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Abstract. 

In recent years, the incidence of cerebrovascular diseases in China has shown a significant 

upward trend, and it has become a common disease threatening people's lives. Digital 

Subtraction Angiography (DSA) is the gold standard for the diagnosis of clinical 

cerebrovascular disease, and it is the most direct method to check the brain lesion. At present, 

there are the following two problems in the clinical research of DSA images: DSA is a real-

time image with numerous frames, containing much useless information in frames; thus, human 

interpretation and annotation are time-consuming and labor-intensive. The blood vessel 

structure in DSA images is so complicated that high practical skills are required for clinicians. 

In the computer-aided diagnosis of DSA sequence images, there is currently a lack of automatic 

and effective computer-aided diagnosis algorithms for cerebrovascular diseases. Based on the 

above issues, the main work of this paper is as follows: 

1.A multi-target detection algorithm based on Faster-RCNN is designed and applied to the 

analysis of brain DSA images. The algorithm divides DSA images into arterial phase, capillary 

phase, pre-venous phase and sinus phase by identifying the main blood vessel structure in each 

frame. And on this basis, we analyze the time relationship between the time phases. 

2.On the basis of DSA phase detection, a key frame location algorithm based on single blood 

vessel structure detection is designed for moyamoya disease. First, the target detection model 

is applied to locate the internal carotid artery and the Willis circle. Then, five frames of images 

are extracted from the arterial period as keyframes. Finally, the nidus' ROI is determined 

according to the position of the internal carotid artery. 

3.A diagnostic method for cerebral arteriovenous malformation (AVM) is designed, which 

combines temporal features and radiomics features. First, on the basis of DSA time phase 

detection, we propose a deep learning network to extract vascular time features from the DSA 

video; then, the time feature is combined with the radiomics features of the static keyframe to 

establish an AVM diagnosis model. While assisting diagnosis, this method does not require any 

human intervention, and reduces the workload of clinicians. The diagnostic model that 

combines time features and radiomics features is applied to the study of AVM staging. The 

experimental results prove that the classification model trained by fusion features has better 

diagnostic performance than the model trained by either time features or radiomics features. 



 

 

 

Based on the above three parts, this paper establishes a cerebrovascular disease analysis 

framework based on radiomics method and deep learning. We introduce corresponding 

solutions for DSA automatic image reading, rapid diagnosis of moyamoya disease, and precise 

diagnosis of AVM. The method proposed in this paper has practical significance for assisting 

the diagnosis of cerebrovascular disease and reducing the burden of medical staff. 

Keywords: Digital Subtraction Angiography(DSA); Radiomics analysis; Arteriovenous 

malformations; Moyamoya; Faster-RCNN; Temporal features; Fusion features. 
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1 Introduction 

1.1 Overview of cerebrovascular disease 

In recent years, cerebrovascular disease, as a disease that poses a threat to national 

health, has a high recurrence rate and disability rate. In most cases, although timely 

interventional treatment can reduce mortality, most patients' body functions will be 

damaged to a certain extent [1]. Cerebrovascular disease can be divided into ischemic 

cerebrovascular disease and hemorrhagic cerebrovascular disease. The risk of 

hemorrhagic cerebrovascular disease is much higher than that of ischemic 

cerebrovascular disease. Depending on the location, amount, and bleeding speed, 

different degrees of brain damage can be caused. 

Moyamoya disease is a cerebrovascular disease of unknown etiology. The typical 

clinical manifestations are transient cerebral ischemia, cerebral infarction, and cerebral 

hemorrhage [2]. Among them, transient cerebral ischemia caused by vascular stenosis 

is the most common, compensating for blood vessels, with excellent bleeding risk. 

Cerebral arteriovenous malformation (AVM) comprises malformed vascular clusters, 

supply veins, and drainage veins [3]. Although only part of brain AVM patients presents 

with symptoms like headache or seizure, a mortality rate of 10-15% and a morbidity 

rate of 30-50% were reported in young adults with intracerebral hemorrhage caused by 

AVM [4]. In clinical manifestations, 40% to 70% of AVM are manifested as cerebral 

hemorrhage, and 20%-30% are manifested as epilepsy. In imaging manifestations, 

AVM is often accompanied by aneurysms and venous aneurysms, which is an essential 

reason for intracranial hemorrhage in young people [5].  

The principle of DSA is to put the image with the injected contrast agents and the one 

without contrast agents into the computer and perform the digital subtraction, 

enhancement, and other processing procedures to obtain the sequence images of blood 

vessel. As the contrast agent flows in the cerebrovascular, the developed structure will 

gradually change. The number of image frames in each case depends on the length of 

time for vascular imaging [6]. Generally, it can be divided into four periods: arterial 
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period, capillary period and early venous period, and venous sinus period [7].Compared 

with computed tomography angiography (CTA) and magnetic resonance angiography 

(MRA), DSA can dynamically and directly reflect the vascular structure instead of static 

simulation reconstruction, providing unique time dynamic characteristics [8]. DSA can 

indicate the location, extent, and scope of the lesion while displaying the arterial blood 

flow, thus providing an objective basis for surgery. These are reasons that why DSA is 

provided as the gold standard of cerebrovascular disease diagnosis, and not replaceable 

by other imaging technologies such as CTA/MRA. 

DSA has essential value in the judgment of cerebrovascular diseases, such as 

moyamoya disease, arteriovenous malformations (AVM), arteriovenous fistula (DAVF), 

and so on. Early development of venous blood vessels in the arterial or capillary phase 

is an essential sign of its diagnosis. However, it might be labor- and time-consuming 

for inexperienced doctors to read DSA and give an accurate brain disease diagnosis. 

Therefore, a computer aided diagnosis system able to recognize cerebrovascular disease 

would help provide diagnostic hints, especially in emergency cases.   

Nowadays, the technology of manufacturing and image processing of DSA equipment 

is quite mature. However, the research on automatic reading and diagnosis of DSA is 

still quite few. The diagnosis of cerebrovascular disease through angiography images 

mainly depends on the subjective observation of neurologists or radiologists. For 

physicians with insufficient clinical experience, misdiagnosis or missed diagnosis is 

prone to occur, or even ignoring information about lesions that should be treated. The 

research in computer-aided diagnosis based on machine learning has made significant 

progress in recent years, which can be used for tumor staging, pathological typing, 

prognostic evaluation, efficacy testing [9], and many other aspects.  

This paper used radiomics and deep learning related methods to accurately detect and 

diagnose cerebrovascular disease, which are helpful to reduce the time and labor costs 

of physicians, and the rate of misdiagnosis. The proposed computer-aided diagnosis 

system of cerebrovascular disease is a valuable attempt for automatic diagnosis of 

cerebrovascular disease and has practical clinical value. 
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1.2 Current Research Situation 

1.2.1 Machine learning in radiomics analysis 

Radiomics combines machine learning with quantitative image analysis and is 

considered a technology of extracting diagnosis and treatment related information from 

medical images. Traditional radiomics features usually include intensity, shape, texture, 

and wavelet of the Region of Interest (ROI). Different medical images, such as 

magnetic resonance imaging (MRI), ultrasound, and computerized tomography (CT), 

can all be used as resources for the radiomics analysis [10]. After feature selection, 

feature sets with predictive value are called radiomics signature [11]. Quantitative 

analysis of ROI through high-throughput features can obtain valuable diagnostic, 

prognostic, or predictive information [12]. Deep learning is an extension of traditional 

artificial neural network technology. The deep learning network combines feature 

extraction and classifiers to form an end-to-end structure, and extracts features from a 

large amount of input to complete classification, segmentation, and reconstruction tasks. 

With the advent of high-performance processors, deep learning models have made 

breakthroughs in natural image recognition and have gradually applied to the medical 

field. 

