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The purpose of this study is the characterization of a TSHR D633H mutation in vivo mouse 

model. Mutation in TSHR D633 is constitutively active mutation of the thyrotropin receptor 

and it was previously identified in patients with toxic thyroid nodules with the clinical 

diagnosis of non-autoimmune hyperthyroidism and in one patient with thyroid cancer.  

 

To understand the pathophysiology of non-autoimmune hyperthyroidism we created a mouse 

model with constitutively active mutation. For this study, we used three mouse groups of 2, 6 

and 12 months. Each group was also divided by sex and genotype. Histology, hormonal 

analysis, gene expression, Western blots and mouse primary cell culture experiments were 

done. 

 

TSHR D633H mice developed recurrent hyperthyroidism. Both subclinical and overt 

hyperthyroidism was observed depending of the sex, age and genotype. At 2 months of age 

homozygous mice showed overt hyperthyroidism compared to wild type littermates. 

Heterozygous mice showed only decreased thyrotropin level in serum. At age 6 months, there 

was no difference in serum thyroid hormone concentrations in hetero- and homozygous mice 

despite suppressed thyrotropin levels in homozygous mice of both sexes. At age 12 months 

hyperthyroidism was again present in homozygous female mice. Also at 12 months age nearly 

all homozygous mice presented large papillary thyroid carcinomas. Our conclusions are that 

non-autoimmune hyperthyroidism is age-, sex- and genotype-dependent and that 

constitutively active TSHR mutations can trigger malignant transformation of thyrocytes. 
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ABSTRACT 

Background: Constitutively active thyrotropin receptor (TSHR) mutations are the most 

common etiology of non-autoimmune hyperthyroidism (NAH). Thus far, the functionality of 

these mutations has been tested in vitro, but the in vivo models are lacking.  

Methods: To understand the pathophysiology of NAH, we introduced the patient-derived 

constitutively active TSHR D633H mutation into the murine Tshr by homologous 

recombination. 

Results: In this model, we observed both subclinical and overt hyperthyroidism depending on 

the age, sex and copy number of the mutated allele. Homozygous mice presented 

hyperthyroidism at 2 months of age, while heterozygous animals showed only suppressed 

TSH. Interestingly, at 6 months of age, thyroid hormone concentrations in all mutant mice 

were analogous to wildtypes, and they showed colloid goiter with flattened thyrocytes. 

Strikingly, at one-year of age nearly all homozygous mice presented large papillary thyroid 

carcinomas (PTC). Mechanistically, this PTC phenotype was associated with an overactive 

thyroid and strongly increased stainings of proliferation, pERK, and NKX2-1 markers, but no 

mutations in the “hot-spot” areas of common oncogenes (Braf, Nras, Kras) were found.  

Conclusions: this is the first study to reveal the dynamic age-, sex- and gene dosage-

dependent development of NAH. Furthermore, we show that a constitutively active TSHR can 

trigger a malignant transformation of thyrocytes. 
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INTRODUCTION 

Hyperthyroidism is defined as an excess of thyroid hormone (TH) production. When 

unopposed by defects in thyroid hormone action, it is typically characterized by tachycardia, 

an increased metabolic rate and weight loss (1-3). An overactive thyroid function may affect 

virtually any organ system, can lead to excess comorbidity and mortality, and is potentially 

lethal, if not treated (4). Hyperthyroidism has an approximate lifetime risk of 3% and is 5-10 

times more common in women than men (5). Most commonly, it is caused via activation of 

the thyrotropin receptor (TSHR), either by TSHR autoantibodies in the case of Graves’ 

disease (6), or via constitutively activating mutations (CAM) in the TSHR or very rarely in Gs 

protein α subunit leading to non-autoimmune hyperthyroidism (NAH) (7-9). Unlike Graves’ 

disease, in which remission after antithyroid drug treatment may occur in up to 50% of 

patients, NAH is usually permanent and commonly treated by primary ablative treatment (10). 

However, the constitutive activity of the TSHR mutations has so far been studied exclusively 

in vitro (11). Thus, there is still a lack of precise knowledge concerning the molecular events 

leading to hyperthyroidism and long-term consequences of NAH.  

The activation of the TSHR via thyrotropin (TSH), TSHR autoantibodies or an 

activating TSHR mutation induces an increase of iodide uptake, thyroid hormone synthesis 

and release via Gs- and Gq/11-mediated pathways. While the Gs pathway is the main regulator 

of TH synthesis, secretion, iodide uptake and thyrocyte proliferation (12), also Gq/11 signaling 

has been shown to be important for iodine organification, TH release and goiter growth in a 

mouse model (13). This diversity in signaling has been suggested to play a distinct role in the 

pathogenesis of thyroid diseases. TSHR autoantibodies (14, 15) or receptor mutations can 

alter G protein signaling differently, resulting in different phenotypes. All known 

constitutively active mutations of the TSHR activate Gs and rarely also Gq/11 signaling. 

However, there is no clear correlation between the severity of the phenotype and the signaling 

of the mutant TSHR receptors in vitro (7, 16). In mice, transgenic overexpression of a 
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constitutively active Gs mutant or an ectopic Gs-coupled receptor in thyrocytes leads to 

thyroid adenomas and hyperthyroidism (17, 18). Furthermore, the Gs- or other TSHR-

mediated signaling pathways have been reported to play an important role in the etiology of 

BRAF-induced papillary thyroid cancer models in mice and humans (19, 20), although 

thyroid cancer in hot nodules is rare (21).  

To understand the role of TSHR signaling in the development of hyperthyroidism and 

thyroid growth, we generated a knock-in (KI) mouse model harboring a patient-derived 

TSHR D633H mutation. This mutation is located in the TSHR “hot-spot” area in 

transmembrane helix 6, and has been identified in patients with hot thyroid nodules (22) and 

in one thyroid insular carcinoma (23). It leads to a simultaneous increase of basal Gs and Gq/11 

activation in vitro (24).  

For the first time, we report that a constitutive TSHR activity leads to a variable 

development of subclinical to overt hyperthyroidism in an age-, sex-, and genotype-dependent 

manner. Furthermore, development of papillary thyroid carcinoma was observed in older 

TSHR D633H KI animals. 

