Prokaryote growth temperature prediction with machine learning

Akseli Reunamo

Master's Thesis

University of Turku Department of Biology

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU

Department of Biology

REUNAMO, AKSELI: Prokaryote growth temperature prediction with machine learning Master's thesis, 44 p., 51 appendix pages Physiology and Genetics, Master of Science August 2021 The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin OriginalityCheck service

Archaea and bacteria can be divided into four groups based on their growth temperature adaptation: mesophiles, thermophiles, hyperthermophiles, and psychrophiles. The thermostability of proteins is a sum of multiple different physical forces such as van der Waals interactions, chemical polarity, and ionic interactions. Genes causing the adaptation have not been identified and this thesis aims to identify temperature adaptation linked genes and predict temperature adaptation based on the absence or presence of genes. A dataset of 4361 genes from 711 prokaryotes was analyzed with four different machine learning algorithms: neural network, random forest, gradient boosting machine, and logistic regression. Logistic regression was chosen to be an explanatory and predictive model based on micro averaged AUC and Occam's razor principle. Logistic regression was able to predict temperature adaptation with good performance. Machine learning is a powerful predictor for temperature adaptation and less than 200 genes were needed for the prediction of each adaptation. This technique can be used to predict the adaptation of uncultivated prokaryotes. However, the statistical importance of genes connected to temperature adaptation was not verified and this thesis did not provide much additional support for previously proposed temperature adaptation linked genes.

Keywords: Artificial Intelligence, Genome, Adaptation, Computational Biology, Supervised learning (Machine learning), Clusters of Orthologous Groups (COGs)

Table of Contents

1	Introd	Introduction1				
	1.1 P	rokaryotes	1			
	1.1.1	Prokaryote evolution	2			
	1.1.2	Prokaryote temperature adaptation	4			
1.1.3		Growth temperature	6			
	1.2 A	rtificial intelligence: Machine learning and deep learning	6			
	1.2.1	Overview	6			
	1.2.2	Model selection	8			
	1.3 C	lassification methods	10			
	1.3.1	1.3.1 Overview				
	1.3.2	Logistic Regression	11			
	1.3.3	Random Forests	12			
	1.3.4	Gradient tree boosting	12			
	1.3.5	Neural networks	13			
	1.4 R	elated work	15			
	1.5 R	esearch aims	15			
2	Materials and Methods16					
	2.1 Data		16			
	2.1.1	Data format	16			
	2.1.2	Preliminary data processing	16			
	2.2 M	lodel selection	20			
	2.2.1	Hyperparameter optimization and final model	20			

	2.3	Feature selection	20			
	2.4	Phylogenetic tree	21			
3	Res	sults	22			
	3.1	Model selection and hyperparameter optimization	22			
	3.2	Prediction	24			
	3.3	Feature selection	27			
4	4 Discussion		31			
	4.1	Main results	31			
	4.2	Possible error sources	32			
	4.3	Possible improvements	33			
	4.4	Future studies	33			
5	Acknowledgments					
6	6 References					

1 Introduction

1.1 Prokaryotes

Prokaryotes are one of the keystone species maintaining the flow of nutrients and carbon, and other ecological processes on the Earth (Torsvik et al. 2002). Without prokaryotes, the equilibrium of a stable climate would be disturbed. Carbon found in prokaryotes has been estimated to be as large as total carbon found in plants and they have been found almost everywhere: aquatic environments, soil, subsurface, animals, plants, and even air (Whitman et al. 1998). In addition, the DNA amount of prokaryotes is estimated to be about the same as the total DNA in all eukaryotic groups (Landenmark et al. 2015). The kingdom consists possibly millions of different species and they are capable to live in extreme environments where very few other species are found (Pedrós-Alió & Manrubia 2016).

The prokaryote kingdom is divided into two domains: bacteria and archaea. Archaea were separated from the bacteria kingdom in 1977 (Woese & Fox 1977), but they still share several common features. Archaea and bacteria share a similar prokaryotic cell structure of which three main features are the absence of nuclear membrane, they are, as few exceptions excluded, smaller than eukaryotes, and there are major differences in cytoplasmic membrane compared to eukaryotic one (Whitman 2009). Prokaryotes can be defined shortly as cells that employ co-transcriptional translation on their main chromosomes in which translation occurs same time as the messenger RNA is growing (Martin & Koonin 2006).

Prokaryote cell structure is hard to define because exceptions can be found in all cell attributes. Thus, the following description of prokaryote cell structure by (Bertrand et al. 2018) suits typical prokaryotes. Prokaryote cell size is less than 5µm and prokaryotes' genome usually consists of one circular chromosome and several plasmids. In addition, their genetic material does not contain histones. The prokaryotic cytoplasmic membrane contains different lipids than eukaryotes, for example, the prokaryotic membrane lack sterols. In general, prokaryotes have a wider and more diverse metabolism than eukaryotes.

Regardless of the huge variety of prokaryotes, they share detectable similar genome architecture; both archaea and bacteria domains lack introns and a large fraction of genes are organized as operons (Bertrand et al. 2018). Operons are clusters of co-regulated genes with related functions (Osbourn & Field 2009). Prokaryotes share a small number of conversed operons and a huge number of unique and rare operons (Koonin & Wolf 2008). Albeit a vast number of unique or rare operons exist, corresponding operons can be identified by analyzing clusters of orthologous groups (Galperin et al. 2019). Genome size in bacteria ranges between about 112 Kb (*Nasuia deltocephalinicola*, intracellular endosymbiont) to 16.04 Mb (*Minicystis rosea*, myxobacteria), whereas in archaea ranges between 490 Kb (*Nasuia deltocephalinicola*, ectosymbiont of other archaea) (Huber et al. 2002) to 5.75Mb (*Methanosarcina acetivorans*) (Kellner et al. 2018).

1.1.1 Prokaryote evolution

According to literature, the first living organism was probably some kind of prokaryote (Bertrand et al. 2018). Interactions among species, such as competition for space and resources and cooperation, have been proposed to be the driving force of differentiation and genomic development.

The evolution of prokaryotes can happen through multiple different processes including mutations, rearrangements, and horizontal gene transfer (HGT) within different or closely related taxa (Juhas et al. 2009). HGT occurs through transformation, conjugation, and transduction. It has been stated that HGT is the major evolutionary force of prokaryotic evolution and it helps in adaptation to new environmental conditions because this process expanses the gene content and introduces genes for new metabolic functions (López-García et al. 2015).

HGT has a major effect on adaptation, but gene duplication and *de novo* gene appearance may also lead to new properties, although *de novo* gene formation is a rare and highly unlikeable event in gene gain compared to HGT (Puigbò et al. 2014). Genes can be gained, but adaptation may also be obtained through gene loss. Gene loss is more common than gene gain, leading to the suggestion that in the evolution of prokaryotes genome reduction would be the default evolutional process and the loss of genes is compensated by gene gain via HGT (Puigbò et al. 2014). To understand genome function, genome annotation accuracy depends on the accurate identification of orthologous genes (Makarova et al. 2007).

Orthologous proteins are products of genes that can be found in at least two different species, but the genes are inherited from a single gene of the last common ancestor (Sonnhammer & Koonin 2002). Information about conserved protein groups can be leveraged to understand functional and evolutional perspectives of prokaryotes. Orthologs typically have the same function, thus identification of them gives a framework for functional and evolutionary genome analysis (Tatusov et al. 1997). The Clusters of Orthologous groups database was created in 1997 (Tatusov et al. 1997) and further updated first in 2003 (Tatusov et al. 2003), second in 2014 (Galperin et al. 2015) and, third in 2020 (Galperin et al. 2021). Original COGs were formed in six stage process defined by Tatusov et al. (2000). First, protein sequences were compared all-against-all. Next, paralogs were detected and combined meaning a combination of proteins in the same genome that are more like each other than any protein of other species. Next, triangles of mutually consistent genome-specific best hits were detected taking into account the paralogs detected in the second phase. Next, triangles were combined with a common side to form COGs (Figure 1). Next, each COG was analyzed individually to remove false positives and to identify multidomain proteins. Detected multidomain proteins were divided into single-domain components and treated with four previous steps. Finally, COGs that had multiple members and were found from all or multiple genomes were inspected with phylogenetic trees, cluster analysis and, visual inspection of alignments to define the final set of COGs.

Figure 1. Formation and combination of COG triangles. a) Species that have orthologous genes or domains including paralogs are combined to form a COG triangle. b) Formed COG triangle is combined with common side (Kristensen et al. 2011)

1.1.2 Prokaryote temperature adaptation

An environment where nutrient and habitat space are limited causes competition between species that share the same living conditions. If the environment provides ecological niches, competition may lead to variant selection. Habitat temperature can also be an environmental niche that provides a chance to avoid competition. In the case of most bacterial species, they have a rapid growth rate and large populations that give rise to possibilities of new mutations into the population (Hibbing et al. 2010).

New genes that have arisen through duplication are called paralogs and bacteria genomes consist of a significant number of them, ranging from 7% to 41% in a dataset containing 106 bacterial genomes (Gevers et al. 2004). Adaptation to specific temperatures has been found to be a fluxing feature that can be gained particularly through HGT or lost several times in evolutionary short periods (Puigbò et al. 2008).

Prokaryotes can be classified into four classes by their favored growth temperature. Psychrophiles grow the best below 20°C, mesophiles grow the best at moderate temperatures between 20 and 50°C, thermophiles grow the best between 50 and 80°C, and hyperthermophiles temperature higher than 80°C (Puigbò et al. 2008). The exact temperature ranges of classes vary slightly among literature (Table 1) (Berezovsky & Shakhnovich 2005, Goldstein 2007, Allaby 2010), thus the above definition has to be taken with reservations.

Article	Psychro-	Meso-	Thermo-	Hyperthermo-
	philes	philes	philes	philes
Berezovsky and Shakhno-	Not defined	G<60°C	G<80°C	G>80°C
vich, 2005				
Puigbo et al., 2008	G<20°C	20 <g<50< td=""><td>50<g<80°c< td=""><td>G>80°C</td></g<80°c<></td></g<50<>	50 <g<80°c< td=""><td>G>80°C</td></g<80°c<>	G>80°C
		°C		
Goldstein, 2009	G<20°C	20 <g<45< td=""><td>45<g<80°c< td=""><td>G>80°C</td></g<80°c<></td></g<45<>	45 <g<80°c< td=""><td>G>80°C</td></g<80°c<>	G>80°C
		°C		
Allaby, 2010	G<15°C	20 <g<45< td=""><td>G<=60°C</td><td>G>90°C</td></g<45<>	G<=60°C	G>90°C
		°C		

Table 1. Psychrophile, mesophile, thermophile, and hyperthermophile growth temperature definitions among literature. G is an abbreviation for growth temperature.

Two major features affecting the physical thermostability of proteins are the amino acid sequence and protein structure. The most reported features that affect protein stability are van der Waals interactions, higher core hydrophobicity, additional networks of hydrogen bonds, secondary structure, ionic interactions, packing and length of surface loops, and proteins with high thermostability possesses various combinations of these forces (Berezovsky & Shakhnovich 2005). The general trend is that the interaction energies of molecules such as interaction energy between hydrophobic residues and aromatic residues increase towards higher growth temperature in mesophiles, thermophiles, and hyperthermophiles, and declines in psychrophiles (Goldstein 2007). In the analysis of mesophile protein and thermophile protein homologs, a general mechanism of thermostability was not found, thus suggesting that a small number of apparently strong molecule interactions cause the thermostability (Berezovsky & Shakhnovich 2005).

The variability of amino acid usage is caused by the guanine-cytosine (G + C) composition of DNA and organisms' optimal growth temperature (OGT) (Pasamontes & Garcia-Vallve 2006), but as stated above specific amino acid properties affecting the OGT has not been determined. However, a study suggests that thermophile specific DNA repair

system might be one factor that allows thermophiles to live in higher temperatures (Makarova et al. 2002).

In previous research, genome derived features, such as G + C composition, genome length and sequence, proteome derived features, and metabolic networks have been used to predict the OGT (Jensen et al. 2012, Sauer & Wang 2019, Weber Zendrera et al. 2019). Yet, none of these studies have been able to predict the OGT of psychrophiles reliably, because of the low number of psychrophiles in available data.

1.1.3 Growth temperature

Bacteria growth is usually modeled as three stage process that contains lag, exponential, and stationary phases and the parameters of the model are the numbers of cells, at the beginning, the maximum specific growth rate, and the beginning of the stationary phase. (Zwietering et al. 1990). Assuming that no other factor is limiting the growth, the OGT can be derived from the maximum specific growth rate. For example, if cells are cultured in different temperatures than their habitat temperature, the growth rate will change according to the number of modifications that cells have to undergo to adapt to the new environment (Zwietering et al. 1990, Buchanan et al. 1997).

The temperature being the only limiting factor is unreal and creating a culture that possesses exactly the same conditions as the environment is impossible, thus defined optical growth temperature is always slightly biased (Musto et al. 2006). If optical growth temperature cannot be defined by culturing, growth is defined by growth temperature minimum to growth temperature maximum or simply growth or no growth (Reimer et al. 2019). The vast majority of thermophiles and hyperthermophiles are not formally described and their characteristics are defined from DNA-sequence and sample collection sites (Hedlund et al. 2015).

1.2 Artificial intelligence: Machine learning and deep learning

1.2.1 Overview

Artificial intelligence (AI) is generally defined as a system that has the ability to understand external data correctly, learn from the data, and change its behavior according to it (Haenlein & Kaplan 2019). The proposed alternative definition to the whole field of AI is: "the effort to automate intellectual tasks normally performed by humans" (Chollet 2018). Machine learning (ML) is a subset of AI and deep learning (DL) is a subfield of ML (Helm et al. 2020). Traditional programming is based on the concept that humans define rules of the program and the program outputs the answers according to the rules and in AI systems instead of predefined rules, the system interprets the data and given answers to produce rules which leads to given answers (Chollet 2018).

In genomics, and biology in general, data of interest is usually too complex to be investigated with simple statistical methods, hence ML algorithms are well suited for genomics (Eraslan et al. 2019). ML has been used in numerous genomic studies including cell DNA methylation state prediction (Angermueller et al. 2017), schizophrenia detection from mRNA expression levels (Zhu et al. 2021), and microRNA targets detection (Shuang Cheng et al. 2016). Because of the success of various applications in previous studies, it has been stated that ML will become a more important tool for genomics as large datasets become available through international collaborative projects (Libbrecht & Noble 2015).

ML systems are trained with data and they transform the data to a more meaningful representation of which is evaluated by prediction performance (Chollet 2018). ML algorithm can be interpreted as a process of searching a large space of candidate programs led by prediction performance (Jordan & Mitchell 2015). In ML, the learning of the system is defined automatic search process for better representations or finding a combination of model parameters that yields to best possible result (Chollet 2018). In statistics basis of the analysis is modeling, and phenomena are explained by estimating the values of parameters from the data, and the goodness of the model is evaluated usually by R²-test and residual analysis (Breiman 2001a). If the data is high dimensional, this approach may lead to a large number of models that fit data acceptable, but perform badly in prediction tasks (Breiman 1996). In addition, in traditional statistics features of the data are usually selected or created manually and the outcome is heavily dependent on these features and relevant features may not be generated or selected by this approach, which may affect the overall modeling performance (Eraslan et al. 2019). ML systems and statistics use a lot of similar base models and they both can be evaluated by predictive accuracy, but statistics lack standards for comparison of models that are common in ML (Breiman 2001a).

ML algorithms can further divide into supervised learning, reinforcement learning, and unsupervised learning. In supervised learning, systems are trained to find rules why certain characteristics lead to specific results (Jordan & Mitchell 2015). Supervised systems can either perform classification tasks or regression tasks in which results are continuous values. These systems use annotated training data which means that the true outcome or result of every sample used in training is known. In reinforcement learning, an algorithm chooses actions based on its environment to maximize a reward, for example, a system analyses customer feedback and outputs answers that maximize the review score (Chollet 2018). Unsupervised learning is used for finding unknown relationships between data points. This is also referred to as clustering where similar instances are grouped (Theodoridis & Koutroumbas 2009).

DL system is a ML algorithm that has multiple simple modules combined into a single model and these modules are often called layers of which purpose is to represent the data in a more meaningful way for the next layer (LeCun et al. 2015). The last layer is called an output layer, which yields the final result and the layers are connected to each other usually in sequence, but other architectures are also possible (Chollet 2018). Each layer has its operations to data and contribution of them to result are stored in layer weights and these are adjusted within training according to the whole performance of the model (Chollet 2018). The performance can be interpreted in many ways, but in the training of the DL system, this means measuring how far the final layer output is from the true value. An objective function is used as the distance score, which tells how the model has succeeded with a specific sample and the score is used as feedback to adjust the weights to the direction where the objective function obtains better results (LeCun et al. 2015). The objective function's value cannot be used directly to adjust the weights. To extract the contribution of each layer's weights, the most common way is to use a backpropagation algorithm of which is based on gradient descent (Zhang 2019). The gradient is a derivative of a multidimensional function, which can be further disassembled to a chain of layer operation derivatives that in DL reveal the contribution of each parameter had in loss (Chollet 2018).

1.2.2 Model selection

To measure how well the model generalizes, it must be tested with unseen data (Géron 2017). Thus, available data need to be divided into training set that is used in training, and test set that is used to evaluate system after training. Usually, some part of the training set is used as a validation set which is used to monitor the performance during the training (Chollet 2018). Assumptions for this procedure are that the training set and test set are reprehensive and large enough and the data is not redundant. A test set large enough is

capable to evaluate the system's true error (Varma & Simon 2006). If a system that appears to predict well on the training data fails to generalize to the test set, this is caused by overfitting. Overfitting indicates that the system rather memorizes the seen patterns than generalizes or the system is fitted to the noise in the data (Dietterich 1995). A model can also be underfitted which means that the used model is too simple to learn underlying complex data structure (Géron 2017).

The selection of the best ML algorithm can be seen as optimization (Cawley & Talbot 2010). The goal of optimization is to achieve better generalization on unseen data by finding optimal parameters of the system dealing with specific learning task (Bottou et al. 2018). Optimization can be divided into convex optimization problems and highly nonlinear and nonconvex problems and in machine learning optimization problems are often highly nonlinear and nonconvex which means that finding the global optimum of function is not guaranteed (Bottou et al. 2018).

Cross-validation (CV) is a common method for both parameter optimization and algorithm selection (Cawley & Talbot 2010). CV is especially recommended to be used if the number of samples is small (Varma & Simon 2006). In this method, data is partitioned randomly into non-overlapping *k*-folds that are as equal sized as possible and the performance of the system is evaluated with fold *i*, and the rest of the folds are used in training (Géron 2017). The system's generalization performance is derived from the mean performance of folds. The system's error can be divided into bias and variance. Bias describes the difference between the estimated value and unknown true generalization error and variance describes the variability of expected value due to the sampling of the data. If algorithm selection and parameter optimization are treated separately in CV, optimistic bias in performance, potentially in high magnitude, can be expected (Cawley & Talbot 2010). To estimate the system's generalization error reliable with small datasets, two nested CV loops are needed. This procedure is called nested CV in which the outer CV estimates the generalization error while the inner CV is used for parameter optimization leading to an almost unbiased estimate of the true error (Varma & Simon 2006).

Two common strategies for the search of system parameters are grid search CV and random grid search CV (Géron 2017). In grid search CV, a multidimensional array of all possible parameter combinations from selected parameters is created. Then all the parameter combinations are evaluated with all folds. In random grid search CV, the same multidimensional array is created, but instead of trying all possible values, only a selected number of random parameters are tested. Random grid search CV is preferred when the number of possible parameter combinations is large (Géron 2017).

1.3 Classification methods

1.3.1 Overview

There is a huge number of different classification algorithms, but the goal of this chapter is to give an overview of supervised learning classification methods and their parameters that are related to or utilized in this thesis. Supervised classifiers use prior known information about the samples and in this case, it means that all training samples are labeled to some class (Theodoridis & Koutroumbas 2009). The simplest classification task is the binary classification where the classifier needs to distinguish two classes that are usually referred to as positive and negative or 1 and 0. In single label multiclass classification there are more than two possible classes and each sample can be set into one class (Chollet 2018).

The main metric to measure a performance of the classifier is accuracy; the fraction of samples that were correctly classified. Accuracy is a very simple method to evaluate performance. However, it may exaggerate the goodness of the classifier, if the dataset is imbalanced (Géron 2017).

A more informative way to measure the performance of the classifier is to evaluate it with the receiver operating characteristic (ROC) curve and the area under the curve (AUC). ROC curves can only be produced from binary class setting (Berthold et al. 2010). To extend ROC curve and AUC analysis to multiclass problem, each class need to be treated as a binary problem. This can be achieved in two ways. In the one-versus-all approach, a classifier for each class is trained where all classes are separately treated as a positive class and the rest as a negative class (Galar et al. 2011). Another way is to encode the classes to binary format, where true class equals 1 and others 0. This is called one-hot encoding because only one class equals 1 (hot) in the label vector (Chollet 2018). ROC curve expresses how true positive rate changes against false positive rate. True positive rate is the fraction of positive samples, or in other words, samples that actually belong to a particular class are incorrectly declared as positive (Géron 2017). AUC can be used to compare different classifiers because larger AUC values indicate better performance of the

classifier on average (Theodoridis & Koutroumbas 2009). AUC is the probability that a randomly chosen positive sample will have a smaller estimated probability of belonging to a negative class than a randomly chosen negative sample (Hand & Till 2001). The value of AUC is between 0.5 and 1 where 0.5 corresponds to random guessing and 1 perfect classifier (Berthold et al. 2010).

Overall performance of the classifier in multiclass classification can be evaluated by micro averaging and macro averaging the AUC. Micro averaged AUC score gives equal weight to sample; it expresses an average over all the sample and class pairs and macro averaged AUC score gives equal weight to every class without taking account of its frequency, thus it is an unweighted mean of each class (Yang 1999).

1.3.2 Logistic Regression

Logistic regression (LG) is a generalized linear model and it is used to examine questions in which the dependent variable is binary or categorical (Tibshirani et al. 2015). LG is a nonparametric technique; it does not require any distributional assumptions (Osborne 2015). Prediction of the model is based on root level to conditional probabilities and odds. The dependent variable is transformed to logit which is the natural logarithm of the odds. This allows regression to use the logit link function, thus the LG equation is $Logit(\hat{Y}) =$ $b_0 + b_1 X_1 \dots b_n X_n$. Here b_0 is the constant, b_1 is the coefficient of X_1 , and b_n is the coefficient of X_n . When LG has more than two variables, the model estimates the unique effects of individual variables in the whole variable effect space of the equation (Osborne 2015). Typically, logistic models are fitted by maximizing a binomial log-likelihood of the data (Tibshirani et al. 2015).

Regularization is one way to avoid overfitting of logistic regression and it can be carried out with multiple techniques. Common regularization methods are Lasso regression (*l1* regularization) and Ridge regression (*l2* regularization). The *l1* regularization uses a penalty term for coefficients to shrink them or setting some of them to zero (Tibshirani et al. 2015). The *l2* regularization is very similar to *l1*, but the geometry of the *l2* optimization condition region is disk-like which prevents coefficients to be set to zero (Tibshirani et al. 2015). The size of the penalty term determines how much effect coefficients are allowed to have in the model in both *l1* and *l2* regularization.

1.3.3 Random Forests

Random Forest algorithms are ensemble techniques for classification and regression tasks in which a large number of individual decision trees are constructed based on a random sample and feature selection and their results are combined as the prediction (Breiman 2001b). Random Forest belongs to a large class of nonlinear classifiers. The goal of the algorithm is to find boundaries of feature space that separates the samples. The search of these boundaries in trees is performed via a sequence of decisions which are called nodes. The nodes represent a decision based on feature values for example "is the feature value x > threshold". The individual node's prediction is called a leaf. To select which features are used as nodes, the order of nodes and the threshold values algorithm need to be trained (Theodoridis & Koutroumbas 2009).

