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This Master’s thesis focuses on different measures of dependence. To study cor-
relation, we introduce not only Pearson’s, Spearman’s and Kendall’s correlation
coefficients but also the maximal correlation coefficient. We consider the concept of
mutual information derived from Shannon’s information theory and the related infor-
mation coefficient of correlation. Furthermore, we research a newer non-parametric
quantity, the maximal information coefficient, about whose usability there have been
conflicting views.

We first introduce the known properties of these measures from the literature and
then check how well they work. For instance, we study how the exact type of
dependence, the amount of statistical noise and the number of observations affect
the performance of these coefficients. We are interested in finding such a quantity
that effectively recognizes the dependence between two variables, regardless of if this
relationship is linear, non-linear but monotonic, non-monotonic but functional, or
non-functional.

To compute the values of these measures of dependence, we mostly use the program-
ming language R and its newly developed packages with functions designed for this
exact purpose. We also introduce a recent neural estimation algorithm MINE im-
plemented within the PyTorch library of Python. We consider here both simulated
data with several distinct types of dependence and real data from a few specific
topics, such as the weather, youth behavior and air pollution.

Keywords: Correlation, maximal correlation, maximal information coefficient, mea-
sures of dependence, mutual information, neural networks.
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1 Introduction

In the reality surrounding us, there are countless different variables somehow con-
nected to each other. We study their relationships to understand the world better,
find new information and predict the future. Throughout the history of statistics,
several different tools have been developed to describe distinct types of dependence
in a way that would fit the requirements of the time.

In the 19th century, Pearson’s correlation coefficient was introduced as a simple
indicator of linear dependence between two variables. During the 1900s, this concept
was extended for measuring non-linear but monotonic dependence by Spearman
and Kendall, and later the maximal correlation was created for recognizing non-
monotonic relationships. In the 1940s, the birth of information theory brought forth
the notion of entropy for expressing how much information one variable gives about
itself, which also led the formulation of mutual information in order to study the
information conveyed between the variables. In 2011, a yet another new quantity,
the maximal information coefficient, was proposed for finding interrelated variables
in the constant stream of digitized data.

This raises the question how one knows which of these concepts suggested during
the last 150 years should be used in a certain situation. Since each measure of de-
pendence was created to serve in the best possible way within the conditions of that
time, these quantities have different properties. The newest of them is not necessar-
ily the best choice for studying relationships for otherwise the simpler correlation
coefficients would not still be so commonly used in the research of today. Further-
more, because of the incredible development of information technology since the
introduction of the first correlation coefficient, the profound change in the computa-
tional methods also needs to be taken into account when comparing these measures
of dependence.

However, while there is a lot of research about each correlation coefficient and
the other quantities mentioned, there is not so much direct comparison between
these measures of dependence or their computation. Namely, most of the scientific
articles seem to focus on only one coefficient and its properties without considering
such circumstances in which some other option would work better. The research of
these coefficients also relies very much on simulated data which is a simple tool for
showing some specific traits of a quantity but might still miss some of their essential
features affecting the study of real world data.

Thus, we aim to study here the differences between these measures of dependence.
We are interested in what kind of properties they have in theory and whether these
qualities also work for both real and simulated data sets. We want to compare differ-
ent coefficients to find which one of them recognises dependence most effectively, in
the cases where the relationships between the variables are linear or not, monotonic
or not, and functional or not.

The structure of this thesis is as follows. First, in Section 2, we show the fun-
damental definitions of all the related concepts and introduce the known properties
that these quantities should have according to the literature. In Section 3, we then
study how these coefficients behave when computed with the programming language
R from simulated data about different relationships and, for instance, what kind of



an impact statistical noise and the number of observations have on the obtained
results. In Section 4, we investigate a very recent neural network algorithm that can
be used to estimate the value of the mutual information. In Section 5, we experi-
ment with real data sets about a few different topics to see if the coefficients behave
as in the earlier simulations for this type of data, too.

At the end of this thesis, there is an appendix section containing the most crucial
R and PyTorch codes used in this work. More information can be about the topics
can found in the works listed in References, especially in [1, 2, 3, 14, 28, 39, 41, 45,
52, 55|. Note that there is also Index on page 62 where the page numbers for the
definitions of the central concepts are listed. I have personally made all the figures
in this work by using the vector graphics editor Inkscape, the plots from RStudio
and the latex package TikZ.

Finally, I would like to thank my supervisors Professor Janne Kujala and Pro-
fessor Riku Klén for their useful and constructive suggestions, and Professor Matti
Vuorinen for his careful proofreading.



2 Fundamentals

Let us next introduce the different concepts used in this paper. First, we discuss
correlation and show a few correlation coefficients, then move on to entropy and
mutual information and, finally, define the maximal information coefficient. In this
section, we focus on the definitions of these concepts, but more details about their
behavior and the methods for their computation can be found in later sections.

2.1 Correlation

In the real world, there are numerous variable pairs that might have either positive
or negative association between them. For instance, some type of a relation can be
observed between the amount of snow in Finland and the number of migratory bird
species commonly present, the number of published works by a researcher and the
time since their first publication, or the tweeting frequency and the follower count
of a Twitter account. In statistics, correlation is a simple yet important concept for
describing these kinds of relationships.

For a pair of numerical random variables X and Y, their correlation can be
defined formally by using the population correlation coefficient |4, p. 33|

E((X — pux)(Y — HY))

2.1 =
21) P \/Var(X)Var(Y)

I

where px is the expected value of the variable X. This concept was pioneered in the
late-19th century by the British scientist F. Galton, who needed a way to describe
the similarities between an individual and its offspring in his study of heredity |15,
p. 186]. While the definition (2.1) is not the original formulation of correlation, it is
well-justified because its numerator is the expression of covariance [4, p. 33]. Note
also that this coefficient is not defined for variables with no variation but studying
the correlation in this case would not be interesting.

The population correlation coefficient has several useful features. Trivially, the
expression of p is symmetric with respect to X and Y. By the common properties of
the expected value and variance, it can be shown that the value of p belongs to the
interval [-1,1]. The independence of the variables X and Y, denoted here as X L Y,
implies that their population correlation p is 0, [4, p. 33]. Furthermore, if similar
values of the variables often occur together, then they are positively correlated and
p > 0. Correspondingly, the negative correlation indicated by p < 0 means that the
larger values of X are accompanied by the smaller values of Y and vice versa. The
further away the value of p is from 0, the greater the positive or negative correlation
is [52, p. 3868|.

It should be pointed out here that the correlation between X and Y does not
mean causality X — Y or Y — X. Because the cold weather and decreasing amount
of light cause certain birds to migrate out of Finland for the winter when there is
typically at least some snow, the amount of snow and the number of bird species in
the country are negatively correlated, even if the snow itself would not directly affect
the bird migration. Studying the correlation between two variables is still useful since
information about it can be used to explain the unknown factors affecting these two
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Figure 1: Scatter plot with the least squares regression line, when the data is from
two linearly dependent variables.

variables and the values of one variable can be potentially predicted with the other
one even if there is no direct causal relationship.

When studying a data set consisting of n pairs (x;, y;) of observations with means
denoted as T and ¥y, the population correlation can be estimated with Pearson’s
correlation coefficient |52, (4), p. 3868]

b 2@ DY)
2 V) e e

which was defined in 1895 by the British statistician K. Pearson [26, Table 1, p. 89].
Namely, it follows from the law of large numbers that this coefficient approaches
the population correlation coefficient, when n grows large enough. The coefficient r
also shares the aforementioned properties of the population correlation coefficient:

€ [—1, 1] by the Cauchy—Schwarz inequality |15, p. 187], r =0 if X L Y, and the
values of r close to 1 express high positive correlation whereas the values approaching
-1 mean high negative correlation.

One of the key properties of Pearson’s correlation coefficient r is that the slope of
the least squares regression line fitted to the scatter plot of the observations (z;,y;)
can be written as rsy/sx [15, p. 188|, where sx is the standard deviation of X

4



defined as [4, p. 38|

n

1
Sx = n_]_Z(I'Z—E)Z

=1

For instance, Figure 1 contains data out of two variables X and Y, for which Pear-
son’s correlation coefficient is r = 0.979 and the standard deviations are sx = 0.171
and sy = 0.528. From these values, we can calculate that the slope of the least
squares regression line fitted to the data is just over 3. The value r = 0.979 here
indicates strong positive correlation between the variables X and Y, which can also
be visually verified.

Because of the connection between Pearson’s correlation coefficient and the least
squares regression, describing the linear relationship with this correlation coefficient
feels intuitively very reasonable. Contradictorily, this is also the problem of Pear-
son’s correlation coefficient: While this method is well-suited for studying linear
dependence, the coefficient r tells us very little about the underlying relationship if
this connection is non-linear. Even if the dependence follows an increasing function
such as the cubic function y = 23, Pearson’s coefficient can have too low values.

Furthermore, we need to also assume that the marginal distributions of the both
variables are normal because otherwise certain outlying observations might affect
Pearson’s coefficient too much [52, p. 3868|. If we study the correlation between the
amount of snow in Finland and some other variable, we must note that there is so
little snow on average during a year that the observations collected during a winter
blizzard have a very high effect on the value of the coefficient . While some of the
outliers could be simply removed from the data, this will cause information loss.

If the former assumptions about linear dependence and normally distributed
variables do not hold, we can measure the correlation in another way: For n pairs
(@i, y:), Spearman’s correlation coefficient is [19, (1) & (2), p. 470]

(2.3) P D i (i) = r(i)?

nd—mn

Y

where r(z;) is the rank of x; when the elements in the vector (xy, ..., z,) are ordered
ascendingly. This coefficient was proposed in 1904 by the British psychologist C.
Spearman |52, p. 3866| and, similarly to Pearson’s correlation coefficient, its value
also varies on the interval [—1,1], [19, p. 470]. In fact, Spearman’s correlation coef-
ficient defined for the pairs (z;,y;) is equivalent to Pearson’s correlation coefficient
for the pairs (r(z;),r(y;)) of the rank numbers [52, p. 3869].

Spearman’s correlation coefficient is often a better choice than Pearson’s correla-
tion coeflicient if the dependence is monotonic but non-linear. Because Spearman’s
correlation coefficient is non-parametric, it can also be used for such data where
the variables are not normally distributed and no other assumptions about their
frequency are needed either. Unlike Pearson’s correlation coefficient, Spearman’s
coefficient can also be used in such situations where one or both of the variables
considered is not directly numerical but ordinal, like the level of education, so that
integer values can be assigned to its values. Furthermore, while this coefficient
was defined above by determining the ranks of the ascending orders of the vectors
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Figure 2: Example of a non-monotonic functional relationship.

(1, ..., z,) and (Y1, ..., yn), there is nothing preventing us from calculating the coef-
ficient from the descending orders instead if we just order both of these two vectors
in the same way. [52, p. 3869

A third way to estimate the correlation from a data set consisting of n pairs
(xi,v;) is to use Kendall’s correlation coefficient |52, (6), p. 3869]

(2.4) T = ﬁ Z sgn(z; — x;)sgn(y; — yj)

i<j

introduced in 1948 by another British statistician, M. Kendall [52, (6), p. 3866].
Because the pairs (z;,y;) and (z;,y;) are concordant if sgn(z; — x;)sgn(y; — y;) =
1, and disconcordant if sgn(x; — x;)sgn(y; — y;) = —1, the sum expression above
could also be written as the difference between the numbers of concordant and
disconcordant pairs in the data. Typically, the values of both Spearman’s and
Kendall’s coefficients are close to each other but the latter one is sometimes less
sensitive to error due to it not using squared distances [52, p. 3869].

However, using Spearman’s or Kendall’s correlation coefficient instead of Pear-
son’s correlation coefficient does not solve all the problems related to correlation.
While the dependence in the data does not need to be linear so that it can be rep-
resented properly with the coefficient r4 and 7, it should still be monotonic [52, p.
3869]. Namely, if there is neither increasing nor decreasing function describing the
dependence, then it is possible that the scatter plot of the data is symmetric in such
a way that all the correlation coeflicients are 0, even in the case when there would
be clear association between the variables considered.

Consider the dependence between the received amount of some drug and the
duration of a disease as an example. Suppose that there is an ideal drug dose for the



disease so that both too high and low doses of the drug prolong the disease instead
of curing it immediately. Clearly, we can collect such data out of this phenomenon
where all three correlation coefficients are 0, even though there is a simple connection
between the drug dose and the length of the disease, and therefore none of these
coefficient gives any useful information in this case. For instance, the absolute values
of all three aforementioned correlation coefficients are less than 0.04 for the data of
Figure 2, even though there is a clear parabolic relationship. Thus, yet another
alternative method for measuring correlation from non-monotonic data is needed.
For the random variables X and Y, their mazimal correlation coefficient is |1,

(1), p. 27]
(25) Pmax = Sup{E(f0<X)fl(Y))}7

where the supremum is taken over all real-valued functions fy, fi defined in the sets of
all the possible values of the variables X and Y, respectively, such that E(fy(X)) =
E(f1(Y)) = 0 and E(fo(X)?) = E(f1(Y)?) = 1. Originally, this coefficient was
proposed in 1941 by H. Gebelein [3, pp. 587-589]. Note that the definition above
could be written equivalently as [1, (1), p. 27]

Pmax = Sup{p(f0<X)a f1<Y))}7

when p(X,Y) denotes the population correlation coefficient p computed for the
variables X and Y as in (2.1).

The maximal correlation coefficient fulfills all the requirements that A. Rényi
suggested for a measure of dependence in his work in 1959. Namely, this coefficient
Pmax 1s trivially symmetric with respect to X and Y, and its values vary on the
interval [0, 1] so that ppa.x = 0 if and only if X 1 Y, and ppax = 1 if and only if
X =h(Y) or Y = h(X) for some Borel measurable function h. Furthermore, just
like the population correlation coefficient, pp.x is defined for any random variables
X and Y with non-zero variance but cannot be calculated if one of these variables
is a constant. [3, p. 589

By using the maximal correlation coefficient, we can find the dependence between
the variables X and Y if it is, for instance, quadratic, cubic or exponential [39, Fig.
2.A, p. 1519]. However, this coefficient has its own issues, too. Finding the suitable
functions can be often challenging, there needs to be a high enough number of
observations to confirm that the recognised shape in the data is not just incidental,
and even this approach does not work very well for all relationship types: In [39,
Fig. 2.A, p. 1519], it can be seen that the maximal correlation coefficient is not
very effective method when the dependence between X and Y follows a sinusoidal
curve, at least according to the results of the article [39]. Furthermore, there are
also types of dependence that cannot be described with one function, such as the
cross-shaped dependence in Figure 3.

To conclude, the issue with correlation is that while its value is 0 for indepen-
dent variables, the correlation of 0 does not always mean that the variables are
independent. The correlation coefficients typically work well if the dependence is
linear or at least monotonic, but other kind of relationships between variables are
more difficult to find. Consequently, additional methods to study non-monotonic
and non-functional association between two random variables are very much needed.

7



(¢]

Figure 3: Example of a non-functional relationship in the shape of a cross.

2.2 Entropy

In order to truly understand the connection between two random variables, we need
to explain how these variables transmit information. Namely, we must have a way
to describe how much information a random variable can give us, or how much
information we should expect from it. This question leads us to the concept of
entropy, which is one of the most important notions of information theory.

Consider first a singing competition in which each contestant performs multiple
times, judges give points directly after the performances and the person with most
points in total wins. Suppose that we are only interested in who wins or loses. If
a contestant already has so many points that their win is sure, there is nothing
surprising about the contest for us anymore. Similarly, witnessing the loss of a
contestant that has too few points to win even with perfect final performances
would not give us any new information. It is clear that verifying a nearly certain
event is not so interesting as observing something highly unlikely.

Consequently, the received amount of information must be decreasing with re-
spect to the probability of an observation. Furthermore, as noted in [42, p. 54],
multiple independent events all happening should give us as much information as
the sum of each separate event occurring. From these properties, it follows that
measuring the amount of information with some logarithm function of the probabil-
ity of the joint event would be well-founded and, since the amount of information is
commonly measured by binary digits called “bits” or natural units, the binary and
natural logarithms are good options.

Let us now formally define entropy introduced by the famous mathematician C.
Shannon in his ground-breaking work about information theory in the 1940s. For a
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Figure 4: The probability mass function of the discrete random variable X which
obtains values 1, xo, x3 with probabilities 0.1, 0.4 and 0.5, respectively.

discrete random variable X with possible values x;, its entropy is [50, p. 430]
H(X)=- Zp(l“z) log(p(z:))
and, for a continuous random variable X with a value set X, let [50, p. 431]

) -~ [ _pla) log(p(w))d.

instead. Here, p(x) is the probability of the event X = z or the probability density
function of the random variable X, and the base of the logarithm log can be here
chosen freely as long as it is over 1, [42, p. 55]. For instance, the entropy of the
random variable X of Figure 4 is

H(X) = —0.110og(0.1) — 0.41og(0.4) — 0.510g(0.5),

which is approximately 1.361 bits or 0.943 natural units. By the definition of the
expected value, this definition of entropy is equivalent to the expected value of
information given by the random variable X, if its observation x gives an amount
of —log(p(x)) of information [42, p. 55].