 

1 
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METHODS 

Generation of the TSHR mutants and functional characterization in vitro 

The TSHR D633H variant was generated by PCR mutagenesis as previously described using 

human or mouse wild type TSHR-pSVL constructs as templates (25). Mutated TSHR 

sequence was verified by sequencing (ABI Advanced Biotechnologies, Inc., Columbia, MD). 

Briefly, COS-7 cells grown in Dulbecco's modified Eagle's medium (DMEM) supplemented 

with 10% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco Life technologies, 

Paisley, UK) at 37 °C in a humidified 5% CO2 incubator were transiently transfected in 12-

well plates (1 x 105 cells per well) or 48-well plates (0.25 x 105 cells per well) with 1 µg and 

0.25 µg DNA per well, respectively, using the GeneJammer® Transfection Reagent 

(Stratagene, Amsterdam, NL). The determination of TSHR cell surface expression, TSH 

(recombinant human TSH, Thyrogen, USA) stimulated intracellular cAMP and inositol 

phosphate (IP) levels were performed as previously described (25, 26).      

 

Generation of TSHR D633H KI mice, animal husbandry and genotyping 

To introduce the D633H mutation into the murine Tshr locus, the nucleotide sequence GAC 

coding for codon 633 was replaced with the sequence CAC by homologous recombination 

(Figure 1). In detail, BAC clones containing the murine Tshr gene (ENSMUSG00000020963) 

were obtained from BACPAC Resources Center (Children’s Hospital Oakland Research 

Institute, USA). An 8100 bp genomic DNA fragment spanning Exon 9 and 10, intron 9 and 3’ 

UTR of Tshr gene was cloned into the pACYCY177 vector (New England Biolabs, USA) by 

Red/ET recombination according to the manufacturer’s instructions (Gene Bridges GmbH, 

Germany). Site directed mutagenesis was performed with following sense 5’-

CTGTGTTGATCTTCACTCACTTCATGTGCATGGCGC-3’ and antisense 5’-

GCGCCATGCACATGAAGTGAGTGAAGATCAACACAG-3’ primers to generate point 

mutation in exon 10 by using the QuikChange Site-Directed Mutagenesis kit (Stratagene, 
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USA). Neo resistance gene flanked by two loxP sites was introduced into intron 9 by Red/ET 

recombination. The DNA fragment containing exon 10 with point mutation and Neo cassette 

was replaced with wild type exon 10 in pACYC 177 backbone by Red/ET recombination. 

Restriction enzyme digestion and sequencing confirmed validity of the final targeting 

construct. G4 embryonic stem cells (derived from mouse 129S6/C57bl/6Ncr) were cultured 

on neomycin-resistant primary embryonic fibroblast feeder cells. Ten million cells were 

electroporated with 30 µg of linearized targeting construct and cultured in presence of 300 

µg/ml G418 (Sigma-Aldrich, USA), and 96 colonies were picked after 7-9 days selection for 

further processing. For Neo cassette deletion, the targeted ES cells were electroporated with 

pCAGGS-Cre plasmid and cultured for 3-5 days, screened for the correct homologous 

recombination by PCR, and confirmed by sequencing. The targeted ES cells were injected 

into C57bl/N6 mouse blastocysts (Charles River Laboratories, Willmington, USA) to generate 

chimeric mice. The presence of the D633H mutation was investigated by PCR using genomic 

DNA with primers P1 and P2 at 63°C annealing temperature and analyzed via agarose gel 

electrophoresis (Figure 1A, Supplemental Table 1). Experiments were performed with mice 

of mixed background. Mice were housed under controlled conditions (IVC units, 12 h light / 

12 h dark, 21 ± 1 °C) at the Central Animal Laboratory, University of Turku. Animals were 

provided ad libitum access to pelleted chow (SDS RM-3 (P); Special Diet Service, UK) and 

water. For hormone analysis, blood from the lateral saphenous vein or via cardiac puncture 

was collected. Animals were sacrificed with CO2.  

 

Histology, immunohistochemistry and morphometric analysis 

Formalin-fixed (10% formalin in PBS), paraffin-embedded tissue samples were cut into 4 µm 

thick sections and stained with hematoxylin and eosin for histological analysis using standard 

methods. Stained sections were imaged with a Pannoramic Slidescanner (3D HISTECH, 

Hungary). Immunohistochemistry was performed as described previously (27). The following 
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antibodies were used in the given concentrations: mouse anti-TTF-1 (anti-NKX2-1) 

(8G7G3/1, #M3575, Dako, USA) 1.68 μg/ml, rat anti-mouse Ki67 0.5 μg/ml (SolA15, #14-

5698-82, eBioscience, USA), rabbit anti-mouse p44/42 MAPK (ERK1/2) 0.4 µg/ml (137F5, 

#4695, Cell Signaling, USA) and rabbit anti-mouse phospho-p44/42 MAPK (ERK1/2) 

(Thr202/Tyr204) 0.25 µg/ml (D13.14.4E9, #4370, Cell Signaling, USA). Corresponding 

secondary horseradish peroxidase-conjugated anti-mouse and anti-rabbit antibodies and rat-

on-mouse HRP polymer (#RT517, Biocare Medical, USA) with Dako EnVision detection kits 

(#K500711-2, Dako, USA) were used. From 3 animals per genotype and sex, the thyrocyte 

thickness of 2 neighboring thyrocyte layers was measured for 20 randomly selected follicle-

follicle borders using Pannoramic Viewer (Version 5.14.4, 3D HISTECH, Hungary). In 

addition, this software was used to determine the intrafollicular area of 20 randomly chosen 

follicles; for 12-month-old animals the follicles from PTC areas were excluded. The thyrocyte 

proliferation rate was determined using Fiji software (28). The number of Ki67 positive cells 

and total number of cells was counted in three to six not overlapping, randomly selected areas 

per thyroid section of three mice per age, sex and genotype. The ratio of Ki67 positive cells to 

total cell number was expressed as proliferation index in percent. 