In image classification and segmentation, Ferreira-Junior et al. [13] used radiomics 

features to distinguish adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma. They obtained an AUC of 0.71 in the validation group, indicating that 

radiomics methods have great potential in diagnosing histopathological subtypes of 

lung cancer. Mehmet et al. [14] used a single 3-class U-net to segment breast and 

fibroglandular tissue, and the Dice Similarity Coefficient (DSC) reached 0.944. Yuan 

et al. [15] distinguished adenocarcinoma in situ, micro-invasive adenocarcinoma, and 

invasive adenocarcinoma based on CT images with radiomics. The accuracy of the 

radiomics method was significantly higher than that of conventional volume analysis. 

Marios et al. [16] used a deep neural network to perform lung pattern classification with 

85.5% accuracy. In prognostic evaluation, Huang YQ et al. [17] used CT images to 
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realize survival prediction. Studies have shown that the predicted accuracy of radiomics 

on survival of patients is better than that of traditional tumor staging.  

Deep learning and radiomics methods have achieved fruitful results in medical imaging 

research, helping doctors to make treatment decisions to a certain extent and reducing 

patients' risks. 

1.2.2  Research status of DSA image analysis 

In DSA analysis research, the current study focused on image registration, image 

denoising, hemodynamic modeling, and blood vessel extraction. In image registration, 

the research is to eliminate image artifacts and enhance the intensity of blood vessels. 

In the hemodynamic analysis, the manual-labeled vascular structure is usually applied 

to extract the features for further research and analysis. Xu Zhang et al. [18] separately 

analyzed the ROI of frontal, parietal, temporal, and occipital lobes to calculate each 

period of the brain lobe's time density curve, judging the carotid artery perfusion 

characteristics. For blood vessel extraction, methods can usually be divided into a 

pattern recognition method, tracking method, waveguide method, etc. All of which need 

to mark the topological structure of blood vessels in advance. Most prior related 

research on cerebrovascular disease diagnosis is based on one or two types of high 

dimension medical images, like 3D MRI, 3D DRA. These study are focused on the 

extraction of the nidus [19,20,21]and the classification of feeding vessels and drain 

vessels .So far, there have been few studies about the direct diagnosis of 2D DSA, let 

alone DSA radiomics studies. 

1.3  Main contents and innovation points of the paper 

Most of above studies are based on single-position DSA images. This paper mainly 

combines the deep learning and radiomics technique to implement the automatic 

computer-aided diagnosis for cerebrovascular diseases. DSA sequence images are 

analyzed to obtain time phase information, to locate keyframe of moyamoya, and fulfill 

AVM diagnosis. 
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First, this paper introduces the basic methods of deep learning networks and radiomics 

method that can be applied in the DSA video. Chapter2 will elaborate on this part. 

Considering that developed vessel structures always change with time, we apply a muti-

target detection model to distinguish different time phase. Also ,the time relationship 

between the different time phases are analyzed for further study. Chapter 3 will 

elaborate on this part. 

On the basis of the chapter 3, we introduce the time analysis method to the DSA image 

analysis of moyamoya disease. Given that the keyframe extraction is time-consuming 

and laborious, we design a method to automatically locate moyamoya disease lesion. 

Chapter 4 will elaborate on this part.  

To improve the diagnosis accuracy in DSA images without manual annotation, the 

proposed temporal features was integrated with radiomics features (grayscale features, 

wavelet features, texture features) for AVM diagnosis and AVM staging. For AVM 

staging, we also combine the radiomics features with deep features for model training. 

Chapter 5 elaborates on this part. 

There are three innovations in this paper, which can be summarized as follows: 

1. A multi-vascular structure detection model is designed for time phase analysis of 

DSA videos based on Faster-RCNN. This model records the vascular structure in 

each frame to distinguish time phase into the arterial phase, the capillary phase, 

the pre-venous phase and the sinus phase, which improve the DSA reading rate. 

2. A feature extracted method for temporal features is proposed on the basis of time 

phase analysis process, which is applied to the ROI location of moyamoya 

disease and AVM-assisted diagnosis ,reducing the pressure of annotation work. 

3. A DSA-based AVM diagnosis and staging model is proposed, combining 

dynamic time features with static imaging radiomics features. Given that the 

good result of the model, it may help radiologists to improve the diagnostic 

accuracy, and provide surgical options in future.  
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2 Machine learning in medical image 

analysis 

The general process of traditional medical image analysis can be divided into feature 

extraction, feature encoding, feature clustering, feature selection, and model training. 

The underlying features are generally Histogram of Oriented Gradient(HOG), Speeded 

Up Robust Features (SURF), Local Binary Patter (LBP), and other features. After 

selecting the features, we can use traditional machine learning methods such as random 

forest, Support vector machine (SVM), and logistic regression for classification. In a 

deep neural network, you only need to input the image, and the model will 

automatically perform feature extraction and result mapping.  

In this chapter, we will introduce a basic machine learning method suitable for DSA 

images study. 

2.1  Traditional machine learning methods  

2.1.1  SVM  

SVM is a two-classification model [22,23,24],and the main idea is to find an optimal 

hyperplane in space that is able to divide all data samples and make the distance 

between data in the sample set, and this hyperplane the shortest. The equation of the 

hyperplane can be written as： 

                        0TW x b                               (2.1) 

where the average vector is W, and the offset is b. The distance between the two 

hyperplanes is called margin, and the maximum separation hyperplane is in this area, 

as shown in Figure 2-1. 
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Figure 2-1 Linear separable data 

The distance d from the sample point 1 2( , ... )nP x x x of the data set to the hyperplane is: 

                                
2

,

1
d min || ||

2W b
W                             

(2.2) 

Since each hyperplane can correspond to a margin, the objective function for finding 

the maximum interval hyperplane can be written as: 

,

1
arg max{min( ( )) }

|| ||

T

w
y w x b

w
                  (2.3) 

For linearly separable data, the sample point of the training set, the closest to the 

hyperplane, is called support vectors. Nonlinearly separable data cannot find a 

hyperplane that can completely separate the two types of data, as shown in Figure 2-2. 

To minimize the sample points that do not meet the conditions, a penalty term for these 

points will be added to the objective function. The objective function can be written as: 

                 
2

,
1

1
min || || max(0,1 ( ))

2

n
T

i i
W b

i

W C y X W b


                 (2.4) 

 

Figure 2-2  Non-linear separable data 

For nonlinear problems, use kernel trick to convert linear support vector machines into 

nonlinear support vector machines. We map the sample points to the high-dimensional 
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space in a certain way, so that the non-linearly separable sample points are linearly 

separable in the high-dimensional space. The inner product in the linear support vector 

machine is replaced by the kernel function [25,26], and the nonlinear support vector 

machine can be obtained. The standard kernel functions are as follows, as shown in 

Table 2.1. 

Table 2.1 Kernel function 

Kernel function Function Expression 

Linear kernel ( , ) Tk x y x y  

Polynomial kernel ( , ) ( )Tk x y x y c    

Gaussian kernel 
2

2

( )
( , ) exp( )

2

x y
k x y




   

Exponent kernel 
2

( )
( , ) exp( )

2

x y
k x y




   

Laplace kernel ( )
( , ) exp( )

x y
k x y




   

Sigmoid kernel ( , ) tanh( )Tk x y x y c   

The SVM algorithm has a simple structure and good robustness. It is suitable for small 

sample learning methods, so it has a good application prospect in the medical field with 

limited data. 

2.1.2  Logistic regression model 

Logistic regression is a generalized linear regression analysis model [27]. The steps of 

establishing a regression model can be divided into constructing hypothesis function, 

constructing loss function, and optimizing loss function. The hypothesis function is: 

                  
0

( )
n

T

i i

i

h x x x b 


                          (2.5) 

where ( )h x is the target value, i is the influencing factor, and b is the offset. When

( )g z is closer to 0, the possibility of indicating 0 is greater; when ( )g z is closer to 1, 

the possibility of indicating 1 is greater. Therefore, the hypothesis function of logistic 

regression can be expressed as: 
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1
( ) ( )

1
T

T

x
h x g x

e
 




 


                         (2.6) 

We assume that the output value of the function is as close to 0 or 1 as possible. For a 

single sample of data, the posterior probability formula can be written as: 

1( | ; ) ( ( )) (1 ( ))y yP y x h x h x                      (2.7) 

                
1

1 1

( ) ( | ; ) ( ( ) (1 ( )) )i i

m m
y y

i i i i

i i

L p y x h x h x   

 

               (2.8) 

We obtain the partial derivative of the likelihood function. In this way, the direction of 

gradient ascent in each update iteration can be obtained. In logistic regression, the 

gradient ascent method is used to find the optimal solutions. 