The definition above can also be extended for the joint and conditional entropy:
If the random variables X and Y are continuous, then [44, (2.126), (2.128) & (2.129),
p. 100]

- /w . /y N p(z,y) log(p(z, y))dzdy,

H(X|Y) = / / p(, y) log(plzly))drdy,
zeX Jyey

H(X|Y =y) = — / vl ) og(oaly))da

where p(x,y) is the joint probability density function of X and Y, and p(z|y) is the
conditional probability density function of X given Y = y, see for instance [25, Def.
1.31, p. 11] for the definition. The joint entropy H(X,Y") expresses the uncertainty
related to the all possible combinations of the values of the variables X and Y, the
first definition for the conditional entropy H(X|Y') tells us the remaining entropy of
X once the value of Y is known, and the expression of H(X|Y = y) tells the entropy
of X in the case the value of Y is fixed to y. These definitions could also be written
for discrete variables by replacing the integral with a sum [50, pp. 430-431].
Note that entropy fulfills the inequality [50, pp. 430-431]

0 < H(X|Y) < H(X) < H(X,Y) < H(X) + HY),
where the equalities [50, pp. 430-431|
H(X|Y) = H(X) and H(X,Y)=H(X)+ H(Y),

hold if X 1 Y.
By Jensen’s inequality, a convex function f: R — R fulfills [34, (1), p. 403]

(2.6) / (Zpﬂ&) < ZPz‘f(%‘%

where (21, ...,2,) € R" and (p1,...,ps) € (0,1]" such that >, p; = 1, and if f is
concave instead, then the reverse of this inequality holds. If £ > 0 and = € R, then
by differentiation

0? | 9 (Inzx 0 1 —1 <0
g, r=—|(—)=—=— =
a2 OBk 0x?2 \Ink Or \zlnk r2Ink ’
which shows us that the logarithm with any base £ > 1 is a concave function.

It follows from this observation and Jensen’s inequality (2.6) that, for a discrete
random variable X with n possible values z;, i = 1,...,n,

(2.7) Zp ; log( ) < log (Zp ;) o ) = logn

where log is any logarithm with a base k > 1. Clearly, this upper bound is reached
if and only if p(z;) = 1/n for all i = 1,...,n, which makes intuitively sense: The

10



element of surprise is greatest in the situation where each possible outcome has an
equal probability. Note that Jensen’s inequality can also be used to find even better
upper bounds than (2.7) for entropy, see for instance [34].

From these properties of entropy, we notice that this concept can be seen as one
realization of the idea about a measure indicating how much information about a
variable conveys through its own observations but this does not still give a very
clear picture of what entropy actually is. In physics, this term is related to disorder,
disturbance or uncertainty. While Shannon’s entropy has a definition similar to what
physicists use, the exact connection between these two meanings of entropy is not
known. However, calling some sort of “surprisement” or uncertainty of information
by the name of a very theoretical quantity expressing the physical state of disorder
gives a certain advantage: In order to prove that this name choice for the statistical
concept is incorrect, one would first need a definite answer to what the physical
entropy really is. In fact, when asked about the name of entropy, Shannon told that
another mathematician J. V. Neumann had suggested it for him for this specific
reason [42, p. 58|.

However, in the context of cryptography, this concept is more clear to under-
stand. Suppose that the random variable X generates the first symbol z; in a text
from some fixed set {1, ..., z,} of possible symbols. This symbol is then encrypted
by replacing it with a cryptotext symbol y;, which is determined by certain encryp-
tion rules. Clearly, if a person with the cryptotext is trying to figure out the first
symbol z; of the original text, they should first guess the symbol z; giving the highest
probability p(z;|y;). Guessing correctly would be most difficult when p(z;|y;) = 1/n
for all 7 = 1,...,n because entropy is at its greatest in this case. Actually, Shannon’s
entropy H(X|Y = y;) is a lower bound for the expected number of guesses needed
to figure out the correct symbol z; if the options are tried out in the descending
order of probability p(z;|y;) [14, p. 796].

Thus, entropy is an interesting concept that can be applied in very many different
types of situations. While it can be difficult to understand, this quantity can be
used to describe the expected amount of information from a random variable and
the uncertainty related to them. It has a clear mathematical definition that has
several desirable implications for both continuous and discrete random variables.

2.3 Mutual information

Studying the connection between variables is often inspired by the underlying ques-
tion if the values of one variable can be used to estimate or predict the values of the
other variable. Entropy can be used to measure how much information a random
variable gives about itself, but we are interested in the information about one ran-
dom value that is obtained through the observations of another variable. Thus, we
need to introduce a new concept for this purpose.

For a discrete random variables X and Y with values z; and y;, respectively,
their mutual information is [50, p. 431|

S

11



and, for a continuous random variables X and Y with value sets X and ), this
definition is written as [50, p. 431|

10000 = [ [ e (g ) oo

By using the entropy introduced earlier, this definition of mutual information could
be simplified to [50, p. 431|

(2.9) I[(X;Y) = H(X) - HX|Y).

While the groundwork for mutual information was built by Shannon in his study of
information theory, this quantity was first proposed in its current form [31, (14), p.
88| in 1957 by E. H. Linfoot [47, p. 1503].

Let us briefly introduce the key properties of mutual information. We see directly
from its definitions that mutual information is symmetric with respect to X and Y.
For discrete variables X and Y, this symmetry property and the inequality in [23,
p. 428| can be used to show that

0<I(X:;Y)<min{H(X),H(Y)},

where the lower bound is reached if and only if X 1 Y and the upper bound is
obtained if and only if X fully determines the values of Y or vice versa. If X is a
discrete random variable with n possible values, it also follows from above and the
inequality (2.7) that

(2.10) 0<I(X;Y) <logn.

Note also here that the base of the logarithm above and in the expression of mutual
information can again chosen from the open interval (1,00), as long as the choice is
consistent with the definition of entropy so that the equality (2.9) holds.

Most importantly, mutual information is a measure of dependence that tells us
how much information the values of one variable reveal about the values of the other
variable [28, p. 3356]. It can detect both linear and non-linear dependence, and even
non-monotonic dependence [39, Fig. 2.A, p. 1519|. It is also self-equitable |28, p.
3356|, which means that, for any deterministic function f, |28, (3), p. 3355]

(2.11) I(X5Y) = I(f(X);Y)

if the following condition holds: X <« f(X) < Y forms a Markov chain or,
equivalently, the conditional probability distribution of Y fulfills P(Y|f(X), X) =
P(Y|f(X)). Because of these desirable properties, mutual information has different
applications in several scientific domains, including information theory, data science
and statistics [2, p. 1.

However, this concept has also some problems. While the values of Pearson’s,
Spearman’s and Kendall’s correlation coefficients are always on the interval [—1, 1]
and the value of the maximal correlation coefficient is from [0, 1], mutual information
does not share this property: It can have values over 1, [47, p. 1503] and, if Y is a non-
constant deterministic function of a continuous random variable X, I[X;Y] = oo,

12
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Figure 5: The information coefficient of correlation r; as the function of the mutual
information (MI).

[28, p. 3356]. This makes the interpretation of the value of mutual information and
its comparison to the other ways to measure dependence between variables difficult.
For instance, I(X;Y) = 1.309 tells us very little about the variables X and Y other
than they are not fully independent.

One suggested solution to this issue would be to use the information coefficient
of correlation |31, (13), p. 88|

(212) rn=v1-— 6—2~[(X;Y),

which was originally proposed also in 1957 by E. H. Linfoot. Like the maximal
correlation coefficient, this coefficient obtains values only on the interval from 0 to
1, [31, p. 88]. Clearly, r is strictly increasing with respect to the mutual information
so that ry = 0 for I(X;Y) = 0 and r — 1~ for I(X;Y) — oo. Figure 5 shows
in more detail how the values of this coefficient depend on those of the mutual
information.

Another significant issue related to mutual information is that its exact value is
difficult to calculate for two continuous variables X and Y [28, p. 3356]. Namely,
as we see from the definition of 7(X;Y"), this would require that we know the dis-
tributions of X and Y, which is seldom the case in reality. One possible solution
would be to fit some probability distributions to the data and use them to calculate
I(X;Y) |28, p. 3356], but there needs to be a lot of data about the random variables
X and Y so that one can choose suitable distributions for them.

The mutual information of two variables X and Y can also be estimated from
the data by dividing the domain containing all the data points into small intervals
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called bins and then using the so-called naive estimate |28, (6), p. 3356]

(2.13) Inaive(X;Y') Zp v @bg( (Sp%)

where p(Z,y) is the fraction of data points inside one bin. However, this kind of
an estimate systematically gives too large values for the mutual information [28, p.
3356|. Thus, fitting probability distributions for X and Y as suggested above would
be a more trustworthy method to compute their mutual information, especially if
there is much data [28, p. 3356|, but the estimate (2.13) could work as an upper
bound for the mutual information.

Mutual information has also one alternative presentation commonly used but,
in order to understand it, we need to define one concept first. For two probability
distributions P and @), the Kuhlback-Leibler divergence introduced in 1951 by S.
Kullback and R. A. Leibler [29] is [2, (4), p. 2]

(2.14) Diw(PQ) = Ep (mgj—g) ,

where the notation Ep means the expected value taken with respect to the distri-
bution P and dP is the density of the distribution P. For instance, if P and @
are continuous distributions with probability density functions p and ¢, respectively,
then the Kuhlback-Leibler divergence is the integral [17, p. 3802]

PPl = [ plw (log%) du.

The Kuhlback-Leibler divergence has also the following dual presentation, which
was proposed in 1983 by M. Donsker and S. Varadhan: [2, Thm 1, p. 2|

(2.15) Dxr(P|lQ) = sup Ep(T) —log(Eg(e")),
T:Q—R
where the supremum is taken over the collection of all such functions 7" that the two
expected values above are finite.
As we see by comparing the definitions of the Kuhlback-Leibler divergence and
mutual information, these concepts are clearly connected and, more formally, it

holds that [2, (3), p. 2]
(2.16) I(X;Y) = Dxi(Pxy||Px ® Py),

where Pyxy is the joint distribution of the random variables X and Y and Px ® Py
is the product of their marginal distributions. This connection is significant because
we can use the dual presentation of the Kuhlback-Leibler divergence to compute the
value of the mutual information, as pointed out in [2, p. 3]. In fact, using this method
together with new neural network algorithms, we can very effectively capture many
types of dependence, such as those in the data used to train algorithms to recognize
handwritten numbers |2, Fig. 5.c, p. 7].

In conclusion, mutual information is a very functional quantity that can be used
to measure how much information the values of one variable convey those of some
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different variable, regardless of the exact type of this dependence. Because of this,
mutual information works considerably better than the older correlation coefficients
when studying diverse relationships. While computation of the exact value of the
mutual information has been historically difficult, this problem might be solved with
certain newer methods and estimates developed during the recent years.

2.4 Maximal information coefficient

One of the most prominent current changes in the field of statistics is the ever in-
creasing need to find the interesting variables in a data set that might contain several
hundreds of them. Since the modern technology has enabled the immense collec-
tion of digital data, one must discover the closely related variables more effectively.
Consequently, in spite of all the well-defined theoretical properties of mutual infor-
mation, this over 60 years old concept is alone not enough to fit the requirements of
today.

In 2011, D. N. Reshef et al. introduced the mazimal information coefficient
(MIC) [39] defined as |7, p. 2]

(2.17) MIC(X, V) = max 22X6 Lot V)
Ng XNy 10g<m1n{na¢7 ny}>

for the real-valued random variables X and Y, out of which there is some data in
the form (z,y). Here, n, and n, are the number of bins on the z- and y-axes, G
is a n, x n,-grid over the plotted data like shown in Figure 6, and I5(X,Y) is the
mutual information under the grid G. In other words, this quantity I5(X,Y) is
computed from the data (z,y) by considering the probability of each box of the grid
G proportional to the number of the data points inside the box.

While this method for computing /5 (X,Y’) resembles the computation of the
naive estimate (2.13), it must be noted that here the aim here is to choose such a
grid G that gives the highest possible value for I5(X,Y’). Consequently, the MIC
cannot be directly derived from the naive estimate without any sort of maximization.
Note also that the product of the numbers n, and n, in (2.8) is often limited with
some function B(n) depending on the sample size n [12, p. 2|. Furthermore, the
logarithm in (2.17) needs to be chosen so that it fits the choice of logarithm in
the definition of mutual information (2.8) and the binary logarithm seems to be
therefore quite a common option here.

Like mutual information, the MIC is also a tool used to measure dependence that
cannot be necessarily found with the simpler correlation coefficients. This is the
generality property of MIC: The dependence captured by this method is not limited
to certain function types such as linear or monotonic, and not even relationships
modelled with functions [39, p. 1518|. Furthermore, it follows trivially from the
symmetry of mutual information that the MIC is symmetric with respect to X and
Y (39, p. 1520].

However, unlike those of mutual information, the values of the MIC only vary on
the interval [0, 1], [39, p. 1519]. In fact, this result follows directly from the earlier
inequality (2.10), which is enough to show that

0 < Is(X,Y) <log(min{n,,n,})

15



Y

o}

o}

e}

o

& o

o

Ppo°

© QO

o © O o
o
o OoQ)OO %ooo
8o o o
L0
D
o
%6
o
o)
o
8
o
T

Figure 6: A 3 x 5-grid over a scatter plot (z;,y;) with n = 53 observations.

due to the symmetry of mutual information. This property makes the values of the
MIC easier to interpret and compare to, for instance, the values of the correlation
coefficient.

According to Reshef et al., the MIC also has a similar equitability property, which
means that the values of the MIC are similar to equally noisy relationships even if
the exact type of the dependence varies [39, p. 1518]. Here, by noisiness, we mean
the numerous unavoidable irregularities in the data which occur because no real
life relationship follow some function perfectly. This property resembles the self-
equitability of mutual information defined in (2.11), but mutual information itself
does not measure the noisiness of different relationships similarly [47, p. 1503|.

To compute the noisiness in data, Reshef et al. use the coefficient of determi-
nation R? [39, p. 1518]. While this statistic is typically only defined for linear
dependence, see |4, Def. 7.3, p. 265|, this definition can be extended: If the func-
tion f defines the relationship between two random variables X and Y so that
Y = f(X) + v with some third variable v, then for this relationship

(2.18) R = R*(f(X);Y) = p(f(X); V),

where p(f(X);Y) is the population correlation p of the variables f(X) and Y [28,
p. 3355]. Consequently, a measure of dependence D(X;Y") is equitable according to
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the definition of Reshef et al. if |28, (1), p. 3355]
(2.19) D(X;Y) = g(R*(f(X);Y))

for some function g not depending on the joint probability distribution of the vari-
ables X and Y.

One of the main advantages of the MIC is that it is fully non-parametric method.
One does not need to know the probability distributions of the variables X and Y
to compute the value of MIC(X,Y), and any errors cannot therefore be made while
estimating these distributions, either. However, this does not necessarily mean that
the MIC could be computed from lesser amounts of data: Given the definition of
MIC, it is clear to see that the more data there is, the more reliable this estimate
becomes.

Another interesting side of the MIC is that it is able to recognize multiple trends
in the same data [39, Fig. 4, p. 1521|. Suppose for instance that we are interested in
the connection between a person’s income level and how often they fly. Generally, the
number of both the business and holiday flights increases with respect to the income,
but some people might avoid flying altogether because of the climate reasons, flight
phobia or some motive not related to their financial situation in any way. Because of
this, we might obtain a data where these variables plotted against each other follow
two distinct curves. While this kind of dependence could not be properly studied
with correlation coefficients, the MIC should work in this situation.

One of the issues related to the MIC is that this method is very computationally
intensive |7, p. 2|. If there is much data, as there often is in the situations where
the MIC is needed, finding the suitable grid G is time-consuming and requires a lot
of computation power. One difficulty is calculating the logarithms of proportions
required for I(X,Y) [47, p. 1503]. Recently, there have been developed a few dif-
ferent algorithms that should work more efficiently for this purpose, see for instance
[7, 12, 55], but they give slightly different values for the MIC [7, Table 1, p. 3; Fig.
2, p. 4 & Fig. 3, p. 5] and it is not clear which of these algorithms is the most
trustworthy.

Note also that while the value of the MIC should ideally be 0 for independent
variables X and Y because mutual information has this property, this does not
always work in the reality. Namely, the MIC locates very effectively even the slightest
shapes in the data set that could be interpreted as dependence also in the case where
there is actually no association between variables. In the numerical results presented
by Reshef et al., the value of the MIC for independent random variables was 0.18
while the correlation coefficients and mutual information had all absolute values of
0.03 or less, see [39, Fig. 2.A, p. 1519|. Because of this, one cannot draw direct
conclusions that there is dependence between the variables even if the value of the
MIC would be, for instance, on the interval from 0.10 to 0.30 or so.

Furthermore, the value of the MIC decreases quickly when the amount of sta-
tistical noise increases. In [43|, N. Simon and R. Tibshirani criticize the original
article introducing the MIC for this very reason. According to their computer sim-
ulations, even Pearson’s correlation coefficient is a more powerful measure for linear
dependence when there is enough noise [43, pp. 1 & 3|. Instead of MIC, Simon and
Tibshirani suggested one alternative approach called distance correlation [43, p. 1],
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which was introduced in 2007 by G. J. Székely et al. [48, Def. 3, p. 2773] but is
considerably less studied than mutual information.

However, in a later article [40] in 2013 by Reshef et al., it is pointed out that,
while the MIC has low power for detecting weak relationships, it is more equitable
than the distance correlation [40, pp. 9-11]. Tt is important to keep in mind that
all these distinct measures of dependence were created for different purposes, so the
differences in their behavior are quite expected and do not necessarily mean that one
measure would be worse than the others. As mentioned in [40, p. 11|, the MIC is a
well-suited measure of dependence for situations where we need to compare different
relationships and find the strongest one.

Still, while equitability of the MIC would be a preferable property when consid-
ering the scientific significance of this quantity, the justification used to prove that
the MIC fulfills the criterion of this property is questionable. In the original article
[39] by Reshef et al., no mathematical proofs are provided and the analysis is mostly
done on simulated data. In fact, in the article [28| from 2014 by J. B. Kinney and
G. S. Atwal, it is mathematically proven that no non-trivial measure of dependence
can satisfy the definition of equitability (2.19) introduced in 2011 by Reshef et al.
and the MIC does not even share the self-equitability property of mutual informa-
tion. However, in yet another article [41] in 2016 by Reshef et al., the mathematical
background of the MIC is explained further and the theoretical properties of MIC
are defined in more detail.