 

Hormone measurements, cAMP determination, primary cell culture 

Free T4 (fT4) serum concentrations were determined using a commercially available ELISA 

(Novatec, Germany). Serum TSH levels were analyzed with the Mouse Pituitary Magnetic 

Bead Panel (Merck Millipore, Germany) according to the manufacturer’s instructions. 

Intracellular cAMP was measured using a radio-immunoassay (RIA) as previously described 

(29). Primary cell culture of dissected thyroids was performed according to Jeker et al. (30). 

For cAMP accumulation, cells were incubated at 37°C and 5% CO2 with DMEM/F12 in the 

presence of 0.6 mM IBMX for 2 h and with or without 10 mU/ml bTSH (Sigma-Aldrich, 

USA). Next, cells were incubated with 0.1 M HCl for 30 min on ice. HCl was evaporated and 
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the cAMP was resuspended in PBS with 0.1% BSA. For normalization, protein 

concentrations were determined from three wells per genotype using the Pierce BCA protein 

assay (Thermo Scientific, USA). 

 

Laser-capture-microdissection (LCM) 

Formalin-fixed (10% formalin in PBS), paraffin-embedded thyroid tissue from 12 months old 

homozygous animals (7 females, 5 males) were cut into 4 µm thick sections, placed on 

MembraneSlides 1.0 PEN (Carl Zeiss, Germany) and stained with hematoxylin and eosin 

(HE). An image for each thyroid section was taken at low magnification for orientation and 

for labelling the areas of interest. LCM was performed using a Zeiss laser microdissection 

platform PALM MicroBeam (Carl Zeiss, Germany). DNA extraction from micro-dissected 

thyroid tissue was performed with a commercial kit (AllPrep DNA/RNA FFPE kit, Qiagen, 

Germany) according to the manufacturer’s instructions. PCR with genomic DNA was then 

used to amplify the following gene mutations in Braf (exon 15, codon 600/601), Kras (exon 2, 

codon 12/13) and Nras (exon 3, codon 61). Following primers used are given in Table S2. 

The purified PCR products were then send for sequencing (GATC Biotech AG, Germany).  

 

Quantitative RT-PCR 

RNA isolation from snap frozen thyroids and quantitative RT-PCR was performed as 

described previously (31) for the following genes: Ctsb, Ctsl, Arrb2, Nkx2-1, Pax8, Nis, Tg, 

Thyroid Peroxidase (Tpo) and Tshr and normalized to peptidylprolyl isomerase A (Ppia) and 

receptor like protein 19 (Rlp19) with primers given in Supplemental Table 2. 

 

Study approval 

All experiments were authorized by the National Animal Experiment Board of Finland 

(License number: 10266). 
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Statistics 

GraphPad Prism 7 software (GraphPad Software, Inc., La Jolla, USA) was used for statistical 

analysis. Unpaired t-test, one-way ANOVA with Dunnett post-hoc test and non-parametric 

Kruskal-Wallis test were used to determine statistical significances. P<0.05 was set as the 

limit of statistical significance, where * = P<0.05, ** = P<0.01 and *** = P<0.001. 
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RESULTS 

Mouse and human TSHR D633H mutations have a similar constitutive activity in vitro  

The TSHR D633H mutation has been identified in several patients with hyperthyroidism (22, 

23) (http://tsh-receptor-mutation-database.org). To test if the human and mouse TSHR D633H 

mutation lead to a comparable increase in the constitutive activity, basal and TSH-stimulated 

cAMP and inositol phosphate accumulation in a cell culture system was measured 

(Supplemental Figure 1). In general, there was no difference in the tests between human and 

mouse receptors, which also showed a similar cell surface expression (mouse and human 

TSHR D633H were expressed 80-90% of the WT controls, (Supplemental Figure 1A). The 

D633H mutation in both species showed a strong, approximately 5-fold increase of the basal 

cAMP activity in vitro compared to the WT receptor (Supplemental Figure 1B). Similarly, a 

weaker, but significant 2-fold increase in basal inositol phosphate accumulation was detected 

for both, the human and mouse mutants in comparison to WT receptors in vitro 

(Supplemental Figure 1C). The stimulation with increasing concentrations of recombinant 

human TSH showed a comparable dose response in both human and mouse receptor mutants 

with a maximal response similar to the WT receptors (Supplemental Figure 1B, C). These 

results are consistent with previous results showing no difference in vitro between human and 

mouse TSHR CAMs I486F and V509A (32).  

 

The TSHR D633H mutation leads to an increased cAMP concentration in mouse 

primary thyrocytes  

To study the physiological consequences of TSHR D633H mutation, we generated a knock-in 

mouse line harboring the TSHR D633H mutation in the corresponding mouse Tshr locus. 

Classical gene-targeting in mouse embryonic stem cells with homologous recombination 

technique was used to exchange the nucleotide sequence GAG coding for aspartic acid (D) at 

codon 633 with the sequence CAC coding for histidine (H) (Figure 1A). Chimeric mice were 
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obtained from two different embryonic stem cell clones. The presence of Tshr mutant allele 

was screened by PCR (Figure 1B), and confirmed by direct sequencing of the targeted region 

using genomic DNA from WT, HET and HOM mice (Figure 1C). Heterozygous breeding 

showed a normal Mendelian distribution of the genotype (WT:HET:HOM = 1:1.8:1.2), sex 

(female:male = 1:0.9) and normal litter size (6.1 ± 2.4 pups/litter).  

To test if the TSHR D633H mutation leads to an increased constitutive activity in vivo, cAMP 

levels were measured in primary thyroid cell cultures from 2 and 6 months old mice (Figure 

1D). In 2- month-old mice, cAMP levels were slightly but significantly upregulated in HOM 

mice compared to the WT thyrocytes. A similar trend of increased basal cAMP production 

was seen in 6-month-old HOM mice versus controls. Furthermore, thyrocytes from 2- and 6-

month-old WT, HET and HOM mice responded similarly to the TSH stimulation, indicating a 

normal TSHR expression and function in WT and TSHR mutants.  