In logistic regression, it is easy to observe the probability scores of samples. Although 

the logistic regression is easy to be used and understand, it is prone to be under-fitting 

in the training process and cannot handle samples with large feature spaces well. 

2.1.3  Decision Tree 

A decision tree is, composed of directed edges and nodes [28]. The nodes are divided 

into two types: internal nodes and leaf nodes. Leaf nodes represent classes, and internal 

nodes represent features. The basic idea is to use information entropy to construct a tree 

with the fastest decline. 

The core of the ID3 algorithm [29] is to use information gain for feature selection. The 

information gain expression is I(D,A),where D is the sample input set, and A is the 

feature set. The C4.5 algorithm [30] discretizes continuous features to solve the 

problem that ID3 cannot handle the continuous values. First, the dataset with missing 

features and corresponding feature values are solved by calculating the weighted 

information gain ratio. Then, it divides the sample with missing values into all the child 

nodes simultaneously and distributes the weight of the sample. The CART algorithm 

[31] can solve classification problems and be applied to regression problems and 

simplifies the calculation of the model which uses the Gini coefficient instead of the 

information gain ratio. The expression of the Gini coefficient can be written as: 
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2

1

| |
( ) 1 ( )

| |

K
k

k

C
Gini D

D

                           (2.9) 

where D is a given sample and kC is the number of the k category.  

The decision tree algorithm is very intuitive and easy to be explained. There is no need 

to deal with missing values in data processing. However, the decision tree is prone to 

overfitting and can be easily affected by sample changes. 

2.2  Deep learning methods 

2.2.1  VGG network 

VGG network [32]emphasizes depth in convolutional neural networks. The central idea 

of VGG is to improve network performance by increasing the depth of the network, and 

decrease the parameters by reducing the size of the convolution kernel. After each 

convolution, the size of the feature map is kept unchanged. After each pooling, the depth 

of feature map is reduced by half. VGG fills in the image's edge to keep the convolution 

input and output size consistent, and retains sufficient information of the image edge. 

It only uses the pooling unit to reduce the image's size, simplify and optimize network 

parameters' design. 

VGG is a suitable feature extractor, and the trained model is often applied to transfer 

learning. Its network structure and design method have inspired many deep learning 

networks today. 

2.2.2  Resnet network 

As the number of network layers increases, the accuracy will reach saturation or even 

decline. To solve these problems, K. He et al. proposed the method of residual learning 

[33]. It is achieved by establishing identity mapping and the residual learning unit, 

which is shown in Figure2.3. It can be written as: 

                          ( ,{ })iy F x W x                         (2.10) 

where x is identity mapping. 
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Theoretically, if the model is at the optimal state and can be optimized to 0, no matter 

how the depth is increased, the model will always be optimal. There are five primary 

forms of Resnet: Res18, Res34, Res50, Res101, Res152. The residual block in Figure 

2-3(a) is generally used for shallow networks, such as Res34. The residual block in 

Figure 2-3(b) is generally used for deep networks, such as Res101 and Res152, which 

are called bottleneck designs. The primary purpose is to reduce the network dimension 

and the amount of calculation and parameters. 

1X1,64

3X3,64

+Relu

Relu

64-d

                   

1X1,64

3X3,64

+Relu

Relu

256-d

1X1,256

Relu

 

Figure 2-3(a)  Residual block               Figure 2-3(b)  Bottleneck design 

As shown in Figure 2-4, the network consists of three main parts: input part, output part, 

and intermediate convolution part. Although the forms of Resnet are diverse, they all 

follow the above-mentioned structural characteristics. The difference between networks 

is due to differences in the block parameters and numbers of the intermediate 

convolution part. 
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Figure 2-4  Structure of Resnet 

2.2.3  LSTM series  

Long Short Term Memory Network (LSTM) is a time loop neural network [34], which 

is usually applied to time-delayed events. The basic cyclic unit in LSTM is called cell, 

which is composed of three parts: forget gate, input gate ,and output gate. The structure 

diagram is shown in Fig 2.5. The forget gate, which determines how much of the state 

at the previous moment 𝑐𝑡−1  is retained to the current moment 𝑐𝑡 . The input gate, 

which determines how much of the network's input tx is saved in the current state 𝑐𝑡. 
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Figure 2-5 structure diagram of LSTM 

The function of a gate is equivalent to a fully connected layer, which controls the state 

through an activation function. The forget gate determines what information should be 

discarded from the cell. The sigmoid layer determines the cell output, where 0 means 

that the information is completely forgotten, and 1 means that the information is 

completely retained. The input gate determines which information is valid and stored 

in the current state. The corresponding formula is: 

                       1( [ , ] )t i t t if W h x b                             (2.11) 

            
~

1tanh( [ , ] )t c t t cc W h x b                          (2.12) 

                      
~

1 tt t t tc f c i c                                  (2.13) 

where Wi ,Wc are the weight matrix, ht is the hidden layer of current state, bi, bc are the 

bias term, and �̃�𝑡 is the state of the current door. The output gate determines the output, 

which is based on the current cell state.  

Long-term Recurrent Convolution (LRCN) is a network that combines LSTM and CNN 

to classify video images [35]. It extracts the apparent information of the video frame 
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through the CNN layer, and the LSTM layer retains the information of the time 

dimension, which help the network to obtain spatial and temporal features well. 

2.2.4  3D-ConvNet series 

The 2D convolution operation performs a sliding window operation on the input image 

by the convolution kernel to obtain the feature map of the next layer. To preserve the 

timing information between frames, the C3D network extends 2D convolution to 3D 

convolution and adjusts the convolution kernel to increase the one-dimensional time-

domain depth [36], as shown in Figure 2-6. 

 

Figure 2-6 3D convolutional 

I3D is an improved version of C3D. Its innovation lies in the weight initialization of 

the model [37], which assigns the weights of pre-trained 2D ConvNets to 3D ConvNets. 

But, compared with traditional 2D convolution, the parameters of the 3D convolution 

model are cubic levels of the 2D convolution, which will influence the training of the 

network. To optimize the operating speed and reduce the number of parameters of the 

C3D network, P3D is proposed. It expands Resnet to a pseudo 3D convolution [38], 

which uses a 3×3 and three 1×1 convolution instead of 3D convolution and retain the 

advantages of C3D network. 

2.2.5  Faster-RCNN 

In recent years, target detection models ,based on deep network, have achieved 
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significant results. The most popular two-stage model, Faster RCNN [39], involved in 

the thesis, will be introduced.  

In Faster-RCNN model, the feature extraction module usually uses Resnet or VGG 

network as the base bone. Resnet uses a "short connection" strategy to provide a 

propagation channel for the gradient, which solves the problem that the gradient 

decreases as the network depth increases. 

Faster-RCNN is composed of feature extraction module, Regional Proposal Network 

(RPN) module, ROI Pooling module and classification regression module. The regional 

prediction network (RPN) can be divided into three parts. In the head of the RPN, 

anchors are generated. In the middle of the RPN, there are two branches in there, one 

is the classification branch, and the other is the bounding box regression branch which 

calculates the coordinate bounding box that generated by the head. The classification 

branch uses the softmax layer to obtain the foreground and background, and the 

bounding box regression branch obtains the regression offset. In the end of the RPN, it 

will remove the bounding box that does not meet the conditions. According to the 

classification results, the non-maximum suppression (NMS) algorithm is applied to 

deduplicate, which realizes the preliminary selection of the anchors generated by the 

head.  

The ROI-Pooling part collects the output feature map of convolutional layer and the 

candidate area output by the RPN. It unifies the feature map with the size of the output 

area so that a fixed size feature map can be obtained, and finally the features are sent to 

the full connection layer. 