In theory, each node can consist infinite set of questions. If the threshold value is continuous, in practice though, only a finite number of questions can be considered. In order to decide the threshold, the goal is to find the best value that divides samples into homogenous or in decision tree terminology pure subsets compared to starting set of samples (Theodoridis & Koutroumbas 2009). A variety of purity measures has been defined and usage of them depends on the task. A decision tree does not have to use all the available features to declare a subset as the leaf. Usually, the purity of the subset is in a certain threshold is used as the stop splitting rule (Song & Lu 2015). When a node is declared as the leaf, it defines the outcome either as a class or continuous value. When designing a decision tree, it is important to take tree size into account. The tree needs to be large enough, but if it is too large, the tree tends to overfit (Theodoridis & Koutroumbas 2009). For example, in RandomForestClassifier implemented by Scikit-learn, tree size can be controlled with parameters *max_depth*, *min_sample_split*, *min_sample_leaf*, and *max_features* (Pedregosa et al. 2011).

1.3.4 Gradient tree boosting

Boosting is an approach to improve selected algorithm's performance by combining classifiers. However, boosting is conceptually different from ensemble methods. In boosting a series of systems are trained iteratively, that all use the same base system, but using a different subset of training set or different weighting over the samples of the training set (Theodoridis & Koutroumbas 2009). At each iteration, the computed weighting distribution emphasizes the samples that the system performed poorly. The final system obtained is a weighted average of the previously trained systems.

As said in chapter 1.2.1 gradient is used to find the best set of weights to minimize or maximize the objective function. In traditional gradient optimization parameters of the system are adjusted with small steps, of which size the user determines as learning rate, to minimize or maximize the objective function (Géron 2017). Usually in ML, objective function is defined as loss function of which is tried to minimize. This optimization approach is called gradient descent. Gradient boosted tree algorithms leverage this idea which means that functions performance is evaluated by objective function which measures the difference between prediction and the target (Géron 2017). As traditional decision trees use purity as a measure of tree structure quality, the quality of gradient boosted trees is derived from a wider range of objective functions (Chen & Guestrin 2016).

XGBoost has been one of the most popular and successful gradient boosted tree systems in Kaggle ML competitions (Chen & Guestrin 2016). XGboost's success is based on objective function optimization which takes into account training loss and regularization of the complexity of the model (XGBoost developers 2020a). Overfitting of a model in XGboost can be controlled by controlling the model complexity with parameters *max_depth*, *min_child_weight*, and *gamma* or making the model more robust to noise which is controlled with parameters *lerning_rate* and *reg_lamda* (XGBoost developers 2020b).

1.3.5 Neural networks

Neural networks are multilayer architecture systems. Each layer consists of neurons or depending on terminology nodes. These neurons form a hidden layer. The first layer is called the input layer of which number of neurons defines the dimension of the input space and the last layer is called the output layer which computes as many predictions as desired output space has (Theodoridis & Koutroumbas 2009). For example, in four class classification problem, the output layer has four neurons.

The anatomy of a neural network can be decomposed into layers, objective function, and optimizer which determines how the gradient is used to change the parameters of the model (Chollet 2018). There are a vast number of different types of layers, neurons, objective functions, and optimizers, thus only relevant for this thesis are introduced below.

In fully connected layers each output neuron is connected to all previous and next hidden layer neurons (Liu et al. 2018). Usually, neurons of fully connected layers are perceptrons with a non-linear activation function. The fully connected layer receives a feature vector shaped according to the previous layer and then each perceptron is multiplied with an individual weight of which result bias term is added (Chollet 2018). This result is inputted to the activation function which outputs the result in a differentiable form (Géron 2017). In 2017 the most popular activation function was the rectified linear unit (ReLU) because it is efficient and easy to compute (LeCun et al. 2015).

Neural networks can be regularized with multiple approaches. One efficient technique is a dropout layer, which reduces overfitting and has been part of successful supervised learning tasks such as sequence and structure motif identification (Budach & Marsico 2018) and patient prognosis prediction from genes and pathways (Hao et al. 2018). The dropout layer removes units and their incoming and outgoing connections randomly from the system during training which prevents the units from excessive co-adaption (Srivastava et al. 2014).

Categorical cross entropy is a loss function used in multi-class classification and the loss minimizes the distance between output and true probability distributions (Chollet 2018). In supervised learning, cross entropy is the distance between a predicted distribution and label distribution. Entropy is a measure of uncertainty illustrated as a probability distribution and according to information theory, maximum entropy distribution makes the least assumptions about the data, thus leading to the least biased estimate on a given task (Jaynes 1957). Maximizing entropy of distribution is the same as minimizing cross entropy of distribution (Kern-Isberner 1998).

Momentum optimization is based on gradient descent, but it also takes account of previously computed gradients (Ruder 2016). In momentum optimization, the previous gradient accelerates the optimization by the user defined momentum term. The momentum algorithm is defined as 1. $Bm - \eta \times \Delta_u J(u) \rightarrow m 2$. $u + m \rightarrow u$ (Géron 2017). Here B is momentum term, m is momentum vector, η is learning rate, u is the weights, J(u) is the objective function, and $\Delta_u J(u)$ represents the gradient vector which contains all the partial derivatives of the cost function. The advantage of momentum optimization is that it is faster and escapes from plateaus easier than traditional gradient descent (Géron 2017).

1.4 Related work

The main objectives of previous related studies have been explaining the source of variability in prokaryote growth temperatures (Berezovsky & Shakhnovich 2005, Puigbò et al. 2008). Berezovsky and Shakhnovich suggest that thermostability is possible in prokaryotes living in high temperatures due to more compact and hydrophobic proteins than mesophilic prokaryotes. Only a handful of studies have tried to predict the OGT and they used metabolic network or genome derived features with linear models and regression for the prediction, rather than individual genes (Sauer & Wang 2019, Weber Zendrera et al. 2019). Sauer and Wang used multiple linear regression, thus the prediction was continuous value. Their model was evaluated with root mean squared error RMSE and R²-test of the test set and the model performed well with unseen validation data sized 528 species (RMSE = 5.18 °C, R^2 =0.758). However, a study by Jensen et al. (2012) predicting the OGT of bacteria, that is the most related to the prediction section of this thesis, contains optimistic bias in its performance; classifier was trained with 70 samples and predictive performance was evaluated only single test set that contained 25 samples. Their classifier got 76 % accuracy. In addition, the classification was only done for three temperature adaptation classes. On grounds of the above, additional research is needed to provide more information about adaptation mechanisms and individual genes affecting this phenomenon.

The COGs database has been previously used in an attempt to define thermophilic gene signature (Makarova et al. 2002). Makarova et al. used fully sequenced genomes from 12 hyperthermophile archaea and 2 hyperthermophile bacteria that were used to define conserved gene neighborhood linked to thermophilic adaptation. This gene neighborhood was suggested to be a thermophile specific DNA repair system. There was not a single gene present in all genomes that would explain the temperature adaptation. However, the majority of genomes had a group of five core COGs.

1.5 Research aims

The aims of this thesis are to leverage ML techniques for genomic analysis and use the developed pipeline to predict prokaryote growth temperature based on the presence and absence of individual genes, as well as to identify genes that affect the adaptation to certain environment temperature. This thesis uses NBCI's COGs database (Tatusov et al. 1997) that is a publicly available prokaryote genome dataset. In order to find reliable and unbiased results, I examine several different algorithms with *de facto* ML standards.

Hypotheses of this thesis are that prokaryote growth temperature can be predicted with reasonable reliability only from genetic data and a set of genes affecting temperature adaptation can be identified.

Growth temperature prediction and identification of genes responsible for temperature adaptation can lower the costs of empirical research and give useful insights for future research. Additionally, the techniques used in this thesis are applicable to other genomic datasets.

2 Materials and Methods

2.1 Data

Data used in this thesis was obtained from the COGs database (Galperin et al. 2015). During the data analysis stage of the thesis in summer 2019, the database from 2014 had 711 fully sequenced prokaryote genomes and 4631 COGs in total. These COGs covered 60-80% of species' proteome. The COGs are assigned into 26 functional categories, thus generally individual COG has a similar function among species, but there are instances that the same COG possesses different biological purposes in different species.

2.1.1 Data format

Data is provided in publicly available NBCI's file transfer system (FTP) as comma delimited files, tab delimited files, and FASTA format files. FTP contains necessary information of COGs including COGs functions, COGs functional categories, COG usage of species, protein sequence, protein identifier (accession number), and genome identifier (NBCI TaxId identifier) (Tatusov et al. 2000).

2.1.2 Preliminary data processing

Raw data processing was performed in either Python (version 3.7.3) or VI. Python environment was maintained with open-source package management system Conda (version 4.7.12).

Because of the research aim, obtaining COG usage from the data was the main objective of preliminary processing. COG usage was defined for every species and represented as a presence and absence matrix (Table 2). This was done with the Python package pandas (version 0.24.2) *pivot_table* function. After matrix creation temperature adaptations were annotated to 192 species according to previous research (Puigbò et al. 2008) and BacDive-database (Reimer et al. 2019). In total the annotated data contains 192 species (Figure 2, Figure 3); 87 mesophiles, 66 thermophiles, 26 hyperthermophiles, and 13 psychrophiles.

Species	COG1	COG2	COG3	COG4	COG5	COG6	COG7	COGN	Adaptation
P1	0	1	1	0	1	0	0	1	Т
P2	0	0	1	0	1	0	1	1	Н
P3	1	1	1	1	1	1	1	0	М
PN	1	0	1	0	0	0	0	1	М

Table 2. Visual representation of COG usage matrix. Rows represent the species, columns 1 to N represent the COG usage as 1 for present and 0 for absence and the last column represents the temperature adaptation class.

Figure 2. The number of annotated adaptations by the kingdom. Distributions of the adaptations are unbalanced between kingdoms and the adaptation distribution is especially uneven in the bacteria kingdom.

Figure 3. The number of annotated adaptations by phylum. Distributions of adaptations are unbalanced between phyla.

First, the Random Forest model was used to experiment with the data, which gave an insight into possible error sources. In the initial testing phase, the Random Forest classifier gave promising accuracy, but the temperature classification was mostly based on distinguishing archaea and bacteria kingdoms. The majority of the thermophilic prokaryotes in the data are archaea, which misleads the classifier to associate being a member of archaea kingdom also to have thermophilic adaptation, thus COGs in functional category J (Translation, ribosomal structure, and biogenesis) and additional 36 COGs were manually discarded (**Appendix 1**). Additionally, to avoid the overfitting of models, COGs that were present or absent in more than 90% of samples were removed. The final data matrix contained 2653 COGs.

2.2 Model selection

Four different classification algorithms, logistic regression, Random Forest, gradient boosting machine, and neural network performance were evaluated. Logistic regression and Random Forest were implemented with Scikit-learn Python package (version 0.21.3) modules LogisticRegression and RandomForestClassifier (Pedregosa et al. 2011). The gradient boosting machine was implemented with XGBoost's Python package (version 0.81) module XGBClassifier (Chen & Guestrin 2016). The neural network was implemented with the Tensorflow Python package (version 1.13.1) (Abadi et al. 2016).

Logistic regression, Random Forest, gradient boosting machine, and neural network classifiers were evaluated with 5-fold nested CV, which takes account of overfitting the model selection. Hyperparameters of the classifiers in the inner loop of nested CV were chosen by random grid search in Random Forest, gradient boosting machine, and neural network and by grid search in logistic regression. Detailed descriptions of tested hyperparameters and other settings are provided in **Appendix 2**. Nested CV leads to a low bias estimate of classifiers generalization performance. In nested CV training and model selection were done together in a manner that they were never separated.

2.2.1 Hyperparameter optimization and final model

Hyperparameter optimization was made with 5-fold CV and 1000 parameters were tested. The best parameter was chosen based on micro averaged AUC. The final predictive model parameter was set to the same as the best found in 5-fold CV and the final model was trained with all available annotated data. After the training, the model was used to predict the unannotated species.

2.3 Feature selection

The goal of the feature selection was to find models for each temperature adaptation that use as few features as possible and still sustain reasonable performance. Logistic regression classifier was trained with 1000 different regularization strengths and models were evaluated with 5-fold CV. CV results were plotted and regularization strengths for individual models were selected by visual interpretation. After the selection, four different models for each temperature adaptation class were trained with all available annotated data.

2.4 Phylogenetic tree

A phylogenetic tree was constructed from protein sequences of COGs that were present in 90 % of the species and the length of sequences was over 100 amino acids, resulting in 14 COGs in total. Some species had multiple entries of the same COG, thus only the longest sequences were used in the analysis.

First, sequences were aligned with MUSCLE (version 3.8.31), a program for creating multiple alignments of protein sequences (Edgar 2004). MUSCLE algorithm is based on *k*mer distance and Kimura distance metrics which allows the estimation of the evolutional relationships.

Second, the aligned sequences were further trimmed with Gblocks (version 0.91b), program for detecting and eliminating poorly aligned positions, with parameters -t=p b1=356 -b2=356 -b3=30 b4=5 -b5=h. Parameter settings are an imitation of relaxed elimination settings (Talavera & Castresana 2007). The trimming is based on multiple rules: sequence parts selected for inclusion must not contain a large number of contiguous non-conserved positions, the flanks of the parts must be surrounded with highly conserved positions, and the parts need to be at least a certain minimum length (Castresana 2000). Despite information loss due to shortening the alignments, in most alignment conditions trimming the problematic regions leads to better trees (Talavera & Castresana 2007).

Finally, processed sequences were concatenated to a single file of which was used to build an approximately-maximum-likelihood phylogenetic tree with FastTree (Price et al. 2009, 2010) (version 2.1.10), with parameter *-pseudo* of which is recommended for highly gapped sequences (MicrobesOnline 2010). FastTree tree building can be summarized into four major components. First, an initial tree is built based on the neighbor joining heuristic variant of which distance metrics are derived from the sequence position frequency vector. In this phase, the preliminary tree topology is defined. Second, FastTree aims to reduce the length of the tree based on the balanced minimum evolution principle with a mixture of nearest neighbor interchanges and subtree prune regraft moves. The balanced minimum evolution principle relies theoretically on the proven concept of minimum evolution principle that the tree with the smallest sum of branch length estimates is the most likely to be the true tree (Rzhetsky & Nei 1993). In the balanced minimum evolution principle distance between branches are approximations. Third, the tree topology and branch length are optimized based on maximum-likelihood rearrangements. Finally, the tree quality is estimated by estimating the reliability of each split in the tree with the Shimodaira-Hasegawa test. Visualization of the tree was done with the iTOL online tool (Letunic & Bork 2019).

3 Results

3.1 Model selection and hyperparameter optimization

Models performed with very similar classification accuracy (Figure 4), but logistic regression was chosen as an explanatory model in accordance with Occam's razor principle (Allaby 2010) and this algorithm had the best micro averaged AUC (Figure 5). Detailed figures of ROC curves and AUCs of classifiers are provided in **Appendix 3**.

Figure 4. Accuracy of each classifier in different nested CV outer loop folds.

Figure 5. The micro average and the macro average of each classifier in nested CV outer loop folds. Logistic regression (LogReg) had the best micro averaged AUC.

Logistic regression with regularization strength 93.91 was selected as the final predictive model. This model performed the best in 5-fold CV and its micro averaged AUC was 0.936.

3.2 Prediction

The final predictive model used 342 COGs in prediction mesophiles, 342 COGs in prediction thermophiles, 278 COGs in the prediction of hyperthermophiles, and 208 COGs in the prediction of psychrophiles. Evolutionary relationships between annotated species and predicted species can be observed visually in Figure 6.

Figure 6. Approximately-maximum-likelihood phylogenetic tree and temperature adaptations. In total tree contains 711 species of which 519 are predicted and 192 annotated. Turquoise samples are bacteria, purple samples are archaea, red samples represent hyperthermophiles, yellow samples represent thermophiles, green samples represent mesophiles and blue samples represent psychrophiles. Annotated adaptations are in the outer layer of the circle and predicted adaptations are in the inner layer. The interactive tree can

be accessed from the ITOL website <u>http://itol.embl.de/shared/rakseli</u> under the project title "Master's thesis".

The most predicted adaptation was mesophile in both archaea and bacteria (Figure 7). In the prediction of archaea, none of the species was predicted as psychrophile or thermophile. In the prediction of Bacteria mesophile and thermophile were the most common predictions. Most of the predicted psychrophiles belong to the phylum *Chlorobi* (Figure 8). A table of predictions, kingdom, and phylum is provided in **Appendix 4**

Figure 7. Predicted temperature adaptation count by the kingdom.

Figure 8. Predicted temperature adaptation count by phylum.

3.3 Feature selection

Chosen regularizations lowered the performance of the models by about 0.01 AUC score compared to best obtained AUCs (Figure 9). Regularization strengths for different adaptations were set for mesophiles to 15.01, for thermophiles to 0.41, for hyperthermophiles to 50, and psychrophiles to 75. Additional COGs increase the performance only a little after a certain threshold (Figure 10). These settings resulted in models where mesophiles can be predicted with 160 COGs, thermophiles can be predicted with 53 COGs, hyper-thermophiles can be predicted with 187 COGs and psychrophiles can be predicted with 126 COGs. The number of COGs that models use is connected to the performance. If additional COGs increase the performance of the model, they may be added to the model. In total models had 78 mutual COGs. Usually, they were shared by two models, but in

few cases by three. Names, coefficients, and biological functions of the COGs are provided in **Appendix 5**.

Logistic regression performance and regularization strength of model

Logistic regression performance and number of COGs used in prediction

Figure 10. Logistic regression mean AUC in 5-fold CV and the mean number of used COGs.

There was only a little commonality between previously proposed thermophilic adaptation linked COGs (Makarova et al. 2002) and coefficients that degree the logistic regression outcome (Table 3).

COGs	Mesophile	Thermophile	Hyperthermophile	Psychrophile
	coefficients	coefficients	coefficients	coefficients
COG1857	-1.47	0.0	0.0	0.0
COG1688	0.0	0.0	0.0	0.0
COG1203	-0.53	0.0	0.0	0.0
COG1468	0.0	0.0	0.0	0.0
COG1518	-0.22	0.0	0.0	0.0
COG2254	0.0	0.0	0.0	0.0
COG3578	0.0	0.0	0.0	0.0
COG1353	0.0	0.0	0.0	0.0
COG2462	0.0	0.0	0.0	0.0
COG1769	0.0	0.0	0.0	0.0
COG1583	-0.41	1.2	0.0	0.0
COG1567	0.0	0.0	0.0	0.0
COG1336	0.0	0.0	0.0	0.0
COG1367	0.0	0.0	0.0	0.0
COG1604	0.0	0.0	0.0	0.0
COG1337	0.0	0.0	0.0	0.0
COG1332	0.0	0.0	0.0	0.0
COG3337	0.0	0.0	0.0	0.0
COG1517	0.0	0.0	0.0	0.0
COG3574	0.0	0.0	0.0	0.0
COG1343	0.0	0.0	0.0	0.0
COG1421	0.0	0.0	0.0	0.0
COG3649	0.0	0.0	0.0	0.0
COG3512	0.0	0.0	0.0	0.0
COG3513	0.0	0.0	0.0	0.0

Table 3. The COGs suggested by previous research constitutes predicted thermophilespecific DNA repair system and logistic regression coefficients. The proposed core COGs are marked in bold. In modeling of mesophiles, thermophile specific COGs 1857, 1203, 1518, and 1583 are negative which represents an inverse relationship. In modeling thermophiles, the coefficient of thermophile specific COG1583 is positive.

4 Discussion

4.1 Main results

This research shows that machine learning can be leveraged to predict prokaryote temperature adaptation with micro averaged AUC 0.93 and only a small number of COGs are needed for the prediction of each class. These results show that adaptation of uncultivated prokaryotes can be predicted which gives new tools for metagenomic data analysis (Parks et al. 2017). Growth temperature has been predicted successfully previously from genome derived features (Sauer & Wang 2019), thus the COG usage and machine learning provide an additional method for this task. The COGs with the highest coefficients of the logistic regression model may be linked to biological processes that affect temperature adaptation. This research did not provide much additional support for previously proposed thermophile specific COGs (Makarova et al. 2002), but some kind of link between them can be observed; COG1857, COG1203, COG1518, and COG1583 have negative coefficient in the model that predicts mesophiles and COG1583 has positive coefficient in the model that predicts thermophiles. The COG database has not been used much in growth temperature prediction tasks. However, the database has been used in the functional analysis of microbial communities. Tringe et al. (2005) used the database to identify environment specific gene fingerprints of soil, sea surface water, and deep sea. Antunes et al. (2016) used the database to identify the functional profile of high temperature compost microbes by analyzing the relative abundance of CDSs and corresponding COG category.

Prediction of adaptation is quite consistent with the adaptation of closely related species. However, in multiple cases, loss of adaptation to high temperature can be seen in the phylogenetic tree such as found in previous research (Puigbò et al. 2008). *Methylococcus capsulatus* is annotated as hyperthermophile, but *Methylomonas methanica* and *Methylomicrobium alcaliphilum* from the same node are predicted as mesophiles. In addition, variability of predicted adaptation can be observed inside clades.

Adaptation distributions between annotated and predicted species dived by kingdom are visually similar; most of the predicted and annotated species are mesophiles. The majority of bacteria and archaea inhabit deep oceanic subsurface (4×10^{29} of total 1×10^{30} bacterial

and archaeal cell numbers on earth) (Flemming & Wuertz 2019), thus mesophile abundance in data may be caused by easier culturing or abundance in more accessible locations. Prediction distribution of bacteria is more consistent with annotation distribution of bacteria than prediction distribution of archaea compared to annotation distribution of archaea. This may be caused by the small number of archaea in the dataset.

Adaptation distributions between annotated and predicted species divided by phylum provide additional details from the function of the classifier. Phylum *Chlorobi* contains all adaptations in annotations and predictions. In addition, most of the annotated *Chlorobi* are psychrophiles which may be the reason why most of predicted *Chlorobi* are also psychrophiles. Annotated data did not contain any *Acidobacteria*, *Korarchaeota*, or *Thaumarchaeota*, but classifier predicted also other adaptation than mesophile to these phyla which can be seen as successful training of classifier; it is able to predict unseen phyla's adaptation versatilely not just the most common adaptation. In general, distributions are visually alike, suggesting that phylum foretell possible temperature adaptation of species.

4.2 **Possible error sources**

There are some factors that may be important in the prediction of temperature adaptation that this research and used techniques possibly did not take into account. The main challenge of this research was to cope with a small dataset; it is hard to recognize meaningful patterns from the low number of hyperthermophiles, thus this had to been taken into account by preventing classifiers to predict all archaea to be in this class. The small and unbalanced dataset also may have affected the selection of the classifier, because complex dependencies are hard to find from this kind of data, thus the simplest model had the best performance.

Also, differences in classification performance may have been due to the different number of hyperparameters between classifiers. For example, only one hyperparameter of the logistic regression classifier was tuned which gave a more reliable picture of its performance compared to six hyperparameters of neural network classifier that had 972 different parameter combinations of which only 50 were tested. Unfortunately, exhaustive parameter search is very rarely possible. For example, in this research 5-fold nested CV was used, so the inner loop included training the model 250 times. With 972 parameters, the model would have been trained 4860 times making computation significantly heavier.
Other critical points to consider are growth temperature definition and temperature variability of adaptation classes (Table 1). This may have caused errors in borderline cases, where species could belong to multiple classes, but not have been cultured or were annotated by different standards. This empathizes the importance of global cooperation with researchers and institutes.

4.3 **Possible improvements**

Machine learning is a fairly young field of which development is rapid. This research could be further improved, but as a master's thesis is defined to be certain extent all possible options could not be fitted in.

The most effective improvement would be to increase the sample size. This would provide more reliable results as distributions of the temperature classes and kingdoms are uneven. Also, additional features such as codon usage, amino acid composition, and environmental factors such as pH and salinity that previous research leveraged for growth temperature related analyses (Puigbò et al. 2008, Lecocq et al. 2021) could have increased the classification performance.