 

TSHR D633H mice develop age-, sex- and mutant allele frequency-dependent 

hyperthyroidism 

As hyperthyroidism may lead to weight loss and accelerated growth, these parameters were 

monitored over 12 months. In overall phenotypic analysis, no obvious differences in body or 

tail lengths were noticed over the investigated period of 12 months (Table 1, Supplemental 

Figure 2). However, after the first 6 months HOM males and females did not gain as much 

weight as did the WT littermates (Supplemental Figure 2C). Thus, at 12 months of age the 

bodyweights of HOM males and females were over 25% lower than in their WT littermates 

(Table 1, Supplemental Figure 2C).   

To understand the impact of the TSHR D633H on the thyroid physiology, we measured serum 

TSH and TH concentrations at different time points during the lifespan of 12 months. 

Interestingly, a dynamic age, sex and mutant allele dependent development of 

hyperthyroidism was detected. Despite the embryonic onset of TSHR expression (starting 
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embryonic day E15) (33) and the initiation of TH synthesis thereafter, no obvious signs of 

congenital hyperthyroidism were evident in TSHR D633H mice at any age group analyzed 

(Supplemental Figure 2D). However, the HOM females had significantly elevated serum TH 

concentrations already at 1 and 2 months of age, both HOM females and males showed overt 

hyperthyroidism indicated by a 2.3 and 1.7-fold increase in fT4 and suppressed TSH values 

compared to control littermates (Figure 2, upper panel). Heterozygous females and males 

displayed decreased serum TSH, but unaltered TH levels (Figure 2, upper panel). 

Unexpectedly, no difference in serum fT4, total T4 or T3 levels in HET or HOM females and 

males was observed at 6 months of age (Figure 2, middle panel, and data not shown) despite 

the suppressed serum TSH levels in HOM animals of both sexes (Figure 2, middle panel). 

Interestingly, overt hyperthyroidism was again present in one year old HOM female mice 

(Figure 2 lower panel). Together, these data show that a constitutively active TSHR leads to 

hyperthyroidism, but it can be compensated for in males, HET animals and also temporarily 

in HOM females.  

 

TSHR D633H mutant mice develop colloid goiter associated with thin thyroid epithelia 

Based on the identification of the TSHR D633H from patients with thyroid adenomas, the 

thyroid growth and histology of TSHR D633H mice was carefully analyzed. In general, 

thyroids were larger in HET and HOM animals of both sexes at all time points compared to 

their WT littermates. Already at 2 months of age, HOM mice presented with a significantly 

increased thyroid weight (2.8- and 2.3-fold increase in female and male HOM mice compared 

with WT littermates) (Figure 3A). The thyroid weight increased progressively with age in 

TSHR D633H KI mice. At the age of 6 months, the thyroid weight in HET animals was 2.0 

and 2.2-fold, and in HOM mice 3.7- and 2.5-fold higher than in WT in female and male mice, 

respectively (Figure 3A). In the histological analysis of the thyroid at 2 months of age, HET 

mice did not show clear histological alterations, while HOM animals presented areas with 
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increased follicle size and flattened thyrocytes (Figure 3B upper panel, 3C and Table 1). 

However, at 6 months of age, especially in HOM mice of both sexes nearly all follicles had 

very thin, flattened thyrocyte epithelium (Table 1) and nuclei (Figure 3B, middle panel). In 

line with this, the morphometric analysis showed a significantly increased colloid amount per 

follicle and a reduced thyrocyte thickness also in HET animals compared to controls (Figure 

3C, Table 1). In detail, HOM females and males have 2.9- and 2.7-fold increased follicle area 

at 6 months of age, and 37% and 45% thinner thyrocyte epithelium in males and females, 

respectively, compared with the WT (Table 1 and Figure 3). 

 

The long-term activation of TSHR leads to papillary thyroid cancer in TSHR D633H 

mutant mice  

To determine the long-term impact of constitutive TSHR activity on thyroid growth, thyroid 

weight and histology were analyzed in one-year-old mice. Surprisingly, the 12-month-old 

HET and HOM mice developed thyroid neoplasia with thick thyrocyte epithelium and 

protrusions of the thyrocyte layer into the lumen of the follicle (Figure 3B, lower panel). 

Further histological analysis exhibited typical characteristics of papillary thyroid carcinoma 

(PTC) comprising papillae with distinct fibrovascular cores, nuclear clearance, nuclear 

grooves, and pseudo-inclusions as well as overlapping nuclei (Figure 4A and B). PTCs were 

detected in 88% of HOM females (7/8 mice) and in 80% of HOM males (4/5 mice) (Figure 

5A), as well as in about 30% of HET females (2/7 mice) and in one HET male (1/5 mice). 

The proportion of the PTC area in comparison to the whole thyroid section was on average 

50% in HOM males and females (Figure 5B and C), and clearly smaller in HET animals 

(Figure 5B). In line with the development of PTC, the thyroid weight increased strongly after 

6 months in HOM animals, whereas the increase in thyroid weight gain before that age was 

only marginal (Figure 3A). Furthermore, PTCs of 12-month-old HOM mice presented a high 

proliferation rate as shown by strong Ki67-positive staining (Figure 5D). Quantification of 
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Ki67-positive cells showed that 12-month-old HOM animals have a significantly increased 

proliferation index compared to WT thyroids (14-17% in HOM animals vs. 2% in WTs) 

(Figure 5E). Lower but significantly increased proliferation was determined also in HET 

females at 12 months of age (Figure 5E). In general, the TSHR D633H KI mice had a higher 

thyrocyte proliferation rate, and the proliferation index in the mutant mice was already 

slightly increased at 2 months and 6 months of age (Figure 5E). Immunohistochemistry for 

NK2 homeobox 1 (NKX2-1) showed that all PTC-forming cells express NKX2-1, which 

indicates maintenance of thyrocyte differentiation also in neoplasia (Figure 5F). Furthermore, 

an activation of MAPK pathway in the PTCs was indicated by abundant staining of 

phosphorylated ERK1/2 in the majority PTC lesions of the TSHR D633H mice (Figure 5H). 

