods.  

8.5 Seafood safety and quality policies and legislations  

Seafood borne parasitic infections are becoming an important public health problem due to 

the growing international markets, improved transportation systems, and demographic changes 

(such as population movements) (Chai et al. 2005). Wild fisheries capture production and regional 

exportation is one of the main economic contributors to the Sultanate of Oman (MoAF 2015). 

However, seafood quality and safety issues related to fish parasites still exist. Parasitological 

surveys that are focused on zoonotic parasites are lacking which is important for the identification 

and characterization of parasites that are hazardous for consumer health. These surveys Also, the 

current detection methods are slow and time consuming, more rapid and improved detection 

methods such as RT-PCR should be implemented in the routine screening of parasites in seafood 
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products. Establishing maximum detection limits for the different seafood safety and quality fish 

parasites in Omani fish species based on the data obtained through the surveys.  

8.6 Science outreach  

Although marine parasitology is an important field of science, the subject is linked with 

negative reputation and poor public perception in the Sultanate of Oman. Mainly due to ignorant 

of its role. To improve the situation, science outreach activities should be considered to showcase 

the findings of our research to the public. Some suggested examples of these outreach events 

include science open day with school children. Such event will bridge the gap between research 

and education. They can also play part as to motivate the young generation to consider science 

fields for future prospects and particularly marine parasitology. 

With an increased trend to use social media platforms, increasing public awareness via 

various social media platforms (e.g. Twitter and Instagram) will help to familiarize the public about 

the subjects of marine parasitology. Creating interest amongst community members will attract the 

attention of the policymakers. This in turn might lead to a consideration of deploying funds for 

future projects in the field.  

Further, knowledge sharing with counterparts and experts in the field is essential to ensure 

staying updated with any advancement in the field. Participation in international conference and 

networking with fellow researches helps to meet potential collaborators. The support from 

concerned government authorities is appreciated and essential to ensure that Oman is on the global 

map of parasitology studies.  

Part of our science outreach is to publish a pictorial marine parasitology book. The book will 

serve as a reader-friendly parasite-host atlas which will help the public to appreciate the 

biodiversity and beauty of marine parasites in the waters of the Sultanate of Oman. It will also 

serve as a quick identification book to recognize fish parasites for students, aquarists, fishmongers 

and hobbyist. Moreover, we are intending to develop and launch a website/Blog to share our 

activities and findings with pictures and information about the different parasites species that we 

encounter as part of our research Work. 
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Appendix 1 

Exposure level and Consequence of parasite establishment for Siganus canaliculatus in mariculture farms in the Sultanate of Oman. 

 Exposure level      

Parasite taxa 

Zone  

(North/South) 

Water 

bodies 

Sampling 

 site  Marketability  Pathology 

Mass 

mortality  

Consumer 

health Consequence 

Myxosporea                 

Zschokkella sp.  North and South all waterbodies all sampling sites – X – – Low 

Ceratomyxa spp. North and South all waterbodies all sampling sites – X X – Moderate 

Latyspora sp. North  GoO 2 sampling sites – X – – Low 

Ortholinea spp. North and South  all waterbodies all sampling sites – X – – Low 

Unicapsula fatimae North and South  all waterbodies 5 sampling sites – X – – Low 

Kudoa spp. South  AS 2 sampling sites X X – – Moderate 

Monogenea                 

Glyphidohaptor safiensis  North and South  all waterbodies all sampling sites – X – – Low 

Tetrancistrum spp. North and South  all waterbodies all sampling sites – X – – Low 

Polylabris sp. North and South  all waterbodies all sampling sites – X X – Moderate 

Digenea                 

Preptetos sp. South  AS 2 sampling sites – X – – Low 

Stephanostomum spp. North PG 1 sampling site – X X – Moderate 

Nematoda                 

Hysterothylacium sp.  North and South  all waterbodies all sampling sites – X – X Moderate 

Nematode indet. Larvae North PG, GoO 4 sampling site X – – X Moderate 

Procamallanus sp.  North and South  GoO, AS 5 sampling sites – X – – Low 

Crustacea                 

Caligus spp. North and South  AS, GoO 3 sampling sites – X X – Moderate 

Gnathiidae indet. 

sp.(pranzia larvae)  North and South  all waterbodies all sampling sites – X X – Moderate 
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Appendix 2 

Qualitative probability estimation matrix (based on AFFA 2001) 

 

 

 

 

 

Appendix 3 

Quantitative risk estimation matrix, Negligible risk (1-5), Low risk (6-10), Moderate risk (7-15), High risk (16-20), Extreme risk (25) 

P
ro

b
ab

ili
ty

 

Extreme 5 10 15 20 25 

High 4 8 12 16 20 

Moderate 3 6 9 12 15 

Low 2 4 6 8 10 

Negligible 1 2 3 4 5 

 Negligible Low Moderate High Extreme 

  Consequence  

 

Ex
p

o
su

re
  

Extreme Negligible Low Moderate High Extreme 

High Negligible Low Moderate High Extreme 

Moderate Negligible Negligible Low Moderate High 

Low Negligible Negligible Negligible Low Moderate 

Negligible Negligible Negligible Negligible Negligible Low 

  Negligible Low Moderate High Extreme 

  Pathway 
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