One of the most reliable ways to evaluate the classification performance is to use a leaveone-out CV where each fold consists only from one sample providing an almost unbiased estimate of true generalization performance (Cawley & Talbot 2010). Unfortunately, this was not possible due to computationally heavy models.

Another approach to predict growth temperature could have been a regression model that was used successfully previously (Sauer & Wang 2019). With this technique, the prediction is a continuous value that may have been more suitable for the growth temperature prediction of class borderline species.

4.4 Future studies

Disruption of the gene allows to determine the outcome of loss of gene function (Giaever et al. 2002), thus results of this research can be used as a basis for knockout analysis. Although the statistical significance of the highest coefficients of the explanatory models cannot be tested, they still may indicate actual biological function.

ML is a good technique to find patterns. One possible application for it could be an identification of genes that Last Common Ancestor (LUCA) possessed. LUCA has been proposed to be a relatively complex organism that was a moderate thermophile or a thermotolerant mesophile (Glansdorff et al. 2008). Findings that mitochondria are bacterial origin and found in eukaryote common ancestor, and the tendency of eukaryotes to branch within archaeal lineages indicates that eukaryotes arose from prokaryotes and genes that trace to the common ancestor of archaea and bacteria trace to LUCA (Weiss et al. 2018). This relationship can be used in supersized learning to predict ancestral genes from ancestor descendent gene pairs.

Natural language or text data shares a lot of commonalities with gene data, thus techniques used in natural language processing (NLP) may provide a new perspective for genetics. One interesting approach could be to utilize word embeddings that are commonly used in NLP tasks. Word embeddings represent words as vectors based on their contexts in a large corpus, thus this technique could be used to represent nucleotide codons as vectors based on their context in the genome. Word embeddings are able to capture semantic and syntactic information of the words (Liu et al. 2015), hence provide more insight into why certain genes function in some way.

Another interesting technique to analyze genetic data could be to leverage long short-term memory (LSTM) networks. LSTM networks are good for sequential data where the order of events matter (Greff et al. 2017). This feature is critical when analyzing raw genetic data; the order of the codons defines the function of the gene and simpler approaches may not catch this.

ML and DL are widely utilized in current bioinformatics and are likely to become dominant in forthcoming research projects. These methods can capture relationships that are impossible to find with other techniques. The complexity of genetics and life is massive, thus more and more comprehensive techniques need to be put into operation. However, the interpretability of ML and DL models is low which makes analysis of model function hard (Hagenbuchner 2020). In conclusion, perfect systems do not exist, thus research must continue!

5 Acknowledgments

I would like to thank my supervisors Pere Puigbò, Antti Airola, and Manu Tamminen for their extensive support and patience. I thank Turku Collegium for Science and Medicine for funding my internship and donating a computer for analysis in summer 2019.

6 References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, F., Vasudevan, V., Warden, F., Wicke, M., Yu, Y., Zheng, X., & Brain, G. (2016, November). *TensorFlow: A System for Large-Scale' ' Machine Learning*. Presented at the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA.

Allaby, M. (2010). A dictionary of ecology (4th ed.). Oxford University Press.

- Angermueller, C., Lee, H. J., Reik, W., & Stegle, O. (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. *Genome Bi*ology, 18(1), 67.
- Antunes, L.P., Martins, L.F., Pereira, R.V., Thomas, A.M., Barbosa, D., Lemos, L.N., Silva, G.M.M., Moura, L.M.S., Epamino, G.W.C., Digiampietri, L.A., Lombardi, K.C., Ramos, P.L., Quaggio, R.B., de Oliveira, J.C.F., Pascon, R.C., Cruz, J.B. da, da Silva, A.M., & Setubal, J.C. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. *Scientific Reports*, *6*, 38915.
- Berezovsky, I. N., & Shakhnovich, E. I. (2005). Physics and evolution of thermophilic adaptation. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12742–12747.
- Berthold, M. R., Borgelt, C., Höppner, F., & Klawonn, F. (2010). *Guide to Intelligent Data Analysis* (p. 98). London: Springer London.
- Bertrand, J.-C., Normand, P., Ollivier, B., & Sime-Ngando, T. (2018). Prokaryotes and Evolution. (Jean-Claude, P. Normand, B. Ollivier, & T. Sime-Ngando, eds.) (p. 5,6,9,115). Cham: Springer International Publishing.
- Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60(2), 223–311.
- Breiman, L. (1996). Heuristics of instability and stabilization in model selection. *The Annals of Statistics*, 24(6), 2350–2383.

- Breiman, L. (2001a). Random Forests. Machine learning, 45(1), 5-32.
- Breiman, L. (2001b). Statistical Modeling: The Two Cultures. *Statistical Science*, *16*(3), 199–231.
- Buchanan, R. L., Whiting, R. C., & Damert, W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. *Food microbiology*, 14(4), 313–326.
- Budach, S., & Marsico, A. (2018). pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. *Bioinformatics*, 34(17), 3035–3037.
- Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution*, *17*(4), 540–552.
- Cawley, G. C., & Talbot, N. L. (2010). On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. *Journal of Machine Learning Research : JMLR*, 11.
- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD' ' '16 (pp. 785–794). New York, New York, USA: ACM Press.
- Chollet, F. (2018). *Deep Learning With Python* (1st ed., pp. 4–11,51,52,58,70,79,84,95). Shelter Island, New York: Manning Publications.
- Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing Surveys, 27(3), 326–327.
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, *32*(5), 1792–1797.
- Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: new computational modelling techniques for genomics. *Nature Reviews. Genetics*, 20(7), 389–403.

- Flemming, H.-C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. *Nature Reviews. Microbiology*, 17(4), 247–260. doi:10.1038/s41579-019-0158-9
- Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. *Pattern recognition*, 44(8), 1761–1776.
- Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2019). Microbial genome analysis: the COG approach. *Briefings in Bioinformatics*, 20(4), 1063–1070.
- Galperin, M. Y., Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2015). Expanded microbial genome coverage and improved protein family annotation in the COG database. *Nucleic Acids Research*, 43(Database issue), D261–9.
- Galperin, M. Y., Wolf, Y. I., Makarova, K. S., Vera Alvarez, R., Landsman, D., & Koonin, E. V. (2021). COG database update: focus on microbial diversity, model organisms, and widespread pathogens. *Nucleic Acids Research*, 49(D1), D274–D281.
- Géron, A. (2017). Hands-on Machine Learning With Scikit-learn And Tensorflow: Concepts, Tools, And Techniques To Build Intelligent Systems (First., pp. 52,79,119,150–161,249,327,368). Beijing: O'reilly Media.
- Gevers, D., Vandepoele, K., Simillon, C., & Van de Peer, Y. (2004). Gene duplication and biased functional retention of paralogs in bacterial genomes. *Trends in Microbiology*, 12(4), 148–154.
- Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, AP., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Campanoro, S., Curtiss, M., Deutchbauer, A., Entian, KD., Flaherty, P., Foury, F., Garfinkel, DJ., Gerstein, M., Gotte, D., Gűldener, U., Hegemann, JH., Hempel, S., Herman, Z., Jaramillo, DF., Kelly, DE., Kelly, SL., Kötter, P., LaBonte, D., Lamb, DC., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, SL., Revuelta, JL., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, DD., Sookai-Mahadeo, S., Storms, RK.,

Strathern, JN., Valle, G., Voet, M., Volckaert, G., Wang, CY., Ward, TR., Wilhermy, J., Winzeler, EA., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, JD., Snyder, M., Philippsen, P., Davis, & RW., Johnston, M. (2002). Functional profiling of the Saccharomyces cerevisiae genome. *Nature*, *418*(6896), 387–391.

- Glansdorff, N., Xu, Y., & Labedan, B. (2008). The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. *Biology Direct*, 3, 29.
- Goldstein, R. A. (2007). Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. *Protein Science*, 16(9), 1887–1895.
- Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. *IEEE transactions on neural networks and learning systems*, 28(10), 2222–2232.
- Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. *California management review*, 61(4), 5–14.
- Hagenbuchner, M. (2020). The black box problem of AI in oncology. *Journal of Physics: Conference Series*, *1662*, 012012.
- Hand, D. J., & Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. *Machine learning*, (45), 171–186.
- Hao, J., Kim, Y., Kim, T.-K., & Kang, M. (2018). PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput data. *BMC Bioinformatics*, 19(1), 510.
- Hedlund, B. P., Murugapiran, S. K., Alba, T. W., Levy, A., Dodsworth, J. A., Goertz, G.
 B., Ivanova, N., & Woyke, T. (2015). Uncultivated thermophiles: current status and spotlight on "Aigarchaeota". *Current Opinion in Microbiology*, 25, 136–145.
- Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V.E., Spitzer, AI., Ramkumar, P. N. (2020). Machine learning and artificial

intelligence: definitions, applications, and future directions. *Current re*views in musculoskeletal medicine, 13(1), 69–76.

- Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. *Nature Reviews. Microbiol*ogy, 8(1), 15–25.
- Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C., & Stetter, K. O. (2002). A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. *Nature*, 417(6884), 63–67.
- Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. *Physical Review*, 106(4), 620–630.
- Jensen, D. B., Vesth, T. C., Hallin, P. F., Pedersen, A. G., & Ussery, D. W. (2012). Bayesian prediction of bacterial growth temperature range based on genome sequences. *BMC Genomics*, 13 Suppl 7, S3.
- Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
- Juhas, M., van der Meer, J. R., Gaillard, M., Harding, R. M., Hood, D. W., & Crook, D. W. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. *FEMS Microbiology Reviews*, 33(2), 376–393.
- Kellner, S., Spang, A., Offre, P., Szöllősi, G. J., Petitjean, C., & Williams, T. A. (2018). Genome size evolution in the Archaea. *Emerging topics in life sciences*, 2(4), 595–605.
- Kern-Isberner, G. (1998). Characterizing the principle of minimum cross-entropy within a conditional-logical framework. *Artificial intelligence*, *98*(1-2), 169–208.
- Koonin, E. V., & Wolf, Y. I. (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. *Nucleic Acids Research*, 36(21), 6688–6719.
- Kristensen, D. M., Wolf, Y. I., Mushegian, A. R., & Koonin, E. V. (2011). Computational methods for Gene Orthology inference. *Briefings in Bioinformatics*, 12(5), 379–391.

- Landenmark, H. K. E., Forgan, D. H., & Cockell, C. S. (2015). An estimate of the total DNA in the biosphere. *PLoS Biology*, *13*(6), e1002168.
- Lecocq, M., Groussin, M., Gouy, M., & Brochier-Armanet, C. (2021). The molecular determinants of thermoadaptation: methanococcales as a case study. *Molecular Biology and Evolution*, 38(5), 1761–1776.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436–444.
- Letunic, I., & Bork, P. (2019). Interactive tree of life (iTOL) v4: recent updates and new developments. *Nucleic Acids Research*, 47(W1), W256–W259.
- Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. *Nature Reviews. Genetics*, 16(6), 321–332.
- Liu, K., Kang, G., Zhang, N., & Hou, B. (2018). Breast Cancer Classification Based on Fully-Connected Layer First Convolutional Neural Networks. *IEEE access : practical innovations, open solutions*, 6, 23722–23732.
- Liu, Y., Liu, Z., Chua, T.-S., & Sun, M. (2015). Topical Word Embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 29). Association for the Advancement of Artificial Intelligence.
- López-García, P., Zivanovic, Y., Deschamps, P., & Moreira, D. (2015). Bacterial gene import and mesophilic adaptation in archaea. *Nature Reviews. Microbiol*ogy, 13(7), 447–456.
- Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B., & Koonin, E. V. (2002). A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. *Nucleic Acids Research*, 30(2), 482– 496.
- Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I., & Koonin, E. V. (2007). Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. *Biology Direct*, 2, 33.
- Martin, W., & Koonin, E. V. (2006). A positive definition of prokaryotes. *Nature*, 442(7105), 868.

- MicrobesOnline. (2010). FastTree 2.1 documentation. Retrieved April 16, 2020, from http://www.microbesonline.org/fasttree/
- Musto, H., Naya, H., Zavala, A., Romero, H., Alvarez-Valín, F., & Bernardi, G. (2006).
 Genomic GC level, optimal growth temperature, and genome size in prokaryotes. *Biochemical and Biophysical Research Communications*, 347(1), 1–3.
- Osborne, J. W. (2015). *Best practices in logistic regression* (p. 8,25,26,27,28,29,30,31,246). 1 Oliver's Yard, 55 City Road London EC1Y 1SP : SAGE Publications, Ltd.
- Osbourn, A. E., & Field, B. (2009). Operons. Cellular and Molecular Life Sciences, 66(23), 3755–3775.
- Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. *Nature Microbiology*, 2(11), 1533–1542.
- Pasamontes, A., & Garcia-Vallve, S. (2006). Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes. *BMC Bioinformatics*, 7, 257.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
 M., Prettenhofer, P., Dobourh, V., Vanderplas, J., Passos, A., Cournapeua,
 D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine
 Learning in Python. *Journal of Machine Learning Research*.
- Pedrós-Alió, C., & Manrubia, S. (2016). The vast unknown microbial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 113(24), 6585–6587.
- Price, M. N., Dehal, P. S., & Arkin, A. P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Molecular Biology* and Evolution, 26(7), 1641–1650.
- Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 approximately maximumlikelihood trees for large alignments. *Plos One*, 5(3), e9490.

- Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I., & Koonin, E. V. (2014). Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. *BMC Biology*, 12, 66.
- Puigbò, P., Pasamontes, A., & Garcia-Vallve, S. (2008). Gaining and losing the thermophilic adaptation in prokaryotes. *Trends in Genetics*, 24(1), 10–14.
- Reimer, L. C., Vetcininova, A., Carbasse, J. S., Söhngen, C., Gleim, D., Ebeling, C., & Overmann, J. (2019). BacDive in 2019: bacterial phenotypic data for Highthroughput biodiversity analysis. *Nucleic Acids Research*, 47(D1), D631– D636.
- Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv.
- Rzhetsky, A., & Nei, M. (1993). Theoretical foundation of the minimum-evolution method of phylogenetic inference. *Molecular Biology and Evolution*, 10(5), 1073–1095.
- Sauer, D. B., & Wang, D.-N. (2019). Predicting the optimal growth temperatures of prokaryotes using only genome derived features. *Bioinformatics*, 35(18), 3224–3231.
- Shuang Cheng, Maozu Guo, Chunyu Wang, Xiaoyan Liu, Yang Liu, & Xuejian Wu. (2016). MiRTDL: A Deep Learning Approach for miRNA Target Prediction. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 13(6), 1161–1169.
- Song, Y.-Y., & Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130–135.
- Sonnhammer, E. L. ., & Koonin, E. V. (2002). Orthology, paralogy and proposed classification for paralog subtypes. *Trends in Genetics*, *18*(12), 619–620.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. *Journal of Machine Learning Research : JMLR*, 15, 1929–1958.
- Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Systematic Biology*, 56(4), 564–577.

- Tatusov, R L, Galperin, M. Y., Natale, D. A., & Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Research*, 28(1), 33–36.
- Tatusov, R L, Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. *Science*, 278(5338), 631–637.
- Tatusov, Roman L, Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, DM., Mazumber, R., Mekhedow, SL., Nikolskaya, AN., Roa, BS., Smirnov, S., Sverdlov, AV., Vasudevan, S., Wolf, YI., Yin, JJ., & Natale, D. A. (2003). The COG database: an updated version includes eukaryotes. *BMC Bioinformatics*, 4, 41.
- Theodoridis, S., & Koutroumbas, K. (2009). *Pattern Recognition* (4th ed., pp. 7,8,9,156,276,215,216–220,231,595). Elsevier.
- Tibshirani, R., Wainwright, M., & Hastie, T. (2015). *Statistical Learning with Sparsity: The Lasso and Generalizations* (p. 7,8,12,29,30,38). Chapman and Hall/CRC.
- Torsvik, V., Øvreås, L., & Thingstad, T. F. (2002). Prokaryotic diversity--magnitude, dynamics, and controlling factors. *Science*, *296*(5570), 1064–1066.
- Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P., & Rubin, E. M. (2005). Comparative metagenomics of microbial communities. *Science*, 308(5721), 554–557.
- Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. *BMC Bioinformatics*, 7, 91.
- Weber Zendrera, A., Sokolovska, N., & Soula, H. A. (2019). Robust structure measures of metabolic networks that predict prokaryotic optimal growth temperature. *BMC Bioinformatics*, 20(1), 499.
- Weiss, M. C., Preiner, M., Xavier, J. C., Zimorski, V., & Martin, W. F. (2018). The last universal common ancestor between ancient Earth chemistry and the onset of genetics. *PLoS Genetics*, 14(8), e1007518.

- Whitman, W B, Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6578–6583.
- Whitman, William B. (2009). The modern concept of the procaryote. *Journal of Bacteriology*, *191*(7), 2000–5; discussion 2006.
- Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74(11), 5088–5090.
- XGBoost developers. (2020a). Introduction to Boosted Trees. Retrieved March 25, 2020, from https://xgboost.readthedocs.io/en/latest/tutorials/model.html
- XGBoost developers. (2020b). Notes on Parameter Tuning. Retrieved September 11, 2020, from https://xgboost.readthedocs.io/en/latest/tutorials/param_tun-ing.html
- Yang, Y. (1999). An Evaluation of Statistical Approachesto Text Categorization. Information retrieval, 1, 69–90.
- Zhang, J. (2019). Gradient Descent based Optimization Algorithms for Deep Learning Models Training. arXiv.
- Zhu, L., Wu, X., Xu, B., Zhao, Z., Yang, J., Long, J., & Su, L. (2021). The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. *Neuroscience Letters*, 745, 135596.
- Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van 't Riet, K. (1990). Modeling of the bacterial growth curve. *Applied and Environmental Microbiology*, 56(6), 1875–1881.

Appendices

Appendix 1. Manually discarded COGs, their functional category, protein function, and discard reason.

COGs	Func-	Protein function	Discard reason
	tional		
	Category		
COG1581	K	Archaeal DNA-binding protein	only in Archaea
COG0691	0	tmRNA-binding protein	only in Bacteria
COG1197	LK	Transcription-repair coupling factor (su-	only in Bacteria
		perfamily II helicase)	
COG0669	Н	Phosphopantetheine adenylyltransferase	only in Bacteria
COG0690	U	Preprotein translocase subunit SecE	only in Bacteria
COG1311	L	Archaeal DNA polymerase II, small subu-	only in three Bacteria
		nit/DNA polymerase delta, subunit B	
COG0305	L	Replicative DNA helicase	almost in all Bacteria,
			only in two Archaea
COG1602	S	Uncharacterized protein	only in Archaea
COG0266	L	Formamidopyrimidine-DNA glycosylase	almost in all Bacteria,
			only in four Archaea
COG0353	L	Recombinational DNA repair protein RecR	only in Bacteria
COG0536	DL	GTPase involved in cell partioning and	only in Bacteria
		DNA repair	
COG0587	L	DNA polymerase III, alpha subunit	only in one Archaea,
			almost all Bacteria
COG0593	L	Chromosomal replication initiation	only in Bacteria
		ATPase DnaA	
COG0629	L	Single-stranded DNA-binding protein	only in Bacteria
COG0692	L	Uracil DNA glycosylase	only in one Archean
COG0749	L	DNA polymerase I - 3'-5' exonuclease and	only in two archaea, al-
		polymerase domains	most all Bacteria
COG0776	L	Bacterial nucleoid DNA-binding protein	only in six Archaea, al-
			most all Bacteria
1			

COG0817	L	Holliday junction resolvasome RuvABC	only in three Archaea,	
		endonuclease subunit, few archaea	almost all Bacteria	
COG1107	L	Archaea-specific RecJ-like exonuclease,	almost in all Archaea,	
		contains DnaJ-type Zn finger domain	only in six Bacteria	
COG1200	L	RecG-like helicase	only in Bacteria	
COG1202	L	Superfamily II helicase, archaea-specific	only in Archaea	
COG1241	L	DNA replicative helicase MCM subunit	only in one Bacteria,	
		Mcm2, Cdc46/Mcm family	almost in all Archaea	
COG1381	L	Recombinational DNA repair protein	only in Bacteria	
		(RecF pathway)		
COG1389	L	DNA topoisomerase VI, subunit B	almost in all Archaea,	
			only seven Bacteria	
COG1466	L	DNA polymerase III, delta subunit	only in Bacteria	
COG1467	L	Eukaryotic-type DNA primase, catalytic	only in two Bacteria,	
		(small) subunit	almost in all Archaea	
COG1591	L	Holliday junction resolvase, archaeal type	almost in all Archaea,	
			only in three Bacteria	
COG1599	L	ssDNA-binding replication factor A, large	almost in all Archaea,	
		subunit	only in two Bacteria	
<i>CO</i> G1630	L	NurA 5'-3' nuclease	only in six Bacteria	
COG1697	L	DNA topoisomerase VI, subunit A	almost in all Archaea,	
			only eight Bacteria	
COG1711	L	DNA replication initiation complex subu-	almost in all Archaea,	
		nit, GINS family	only in three Bacteria	
COG1860	FL	Uncharacterized conserved protein,	only in Archaea	
		UPF0179 family		
COG2255	L	Holliday junction resolvasome RuvABC,	almost in all Bacteria,	
		ATP-dependent DNA helicase subunit	only in three Archaea	
COG2256	L	Replication-associated recombination pro-	almost in all Bacteria,	
		tein RarA (DNA-dependent ATPase) only in four Archaea		
COG2812	L	DNA polymerase III, gamma/tau subunits almost in all Bacteria,		
			only in three Archaea	
COG4083	L	Exosortase/Archaeosortase	only in three Bacteria	

Appendix 2. Descriptions of tested classifier hyperparameters and other settings. Values marked with "-" represent a continuous range and "," represent separate values. Parameters in cursive were modified in CV. 50 different parameter combinations were tested for each classifier.

Hyperparameter	Value
penalty	11
C, regularization	0.1-24.6
strength, step 0.5	
multi_class	ovr
solver	liblinear
max_iter	200
class_weight	balanced

Hyperparameters of the LogisticRegression module

Hyperparameters of RandomForestClassifier module

Hyperparameter	Value
n_estimator	500
max_depth	5,7,9,14,25, None
min_sample_split	2,3,5
min_sample_leaf	1,3,5
max_features	sqrt,0.6
bootstrap	False

Hyperparameters of the neural network model

Hyperparameter	Value
Fully connected layer 1 nodes	110,120,130,140
Fully connected layer 1 regularization	0.001,0.003,0.05
Fully connected layer 1 activation	tf.nn.relu
Fully connected layer 2 nodes	60,70,80
Fully connected layer 2 activation	ReLU
Dropout layer drop rate	0.4,0.5,0.6
Output layer activation	tf.nn.softmax
MomentumOptimizer learning rate	0.001,0.02,0.1

MomentumOptimizer momentum rate	0.7,0.8,0.90
Loss function	sparse_categorical_crossentropy
Batch size	80
Number of epochs	250

Hyperparameters of the XGBClassifier

Hyperparameter	Value
n_estimator	150
max_depth	3,5,10,25
learning_rate	0.002,0.003,0.05,0.1
min_child_weight	2,3,5,7
gamma	0.1,0.2,0.5
reg_lamda	0.001,0.01,0.1,0.5
objective	multi:softmax
num_class	4
subsample	1
scale_pos_weight	1

Appendix 3. ROC curves and AUCs of each predicted class for each classifier.