The classification regression module uses the features extracted from the target area to 

identify the image and uses bounding box regression to obtain the target's precise 

location. 

2.3  Summary 

In this chapter, we briefly introduced the machine learning method in medical image 

analysis, including traditional machine learning and deep learning algorithm.  

Most classic methods are not suitable for DSA video. There are three reasons: First, the 
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number of DSA frames is not fixed, usually within 20 to 50 frames. The development 

status of each frame is related to the patient's blood flow rate and the shooting interval 

of the machine. In other words, when randomly selecting frames from each case, the 

change of the image in the time dimension will be different. Secondly, there are 

interference, noise, and artifacts that influence the image quality, so it is difficult to 

obtain effective information. Finally, the number of DSA data is limited in our research, 

which makes it hard to meet the conditions of deep learning networks.  

To solve these difficulties, we explore the analysis process for DSA classification task. 

The third chapter provides the time phase analysis method of DSA, involving the vessel 

structures detection , which provides the basis of further study; the fourth chapter 

introduces a lesion location method based on time phase analysis process. The fifth 

chapter is about the AVM diagnosis and AVM staging, where the radiomics features and 

time features are combined in classification task. 
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3 Time phase analysis of DSA 

DSA is the gold standard for the diagnosis of cerebrovascular diseases. The sequence 

of blood vessel development with contrast agents and the structure of blood vessels are 

the basis for diagnosing vascular diseases such as arteriovenous malformation(AVM) 

and moyamoya disease. The DSA video provides dynamic information and static 

information, which is potential for the feature analysis.  

The traditional video classification usually uses apparent and temporal features for 

classification tasks. The preferred temporal features include spatial-temporal interest 

points, histogram of optical flow, dense-trajectories [40,41,42]. DSA images and videos 

of natural scenery have similarities in that they can reflect the target's state within a 

period. However, the difference is that natural videos are usually RGB images with 

various objects. In contrast, the DSA images are grayscale, reflecting the 

cerebrovascular periodical changes with limited and unfixed frames. In target detection 

task, traditional methods generally use a window to extract features and classify objects 

into different categories [43]. The specific method is to slide the proposal area through 

the multiple-scale sliding window and then extract features of region of interests (ROI), 

finally use classifiers to complete the tasks. Dalal et al. proposed a histogram of oriented 

gradient (HOG) features to solve pedestrian detection in static images [44]. 

Felzenszwalb et al. used HOG combined with SVM for target detection [45]. Most 

classic methods are not robust enough on the image with varying target diversity. 

In this chapter, we introduced a method to analyze the dynamic information from DSA 

images. First, we proposed a multi-target detection model to distinguish DSA time 

phase, and then analyzed time distribution of different phases. Finally, we proposed a 

method to obtain temporal features between frames automatically. This algorithm had 

promoted speed of the DSA reading, shortened the reading time, and reduced the human 

labor cost and the rate of misdiagnosis. 
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3.1 Introduction  

In clinical study, DSA can be roughly divided into five phases: pre-arterial phase, 

post-arterial phase, capillary phase, pre-venous phase, and sinus phase. In arterial phase, 

internal carotid artery, middle cerebral artery and anterior cerebral artery and their 

proximal branches are presented. Venous phase is characterized by several venous 

sinuses, including superior sagittal sinus, inferior sagittal sinus, sigmoid sinus and 

straight sinus and transverse sinus, etc. And capillary phase is the transitional period 

between arterial and venous phase, characteristic of distal arterial branches and 

capillary arteries. 

Fig.3.1 shows the trend of standard cerebral angiography. Given that lesion locations 

will influence the perfusion time and phase of main vascular structure, multi-position 

of the DSA images should be considered to give the final diagnosis. Thus, doctors need 

to observe the distribution of the vascular structure in each phase, which is time-

consuming and laborious. Dynamic flow information of the cerebrovascular arterial tree 

is provided with excellent visualization, which makes the detection of cerebrovascular 

structure possible. Portions of text and figures of this chapter are reproduced from our 

previous works [48]. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig 3.1  Different phase of normal DSA image. (a) Early arterial phase;(b) Late arterial phase. 

(c) Capillary phase;(d) Early venous phase;(e) Venous sinus phase. 
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3.2  Cerebrovascular detection and phase distinction  

3.2.1 Patients and materials  

A total of 191 patients with the intra-arterial position from January 2010 to December 

2013 was collected in this study. 153 cases were used in model training, and 38 cases 

was applied in time phase analysis. The research protocol was reviewed and approved 

by the Huashan Hospital ethics committee. Specialist doctors, who have been engaged 

in clinical cerebrovascular disease for more than five years, selected normal 

anteroposterior position (AP) and marked the critical structures of blood vessels in 

different periods. If there was any ambiguity, the third senior doctor would read and 

finalize it. A total of five structures was marked in different phases, shown in Fig.3.2. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.2 The annotation of different phase; a. Early arterial phase. b. Late arterial phase . 

c. Early venous phase. d. Late venous phase. 

 

Among 153 patients, 4 or 5 frames were selected from each case and a total of 680 

images were collected. After ROI annotation, there were 326,334,350,346,362 

annotation boxes on the internal carotid artery, the Willis circle the large vein, the 

venous vessel, and the venous sinus, respectively. We saved the vessel category and the 

coordinate position in the corresponding XML file, which would be transferred to 

VOC2007 form.  

The VOC2007 data set contained three folders, Annotations, JPEGImages, and 

ImageSets. The Annotations folder stored the XML file that was corresponding to each 

image, JPEGImages stored all the images, and the ImageSets folder stored the TXT 
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files that recorded the name of training set and test set images. We set the training set 

to 80%, and the test set to 20%. The details of the data set were shown in Table 3.1. 

 

Table 3.1 Data summaries 

 Category Training set Test set Total 

 

 

 

Annotation num 

Carotid artery 260 62 326 

Willis circle 267 67 334 

Vein 280 70 350 

Venous Vessel 276 70 346 

Venous sinus 289 73 362 

Total 1372 342 1714 

3.2.2 Multi-structure detection 

We conducted a target detection algorithm, Faster-RCNN, to obtain DSA sequence 

information. First, the annotated samples were made into VOC2007 format that met the 

operation condition of Faster-RCNN. Then, the Resnet50 was regarded as the base bone 

of Faster-RCNN to extract image features. Finally, we selected an optimal model to 

detect main structure and distinguish time phase in test set. The overall structure of 

Faster-RCNN is shown in Fig.3.3, and the basic principle could be referred in section 

2.2.5. The time analysis process based on Faster-RCNN was shown in Fig. 3.4.  
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Fig.3.3  Faster-RCNN module  
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Fig.3.4 The flow chart of algorithm 

 

After we got the optimal detection model, the result of test set would be analyzed.  

We applied Average Precision (AP), mean Average Precision (mAP), and Intersection-

over-Union (IoU) to evaluate the performance of detection model. They were common 

evaluation index for multi-target detection. The IoU referred to the degree of overlap 

between the candidate box and the original marked box. The AP referred to the area 

under the Precision-Recall curve. AP evaluated the performance of the trained model 

in a single category. The mAP referred to the average of AP values that evaluated the 
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performance of the trained model in all categories,  

The confidence of each coordinate bounding box was judged by the value of the 

intersection-over-union (IoU). if IoU was less than 0.3, the confidence of the anchor 

box was 0, a negative sample; if the IoU was greater than 0.7, the confidence of the 

anchor box was 1, a positive sample; if the IoU was between 0.3 and 0.7, it was not 

considered in the loss function.  

3.2.3 Temporal features 

We could classify the time phase of DSA images by recording the types and order of 

cerebrovascular structures, and thus doctors set these rules: the image that can only 

detect the internal carotid artery and the circle of Willis is defined as the arterial phase 

image; the image, where no apparent blood vessels are detected, is defined as the 

capillary phase image; the image with large veins and without the sinuses is defined as 

the image pre-venous images; the image with both large veins and sinuses is defined as 

sinus images.  