In humans, mutations in BRAF, KRAS or NRAS can be found in up to 70% of PTCs (34). To 

test, if our KI model harbors any mutations in the “hot-spot” areas of these genes, genomic 

DNA from micro-dissected PTC lesions was isolated and sequenced. However, the DNA 

from the PTC areas of TSHR D633H mice revealed no mutations in 19 tumors tested for Braf 

mutations, 13 tumors tested for Kras mutations, and 9 tumors tested for Nras mutations. 

 

Determination of expression levels of thyroid-specific genes 

To reveal the possible compensatory mechanisms in the dynamic development of 

hyperthyroidism in TSHR D633H KI mice, the expression of thyroid-specific genes was 

analyzed by qPCR. Despite the constitutive activation of the mutant TSHR, the differences in 

serum TSH and hyperthyroidism in different sex and genotypes, no difference was detected 

between HET and HOM mice vs WTs for Tshr mRNA at any time point (Supplemental 

Figure 3). At 2 months of age, a differential expression of the analyzed thyroid-specific genes 

was only seen in HOM male thyroids, in which the expression of paired box 8 (Pax8) and 

sodium-iodide symporter (Nis) was significantly increased, compared to WT controls. At 6 

months of age, when the TH concentrations in both sexes of HOM and HET TSHR D633H 
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KI animals were comparable to WT, no differences in the gene expression were seen, except 

for decreased thyroglobulin (Tg) mRNA expression in mutant females (Supplemental Figure 

3). The 12-month-old animals revealed the most prominent changes in thyroid-specific gene 

expression, most likely reflecting the changes in the large PTC areas seen in HET and HOM 

TSHR D633H mice. Additionally, a clear sex difference was observed. In 12-month-old HET 

and HOM female mice, the mRNA levels for Pax8, and Tg were downregulated, while in 

HOM females beta-arrestin 2 (Arrb2) and cathepsin B (Ctsb) were up- and Nis was 

downregulated. In contrast, HOM males showed an upregulated expression for Nkx2-1 and 

cathepsin L (Ctsl), whereas HET male mice did not show any changes (Supplemental Figure 

3).
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DISCUSSION 

There is still a knowledge gap concerning the natural development and the long-term effects 

of NAH. Here, we generated a knock-in mouse model carrying the constitutively active 

TSHR mutation D633H. This mutation was first identified in patients with thyroid hormone 

producing hot thyroid nodules (22, 23). Our results reveal that the constitutively active TSHR 

leads to a dynamic age-, sex- and gene dosage-dependent development of NAH, and triggers 

the development of PTC in mice. Homozygous TSHR D633H female mice presented 

hyperthyroidism soon after birth, which then ameliorated to euthyroid TH levels at 6 months 

of age. However, concomitantly with the appearance of PTC, TH levels rose again at one year 

of age. The hyperthyroidism phenotype is clearly milder in HOM males than females with an 

only transient form of hyperthyroidism at an early age. The variability and compensation of 

hyperthyroidism in our model with the same genetic background suggests different thyroidal 

adaption mechanisms between males and females. In contrast to most human patients with 

long-standing NAH due to heterozygous TSHR activating mutations, our HET mice presented 

only suppressed TSH levels. In humans, subclinical hyperthyroidism has been rarely reported 

in family members with inherited NAH due to heterozygous TSHR germline mutations (35, 

36). This prompts the question, whether there are some yet undiscovered mechanisms to 

prevent TSHR-mediated NAH in mice. However, it must be kept in mind that the NAH and 

PTC phenotypes described here could also result from the specific feature of the TSHR 

D633H mutation, which can constitutively activate both Gs and Gq/11 pathways (24).  

The TSHR D633H mutation selected for our mouse model was found in adult patients 

with hot nodules and overt hyperthyroidism (22, 23) (http://tsh-receptor-mutation-

database.org). In line with a previous publication (24), the TSHR D633H induces strong basal 

Gs-mediated adenylyl cyclase/cAMP activation. However, unlike most TSHR CAMs, it also 

activates the Gq/11/phospholipase C/Ca2+ signaling pathway. The basal cAMP activity of 

TSHR D633H was strongly elevated in the heterologous in vitro overexpression cell system; 
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whereas the elevation was remarkably lower in primary thyrocytes from HET and HOM mice. 

A similar discrepancy between TSHR characterization in vitro and the response detected in 

primary cells has been reported earlier in human hot thyroid nodules (37). This most likely 

reflects the low TSHR receptor number expressed in primary cells versus cell culture systems 

using receptor overexpression. In our study, we observed relatively slight elevation in basal 

cAMP production in thyrocytes of 2-month-old HOM TSHR D633H mice and only a 

marginally elevated basal cAMP in HET. This difference could explain the mild 

hyperthyroidism in HOM animals and the unaltered serum TH levels in HET animals. 

The normalization of TH levels in HOM TSHR D633H mice at 6 months of age could 

be caused by several counteracting mechanisms leading to a reduced cAMP response, such as 

downregulation, desensitization and/or internalization of the TSHR. Specifically, G protein 

coupled receptor kinases (GRKs) and ARRB2 have been shown to lower the number of 

receptors on the cell surface and simultaneously reduce intracellular cAMP levels (38, 39). 

Furthermore, an increased phosphodiesterase activity has been described in human hot thyroid 

nodules (37). Accordingly, an increased expression of Arrb2 mRNA was detected in our 6 

and 12 months old HOM females (Figure S3). This is in line with an increased ARRB2 

expression shown in human hot thyroid nodules and might reflect a counter-regulatory 

mechanism leading to partial desensitization of the TSHR (40). 

In general, the acute overall physiological responses to hyperthyroidism in the TSHR 

D633H KI mice were rather mild. Although HOM females had elevated serum TH between 1-

4 months and males at least temporarily at 2 months of age, no obvious differences in weight 

gain or growth (body or tail length) were noticed during the first 6 months of age. This differs 

markedly from the symptoms observed in young hyperthyroid patients, in which weight loss 

and increased growth rate are classical symptoms (2, 41). However, after 6 months of age, 

HOM animals of both sexes did not gain weight as much as WT littermates. This diminished 
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weight gain suggests delayed tissue-specific responses to TH, or other metabolic adaptation 

processes, which require further investigation. 