There is also one open question related to the MIC about the definition of the
MIC between two variables X and Y conditional on some third variable Z. Accord-
ing to T. Speed [47, p. 1503], the definition of the MIC should be extended into
the form MIC(X,Y|Z) to study this case. While formulating the needed expression
might be a very straight-forward task, it has not been studied yet how fixing the
value of Z affects the ability of the MIC to recognize the dependence between the
conditional variables X and Y.

Thus, the MIC is a relatively new non-parametric way to measure dependence
between two variables. The values of the MIC might be potentially used to compare
the noisiness of distinct relationships, but there is debate in the scientific commu-
nity about this and also the power of the MIC is known to be low for noisy data.
Nonetheless, since the MIC is able to recognize relationships of any type, it might
have an important role in several different scientific domains in the future.
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3 Simulations with R

In this section, we will study different measures of dependence through simula-
tions written in the programming language R. First, we introduce the functions and
packages needed to compute these coefficients and then we build models for several
types of relationships between two variables. Finally, we inspect how the values of
the measures of dependence change when the amount of statistical noise and the
number of observations varies in our models.

3.1 Methods for computation

In each simulation, we compute the values of seven different measures of depen-
dence. These quantities include Pearson’s correlation coefficient r defined as in
(2.2), Spearman’s correlation coefficient r, (2.3), Kendall’s correlation coefficient 7
(2.4), the maximal correlation coefficient ppma.x (2.5), mutual information (2.8) and
the maximal information coefficient (2.17). Because the value of the mutual infor-
mation is not directly comparable to the other coefficients, we also calculate the
information coefficient of correlation r; defined in (2.12).

When writing the code in R, the three correlation coefficients r, ry and 7 can
be all computed between two vectors x and y with the same base function called
cor. We need to just choose correct value of the argument method from the options
"vearson”, "spearman” and "kendall”. If the method is not otherwise specified, the
function returns Pearson’s correlation coefficient by default.

For the maximal correlation coefficient py.x, we need the function ace from the R-
package acepack. Namely, by first transforming the vectors x and y with the function
ace and then using the aforementioned function cor to compute Pearson’s coefficient
from the output of ace, we will attain the coefficient py.x of the original vectors x
and y. The idea behind this function ace is that it uses the alternative conditional
expectations algorithm introduced in 1985 L. Breiman and J. H. Friedman [6] to
find the suitable transformation needed to maximize the amount of variation in y
explained by x [46, p. 2].

The value of the mutual information between two vectors x and y can be com-
puted by using two different functions from the R-package infotheo. If we create
a dataframe out of the vectors x and y, we can namely use the function discretize
to discretize the values in this dataframe with equal width binning algorithm and
then compute the mutual information with the function mutinformation for the
discretized data in natural units [37, p. 9]. The information coefficient of correla-
tion 71 is then computed by applying the formula (2.12) for the mutual information
obtained with this method.

Note that the aforementioned functions only give an estimate of the ground
truth mutual information. To obtain the exact value, we would need to know the
distributions of the random variables X and Y about which our data is collected
and compute the mutual information directly from its definition (2.8). The function
discretize divides data of n observations into /n bins by default [37, p. 4] and,
because of this discretization, the returned value of the mutual information is that
of the naive estimate (2.13) in these bins. Similarly, the value of r; might be slightly
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inaccurate, too.

Finally, the value of the MIC is computed with the function mine from the R-
package minerva. This function is the R-version of the older C++, Python and
MATLAB functions that are based on the original introduction of the MIC in the
article [39] from 2011 by Reshef et al. [20, p. 10]. For two vectors = and y, mine
computes the MIC from the expression (2.17) where the product n, x n, of the
number of bins on the axes is limited by the function [20, p. 9]

B(n) = méx{na,él}, ?f a € (0,1],
min{n,a}, if «a>4.

Here, the parameter « is either determined by an input parameter from the set
(0,1] U {4,5,6,...} or, if no value is specified by the user, « = 0.6 by default. We
use this default value in our simulations so that B(n) = n%% as suggested in [39,
p. 1519]. The function mine returns a list of five statistics related to maximal
information-based non-parametric exploration and the first coefficient in this list is
the MIC, named also as MIC in the output |20, p. 11].

Out of the three additional packages needed, acepack was published in 2016 by
P. Spector et al. [46], infotheo in 2009 by P. E. Meyer [37] and minerva in 2019 by
M. Filosi et al. [20]. Each of these three packages should work on the R-version 3.3.0
released on May 3rd, 2016, or newer. In this thesis, all the R-codes were written in
RStudio with the R-version 3.4.3, by using the version 1.4.1 of acepack, the version
1.2.0 of infotheo, and the version 1.5.8 of minerva. More details out of these packages
and their functions can be found in [46, 37, 20|, respectively.

The different measures of dependence could also be studied with several program-
ming languages other than R. The reason why we use R here is that it is simple and
works well when generating data from simulations. Because the R-function used
for computation of the MIC is very recent, it is also interesting to see how well it
performs. Potential issues with using R here are that the returned values for the
measures of dependence other than the three correlation coefficients are unlikely to
be fully accurate. However, even if there are small differences between the real values
of these quantities and their values when computed with the R-functions introduced
above, it does not hinder us because our main aim here is provide an overview of
the behavior of these coefficients, not find their fully exact values.

3.2 Models

To study the behavior of different measures of dependence, we simulate data sets of
n observations (x;, y;) according to the following nine models. We build these models
here so that n = 1000 observations of this model fit very often inside the square
(—=1,1) x (—=1,1) because, in this way, they are more clearly comparable with each
other and their noise levels can be adjusted similarly. To illustrate the structure of
dependence in the models, Figure 7 contains a scatter plot for a simulation of 1000
observations without any noise from each model.

First, we consider the case of no dependence, where the observations are gener-
ated from the model

(3.1) 2 ~ N(0,0.1), y; ~N(0,01), i=1,..n
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Thus, in other words, our data contains n observations from two independent random
variables X and Y following the normal distribution N(0,0.1). See for the scatter
plot of one simulation of this model with n = 1000 observations in Figure 7a. Ideally,
all the coefficients measuring dependence should have values of 0 for data of this
model because X L Y here. Furthermore, note that to generate observations from
the normal distribution with variance 0.1, one must choose the value V0.1 for the
third input parameter of the R-function rnorm because it is the standard deviation
of this distribution.

Next, we consider the case of linear dependence plotted in Figure 7b. Our model
is the linear model

(3.2) z; ~N(0,0.1), yi=x+e, €~N(0,0%), i=1,..,n,

where the amount of noise is determined by varying the value of the standard de-
viation ¢ > 0. If ¢ = 0, then there is no statistical noise and the values of all our
coefficients except the mutual information should be 1 in this case.

Our third type of dependence is the cubic dependence

(3.3) z; ~ N(0,0.1), y;=a}+ %xl +e, €~N(0,0%), i=1,..n.
Because this dependence is monotonic but non-linear, Pearson’s correlation coeffi-
cient r might not properly recognize it but all the other coefficients should. See
Figure 7c for the scatter plot of this model.

The fourth case considered is the quadratic or parabolic dependence of Figure
7d. The model used is now

(3.4) 7, ~N(0,01), yi=3x7—-1+¢, e~N(0,0%), i=1,..,n.

Even though this is a very simple type of dependence, it is non-monotonic. Since
the shape of the generated data should be quite symmetric, the values of correlation
coefficients r, ry, and 7 are likely to be around 0. Because these three coefficients
are designed for monotonic dependence, their values do not give any useful infor-
mation about this dependence or the following other five non-monotonic types of
dependence. However, if there is little to no noise in this model, then the values of
the maximal correlation pp.y, the information coefficient of correlation r; and the
MIC should be close to 1.

Our final dependence that can be described with a single-variable function is the
sinusoidal dependence, like in Figure 7e. The model here is

(3.5) z; ~ N(0,0.1), w =sin(9z;) +¢, € ~N(0,0%), i=1,..,n.

Note that we use here the coefficient 9 inside the sine function to ensure that there
are more than one sinusoid in the final data. All our quantities other than the first
three correlation coefficients should technically recognize this type of dependence
but, according to the simulations summarized in 39, Fig. 2.A, p. 1519], the MIC
might give the greatest values.
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The sixth type of dependence is a cross-shaped dependence between the variables
X and Y, see Figure 7f. The observations are now generated according to the model

k ~ Bin(n,0.5),
2

(3.6) mdeQ%% yi ~ N(0,0.1) for i=0,1,..,k
0_2
x; ~ N(0,0.1), yin(O,Z) for i=k+1,..,n.

Here, we first choose a value from the binomial distribution to determine how many
of our observations (z;,7;) are on the vertical line segment of the cross and then
generate observations. Note that the noise is produced by the normal distribution
with variance of 62/4 because changes in the parameter o cause otherwise too much
noise. Still, we only consider values of o clearly under 21/0.1 because this model
only produces a data of independent observations like the model (3.1) for ¢ = 21/0.1.
Nonetheless, considering this model is interesting because it is a very simple example
of symmetric but non-functional dependence.

Next, we create a circular data like in Figure 7g. In each trial, we choose n
observations (z;,y;) from the model

(3.7)
k'i ~ N(O, 1), ll ~ N(170'2), xTr; = —ll COS(k’i), Yi = —ll sin(ki), = 1, ., n,

where the arguments of the trigonometric functions are radians. In other words,
we choose points (x;,y;) by using one variable K ~ N(0, 1) determining their angle
magnitudes from the negative x-axis in radians and another variable L ~ N(1,0?)
to choose their distance from the origin. If o = 0, each observation is a point from
the unit circle and, by increasing o, the amount of noise in this data grows.

One of the properties of the newer measures of dependence is that they should
recognize dependence following several distinct functions, so let us test this, too,
with one simulation. We use the model

ki~ N(0,1), &~ N(0,6%), i=1,..,n;
2
(3.8) Ti = §k'z -1, yi=xi+e if k>0,
r;=—(—k)"+0.1, yi= (-0 +1+¢ if k<0,

to generate the needed observations (x;,y;). Consequently, our data is combination
of simple linear dependence y = x and the polynomial dependence y = (z—0.1)1+1,
see Figure 7h.

Our final type of dependency is checkerboard-shaped, which is depicted in Figure
7i. The model is as follows:

(3.9)

() ()~ (()-(5 ) | - st =0 ).
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Here, | 2] denotes the floor function that gives the greatest integer less than or equal
to the input z. Consequently, we generate paired values (kg, k1) of the random vari-
ables Ky ~ N(0,0.1) and K; ~ N(0,0.1), accept these values if the difference
|3ko| — |3k1] is an even number, and then turn the accepted pairs into the obser-
vations (z;,y;) by just adding some noise from N(0,02/9). If there is no noise, the
observations fit inside a few different tiles with side length of 1/3.

3.3 Simulations without noise

Now, we compute the values of Pearson’s, Spearman’s and Kendall’s correlation
coefficients, the maximal correlation coefficient pp.., the mutual information, the
informal coefficient of correlation r; and the MIC for the data sets simulated from
the preceding models (3.1)-(3.9). In order to find realistic values for our quantities
and avoid possible bias, we calculate the mean values out of 1000 data sets with
n = 1000 observations generated from each model. Furthermore, we also set o = 0
here so there is no noise in statistical noise and the data sets are as in Figure 7.

Model r Ts T Pmax | MI 1 MIC
No dependence | -7.2-10~% | -6.7-10~* | -4.6-10~* | 0.079 | 0.033 | 0.250 | 0.133
Linear 1.000 1.000 1.000 1.000 | 2.197 | 0.994 | 1.000
Cubic 0.934 1.000 1.000 0.998 | 2.197 | 0.994 | 1.000
Quadratic -1.9.1073 | -2.1-1073 | -2.1-1073 | 1.000 | 1.404 | 0.969 | 1.000
Sinusoidal 0.070 0.162 0.128 0.990 | 0.991 | 0.928 | 1.000
Cross -8.4-107% | -1.4-107° | -1.1-107° | 0.928 | 0.321 | 0.688 | 0.579
Circular -9.1-107% | 6.6-:107* | 8.0-10~* | 0.995 | 1.252 | 0.958 | 0.996
Two functions | 0.203 0.297 0.356 0.950 | 1.161 | 0.949 | 0.760
Checkerboard | 0.058 0.227 0.187 0.877 | 0.403 | 0.744 | 0.573

Table 1: The mean values of Pearson’s, Spearman’s and Kendall’s correlation coef-
ficients (r, rs, 7), the maximal correlation coefficient ppax, the mutual information
(MI), the informal coefficient of correlation r; and the MIC in 1000 simulations
generated from the models (3.1)-(3.9), when n = 1000 and o = 0.

From Table 1, we see that these coefficients work in a quite expected way in these
kinds of simulations. The three correlation coefficients r, r, and 7 all recognize the
linear dependence of the model (3.2), but only the two latter coefficients give the
value 1 for the non-linear but monotonic cubic dependence of the model (3.3). This
result is commonly used to explain the differences between these coefficients: For
instance, in [52, Fig. 1, p. 3869|, it is also noted that the value of Spearman’s
correlation coefficient r, is 1 but Pearson’s coefficient r is less than 0.9 for data
resembling the noiseless cubic dependence of Figure 7c. Still, Pearson’s coefficient
has quite a large value because there is clearly positive correlation in the cubic data.

We also notice that the first three correlation coefficients are on average closer
to 0 than the other quantities considered for the model (3.1) where there is no
dependence. However, it must be taken into account here that the mean values of
such coefficients that can obtain values both above and below 0 are not directly
comparable to other measures of dependence varying only on the interval [0,1]. The
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means of the absolute values of the coefficients r, rs and 7 for the model (3.1) are
0.025, 0.026 and 0.017, respectively, and these values are slightly larger but still
closer to 0 than the means of the other coefficients in Table 1.

The mean values of the MIC are 1 for the linear, cubic, quadratic and sinusoidal
types of dependence of the models (3.2)-(3.5), which supports the idea that the
MIC is general in the way that it captures relationships regardless of their exact
function or type. It must be noted here that this result might be partially due to
the computational methods, because the function mine used to calculate the MIC
seem to return quite often the exact value of 1 and give values with only two decimals
or less. Furthermore, even though the generality property described in [39, p. 1518|
should work also for non-functional relationships, our results do not support this:
The mean value of the MIC is less than 0.6 for the cross dependence of the model
(3.6), even though it is a very clear and simple type of dependence. The mean of
the MIC is also less than 0.6 for the checkerboard dependence of the model (3.9)
and less than 0.8 for the dependence built with two functions of the model (3.8).

The results of Table 1 also show the issues in the interpretation of mutual infor-
mation. We notice that the means of the mutual information are over 2 for the two
monotonic relationships but less than 1.5 in all the other cases. When transforming
these values to those of the informal coefficient of correlation 71, most of them attain
values larger than 0.9, which would be interpreted as very strong relationship if this
result were the value of some correlation coefficient. However, we also notice that,
even though the mean value of the mutual information is only slightly over 0.03 for
the model (3.1) with no dependence, the mean of 7y is 0.25, which is much greater
than the corresponding means of the correlation coefficients and the MIC.

According to these simulations, the maximal correlation coefficient works the
best if we are looking for a coefficient that recognizes dependence. Namely, the
value of pyay is relatively small in the case of no dependence, but it is still very close
to 1 in all other cases. Even when the dependence is in the shape of a cross or a
checkerboard, the maximal correlation coefficient finds it considerably better than
the rest of the quantities considered: The mean of pp,., is 0.93 for the cross model
(3.6) and 0.88 for the checkerboard model (3.9).

However, the types of dependence of Figure 7 and Table 1 are not realistic.
While they are possible in simulations, there is no relationship in the real world
that would follow some function or other theoretical model perfectly without any
statistical noise. Consequently, it is important to also study what kind of an impact
noise has on the values of the different measures of dependence in these simulations,
as we will investigate next.

3.4 Effect of noise

In this subsection, we study how the amount of statistical noise affects the values of
the different measures of dependence. Just like earlier, we mostly consider the mean
values of these different quantities in 1000 data sets simulated from our models. The
number n of observations is fixed here to 1000, too, but we vary the value of the
parameter ¢ in the models to alternate the noise levels in the data sets.

Suppose that we are interested in finding such quantity that gives the value
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1 in case of dependence without any statistical noise, then decreases with respect
to the amount of noise and has a value of 0 if there is no dependence between
variables. However, this leads to the question whether the values close to 0 should
be interpreted as independent variables or a very noisy relationship. For instance,
in 1000 simulations with n = 100 observations from the model (3.1), MIC had some
values over 0.35 even though there is no dependence and its values should therefore
be clearly over this for noisy but still recognisable relationships so that we could
draw any conclusions.

Consequently, it is useful to know how our measures of dependence decrease
compared to each other when the amount of noise grows. It can be visually checked
that the relationships of the models (3.2)-(3.6) and (3.8) are still discernible if n =
1000 and ¢ = 0.3. Thus, we study here especially how much our quantities diminish
for the interval [0, 0.3] of the parameter . Furthermore, note that we discuss here
the actual values of these measures of dependence and, unlike in [35, 41, 43|, do not
focus on their power, which means the probability of rejecting a false hypothesis in
a statistical test or, in this case, distinguishing the cases of no dependence from the
others based on the values of some specific coefficient.

We first study the case of linear dependence. We consider here the six measures of
dependence including all other coefficients of Table 1 except the mutual information
because it is not comparable to the others and the values of the informal coefficient
of correlation r; can be used to obtain the mutual information if necessary. We
compute the mean values of these six coefficients in 1000 simulations generated
from the model (3.2) with n = 1000 for each value of o = 0,0.03,...,0.3 and draw
Figure 8 using this data.

From Figure 8, we see that the mean values of each coefficient decrease as the
amount of noise increases. Interestingly, we notice that for all values of o, the
three correlation coefficients fulfill the inequality » > r, > 7. While Pearson’s and
Spearman’s coefficients are quite close to each other, the distance from them to
Kendall’s coefficient 7 increases considerably as the parameter o grows.