By this criterion, DSA images were divided into four phases: the arterial phase, the 

capillary phase, the venous phase, and the sinus phase, and each phase can be divided 

into early phase and later phase. Then, we put the 38 original DSA into the optimal 

detection model and the model will detect the cerebrovascular structures in each frame. 

In this way, we could get the relationship of the developed structure, which was defined 

as time features. The work flow of obtaining temporal features was shown in Fig.3.5, 

and the details of the proposed five time-sequence features were summarized in Table 

3.2. 
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Fig.3.5  The process of obtaining temporal features 

 

 

 

 

 

 

 

Table 3.2  The proposed 5 time features 

# Feature Description 

1 T1 Venous sinuses appear before the end of the artery 

2 T2 Venous sinuses appeared before the disappearance of the circle of Willis 

3 T3 Venous sinuses appear before venous vessels 

4 T4 Veins appear before wills ring disappeared 

5 T5 No obvious capillary phase 

3.3  Results 

3.3.1 Cerebrovascular detection results 

Portions of text and figures of this chapter are reproduced from our previous works 
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[48].The target detection model is generally trained on a fixed class, so the model needs 

to locate the target position in the image and classify the target category. We defined 

the following paramters.TP: A positive sample is predicted to be a positive sample; FN: 

A negative sample is predicted to be a negative sample; FP: A negative sample is 

predicted to be a positive sample; TN: A positive sample is predicted to be a negative 

sample. The definition of precision and recall are as follow: 

                    Precision = 
TP

TP FP
                             (3.1) 

                      Recall =
TP

TP FN
                               (3.2) 

Based on the predicted results, we calculated the Precision-Recall(P-R) curve of the 

five types of blood vessel ROI and calculated the area under the P-R curve (Average 

Precision) to measure the model's detection precision of each blood vessel structure. 

We used the target detection model to calculate the AP values of the internal carotid 

artery, the Willis circle, large vein, venous blood vessel, and venous sinus respectively. 

The results were shown in Fig.3.6. In test set, the AP of the vein was 0.889, of the 

internal carotid artery was 0.922, of the circle of Willis was 0.991, of the venous sinus 

was 0.929, and of the venous blood vessel was 0.769.  

The model had a good performance in discriminating the circle of Willis and deficient 

in discriminating veins. The mAP of the five types of blood vessels, detected by this 

model, was 0.902. We can conclude that this model had a good performance on the 

detection of the vascular structure based on the DSA video. 
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Fig3.6  P-R curve of five structure and AP value of each structures. The AP of the vein is 

0.889, of the internal carotid artery is 0.922, of the circle of Willis is 0.991, of the venous sinus is 

0.929, and of the venous blood vessel is 0.769 

 

Then, we visualized the detection results of the representative images. The model 

can detect the positions of the internal carotid artery and the circle of Willis in the 

arterial phase images, as shown in Fig.3.7 (a), 3.7 (b). The positions of large veins, 

venous blood vessels, and venous sinuses can be detected in the venous phase images, 

as shown in Fig.3.7(d), Fig.3.7 (e), and Fig.3.7 (f). The capillary phase was shown in 

Fig.3.7(c); there was no obvious vascular structure that can be detected. 
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Fig.3.7  Detecting results of DSA images with different phase. 

 

3.3.2 Phase division results 

We recorded the last frames in each phase by the type of detected structures. In 

independent test set, the arterial phase achieved an accuracy of 100%, the capillary 

phase early venous phase obtained an accuracy of 92.1%, and the accuracy of venous 

sinus phase was 78.9% (Table3.3), which proved our method was significant in dividing 

the DSA into the arterial phase, the capillary phase ,and the early venous phase. 

However, the venous sinus phase accuracy was relatively low. Given that the developed 

vessel was not apparent at the early stage of the venous sinus phase, resulting in poor 

accuracy. 

 

Table 3.3  Phase classified results 

Phase Correct case Wrong case Accuracy 

Arterial phase 38 0 100.0 

Capillary phase 35 3 92.1 

Early venous phase 35 3 92.1 

Sinus phase 30 8 78.9 
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Based on the vessel structure detection results, we deleted the undeveloped images, and 

the obtained frame delay information from the DICOM file. The time delay of the 

arterial phase, capillary phase, early venous phase, and venous sinus phase can be 

calculated respectively. The overall time distribution of 38 cases was shown in Fig.3.8.  

 

Fig3.8   Time distribution of arterial phase(phase1), capillary phase(phase2), early venous 

phase(phase3), and sinus phase(phase4) 

 

This study combined structural information and time information to recognize the DSA 

phase automatically. On the test set, the internal carotid artery, the circle of Willis, great 

vein, venous blood vessel, and venous sinus achieved the AP of 0.922, 0.991, 0.899, 

0.769, 0.929, respectively, and the mAP of the five types of vascular areas was 0.902.  

3.4  Summary 

In this chapter, we introduced a time phase analysis method for DSA video. Firstly, a 

multi-vascular structure recognition method was proposed. This method could be 

divided into two parts: the vessel structure recognition part, and the time analysis part. 

In the first part, an average accuracy of 90.2% was achieved in vascular recognition, 

which can accurately locate critical vascular structures. In the second part, the four 



3 Time phase analysis of DSA 

29 

 

periods' average accuracy reached 90.8%, significantly reducing the length of reading 

time. Secondly, on the basis of vessel detection, an auto-process was proposed to obtain 

five time features based on Faster-RCNN.  

Although Faster-RCNN might make mistakes in the structure detection of abnormal 

cases, we took the structure detection results of all frames into consideration when 

defining the time features. Therefore, if one or two frames were detected incorrectly 

during the whole process, it would not affect the final obtained time features. 

This research still has certain limitations. First of all, this method has specific 

requirements on DSA images' quality, and it would reduce the detection accuracy in 

images with unclear blood vessel structures. Due to the limited data conditions, it is 

necessary to expand the dataset of this study to improve reliability of our proposed 

model in future.  
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4 Time phase analysis in ROI detection of 

the moyamoya disease 

4.1  Introduction 

Since the location of moyamoya lesions is relatively fixed, moyamoya disease can be 

diagnosed by the single anterior position of the internal carotid artery. The current 

difficulty in the diagnosis of moyamoya disease is that manual reading is time-

consuming and laborious. For small volume lesions, A senior doctor is required to read 

the DSA to ensure a low misdiagnosis rate. The advantage of machine learning is that 

it can repeat the work continuously and maintain stable accuracy. 

For higher resolution images, the mathematical morphology method is usually applied 

to image processing [46]. We can get the general shape of the blood vessel in the DSA 

image, and then determine the location of the lesion development. However, this 

method is greatly affected by noises and cannot be widely used in DSA.  

In this chapter, we proposed an automatic location detection algorithm based on Faster-

RCNN for moyamoya lesions. In order to determine the accuracy of ROI, we made an 

auto-labeled data set and a manual-labeled dataset, and then sent them to the same 

network, and finally verified the accuracy of the annotation by comparing the results of 

the model. 

4.2  ROI detection of moyamoya disease 

4.2.1  Patients and material 

Three hundred and fifty four patients’ DSA (internal carotid artery, anteroposterior 

position) were collected, including 62 moyamoya disease, 77 moyamoya syndrome, and 

38 non-moyamoya cerebrovascular diseases, from September 2015 to October 2018 in 

Huashan hospital. In total, 354 hemispheres including 201 moyamoya and 153 non-

moyamoya hemispheres were enrolled.  
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In the manual-labeled dataset, four consecutive images were selected as a sample in the 

arterial phase by doctors, and marked the whole lesions on each image. In the auto-

labeled dataset, the location model would recognize the start and end of the arterial 

phase, then selected four images and annotated the lesions ROI on them. 

4.2.2  Automatic annotation method 

In this section, we introduced 2 methods for ROI detection. One was based on 

traditional image processing, and the other was based on deep learning.  