The thyroid histology of the TSHR D633H KI mice at 2 months of age showed only 

mild morphological changes. In contrast to that, 6-month-old HOM mice revealed severely 

altered thyroid histology with colloid goiter, and very thin and flattened thyrocyte epithelium. 

Thereafter, nearly all HOM and some HET of both sexes developed PTCs. In addition to the 

morphologic and functional remission of hyperthyroidism, the later development of PTC in 

TSHR D633H KI mice was surprising. The previous transgenic mouse models for 

hyperthyroidism led to papillary structures, but did not show typical features of PTCs (17, 18, 

42). However, our model shares some similarities with transgenic mice expressing a mutant 

α1B-adrenergic receptor in the thyroid (43). In these mice, the overexpression of a α1B-

adrenergic receptor mutant led to the malignant transformation of thyrocytes and activation of 

both Gs and Gq/11- signaling pathways. Therefore, it can be speculated that the simultaneous 

activation of Gq/11 is an important player in tumor formation in our model.  

The majority of PTCs in humans are typically characterized by a permanently active 

MAPK signaling cascade due to mutations in BRAF, KRAS or NRAS (34, 44). Therefore, we 

screened possible mutations in the “hot-spot”- areas of Braf, Kras and Nras genes in our PTC 

lesions, but no mutations were found. Most likely, the chronic constitutive cAMP and Ca2+ 

signaling via increased proliferation triggers also other growth signals and finally 

transformation of the thyrocytes in our model. This was supported by phosphorylated ERK1/2 

staining seen in the PTC areas of the TSHR D633H mutants, which indicated the activation of 

MAPK pathway in these lesions. TSH signaling can converge on MAPK growth signal e.g. 

via EPAC and/or RAP1B leading to RAS activation as shown previously in thyrocyte models 

(45, 46). However, together with the focal and rather late appearance of the PTC, probably 

other genetic or epigenetic events are required.  
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In contrast to 30% of HET TSHR D633H KI females and 20% HET males, patients 

with hot thyroid nodules rarely harbor thyroid cancer in the respective thyroid tissue. The 

published data regarding the association of thyroid cancer and hot nodules are mostly limited 

to case reports or series with a small number of patients. The reported probability of a hot 

thyroid nodule being associated with a thyroid carcinoma in or outside the hot nodule ranges 

between 1-10.3% (21). Interestingly, there are also several reports of thyroid carcinomas 

presenting as hot thyroid nodules (hot thyroid carcinomas). These reports identified the 

constitutively activating TSHR mutations M453T, I486F, L512R, A623V, F631I, T632A, 

T632I, D633H and D633Y (23, 47-52). A search for RAS and BRAF mutations, as well as 

PAX8/PPARG rearrangements has been thus far reported only for 4 hot thyroid carcinomas in 

adults out of 90 hot carcinomas reported during the last 28 years (23, 48, 53, 54). The 

increased malignancy rate of hot thyroid carcinomas of children does not appear to be 

associated with RAS and BRAF mutations or PAX8/PPARG and RET/PTC rearrangements 

(55). Other genetic factors could include the recently identified mutation in one fourth of hot 

nodules in the enhancer of zeste homolog 1 (EZH1), which is associated with the increased 

proliferation of thyrocytes (56). 

Taken together, our results from the TSHR D633H KI model indicate that NAH is not 

as stable as expected but rather a dynamic condition involving age, sex and Tshr allele-

dependent compensatory mechanisms. Furthermore, our data strongly suggests that a 

permanently active TSHR can lead to the transformation of thyrocytes into cancer cells. 



22 
 

ACKNOWLEDGEMENTS 

This study was supported by grants by the Finnish Pediatric and Medical Foundations, EVO 

grant from Turku University Hospital, Academy of Finland, Sigrid Juselius Foundation (JK), 

grants from the German Research Foundation (JA1927/3-1, JA1927/3-2, JA1927/4-1) (HJ), 

Turku Doctoral Programme for Molecular Medicine and Biocenter Finland (HU), Jenny ja 

Antti Wihurin rahasto (HU), Medicinska Understödsföreningen Liv & Hälsa r.f. (CL), DFG 

(RP and ME) and Deutsche Krebshilfe (109994, ME) grants and the startup grant of the 

University of Calgary (RP). We thank the personnel of the Turku Center for Disease 

Modeling (TCDM) for skillful technical assistance in various stages of this study, Anna 

Kostiander, Taija Leinonen and Erica Nyman for technical assistance with the histology 

specimens, Taina Kirjonen for hormone measurements, Ronald Ghossein for his evaluation of 

the PTC samples, Andreina Kero, Alexandra Stephenson and Samuel Refetoff for reading and 

editing of the manuscript.  

 

Author disclosure statement: The authors declare no conflicts of interest.    



23 
 

REFERENCES 

1. Klein I, Ojamaa K 2001 Thyroid hormone and the cardiovascular system. N Engl J Med 

344:501-509. 

2. Laurberg P, Knudsen N, Andersen S, Carle A, Pedersen IB, Karmisholt J 2012 Thyroid 

function and obesity. Eur Thyroid J 1:159-167. 

3. Silva JE 2003 The thermogenic effect of thyroid hormone and its clinical implications. Annals 

of internal medicine 139:205-213. 

4. Brandt F, Almind D, Christensen K, Green A, Brix TH, Hegedus L 2012 Excess mortality in 

hyperthyroidism: the influence of preexisting comorbidity and genetic confounding: a danish 

nationwide register-based cohort study of twins and singletons. J Clin Endocrinol Metab 

97:4123-4129. 

5. Vanderpump MP 2011 The epidemiology of thyroid disease. Br Med Bull 99:39-51. 

6. Smith TJ, Hegedus L 2016 Graves' Disease. N Engl J Med 375:1552-1565. 

7. Gozu HI, Lublinghoff J, Bircan R, Paschke R 2010 Genetics and phenomics of inherited and 

sporadic non-autoimmune hyperthyroidism. Mol Cell Endocrinol 322:125-134. 