Furthermore, we also see that the means of Pearson’s correlation coefficient and
the maximal correlation coefficient are nearly the same, as even their values cannot
be properly distinguished from each other in Figure 8. However, this is not very
surprising when we recall how the value of py., is computed here: We transform the
vectors x and y so that the proportion of y explained by x is at maximum and then
calculate Pearson’s coefficient from the transformed vectors. Since the proportion
of y accounted by x is already at greatest in the linear case, no transformation is
necessary and these two coefficients have equivalent values.

As we see from Figure 8, the values of the MIC decrease very quickly compared
to the other quantities. This observation agrees with the earlier simulation results
presented by N. Simon and R. Tibshirani in [43, p. 3|, and by A. Luedtke and L.
Tran in [35, Fig. 5, p. 14|: Even Pearson’s correlation coefficient detects linear
dependence better than the MIC if there is at least some statistical noise in the
simulation. In fact, if the value of o exceeds 0.1 or so, the means of the MIC are
lower than those of all the other coefficients considered.

Let us now consider the impact of noise on the cubic model (3.3). Figure 9
contains the mean values of the six different measures of dependence out of 1000
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Figure 8: The mean values of Pearson’s, Spearman’s and Kendall’s correlation co-
efficients (r, 75, 7), the maximal correlation coefficient pyay, the informal coefficient

of correlation r; and the MIC in 1000 simulations generated from the linear model
(3.2) for n = 1000 and o = 0,0.03, ...,0.3.

simulations with n = 1000 observations from this model for ¢ = 0,0.03,...,0.3. In
other words, Figure 9 is plotted in the exactly same way for the cubic dependence
as Figure 9 is for the linear dependence.

When o = 0, we see from Figure 9 that the mean values of each coefficient are
close to 1 but Pearson’s correlation coefficient is noticeably lower than the others.
This explanation for this is the same one as mentioned earlier when studying the
values of Table 1: Pearson’s coefficient does not recognize the cubic dependence as
well as some other coefficients do because of the non-linearity but, since this function
y = 23+ x/3 used in the model (3.3) is strictly increasing, Pearson’s coefficient still
detects strong positive correlation.

As the value of o grows, we see that there is clearly more variation between the
means of the different coefficient in the case of the cubic dependence than for the
linear data and, for instance, the values of Pearson’s correlation coefficient and the
maximal correlation coefficient are not so close to each other in Figure 9. In fact,
for 0 > 0.1, the mean values of the six coefficients fulfill clearly the inequality

MIC <7 <71y <711 <7 < Priax-

It is also noteworthy that the mean values of the MIC and Kendall’s coefficient 7
are considerably lower than the others when 0.03 < o < 0.3. Recall that Kendall’s
correlation coefficient should be less susceptible to the potential errors because of
the absolute distances in its definition (2.4) [52, p. 3869], because this might also
explain why it has lower values than other correlation coefficients.
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Figure 9: The mean values of Pearson’s, Spearman’s and Kendall’s correlation co-
efficients (r, 75, 7), the maximal correlation coefficient pya.y, the informal coefficient
of correlation r; and the MIC in 1000 simulations generated from the cubic model
(3.3) for n = 1000 and o = 0,0.03, ...,0.3.

The interesting aspect in our simulation is that even though Pearson’s coefficient
is not designed for non-linear dependence, it has values larger than the MIC that
should work for nearly every type of dependence. This result is not new: Also in
Simon and Tibshirani’s simulations about cubic dependence, Pearson’s coeflicient r
works better than the MIC when there is enough noise [43, p. 3]. According to our
simulation here, the maximal correlation coefficient p,.x seems to be here the best
choice if we are looking for a coefficient that detects this kind of dependence and
still gives relatively good results even when the amount of noise grows.

Next, let us yet study the case of the two-function dependence that follows the
model (3.8). Namely, as can be seen from Table 1, at least the maximal corre-
lation coefficient pp., and the information coefficient of correlation r; detect this
dependence very well and, since it is not symmetric, the values of the first three
correlation coefficients clearly differ from 0. Figure 10 contains the means of the six
measures of dependence out of 1000 simulations for the model (3.8) with n = 1000
and 0 = 0,0.03,...,0.3.

From Figure 10, we can very easily notice which of our quantities can find non-
functional dependence: The mean values of three correlation coefficients r, ry and
7 are all less than 0.37, while the means of the three other coefficients stay mostly
over this. However, the means of the MIC are still considerably less than those of
Pmax and 71, and they actually decrease from 0.76 to less than 0.4. Furthermore,
Pearson’s and Spearman’s correlation coefficients stay relatively the same while the
mean values of all the other coefficients lessen considerably.
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Figure 10: The mean values of Pearson’s, Spearman’s and Kendall’s correlation co-
efficients (r, rs, 7), the maximal correlation coefficient pyay, the informal coefficient
of correlation r; and the MIC in 1000 simulations generated from the two-function
model (3.8) for n = 1000 and ¢ = 0,0.03, ...,0.3.

We also notice that, in Figures 10, the means of the information coefficient of
correlation ry are greater than those of ppa.x here, unlike in Figures 8 and 9. Since
the dependence cannot be properly described with just one function, it makes more
sense that the coefficient r; recognizes it better. Recall also that the value of pyax is
computed by transforming the data points to maximize their correlation but, when
the data follows two functions, this maximization cannot be properly done with just
one transformation. However, the difference between the means of the MIC and
Pmax 18 quite unexpected because, according to [39, Fig. 4, p. 1521], the MIC should
detect two-function relationships well.

Next, let us yet consider the sinusoidal dependence of the model (3.5). This is
interesting because the sinusoidal dependence is clearly non-monotonic unlike the
linear and cubic dependence and, according to Simon and Tibshirani’s simulations
in [43, p. 3|, the MIC should recognize it quite well, at least if the period of the
sine function used is small enough. Since the first three correlation coefficients do
not work for non-monotonic relationships and would just be close to 0, we form
here a smaller table with only the means of the three other quantities for ¢ =
0,0.03,0.1,0.15,0.3,0.5, 1.

From Table 2, we see that the mean values of the maximal correlation coefficient
Pmax €xceed those of the MIC around ¢ = 0.1 and the means of the informal co-
efficient of correlation r; surpasses MIC, too, when o is around 0.3. The maximal
correlation coefficient has clearly the greatest mean values here if not counting the
first few means of MIC. Consequently, most of our tests so far have suggested that
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o Pmax | T1 MIC
0 0.990 | 0.929 | 1.000
0.03 | 0.989 | 0.925 | 1.000
0.1 ]0.982 | 0.908 | 0.988
0.15 ] 0.974 | 0.892 | 0.956
0.3 ]0.928 | 0.838 | 0.835
0.5 ]0.825 | 0.753 | 0.626
1 0.549 | 0.562 | 0.317

Table 2: The mean values of the maximal correlation coefficient pp.., the informal
coefficient of correlation r; and the MIC in 1000 simulations generated from the
sinusoidal model (3.5), when n = 1000 and o varies.

studying the value of ppax would be the most effective way to determine if there is
dependence in the data or not.

One curious observation from Table 2 is that the impact of the amount of noise
has on the different coefficients is considerably less than it is for the previously
considered dependence types. Namely, the means of py.x, 71 and the MIC decrease
less with respect to o for the sinusoidal dependence (3.5) than for the models (3.2),
(3.3) and (3.8) and, for instance, the MIC is over 0.8 for ¢ = 0.3 in Table 2, unlike
in Figures 8-10. This is easy to explain: If we have a model

(3.10) y=f(z;)+e, €~ N(O,O’Q), 1=1,...,n,

the amount of noise on the plot (x,y) depends on the slope of the function f because
the steeper the slope around the point x; is, the closer the point y; = f(x;) + € is
to some other point on the function f. Since the sine function with short period
has several nearly vertical parts, see Figure Te, increasing the parameter o does not
affect the noisiness of this model so much.

Consequently, to study the values of our measures of dependence in equally noisy
data sets generated from distinct models, we cannot just consider the value of o. In
order to research the equitability of the MIC, recall the definition of the coefficient of
determination R? from (2.18). Since its value can be easily computed from Pearson’s
correlation coefficient found with the R-function cor, we can compare the connection
between the values of the MIC against the noise levels of such models that can be
written as in (3.10) for some function f.

Figure 11 depicts the values of the MIC against the statistics £? in 1000 different
simulations of the linear, cubic, quadratic and sinusoidal models (3.2)-(3.5) with
1000 observations. Note that the level of noise is decreasing with respect to R2,
so the values of the MIC lessen here as the amount of noise increases, just like in
Figures 8-10 and Table 2. Alternatively, we could also have plotted the values of
the MIC against the quantity 1 — R? that directly describes the amount of noise,
but the information given by this kind of a figure would have been the same as that
of Figure 11.

As we can see from Figure 11, the values of the MIC in the linear model are
less than those in the sinusoidal model but higher than in the values of the cubic
and quadratic models, especially if R > 0.4. Because of these differences, Figure
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Figure 11: The values of the MIC and R? in 1000 simulations of the linear, cubic,
quadratic and sinusoidal models (3.2)-(3.5) with n = 1000.

11 differs slightly from the earlier results by Reshef et al. in [39, Fig. 2.B, p. 1519,
but it must be noted that the computational method used to find the MIC here is
not necessarily fully exact. Furthermore, the values of the MIC in both the cubic
and quadratic model stay close to each other for all the values of R?, which supports
the assumption that the MIC has some kind of an equitability property against the
noise levels measured with the statistics R2.

To conclude, the maximal correlation coefficient pn.. is quite a good tool for
detecting different types of dependence and its values stay relatively high even when
the amount of noise grows. Also, the information coefficient of correlation r; works
for this purpose and, in particular, it might be even a better choice than pp,.y if the
dependence studied is non-functional. The MIC suits for situations where there is
very little noise in data and, while it has some sort of equitability property, it is not
so clear in these R-simulations than in the existing literature.

3.5 Number of observations

Finally, let us yet briefly consider how the number of observations affects the values
of measures of dependence. Here, we focus on the case of the cubic dependence of
the model (3.3), where the value of the parameter of o is fixed to 0.1. Figure 12
contains one scatter plot of n = 300 observations generated from this model and
Table 3 the mean values of seven measures of dependence in 1000 simulations with
varying number of observations.
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Figure 12: Scatter plot of one simulation from the cubic model (3.3), when o = 0.1
and n = 300.

Interestingly, we notice that the mean values of the first four coefficients r, r,,
7 and ppax are at highest when n = 30 and only decrease slightly when the number
of observations grows from 30 to 3000. Similarly, the MIC is at highest, too, when
n = 30 but there are more variation in its mean values. The mean of the mutual
information is 0 for n = 5 and grows monotonically with respect to n, and so does
the informal coefficient of correlation r;. Furthermore, the order between different
coefficients stays mostly the same for each value of n.

To explain these observations, recall firstly the computational methods used. For
instance, since the MIC is computed in such grid whose dimensions depend on the
value of n with the function B(n), it is quite expected that changing n affects this
coefficient. Since we know from the earlier simulations that the value of the MIC
drops quickly when the amount of noise increases, this could potentially explain
the change in the connection between the MIC and n. Namely, if there are less
observations, the noise is not so clear and can be understood as such variation that
is directly explained with the model.

Furthermore, our method for computing the mutual information does not work
properly if there are just 5 observations because the R-function discretize returns
the data in just one bin. To change this, we should choose some larger number for
the input parameter nbins, see [37, p. 4]. The fact that the values of the mutual
information grow when with respect to n suggest that they also increase with respect
to the number of bins used in discretization. Thus, it might be possible that the
values of both the mutual information and the coefficient r; are too low in the
simulations studied earlier. However, instead of studying the mutual information
further with R, we next continue to such methods that should return even more
exact values for this quantity.
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n r T T Pmax | MI 1 MIC
5 0.793 | 0.718 | 0.630 | 0.809 | 0 0 0.702
10 0.822 | 0.748 | 0.618 | 0.896 | 0.229 | 0.514 | 0.592
30 0.847 | 0.792 | 0.628 | 0.924 | 0.359 | 0.701 | 0.621
100 | 0.846 | 0.801 | 0.625 | 0.924 | 0.419 | 0.749 | 0.602
300 | 0.846 | 0.804 | 0.625 | 0.919 | 0.509 | 0.798 | 0.565
500 | 0.846 | 0.806 | 0.626 | 0.917 | 0.535 | 0.810 | 0.539
700 | 0.846 | 0.806 | 0.626 | 0.916 | 0.558 | 0.819 | 0.528
1000 | 0.846 | 0.807 | 0.626 | 0.916 | 0.577 | 0.827 | 0.514
3000 | 0.846 | 0.807 | 0.626 | 0.916 | 0.635 | 0.848 | 0.477

Table 3: The mean values of Pearson’s, Spearman’s and Kendall’s correlation coef-
ficients (r, rs, 7), the maximal correlation coefficient ppax, the mutual information
(MI), the informal coefficient of correlation r; and the MIC in 1000 simulations
generated from the cubic model (3.3), when ¢ = 0.1 and n varies.
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4 Neural estimation

In this section, we first summarize the theory and history of neural networks and
also explain a few problems related to their use. Then we introduce the MINE
algorithm, which can be used to find the mutual information from a large data set
with the aforementioned neural networks. At the end, we try out this algorithm and
run a few simulations to study its behavior like we did for the different measures of
dependence with R.

4.1 Theory

A neural network is a highly parametrized model that learns through examples and
updates its own parameters accordingly. The idea behind it is vaguely inspired by
the human brain: The structure of a neural network can be seen as an artificial
presentation of the real, biological neural circuits found in our brains. The concept
of neural networks is a very current topic in the study of artificial intelligence, data
science and predictive modelling. [16, p. 351]

The history of neural networks began already in the 1940s. Namely, the first
model of neural networks was introduced in 1943 by the neurophysiologist W. Mc-
Culloch and the mathematician W. Pitts, who used relatively simple logic functions
following fixed threshold rules to illustrate how the real neutrons work [36, p. 4.
While some other scientists expressed their interest in this new area of research,
there was very little significant progress during the following decades, probably due
the computational limitations of the time.

However, several factors contributed to the new interest in the study of neural
networks in the 1980s [36, p. 5]. New algorithms, more effective computers and
annual conferences organized both by the statistical and computer science commu-
nities all promoted the further development of this area of study [16, p. 352]. In
spite of this enthusiasm, the usage of neural networks did not become wide-spread
during that time. Namely, because even simple applications require neural networks
consisting out of an overwhelming number of memory units called neurons [56, p.
4], these applications could not be built yet and also the scientific interest on the
field quieted down during the mid-1990s [16, p. 352].

Nonetheless, the study of neural networks increased again after 2010s [16, p.
352]. The improved computation resources finally enabled the commercial use of the
artificial intelligence applications, such as image classification, text interpretation
and speech recognition. Since this awoke not only the interest of the scientific
communities but also increased the public attention from the media on the field,
there is more funding for the interested scientists. Finding enough data to train
neural network is less of an issue in the era of digitalization and there are more
work opportunities than ever before. Furthermore, the availability of this field has
also increased: Instead of needing a license to install expensive programs and being
required to study different programming languages, one can experiment with the
readily-built neural network programs on the open-source online platforms.

Let us now explain more carefully how a neural network actually works. Its main
principle is the process of supervised learning |16, pp. 351-352]. Suppose that we
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Figure 13: A deep neural network with input layer L, three hidden layers Lo, L3, Ly,
and output layer Ls that, by using the weights W, returns the output f(x;) for a
p-dimensional input vector z;.

have collected a data set of n observations from the values of the random variables
X and Y. In order to oversee how the network works, we need to know how well it
performs on this training set (z;,v;), i = 1,...,n. Here, assume that the components
x; and y; of the training data are either real values or vectors of real numbers.

Every neural network contains a certain number of neurons, which are connected
to each other so that they can transmit and interpret signals, see Figure 13. These
neurons are divided into three types of layers: First, there is an input layer Lq,
then some number of hidden layers Lo, ..., Ly_; and, finally, an output layer Ly [16,
p. 352]. If the neural network is composed out of more than one hidden layer or,
equivalently, N > 3 here, the network is called a deep neural network |51, p. 514].
The neurons on each layer L, k = 2, ..., N, are connected to those of the previous
layer via weights {wg)}, where £j refers to the /th neuron and the jth variable |16,

p. 352]. The model also contains the intercept term {w%)} called bias [16, p. 352]
and therefore resembles a non-linear statistical model.

Denote now the collection of all the weights in the neural network by W and let
x be some input vector given to the network. The ¢th neuron of the (k — 1)th layer

returns the output z§k> for the next layer £ = 2,..., N so that [16, (18.3) & (18.4),
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p. 355

Pk—1
k k 1 -
Zlg ) = <w€0 + § : ( j ) )

where ¢®) is some layer-specific transformation, z](-l)

= z; and p; = p. The function
g®) can be the identity function in some very simple networks, but it can also be
some more complicated non-linear transformation. The final output of the whole
network is the output of the formula above for £k = N + 1.

Clearly, the network described above could be presented with some complex
function f(z;W). To determine how well the network performs on the training
data, we use a loss function L(y, f(x;W)) that tells the difference between the real
observations y and the output values f(z; W) of the neural network. Our aim is to
find such values for the weights that the value of the loss function is at minimum

or, equivalently, solve [16, (18.8), p. 356]

(4.1) mlmmlze { Z Ly, f(xi; W) + )\J(W)} 3

where X is a tuning parameter and J(W) is some nonnegative regularization term
of the weights W. [16, pp. 353-356]

If the loss function L(y;, f(x;; W)) and the regularization term J(W) are suitably
chosen, the weights W in (4.1) can be found with differentiation. Namely, if we
compute the vector of the first partial derivatives of L(y;, f(x;; W)) with respect of
all the weights in W this gradient tells us the direction where the sum expression
in (4.1) decreases the most rapidly [18, Cor. 2, p. 78]. Since f(x;; W) is defined
as a series of compositions on the layers Ly, we can consider the gradients of the
weights W) of every layer separately and use the following gradient descent method
for each k =1,..., N — 1 [16, p. 358]: Choose some initial weights and update them
as in |16, (18.16), p. 358]

DJ(W)

) ) (b)
WO W —a(VW + AT

where [16, (18.17), p. 358]

vk _ 1 zn: OL(yi, f(z; W))
n oW (k)
and a € (0,1] is the learning rate, until the weights W®*) giving the minimum in
(4.1) are found.