In the traditional method, we applied the opening and closing operation in the blood 

vessel extraction to obtain the largest blood vessel connected domain S, which was 

regarded as the main blood vessel. Then extracted the centerline of the main blood 

vessel L [47]. Finally, by performing the above operations on each frame, the length 

increment 𝑑𝐿 and the area increment 𝑑𝑆 were obtained, and the additional blood 

vessel width 𝑑𝑤 can be calculated as: 

                                   
dS

dw
dL

                               (4.1) 

we counted the first maximum value of the dw , and regarded the frame as the initial 

frame. The overall flowchart was shown in Fig.4.1. However, this method had poor 

detection effect on images with inconspicuous lesions, and had high requirements for 

image quality and blood vessel distribution. Therefore, it cannot produce a large 

number of usable datasets for model training. 
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Fig.4.1 The flowchart of traditional location method 

 

In our proposed method, ROI location task can be divided into two steps, the first step 

is to locate the keyframe, and the second step is to locate the lesion area. Considering 

that lesion frame always appears in the arterial phase, so it is necessary to determine 

the starting frame of the arterial phase. From the results of time phase analysis in the 

previous chapter, we can get the accurate arterial period by locating developed Willis 

circle and the internal carotid artery. On this basis, a lesion-location method for 

moyamoya disease was proposed, which improved the reading efficiency of DSA 

images and reduced the diagnosis burden of doctor. 
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Fig.4.2  The flowchart of our proposed method 

 

Since moyamoya lesions usually appear near the Willis circle and were easy to be 

located, we could use the position information of the internal carotid artery as a 

reference to mark the lesion area. The steps were as follows: first, we inputted the image 

into the target detection model. Then, obtained the position of internal carotid artery to 

get the central point of detected box. Finally, we regraded the central point as the 

boundary point to expand the ROI. The flowchart was shown in Fig. 4.2. 

4.3  Diagnosis of moyamoya disease 

To verify the accuracy of our location results, we used manual annotation method and 

automatic annotation method to make a comparative dataset for the same data batch 

respectively. In the manual annotation, the ROI size of each case changed with the 

lesion size, including entire lesion information. In the case of automatic annotation, 
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ROI size was fixed, and it was difficult to contain the whole lesions. Therefore, we 

extracted four frames from the arterial phase of each DSA in equal proportion and 

extended a size of 300×300 to label the lesion area. After the dataset was made, we 

randomly divided the dataset into train set and test set with a ratio of eight to two. Then, 

we trained two diagnosis models based on 3D-CNN and LRCN to evaluate the accuracy 

of test set. 

4.4  Results 

In traditional method, 53 hemispheres with noises were excluded, and a total of 148 

moyamoya samples was used in this study. We compared the difference between 

manual selection and algorithm identification of keyframes in each sample. The 

recognition result whose error was within ± 2 frames was regarded as the correct result, 

and exceeding 3 frames was regarded as the wrong result. According to statistical 

results, it could accurately identify 50% of the lesion keyframe, and the identification 

error within the ± 2 frames accounted for 95.9% (Table3.1). Although the detection 

error was in an acceptable range in this method, it lacked robustness and required high 

quality of images. It cannot be applied to all DSA images. 

 

Table 3.1 The keyframe location error statistics in traditional method 

Error margin / frame Sample numbers Percentage / % 

0 75 50.6 

0~±1 135 91.2 

0~±2 142 95.9 

3~10 6 4.1 

 

In our proposed method, we have proved in chapter 3 that it had 100% accuracy in 

distinguishing the arterial phase. To test the ROI accuracy, we separately put the 

manual-labeled dataset and the auto-labeled dataset into the deep networks and 

analyzed the results respectively. 

In this part, a total of 201 moyamoya hemispheres was applied in this study. We used 

two common video classification networks to classify the moyamoya disease. We also 
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explored the impact of image preprocessing methods on final model results. The 

preprocessing methods include Gaussian mean filtering (GF), gray normalization 

(GLN), and histogram equalization (HE). The accuracy of the test set in the two 

experimental groups was shown in Table 3.2. The specific principles of the 3D-CNN 

and LRCN network were shown in chapter 2. 

 

Table 3.2 The accuracy of different method 

 Network Non-treated GF+GLN GF+HE 

 

Manual-annotation 
3D-CNN 0.82 0.95 0.91 

LRCN 0.86 0.96 0.91 

 

Auto- annotation 
3D-CNN 0.87 0.93 0.93 

LRCN 0.88 0.90 0.91 

 

In 3D-CNN, the convolution and pooling layer was a 3D mode, resulting in more 

parameters, and more network parameters, that would lead to the lower convergence of 

the loss function and training speed. Therefore, when building the network, we 

appropriately reduced the proportion of convolutional layers of the 3D-CNN.  

In LRCN, it obtained better performance in the two kinds of datasets. The auto-labeled 

dataset achieved a higher accuracy when they had no preprocessing process, while the 

manual-labeled dataset had higher accuracy when they underwent preprocessing 

process. The reason might be that the manual-annotated dataset had a complete lesion 

region. Therefore, the normalization process stretched the grayscale so that the high and 

low grayscale interval became more extensive, which improved the network's ability to 

recognize blood vessels and non-vessels. For the auto-labeled dataset, image 

preprocessing process also improved the test set's accuracy, but the two preprocessing 

methods had little difference in test results.  

Although the results of the manual-labeled dataset were better than the auto-labeled 

dataset, the accuracy of auto-location accuracy was also as high as 0.93. In addition, 

there was no need to annotate the lesion by human, which promoted the automation 

degree of moyamoya diagnosis. 
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4.5  Summary 

In this chapter, we introduced an automatic location detection method for moyamoya 

lesions. The model, trained by auto-annotation dataset, obtained an accuracy of 93% in 

diagnosing moyamoya disease, which was close to the results based on manual labelling. 

Obviously, we can get better performance, if we manually selected the frame which 

contained the biggest nidus and annotated the ROI to train the network. However, it 

increases the burden of medical staff, violates the original intention of automatic 

diagnosis, and cannot be applied to clinical diagnosis.  

However, our ROI size was fixed that may not obtain the whole region or even contain 

useless information. We believed that if we can get more DSA of moyamoya disease, 

the methods were expected to be applied to clinical diagnosis, and exerted its value. 
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5 Assisted diagnosis of AVM based on 

radiomics and time phase analysis 

5.1  AVM Diagnosis 

5.1.1  Patients and material 

Portions of text and figures reproduced from previous work [48]. This retrospective 

study protocol was approved by the ethics committees of the Huashan Hospital, Fudan 

University, and informed consent was exempted. From January 2010 to December 2013, 

1025 patients with cerebrovascular diseases who underwent DSA examination before 

operation or conservative treatment were reviewed. The exclusion criteria were as the 

following: 1) lack of anteroposterior position image, 2) low image quality, and 3) 

accompanied with other diseases which could be presented in DSA, such as aneurysms, 

moyamoya disease and brain tumor(Fig.5.1). Finally, among the 153 normal cases, 30 

were diagnosed with cavernous hemangioma by MRI, and 47 were diagnosed as 

aneurysms-negative by DSA and confirmed as spontaneous subarachnoid hemorrhage 

in CT. 36 cases were negative in DSA anteroposterior position images, but were 

confirmed as aneurysms in three-dimension rotational angiography(3DRA). 40 cases 

were suspected of aneurysms by computed tomography angiography(CTA) or magnetic 

resonance angiography(MRA) but proved to be normal or artery ectasia by 

DSA(Table5.1). Data collected also included patients' age, gender, and Martin-Spetzler 

Score [49], etc.  
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Fig.5.1 The flowchart of patients selection 

Table 5.1  Data summaries for diagnosis 

Variables Normal AVM p-value 

Sex(M/F) 153(81/72) 178(107/71) 0.189 

Age 43.72±13.97 29.00±13.01 <0.001 

Smoking <0.001 

  Non-smoking 90 (58.8%) 136 (76.4%) 

  Smoking 63 (41.2%) 42 (23.6%) 

Drinking 0.205 

  Non-drinking 114 (74.5%) 143 (80.3%) 

  Drinking 39 (25.5%) 35 (19.7%) 

Hypertension <0.001 

  Non-hypertension 96 (62.7%) 160 (89.9%) 

  Hypertension 57 (37.3%) 18 (10.1%) 

 

5.1.2  Feature extraction 

In the previous chapter, we had introduced that the DSA phase can be distinguished by 

counting the types and orders of cerebrovascular structure in developed frames. 