Appendix 4. Table of samples	'predictions,	kingdom,	and phylum.
------------------------------	---------------	----------	-------------

Species	Prediction	taxid	kingdo	phyla
			m	
Acaryochloris_marina_MBIC11017_uid58167	Mesophile	329726	Bacteri	Cyanobacteri
			а	a
Acetobacter_pasteurianus_IFO_3283_01_uid59279	Mesophile	634452	Bacteri	Proteobacteri
			а	а
Acetobacterium_woodii_DSM_1030_uid88073	Mesophile	931626	Bacteri	Firmicutes
			а	
Acetohalobium_arabaticum_DSM_5501_uid51423	Thermophile	574087	Bacteri	Firmicutes
			а	
Acholeplasma_laidlawii_PG_8A_uid58901	Mesophile	441768	Bacteri	Other
			а	
Achromobacter_xylosoxidans_A8_uid59899	Mesophile	762376	Bacteri	Proteobacteri
			а	a
Acidaminococcus_intestini_RyC_MR95_uid74445	Thermophile	568816	Bacteri	Firmicutes
			а	
Acidianus_hospitalis_W1_uid66875	Hyperthermop	933801	Archae	Crenarchaeot
	hile		а	a
Acidimicrobidae_bacterium_YM16_304_uid193703	Mesophile	1313172	Bacteri	Actinobacteri
			а	а
Acidimicrobium_ferrooxidans_DSM_10331_uid59215	Thermophile	525909	Bacteri	Actinobacteri
			а	а
Acidiphilium_multivorum_AIU301_uid63345	Thermophile	926570	Bacteri	Proteobacteri
			а	а
Acidithiobacillus_ferrooxidans_ATCC_23270_uid57649	Mesophile	243159	Bacteri	Proteobacteri
			а	a
Acidobacterium_MP5ACTX9_uid50551	Mesophile	1198114	Bacteri	Acidobacteri
			а	а

Acidovorax_avenae_ATCC_19860_uid42497	Mesophile	643561	Bacteri	Proteobacteri
			a	а
Acinetobacter_baumannii_ATCC_17978_uid58731	Mesophile	400667	Bacteri	Proteobacteri
			a	a
Actinobacillus_suis_H91_0380_uid176363	Mesophile	696748	Bacteri	Proteobacteri
			a	а
Actinoplanes_friuliensis_DSM_7358_uid226110	Mesophile	1246995	Bacteri	Actinobacteri
			a	a
Actinosynnema_mirum_DSM_43827_uid58951	Mesophile	446462	Bacteri	Actinobacteri
			a	a
Adlercreutzia_equolifaciens_DSM_19450_uid223286	Mesophile	1384484	Bacteri	Actinobacteri
			a	a
Advenella_kashmirensis_WT001_uid80859	Mesophile	1036672	Bacteri	Proteobacteri
			a	a
Aerococcus_urinae_ACS_120_V_Col10a_uid64757	Mesophile	866775	Bacteri	Firmicutes
			a	
Aeromonas_salmonicida_A449_uid58631	Mesophile	382245	Bacteri	Proteobacteri
			a	a
Aggregatibacter_actinomycetemcomitans_D7S_1_uid46989	Mesophile	694569	Bacteri	Proteobacteri
			a	a
Agrobacterium_fabrum_C58_uid57865	Mesophile	176299	Bacteri	Proteobacteri
			a	a
Agromonas_oligotrophica_S58_uid192186	Mesophile	1245469	Bacteri	Proteobacteri
			a	a
Akkermansia_muciniphila_ATCC_BAA_835_uid58985	Mesophile	349741	Bacteri	Other
			a	
Alcanivorax_borkumensis_SK2_uid58169	Mesophile	393595	Bacteri	Proteobacteri
			a	a
Alicycliphilus_denitrificans_K601_uid66307	Mesophile	596154	Bacteri	Proteobacteri
			a	a
Alicyclobacillus_acidocaldarius_Tc_4_1_uid158681	Thermophile	1048834	Bacteri	Firmicutes
			a	
Aliivibrio_salmonicida_LFI1238_uid59251	Mesophile	316275	Bacteri	Proteobacteri
			a	a
Alistipes_finegoldii_DSM_17242_uid168180	Mesophile	679935	Bacteri	Chlorobi
			a	
Alkalilimnicola_ehrlichii_MLHE_1_uid58467	Mesophile	187272	Bacteri	Proteobacteri
			a	a
Alkaliphilus_metalliredigens_QYMF_uid58171	Thermophile	293826	Bacteri	Firmicutes
			a	
Allochromatium_vinosum_DSM_180_uid46083	Mesophile	572477	Bacteri	Proteobacteri
			a	a
Alteromonas_SN2_uid67349	Psychrophile	715451	Bacteri	Proteobacteri
			a	а
Aminobacterium_colombiense_DSM_12261_uid47083	Thermophile	572547	Bacteri	Synergistetes
			a	
Amphibacillus_xylanus_NBRC_15112_uid176453	Mesophile	698758	Bacteri	Firmicutes
			a	
Amycolatopsis_mediterranei_S699_uid158689	Mesophile	713604	Bacteri	Actinobacteri
			a	а
	1	1	1	1

Amycolicicoccus_subflavus_DQS3_9A1_uid67253	Mesophile	443218	Bacteri	Actinobacteri
			a	a
Anabaena_cylindrica_PCC_7122_uid183339	Mesophile	272123	Bacteri	Cyanobacteri
			a	а
Anaerococcus prevotii DSM 20548 uid59219	Mesophile	525919	Bacteri	Firmicutes
	_		a	
Anaeromyxobacter dehalogenans 2CP 1 uid58989	Thermophile	455488	Bacteri	Proteobacteri
			a	а
Anaplasma phagocytophilum HZ uid57951	Mesophile	212042	Bacteri	Proteobacteri
	-		a	a
Arcanobacterium haemolyticum DSM 20595 uid49489	Mesophile	644284	Bacteri	Actinobacteri
			a	а
Arcobacter nitrofigilis DSM 7299 uid49001	Mesophile	572480	Bacteri	Proteobacteri
			a	а
Aromatoleum aromaticum EbN1_uid58231	Mesophile	76114	Bacteri	Proteobacteri
			a	a
Arthrobacter chlorophenolicus A6 uid58969	Psychrophile	452863	Bacteri	Actinobacteri
			a	a
Arthrospira_platensis_NIES_39_uid197171	Mesophile	696747	Bacteri	Cyanobacteri
			a	a
Aster_yellows_witches_broom_phytoplasma_AYWB_uid58297	Mesophile	322098	Bacteri	Other
			a	
Asticcacaulis_excentricus_CB_48_uid55641	Mesophile	573065	Bacteri	Proteobacteri
			a	а
Atopobium_parvulum_DSM_20469_uid59195	Mesophile	521095	Bacteri	Actinobacteri
			a	a
Azoarcus_KH32C_uid193704	Mesophile	748247	Bacteri	Proteobacteri
			a	a
Azorhizobium_caulinodans_ORS_571_uid58905	Mesophile	438753	Bacteri	Proteobacteri
			a	a
Azospirillum_brasilense_Sp245_uid162161	Mesophile	1064539	Bacteri	Proteobacteri
			a	a
Azotobacter_vinelandii_DJ_uid57597	Mesophile	322710	Bacteri	Proteobacteri
			a	a
Bacillus_thuringiensis_serovar_kurstaki_HD73_uid189188	Mesophile	1279365	Bacteri	Firmicutes
			a	
Bacteriovorax_marinus_SJ_uid82341	Mesophile	862908	Bacteri	Proteobacteri
			a	a
Baumannia_cicadellinicola_HcHomalodisca_coagulata_uid581	Mesophile	374463	Bacteri	Proteobacteri
11			a	a
Beijerinckia_indica_ATCC_9039_uid59057	Mesophile	395963	Bacteri	Proteobacteri
			а	а
Belliella_baltica_DSM_15883_uid168182	Psychrophile	866536	Bacteri	Chlorobi
			a	
Beutenbergia_cavernae_DSM_12333_uid59047	Mesophile	471853	Bacteri	Actinobacteri
			a	а
Bibersteinia_trehalosi_192_uid193709	Mesophile	1171377	Bacteri	Proteobacteri
			a	а
Bifidobacterium_longum_infantis_ATCC_15697_uid159865	Mesophile	391904	Bacteri	Actinobacteri
			a	а

Blastococcus_saxobsidens_DD2_uid89391	Mesophile	1146883	Bacteri	Actinobacteri
			a	а
Blattabacterium Blattella germanica Bge uid41533	Mesophile	331104	Bacteri	Chlorobi
			a	
Bordetella petrii uid61631	Mesophile	340100	Bacteri	Proteobacteri
	1		a	а
Brachybacterium faecium DSM 4810 uid58649	Mesophile	446465	Bacteri	Actinobacteri
			a	a
Brachvenira intermedia DWS A uid158360	Masonhila	10/5858	Bacteri	Spirachaetes
Brachyspira_methicdia_1 ws_A_did156565	Wesophile	1045050	a	Sphoenaetes
Production in an	Masanhila	1027400	a Dootori	Protochastari
Bradymizoolum_Japonicum_OSDA_0_ulu156651	Wiesophile	1037409	Dacteri	1 loteobacteri
Describe siller hands NDDC 100500 sid50175	Manakita	259(91	a De stari	a Einneinenten
Brevibacilius_brevis_INBRC_100599_uid59175	Mesophile	338081	Bacteri	Firmicules
			a	
Brevundimonas_subvibrioides_ATCC_15264_uid42117	Mesophile	633149	Bacteri	Proteobacteri
			а	а
Brucella_melitensis_bv_1_16M_uid57735	Mesophile	224914	Bacteri	Proteobacteri
			a	а
Burkholderia_xenovorans_LB400_uid57823	Mesophile	266265	Bacteri	Proteobacteri
			a	а
Butyrivibrio_proteoclasticus_B316_uid51489	Mesophile	515622	Bacteri	Firmicutes
			a	
Calothrix_PCC_7507_uid182930	Mesophile	99598	Bacteri	Cyanobacteri
			a	а
Candidatus_Accumulibacter_phosphatis_clade_IIA_UW_1_uid59	Mesophile	522306	Bacteri	Proteobacteri
207			a	а
Candidatus_Amoebophilus_asiaticus_5a2_uid58963	Mesophile	452471	Bacteri	Chlorobi
			a	
Candidatus Arthromitus SFB mouse Japan uid71379	Mesophile	1029718	Bacteri	Firmicutes
	-		a	
Candidatus Azobacteroides pseudotrichonymphae genomovar	Mesophile	511995	Bacteri	Chlorobi
CFP2 uid59163	1		a	
– Candidatus Blochmannia pennsylvanicus BPEN uid58329	Mesophile	291272	Bacteri	Proteobacteri
		_, _, _	a	a
Candidatus Caldiarchaeum subterraneum uid227223	Hyperthermon	311458	Archae	" Thaumarchae
	hile	511450	Arenae	ota
Condidatus Consensille middii DC vid212292	Masanhila	667012	a Dootori	Drotochostari
Candidatus_Carsonena_iudun_DC_uid215585	Mesophile	007013	Bacterr	Floteobacteri
Conditions Chlore idebastations desmandillans David72597	The sum of 1 - 1 -	091222	a De steri	
Candidatus_Chioracidobacterium_inermophilum_B_uid/558/	Thermophile	981222	Bacteri	Acidobacteri
			a	a
Candidatus_Cloacamonas_acidaminovorans_Evry_uid62959	Thermophile	459349	Bacteri	Other
			а	
Candidatus_Desulforudis_audaxviator_MP104C_uid59067	Thermophile	477974	Bacteri	Firmicutes
			a	
Candidatus_Hamiltonella_defensa_5ATAcyrthosiphon_pisum	Mesophile	572265	Bacteri	Proteobacteri
uid59289			a	а
Candidatus_Hodgkinia_cicadicola_Dsem_uid59311	Mesophile	573234	Bacteri	Proteobacteri
			а	а
Candidatus_Kinetoplastibacterium_desouzaii_TCC079E_uid18975	Mesophile	1208919	Bacteri	Proteobacteri
0			a	а

Candidatus_Korarchaeum_cryptofilum_OPF8_uid58601	Hyperthermop	374847	Archae	Korarchaeota
	hile		а	
Candidatus Koribacter versatilis Ellin345 uid58479	Mesophile	204669	Bacteri	Acidobacteri
	_		а	а
Candidatus Liberibacter solanacearum CLso ZC1 uid61245	Mesophile	658172	Bacteri	Proteobacteri
	1		а	а
Candidatus Methylomirabilis oxyfera uid161981	Thermonhile	671143	Bacteri	Other
	Thermophile	0/1115	a	other
Candidatus Midichloria mitochondrii IricVA uid68687	Mesophile	606127	Bacteri	Protechacteri
Candidatus_ivildemona_initoenondin_ine v A_ud00007	Wesophile	090127	Dacteri	
Candidatus Margarella andakis DCVAL wid107215	Maganhila	1224602	a Daatari	a Duataahaatani
Candidatus_Woranena_endobia_FCVAL_uld19/215	Wesophile	1234003	Dacterr	FIOLEODACIEII
	M 11	1242077	a D ()	
Candidatus_Nasuia_deltocephalinicola_NAS_ALF_uid214084	Mesophile	1343077	Bacteri	Proteobacteri
			а	а
Candidatus_Nitrosopumilus_koreensis_AR1_uid176129	Mesophile	1229908	Archae	Thaumarchae
			а	ota
Candidatus_Nitrososphaera_gargensis_Ga9_2_uid176707	Mesophile	1237085	Archae	Thaumarchae
			а	ota
Candidatus_Nitrospira_defluvii_uid51175	Thermophile	330214	Bacteri	Other
			а	
Candidatus_Pelagibacter_IMCC9063_uid66305	Mesophile	1002672	Bacteri	Proteobacteri
			a	а
Candidatus_Phytoplasma_australiense_uid61641	Mesophile	59748	Bacteri	Other
			а	
Candidatus_Portiera_aleyrodidarum_BT_QVLC_uid176374	Mesophile	1239881	Bacteri	Proteobacteri
			а	а
Candidatus Puniceispirillum marinum IMCC1322 uid47081	Mesophile	488538	Bacteri	Proteobacteri
			а	а
Candidatus Riesia pediculicola USDA uid46841	Mesophile	515618	Bacteri	Proteobacteri
			a	a
Candidatus Ruthia magnifica Cm. Calvntogena magnifica, uid	Mesophile	413404	Bacteri	Proteobacteri
58645	Wesophile	-13-0-	a	3
Condidatus Sacabaribataria bastarium DAAC2 TM7 1 uid220	Masanhila	1204711	a Dootori	a Othor
715	Wesophile	1394/11	Bacterr	Other
	N 11	1222100	a D ()	04
Candidatus_Saccharobacterium_alaburgensis_uid203361	Mesophile	1332188	Bacteri	Other
		00.40.67	a	
Candidatus_Solibacter_usitatus_Ellin60/6_uid58139	Thermophile	234267	Bacteri	Acidobacteri
			а	а
Candidatus_Sulcia_muelleri_CARI_uid52535	Mesophile	706194	Bacteri	Chlorobi
			a	
Candidatus_Tremblaya_phenacola_PAVE_uid209173	Mesophile	1266371	Bacteri	Proteobacteri
			а	а
Candidatus_Uzinura_diaspidicola_ASNER_uid186740	Mesophile	1133592	Bacteri	Chlorobi
			а	
Candidatus_Vesicomyosocius_okutanii_HA_uid59427	Mesophile	412965	Bacteri	Proteobacteri
			а	a
Candidatus_Zinderia_insecticola_CARI_uid52459	Mesophile	871271	Bacteri	Proteobacteri
			а	a
Capnocytophaga_canimorsus_Cc5_uid70727	Psychrophile	860228	Bacteri	Chlorobi
			a	
			1	

Cardinium_endosymbiont_cEper1_of_Encarsia_pergandiella_uid1	Mesophile	1231626	Bacteri	Chlorobi
75524			а	
Carnobacterium_maltaromaticum_LMA28_uid179370	Mesophile	1234679	Bacteri	Firmicutes
			а	
Catenulispora_acidiphila_DSM_44928_uid59077	Mesophile	479433	Bacteri	Actinobacteri
			а	a
Cellulomonas_fimi_ATCC_484_uid66779	Mesophile	590998	Bacteri	Actinobacteri
			а	a
Cellvibrio_japonicus_Ueda107_uid59139	Mesophile	498211	Bacteri	Proteobacteri
			а	a
Cenarchaeum_symbiosum_A_uid61411	Mesophile	414004	Archae	Thaumarchae
			а	ota
Chamaesiphon_PCC_6605_uid183005	Mesophile	1173020	Bacteri	Cyanobacteri
			а	a
Chelativorans_BNC1_uid58069	Mesophile	266779	Bacteri	Proteobacteri
			а	a
Chitinophaga_pinensis_DSM_2588_uid59113	Psychrophile	485918	Bacteri	Chlorobi
			а	
Chlorobaculum_parvum_NCIB_8327_uid59185	Hyperthermop	517417	Bacteri	Chlorobi
	hile		а	
Chloroherpeton_thalassium_ATCC_35110_uid59187	Thermophile	517418	Bacteri	Chlorobi
			a	
Chromohalobacter_salexigens_DSM_3043_uid62921	Mesophile	290398	Bacteri	Proteobacteri
	_		а	a
Chroococcidiopsis thermalis PCC 7203 uid183002	Mesophile	251229	Bacteri	Cyanobacteri
	-		а	a
Citrobacter koseri ATCC BAA 895 uid58143	Mesophile	290338	Bacteri	Proteobacteri
	-		а	a
Clavibacter michiganensis sepedonicus uid61577	Mesophile	31964	Bacteri	Actinobacteri
	-		а	a
Clostridiales genomosp BVAB3 UPII9 5 uid46219	Mesophile	699246	Bacteri	Firmicutes
	-		а	
Clostridium botulinum A ATCC 3502 uid61579	Mesophile	413999	Bacteri	Firmicutes
	-		а	
Clostridium difficile 630 uid57679	Mesophile	272563	Bacteri	Firmicutes
	-		а	
Collimonas fungivorans Ter331 uid70793	Mesophile	1005048	Bacteri	Proteobacteri
	_		а	a
Comamonadaceae bacterium CR uid223378	Mesophile	946483	Bacteri	Proteobacteri
	_		а	a
Comamonas testosteroni CNB 2 uid62961	Mesophile	688245	Bacteri	Proteobacteri
	_		а	a
Conexibacter_woesei_DSM_14684_uid43467	Mesophile	469383	Bacteri	Actinobacteri
	_		а	a
Coprococcus catus GD 7 uid197174	Mesophile	717962	Bacteri	Firmicutes
			а	
Coraliomargarita akajimensis DSM 45221 uid47079	Mesophile	583355	Bacteri	Other
	1 -		a	
Corallococcus coralloides DSM 2259 uid157997	Psychrophile	1144275	Bacteri	Proteobacteri
	, , , , , , , , , , , , , , , , , , , ,		a	a

Coriobacterium_glomerans_PW2_uid65787	Mesophile	700015	Bacteri	Actinobacteri
			a	a
Coxiella burnetii Dugway 5J108 111 uid58629	Mesophile	434922	Bacteri	Proteobacteri
	-		a	а
Crinalium epipsammum PCC 9333 uid183113	Mesophile	1173022	Bacteri	Cvanobacteri
	mesophile	11/5022	a	2
Crossibustor atlantique HTCC2550 uid40661	Davahranhila	216422	u Dootori	u Chlarabi
Crocerbacter_attainticus_H1CC2559_utd49001	Psychrophie	210452	Bacteri	Chiorobi
		(0001)	a	D
Cronobacter_turicensis_z3032_uid40821	Mesophile	693216	Bacteri	Proteobacteri
			а	a
Cryptobacterium_curtum_DSM_15641_uid59041	Mesophile	469378	Bacteri	Actinobacteri
			а	а
Cupriavidus_necator_N_1_uid68689	Mesophile	1042878	Bacteri	Proteobacteri
			a	a
Cyanobacterium_PCC_10605_uid183340	Mesophile	755178	Bacteri	Cyanobacteri
			a	a
Cyanobium gracile PCC 6307 uid182931	Mesophile	292564	Bacteri	Cyanobacteri
	1		а	a
Cvanothece PCC 7822 uid52547	Mesophile	497965	Bacteri	Cvanobacteri
	mesophile	177700	2	a
Circleheatorium manimum DSM 745 uid71485	Davahaanhila	880070	a Dootori	a Chlanchi
Cyclobacterium_marmum_DSM_/45_uid/1485	Psychrophie	880070	Dacteri	Chiorobi
			a	
Cycloclasticus_zancles_7_ME_uid214092	Mesophile	1198232	Bacteri	Proteobacteri
			а	a
Cylindrospermum_stagnale_PCC_7417_uid183111	Mesophile	56107	Bacteri	Cyanobacteri
			а	a
Cytophaga_hutchinsonii_ATCC_33406_uid57651	Mesophile	269798	Bacteri	Chlorobi
			a	
Dactylococcopsis_salina_PCC_8305_uid183341	Mesophile	13035	Bacteri	Cyanobacteri
			a	a
Dechloromonas aromatica RCB uid58025	Mesophile	159087	Bacteri	Proteobacteri
			а	а
Dechlorosoma suillum PS uid81439	Mesophile	640081	Bacteri	Proteobacteri
			a	a
Dehalohaster CE uid177714	Thermonhile	1131462	Bacteri	Eirmicutes
Denatobacter_Cr_uld1//14	Thermophile	1131402	Dacterr	Finneutes
		552011	a D i i	0.1
Dehalogenimonas_lykanthroporepellens_BL_DC_9_uid48131	Mesophile	552811	Bacteri	Other
			а	
Delftia_acidovorans_SPH_1_uid58703	Mesophile	398578	Bacteri	Proteobacteri
			а	a
Denitrovibrio_acetiphilus_DSM_12809_uid46657	Mesophile	522772	Bacteri	Other
			a	
Desulfarculus_baarsii_DSM_2075_uid51371	Mesophile	644282	Bacteri	Proteobacteri
			а	a
Desulfatibacillum alkenivorans AK 01 uid58913	Thermophile	439235	Bacteri	Proteobacteri
	-		а	a
Desulfitobacterium hafniense Y51 uid58605	Thermonhile	138119	Bacteri	Firmicutes
	mermophile	150117	9	1 mineutos
Doutlehage entryiders DSM 11100 -: 165795	Thomas and : 1-	880072	" Destari	Drotosha-t
Desunovacca_accioxidans_DSM_11109_0005/85	Thermophile	000072	Dacteri	Froteobacteri
			а	а