8. Paschke R 1996 Constitutively activating TSH receptor mutations as the cause of toxic thyroid 

adenoma, multinodular toxic goiter and autosomal dominant non autoimmune 

hyperthyroidism. Experimental and clinical endocrinology & diabetes : official journal, 

German Society of Endocrinology [and] German Diabetes Association 104 Suppl 4:129-132. 

9. Trulzsch B, Krohn K, Wonerow P, Chey S, Holzapfel HP, Ackermann F, Fuhrer D, Paschke R 

2001 Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic 

thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med (Berl) 78:684-691. 

10. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels 

M, Sosa JA, Stan MN, Walter MA 2016 2016 American Thyroid Association Guidelines for 

Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 

26:1343-1421. 

11. Huth S, Jaeschke H, Schaarschmidt J, Paschke R 2014 Controversial constitutive TSHR 

activity: patients, physiology, and in vitro characterization. Horm Metab Res 46:453-461. 

12. Vassart G, Dumont JE 1992 The thyrotropin receptor and the regulation of thyrocyte function 

and growth. Endocr Rev 13:596-611. 

13. Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, Schutz G, 

Offermanns S 2007 Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and 

prevents goiter development. J Clin Invest 117:2399-2407. 

14. Davies TF, Ando T, Lin RY, Tomer Y, Latif R 2005 Thyrotropin receptor-associated diseases: 

from adenomata to Graves disease. J Clin Invest 115:1972-1983. 

15. Morshed SA, Ma R, Latif R, Davies TF 2013 How one TSH receptor antibody induces 

thyrocyte proliferation while another induces apoptosis. Journal of autoimmunity 47:17-24. 



24 
 

16. Lueblinghoff J, Eszlinger M, Jaeschke H, Mueller S, Bircan R, Gozu H, Sancak S, Akalin S, 

Paschke R 2011 Shared sporadic and somatic thyrotropin receptor mutations display more 

active in vitro activities than familial thyrotropin receptor mutations. Thyroid 21:221-229. 

17. Ledent C, Dumont JE, Vassart G, Parmentier M 1992 Thyroid expression of an A2 adenosine 

receptor transgene induces thyroid hyperplasia and hyperthyroidism. The EMBO journal 

11:537-542. 

18. Michiels FM, Caillou B, Talbot M, Dessarps-Freichey F, Maunoury MT, Schlumberger M, 

Mercken L, Monier R, Feunteun J 1994 Oncogenic potential of guanine nucleotide stimulatory 

factor alpha subunit in thyroid glands of transgenic mice. Proc Natl Acad Sci U S A 91:10488-

10492. 

19. Fiore E, Vitti P 2012 Serum TSH and risk of papillary thyroid cancer in nodular thyroid 

disease. J Clin Endocrinol Metab 97:1134-1145. 

20. Franco AT, Malaguarnera R, Refetoff S, Liao XH, Lundsmith E, Kimura S, Pritchard C, 

Marais R, Davies TF, Weinstein LS, Chen M, Rosen N, Ghossein R, Knauf JA, Fagin JA 

2011 Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in 

mice. Proc Natl Acad Sci U S A 108:1615-1620. 

21. Pazaitou-Panayiotou K, Michalakis K, Paschke R 2012 Thyroid cancer in patients with 

hyperthyroidism. Horm Metab Res 44:255-262. 

22. Parma J, Duprez L, Van Sande J, Hermans J, Rocmans P, Van Vliet G, Costagliola S, Rodien 

P, Dumont JE, Vassart G 1997 Diversity and prevalence of somatic mutations in the 

thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas. J Clin 

Endocrinol Metab 82:2695-2701. 

23. Russo D, Tumino S, Arturi F, Vigneri P, Grasso G, Pontecorvi A, Filetti S, Belfiore A 1997 

Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously 

hyperfunctioning thyroid insular carcinoma. J Clin Endocrinol Metab 82:735-738. 

24. Neumann S, Krause G, Chey S, Paschke R 2001 A free carboxylate oxygen in the side chain 

of position 674 in transmembrane domain 7 is necessary for TSH receptor activation. Mol 

Endocrinol 15:1294-1305. 

25. Mueller S, Gozu HI, Bircan R, Jaeschke H, Eszlinger M, Lueblinghoff J, Krohn K, Paschke R 

2009 Cases of borderline in vitro constitutive thyrotropin receptor activity: how to decide 

whether a thyrotropin receptor mutation is constitutively active or not? Thyroid 19:765-773. 

26. Jaeschke H, Kleinau G, Sontheimer J, Mueller S, Krause G, Paschke R 2008 Preferences of 

transmembrane helices for cooperative amplification of G(alpha)s and G (alpha)q signaling of 

the thyrotropin receptor. Cell Mol Life Sci 65:4028-4038. 

27. Undeutsch H, Lof C, Pakarinen P, Poutanen M, Kero J 2015 Thyrocyte-specific Dicer1 

deficiency alters thyroid follicular organization and prevents goiter development. 

Endocrinology 156:1590-1601. 

28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, 

Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak 

P, Cardona A 2012 Fiji: an open-source platform for biological-image analysis. Nature 

methods 9:676-682. 



25 
 

29. Harper JF, Brooker G 1975 Femtomole sensitive radioimmunoassay for cyclic AMP and 

cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. Journal of cyclic 

nucleotide research 1:207-218. 

30. Jeker LT, Hejazi M, Burek CL, Rose NR, Caturegli P 1999 Mouse thyroid primary culture. 

Biochemical and biophysical research communications 257:511-515. 

31. Undeutsch H, Lof C, Offermanns S, Kero J 2014 A mouse model with tamoxifen-inducible 

thyrocyte-specific cre recombinase activity. Genesis 52:333-340. 

32. Neumann S, Krohn K, Chey S, Paschke R 2001 Mutations in the mouse TSH receptor 

equivalent to human constitutively activating TSH receptor mutations also cause constitutive 

activity. Horm Metab Res 33:263-269. 