According to the detected structures in each frame, the developed structure order can 

be found easily. Then, we put the original DSA into the model; the model would detect 

the cerebrovascular structure in each frame. The details of the proposed time-sequence 

features were summarized in Table 3.2. According to different frame lengths of DSA 

sequence, we selected five images from developed starts to ends to represent the early 

arterial phase, later arterial phase, capillary phase and early vein phase, and sinus phase. 

Three sets of radiomics features were considered here: 

1. The radiomics features. A total of 1750 radiomics features, including intensity, 
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texture, and wavelet features [50,51,52], were extracted from each sample. This 

group was to evaluate the ability of DSA radiomics to cerebrovascular disease 

diagnosis.  

2. The time sequence feature. This part was to determine the time association among 

different time phases in DSA.  

3. Time sequence features and radiomics features. These two feature sets were 

concatenated into an integrative dataset and a more accurate model was expected 

from two types of features that should capture static and dynamic information from 

the input images. 

5.1.3  Features Selection and model building 

Since the number of cases was not large, the deep network was prone to overfitting, so 

we adopted the following method: first, we regarded the combined features set as the 

experimental group, and the radiomics features set and time features set as the control 

group. We applied the iterative sparse representation (ISR) for feature selection [53,54]. 

In each iteration, a proportion of samples were used in training. The average 

performance of multiple iterations was calculated to get coefficients indicating the 

importance of the corresponding features. Finally, the SVM was applied to the 

diagnostic tasks. The specific principles of SVM was introduced in chapter 2. We used 

leave-one-out (LOO) cross-validation to evaluate the diagnosis model in the 

experimental group and the control group. Then, the independent validation set was 

used to assess the diagnostic performance of each model further.  

5.2  AVM nidus staging 

In clinical diagnosis, it was usually necessary to combine DSA images of multiple 

positions to judge the AVM’s grade. In this part, we tried to reduce the number of 

positions required for classification as much as possible while ensuring reliability. A 

total of 178 AVM with anteroposterior position and lateral position images was selected 

in this study. 
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First, the proposed time features would be tested in staging task, where the five 

representative images without annotations were applied. Then, annotated datasets, 

marking the nidus, supply vein, and drainage vein, were applied to get the optimal 

model. 

5.2.1  Patients and materials 

The AVM nidus can be divided into five stages, according to the size, the functional 

area, and the drainage vein. The specific staging indicators and the data summaries were 

shown in Table 5.2. Determined each property separately, and the sum of the scores was 

the final grading result. The anteroposterior position (AP) and lateral position(LAT) 

representative images of the different stages were shown in Table.5.3.                                                                                                                                                                                          

 

Table 5.2 Data summaries for AVM staging 

Variables Stage (Ⅰ,Ⅱ,Ⅲ) Stage (Ⅳ,Ⅴ) p-value 

Sex(M/F) 94 (58/36) 84 (49/35) 0.647 

Age 29.12±13.57 28.87±12.43 0.899 

Symptoms 

  Accidentally found 19  16 0.846 

  Headache 53 37 0.101 

  Epilepsy 19 39 <0.001 

Hemorrhage 43 32 0.305 

Size <0.001 

  Small (<3cm) 48 (51.1%) 0 

Medium (3-6cm) 43 (45.7%) 28 (33.3%) 

Large (>6cm) 3 (3.2%) 56 (66.7%) 

Location <0.001 

  Non-situated in neurological  

  critical areas 

54 (57.4%) 11 (13.1%) 

  Situated in neurological  

  critical areas 

40 (42.6%) 73 (86.9%) 

Deep venous drainage <0.001 

  Non-deep venous drainage 49 (52.1%) 16 (19.0%) 

  Deep venous drainage 45 (47.9%) 68 (81.0%) 

 

In Table 5.2,age and cases with hypertension were significantly different between the 

normal cases and brain AVM patients. Baseline characteristics of patients with lower 

levels of brain AVM (Stage Ⅰ,Ⅱ,Ⅲ) and higher levels of brain AVM (Stage Ⅳ,Ⅴ) are 
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presented. More patients with higher levels of brain AVM (Stage Ⅳ,Ⅴ) presented with 

epilepsy than patients with lower levels of brain AVM (Stage Ⅰ,Ⅱ,Ⅲ) (p<0.001), 

probably due to the stimulus of larger nidus to cortex. 

 

Table 5.3  Image of different stage  

Stage AP LAT Description 

 

 

Stage 1 

  

 

Less than 3cm; 

No deep venous 

drainage; 

Not at functional area. 

 

 

Stage 2 

  

 

Less than 3cm; 

Having deep vein; 

Not at functional area. 

 

 

Stage 3 

  

 

More than 3cm; 

Having deep vein; 

Not at functional area. 

 

 

Stage 4 

  

 

More than 3cm; 

Having deep vein; 

At functional area. 

 

 

Stage 5 

  

 

More than 6cm; 

Having deep vein; 

At functional area. 
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5.2.2  Model building with stage 

Considering that the data sample was limited, the time features were only applied in the 

classification task of stage1,2,3 and stage4,5 on five representative images without 

annotations.  

In next part, we selected the frames with the largest lesion area in the anteroposterior 

position(AP) and the lateral(LAT) position of the internal carotid artery as the research 

dataset. According to the dataset distribution, we adopted multiple two-class 

models(Table 5.4) to classify the AVM staging. Because the number of stage1 was too 

small, it is not considered in an independent classification task. The specific steps were 

as follows: 

1. Built a two-class model on stage1, 2, 3, and stage 4, 5. 

2. Built a two-class model on stage 1, 2, and stage 3. 

3. Built a two-class model on stage 4 and stage 5. 

 

Table 5.4  The dataset of different classifier 

# Stage Num Stage Num Total 

Classifier 1 1,2,3 94 4,5 84 178 

Classifier 2 1,2 49 3 45 94 

Classifier 3 4 45 5 39 84 

 

5.2.3  Model building with properties 

Given that the samples were limited and the sample distribution was very unbalanced, 

the reliability of classifier chain was getting lower and lower. In clinical, we determined 

the malformation group's size, the drainage vein, and functional area to calculate the 

final score. The evaluation rules were shown in Table 5.5. In addition, the nidus size 

cannot be observed the 2D DSA image, therefore we only considered properties of 

function area and drainage vein to classification tasks.  

Since the sample was the single image of two common positions rather than continuous 

frames, the temporal features were not helpful to the classification task. However, the 
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SVM classifier that only was trained by radiomics features did not perform well on the 

classification tasks of functional areas and drainage veins. We applied the method 

proposed in the paper [55,56,57], a hybrid features of hand-crafted radiomics (HCR) 

and deep-learning radiomics (DLR) were integrated in one group, and then selected the 

features and used SVM for classification. In our work, we applied the VGG16 pre-

trained model to extract image features, and then combined the deep features with the 

radiomics features and formed to one-dimensional vector. 

 

Table 5.5  Data summaries 

Volume Property Num Total 

 Large(>6cm) 46  

 Medium(3-

6cm) 

81 178 

 Small(<3cm) 51  

Functional area    

 Yes 116  

178 
 No 62 

Vein type    

 Deep Vein 112  

178 
 Surface Vein 66 

 

There were three feature groups we set down. The group 1 was the feature of radiomics, 

while group2 was the feature extracted from a deep network and the group 3 was a 

combination of radiomics features and deep features. 

1. The handcraft radiomics features (HCR).The radiomics were chosen to describe 

three main image properties (Table5.6): intensity features(16), wavelet 

features(280), texture features(54). Finally, a total of 350 radiomics features were 

extracted in one image. 