Desulfobacterium_autotrophicum_HRM2_uid59061	Thermophile	177437	Bacteri	Proteobacteri
			а	а
Desulfobacula toluolica Tol2 uid175777	Psychrophile	651182	Bacteri	Proteobacteri
			а	а
Desulfobulbus propionicus DSM 2032 uid62265	Thermonhile	577650	Bacteri	Proteobacteri
Desurrooulous_propromous_Doin1_2002_uu02200	Thermophile	577650	a	a
Deculference culfaviranc DSM 10522 uid180052	Masanhila	1167006	u Dootori	u Drotochostori
Desunocapsa_sunexigens_DSM_10525_ulu189952	Mesophile	110/000	Bacteri	Proteobacteri
		0.000	a	a
Desulfococcus_oleovorans_Hxd3_uid58///	Thermophile	96561	Bacteri	Proteobacteri
			а	а
Desulfohalobium_retbaense_DSM_5692_uid59183	Mesophile	485915	Bacteri	Proteobacteri
			а	а
Desulfomicrobium_baculatum_DSM_4028_uid59217	Mesophile	525897	Bacteri	Proteobacteri
			а	а
Desulfomonile_tiedjei_DSM_6799_uid168320	Thermophile	706587	Bacteri	Proteobacteri
			а	а
Desulfosporosinus orientis DSM 765 uid82939	Thermophile	768706	Bacteri	Firmicutes
	1		а	
Desulfotomaculum gibsoniae DSM 7213 uid76945	Thermonhile	767817	Bacteri	Firmicutes
	Thermophine	/0/01/	9	1
Desulfusioninillum indiana S5 mid45807	Masanhila	(52722	a Daatari	Othor
Desununspinnun_indicum_S5_uid45897	Mesophile	033/33	Dacteri	Other
			a	
Desulfurivibrio_alkaliphilus_AHT2_uid49487	Mesophile	589865	Bacteri	Proteobacteri
			а	а
Dichelobacter_nodosus_VCS1703A_uid57643	Mesophile	246195	Bacteri	Proteobacteri
			а	а
Dickeya_dadantii_3937_uid52537	Mesophile	198628	Bacteri	Proteobacteri
			а	а
Dinoroseobacter_shibae_DFL_12_uid58707	Mesophile	398580	Bacteri	Proteobacteri
			а	а
Dyadobacter_fermentans_DSM_18053_uid59049	Psychrophile	471854	Bacteri	Chlorobi
			а	
Echinicola vietnamensis DSM 17526 uid184076	Psychrophile	926556	Bacteri	Chlorobi
	5 1		а	
Ectothiorhodospiraceae bacterium M19 40 uid199898	Mesonhile	1260251	Bacteri	Proteobacteri
Letothomodosphaceae_bacterium_W17_40_uu177076	wiesophile	1200231	Dacterr	
	Masarhila	(24502	a Destani	a Ducto che ete ui
Edwardsiella_ictaluri_93_146_uid59403	Mesophile	634503	Bacteri	Proteobacteri
			a	a
Eggerthella_lenta_DSM_2243_uid59079	Mesophile	479437	Bacteri	Actinobacteri
			а	а
Ehrlichia_chaffeensis_Arkansas_uid57933	Mesophile	205920	Bacteri	Proteobacteri
			а	а
Elusimicrobium_minutum_Pei191_uid58949	Mesophile	445932	Bacteri	Other
			a	
Emticicia_oligotrophica_DSM_17448_uid177079	Psychrophile	929562	Bacteri	Chlorobi
			a	
Enterobacter cloacae ATCC 13047 uid48363	Mesophile	716541	Bacteri	Proteobacteri
			a	a
Erwinia amyloyora ATCC 49946 uid46943	Mesonhile	716540	Bacteri	Proteobacteri
	mesophile	, 100-10	2	3
			a	u

Erysipelothrix_rhusiopathiae_SY1027_uid206518	Mesophile	1313290	Bacteri	Firmicutes
			а	
Erythrobacter_litoralis_HTCC2594_uid58299	Mesophile	314225	Bacteri	Proteobacteri
			а	a
Escherichia_coli_K_12_substr_MG1655_uid57779	Mesophile	511145	Bacteri	Proteobacteri
			а	a
Ethanoligenens_harbinense_YUAN_3_uid46255	Mesophile	663278	Bacteri	Firmicutes
			a	
Eubacterium_limosum_KIST612_uid59777	Mesophile	903814	Bacteri	Firmicutes
			а	
Exiguobacterium_MH3_uid227425	Mesophile	1399115	Bacteri	Firmicutes
			а	
Faecalibacterium_prausnitzii_L2_6_uid197183	Mesophile	718252	Bacteri	Firmicutes
			а	
Ferrimonas_balearica_DSM_9799_uid53371	Mesophile	550540	Bacteri	Proteobacteri
			а	a
Ferroplasma_acidarmanus_fer1_uid54095	Hyperthermop	333146	Archae	Euryarchaeot
	hile		а	a
Fibrella_aestuarina_uid178352	Psychrophile	1166018	Bacteri	Chlorobi
			а	
Fibrobacter_succinogenes_S85_uid41169	Mesophile	59374	Bacteri	Other
			а	
Filifactor_alocis_ATCC_35896_uid46625	Mesophile	546269	Bacteri	Firmicutes
			а	
Finegoldia_magna_ATCC_29328_uid58867	Mesophile	334413	Bacteri	Firmicutes
			а	
Flavobacterium_johnsoniae_UW101_uid58493	Psychrophile	376686	Bacteri	Chlorobi
			а	
Flexibacter_litoralis_DSM_6794_uid168257	Psychrophile	880071	Bacteri	Chlorobi
			а	
Flexistipes_sinusarabici_DSM_4947_uid68147	Thermophile	717231	Bacteri	Other
			а	
Fluviicola_taffensis_DSM_16823_uid65271	Psychrophile	755732	Bacteri	Chlorobi
			а	
Francisella tularensis SCHU S4_uid57589	Mesophile	177416	Bacteri	Proteobacteri
			а	а
Frankia_EAN1pec_uid58367	Mesophile	298653	Bacteri	Actinobacteri
			а	a
Frankia_symbiont_of_Datisca_glomerata_uid46257	Mesophile	656024	Bacteri	Actinobacteri
			а	a
Frateuria_aurantia_DSM_6220_uid81775	Mesophile	767434	Bacteri	Proteobacteri
			а	a
Gallibacterium_anatis_UMN179_uid66567	Mesophile	1005058	Bacteri	Proteobacteri
			а	a
Gallionella_capsiferriformans_ES_2_uid51505	Mesophile	395494	Bacteri	Proteobacteri
	_		а	a
Gardnerella vaginalis ATCC 14019 uid55487	Mesophile	525284	Bacteri	Actinobacteri
			а	a
Geitlerinema PCC 7407 uid183007	Mesophile	1173025	Bacteri	Cyanobacteri
			а	a

Gemmatimonas_aurantiaca_T_27_uid58813	Thermophile	379066	Bacteri	Other
			а	
Geobacillus thermoleovorans CCB US3 UF5 uid82949	Thermophile	1111068	Bacteri	Firmicutes
			а	
Geodermatophilus obscurus DSM 43160 uid43725	Mesonhile	526225	Bacteri	Actinobacteri
Geoderniatopinius_obscurus_D5ivi_45100_ulu45725	wesophile	526225	Ducterr	a
CI DCC 7429 1192112	N 11	1172026		a l t i
Gloeocapsa_PCC_/428_uid183112	Mesophile	11/3026	Bacteri	Cyanobacteri
			а	а
Gluconacetobacter_diazotrophicus_PA1_5_uid61587	Mesophile	272568	Bacteri	Proteobacteri
			а	а
Gluconobacter_oxydans_H24_uid179202	Mesophile	1224746	Bacteri	Proteobacteri
			а	а
Gordonia_KTR9_uid174812	Mesophile	337191	Bacteri	Actinobacteri
			а	а
Gordonibacter pamelaeae 7 10 1 b uid197167	Mesophile	657308	Bacteri	Actinobacteri
	Ĩ		а	а
Gramella forsetii KT0803 uid58881	Psychrophile	411154	Bacteri	Chlorobi
	r syemophile	411104	a	Children
	M 11	2011/5		D (1 ()
Granulibacter_beinesdensis_CGDNIH1_uid58061	Mesophile	391103	Bacteri	Proteobacteri
			а	а
Granulicella_mallensis_MP5ACTX8_uid49957	Mesophile	682795	Bacteri	Acidobacteri
			а	а
Hahella_chejuensis_KCTC_2396_uid58483	Psychrophile	349521	Bacteri	Proteobacteri
			а	а
Halanaerobium_hydrogeniformans_uid60191	Mesophile	656519	Bacteri	Firmicutes
			а	
Haliangium ochraceum DSM 14365 uid41425	Mesophile	502025	Bacteri	Proteobacteri
	Ĩ		а	а
Haliscomenobacter hydrossis DSM 1100 uid66777	Psychrophile	760192	Bacteri	Chlorobi
	r syemophile	/001/2	o	Childredi
Helensiller helenkiller DSM 22(Conid1(2022	Managah ita	966905	a Destaul	Einneiter
Halobachius_nalophilus_DSM_2266_uid162033	Mesophile	800895	Bacteri	Firmicutes
			a	
Halobacteroides_halobius_DSM_5150_uid184862	Thermophile	748449	Bacteri	Firmicutes
			а	
Haloferax_volcanii_DS2_uid46845	Mesophile	309800	Archae	Euryarchaeot
			а	а
Halomonas_elongata_DSM_2581_uid52781	Mesophile	768066	Bacteri	Proteobacteri
			а	a
Haloquadratum_walsbyi_C23_uid162019	Mesophile	768065	Archae	Euryarchaeot
			а	а
Halorhabdus tiamatea SARL4B uid214082	Mesophile	1033806	Archae	Euryarchaeot
	1		а	а
Halombrum lacusprofundi ATCC 49239 uid58807	Mesophile	416348	Archae	Furvarchaeot
Tatorastani_lavaspiorandi_ITTOC_17257_ulu50007	mesophile	1105-10	a	a
Halathaaa DCC 7419 x: 1102220	Macrin 1	65002	" Dent	u Cuar-h- i
11aiouicce_rCC_/416_ul0185558	wesophile	03093	Dacteri	Cyanobacteri
			a	a
Halothermothrix_orenii_H_168_uid58585	Thermophile	373903	Bacteri	Firmicutes
			a	
Halothiobacillus_neapolitanus_c2_uid41317	Mesophile	555778	Bacteri	Proteobacteri
			a	a

Halyomorpha_halys_symbiont_uid222821	Mesophile	1235990	Bacteri	Proteobacteri
			а	а
Herbaspirillum_seropedicae_SmR1_uid50427	Mesophile	757424	Bacteri	Proteobacteri
			а	а
Herminiimonas arsenicoxydans uid58291	Mesophile	204773	Bacteri	Proteobacteri
	mesophile	2011/0	9	9
Hamatasiahan annatisana DSM 795 aid59500	T1	21(274	a De stari	a Other
Herpetosiphon_aurantiacus_DSM_/85_uid58599	Thermophile	310274	Bacteri	Other
			а	
Hirschia_baltica_ATCC_49814_uid59365	Mesophile	582402	Bacteri	Proteobacteri
			а	а
Hydrogenobaculum_Y04AAS1_uid58857	Thermophile	380749	Bacteri	Aquificae
			a	
Hyphomicrobium_MC1_uid68453	Mesophile	717785	Bacteri	Proteobacteri
			а	а
Hyphomonas neptunium ATCC 15444 uid58433	Mesophile	228405	Bacteri	Proteobacteri
Typhononas_nepannan_TTCCC_TCTTarabo ioo	mesophile	220.00	2	3
Learning the ICM 16511 with (2007	The sum of the last	045712	a Destari	a Chlamhi
Ignavibacierium_album_JCM_16511_uld162097	Thermophile	945/15	Bacteri	Chlorobi
			а	
Ilyobacter_polytropus_DSM_2926_uid59769	Mesophile	572544	Bacteri	Fusobacteria
			a	
Intrasporangium_calvum_DSM_43043_uid61729	Mesophile	710696	Bacteri	Actinobacteri
			а	а
Isoptericola_variabilis_225_uid67501	Mesophile	743718	Bacteri	Actinobacteri
	-		a	а
Isosphaera pallida ATCC 43644 uid62207	Thermophile	575540	Bacteri	Planctomycet
	Thermophic	0,0010	9	es.
Laurentia CCS1 a:159147	Managhila	200400	a De steri	Due te else ete ui
Jannaschia_CCS1_uid38147	Wiesophile	290400	Dacteri	Proteobacteri
			a	a
Janthinobacterium_Marseille_uid58603	Mesophile	375286	Bacteri	Proteobacteri
			а	а
Jonesia_denitrificans_DSM_20603_uid59053	Mesophile	471856	Bacteri	Actinobacteri
			а	а
Kangiella_koreensis_DSM_16069_uid59209	Mesophile	523791	Bacteri	Proteobacteri
			a	а
Ketogulonicigenium vulgare Y25 uid59581	Mesophile	880591	Bacteri	Proteobacteri
	1		а	а
Kineococcus radiotolerans SRS30216 uid58067	Mesophile	266940	Bacteri	Actinobacteri
	wesophile	200740	Ducterr	a
	N 11	452652	a	a
Kitasatospora_setae_KM_6054_uid//02/	Mesophile	452652	Bacteri	Actinobacteri
			а	а
Klebsiella_pneumoniae_342_uid59145	Mesophile	507522	Bacteri	Proteobacteri
			а	а
Kocuria_rhizophila_DC2201_uid59099	Mesophile	378753	Bacteri	Actinobacteri
			а	a
Kribbella_flavida_DSM_17836_uid43465	Mesophile	479435	Bacteri	Actinobacteri
	_		а	a
Krokinobacter 4H 3 7 5 uid66593	Psychrophile	983548	Bacteri	Chlorobi
	2 Sychrophile	2022 10	9	51101001
Veterson - Justicing DOM 20547 - 160071	M., 13	470001		A
Kytococcus_sedentarius_DSM_2054/_uid590/1	Mesophile	4/8801	Bacteri	Actinobacteri
			а	а

Lacinutrix_5H_3_7_4_uid68067	Psychrophile	983544	Bacteri	Chlorobi
			а	
Lactobacillus plantarum ZJ316 uid188689	Mesophile	1284663	Bacteri	Firmicutes
	-		а	
Laribacter hongkongensis HLHK9 uid59265	Mesophile	557598	Bacteri	Proteobacteri
	1		a	а
Lawsonia intracellularis N343 uid186598	Mesophile	1234378	Bacteri	Proteobacteri
	Wesophile	1254576	9	3
Leadbetteralla byssonbila DSM 17132 uid60161	Psychrophile	640340	Bacteri	Chlorobi
Leadocuciena_byssophila_DSW_17152_did00101	i syemophile	049349	Dacteri	Chiorobi
Liferie and and DEM 4(20(aid21204	Massulila	1200400	a Destaui	A
Lensonia_xyii_cynodonus_DSMi_40300_uid221294	Wesophile	1369469	Dacteri	Actinobacteri
		000550	a	a
Leisingera_methylohalidivorans_DSM_14336_uid232356	Mesophile	999552	Bacteri	Proteobacteri
			а	а
Leptolyngbya_PCC_7376_uid182928	Mesophile	111781	Bacteri	Cyanobacteri
			a	а
Leptospira_biflexa_serovar_Patoc_Patoc_1_Paris_uid58993	Mesophile	456481	Bacteri	Spirochaetes
			а	
Leptospirillum_ferriphilum_ML_04_uid175904	Thermophile	1048260	Bacteri	Other
			а	
Leptothrix_cholodnii_SP_6_uid58971	Mesophile	395495	Bacteri	Proteobacteri
			а	а
Leptotrichia_buccalis_C_1013_b_uid59211	Mesophile	523794	Bacteri	Fusobacteria
			а	
Leuconostoc kimchii IMSNU 11154 uid48589	Mesophile	762051	Bacteri	Firmicutes
	1		а	
Listonella anguillarum M3 uid217771	Mesophile	882944	Bacteri	Proteobacteri
	mesophile	002511	9	3
Lycinibacillus enhagricus C3 41 uid58045	Mesophile	444177	u Bacteri	Eirmicutes
Lysinoachius_sphacheus_C5_+1_uu38945	wesophile	4441//	Dacteri	Finnetics
Management 1.50002	Massubile	459222	a De stari	Finneitere
Macrococcus_caseolylicus_JCSC5402_uld59003	Mesophile	438233	Bacteri	Firmicules
		4.5.000	a	
Magnetococcus_MC_1_uld5/833	Thermophile	156889	Bacteri	Proteobacteri
			а	а
Magnetospirillum_magneticum_AMB_1_uid58527	Mesophile	342108	Bacteri	Proteobacteri
			а	а
Mahella_australiensis_50_1_BON_uid66917	Thermophile	697281	Bacteri	Firmicutes
			а	
Mannheimia_haemolytica_M42548_uid198769	Mesophile	1316932	Bacteri	Proteobacteri
			a	а
Maricaulis_maris_MCS10_uid58689	Mesophile	394221	Bacteri	Proteobacteri
			а	а
Marinobacter_adhaerens_HP15_uid162009	Mesophile	225937	Bacteri	Proteobacteri
			a	а
Marinomonas MWYL1 uid58715	Mesophile	400668	Bacteri	Proteobacteri
	-		а	а
Marivirga tractuosa DSM 4126 uid60837	Psychrophile	643867	Bacteri	Chlorobi
	j sin opinio	2.2007	a	
Megamonas hypermegale uid197163	Thermonhile	657316	Bacteri	Firmicutes
meganonas_nypermegale_ulu17/105	rnermophile	037310	Dactell	1 mmeutes
			a	

Megasphaera_elsdenii_DSM_20460_uid71135	Hyperthermop	1064535	Bacteri	Firmicutes
	hile		а	
Meiothermus_silvanus_DSM_9946_uid49485	Thermophile	526227	Bacteri	Deinococcus
			а	-Thermus
Melioribacter roseus P3M uid170941	Thermophile	1191523	Bacteri	Chlorobi
	-		а	
Melissococcus plutonius ATCC 35311 uid66803	Mesophile	940190	Bacteri	Firmicutes
			a	
Mesonlasma florum W37 uid224253	Mesonhile	1406864	Bacteri	Other
	wiesophile	1100001	9	other
Mesotoga prima MesG1 Ag 4 2 uid52500	Thermonhile	660470	u Bacteri	Thermotogae
Mesologa_philia_Meso1_Ag_4_2_uu022399	Thermophile	000470	Dacteri	Thermotogae
	N 11	2511(0	a 	F 1 (
Methanocella_arvoryzae_MRE30_uid61623	Mesophile	351160	Archae	Euryarchaeot
			a	a
Methanococcoides_burtonii_DSM_6242_uid58023	Mesophile	259564	Archae	Euryarchaeot
			а	a
Methanohalobium_evestigatum_Z_7303_uid49857	Mesophile	644295	Archae	Euryarchaeot
			а	а
Methanolobus_psychrophilus_R15_uid177925	Mesophile	1094980	Archae	Euryarchaeot
			а	а
Methanomassiliicoccus_Mx1_Issoire_uid207287	Hyperthermop	1295009	Archae	Euryarchaeot
	hile		а	а
Methanoplanus_petrolearius_DSM_11571_uid52695	Mesophile	679926	Archae	Euryarchaeot
			а	а
Methanoregula formicicum SMSP uid184406	Mesophile	593750	Archae	Euryarchaeot
			а	a
Methanosalsum zhilinae DSM 4017 uid68249	Mesophile	679901	Archae	Eurvarchaeot
		0,77701	9	a
Methanocnirillum hungatai IE 1 uid58181	Mesophile	373750	Archae	Europaeot
	Mesophile	323239	Alchae	Euryarenaeot
M 4 1 11 11 1 6 N/4 150171	TT 4	401440	a D ()	a
Metnylacidiphilum_infernorum_v4_uid59161	Hyperthermop	481448	Bacteri	Other
	hile	10000	a	
Methylibium_petroleiphilum_PM1_uid58085	Mesophile	420662	Bacteri	Proteobacteri
			а	а
Methylobacillus_flagellatus_KT_uid58049	Mesophile	265072	Bacteri	Proteobacteri
			а	а
Methylobacterium_nodulans_ORS_2060_uid59023	Mesophile	460265	Bacteri	Proteobacteri
			а	а
Methylocella_silvestris_BL2_uid59433	Mesophile	395965	Bacteri	Proteobacteri
			а	а
Methylocystis_SC2_uid174072	Mesophile	187303	Bacteri	Proteobacteri
			а	а
Methylomicrobium alcaliphilum uid77119	Mesophile	1091494	Bacteri	Proteobacteri
	-		а	a
Methylomonas methanica MC09 uid67363	Mesophile	857087	Bacteri	Proteobacteri
	1		a	a
Methylonhaga IAM1 uid162947	Mesonhile	754476	Bacteri	Proteobacteri
nompopulga_stant_alato2>+/	Mesophile	/311/0	9	a
Mathulayana alugagatrashug SID2 4 wit50267	Magarhil	587711	a Destari	a Drotosha-t:
weinytovorus_glucosetropnus_51P3_4_01d5956/	wiesophile	382744	Bacteri	rroteobacteri
			а	a

Micavibrio_aeruginosavorus_ARL_13_uid73585	Mesophile	856793	Bacteri	Proteobacteri
			а	а
Microbacterium testaceum StLB037 uid62789	Mesophile	979556	Bacteri	Actinobacteri
			а	а
Micrococcus luteus NCTC 2665 uid59033	Mesophile	465515	Bacteri	Actinobacteri
			a	a
Microcoleus PCC 7113 uid183114	Mesophile	1173027	Bacteri	Cvanobacteri
	Wesophile	1175027	a	a
Mignosystic comprises NIES 842 wid50101	Maganhila	440447	" Dootori	u Cuanahaatari
Microcysus_aeruginosa_NES_645_uid59101	Wesophile	449447	Dacterr	Cyanobacteri
N. 1 (1 1 ND. 1 1/20055	N 11	1022400	a D ()	
Microlunatus_phosphovorus_NM_1_utdo8055	Mesophile	1032480	Bacteri	Actinobacteri
		644202	a	a
Micromonospora_aurantiaca_ATCC_27029_uid42501	Mesophile	644283	Bacteri	Actinobacteri
			а	а
Mobiluncus_curtisii_ATCC_43063_uid49695	Mesophile	548479	Bacteri	Actinobacteri
			а	а
Modestobacter_marinus_uid167487	Psychrophile	477641	Bacteri	Actinobacteri
			а	а
Moraxella_catarrhalis_BBH18_uid48809	Mesophile	749219	Bacteri	Proteobacteri
			а	а
Morganella_morganii_KT_uid180867	Mesophile	1124991	Bacteri	Proteobacteri
			а	а
Muricauda_ruestringensis_DSM_13258_uid72479	Psychrophile	886377	Bacteri	Chlorobi
			а	
Myxococcus xanthus DK 1622 uid58003	Psychrophile	246197	Bacteri	Proteobacteri
	2 1		а	а
Nakamurella multipartita DSM 44233 uid59221	Thermophile	479431	Bacteri	Actinobacteri
			a	a
Natrinema 17 uid171337	Mesophile	406552	Archae	Eurvarchaeot
hadmona_yaddr, 1557	mesophile	100332	a	a
Natronohacterium gragoryi SP2 uid74430	Mesophile	707304	u Archae	u Furvarahaeot
Nationobacterium_gregory1_312_utd/4439	wesophile	797504	Alchae	Euryarchaeot
	771 1.1	500(50	a D ()	
Nautilia_profundicola_AmH_uid59345	Thermophile	398639	Bacteri	Proteobacteri
			a	a
Neorickettsia_sennetsu_Miyayama_uid57965	Mesophile	222891	Bacteri	Proteobacteri
			а	а
Niastella_koreensis_GR20_10_uid83125	Psychrophile	700598	Bacteri	Chlorobi
			а	
Nitratifractor_salsuginis_DSM_16511_uid62183	Thermophile	749222	Bacteri	Proteobacteri
			а	а
Nitrobacter_hamburgensis_X14_uid58293	Mesophile	323097	Bacteri	Proteobacteri
			а	а
Nitrosococcus_halophilus_Nc4_uid46803	Mesophile	472759	Bacteri	Proteobacteri
			а	a
Nitrosomonas_Is79A3_uid68745	Mesophile	261292	Bacteri	Proteobacteri
			а	a
Nitrosospira_multiformis_ATCC_25196_uid58361	Mesophile	323848	Bacteri	Proteobacteri
	_		а	a
Nocardia brasiliensis ATCC 700358 uid86913	Mesophile	1133849	Bacteri	Actinobacteri
	1		a	a
				-