However, using the method introduced above can be computationally laborious
if the number n of observations in the training data (x;,y;) is large. In this case,
it is more effective to choose a batch size smaller than n and use the training data
for the gradient steps separately in batches of this size [16, pp. 358-359]. When
the number of observations processed in these batches would be equivalent to the
original data size n if combined together, one epoch is completed |5, p. 6]. Typically,
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solving (4.1) can take hundreds or even thousands of epochs and the convergence
of the expression to be minimized is visually studied by plotting its values against
the number of epochs, see for instance [53, Fig. 1, p. 8]. The batch size, number
of epochs, learning rate and other parameters can be specified by the code when
building a neural network [22].

When studying neural networks, one must also note that there are several issues
with them. Firstly, because these models rely on supervised learning, they require
large amounts of suitably labeled data [24, p. 252]. If there is not enough training
data, overfitting might occur and it impairs the predictive accuracy [38, p. 104].
Instead of checking what happens on the hidden layers of the neural network, the
systems are often treated as a “black box”, which can also result in illogical structures
in the weights [38, p. 104]. Furthermore, there is no guarantee that the gradient
descent method finds the global minimum for (4.1), because if there is some other
local minimum that this method finds first, the network parameters will not be
updated anymore and cannot therefore locate the correct minimum.

Another issue is that the neural network can only be as good as the training data.
For instance, suppose a neural network is built to find suitable candidates for a job
by using CVs of the former applicants and information about whether they got the
job or not. If the person who originally selected the new employees was prejudiced
against certain minorities, then the neural network will become similarly biased and
use such criteria for its decisions that is irrelevant to a person’s capability to do well
in the job.

Furthermore, if the topic studied is very complex, such as the human language,
neural networks are unlikely to recognize all the subtleties without guidance from
a human |24, p. 251]. Unlike artificial networks, humans have previous experiences
that they can use to help process new information and, if they find a similar logic as
in some subject that they are already familiar with, learning is faster. The language
and many other interesting phenomena also change continuously according to the
surrounding world and it is impossible to give the neural network full data about
everything that is happening around us.

To conclude, studying neural networks is both theoretically interesting and use-
ful, but there are certain limitations that need to be taken into account. Even
though these kinds of systems become more and more common all the time, we can-
not assume that they will give us absolutely correct answers. While neural networks
can help to find possible solutions, it is important to interpret the results carefully
and check if they are logical before implementing them into practice.

4.2 MINE algorithm

In order to compute the mutual information with the R-function used earlier, one
needs to first discretize the data with a binning algorithm and then find the mu-
tual information of this discretized data. This method clearly does not give exact
results and, as we noted earlier, the values of both the mutual information and the
information coefficient of correlation might therefore have been too low in our R
simulations. However, to solve this issue, we can use the neutral networks presented
in the preceding subsection to find the ground truth mutual information.
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M. 1. Belghazi et al. first introduced the mutual information neural estimator
(MINE) algorithm in their article [2] published in 2018. This algorithm is used to
compute the mutual information between two high dimensional continuous random
variables by applying neural networks to find the value of one essentially sharp lower
bound [2, p. 1]. In fact, the MINE algorithm uses the gradient descent method
presented earlier and could be described with a similar graph as in Figure 13.

The MINE algorithm is not the only possible algorithm for finding the value of the
mutual information, but it is in our focus because its theoretical properties are well-
justified. Namely, it is strongly consistent [2, Thm 2, p. 4| and, if there are enough
observations, any desired accuracy can be achieved [2, Thm 3, p. 4]. Furthermore,
the MINE algorithm has already been studied further by several scientists, see for
instance [11, 13, 30, 45|, despite the fact that it was introduced only three years ago.

To understand the structure behind the MINE algorithm, recall the definition
of the Kuhlback-Leibler divergence (2.14), its dual presentation (2.15) and its con-
nection to mutual information (2.16). It follows from these results that the mutual
information between the random variables X and Y is

(42)  I(X;Y) = Dxu(Pxy|[Px ® Py) = Sup (Epgy (T) —log(Epyer, (1)) ,
T:Q—R

where T : 2 — R denotes all such functions that give a finite value for the expression

above, Ep, .. is the expected value taken with respect to the joint distribution of X

and Y, and Ep,gp, is the expected value taken over the product of the marginal

distribution of these variables. Define then the neural information measure |2, (10),

p. 3

lo(X;Y) = sup (Epyy (Ty) —log(Epcer, (7)) ,
€
where the supremum is taken all functions 7Ty : X x )Y — R parametrized by a deep
neural network, X and ) are the value sets of X and Y, and © is the set of the
parameters 6 of the neural network considered. Thus, by the equality (4.2), this is
a lower bound for the mutual information I(X;Y) 2, (9), p. 3|;

I(X;Y) > Ie(X;Y).

The MINE algorithm estimates this lower bound: Given n observations of the
continuous random variables X and Y, it returns the mutual information neural

estimator (MINE) |2, (11), p. 3|

(4.3) 10X V), = sup (Ep (1)) — 108(E pi e (7))

as an output. Here, P)((") denotes the empirical distribution of the variable X, which
can be estimated from the data. In order to estimate the distributions needed
for (4.3), the number n of observations naturally needs to be quite large but it is
noteworthy that the MINE algorithm is built for this exact purpose of finding the
mutual information from large data sets.

The attached Algorithm 1 contains the pseudocode from |2, Alg. 1, p. 3], which
tells us in more detail how the MINE algorithm actually finds the value of MINE.
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Algorithm 1 MINE

1: 0 < initialize network parameters
2: Repeat
3:  Draw a batch of b samples from the joint distribution:
(W, y M), ., (@®),y®)) ~ Pxy
Draw n samples from the marginal distribution of Y: v, ..., u(™ ~ Py
5. Evaluate the lower bound: o
V(0) = § i To(x, y) — log( S0, ™)
6:  Evaluate bias corrected gradients: G(6) < VoV (6)
7. Update the network parameters: 6 < 6 + G(6)
8: Until convergence of the lower bound V' (6)

As mentioned before, the idea of this algorithm is based on the gradient descent
method, which is used to find the supremum in the expression (4.3) of MINE. Note
also that the MINE algorithm uses batches of size b instead of the whole data in
order to compute this quantity effectively. While the gradient computed from these
batches would be biased when compared to the gradient obtained by using the
original data of size n, the MINE algorithm takes this into account by using bias
corrected gradients |2, p. 3.

There are a few possibilities for the implementation of the MINE algorithm. In
this work, we use the library PyTorch, which is a free open-source software that
allows the user build neural networks with Python or C++. While neural networks
could be built with the R-package neuralnet [21], there are several ready-written
PyTorch codes for the MINE algorithm that can be downloaded from the software
development and hosting site GitHub. For instance, in 2018, M. Yamada released
a code [54] for the PyTorch implementation of the MINE algorithm based on the
original article [2].

While the MINE algorithm is easy to understand, there are some issues with
the estimator MINE, which is given as an output of this algorithm. Namely, even
though MINE has some good theoretical qualities such as high accuracy, it is based
on the assumption that there is an unlimited supply of data to avoid overfitting |30,
p. 1]. If this not the case, some other estimator should be used instead.

In their work [45] from 2019, J. Song and S. Ermon proposed a set of three
self-consistency tests for the estimators (X;Y) of the mutual information between
variables X and Y. According to them, the value of I (X;Y) should be 0 if X
and Y are independent, I(X;Y) ~ I([X, f(X)];[Y, g(Y)]) for all functions f, g such
that I(X;Y) > I(f(X);g(Y)), and I([Xy, X,];[V1,Ya]) ~ 2I(X:Y) if X1, X, are
independent random variables with the same distribution as X and Y7, Y5 defined
similarly for Y [45, pp. 5-6]. Here, [,] denotes concatenation. However, neither the
estimator MINE defined (4.3) nor any other known estimator has all these three
properties [45, p. 6]. Furthermore, according to Song and Ermon, the values of the
MINE can also sometimes exhibit variance that grows exponentially with respect to
the real value of the mutual information [45, p. 5].

Thus, the MINE algorithm can be used to compute the value of the mutual
information with neural networks. This method should be effective and it can be
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Figure 14: The outputs of the MINE algorithm on 1000 epochs for data simulated
from the linear model (3.2) with n = 30000 and o = 0.3, and the mean value of the
last hundred outputs (as a blue line).

implemented from already existing codes by using open-source software. Still, even
though the estimator behind the MINE algorithm is strongly consistent and accurate
if there are enough data, it is only intended for large data sets.

4.3 Results of simulations

Next, we investigate mutual information by computing its values through neural
estimation in a few different simulations. We use a slightly modified version of
the PyTorch implementation [54] of the MINE algorithm and run this code in the
browser-based platform Colaboratory developed by Google. Our simulated data
sets are created according to the models (3.1)-(3.5), and we vary the number n of
observations and the value of the noise parameter o to see their effect on the MINE.

Firstly, we must find out how many epochs of data are needed to process until
the value of the MINE given as an output by the MINE algorithm converges. For
this, we consider data of n = 30000 observations generated from the linear model
(3.2) with 0 = 0.3. Figure 14 depicts the output of the MINE algorithm for 1000
epochs together with the mean value of the last hundred outputs.

As can be seen from Figure 14, 1000 epochs is clearly enough for the convergence.
In fact, the convergence occurs already by the 400th or so epochs, and after that
the outputs vary around the mean of the final hundred values. Consequently, if we
suppose that the converged value of the estimator MINE is the same as this mean
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n MINE

100 0.3446
1000 0.3571
3000 0.3683

10000 | 0.3666
30000 | 0.3668
100000 | 0.3704

Table 4: The value of the MINE computed as a mean value of the last hundred
outputs out of 1000 epochs, when the data is generated from the linear model (3.2)
with ¢ = 0.3 and the number n of observations varies.

value, the MINE algorithm tells us that the value of the mutual information for this
data set is 0.367.

With a few tests run on the MINE algorithm, it can be seen that the number
n of observations does not affect the number of epochs needed to the convergence
of MINE, at least in the case where the data is generated from the linear model
(3.2) with 0 = 0.3. Namely, the convergence happens around 400 or so epochs,
regardless of whether n is 100 or 100000. However, there is much more variation in
the outputs of the MINE algorithm for small values of n: As we can see from Figure
14, the MINE is quite close to the marked mean line with all of the epochs after the
convergence when n = 30000, but the corresponding outputs can vary from 0 to 0.8
if we fix n = 100 instead.

As we can also see from Table 4, the value of the MINE computed as a mean
value of the outputs on the epochs from 901 to 1000 is not very much affected by
the changes in the data size n. It can be observed that the values of the MINE
increase with respect to n, but this growth is very slight. Raising the number n of
observations without changing the batch size means that there are more iterations
during which the network parameters are updated, so it is quite natural that the
outputs on the final epochs are on average higher because they are closer to the
exact point of the convergence.

We can also calculate that if the value of the mutual information is 0.367, then
the information coefficient of correlation r; is 0.721. From Figure 8, we notice that
this value of r; is nearly the same as its mean value computed with the R-functions
from 1000 simulations with the similar data. Interestingly, this value 0.721 is in
fact little less than the coefficient r; should be according to Figure 8, which might
suggest that more epochs are needed before computing the mean of the MINE.

Next, let us consider the model (3.1) that has no dependence between the vari-
ables X and Y. As we recall from the theoretical properties of mutual information,
its value should be 0 for any data generated from this model. If we simulate data
of n = 30000 observations and fix the number of epochs to 1000, the mean value
of the MINE computed from the last hundred outputs is —4.869 - 107%. Note that
the value of this estimator can be less than 0 because, technically, it is based on
a lower bound of mutual information. Compared to the mean value of the mutual
information presented in Table 1 for the same model, we can conclude that this
result is closer to 0 and therefore more realistic. In other words, the MINE passes
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Figure 15: The values of the MINE and R? in 30 simulations of the linear, cubic,
quadratic and sinusoidal models (3.2)-(3.5) with n = 30000 observations.

the first self-consistency test proposed in 2019 by Song and Ermon [45, p. 5].

Let us yet inspect how the amount of noise affects the linear model (3.2), the
cubic model (3.3), the quadratic model (3.4) and the sinusoidal model (3.5). For
each model, we choose 30 different values of the parameter o, generate data with
n = 30000 observations, compute first the coefficient of determination R? and then
estimate the value of the MINE by taking the mean value of the last hundred outputs
of the MINE algorithm run with 3000 epochs. This number of epochs is chosen here
because, according to a few tests, it is enough for the convergence of the MINE
without slowing the algorithm down too much. The results are depicted in Figure
15.

From Figure 15, we can see that the values of the MINE mostly increase with
respect to the value of R? or, equivalently, decrease with respect to the amount of
noise in each of the four models. The few observations of the sinusoidal model not
following this pattern can probably be explained with discrepancies in the conver-
gence of the parameters in the MINE algorithm for this model. By comparing the
values of the MINE between the models, we also notice that the values of the MINE
computed from the linear model are the greatest if there is very little noise but, as
the amount of noise grows and R? decreases, the MINE values computed from the
sinusoidal and quadratic models exceed those from the linear model.

Interestingly, we also see from Figure 15 that the mutual information estimated
with the MINE does not have a similar equitability property as proposed for the
MIC in [39, p. 1518]. Namely, for all values of R?, the MINE values computed from
different models can be easily distinguished. However, it must be noted here that
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Figure 15 cannot be directly compared to, for instance, Figure 11: We need to take
into account that Figure 11 contains results from 1000 simulations with n = 1000
observations for each model, while Figure 15 has considerably less simulations but
30 times more observations in each simulation. Furthermore, it is also difficult to
create simulations with similar values of n to make these figures comparable. This is
because computing the MIC with R is very slow if the value of n grows up to several
thousands, but there is too much variation in the outputs of the MINE algorithm
with n = 1000 or less.

However, while Song and Ermon mentioned the possibility of such variance in
the values of the MINE that would increase exponentially with respect to the ground
truth mutual information [45, p. 5], I did not notice this phenomenon in any of these
simulations. Namely, if the other parameters related to the MINE algorithm had
constant values, then decreasing the value of ¢ did not increase the variation in the
outputs of the algorithm, even though this change clearly increases the true value of
the mutual information. Instead, the number n of observations was the only factor
that had an impact on the variance in the MINE.

To conclude, the MINE algorithm works well for estimating the value of mutual
information from simulated data. The estimator MINE recognizes dependence from
each data sets data based on different models and its values decrease in an expected
way when the amount of noise grows. If there are at least 30000 observations,
the outputs of the MINE algorithm converge very clearly, but there is much more
variation in these outputs if there are not enough observations.
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5 Real data experiments

In this section, we study the different measures of dependence with real data sets
about the weather, youth behavior and air pollution. Because some statistical con-
cepts such as the MIC have been developed by using mostly just simulated data, it
is important to verify that these quantities work in an expected way also for real
data. To do this, we download each data set into RStudio and compute the values
for several measures of dependence by using the computational methods introduced
in Subsection 3.1.

5.1 Weather in Nuorgam

Our first real data experiment will be done by using recent weather observations.
This is because data about weather is continuously collected and shared openly to
the public, there are several interesting variables related to it, and the relationships
between these variables can be understood without deep expertise in the field. Our
data is from Finnish Meteorological Institute, Ilmatieteenlaitos [27].

Out of all possible observation stations in Finland, I chose one in Nuorgam,
Utsjoki. Since this station is located in the northernmost point of the country, there
should be clear seasonal variation in the data and we can also inspect the amount
of snow. However, note that while Ilmatieteenlaitos collects data also about such
variables as cloud amount, precipitation amount and horizontal visibility, these are
not observed in Nuorgam and will not be therefore studied here, either.

Instead, we consider the following eight variables: Mean sea level air pressure
(hPa), relative humidity (%), snow depth (cm), air temperature (°C), dew point
temperature (°C), wind direction (an angle in degrees), gust speed (m/s) and wind
speed (m/s). Here, the relative humidity means the absolute amount of water vapor
in the air relative to its maximum amount in the same temperature, and the dew
point temperature is the temperature cool enough that the current amount of water
vapor would begin to condense to liquid water. The wind direction is the magnitude
of the clockwise angle from the North to the direction from which wind blows, while
the gust speed is the speed of sudden wind gusts that are considerably stronger
than the average wind but only last a very brief time. All of these quantities are
expressed in either integers or decimal numbers with one digit.

Before studying the data itself, let us make a few hypotheses about which vari-
ables might be connected. Clearly, air temperature affects the relative humidity and
the dew point temperature. Namely, by definition, the dew point temperature is
always at most the current temperature. Also, while temperature might not have a
direct impact on the snow depth, we know that the amount of snow is typically at
highest during the coldest months of the year.

Importantly, the air pressure has a known and very well-studied effect to the
weather. Namely, if the pressure is low, the weather is often windy, rainy and
possibly even stormy. In turn, during an anticyclone caused by high atmospheric
pressure, the air is typically drier and the sky is less cloudy, and the weather can
be very warm if it is summer. In other words, the air pressure affects the humidity,
the both temperature measurements as well as the both wind speeds.
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Furthermore, the wind and gust speeds are also clearly connected because the
definition of the gust speed is based on the amount of the average wind speed.
Potentially, the wind direction and speed might also have some sort of correlation,
especially if the value of the wind direction is fixed automatically to 0 degrees if
no wind is observed. It is also known that wind blows stronger over sea than land,
which might mean that the wind direction could have an impact on its speed. On
top of that, the wind direction might be connected to the air temperature because
wind from the North or the sea is often colder. Note that the closest sea area to
Nuorgam is Varanger Fjord at 70-80 degrees from the North.