33. Brown RS, Shalhoub V, Coulter S, Alex S, Joris I, De Vito W, Lian J, Stein GS 2000 

Developmental regulation of thyrotropin receptor gene expression in the fetal and neonatal rat 

thyroid: relation to thyroid morphology and to thyroid-specific gene expression. 

Endocrinology 141:340-345. 

34. 2014 Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676-690. 

35. Duprez L, Parma J, Van Sande J, Allgeier A, Leclere J, Schvartz C, Delisle MJ, Decoulx M, 

Orgiazzi J, Dumont J, et al. 1994 Germline mutations in the thyrotropin receptor gene cause 

non-autoimmune autosomal dominant hyperthyroidism. Nature genetics 7:396-401. 

36. Nishihara E, Chen CR, Higashiyama T, Mizutori-Sasai Y, Ito M, Kubota S, Amino N, 

Miyauchi A, Rapoport B 2010 Subclinical nonautoimmune hyperthyroidism in a family 

segregates with a thyrotropin receptor mutation with weakly increased constitutive activity. 

Thyroid 20:1307-1314. 

37. Persani L, Lania A, Alberti L, Romoli R, Mantovani G, Filetti S, Spada A, Conti M 2000 

Induction of specific phosphodiesterase isoforms by constitutive activation of the cAMP 

pathway in autonomous thyroid adenomas. J Clin Endocrinol Metab 85:2872-2878. 

38. Frenzel R, Voigt C, Paschke R 2006 The human thyrotropin receptor is predominantly 

internalized by beta-arrestin 2. Endocrinology 147:3114-3122. 

39. Kursawe R, Paschke R 2007 Modulation of TSHR signaling by posttranslational 

modifications. Trends Endocrinol Metab 18:199-207. 

40. Voigt C, Holzapfel H, Paschke R 2000 Expression of beta-arrestins in toxic and cold thyroid 

nodules. FEBS letters 486:208-212. 

41. Williams GR, Bassett JHD 2017 Thyroid diseases and bone health. J Endocrinol Invest. 

42. Zeiger MA, Saji M, Gusev Y, Westra WH, Takiyama Y, Dooley WC, Kohn LD, Levine MA 

1997 Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and 

hyperthyroidism in transgenic mice. Endocrinology 138:3133-3140. 

43. Ledent C, Denef JF, Cottecchia S, Lefkowitz R, Dumont J, Vassart G, Parmentier M 1997 

Costimulation of adenylyl cyclase and phospholipase C by a mutant alpha 1B-adrenergic 

receptor transgene promotes malignant transformation of thyroid follicular cells. 

Endocrinology 138:369-378. 



26 
 

44. Roger PP, van Staveren WC, Coulonval K, Dumont JE, Maenhaut C 2010 Signal transduction 

in the human thyrocyte and its perversion in thyroid tumors. Mol Cell Endocrinol 321:3-19. 

45. Ribeiro-Neto F, Urbani J, Lemee N, Lou L, Altschuler DL 2002 On the mitogenic properties 

of Rap1b: cAMP-induced G(1)/S entry requires activated and phosphorylated Rap1b. Proc 

Natl Acad Sci U S A 99:5418-5423. 

46. Tsygankova OM, Kupperman E, Wen W, Meinkoth JL 2000 Cyclic AMP activates Ras. 

Oncogene 19:3609-3615. 

47. Camacho P, Gordon D, Chiefari E, Yong S, DeJong S, Pitale S, Russo D, Filetti S 2000 A Phe 

486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that 

was causing hyperthyroidism. Thyroid 10:1009-1012. 

48. Fuhrer D, Tannapfel A, Sabri O, Lamesch P, Paschke R 2003 Two somatic TSH receptor 

mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional 

lung metastases. Endocrine-related cancer 10:591-600. 

49. Gozu H, Avsar M, Bircan R, Sahin S, Ahiskanali R, Gulluoglu B, Deyneli O, Ones T, Narin 

Y, Akalin S, Cirakoglu B 2004 Does a Leu 512 Arg thyrotropin receptor mutation cause an 

autonomously functioning papillary carcinoma? Thyroid 14:975-980. 

50. Jaeschke H, Mueller S, Eszlinger M, Paschke R 2010 Lack of in vitro constitutive activity for 

four previously reported TSH receptor mutations identified in patients with nonautoimmune 

hyperthyroidism and hot thyroid carcinomas. Clin Endocrinol (Oxf) 73:815-820. 

51. Russo D, Arturi F, Schlumberger M, Caillou B, Monier R, Filetti S, Suarez HG 1995 

Activating mutations of the TSH receptor in differentiated thyroid carcinomas. Oncogene 

11:1907-1911. 

52. Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G, Fagin JA 1996 Structural 

studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of 

mutations predicts infrequent involvement in malignant transformation. J Clin Endocrinol 

Metab 81:3898-3901. 

53. Lado-Abeal J, Celestino R, Bravo SB, Garcia-Rendueles ME, de la Calzada J, Castro I, Castro 

P, Espadinha C, Palos F, Soares P, Alvarez CV, Sobrinho-Simoes M, Cameselle-Teijeiro J 

2010 Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma 

(PAX8-PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning 

follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocrine-

related cancer 17:599-610. 

54. Russo D, Arturi F, Chiefari E, Filetti S 1999 Thyrotropin receptor: a role for thyroid 

tumourigenesis? Forum (Genova) 9:166-175. 

55. Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, Aigner T, Trejster 

E, Krohn K, Bosenberg E, Paschke R 2014 Somatic mutations in 33 benign and malignant hot 

thyroid nodules in children and adolescents. Mol Cell Endocrinol 393:39-45. 

56. Calebiro D, Grassi ES, Eszlinger M, Ronchi CL, Godbole A, Bathon K, Guizzardi F, de 

Filippis T, Krohn K, Jaeschke H, Schwarzmayr T, Bircan R, Gozu HI, Sancak S, Niedziela M, 

Strom TM, Fassnacht M, Persani L, Paschke R 2016 Recurrent EZH1 mutations are a second 

hit in autonomous thyroid adenomas. J Clin Invest 126:3383-3388 