Nocardioides_JS614_uid58149	Thermophile	196162	Bacteri	Actinobacteri
			a	a
Nocardiopsis alba ATCC BAA 2165 uid174334	Mesophile	1205910	Bacteri	Actinobacteri
	-		а	a
Novosphingobium PP1Y uid67383	Mesophile	702113	Bacteri	Proteobacteri
	1		а	а
Oceanimonas GK1 uid81627	Mesophile	511062	Bacteri	Proteobacteri
	1		а	а
Ochrobactrum anthropi ATCC 49188 uid58921	Mesophile	439375	Bacteri	Proteobacteri
	1		а	а
Odoribacter splanchnicus DSM 20712 uid63397	Mesophile	709991	Bacteri	Chlorobi
			а	
Oenococcus oeni PSU 1 uid59417	Mesophile	203123	Bacteri	Firmicutes
	-		а	
Oligotropha carboxidovorans OM5 uid59155	Mesophile	504832	Bacteri	Proteobacteri
• •	-		а	a
Olsenella uli DSM 7084 uid51367	Mesophile	633147	Bacteri	Actinobacteri
	1		а	a
Opitutus terrae PB90 1 uid58965	Thermophile	452637	Bacteri	Other
•	-		а	
Orientia tsutsugamushi Ikeda uid58869	Mesophile	334380	Bacteri	Proteobacteri
	1		а	a
Ornithobacterium rhinotracheale DSM 15997 uid168256	Mesophile	867902	Bacteri	Chlorobi
	1		а	
Oscillatoria PCC 7112 uid183110	Mesophile	179408	Bacteri	Cvanobacteri
			a	a
Oscillibacter valericigenes uid73895	Mesophile	693746	Bacteri	Firmicutes
_ 6	1		а	
Owenweeksia hongkongensis DSM 17368 uid82951	Mesophile	926562	Bacteri	Chlorobi
_ 0 0	1		а	
Paenibacillus mucilaginosus KNP414 uid68311	Mesophile	1036673	Bacteri	Firmicutes
	1		а	
Paludibacter propionicigenes WB4 uid60725	Mesophile	694427	Bacteri	Chlorobi
	1		а	
Pandoraea pnomenusa 3kgm uid229878	Mesophile	1416914	Bacteri	Proteobacteri
			а	a
Pantoea At 9b uid55845	Mesophile	592316	Bacteri	Proteobacteri
	-		а	a
Parabacteroides distasonis ATCC 8503 uid58301	Mesophile	435591	Bacteri	Chlorobi
	-		а	
Parachlamydia acanthamoebae UV7 uid68335	Mesophile	765952	Bacteri	Chlamydiae
	-		а	-
Paracoccus denitrificans PD1222 uid58187	Mesophile	318586	Bacteri	Proteobacteri
			а	а
Parvibaculum lavamentivorans DS 1 uid58739	Mesophile	402881	Bacteri	Proteobacteri
			а	a
Parvularcula bermudensis HTCC2503 uid51641	Mesophile	314260	Bacteri	Proteobacteri
	1		а	a
Pectobacterium SCC3193 uid193707	Mesophile	1166016	Bacteri	Proteobacteri
	*	-	а	a

Pediococcus_claussenii_ATCC_BAA_344_uid81103	Mesophile	701521	Bacteri	Firmicutes
			а	
Pedobacter heparinus DSM 2366 uid59111	Psychrophile	485917	Bacteri	Chlorobi
			а	
Pelagibacterium halotolerans B2 uid74393	Mesophile	1082931	Bacteri	Proteobacteri
	mesophile	1002001	9	3
Pelobacter propionicus DSM 2370 uid58255	Mesonhile	338066	Bacteri	u Proteobacteri
reiobacter_propronicus_DSW_2379_uu38233	Wesophile	338900	Dacterr	Proteobacteri
	XX 4	224025	a	a
Pelodictyon_phaeoclathratiforme_BU_1_uid58173	Hyperthermop	324925	Bacteri	Chlorobi
	hile		а	
Persicivirga_dokdonensis_DSW_6_uid186842	Psychrophile	592029	Bacteri	Chlorobi
			а	
Phaeobacter_gallaeciensis_DSM_26640_uid232357	Mesophile	1423144	Bacteri	Proteobacteri
			а	а
Phenylobacterium_zucineum_HLK1_uid58959	Mesophile	450851	Bacteri	Proteobacteri
			а	а
Phycisphaera mikurensis NBRC_102666_uid157331	Mesophile	1142394	Bacteri	Planctomycet
	_		а	es
Pirellula stalevi DSM 6068 uid43209	Mesophile	530564	Bacteri	Planctomvcet
	1		а	es
Planetomyces brasiliensis DSM 5305 uid60583	Mesonhile	756272	Bacteri	Planctomycet
Tancioniyees_orasinensis_Dow_5505_audo0505	wesophile	130212	Dacterr	
DL DCC 7227 1102000	N 11	1101/2	a D ()	es l t i
Pleurocapsa_PCC_/32/_uid183006	Mesophile	118163	Bacteri	Cyanobacteri
			а	а
Polaromonas_JS666_uid58207	Mesophile	296591	Bacteri	Proteobacteri
			а	а
Polymorphum_gilvum_SL003B_26A1_uid65447	Mesophile	991905	Bacteri	Proteobacteri
			а	а
Polynucleobacter_necessarius_asymbioticus_QLW_P1DMWA_1_	Mesophile	312153	Bacteri	Proteobacteri
uid58611			а	а
Porphyromonas_gingivalis_TDC60_uid67407	Thermophile	1030843	Bacteri	Chlorobi
			а	
Prevotella_ruminicola_23_uid47507	Mesophile	264731	Bacteri	Chlorobi
			а	
Propionibacterium acidipropionici ATCC 4875 uid179069	Mesophile	1171373	Bacteri	Actinobacteri
	1		а	а
Prosthecochloris aestuarii DSM 271 uid58151	Thermonhile	290512	Bacteri	Chlorobi
	Thermophile	290312	a	Childredi
Protono mirabilio H14220 mid61500	Maganhila	520507	u Dootori	Protochastari
Floteus_minaoms_m4320_ulu01399	Wesophile	529507	Bacterr	FIOLEODACIEII
		1155051	a	a
Providencia_stuartii_MRSN_2154_uid162193	Mesophile	115/951	Bacteri	Proteobacteri
			а	а
Pseudanabaena_PCC_7367_uid183004	Mesophile	82654	Bacteri	Cyanobacteri
			а	а
Pseudoalteromonas_atlantica_T6c_uid58283	Psychrophile	342610	Bacteri	Proteobacteri
			а	a
Pseudogulbenkiania_NH8B_uid73423	Mesophile	748280	Bacteri	Proteobacteri
			а	a
Pseudonocardia_dioxanivorans_CB1190_uid65087	Mesophile	675635	Bacteri	Actinobacteri
	_		а	a
	1	1	1	

Pseudovibrio_FO_BEG1_uid82373	Mesophile	911045	Bacteri	Proteobacteri
			а	а
Pseudoxanthomonas spadix BD a59 uid75113	Psychrophile	1045855	Bacteri	Proteobacteri
			9	9
Psychrophatar G. uid210641	Masanhila	571800	Bootori	u Drotochostori
Psychrobacter_G_uid210641	Mesophile	371800	Dacteri	Proteobacteri
			а	а
Pusillimonas_T7_7_uid66391	Mesophile	1007105	Bacteri	Proteobacteri
			а	а
Rahnella_Y9602_uid62715	Mesophile	741091	Bacteri	Proteobacteri
			a	а
Ramlibacter_tataouinensis_TTB310_uid68279	Mesophile	365046	Bacteri	Proteobacteri
			а	а
Raoultella ornithinolytica B6 uid198431	Mesophile	1286170	Bacteri	Proteobacteri
	in esophine	12001/0	9	9
	N 11	01/20/	a D i i	
Rhizobium_leguminosarum_bvviciae_3841_uid5/955	Mesophile	216596	Bacteri	Proteobacteri
			а	а
Rhodanobacter_2APBS1_uid74431	Mesophile	666685	Bacteri	Proteobacteri
			а	а
Rhodobacter_sphaeroides_KD131_uid59277	Mesophile	557760	Bacteri	Proteobacteri
	_		а	а
Rhodococcus jostij RHA1 uid58325	Mesophile	101510	Bacteri	Actinobacteri
Kibubebeeus_Jostif_KII/KI_ulus/0525	Wesophile	101510	Bueten	a
	N 11	2200/0	a D	a
Rhodoferax_ferrireducens_1118_uid58353	Mesophile	338969	Bacteri	Proteobacteri
			а	а
Rhodomicrobium_vannielii_ATCC_17100_uid43247	Mesophile	648757	Bacteri	Proteobacteri
			а	а
Rhodospirillum_centenum_SW_uid58805	Mesophile	414684	Bacteri	Proteobacteri
			a	а
Riemerella anatipestifer RA CH 1 uid175469	Mesophile	1228997	Bacteri	Chlorobi
	1		а	
Rivalerie PCC 7116 uid182020	Devehronhile	373004	Bacteri	Cyanobacteri
Kivulana_FCC_/110_ulu182929	rsychiophine	373994	Bacterr	Cyanobacteri
			a	a
Robiginitalea_biformata_HTCC2501_uid58285	Psychrophile	313596	Bacteri	Chlorobi
			а	
Roseburia_intestinalis_XB6B4_uid197179	Mesophile	718255	Bacteri	Firmicutes
			а	
Roseiflexus RS 1 uid58523	Thermophile	357808	Bacteri	Other
	_		а	
Roseobacter litoralis Och 149 uid54719	Psychrophile	391595	Bacteri	Proteobacteri
	r syemephile	571575	o	2
D. 1. 1		7(2040	a D	a
Rothia_dentocariosa_ATCC_1/931_uid49331	Mesophile	/62948	Bacteri	Actinobacteri
			а	а
Rubrivivax_gelatinosus_IL144_uid158163	Mesophile	983917	Bacteri	Proteobacteri
			а	а
Ruegeria_pomeroyi_DSS_3_uid57863	Psychrophile	246200	Bacteri	Proteobacteri
			а	а
Ruminococcus albus 7 uid51721	Thermophile	697329	Bacteri	Firmicutes
	pinie			
Den 11. 114-Semi- DOM 10504 140217	Develop 11	7(1102	a Dest	Chland
kunella_slithylormis_DSM1_19594_uld6831/	Psychrophile	/01193	Bacteri	Chlorobi
			а	

Saccharomonospora_viridis_DSM_43017_uid59055	Mesophile	471857	Bacteri	Actinobacteri
			a	a
Saccharophagus_degradans_2_40_uid57921	Mesophile	203122	Bacteri	Proteobacteri
			а	а
Saccharopolyspora_erythraea_NRRL_2338_uid62947	Mesophile	405948	Bacteri	Actinobacteri
			а	а
Saccharothrix_espanaensis_DSM_44229_uid184826	Mesophile	1179773	Bacteri	Actinobacteri
			a	a
Salinarchaeum_laminariae_Harcht_Bsk1_uid207001	Mesophile	1333523	Archae	Euryarchaeot
			а	a
Salinibacter_ruber_M8_uid47323	Mesophile	761659	Bacteri	Chlorobi
			a	
Salinispora_arenicola_CNS_205_uid58659	Mesophile	391037	Bacteri	Actinobacteri
			a	a
Sanguibacter_keddieii_DSM_10542_uid40845	Mesophile	446469	Bacteri	Actinobacteri
			a	a
Saprospira_grandis_Lewin_uid89375	Mesophile	984262	Bacteri	Chlorobi
			а	
Sebaldella_termitidis_ATCC_33386_uid41865	Mesophile	526218	Bacteri	Fusobacteria
			а	
Segniliparus_rotundus_DSM_44985_uid49049	Mesophile	640132	Bacteri	Actinobacteri
			а	a
Selenomonas_ruminantium_lactilytica_TAM6421_uid157247	Mesophile	927704	Bacteri	Firmicutes
			a	
Serratia_plymuthica_S13_uid210642	Mesophile	1348660	Bacteri	Proteobacteri
			a	a
Shigella_dysenteriae_1617_uid229875	Mesophile	754093	Bacteri	Proteobacteri
			a	a
Sideroxydans_lithotrophicus_ES_1_uid46801	Mesophile	580332	Bacteri	Proteobacteri
			a	a
Simiduia_agarivorans_SA1_uid177713	Psychrophile	1117647	Bacteri	Proteobacteri
			a	a
Simkania_negevensis_Z_uid68451	Mesophile	331113	Bacteri	Chlamydiae
			a	
Singulisphaera_acidiphila_DSM_18658_uid81777	Thermophile	886293	Bacteri	Planctomycet
			a	es
Slackia_heliotrinireducens_DSM_20476_uid59051	Mesophile	471855	Bacteri	Actinobacteri
			а	a
Sodalis_glossinidiusmorsitansuid58553	Mesophile	343509	Bacteri	Proteobacteri
			а	a
Solibacillus_silvestris_StLB046_uid168516	Mesophile	1002809	Bacteri	Firmicutes
			а	
Solitalea_canadensis_DSM_3403_uid81783	Psychrophile	929556	Bacteri	Chlorobi
			a	
Sorangium_cellulosum_So0157_2_uid210741	Mesophile	1254432	Bacteri	Proteobacteri
			а	a
Sphaerochaeta_pleomorpha_Grapes_uid82365	Mesophile	158190	Bacteri	Spirochaetes
			а	
Sphingobacterium_21_uid64755	Psychrophile	743722	Bacteri	Chlorobi
			a	
		1	1	

Sphingobium_japonicum_UT26S_uid47077	Mesophile	452662	Bacteri	Proteobacteri
			а	а
Sphingomonas wittichii RW1 uid58691	Mesophile	392499	Bacteri	Proteobacteri
· ·	-		а	а
Sphingopyxis alaskensis RB2256 uid58351	Mesophile	317655	Bacteri	Proteobacteri
opiningopynis_musiciniis_rcb2200_urd00001	mesophile	517055	a	2
Spiribastor UAU SD71 uid226111	Masanhila	1225757	u Dootori	u Drotoohaatari
Spirioacter_OAH_SP/1_uid220111	Wiesophile	1555757	Bacteri	Proteobacteri
		552.412	a	a
Spirochaeta_smaragdinae_DSM_11293_uid51369	Mesophile	573413	Bacteri	Spirochaetes
			а	
Spiroplasma_chrysopicola_DF_1_uid205053	Mesophile	1276227	Bacteri	Other
			а	
Spirosoma_linguale_DSM_74_uid43413	Psychrophile	504472	Bacteri	Chlorobi
			а	
Stackebrandtia_nassauensis_DSM_44728_uid46663	Psychrophile	446470	Bacteri	Actinobacteri
			a	а
Stanieria cyanosphaera PCC 7437 uid183115	Mesophile	111780	Bacteri	Cyanobacteri
	1		а	а
Starkeva novella DSM 506 uid48815	Mesophile	639283	Bacteri	Proteobacteri
	mecophile	007200	9	9
Stanaturnhamana maltanhilia K270a vid61647	Maganhila	522272	a Dootori	a Duotoohootoui
Stenotrophomonas_mattophina_K2/9a_uido104/	Wiesophile	522575	Dacteri	Proteobacteri
		250006	a	a
Stigmatella_aurantiaca_DW4_3_1_uid158509	Mesophile	378806	Bacteri	Proteobacteri
			а	а
Strawberry_lethal_yellows_phytoplasma_CPA_NZSb11_uid203	Mesophile	980422	Bacteri	Other
392			а	
Streptobacillus_moniliformis_DSM_12112_uid41863	Mesophile	519441	Bacteri	Fusobacteria
			а	
Streptomyces_bingchenggensis_BCW_1_uid82931	Mesophile	749414	Bacteri	Actinobacteri
			а	а
Streptosporangium_roseum_DSM_43021_uid42521	Mesophile	479432	Bacteri	Actinobacteri
			а	а
Sulfobacillus acidophilus TPY uid68841	Thermophile	1051632	Bacteri	Firmicutes
	1		а	
Sulfuricella denitrificans skB26 uid170240	Mesophile	1163617	Bacteri	Proteobacteri
Sundreend_demanicans_skb20_did170240	Wesophile	1105017	Daetell	2
Sulfainment Indiana DSM 16004 add(0790	Massulila	700022	a De stari	a Ducto che ete ui
Sulfuricurvum_kujiense_DSM_16994_uid60789	Mesophile	/09032	Bacteri	Proteobacteri
			a	a
Sulfurimonas_autotrophica_DSM_16294_uid53043	Mesophile	563040	Bacteri	Proteobacteri
			а	а
Sulfurospirillum_barnesii_SES_3_uid168117	Mesophile	760154	Bacteri	Proteobacteri
			а	а
Sulfurovum_NBC37_1_uid58863	Mesophile	387093	Bacteri	Proteobacteri
			а	а
Synechococcus_PCC_6312_uid182934	Hyperthermop	195253	Bacteri	Cyanobacteri
	hile		а	a
Synergistetes bacterium SGP1 uid197182	Thermophile	651822	Bacteri	Synergistetes
	F		a	,
Syntrophobacter filmaroxidans MPOR uid58177	Mesophile	335543	Bacteri	Proteobacteri
Synapholouver_tentaroxidans_tent OB_eff030177	mesophile	555555	a	a 1010000000001
			a	a
Syntrophobotulus_glycolicus_DSM_8271_uid63343	Thermophile	645991	Bacteri	Firmicutes
---	--------------	----------	--------------	--------------------
			а	
Syntrophomonas wolfei Goettingen uid58179	Thermophile	335541	Bacteri	Firmicutes
	-		а	
Syntrophus aciditrophicus SB uid58539	Mesophile	56780	Bacteri	Proteobacteri
bjindpinas_additopineas_b2_addooco	mecophile	20700	9	3
Tannarella forenthia ATCC 43037 uid83157	Mesophile	203275	Bacteri	Chlorobi
Taimerena_loisyuna_ATCC_45057_uud85157	Wesophile	203275	Dacterr	Chilofool
		022224	a	D (1 (1
l'aylorella_equigenitalis_MCE9_uid62103	Mesophile	937774	Bacteri	Proteobacteri
			а	а
Tepidanaerobacter_acetatoxydans_Re1_uid184827	Thermophile	1209989	Bacteri	Firmicutes
			а	
Teredinibacter_turnerae_T7901_uid59267	Mesophile	377629	Bacteri	Proteobacteri
			а	а
Terriglobus_roseus_DSM_18391_uid168183	Mesophile	926566	Bacteri	Acidobacteri
			a	а
Tetragenococcus halophilus uid74441	Mesophile	945021	Bacteri	Firmicutes
	1		а	
Thalassobaculum 1.2 uid182483	Mesophile	1193729	Bacteri	Proteobacteri
	mecophile	11/0/2/	9	3
Thelegeolithus claiments MIL 1 wid105604	Maganhila	1208502	a Dootori	a Duataahaatani
Thatassontuus_olervorans_MIL_1_ulu195004	Wesophile	1296393	Bacterr	FIOLEODACIEII
		0.5.6.10	a	a
Thauera_MZ11_uid58987	Mesophile	85643	Bacteri	Proteobacteri
			а	a
Thermincola_potens_JR_uid48823	Thermophile	635013	Bacteri	Firmicutes
			а	
Thermoanaerobacterium_thermosaccharolyticum_M0795_uid1848	Thermophile	698948	Bacteri	Firmicutes
21			а	
Thermobacillus_composti_KWC4_uid74021	Mesophile	717605	Bacteri	Firmicutes
			а	
Thermobaculum_terrenum_ATCC_BAA_798_uid42011	Thermophile	525904	Bacteri	Other
	_		а	
Thermobifida fusca YX uid57703	Mesophile	269800	Bacteri	Actinobacteri
			a	a
Thermohispora hispora DSM 43833 uid48000	Mesophile	460371	Bacteri	u Actinobacteri
Thermoorspora_orspora_DSW_45855_uu48999	Wesophile	409371	Bacterr	Actinobacteri
		- 1	a	a
Thermodesulfobium_narugense_DSM_14/96_uid66601	Thermophile	747365	Bacteri	Firmicutes
			а	
Thermofilum_1910b_uid215374	Hyperthermop	1365176	Archae	Crenarchaeot
	hile		а	а
Thermomonospora_curvata_DSM_43183_uid41885	Thermophile	471852	Bacteri	Actinobacteri
			а	a
Thermoplasmatales_archaeon_BRNA1_uid195930	Mesophile	1054217	Archae	Euryarchaeot
			а	a
Thioalkalimicrobium cyclicum ALM1 uid67391	Mesophile	717773	Bacteri	Proteobacteri
	-		а	а
Thioalkalivibrio nitratireducens DSM 14787 uid184011	Mesophile	1255043	Bacteri	Proteobacteri
		1200010	a	3
Thiopystic violascens DSM 109 vid74025	Meconhile	765011	" Bootori	" Drotoshastari
1 mocysus_violascens_DSivi_196_UId/4025	wiesophile	/03911	Dacteri	FTOLEODACLETI
			а	a

Thioflavicoccus_mobilis_8321_uid184343	Mesophile	765912	Bacteri	Proteobacteri
			a	а
Thiomonas_3As_uid178369	Mesophile	426114	Bacteri	Proteobacteri
			а	а
Tistrella mobilis KA081020 065 uid167486	Mesophile	1110502	Bacteri	Proteobacteri
	-		а	а
Tolumonas auensis DSM 9187 uid59395	Mesophile	595494	Bacteri	Proteobacteri
	1		а	а
Trichodesmium erythraeum IMS101 uid57925	Mesonhile	203124	Bacteri	Cvanobacteri
Therefore and the second s	mesophile	203121	a	a
Truepera radiovictrix DSM 17093 uid49533	Thermonhile	649638	Bacteri	Deinococcus
	Thermophile	010000	a	-Thermus
Tsukamuralla naurometabala DSM 20162 uid48820	Masonhila	521096	u Bacteri	Actinobacteri
Tsukamurena_paurometaoola_DSM_20102_ulu48829	Wesophile	521090	Bacterr	Actinobacteri
T 11 DOM 01507 11/0001	M 11	0(0212		a 0 : 1 :
Turneriella_parva_DSM_21527_uid168321	Mesophile	869212	Bacteri	Spirochaetes
			a	
Variovorax_paradoxus_B4_uid218005	Mesophile	1246301	Bacteri	Proteobacteri
			а	а
Veillonella_parvula_DSM_2008_uid41927	Mesophile	479436	Bacteri	Firmicutes
			а	
Verminephrobacter_eiseniae_EF01_2_uid58675	Mesophile	391735	Bacteri	Proteobacteri
			а	a
Verrucosispora_maris_AB_18_032_uid66297	Thermophile	263358	Bacteri	Actinobacteri
			a	а
Waddlia_chondrophila_WSU_86_1044_uid49531	Mesophile	716544	Bacteri	Chlamydiae
			а	
Weeksella_virosa_DSM_16922_uid63627	Psychrophile	865938	Bacteri	Chlorobi
			a	
Weissella_koreensis_KACC_15510_uid68837	Mesophile	1045854	Bacteri	Firmicutes
			a	
Wolbachia endosymbiont of Culex quinquefasciatus Pel uid616	Mesophile	570417	Bacteri	Proteobacteri
45	_		a	а
Wolbachia wRi uid59371	Mesophile	66084	Bacteri	Proteobacteri
	1		а	а
Xanthobacter autotrophicus Pv2 uid58453	Mesophile	78245	Bacteri	Proteobacteri
			a	a
Xanthomonas orvzae PXO99A uid59131	Mesonhile	360094	Bacteri	Proteobacteri
	mesophile	50007	a	3
Venorhabdus nematonbila ATCC 10061 uid40133	Masonhila	406817	u Bacteri	u Proteobacteri
Achomabdus_hematopima_ATCC_17001_uu47155	wiesophile	400017	Dacterr	2
Vularimorea callulacilutica DSM 15804 uid41025	Masanhila	116171	a Dootori	a Actinohactori
Aylaninonas_centrosnytica_D5Ni_15074_utu+1955	Wiesophile	4404/1	Dacteri	Actinobacteri
	Derech ve uh ile	(219)	a De steri	a Chlanchi
Zobenna_garactanivorans_uid/0021	Psychrophile	03180	Bacteri	Chiorobi
	D 1	(22015	a	C11 1
Zunongwangia_profunda_SM_A87_uid48073	Psychrophile	655815	Bacteri	Chlorobi
			a	
Zymomonas_mobilis_NCIMB_11163_uid41019	Mesophile	622759	Bacteri	Proteobacteri
		<u> </u>	а	а
archaeon_Mx1201_uid196597	Mesophile	1236689	Archae	Euryarchaeot
			a	а

candidate_division_SR1_bacterium_RAAC1_SR1_1_uid230714	Mesophile	1394709	Bacteri	Other
			а	
candidate_division_WWE3_bacterium_RAAC2_WWE3_1_uid23	Mesophile	1394710	Bacteri	Other
0713			а	
secondary_endosymbiont_of_Ctenarytaina_eucalypti_uid172737	Mesophile	1199245	Bacteri	Proteobacteri
			а	а
secondary_endosymbiont_of_Heteropsylla_cubana_Thao2000_uid	Mesophile	134287	Bacteri	Proteobacteri
172738			а	а
syncytium_symbiont_of_Diaphorina_citri_uid213384	Mesophile	669502	Bacteri	Proteobacteri
			а	а
uncultured_Termite_group_1_bacterium_phylotype_Rs_D17_uid5	Thermophile	471821	Bacteri	Other
9059			а	

Appendix 5. Names, coefficients, functional categories, and biological functions of features chosen by logistic regression models.