One thing that must be noted here is also the indirect relationships between the
variables caused by some third variable. If snow depth and wind direction have both
some relationship with air temperature, there is some indirect connection between
them. However, these types of relationships are not often strong and might be
difficult to recognize if there is already a lot of variation in the data due to other
factors.

The data studied here contains the hourly weather observations of the year-
long time period from June 1st, 2020, to May 31st, 2021, downloaded from https:
//en.ilmatieteenlaitos.fi/download-observations. As mentioned before, we
only focus on the eight variables listed above and, when all the rows with missing
observations are removed, the data contains 8751 different observations. While these
variables could also be studied against time, it would require taking into account
the seasonality, which is difficult with just data from just one year. Thus, we do not
consider time at all.

By drawing histograms from the values of our eight different weather-related
variables, we notice that the distributions of several variables are negatively skewed.
For instance, because the relative humidity is measured as a percentage and it can
have values considerably smaller than its mode at 90% but not much higher, it is
clearly skewed to the right. Furthermore, the temperature in Utsjoki varies from
-40°C to 25°C but, since its mode is around 3°C, the left tail of the distribution
is noticeably longer. The distribution of the dew point temperature is a little less
skewed than that of regular temperature but its left tail is still longer. Similarly,
the distribution of the air pressure is negatively skewed, too, even though there is
no obvious explanation for this.

In turn, the snow depth and both of the wind speed measurements are positively
skewed because these measurements can only have non-negative values but are often
0 or close to it. Still, while the modes of snow depth, gust speed and wind speed are
very small, these variables can have values as high as 56cm, 17.5m/s and 10.9m/s,
respectively. Interestingly, the wind direction has multiple different peaks out of
which one is around 0 degrees, another at 75 degrees and one around 250 degrees, as
can be seen in the histogram of Figure 16. Recall here that 0 degrees means north
wind whereas 75 degrees indicates that the wind is from the sea.

However, it would seem that the wind measurements in the data do not fully
correspond with the actual observations. Namely, we can check that, out of all the
8751 observations about the wind direction, 749 values are 0 degrees so at least some
of these observations are very likely made by default whenever the wind speed is
0.0 m/s instead of there actually being so much north wind. Typically, the wind
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Figure 16: The histogram of the wind direction measured in degrees from the weather
data in Nuorgam.

direction should be input as a missing observation (NA in R) whenever there is
no wind but let us not change this to see how this issue affects our results. In all
likelihood, the data might suggest that there is positive correlation between the wind
direction and speed because their smallest values occur nearly always together with
the exception of the case where there is noticeably north wind.

Let us now focus on the correlation coefficients. Recall the two assumptions re-
lated to Pearson’s correlation: The values of the variables should be approximately
normally distributed and their dependence needs to be linear so that it can be prop-
erly recognized. Because none of our variables is normally distributed, we should
consider either Spearman’s or Kendall’s correlation coefficient instead. Since the
values of Spearman’s correlation coefficient are very similar to Kendall’s coefficient
for this data, but the former coefficient is more commonly used, we use it to study
the correlation here. The values of Spearman’s correlation coefficient and other
measures of dependence considered here are collected in Table 5.

Firstly, we can notice that most of the values of Spearman’s correlation coeffi-
cient between these eight variables are negative but not by much. For instance, by
considering the values of Spearman’s coefficient between the air pressure and the
other variables, we notice that the value -0.21 against the dew point temperature
is the one furthest away from 0, so the air pressure is very weakly correlated with
the other weather measurements. Similarly, there is not much correlation between
the relative humidity and the other variables but, interestingly, the values of Spear-
man’s correlation coefficient between the relative humidity and both the wind speed
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Weather variables Ts | Pmax MI ry | MIC

Pressure; humidity -0.176 | 0.189 | 0.053 | 0.318 | 0.067
Pressure; snow depth 0.024 | 0.276 | 0.142 | 0.498 | 0.124
Pressure; temperature -0.143 | 0.380 | 0.160 | 0.523 | 0.110
Pressure; dew point -0.206 | 0.366 | 0.166 | 0.531 | 0.108
Pressure; wind dir. -0.064 | 0.179 | 0.061 | 0.339 | 0.051
Pressure; gust speed -0.183 | 0.188 | 0.049 | 0.306 | 0.062
Pressure; wind speed -0.168 | 0.175 | 0.046 | 0.297 | 0.059
Humidity; snow depth -0.080 | 0.316 | 0.139 | 0.493 | 0.096
Humidity; temperature -0.165 | 0.475 | 0.215 | 0.591 | 0.133
Humidity; dew point 0.094 | 0.280 | 0.156 | 0.517 | 0.093
Humidity; wind dir. -0.173 1 0.232 | 0.083 | 0.392 | 0.072
Humidity; gust speed -0.441 | 0.445 | 0.149 | 0.507 | 0.146
Humidity; wind speed -0.427 | 0.428 | 0.133 | 0.483 | 0.128

Snow depth; temperature | -0.788 | 0.849 | 0.620 | 0.843 | 0.609
Snow depth; dew point -0.808 | 0.864 | 0.660 | 0.856 | 0.656
Snow depth; wind dir. 0.007 | 0.138 | 0.080 | 0.385 | 0.057
Snow depth; gust speed 0.004 | 0.150 | 0.040 | 0.278 | 0.038
Snow depth; wind speed 0.021 | 0.180 | 0.045 | 0.294 | 0.041
Temperature; dew point 0.950 | 0.984 | 1.456 | 0.972 | 0.759
Temperature; wind dir. 0.095 | 0.246 | 0.106 | 0.436 | 0.072
Temperature; gust speed | 0.243 | 0.403 | 0.110 | 0.444 | 0.110
Temperature; wind speed | 0.224 | 0.394 | 0.110 | 0.444 | 0.106

Dew point; wind dir. 0.036 | 0.210 | 0.095 | 0.417 | 0.060
Dew point; gust speed 0.144 | 0.363 | 0.100 | 0.426 | 0.099
Dew point; wind speed 0.126 | 0.355 | 0.102 | 0.430 | 0.095
Wind dir.; gust speed 0.339 £0.956 | 0.360 | 0.717 | 0.422

Wind dir.; wind speed 0.325 £ 0.955 | 0.364 | 0.719 | 0.422
Gust speed; wind speed 0.969 | 0.967 | 1.393 | 0.969 | 0.776

Table 5: Spearman’s correlation coefficient r,, the maximal correlation coefficient
Pmax, the mutual information (MI), the informal coefficient of correlation r; and the
MIC for different weather variables including mean sea level air pressure, relative
humidity, snow depth, air temperature, dew point temperature, wind direction, gust
speed and wind speed.

measurements are around -0.43.

Several of the values of Spearman’s correlation coefficient are as we expected.
For example, there is negative correlation between the snow depth and the two tem-
perature variables: Spearman’s coefficient is -0.79 between the snow depth and the
air temperature, and -0.81 between the snow depth and the dew point temperature.
Similarly, it is not surprising that the value of Spearman’s correlation coefficient
between these temperature variables is 0.95, which is the second largest value here
even when considering only the absolute values for this coefficient. The largest value
of Spearman’s coefficient for these variable pairs is 0.97 between the gust speed and
the wind speed, which is a very expected result, too. It is also worth noting that the
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correlation between the wind direction and both of the wind speeds is 0.33, which
is quite large when compared to other values here and very likely due to the obser-
vation we made earlier about how the values of 0 of the wind direction and speed
occur together.

Out of all these variable pairs, Spearman’s correlation coefficient suggests that
the weakest relationship is between the snow depth and the gust speed, for which
the value of this correlation coefficient is 3.94-1073. This is actually quite under-
standable: While the air pressure might be connected with both the air temperature
and how windy it is and the temperature has a clear relationship with snow depth,
the causalities here are not so immediate that they would show in the data. Also
Spearman’s coefficient is quite close to 0 for the relationship between the snow depth
and the wind speed for the same reason.

Next, let us consider the values of the maximal correlation coefficient for these
variables. These values do not vary very much from those of Spearman’s correlation
coefficient, except they are all positive and slightly larger. In fact, by denoting
Spearman’s coefficient by 7, then most of the values of the maximal correlation
are on the interval [|rs|, min{|rs| + 0.2,1}]. However, there are a few exceptions:
The maximal correlation between the relative humidity and the air temperature
is 0.48, even though Spearman’s coefficient is only -0.165 for these variables, and
the maximal correlation between the wind direction and both of the wind speed
measurements is over 0.95, in spite of the fact that the corresponding values of
Spearman’s coefficient are around 0.33, as mentioned above.

Then we compute the values of the mutual information, which vary from 0.040
to 1.456. The smallest value of the mutual information is between the snow depth
and the gust speed, whereas the largest values are between the two temperature
measurements and also for the two wind speeds. After transforming the values of
the mutual information to those of the information coefficient of correlation rq, we
notice that the values of r; are very often clearly larger than the maximal correlation:
For instance, while the maximal correlation between the air pressure and the snow
depth is 0.28, the corresponding value of ry is over 0.5.

Finally, we consider the values of the MIC. We notice that they are very small for
such variables that are clearly connected and, for instance, the MIC is only around
0.75 for both the variable pair consisting of the temperature measurements and the
pair of the wind speeds. Similarly, the MIC is 0.61 between the snow depth and
the air temperature, which is less than the value of r;, the maximal correlation and
the absolute value of Spearman’s correlation coefficient between these two variables.
However, according to the values of the MIC, the weakest relationship is between
the snow depth and the gust speed, which agrees with the results given by the other
measures of dependence.

Some of these observations related to the different values of dependence can be
easily explained. For instance, both in our earlier simulations and in the literature
[35, 40, 43], it has been noticed that the MIC is very sensitive to the statistical
noise. Thus, since the relationships of the real word, related to the weather or not,
contain always some noise, it is to be expected that the values of the MIC are less
than those of the other quantities considered.

Plotting the different relationships as in Figure 17 also helps us to explain the
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Figure 17: Scatter plots between a few different variables in the weather data.
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differences in the values of these measures of dependence. For instance, we see from
Figure 17d that the relationship between the gust speed and the wind speed is linear,
which explains why the values of Spearman’s correlation coefficient and the maximal
correlation are nearly the same for this variable pair. While the connection between
the snow depth and the air temperature shown in Figure 17a is not monotonic, it does
not follow any other function much better, which is why the value of the maximal
correlation is not much higher than the absolute value of Spearman’s correlation
coefficient.

We also noticed earlier that the maximal correlation between the wind direction
and both of the wind speeds is considerably higher than Spearman’s coefficient.
There is no linear or non-linear relationship clearly visible in Figure 17c but, as
noted before, these variables have values of 0 at the same time. If we remove all
such observations from our data for which the wind speed is 0 m/s, the maximal
correlation is only 0.216 between the wind direction and the gust speed and 0.191
between the wind direction and the wind speed instead of 0.956 and 0.955.

Consequently, this leads to a question about the trustworthiness of the maximal
correlation between two variables with very uneven distributions. Namely, the maxi-
mal correlation is computed by finding the transformation that maximizes Pearson’s
correlation coefficient and, even though the variables need to be approximately nor-
mally distributed when computing correlation with just Pearson’s coefficient, there
is no such assumption related to the maximal correlation. The natural solution to fix
this issue would be to use the same transformation as usually to maximize the linear
correlation but then compute the value of Spearman’s correlation coefficient instead
to obtain the maximal correlation. This would give the values 0.324 and 0.334 for
the maximal correlation between the wind direction and the two wind speeds in the
data with all the available original observations, which would seem a more realistic
result.

To conclude, our first real data experiment went as expected. All the measures
of dependence behaved as they did in our earlier tests with the simulated data
sets and there were very few surprises in the relationships found between different
weather variables. The only question emerged here is whether the definition of the
maximal correlation could be slightly modified so that this quantity would fit better
for relationships between such variables that do not follow a normal distribution.

5.2 Youth risk behavior

Our next experiment is about such behavior of teenagers that is considered unhealthy
or risky for their health. This type of data is very different from the weather obser-
vations and, for instance, consists of mostly ordinal variables instead of numerical
ones. Thus, we can potentially find new information about the behavior of our
measures of dependence that is not noticeably when studying quite straightforward
relationships between weather variables.

The data considered here is collected by Centers for Disease Control and Pre-
vention (CDC), which is a national public health agency in the United States. For
several years, CDC has conducted different surveys that monitor health-related be-
haviors of teenagers that could lead to disability or deaths. The Youth Risk Behavior
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Surveillance System (YRBSS) was developed in 1990 to collect data about the habits
of middle and high school students, such as the amount of their physical activity,
sleep and drug use. [§]

The data we use here is the data set called yrbss from the R-package openintro
[9]. While it is confirmed in the information about this data set that its source is
CDC’s YRBSS [9, p. 240, it is not specified exactly when this data is collected. The
package openintro was published in April, 2021, but YRBSS has not yet released the
data of this year [8]. Since there are 13583 observations on the data set and YRBSS
has obtained around 140001000 usable observations after editing every other year
from 1991 to 2019 [8], this data could be from a single year. Furthermore, I would
guess that the data is from the 90s or the 00s rather than from a more recent year
because none of the variables in the data are related to the use of Internet, smart
phones or social media but nearly all of the teenagers surveyed here spend at least
3 hours daily watching television on a school night.

Out of all 13 variables of yrbss, I only consider the following nine: gender (male
or female), age (in years), height (m), using a helmet while riding a bike in the last
year (did not ride, never, rarely, sometimes, most of the time, or always), days on
which texted while driving in the last month (did not drive, 1-2, 3-5, 6-9, 10-19, 20-
29, or 30), the number of days with at least one hour of physical activity during the
last week, the amount of TV watched on a typical school night (do not watch, <1,
1, 2, 3, 4, 5+), the number of days with strength training during the last week and
the hours of sleep on a typical school night (<5, 6, 7, 8,9, 10+). I turned this data
fully numerical by replacing the gender with binary variables, "did not drive" and
"did not drive" with missing observations (NA in R) and the other options for the
helmet use variable with numbers so that 0="never", 1="rarely", 2="sometimes",
3="most of the time" and 4="always". I also replaced each interval of days with its
mean point and the values <1, 5+, <5 and 10+ with 0.5, 6, 4 and 11, respectively.

Some of these variables are clearly connected. For instance, there is a relation
between a person’s height and age and, since the data is mostly about underage
teenagers, this should be noticeable. Also, there is probably positive correlation
between amount of strength training and other physical activity. Furthermore, the
amount of TV and sleep on a typical school night are likely negatively correlated
because there is not enough time to both watch television for several hours after a
typical seven-hour school day with travels, homework and other activity if one sleeps
at least 10 hours. However, this data can be used to study also more complicated
relationships, such as the one between the amount of TV and wearing a cycling
helmet, which might be potentially very interesting.

By plotting the histograms of this edited data, one can see that only the height
and sleep variables follow even approximately normal distribution. Since there are
also several ordinal variables in the data, it is therefore better to use Spearman’s
correlation coefficient than Pearson’s while measuring the correlation. Like for the
weather variables, I computed here Spearman’s coefficient, the maximal correlation,
the mutual information, the information coefficient of correlation r; and the MIC
for all the other eight variables except the gender, see Table 6.

From Table 6, we notice that nearly all relationships in this data are very weak.
Namely, with only a few exceptions, the absolute values of the most of Spearman’s
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Variable pair Ts | Pmax MI ry | MIC
Age; height 0.130 | 0.146 | 0.015 | 0.170 | 0.016
Age; helmet use -0.030 | 0.035 | 0.002 | 0.059 | 0.002
Age; texting 0.296 | 0.305 | 0.054 | 0.320 | 0.072
Age; phys. activity -0.064 | 0.071 | 0.004 | 0.087 | 0.004
Age; TV -0.029 | 0.034 | 0.002 | 0.061 | 0.002
Age; strength training -0.063 | 0.075 | 0.005 | 0.100 | 0.005
Age; sleep -0.127 | 0.126 | 0.011 | 0.146 | 0.011
Height; helmet use -0.023 | 0.016 | 0.003 | 0.083 | 0.005
Height; texting 0.112 | 0.119 | 0.013 | 0.163 | 0.012
Height; phys. activity 0.211 | 0.211 | 0.027 | 0.229 | 0.028
Height; TV 0.010 | 0.033 | 0.005 | 0.097 | 0.005
Height; strength training 0.192 | 0.196 | 0.023 | 0.212 | 0.025
Height; sleep 0.020 | 0.038 | 0.003 | 0.081 | 0.005
Helmet use; texting -0.092 | 0.092 | 0.006 | 0.110 | 0.007
Helmet use; phys. activity 0.027 | 0.037 | 0.003 | 0.078 | 0.002
Helmet use; TV -0.094 | 0.111 | 0.008 | 0.128 | 0.009
Helmet use; strength training 0.016 | 0.034 | 0.003 | 0.079 | 0.003
Helmet use; sleep 0.092 | 0.086 | 0.007 | 0.116 | 0.006
Texting; phys. activity 0.046 | 0.058 | 0.005 | 0.103 | 0.003
Texting; TV -0.027 | 0.076 | 0.007 | 0.122 | 0.005
Texting; strength training 0.042 | 0.070 | 0.007 | 0.114 | 0.004
Texting; sleep -0.089 | 0.095 | 0.010 | 0.139 | 0.007
Phys. activity; TV -0.039 | 0.122 | 0.011 | 0.148 | 0.011
Phys. activity; strength training | 0.621 | 0.625 | 0.326 | 0.692 | 0.255
Phys. activity; sleep 0.124 | 0.134 | 0.014 | 0.163 | 0.011
TV, strength training -0.020 | 0.101 | 0.010 | 0.140 | 0.007
TV; sleep 0.016 | 0.140 | 0.013 | 0.158 | 0.010
Strength training; sleep 0.112 | 0.108 | 0.010 | 0.141 | 0.008

Table 6: Spearman’s correlation coefficient r,, the maximal correlation coefficient
Pmax, the mutual information (MI), the informal coefficient of correlation r; and the
MIC for different variable pairs including age, height, using a helmet while biking,
texting while driving, physical activity, watching TV, strength training and sleep.

correlation coefficients are less than 0.20 and neither the maximal correlation nor
the coefficient r; is much higher than this. The MIC is very close to 0 for all the
variable pairs, too. It would also seem that these existing relationships are both
functional and monotonic because they cannot be recognized any better with the
other coefficients than Spearman’s correlation coefficient.

The only noticeable relationships from Table 6 are between physical activity
and strength training, the age and texting while driving, the height and physical
activity, and the height and strength training. According to the values of Spearman’s
correlation coefficient, the correlation between all these four variable pairs is positive.
However, the physical activity and strength training is the only variable pair for
which any of the measures of dependence considered in Table 6 have values over 0.5.
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It must be noted here that the noticeable relationships between the height and
both physical activity and strength training are not necessarily direct connections
but could potentially explained by taking the gender variable into account instead.
This hypothesis can be easily tested by computing the values for the different mea-
sures of dependence again within two separate subgroups, out of which one consist
of only girls while the other one contains all the boys. Since all the coefficients have
values very close to 0 for the relationships between the height and physical activity
or strength training in these same-sex groups, our guess was correct. In fact, it
can be computed from this data that the girls surveyed here have average height of
162cm, are physically active on 3.26 days during a week and train their strength on
3.30 days, whereas the corresponding numbers for boys are 1.76cm, 4.52 and 3.58,
respectively.

However, by studying these two same-sex subgroups, we notice that not all rela-
tionships can be explained with the gender variable. For instance, there is slightly
more correlation between the age and texting while driving in the girl group, but all
the coefficients still have very similar values for this relationship between the two
groups. There is an easy explanation behind this relationship, though: While the
minimum age for getting a learner’s permit is 14 or 15 years in the United States,
the younger teenagers are unlikely to drive very much and the presence of their
driving teacher or guardian might be obligatory. Since the data only shows how
many days a teenager texts while driving if they drive at least a little and not how
often this occurs in relation with the time spent driving, it is to be expected that
older teenagers who drive more, often alone or with their friends, also text while
driving more. Furthermore, physical activity and strength training are not affected
by gender but their correlation is quite expected.

Interestingly, we can also notice differences between the height growth between
the boys and girls in this data set. Namely, all the coefficients have absolute values
less than 0.1 between the age and the height inside the girl group but, for the boy
group, Spearman’s correlation coefficient is 0.219, the maximal correlation 0.251 and
the value of r; 0.259. This can be explained by the fact that girls typically reach
their adult height already by the age of 14 or 15 years while boys might still grow at
the age of 16 years. Since the mean age of the teenagers studied in this data is 16.2
years, it is clear that the age affects more to the height of the boys than the girls.

To summarize, there was nothing very surprising in this data experiment except
for the fact that nearly all the relationships were very weak. It could potentially
be because ordinal data is perhaps not so well-suited for estimating these types
of dependence or that some information is lost while editing the data into fully
numeric. Nonetheless, we noticed here how important it is to take all the variables
into account because, if the gender of the teenagers is not considered, the data
suggest that there is some connection between the height and exercising.

5.3 Air pollution in London

Our third and final real data experiment is about different air pollutants. Namely,
there is much data available about the air quality, and the relationships related to it
are likely stronger than in our previous experiment but not so predictable as in our
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first experiment. The data used here is from the website Londonair [33| provided
by the Environmental Research Group of Imperial College London.

Air pollution is a very significant public health issue, especially in big cities such
as London. Because of this, London Air Quality Network (LAQN) was formed in
1993 to coordinate air quality monitoring in different parts of London and South
East England. These measurements are not only used to model air pollution in the
whole area and predict its future development but they can also help local authorities
with their decision making in topics related to air pollution. [32]

The data set of my third experiment consists of six variables whose values are
measured in the monitoring site in Greenwich, Woolwich Flyover during the time
period from January 1st, 2019, to January 1st, 2020 [33]. Greenwich is an old London
borough but not so densely populated as most of the other boroughs in Greater
London, and Woolwich is one of the districts within Greenwich. The monitoring
site is near a relatively busy overpass which might go under construction in the near
future because of several traffic accidents [10].

The six pollutants measured on this monitoring site include nitric oxide, nitrogen
dioxide, oxides of nitrogen, ozone, and PM10 and PM2.5 particulate, which are also
the variables we consider here. All of their values are measured in micrograms per
cubic meter of air (ug/m?). Note here that both nitric oxide and nitrogen dioxide are
oxides of nitrogen but there are also other gases consisting of nitrogen and oxygen,
such as nitrogen monoxide, included in this group of gases. Furthermore, PM10
particulate means particles with diameter less than 10 micrometers and PM2.5 is
similarly defined, so a PM2.5 particle is always also a PM10 particle. Thus, we could
expect from this that the values of third variable are increasing with respect to the
two first ones and the fourth variable is increasing with respect of the fifth one.

By plotting the histograms of these variables, we can see that they are approxi-
mately normally distributed but are still all positively skewed. Because of this and
to make our third experiment comparable with the two previous ones, we consider
once again Spearman’s correlation coefficient instead of Pearson’s. The values of
this coefficient and the other measures of dependence, including the maximal cor-
relation, the mutual information, the informal coefficient of correlation r; and the
MIC, can be seen in Table 7.

From Table 7, we see that the relationships in this data are much stronger than
those in our earlier data experiments. The values of nitric oxide, nitrogen dioxide and
oxides of nitrogen are clearly positively correlated with each other, and so are PM10
and PM2.5 particles. There is also noticeable positive correlation between these
three first variables and the last mentioned ones but, interestingly, the amount of
ozone is negatively correlated with all the other air pollutants.

It can also be computed that while the values of oxides of nitrogen are highly
correlated with both nitric oxide and nitrogen dioxide with Spearman’s correlation
coefficients of 0.985 and 0.911, respectively, the correlation between oxides of nitro-
gen and the sum of the first variables is greater than this: ry = 0.9985. However,
because this coefficient is strictly less than its maximal value 1, we can see that the
third variable is not equivalent to the sum of the first two. In fact, from our data,
we can actually check that all the variable formed out by decreasing by the sum of
nitric oxide and nitrogen dioxide from oxides of nitrogen has only positive values,
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Pollutants Ts | Pmax MI ry | MIC

NO; NO2 0.833 | 0.833 | 0.620 | 0.843 | 0.541
NO; NOX 0.985 | 0.993 | 1.715 | 0.984 | 0.918
NO; O3 -0.644 | 0.657 | 0.340 | 0.703 | 0.311

NO; PM10 0.439 | 0.481 | 0.166 | 0.532 | 0.171
NO; PM2.5 0.514 | 0.537 | 0.235 | 0.613 | 0.227
NO2; NOX 0.911 | 0.914 | 0.896 | 0.913 | 0.646
NO2; O3 -0.584 | 0.591 | 0.247 | 0.624 | 0.251
NO2; PM10 0.580 | 0.592 | 0.234 | 0.612 | 0.233
NO2; PM2.5 0.663 | 0.667 | 0.326 | 0.692 | 0.308
NOX; O3 -0.655 | 0.665 | 0.339 | 0.702 | 0.319
NOX; PM10 0.502 | 0.523 | 0.193 | 0.566 | 0.204
NOX; PM2.5 | 0.584 | 0.593 | 0.270 | 0.646 | 0.268
03; PM10 -0.332 | 0.398 | 0.110 | 0.445 | 0.137
03; PM2.5 -0.492 | 0.565 | 0.218 | 0.595 | 0.223
PM10; PM2.5 | 0.727 | 0.743 | 0.420 | 0.754 | 0.354

Table 7: Spearman’s correlation coefficient r,, the maximal correlation coefficient
Pmax, the mutual information (MI), the informal coefficient of correlation r; and the
MIC for different pollutants including nitric oxide (NO), nitrogen dioxide (NO2),
oxides of nitrogen (NOX), ozone (O3), and PM10 and PM2.5 particulate.

excluding one observation that is most likely an error, and has an average value of
34.0 ug/m3.

Consider next the negative correlation between ozone and the other air pollu-
tants. While stratospheric ozone has an important task of protecting us from the
ultraviolet radiation, ozone at ground level forms environmentally harmful smog and
is thus considered an air pollutant. Ozone is formed in the chemical reactions be-
tween oxides of nitrogen and volatile organic compounds where oxide molecules are
destroyed and freed oxygen atoms connect to each other in sets of three [49]. Since
the same process creating ozone at ground level also decreases nitric oxide, nitrogen
dioxide and other oxides of nitrogen, we have a clear explanation why these three
variables are negative correlated with ozone.

Because the negative correlation between ozone and particulate matter is weaker
than both the positive correlation between oxides of nitrogen and particle matter
and the negative correlation between oxides of nitrogen and ozone, it is possible that
this connection between ozone and particle matter is at least partially explained by
the connections from these variables to oxides of nitrogen. Possible other relevant
factors are also the temperature and the amount of rain. However, while these
weather measurements are surely studied somewhere near the monitoring site of
Woolwich Flyover, they are not included in our data.

Still, we can study the effect of the temperature on these variables by considering
their values against time. We namely notice that most of values of nitric oxide are
around 0-100 ug/m? during each month of the year 2019, but there are values over
400 ug/m? in only January, February and December. Consequently, cold winter
weather seems to increase the amount of nitric oxide and similar observations can
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Figure 18: Scatter plots between a few different variables in the air pollution data.

also be made from three other variables including nitrogen dioxide, oxides of nitrogen
and PM10 particulate. The values of ozone peaks up during mid-April instead and
the amount of PM2.5 particles does not seem to be affected by the season.

However, the average temperature of the month does not explain the connection
between particulate matter and the other pollutants. For instance, Spearman’s
correlation coefficient has a value of 0.647 between oxides of nitrogen and PM10
particulate during the first 744 observations from the month of January, while we
can see from Table 7 that the corresponding number for the whole data is 0.502.
Thus, the dependence between these two variables cannot only be a consequence of
the fact that they both happen to have higher values during the same months.

Furthermore, we can notice from Table 7 that all the relationships between the
variables considered are monotonic. Namely, the differences between the absolute
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values of Spearman’s correlation coefficient and the maximal correlation are very
small. The fact that the values of r; are also similar to those of the maximal
correlation suggest that there are no non-functional relationships, either. The values
of the MIC are small but that was to be expected on based on our first two data
experiments and explained by the amount of the statistical noise. One can also
verify these assumptions about monotonic and functional relationships by drawing
the different scatter plots for these variables as is done in Figure 18 and, in this way,
we also notice that several of these relationships are even linear.

To conclude, there are strong linear relationships between different air pollutants.
Most of these variables are positively correlated but higher values of ozone occur
together with smaller values of the other pollutants and vice versa, likely because
of the chemical process behind the formation of this gas. Furthermore, while the
season seems to affect the values of most of the air pollutants considered here, it is
alone not enough to explain these relationships.
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6 Conclusions

In this work, we studied different measures of dependence, including Pearson’s,
Spearman’s and Kendall’s correlation coefficients, the maximal correlation coef-
ficient, the mutual information and the maximal information coefficient (MIC)
through simulations and a few real data experiments. These coefficients have been
designed separately for different purposes during the time period from the late-19th
century to the year 2011 and thus have some distinct properties. Here, we summarize
and discuss our earlier observations about these measures of dependence.

Firstly, Pearson’s, Spearman’s and Kendall’s correlation coefficients worked in a
very expected way. Pearson’s coefficient is a very natural choice for studying depen-
dence if it is linear and the variables follow normal distribution. If these assumptions
do not hold, Spearman’s and Kendall’s coefficients might be better options because
they recognize monotonic dependence. Kendall’s coefficient is also less sensitive to
error than the other two coefficients. However, even if the relationship in the data is
monotonic but not linear, even Pearson’s correlation coefficient can be used to check
if this dependence is increasing or decreasing. In simulations, it was also noticed
that all these three coefficients have very small absolute values in the case of no de-
pendence and, especially, Pearson’s coefficient is not very sensitive to the statistical
noise.

In nearly all simulations and data experiments, the maximal correlation coeffi-
cient had values greater than the other quantities, indicating that this coefficient
finds different types of dependence most effectively. As can be expected, its value
decreases as the amount of statistical noise increases but, as noted in our simula-
tions, the amount of this decrease is quite reasonable. Furthermore, the value of the
maximal correlation can be computed very fast with the R-functions introduced in
Subsection 3.1.

While the value of the maximal correlation itself does not give any sign if the
found dependence is decreasing, increasing or non-monotonic, this problem can be
solved by checking the value of either Pearson’s, Spearman’s or Kendall’s correlation
coefficient. Alternatively, if there are a lot of variables, we can use the maximal
correlation to find such pairs that clearly depend on each other and then draw
scatter plots to see what kind of dependence there is. Namely, according to the
earlier real data experiments, the relationships with high values of the maximal
correlation can also be easily recognized visually.

We can also check if the dependence is monotonic or linear by comparing the
value of the maximal correlation coefficient to the absolute value of the first three
correlation coefficients. Namely, as noted before when studying the data about air
pollution, the difference between Spearman’s coefficient and the maximal correlation
is very small if the dependence is monotonic. From our simulation results, we can
also verify that if this difference is close to its greatest possible value, 1, in those
cases where the dependence is functional but non-monotonic. Similarly, by focusing
on the difference between Pearson’s coefficient and the maximal correlation, we can
obtain information about whether the dependence is linear or not.

However, one of the disadvantages of the maximal correlation is that it is not
designed for non-functional relationships. For instance, we noticed in our earlier
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simulations that the values of the information coefficient of correlation exceeds those
of the maximal correlation in the case of the cross-shaped dependence when there
is even little noise. Still, it is noteworthy that the maximal correlation coefficient
have greater values than the MIC that is specifically created to find these types of
dependence.

Another issue with the maximal correlation is the question whether it is trust-
worthy in those cases where the data is very unevenly distributed and focused on a
specific point. Namely, it was noted on the first data experiment that the values of
this coefficient were very large between the wind direction and the wind speed just
because there are several observations were both of these variables have values of
0 in the data. Although Pearson’s correlation coefficient has an assumption about
normally distributed data, this requirement is not specified for the maximal corre-
lation. As a potential solution, I would suggest computing the value of the maximal
correlation by first maximizing the amount of linear correlation as usual and then
applying Spearman’s correlation coefficient instead of Pearson’s.

Mutual information is interesting as a theoretical concept but, as mentioned in
the literature, its interpretation is difficult. It cannot be directly compared with the
other coefficients and, as can be seen in the results from our simulations, it gives
also very different values for each type of dependence even in the case where there
is no noise. Still, we can see that the mutual information had values smaller than
both the maximal correlation and the MIC in the first simulation with data from
two independent variables.

To be able to compare the values of the mutual information, we use the infor-
mation coefficient of correlation r,. However, the definition of this coefficient is
perhaps not the best one. The values of r; increase very fast for small values of the
mutual information and the values of r; are therefore very large, for instance, in the
first simulation model with no dependence between the two variables. On the other
hand, modifying this definition might not work very well: Already now the values
of r1 are relatively small when compared to those of the maximal correlation in the
simulations, and re-defining r; as a more gradual function of the mutual information
would only worsen this issue.

Still, because mutual information can find non-functional relationships, it could
be used together with the maximal correlation to find connected variables out of
several options. Based on our simulation about the cross-shaped dependence and
other experiments, it seems that the value of ry is larger than the maximal correlation
only in the case of non-functional dependence, which could be useful information.
However, the opposite being true does not mean that the dependence is functional:
We noticed that there are at least some non-functional types of dependence, such as
the circle-shaped dependence of our simulations, for which the maximal correlation
has larger value than the information coefficient of correlation.

While one can compute the mutual information with R in a very simple and fast
way, the obtained results are not necessarily very accurate. The data needs to be
discretized first and, according to one of my earlier observations, the number of bins
used in this discretization needs to be greater than the default number. This is at
least case if the number of observations is not very large, a few thousands or so. In
fact, finding the optimal number of the bins here could be an interesting question
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for future research.

One of our topics in this work was also applying neural networks to compute
the mutual information. The MINE algorithm introduced earlier suits well for this
purpose: It recognized dependence from each type of relationship used in the testing
and, if there are at least 30000 observations, the outputs of this algorithm converge
very consistently during the first few thousand epochs. While one needs to estimate
the distributions of the variables before using this method, this is not a difficult task
if there are enough observations. Consequently, in order to compute the mutual
information, the MINE algorithm is a good choice if there are several thousand
observations, and otherwise using the R-functions based on discretization might
work better.

Compared with the maximal correlation and the information coefficient of cor-
relation, it was quite surprising how poorly the MIC worked in both simulations
and real data experiments here. The presence of statistical noise in the data stud-
ied is a known issue with the MIC and it was also noticed numerous times in this
work. While the MIC recognizes different relationships very well in noiseless data,
even tiny amounts of noise weaken the performance of this coefficient considerably.
Furthermore, computing the value of the MIC with R is notably slower than find-
ing the values of the other measures of dependence considered here, which must
be taken into account when dealing with a data set consisting of several thousands
observations.

The type of the data also seems to affect the value of the MIC. By comparing the
results of the simulations and real data experiments, we can notice that the values
of the MIC are at smallest for the youth risk behavior data consisting out of ordinal
variables that were turned numerical by using mostly integer values. Especially,
the value of the MIC was nearly ten times smaller between the age and height of
teenagers than it was on average for data consisting out of two independent, normally
distributed variables data in our simulations. While the relationships are very weak
in this youth risk behavior data also when measured by the other coefficients, the
values of Spearman’s correlation and the maximal correlation are still larger for the
variable pair of the age and height than they are for two independent variables.
Consequently, this suggests that the MIC is not designed for data with integer
variables.