Prediction of mesophiles.

COGs	Coefs	Category	Function
COG2249	1.751	R	Putative NADPH-quinone reductase (modulator of
			drug activity B)
COG0207	1.154	F	Thymidylate synthase
COG3794	0.834	С	Plastocyanin
COG1621	0.794	G	Sucrose-6-phosphate hydrolase SacC GH32 family
COG0280	0.787	С	Phosphotransacetylase
COG3299	0.785	Х	Uncharacterized phage protein gp47/JayE
COG3315	0.737	Q	O-Methyltransferase involved in polyketide bio-
			synthesis
COG3905	0.733	K	Predicted transcriptional regulator
COG2770	0.726	Т	HAMP domain
COG2039	0.675	0	Pyrrolidone-carboxylate peptidase (N-terminal py-
			roglutamyl peptidase)
COG1570	0.664	L	Exonuclease VII large subunit
COG0582	0.652	LX	Integrase
COG0120	0.620	G	Ribose 5-phosphate isomerase
COG4166	0.612	Е	ABC-type oligopeptide transport system periplas-
			mic component
COG0588	0.606	G	Phosphoglycerate mutase (BPG-dependent)
COG2183	0.561	К	Transcriptional accessory protein Tex/SPT6

COG2945	0.520	R	Alpha/beta superfamily hydrolase
COG0262	0.467	Н	Dihydrofolate reductase
COG4372	0.322	S	Uncharacterized conserved protein contains
			DUF3084 domain
COG0556	0.321	L	Excinuclease UvrABC helicase subunit UvrB
COG0500	0.315	QR	SAM-dependent methyltransferase
COG0571	0.309	K	dsRNA-specific ribonuclease
COG0178	0.301	L	Excinuclease UvrABC ATPase subunit
COG1502	0.290	Ι	Phosphatidylserine/phosphatidylglycerophos-
			phate/cardiolipin synthase or related enzyme
COG2230	0.277	Ι	Cyclopropane fatty-acyl-phospholipid synthase
			and related methyltransferases
COG0188	0.268	L	DNA gyrase/topoisomerase IV subunit A
COG0834	0.264	ET	ABC-type amino acid transport/signal transduction
			system periplasmic component/domain
COG2978	0.258	Н	p-Aminobenzoyl-glutamate transporter AbgT
COG0652	0.257	0	Peptidyl-prolyl cis-trans isomerase (rotamase) - cy-
			clophilin family
COG1164	0.242	Е	Oligoendopeptidase F
COG0575	0.238	Ι	CDP-diglyceride synthetase
COG4188	0.223	R	Predicted dienelactone hydrolase
COG3864	0.220	R	Predicted metal-dependent peptidase
COG1453	0.213	R	Predicted oxidoreductase of the aldo/keto reductase
			family
COG1178	0.198	Р	ABC-type Fe3+ transport system permease compo-
			nent
COG0229	0.192	0	Peptide methionine sulfoxide reductase MsrB
COG1346	0.190	М	Putative effector of murein hydrolase
COG0534	0.189	V	Na+-driven multidrug efflux pump
COG0322	0.177	L	Excinuclease UvrABC nuclease subunit
COG3153	0.176	R	Predicted N-acetyltransferase YhbS
COG3467	0.175	V	Nitroimidazol reductase NimA or a related FMN-
			containing flavoprotein pyridoxamine 5'-phosphate
			oxidase superfamily

COG0398	0.173	S	Uncharacterized membrane protein YdjX
			TVP38/TMEM64 family SNARE-associated do-
			main
COG0765	0.173	E	ABC-type amino acid transport system permease
			component
COG1509	0.173	Е	L-lysine 23-aminomutase (EF-P beta-lysylation
			pathway)
COG4122	0.158	R	Predicted O-methyltransferase YrrM
COG1722	0.155	L	Exonuclease VII small subunit
COG4251	0.149	Т	Bacteriophytochrome (light-regulated signal trans-
			duction histidine kinase)
COG0551	0.142	L	ssDNA-binding Zn-finger and Zn-ribbon domains
			of topoisomerase 1
COG0576	0.141	0	Molecular chaperone GrpE (heat shock protein)
COG3049	0.135	MR	Penicillin V acylase or related amidase Ntn super-
			family
COG1696	0.132	М	D-alanyl-lipoteichoic acid acyltransferase DltB
			MBOAT superfamily
COG0389	0.109	L	Nucleotidyltransferase/DNA polymerase involved
			in DNA repair
COG0733	0.101	R	Na+-dependent transporter SNF family
COG0484	0.097	0	DnaJ-class molecular chaperone with C-terminal
			Zn finger domain
COG0514	0.094	L	Superfamily II DNA helicase RecQ
COG0605	0.093	Р	Superoxide dismutase
COG0553	0.091	KL	Superfamily II DNA or RNA helicase SNF2 family
COG0225	0.091	0	Peptide methionine sulfoxide reductase MsrA
COG3549	0.089	V	Plasmid maintenance system killer protein
COG1511	0.088	S	Uncharacterized membrane protein YhgE phage
			infection protein (PIP) family
COG2227	0.087	Н	2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-14-
			benzoquinol methylase
COG1285	0.071	S	Uncharacterized membrane protein YhiD involved
			in acid resistance

COG0187	0.062	L	DNA gyrase/topoisomerase IV subunit B
COG0443	0.062	0	Molecular chaperone DnaK (HSP70)
COG1704	0.058	S	Uncharacterized conserved protein
COG0591	0.052	Е	Na+/proline symporter
COG1301	0.048	С	Na+/H+-dicarboxylate symporter
COG1283	0.047	Р	Na+/phosphate symporter
COG0786	0.046	Е	Na+/glutamate symporter
COG2002	0.031	KV	Bifunctional DNA-binding transcriptional regula-
			tor of stationary/sporulation/toxin gene expression
			and antitoxin component of the YhaV-PrlF toxin-
			antitoxin module
COG0783	0.030	PV	DNA-binding ferritin-like protein (oxidative dam-
			age protectant)
COG1253	0.029	R	Hemolysin or related protein contains CBS do-
			mains
COG1063	0.009	ER	Threonine dehydrogenase or related Zn-dependent
			dehydrogenase
COG0272	0.002	L	NAD-dependent DNA ligase
COG4148	-0.002	Р	ABC-type molybdate transport system ATPase
			component
COG1703	-0.004	0	Putative periplasmic protein kinase ArgK or related
			GTPase of G3E family
COG1801	-0.005	S	Uncharacterized conserved protein YecE DUF72
			family
COG2327	-0.005	М	Polysaccharide pyruvyl transferase family protein
		111	5 15 5 51
			WcaK
COG0455	-0.011	DN	WcaK MinD-like ATPase involved in chromosome parti-
COG0455	-0.011	DN	WcaK MinD-like ATPase involved in chromosome parti- tioning or flagellar assembly
COG0455 COG2177	-0.011	DN D	WcaK MinD-like ATPase involved in chromosome parti- tioning or flagellar assembly Cell division protein FtsX
COG0455 COG2177 COG3225	-0.011 -0.018 -0.020	DN D N	WcaKMinD-like ATPase involved in chromosome partitioning or flagellar assemblyCell division protein FtsXABC-type uncharacterized transport system in-
COG0455 COG2177 COG3225	-0.011 -0.018 -0.020	DN D N	WcaKMinD-like ATPase involved in chromosome partitioning or flagellar assemblyCell division protein FtsXABC-type uncharacterized transport system involved in gliding motility auxiliary component
COG0455 COG2177 COG3225 COG0314	-0.011 -0.018 -0.020 -0.030	DN D N H	WcaKMinD-like ATPase involved in chromosome partitioning or flagellar assemblyCell division protein FtsXABC-type uncharacterized transport system involved in gliding motility auxiliary componentMolybdopterin synthase catalytic subunit
COG0455 COG2177 COG3225 COG0314 COG1399	-0.011 -0.018 -0.020 -0.030 -0.030	DN D N H S	WcaKMinD-like ATPase involved in chromosome partitioning or flagellar assemblyCell division protein FtsXABC-type uncharacterized transport system involved in gliding motility auxiliary componentMolybdopterin synthase catalytic subunitUncharacterized metal-binding protein YceD
COG0455 COG2177 COG3225 COG0314 COG1399	-0.011 -0.018 -0.020 -0.030 -0.030	DN D N H S	WcaKMinD-like ATPase involved in chromosome partitioning or flagellar assemblyCell division protein FtsXABC-type uncharacterized transport system involved in gliding motility auxiliary componentMolybdopterin synthase catalytic subunitUncharacterized metal-binding protein YceDDUF177 family

COG1129	-0.037	G	ABC-type sugar transport system ATPase compo-
			nent
COG3450	-0.037	R	Predicted enzyme of the cupin superfamily
COG0411	-0.039	Е	ABC-type branched-chain amino acid transport
			system ATPase component
COG1743	-0.039	L	Adenine-specific DNA methylase contains a Zn-
			ribbon domain
COG0374	-0.045	С	NiFe-hydrogenase I large subunit
COG1172	-0.047	G	Ribose/xylose/arabinose/galactoside ABC-type
			transport system permease component
COG1609	-0.056	К	DNA-binding transcriptional regulator LacI/PurR
			family
COG1950	-0.063	S	Uncharacterized membrane protein YvlD DUF360
			family
COG3654	-0.063	Х	Prophage maintenance system killer protein
COG2096	-0.065	Н	Cob(I)alamin adenosyltransferase
COG2896	-0.071	Н	Molybdenum cofactor biosynthesis enzyme MoaA
COG0303	-0.072	Н	Molybdopterin biosynthesis enzyme
COG1079	-0.072	R	ABC-type uncharacterized transport system per-
			mease component
COG1032	-0.075	R	Radical SAM superfamily enzyme YgiQ UPF0313
			family
COG1397	-0.082	0	ADP-ribosylglycohydrolase
COG2905	-0.092	Т	Signal-transduction protein containing cAMP-
			binding CBS and nucleotidyltransferase domains
COG0005	-0.093	F	Purine nucleoside phosphorylase
COG2086	-0.096	С	Electron transfer flavoprotein alpha and beta subu-
			nits
COG0428	-0.099	Р	Zinc transporter ZupT
COG4603	-0.119	R	ABC-type uncharacterized transport system per-
			mease component
COG1986	-0.131	FV	Non-canonical (house-cleaning) NTP pyrophos-
			phatase all-alpha NTP-PPase family
COG3439	-0.154	S	Uncharacterized conserved protein DUF302 family

COG1540	-0.157	R	Lactam utilization protein B (function unknown)
COG0490	-0.160	Р	K+/H+ antiporter YhaU regulatory subunit KhtT
COG1055	-0.161	Р	Na+/H+ antiporter NhaD or related arsenite per-
			mease
COG2120	-0.182	G	N-acetylglucosaminyl deacetylase LmbE family
COG4454	-0.186	R	Uncharacterized copper-binding protein cupre-
			doxin-like subfamily
COG2025	-0.190	С	Electron transfer flavoprotein alpha subunit
COG0038	-0.191	Р	H+/Cl- antiporter ClcA
COG0819	-0.216	Н	Thiaminase
COG1518	-0.224	V	CRISPR/Cas system-associated endonuclease
			Casl
COG0315	-0.242	Н	Molybdenum cofactor biosynthesis enzyme
COG2971	-0.249	G	BadF-type ATPase related to human N-acetylglu-
			cosamine kinase
COG3956	-0.259	R	Uncharacterized conserved protein YabN contains
			tetrapyrrole methylase and MazG-like pyrophos-
			phatase domain
COG1410	-0.261	Е	Methionine synthase I cobalamin-binding domain
COG3677	-0.267	Х	Transposase
COG1647	-0.267	Q	Esterase/lipase
COG0123	-0.270	BQ	Acetoin utilization deacetylase AcuC or a related
			deacetylase
COG3206	-0.272	М	Uncharacterized protein involved in exopolysac-
			charide biosynthesis
COG2723	-0.275	G	Beta-glucosidase/6-phospho-beta-gluco-
			sidase/beta-galactosidase
COG0296	-0.276	G	14-alpha-glucan branching enzyme
COG1526	-0.301	С	Formate dehydrogenase assembly factor FdhD
COG1349	-0.305	KG	DNA-binding transcriptional regulator of sugar
			metabolism DeoR/GlpR family
COG4989	-0.324	R	Predicted oxidoreductase
COG3653	-0.326	Q	N-acyl-D-aspartate/D-glutamate deacylase

COG3301	-0.350	Р	Formate-dependent nitrite reductase membrane
			component NrfD
COG0709	-0.355	Е	Selenophosphate synthase
COG1922	-0.369	М	UDP-N-acetyl-D-mannosaminuronic acid transfer-
			ase WecB/TagA/CpsF family
COG0182	-0.373	Е	Methylthioribose-1-phosphate isomerase (methio-
			nine salvage pathway) a paralog of eIF-2B alpha
			subunit
COG4942	-0.383	D	Septal ring factor EnvC activator of murein hydro-
			lases AmiA and AmiB
COG1792	-0.386	D	Cell shape-determining protein MreC
COG0243	-0.391	С	Anaerobic selenocysteine-containing dehydrogen-
			ase
COG2068	-0.393	Н	CTP:molybdopterin cytidylyltransferase MocA
COG3959	-0.394	G	Transketolase N-terminal subunit
COG1583	-0.407	V	CRISPR/Cas system endoribonuclease Cas6
			RAMP superfamily
COG1228	-0.413	Q	Imidazolonepropionase or related amidohydrolase
COG1814	-0.444	Р	Predicted Fe2+/Mn2+ transporter VIT1/CCC1
			family
COG1085	-0.469	G	Galactose-1-phosphate uridylyltransferase
COG4242	-0.481	QR	Cyanophycinase and related exopeptidases
COG1702	-0.492	Т	Phosphate starvation-inducible protein PhoH pre-
			dicted ATPase
COG1203	-0.528	V	CRISPR/Cas system-associated endonuclease/hel-
			icase Cas3
COG0698	-0.535	G	Ribose 5-phosphate isomerase RpiB
COG1077	-0.551	D	Actin-like ATPase involved in cell morphogenesis
COG0644	-0.588	С	Dehydrogenase (flavoprotein)
COG2981	-0.593	Е	Uncharacterized protein involved in cysteine bio-
			synthesis
COG0421	-0.594	Е	Spermidine synthase
COG3958	-0.746	G	Transketolase C-terminal subunit
COG1318	-0.747	K	Predicted transcriptional regulator

COG2759	-0.863	F	Formyltetrahydrofolate synthetase
COG2986	-0.915	Е	Histidine ammonia-lyase
COG1883	-0.916	С	Na+-transporting methylmalonyl-CoA/oxaloace- tate decarboxylase beta subunit
COG1501	-1.007	G	Alpha-glucosidase glycosyl hydrolase family GH31
COG3167	-1.064	NW	Tfp pilus assembly protein PilO
COG1110	-1.291	L	Reverse gyrase
COG2930	-1.325	Ι	Lipid-binding SYLF domain
COG2382	-1.440	Р	Enterochelin esterase or related enzyme
COG1857	-1.471	V	CRISPR/Cas system-associated protein Cas7 RAMP superfamily

Prediction of thermophiles.

COGs	Coefs	Category	Function
COG1583	1.197	V	CRISPR/Cas system endoribonuclease Cas6
			RAMP superfamily
COG1550	0.552	S	Uncharacterized conserved protein YlxP DUF503
			family
COG0846	0.468	0	NAD-dependent protein deacetylase SIR2 family
COG2316	0.408	R	Predicted hydrolase HD superfamily
COG1866	0.379	С	Phosphoenolpyruvate carboxykinase ATP-depend-
			ent
COG1743	0.296	L	Adenine-specific DNA methylase contains a Zn-
			ribbon domain
COG1387	0.269	ER	Histidinol phosphatase or related hydrolase of the
			PHP family
COG1085	0.256	G	Galactose-1-phosphate uridylyltransferase
COG1937	0.165	К	DNA-binding transcriptional regulator FrmR fam-
			ily
COG1993	0.158	Т	PII-like signaling protein
COG2805	0.148	NW	Tfp pilus assembly protein PilT pilus retraction
			ATPase

COG1894	0.140	С	NADH:ubiquinone oxidoreductase NADH-bind-
			ing 51 kD subunit (chain F)
COG1922	0.136	М	UDP-N-acetyl-D-mannosaminuronic acid transfer-
			ase WecB/TagA/CpsF family
COG1765	0.092	R	Uncharacterized OsmC-related protein
COG1884	0.088	Ι	Methylmalonyl-CoA mutase N-terminal do-
			main/subunit
COG3391	0.079	R	DNA-binding beta-propeller fold protein YncE
COG1487	0.073	R	Predicted nucleic acid-binding protein contains
			PIN domain
COG2894	0.057	D	Septum formation inhibitor-activating ATPase
			MinD
COG0421	0.056	Е	Spermidine synthase
COG3959	0.051	G	Transketolase N-terminal subunit
COG1905	0.043	С	NADH:ubiquinone oxidoreductase 24 kD subunit
			(chain E)
COG4636	0.039	R	Endonuclease Uma2 family (restriction endonucle-
			ase fold)
COG3958	0.023	G	Transketolase C-terminal subunit
COG1774	0.016	Т	Cell fate regulator YaaT PSP1 superfamily (con-
			trols sporulation competence biofilm development)
COG0432	0.001	Н	Thiamin phosphate synthase YjbQ UPF0047 fam-
			ily
COG0670	-0.007	R	Integral membrane protein interacts with FtsH
COG0454	-0.009	KR	N-acetyltransferase GNAT superfamily (includes
			histone acetyltransferase HPA2)
COG0326	-0.010	0	Molecular chaperone HSP90 family
COG0560	-0.032	Е	Phosphoserine phosphatase
COG0400	-0.040	R	Predicted esterase
COG2183	-0.058	K	Transcriptional accessory protein Tex/SPT6
COG1243	-0.065	KB	Histone acetyltransferase component of the RNA
			polymerase elongator complex
COG1340	-0.070	S	Uncharacterized coiled-coil protein contains
			DUF342 domain

COG0633	-0.072	С	Ferredoxin
COG1881	-0.089	R	Uncharacterized conserved protein phosphatidyl-
			ethanolamine-binding protein (PEBP) family
COG2227	-0.133	Н	2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-14-
			benzoquinol methylase
COG0575	-0.144	Ι	CDP-diglyceride synthetase
COG0443	-0.145	0	Molecular chaperone DnaK (HSP70)
COG3356	-0.165	Ι	Predicted membrane-associated lipid hydrolase
			neutral ceramidase superfamily
COG0484	-0.165	0	DnaJ-class molecular chaperone with C-terminal
			Zn finger domain
COG0708	-0.169	L	Exonuclease III
COG0076	-0.190	Е	Glutamate or tyrosine decarboxylase or a related
			PLP-dependent protein
COG1056	-0.194	Н	Nicotinamide mononucleotide adenylyltransferase
COG0262	-0.203	Н	Dihydrofolate reductase
COG0318	-0.228	IQ	Acyl-CoA synthetase (AMP-forming)/AMP-acid
			ligase II
COG0212	-0.230	Н	5-formyltetrahydrofolate cyclo-ligase
COG0652	-0.233	0	Peptidyl-prolyl cis-trans isomerase (rotamase) - cy-
			clophilin family
COG4591	-0.350	М	ABC-type transport system involved in lipoprotein
			release permease component
COG0605	-0.380	Р	Superoxide dismutase
COG0229	-0.381	0	Peptide methionine sulfoxide reductase MsrB
COG0464	-0.383	MDT	AAA+-type ATPase SpoVK/Ycf46/Vps4 family
COG0431	-0.458	С	NAD(P)H-dependent FMN reductase
COG0207	-1.254	F	Thymidylate synthase

Prediction of hyperthermophiles.

COGs	Coefs	Category	Function
COG0863	1.531	L	DNA modification methylase

COG2014	1.432	S	Uncharacterized conserved protein contains
			DUF4213 and DUF364 domains
COG2723	1.210	G	Beta-glucosidase/6-phospho-beta-gluco-
			sidase/beta-galactosidase
COG2034	1.094	S	Uncharacterized membrane protein
COG0464	1.067	MDT	AAA+-type ATPase SpoVK/Ycf46/Vps4 family
COG2703	1.000	Т	Hemerythrin
COG0121	0.925	R	Predicted glutamine amidotransferase
COG1472	0.922	G	Periplasmic beta-glucosidase and related glyco-
			sidases
COG1209	0.851	М	dTDP-glucose pyrophosphorylase
COG1619	0.842	М	Muramoyltetrapeptide carboxypeptidase LdcA
			(peptidoglycan recycling)
COG2084	0.826	Ι	3-hydroxyisobutyrate dehydrogenase or related
			beta-hydroxyacid dehydrogenase
COG5557	0.692	С	Ni/Fe-hydrogenase 2 integral membrane subunit
			HybB
COG0003	0.678	Р	Anion-transporting ATPase ArsA/GET3 family
COG1063	0.649	ER	Threonine dehydrogenase or related Zn-dependent
			dehydrogenase
COG0633	0.572	С	Ferredoxin
COG3339	0.535	S	Uncharacterized membrane protein YkvA
			DUF1232 family
COG0170	0.522	0	Dolichol kinase
COG3158	0.491	Р	K+ transporter
COG1892	0.489	G	Phosphoenolpyruvate carboxylase
COG2410	0.463	R	Predicted nuclease (RNAse H fold)
COG1005	0.427	С	NADH:ubiquinone oxidoreductase subunit 1
			(chain H)
COG3023	0.409	М	N-acetyl-anhydromuramyl-L-alanine amidase
			AmpD
COG1271	0.401	С	Cytochrome bd-type quinol oxidase subunit 1
COG1725	0.396	К	DNA-binding transcriptional regulator YhcF GntR
			family

COG4152	0.356	R	ABC-type uncharacterized transport system ATPase component
COG3404	0.341	Е	Formiminotetrahydrofolate cyclodeaminase
COG3385	0.335	Х	IS4 transposase
COG1836	0.313	S	Uncharacterized membrane protein
COG3876	0.312	S	Uncharacterized conserved protein YbbC
			DUF1343 family
COG1403	0.285	V	5-methylcytosine-specific restriction endonuclease
			McrA
COG1324	0.283	Р	Uncharacterized protein involved in tolerance to
			divalent cations
COG3012	0.280	S	Uncharacterized conserved protein YchJ contains
			N- and C-terminal SEC-C domains
COG3255	0.274	Ι	Putative sterol carrier protein
COG3934	0.250	G	Endo-14-beta-mannosidase
COG1647	0.245	Q	Esterase/lipase
COG1986	0.243	FV	Non-canonical (house-cleaning) NTP pyrophos-
			phatase all-alpha NTP-PPase family
COG2164	0.227	S	Uncharacterized protein
COG1091	0.227	М	dTDP-4-dehydrorhamnose reductase
COG1489	0.222	GT	DNA-binding protein stimulates sugar fermenta-
			tion
COG2010	0.201	С	Cytochrome c mono- and diheme variants
COG0075	0.191	EF	Archaeal aspartate aminotransferase or a related
			aminotransferase includes purine catabolism pro-
			tein PucG
COG3328	0.190	Х	Transposase (or an inactivated derivative)
COG1463	0.185	М	ABC-type transporter Mla maintaining outer mem-
			brane lipid asymmetry periplasmic component
			MlaD
COG1950	0.177	S	Uncharacterized membrane protein YvlD DUF360
			family
COG0286	0.174	V	Type I restriction-modification system DNA
			methylase subunit

COG2270	0.171	R	MFS-type transporter involved in bile tolerance
			Atg22 family
COG1401	0.171	V	5-methylcytosine-specific restriction endonuclease
			McrBC GTP-binding regulatory subunit McrB
COG1850	0.148	G	Ribulose 15-bisphosphate carboxylase large subu-
			nit or a RuBisCO-like protein
COG2971	0.140	G	BadF-type ATPase related to human N-acetylglu-
			cosamine kinase
COG0699	0.128	L	Replication fork clamp-binding protein CrfC (dy-
			namin-like GTPase family)
COG1881	0.125	R	Uncharacterized conserved protein phosphatidyl-
			ethanolamine-binding protein (PEBP) family
COG1392	0.119	S	Uncharacterized conserved protein YkaA distantly
			related to PhoU UPF0111/DUF47 family
COG0475	0.118	Р	Kef-type K+ transport system membrane compo-
			nent KefB
COG1804	0.113	Ι	Crotonobetainyl-CoA:carnitine CoA-transferase
			CaiB and related acyl-CoA transferases
COG2062	0.104	Т	Phosphohistidine phosphatase SixA
COG1654	0.093	К	Biotin operon repressor
COG1166	0.089	Е	Arginine decarboxylase (spermidine biosynthesis)
COG0490	0.082	Р	K+/H+ antiporter YhaU regulatory subunit KhtT
COG1148	0.080	С	Heterodisulfide reductase subunit A (polyferre-
			doxin)
COG5012	0.077	С	Methanogenic corrinoid protein MtbC1
COG1930	0.075	Р	ABC-type cobalt transport system periplasmic
			component
COG1526	0.074	С	Formate dehydrogenase assembly factor FdhD
COG1853	0.069	С	NADH-FMN oxidoreductase RutF flavin reductase
			(DIM6/NTAB) family
COG5662	0.059	К	Transmembrane transcriptional regulator (anti-
			sigma factor RsiW)
COG0515	0.056	Т	Serine/threonine protein kinase
COG1874	0.051	G	Beta-galactosidase GanA

COG1528	0.042	Р	Ferritin
COG1702	0.033	Т	Phosphate starvation-inducible protein PhoH pre-
			dicted ATPase
COG2083	0.029	S	Uncharacterized protein UPF0216 family
COG0345	0.028	Е	Pyrroline-5-carboxylate reductase
COG1492	0.027	Н	Cobyric acid synthase
COG0318	0.025	IQ	Acyl-CoA synthetase (AMP-forming)/AMP-acid
			ligase II
COG0560	0.008	Е	Phosphoserine phosphatase
COG3894	0.008	S	Uncharacterized 2Fe-2 and 4Fe-4S clusters-con-
			taining protein contains DUF4445 domain
COG1646	0.007	Ι	Heptaprenylglyceryl phosphate synthase
COG1058	0.0004	R	Predicted nucleotide-utilizing enzyme related to
			molybdopterin-biosynthesis enzyme MoeA
COG1237	-	R	Metal-dependent hydrolase beta-lactamase super-
	0.0002		family II
COG0760	-	0	Parvulin-like peptidyl-prolyl isomerase
	0.0005		
COG0717	-0.003	F	Deoxycytidine triphosphate deaminase
COG2834	-0.004	М	Outer membrane lipoprotein-sorting protein
COG1048	-0.005	С	Aconitase A
COG2063	-0.005	Ν	Flagellar basal body L-ring protein FlgH
COG0413	-0.006	Н	Ketopantoate hydroxymethyltransferase
COG0568	-0.010	К	DNA-directed RNA polymerase sigma subunit
			(sigma70/sigma32)
COG1765	-0.011	R	Uncharacterized OsmC-related protein
COG0819	-0.012	Н	Thiaminase
COG2159	-0.012	R	Predicted metal-dependent hydrolase TIM-barrel
			fold
COG0134	-0.013	Е	Indole-3-glycerol phosphate synthase
COG1295	-0.014	S	Uncharacterized membrane protein
			BrkB/YihY/UPF0761 family (not an RNase)
COG3595	-0.019	S	Uncharacterized conserved protein YvlB contains
			DUF4097 and DUF4098 domains

COG1160	-0.022	R	Predicted GTPases
COG1176	-0.029	Е	ABC-type spermidine/putrescine transport system
			permease component I
COG1476	-0.032	К	DNA-binding transcriptional regulator XRE-fam-
			ily HTH domain
COG1198	-0.032	L	Primosomal protein N' (replication factor Y) - su-
			perfamily II helicase
COG0295	-0.040	F	Cytidine deaminase
COG1894	-0.041	С	NADH:ubiquinone oxidoreductase NADH-bind-
			ing 51 kD subunit (chain F)
COG0781	-0.042	К	Transcription termination factor NusB
COG0493	-0.044	ER	NADPH-dependent glutamate synthase beta chain
			or related oxidoreductase
COG0478	-0.046	Т	RIO-like serine/threonine protein kinase fused to
			N-terminal HTH domain
COG0624	-0.047	Е	Acetylornithine deacetylase/Succinyl-dia-
			minopimelate desuccinylase or related deacylase
COG1301	-0.048	С	Na+/H+-dicarboxylate symporter
COG1132	-0.052	V	ABC-type multidrug transport system ATPase and
			permease component
COG1510	-0.056	К	DNA-binding transcriptional regulator GbsR MarR
			family
COG0592	-0.060	L	DNA polymerase III sliding clamp (beta) subunit
			PCNA homolog
COG1706	-0.063	Ν	Flagellar basal body P-ring protein FlgI
COG0307	-0.071	Н	Riboflavin synthase alpha chain
COG1757	-0.071	С	Na+/H+ antiporter NhaC
COG1378	-0.081	К	Sugar-specific transcriptional regulator TrmB
COG1893	-0.094	Н	Ketopantoate reductase
COG0206	-0.095	D	Cell division GTPase FtsZ
COG3951	-0.097	Ν	Rod binding protein domain
COG1636	-0.102	R	Predicted ATPase Adenine nucleotide alpha hydro-
			lases (AANH) superfamily

COG1396	-0.104	Κ	Transcriptional regulator contains XRE-family
			HTH domain
COG1031	-0.105	R	Radical SAM superfamily enzyme with C-terminal
			helix-hairpin-helix motif
COG0502	-0.119	Н	Biotin synthase or related enzyme
COG0846	-0.121	0	NAD-dependent protein deacetylase SIR2 family
COG1585	-0.143	0	Membrane protein implicated in regulation of
			membrane protease activity
COG0785	-0.144	СО	Cytochrome c biogenesis protein CcdA
COG0745	-0.151	ТК	DNA-binding response regulator OmpR family
			contains REC and winged-helix (wHTH) domain
COG1592	-0.157	С	Rubrerythrin
COG1985	-0.159	Н	Pyrimidine reductase riboflavin biosynthesis
COG1158	-0.160	K	Transcription termination factor Rho
COG0840	-0.164	NT	Methyl-accepting chemotaxis protein
COG1134	-0.177	GM	ABC-type polysaccharide/polyol phosphate
			transport system ATPase component
COG0618	-0.191	F	nanoRNase/pAp phosphatase hydrolyzes c-di-
			AMP and oligoRNAs
COG3174	-0.192	S	Uncharacterized membrane protein DUF4010 fam-
			ily
COG1242	-0.198	R	Radical SAM superfamily enzyme
COG2336	-0.198	Т	Antitoxin component of the MazEF toxin-antitoxin
			module
COG1177	-0.204	Е	ABC-type spermidine/putrescine transport system
			permease component II
COG1527	-0.216	С	Archaeal/vacuolar-type H+-ATPase subunit
			C/Vma6
COG1253	-0.225	R	Hemolysin or related protein contains CBS do-
			mains
COG0322	-0.235	L	Excinuclease UvrABC nuclease subunit
COG0190	-0.242	Н	510-methylene-tetrahydrofolate dehydrogen-
			ase/Methenyl tetrahydrofolate cyclohydrolase
COG2770	-0.253	Т	HAMP domain

COG2250	-0.257	S	HEPN domain
COG0583	-0.259	К	DNA-binding transcriptional regulator LysR fam-
			ily
COG0650	-0.269	С	Formate hydrogenlyase subunit 4
COG1256	-0.275	Ν	Flagellar hook-associated protein FlgK
COG0392	-0.280	S	Uncharacterized membrane protein YbhN
			UPF0104 family
COG1351	-0.282	F	Thymidylate synthase ThyX
COG0736	-0.299	Ι	Phosphopantetheinyl transferase (holo-ACP syn-
			thase)
COG0513	-0.303	L	Superfamily II DNA and RNA helicase
COG3639	-0.308	Р	ABC-type phosphate/phosphonate transport sys-
			tem permease component
COG0765	-0.325	Е	ABC-type amino acid transport system permease
			component
COG0248	-0.341	FTP	Exopolyphosphatase/pppGpp-phosphohydrolase
COG4907	-0.344	S	Uncharacterized membrane protein
COG1865	-0.349	Н	Adenosylcobinamide amidohydrolase
COG0317	-0.353	ТК	(p)ppGpp synthase/hydrolase HD superfamily
COG3620	-0.374	К	Predicted transcriptional regulator with C-terminal
			CBS domains
COG0514	-0.377	L	Superfamily II DNA helicase RecQ
COG1230	-0.379	Р	Co/Zn/Cd efflux system component
COG1682	-0.403	GM	ABC-type polysaccharide/polyol phosphate export
			permease
COG1278	-0.424	К	Cold shock protein CspA family
COG1238	-0.431	S	Uncharacterized membrane protein YqaA
			SNARE-associated domain
COG1569	-0.440	R	Predicted nucleic acid-binding protein contains
			PIN domain
COG0823	-0.450	U	Periplasmic component of the Tol biopolymer
			transport system
COG1670	-0.458	JO	Protein N-acetyltransferase RimJ/RimL family
COG1232	-0.464	Н	Protoporphyrinogen oxidase

COG0571	-0.464	K	dsRNA-specific ribonuclease
COG0341	-0.469	U	Preprotein translocase subunit SecF
COG1033	-0.495	R	Predicted exporter protein RND superfamily
COG2431	-0.495	S	Uncharacterized membrane protein YbjE DUF340
			family
COG0466	-0.526	0	ATP-dependent Lon protease bacterial type
COG1126	-0.534	Е	ABC-type polar amino acid transport system
			ATPase component
COG1866	-0.545	С	Phosphoenolpyruvate carboxykinase ATP-depend-
			ent
COG4870	-0.567	0	Cysteine protease C1A family
COG0342	-0.577	U	Preprotein translocase subunit SecD
COG0738	-0.590	G	Fucose permease
COG0022	-0.654	С	Pyruvate/2-oxoglutarate/acetoin dehydrogenase
			complex dehydrogenase (E1) component
COG1524	-0.689	R	Predicted pyrophosphatase or phosphodiesterase
			AlkP superfamily
COG0534	-0.697	V	Na+-driven multidrug efflux pump
COG1205	-0.703	L	ATP-dependent helicase YprA contains C-termi-
			nal metal-binding DUF1998 domain
COG1326	-0.750	R	Uncharacterized archaeal Zn-finger protein
COG1484	-0.784	L	DNA replication protein DnaC
COG1071	-0.841	С	TPP-dependent pyruvate or acetoin dehydrogenase
			subunit alpha
COG0579	-0.858	G	L-2-hydroxyglutarate oxidase LhgO
COG1505	-0.864	Е	Prolyl oligopeptidase PreP S9A serine peptidase
			family
COG0582	-0.869	LX	Integrase
COG0232	-0.873	F	dGTP triphosphohydrolase
COG3391	-0.877	R	DNA-binding beta-propeller fold protein YncE
COG0703	-0.897	Е	Shikimate kinase
COG4221	-0.898	С	NADP-dependent 3-hydroxy acid dehydrogenase
			YdfG
COG2317	-0.930	E	Zn-dependent carboxypeptidase M32 family

COG1624	-0.943	Т	Diadenylate cyclase (c-di-AMP synthetase)
			DisA_N domain
COG1704	-0.944	S	Uncharacterized conserved protein
COG2026	-1.210	V	mRNA-degrading endonuclease RelE toxin com-
			ponent of the RelBE toxin-antitoxin system
COG1275	-1.341	V	Tellurite resistance protein TehA and related per-
			meases

Prediction of psychrophiles.

COGs	Coefs	Category	Function
COG2376	1.628	G	Dihydroxyacetone kinase
COG2382	1.549	Р	Enterochelin esterase or related enzyme
COG2930	1.321	Ι	Lipid-binding SYLF domain
COG3677	1.236	Х	Transposase
COG2356	1.095	L	Endonuclease I
COG3620	0.976	К	Predicted transcriptional regulator with C-termi-
			nal CBS domains
COG0819	0.920	Н	Thiaminase
COG2068	0.894	Н	CTP:molybdopterin cytidylyltransferase MocA
COG2509	0.874	R	Uncharacterized FAD-dependent dehydrogenase
COG2335	0.764	R	Uncaracterized surface protein containing fasci-
			clin (FAS1) repeats
COG4928	0.712	R	Predicted P-loop ATPase KAP-like
COG3530	0.690	S	Uncharacterized conserved protein DUF3820
			family
COG3651	0.632	S	Uncharacterized conserved protein DUF2237
			family
COG1398	0.627	Ι	Fatty-acid desaturase
COG2986	0.614	Е	Histidine ammonia-lyase
COG3369	0.545	S	Uncharacterized protein contains Zn-finger do-
			main of CDGSH type
COG1652	0.483	S	Nucleoid-associated protein YgaU contains BON
			and LysM domains

COG3296	0.465	S	Uncharacterized conserved protein Tic20 family
COG3201	0.451	Н	Nicotinamide riboside transporter PnuC
COG2303	0.390	IR	Choline dehydrogenase or related flavoprotein
COG1246	0.377	Е	N-acetylglutamate synthase or related acetyl-
			transferase GNAT family
COG1876	0.373	М	LD-carboxypeptidase LdcB LAS superfamily
COG1501	0.356	G	Alpha-glucosidase glycosyl hydrolase family
			GH31
COG1741	0.352	R	Redox-sensitive bicupin YhaK pirin superfamily
COG4067	0.342	S	Uncharacterized conserved protein
COG1397	0.338	0	ADP-ribosylglycohydrolase
COG1975	0.317	0	Xanthine and CO dehydrogenase maturation fac-
			tor XdhC/CoxF family
COG0386	0.316	VI	Glutathione peroxidase house-cleaning role in re-
			ducing lipid peroxides
COG0429	0.314	R	Predicted hydrolase of the alpha/beta-hydrolase
			fold
COG2130	0.273	QR	NADPH-dependent curcumin reductase CurA
COG1479	0.265	S	Uncharacterized conserved protein contains
			ParB-like and HNH nuclease domains
COG3344	0.213	Х	Retron-type reverse transcriptase
COG1526	0.211	С	Formate dehydrogenase assembly factor FdhD
COG0729	0.203	М	Outer membrane translocation and assembly
			module TamA
COG3653	0.193	Q	N-acyl-D-aspartate/D-glutamate deacylase
COG4977	0.156	К	Transcriptional regulator GlxA family contains
			an amidase domain and an AraC-type DNA-bind-
			ing HTH domain
COG0400	0.116	R	Predicted esterase
COG3409	0.116	М	Peptidoglycan-binding (PGRP) domain of pepti-
			doglycan hydrolases
COG3167	0.114	NW	Tfp pilus assembly protein PilO
COG1705	0.109	MN	Flagellum-specific peptidoglycan hydrolase FlgJ

COG1835	0.108	М	Peptidoglycan/LPS O-acetylase OafA/YrhL con-
			tains acyltransferase and SGNH-hydrolase do-
			mains
COG3287	0.099	S	Uncharacterized conserved protein contains
			FIST_N domain
COG2761	0.094	0	Predicted dithiol-disulfide isomerase DsbA fam-
			ily
COG2836	0.077	Р	Sulfite exporter TauE/SafE
COG2360	0.069	0	Leu/Phe-tRNA-protein transferase
COG1022	0.063	Ι	Long-chain acyl-CoA synthetase (AMP-forming)
COG4148	0.045	Р	ABC-type molybdate transport system ATPase
			component
COG4176	0.035	Е	ABC-type proline/glycine betaine transport sys-
			tem permease component
COG3203	0.032	М	Outer membrane protein (porin)
COG2049	0.028	Е	Allophanate hydrolase subunit 1
COG2326	0.012	С	Polyphosphate kinase 2 PPK2 family
COG2127	0.003	0	ATP-dependent Clp protease adapter protein
			ClpS
COG0226	-0.001	Р	ABC-type phosphate transport system periplas-
			mic component
COG0608	-0.004	L	Single-stranded DNA-specific exonuclease DHH
			superfamily may be involved in archaeal DNA
			replication intiation
COG0668	-0.010	М	Small-conductance mechanosensitive channel
COG0574	-0.010	G	Phosphoenolpyruvate synthase/pyruvate phos-
			phate dikinase
COG0632	-0.013	L	Holliday junction resolvasome RuvABC DNA-
			binding subunit
COG0463	-0.015	М	Glycosyltransferase involved in cell wall bisyn-
			thesis
COG0395	-0.020	G	ABC-type glycerol-3-phosphate transport system
			permease component

COG1155	-0.020	С	Archaeal/vacuolar-type H+-ATPase catalytic
			subunit A/Vma1
COG0581	-0.021	Р	ABC-type phosphate transport system permease
			component
COG1253	-0.021	R	Hemolysin or related protein contains CBS do-
			mains
COG0783	-0.027	PV	DNA-binding ferritin-like protein (oxidative
			damage protectant)
COG0553	-0.028	KL	Superfamily II DNA or RNA helicase SNF2 fam-
			ily
COG2002	-0.031	KV	Bifunctional DNA-binding transcriptional regula-
			tor of stationary/sporulation/toxin gene expres-
			sion and antitoxin component of the YhaV-PrlF
			toxin-antitoxin module
COG3158	-0.036	Р	K+ transporter
COG3189	-0.044	S	Uncharacterized conserved protein YeaO
			DUF488 family
COG1008	-0.078	С	NADH:ubiquinone oxidoreductase subunit 4
			(chain M)
COG1108	-0.087	Р	ABC-type Mn2+/Zn2+ transport system per-
			mease component
COG1708	-0.096	R	Predicted nucleotidyltransferase
COG1166	-0.097	Е	Arginine decarboxylase (spermidine biosynthe-
			sis)
COG0500	-0.120	QR	SAM-dependent methyltransferase
COG1156	-0.129	С	Archaeal/vacuolar-type H+-ATPase subunit
			B/Vma2
COG1283	-0.131	Р	Na+/phosphate symporter
COG1007	-0.135	С	NADH:ubiquinone oxidoreductase subunit 2
			(chain N)
COG2192	-0.146	R	Predicted carbamoyl transferase NodU family
COG1164	-0.151	Е	Oligoendopeptidase F
COG0717	-0.182	F	Deoxycytidine triphosphate deaminase
COG1078	-0.192	R	HD superfamily phosphohydrolase

COG3211	-0.201	R	Secreted phosphatase PhoX family
COG3190	-0.204	Ν	Flagellar biogenesis protein FliO
COG1310	-0.208	0	Proteasome lid subunit RPN8/RPN11 contains
			Jab1/MPN domain metalloenzyme (JAMM) mo-
			tif
COG1354	-0.211	L	Chromatin segregation and condensation protein
			Rec8/ScpA/Scc1 kleisin family
COG1005	-0.213	С	NADH:ubiquinone oxidoreductase subunit 1
			(chain H)
COG0616	-0.218	0	Periplasmic serine protease ClpP class
COG0636	-0.221	С	FoF1-type ATP synthase membrane subunit c/Ar-
			chaeal/vacuolar-type H+-ATPase subunit K
COG2268	-0.225	S	Uncharacterized membrane protein YqiK con-
			tains Band7/PHB/SPFH domain
COG1180	-0.235	0	Pyruvate-formate lyase-activating enzyme
COG0334	-0.241	Е	Glutamate dehydrogenase/leucine dehydrogenase
COG1269	-0.253	С	Archaeal/vacuolar-type H+-ATPase subunit
			I/STV1
COG0396	-0.253	0	Fe-S cluster assembly ATPase SufC
COG0719	-0.269	0	Fe-S cluster assembly scaffold protein SufB
COG0483	-0.274	G	Archaeal fructose-16-bisphosphatase or related
			enzyme of inositol monophosphatase family
COG0649	-0.283	С	NADH:ubiquinone oxidoreductase 49 kD subunit
			(chain D)
COG1264	-0.288	G	Phosphotransferase system IIB components
COG2190	-0.300	G	Phosphotransferase system IIA component
COG0598	-0.343	Р	Mg2+ and Co2+ transporter CorA
COG0163	-0.348	Н	3-polyprenyl-4-hydroxybenzoate decarboxylase
COG1121	-0.362	Р	ABC-type Mn2+/Zn2+ transport system ATPase
			component
COG2317	-0.389	Е	Zn-dependent carboxypeptidase M32 family
COG0736	-0.405	Ι	Phosphopantetheinyl transferase (holo-ACP syn-
			thase)

COG0586	-0.407	S	Uncharacterized membrane protein DedA
			SNARE-associated domain
COG1828	-0.446	F	Phosphoribosylformylglycinamidine (FGAM)
			synthase PurS component
COG0575	-0.450	Ι	CDP-diglyceride synthetase
COG1143	-0.454	С	Formate hydrogenlyase subunit 6/NADH:ubiqui-
			none oxidoreductase 23 kD subunit (chain I)
COG0302	-0.489	Н	GTP cyclohydrolase I
COG0852	-0.504	С	NADH:ubiquinone oxidoreductase 27 kD subunit
			(chain C)
COG2013	-0.507	S	Uncharacterized conserved protein AIM24 family
COG0221	-0.512	СР	Inorganic pyrophosphatase
COG1387	-0.517	ER	Histidinol phosphatase or related hydrolase of the
			PHP family
COG1871	-0.536	NT	Chemotaxis receptor (MCP) glutamine deami-
			dase CheD
COG0827	-0.554	L	Adenine-specific DNA methylase
COG0561	-0.567	HR	Hydroxymethylpyrimidine pyrophosphatase and
			other HAD family phosphatases
COG2132	-0.576	DPM	Multicopper oxidase with three cupredoxin do-
			mains (includes cell division protein FtsP and
			spore coat protein CotA)
COG0543	-0.591	HC	NAD(P)H-flavin reductase
COG1713	-0.694	R	HD superfamily phosphohydrolase YqeK (fused
			to NMNAT in mycoplasms)
COG0610	-0.720	V	Type I site-specific restriction-modification sys-
			tem R (restriction) subunit and related helicases
COG0043	-0.745	Н	3-polyprenyl-4-hydroxybenzoate decarboxylase
COG4166	-0.861	Е	ABC-type oligopeptide transport system periplas-
			mic component
COG1254	-0.903	С	Acylphosphatase
COG0551	-0.968	L	ssDNA-binding Zn-finger and Zn-ribbon do-
			mains of topoisomerase 1

COG0392	-0.989	S	Uncharacterized membrane protein YbhN
			UPF0104 family
COG2039	-1.187	0	Pyrrolidone-carboxylate peptidase (N-terminal
			pyroglutamyl peptidase)
COG0648	-1.275	L	Endonuclease IV
COG0588	-1.315	G	Phosphoglycerate mutase (BPG-dependent)
COG1324	-1.360	Р	Uncharacterized protein involved in tolerance to
			divalent cations