One of the interesting properties of the MIC is its possible equitability: This
coefficient should give similar values with equally noisy relationships regardless of
the exact type of dependence. While I noticed clear differences, for instance, between
the cubic and sinusoidal relationships, there were also some signs of this equitability
property working, too. However, this property is not very useful when the statistical
noise has so significant impact on the values of the MIC. To put it simply, it does not
help that some coefficient works similarly in different situations if it always performs
so inadequately that it cannot be properly utilized.

Thus, all our measures of dependence suit slightly different objectives so it de-
pends on the current situation which one of them should be used. Sometimes, most
information about the relationship between variables can be obtained through a
combination of these coefficients: For instance, if we need to find dependence effec-
tively either simulated or real data, the values of Spearman’s correlation coefficient,
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the maximal correlation coefficient and the information coefficient of correlation
tell us if there is dependence, if the dependence is increasing, decreasing or non-
monotonic, and also if there is non-functional dependence instead. Because of this,
understanding the unique features and differences of these coefficients is important.
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R and PyTorch codes

Here, the reader can find some of the most important R and PyTorch codes used in
this work.

R code for Section 3

The following R code shows how data is generated from the models (3.1)-(3.9), how
Figures 7, 8 and 11 are plotted, and how the results of Table 3 are obtained.

#R code for 3
#ormrai 2021—-05—03
#FILE: tilg101.R begins

#libraries
library (acepack)
library (infotheo)
library (minerva)

#function for generating data from the models (3.1)—(3.9)
simxy<—function (j ,n,sigma){
#Independent variables
if (j==11
x<—rnorm(n,0,sqrt (0.1))
y<—rnorm(n,0,sqrt (0.1))
}
#Linear dependence
if (j==21{
x<—rnorm(n,0,sqrt (0.1))
y<—x+rnorm(n,0 ,sigma)
¥
#Cubic dependence
i (=3
x<—rnorm(n,0,sqrt (0.1))
y<—x"3+1/3*x+rnorm(n,0 ,sigma)
}
#Quadratic dependence
(=)
x<—rnorm(n,0,sqrt (0.1))
y<—3%x"2—1+rnorm(n,0 ,sigma)
¥
#Sinusoidal dependence
i (=)
x<—rnorm(n,0,sqrt (0.1))
y<—sin (9*x)+rnorm(n,0 ,sigma)
¥

#Cross—shaped dependence
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if (j==06){
k<—rbinom (1,n,0.5)
x<—c (rnorm(k,0 ,sigma/2) ,rnorm(n—k,0 ,sqrt (0.1)))
y<—c (rnorm(k,0,sqrt (0.1)) ,rnorm(n-k,0,sigma/2))

}
#Circular dependence
if (j==7){

k<—rnorm(n,0,1)
l<—rnorm(n,1,sigma)
x<—1*cos (k)
y<—1=*sin (k)

}
#Two functions
if(j——8)]

k<—rnorm(n,0,1)
for(u in 1:n){
if (k[u]>=0){
x|u]<—2x%k[u]/3-1
y [u]<—=[u]+rnorm(1,0,sigma)
}else{
x[u]<—(—k[u])~0.1+0.1
y[u]<—(x[u]—0.1)"10+1+rnorm (1,0 ,sigma)
}
}
}
#Checkerboard dependence
if (j==91
x<—rnorm(n,0 ,sqrt (0.1))
y<—rnorm(n,0,sqrt (0.1))
for (u in 1:n){
while ((( floor (3xx[u|) — floor (3*y[u]))%R)==1){
x|u]<—morm(1,0,0.1)
y[u]<—norm(1,0,0.1)
}
}
y<—y-+rnorm(n,0 ,sigma/3)
¥
dxy<—cbind (x,y)
return (dxy)

}

#plotting Figure 7
n<—1000

sigma<—0

par (mfrow=c (3,3))
for(j in 1:9){
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par (pty="s")
dxy<—simxy (j ,n,sigma)
plot (dxy, xlim=c(—1,1),ylim=c(—1,1),xaxt="n",yaxt="n",
ann—=FALSE)
}

#studying the impact of sigma
n<—1000
s<—seq (0,0.3 ,by=0.03)
dfl<—as.data.frame(matrix (NA,1,7))
names(dfl )<*C(”Slgma” 7"I)” ,"S” ,"k” 7||1\/‘[(EH ’Url " ’”MIC”)
for(j in 1l:length(s)){
sigma<—s [] |
df<—as.data.frame(matrix(NA,1,6))
names(df)<—c(”p" Mt MR Mmpee! Mpl! ’HMICH>
for(i in 1:1000){
dxy<—simxy (2 ,n,sigma)
#2 means the linear model above, can be replaced!
x<—dxy [ ,1]
Y<_dXY[ 72]
df|i,1l|<—cor(x,y)
df|i,2]|<—cor(x,y,method="spearman")
df|i,3]<—cor(x,y,method="kendall")
fxy<—ace(x,y)
df|i,4|<—cor(fxy$tx, fxy$ty)
disc<—discretize (data.frame(x,y))
mik—mutinformation (disc$x, disc8$y)
df[i,5]|<—sqrt(l—exp(—2%mi))
df[i,6]|<—mine(x,y)$MIC
}
dfl[j,1]<—sigma
for (i in 1:6){
dfl[j,i+1l—mean(df[,i])
}
print (sigma)

}

print (dfl)

#plotting Figure 8

xl<—c(0,0.3)

yl<—c(min(df1],2:7]),1)

par (mfrow=c (1,1))

par (pty='m’)

plot (df1[,1],df1][,2],type="1", xlim=x],
ylim=yl | ylab="" xlab—=expression (sigma),
lty=1,lwd=1,cex.lab=1.3 cex.axis=1.1)
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par (new=TRUE)

plot (df1[,1],df1[,3],type="1" xlim=xl,ylim=yl,
axes=FALSE, xlab="" ylab="" 1ty =2,lwd=1)

par (new=TRUE)

plot (df1[,1],df1[,4],type="1" xlim=xl,ylim=yl,
axes=FALSE, xlab="" ylab="" 1ty =3,lwd=2)

par (new=TRUE)

plot (df1[,1],df1[,5],type="1" xlim=xl,ylim=yl,
axes=FALSE, xlab="" ylab="" 1ty =4,lwd=1)

par (new=TRUE)

plot (df1[,1],df1][,6],type="1" xlim=xl,ylim=yl,
axes=FALSE xlab="" ylab="" 1ty =5,lwd=1)

par (new=TRUE)

plot (df1[,1],df1[,7],type="1" xlim=xIl,ylim=yl,
axes=FALSE, xlab="" ,ylab*” "ty =6,lwd=1)

points (dfl|,1],
points (dfl|,1],
points (dfl|,1],

points (dfl|,1],
points (dfl[,1],

dfl|,2],pch=1)
dfl|,3],pch=4)
dfl|,4],pch=5)
df1],5],pch=3)
dfl|[,6],pch=6)
df1|[,7],pch=8)

(
(
points (dfl|,1],
(
(
("

legend ("topright",

legend=c("r rs" ,expression(tau),expression(rho),
"p1","MIC" ), pch=c(1,4,NA,3,6,8),lty=c(1,2,3,4,5,6),
lwd=c(1,1,2,1,1,1),cex=1.3)

#add triangle to the legend, i.e. points(0.2675,0.89,pch=5)

n.n
Y

#studying the equitability of the MIC
n<—1000
k<—1000
df<—as.data.frame(matrix(NA,k,8))
for(i in 1:k){
sigma<—abs (rnorm(1,0,1))
dxy<—simxy (2 ,n,sigma)
x<—dxy [ ,1]
Y<_dXY[ 72]
df|i,l]<——cor(x,y)" 2
df[i,2]<mine(x,y)$MIC
sigma<—2/3+*sigma
dxy<—simxy (3 ,n,sigma)
x<—dxy [ ,1]
Y<*dXY[ 72]
df|i,3]<—cor(y,x"3+1/3%x)"2
df[i,4]<mine(x,y)$MIC
sigma<—2*sigma
dxy<—simxy (4 ,n,sigma)
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s dy [ 1]
Y<_dXY[ 72]
df[i,5|<——cor(y,3*x"2—-1)"2
df[i,6]<—mine(x,y)$MIC
sigma<—1.65*sigma
dxy<—simxy (5 ,n,sigma)
s dxy | 1]
Y<_dXY[ 72]
df[i,7|<—cor(y,sin(9x%x))"2
df[i,8]<—mine(x,y)$MIC
£ (i%9%100——0){

print (i)

}

}

#plotting Figure 11
par(pty="s")
plot (1,type="n" xlim=c(0,1),ylim=c(0,1),pch=3,
ylab="MIC" ,xlab="R"2" jcex.lab=1.3 cex.axis=1.1)
for (i in 1:k){
points (df|i,1],df[i,2],pch=3,col="blue")
points (df|i,3],df[i,4],pch=3,col="steelbluel")
points (df|i,5],df[i,6],pch=3,col="darkblue")
points (df|i,7],df[i,8],pch=3)
}
legend ("topleft",
legend=c("linear" ,"cubic","quadratic",
"sinusoidal") ,pch=c(16,16,16,16),
col=c("blue" "steelbluel"  "darkblue"
"black"),cex=1.3)

#studying the impact of the number of observations (Table 3)
sigma<—0.1

nl<—c(5,10,30,100,300,500,700,1000,3000)

dfl<-as. data.frame(matriX(NA 1,8))

nal’neS( dfl )<_C ( ”n” "p " H k n ”Mm” UMI" n I.l " , HMICH )
for(j in 1:length(n1)){
nnl|j]

df<—as.data.frame(matrix(NA,1,7))
names(df)<—c( " Mgt MR Mee! Mmi  Mpl" "MIC! )
for (i in 1:1000){
dxy<—simxy (3 ,n,sigma)
e dxy | 1]
Y<_dXY[ 72]
df|i,1l|<——cor(x,y)
df|i,2|<—cor(x,y,method="spearman")
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df|i,3]<—cor(x,y,method="kendall")
fxy<—ace(x,y)
df[i,4]<—cor(fxy$tx, fxyS$ty)
disc<—discretize (data.frame(x,y))
mik—mutinformation (disc8$x, disc8$y)
df|i,5|<—mi
df[i,6]<—sqrt(l—exp(—2%mi))
df[i,7]<—mine(x,y)$MIC

}

dfl[j,1]<ml]j]

for (i in 1:7){
dfl[j,i+1j<—mean(df[,i])

}

print (n)

}

print (dfl)

#FILE: tilg101.R ends

PyTorch code for Subsection 4.3

The following PyTorch code is the implementation of the MINE algorithm use in
the simulations of Subsection 4.3.

#PyTorch codes for 4.3
#ormrai 2021—05—30
A#FILE: tilg0.ipynb begins

import torch

from torch.autograd import Variable
import torch.nn as nn

import torch.nn.functional as F
from tqdm import tqdm

import holoviews as hv

import bokeh

hv.extension ( ’bokeh”)

import numpy as np

import pandas as pd

# data
# fiz j to either 1 (no dependence), 2 (linear), 3 (cubic),
# 4 (quadratic) or 5 (sinusoidal)

j =1
sigma 0.3
def gen x():
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return np.random.normal (0. ,np.sqrt (0.1) ,[data size,1])

def gen y(x):
return func(x)+np.random.normal (0. ,sigma ,|data_size , 1])

if j==1:
def gen y(x):
return np.sign (np.random.normal (0., ,np.sqrt (0.1),
[data size ,1]))

if j==2:
def func(x):

return x

if j==3:
def func(x):
return x**x3 + x / 3

if j==4:
def func(x):
return 3Jxx*x2 — 1

if j==b:
def func(x):
return np.sin (9 * x)

data size = 30000
x=gen x ()
y=gen_y(x)

H=10
n_epoch = 1000

class Net(nn.Module):
def  init  (self):
super (Net, self). init ()

self . fcl = nn.Linear (1, ﬁ)
self.fc2 = nn.Linear (1, H)
self.fc3 = nn.Linear (H, 1)

def forward (self, x, y):
hl = F.relu(self.fcl(x)+self.fc2(y))

h2 = self.fc3(hl)
return h?2

model = Net ()
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optimizer = torch.optim.Adam(model.parameters(), 1r=0.01)
plot loss = []
for epoch in tqdm(range(n epoch)):

x_sample=gen x()

y _sample=gen y(x_ sample)

y _shuffle=np.random . permutation (y_sample)

x_sample = Variable (torch.from numpy (
x_sample).type(torch.FloatTensor), requires grad = True)

y_sample = Variable(torch.from numpy(
y _sample).type(torch.FloatTensor), requires grad = True)

y shuffle = Variable(torch.from numpy (
y _shuffle).type(torch.FloatTensor),
requires grad = True)

pred xy = model(x_ sample, y sample)
pred x y = model(x sample, y shuffle)

ret = torch.mean(pred xy) — torch.log(torch.mean(
torch.exp(pred x y)))

loss = — ret # maximize
plot loss.append(loss.data.numpy())
model.zero grad ()

loss . backward ()
optimizer.step ()

plot x np.arange (len(plot loss))
plot 'y = np.array(plot loss).reshape(—1,)

#printing results
y100 = —plot_y|[(len(plot loss)—101):(len(plot_ loss)—1)]
mi_est = np.mean(y100)

results = {’object’: [’]7,’'n’, sigma’, 'mi est’],
"value’: [j, data_ size, sigma, mi est]
}
df = pd.DataFrame (results, columns=|’object’, ’value’])
print ([ ’)
print (df)
print (mi_est)

#saving the array in a text file
file = open("fl.txt", "wt")
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content = str(—plot_y)
content = content.replace(’[7, '_7)
content = content.replace(’]’, )
file.write (content)

file.close ()
hv. Curve ((plot_x, —plot_y))

#FILE: tilg0 .ipynb ends

R code for Subsection 5.1

The following R code can be used in the real experiments of Subsection 5.1 if
Nuorgam’s weather data from Ilmatieteenlaitos is imported to R with the name

itld.

#R code for 5.1
#ormrai 2021—06—05
#FILE: tilgb01 .R begins

#libraries
library (acepack)
library (infotheo)
library (minerva)

#creating a dataframe with 8§ variables:
#1.air pressure, 2.relative humidity, 3.snow,
#5.dew point, 6.wind direction , 7.qgust speed,
f<—function (u){
as.numeric(as.vector(u)[2:8762])

}

4.temperature ,
8. wind speed

df<—cbind (£ (it1d$V7),f(it1d$V9), f(itld$V11), f(it1d$V12),
F(it1d$V13),f(itld$V15), f(it1d$V16),f(itld$V1T))

df<—df|complete. cases (df) ,|

#checking this dataframe
dim (df)

summary ( df)

head (df)

#plotting histograms
for (i in 1:8){

hist (df[,i])
}

hist (df[,6], breaks=100,main="Histogram _of_wind_direction",
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xlab="Wind_direction_in_degrees"  col="white",
cex.axis=1.1,cex.lab=1.3,border="blue")

#finding the mode of wind direction
getmode<—function (v){

uniqv<—unique (v)

uniqv [which .max(tabulate (match(v,uniqv)))]|

}
getmode (df|,6])

#plotting a few varitables against each other
par (pty="s")

#temperature vs snow

plot (df|,4],df[,3],cex.axis=1.1)
#temperature vs dew

plot (df|,4],df[,5],cex.axis=1.1)

#wind direction wvs gust speed

plot (df|,6],df[,7],cex.axis=1.1)

#wind speed vs gust speed

plot (df[,8],df[,7],cex.axis=1.1)

#computing measures of dependence from the data
x<—c(rep(1,7),rep(2,6),rep(3,5),rep(4,4),rep(5,3),6,6,7)
y<—c(2:8,3:8,4:8,5:8,6:8,7,8,8)
colxy<—cbind (x,y,rep(0,28) ,rep(0,28) ,rep(0,28) ,rep(0,28),
rep(0,28))
for (i in 1:28){
colxy[i,3]<——cor(df|,colxy[i,1]],df[,colxy[i,2]],
method=’spearman ’)
fxy<—ace (df|,colxy|[i,1]|],df]|,colxy[i,2]])
colxy [1,4]<—cor (fxy$tx, fxy$ty)
disc<—discretize (data.frame(df|, colxy[i,1]],
df|,colxy[i,2]]))
mik—mutinformation (disc|,1], disc|[,2])
colxy [1,5]<—mi
colxy[i,6]<—sqrt(l—exp(—2*mi))
colxy [i,7]<—mine(df|,colxy[i,1]],df[,colxy[i,2]])$MIC
}

dfl<—round (colxy , digits=3)

#printing the results for a table in latex
for (i in 1:28){
print (c("&" ,df1[i,3],"&" ,df1[i,4],"&" ,dfl[i, 5],
"&"dfl]i,6],"&" ,df1[i,7],"\\"),quote=FALSE)

77



#studying the maximal correlation between the wind direction
#and the two types of wind speeds

#mec for wind direction wvs gust speed
fxy<—ace (df[,6],df[,7])
print (cor (fxy$tx, fxy$ty))

#mcc for wind direction vs wind speed
fxy<—ace (df[,6],df[,8])
print (cor (fxy$tx, fxy$ty))

#mcec for wind direction vs gust speed with Spearman
fxy<—ace (df|,6],df[,7])
print (cor (fxy$tx, fxy$ty , method="spearman"))

#mcc for wind direction vs wind speed with Spearman
fxy<—ace (df|,6],df[,8])
print (cor (fxy$tx , fxy$ty ,method="spearman"))

#mec for wind direction vs gust speed without zero
#observations of the gust speed

sdf<—subset (df,df[,7] >0)

dim(sdf)

fxy<—ace(sdf|,6],sdf[,7])

print (cor (fxy$tx, fxy$ty))

#mec for wind direction wvs wind speed without zero
#observations of the gust speed
fxy<—ace(sdf|,6],sdf[,8])

print (cor (fxy$tx, fxy$ty))

#FILE: tilg501 .R ends
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