2. The deep learning radiomics features (DLR).The pre-trained VGG16 network, 

based on scikit-learn packaged model, was employed to extract deep network 

features. We resized the image to the size of 224×224 and inputted it into VGG16. 

Finally, 4096 deep features were extracted from the first fully connected layer (fc1) 



5 Assisted diagnosis of AVM based on radiomics and time phase analysis 

44 

 

in one frame.  

3. The combined features (HCR+DLR). The features of (1) and (2) were concatenated 

into an integrative dataset. A total of 4446 features were obtained. 

Table 5.6  The summaries of radiomics features 

Feature name Num 

First-order histogram features 16 

Gray-level co-occurrence matrix 23 

Grey-level run length matrix 13 

Gray level size zone matrix 13 

Neighbourhood gray-tone difference matrix 5 

Wavelet feature 280 

Total 350 

5.3  Results 

5.3.1  AVM diagnosis results 

Accuracy(ACC), sensitivity(SENS), specific(SPEC) were used to evaluate the 

performance of the classifier. Their definitions were as follows: 

                                       (5.1) 

                                                      (5.2) 

                                     (5.3) 

We also calculated the area receiver operating characteristic (ROC) curve to establish 

the models' overall performance. After feature selection, the features contribution of 

combined features was shown in Fig.5.2. The red bar represented the time features, 

while the blue bar corresponded to the traditional static image features that clearly 

showed that time features took precedence over most radiomics features. Due to the 

limited data, we used the leave-one-out method for cross-validation, which took one 

sample as the test set and the remaining samples as the train set in each iteration. When 

+
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the optimal model was obtained, we inputted the independent test set into the model for 

testing. The receiver operating characteristic curve (ROC) of the cross-validation set 

and the independent test set were shown in Fig. 5.3 and 5.4. The specific performance 

indicators were shown in Table 5.7.  

 

Fig.5.2 The feature distribution of a case. The time features(red bar) and static image 

features(blue bar) 

 

 

 Fig.5.3  The ROC in the cross-validation 
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Fig.5.4  The ROC in the independent testing 

 

Table 5.7  The performance comparison of the model trained by different feature sets  

 Feature set ACC AUC SENS SPEC 

 Radiomics features 0.871 0.941 0.882 0.854 

LOO cross-validation cohort Temporal features 0.863 0.909 0.782 0.922 

 Combined features 0.914 0.968 0.935 0.891 

 Radiomics features 0.856 0.913 0.856 0.855 

Independent testing cohort Temporal features 0.850 0.873 0.735 0.935 

 Combined features 0.909 0.967 0.908 0.909 

 

The model trained by radiomics features performs poorly on the independent test set, 

while temporal features showed a surprising performance with only five features. The 

combined features had high robustness, producing an AUC of 0.967 and an ACC of 

0.903 in AVM diagnosis. The results could be understood in this way that radiomics 

features represented static image features and time features represented dynamic frames 

relationship. The temporal features with radiomics features can describe DSA video 

more completely. 

5.3.2  AVM staging results 

This section involved two parts. The first part was an experiment to classify the nidus 
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directly and verified the effectiveness of temporal features in staging task, and the 

second part was an experiment to classify the nidus properties. 

In the first part, multiple classifiers were established to diagnose the AVM. We used 

ACC, AUC, SPEC, and SENS to evaluate the performance of each model.  

In the second part of the experiment, we did two classified tasks: one was functional 

areas and non-functional areas, and the other was deep drainage veins and surface 

drainage veins. Taking the unbalance of each category into account, the Matthews 

correlation coefficient (MCC), was introduced to evaluate the performance. The 

calculation formula was: 

       (5.4)  

In first part, labeled images were applied in three models, and the performance 

indicators of them were shown in Table 5.8: 

 

Table 5.8  The results of staging models 

# Stage ACC AUC   SPEC SENS 

Classifier1 123/45 0.904 0.937   0.883 0.938 

Classifier2 12/3 0.710 0.721 0.701 0.717 

Classifier3 4/5 0.825 0.886 0.877 0.842 

 

The results showed that classifier 1 and classifier 2 had good performance indicators, 

while classifier 3 performed slightly worse. Classifier 1 performed well to classify the 

first, second, third, and fourth, and fifth stages. The reason might be that the first, 

second, and third stages were visually separable from the fourth and fifth stages in 

image morphology. Although classifier 3 was also good, there were only 84 cases of 

the two categories, and the final result may the overfitting. It was necessary to increase 

the amount of data to promote the reliability of the result. The classifier 2 performed 

worse in the classification of the first, second, and third stage. On the one hand, the 

difference between the second and third stage was so small that it was difficult to 

distinguish by the naked eye. On the other hand, some data were ambiguous to 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN
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determine in 2D DSA images.  

On the classifier1, we used the unannotated images to test the effectiveness of temporal 

features. The model’s indicators with and without time features were shown in Table 

5.9. After combining the time features, the indicator had a slight increase. This result 

proved that the time features had an effect on the grading of the deformity group. 

 

Table 5.9  The comparation of two model 

# Feature set ACC AUC SPEC SENS 

1 With time features 0.840 0.871 0.866 0.797 

2 Without time features 0.801 0.867 0.754 0.830 

 

In second part, the summary of the three feature sets was shown in the table below. 

 

Table 5.10  Summary of the three feature set 

 Number of features 

Feature Set Samples Initial 

HCR 178 350 

DLR 178 4096 

HCR+DLR 178 4446 

 

After filtering the features, we used the leave-one-out cross-validation method to train 

the SVM. We compared the SVM model's performance on the different feature sets on 

the functional area(see Table 5.11) and deep vein (see Table 5.12) respectively. 

 

Table 5.11  The result of three feature set in functional area 

# Feature set ACC AUC SPEC SENS MCC 

1 HCR 0.769 0.787 0.672 0.822 0.478 

2 DLR 0.795 0.838 0.688 0.780 0.551 

3 HCR+DLR 0.863 0.933 0.828 0.881 0.702 
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Table 5.12  The result of three feature set on vein 

# Feature set ACC AUC SPEC SENS MCC 

1 HCR 0.687 0.743 0.581 0.750 0.321 

2 DLR 0.753 0.848 0.788 0.732 0.513 

3 HCR+DLR 0.843 0.894 0.863 0.830 0.664 

 

Notably, the classifier trained on the feature set that combines deep features and 

radiomics features had better performance. In two tasks, the DLR indicators were better 

than those of experimental HCR, which proved that the deep network could extract 

more useful features than the radiomics method in DSA images. When the radiomics 

feature was combined with the deep network feature, the indicators of group 3 were 

higher than those of the DLR. In combined features set, the value of MCC was better 

than HCR and DLR. Given that the dataset was limited, only two position images were 

used in this part. In the future, we can consider using more positions for research that 

may achieve better results. 

5.4  Summary 

In the diagnosis task, we introduced a vascular phase feature extraction method based 

on deep learning and then fusion with DSA radiomics features, finally proposed an 

AVM-assisted diagnosis method. The combined features obtained an ACC of 90.9% 

and AUC of 96.7%.  

In the nidus staging task, the classification accuracy between the first, second, third, 

fourth, and fifth stages was as high as 90.7%. Also, we compared the features set with 

and without time features in the first classifier, which verified the effectiveness of our 

proposed features. In nidus properties classification task, the influence of the fusion 

features on classification was explored on function areas and draining veins. The fusion 

features got the best performance in all feature groups.  

Several limitations should be noted. First, If the nidus is so large, covers the vascular 

structures, that we have to exclude these samples, it will affect the credibility of the 

time features extracted by the detection model. Second, in clinical setting, more position 
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images can increase the diagnosis accuracy by doctors. However, not every patient in 

our study provides multi-position DSA images Therefore, we select the limited position 

images for analysis to diminish the selection bias. Finally, more samples should be 

collected to provide a more convincing result. 

6 Conclusion and Future Work 

6.1  Conclusion 

DSA video provides an important basis for the diagnosis of cerebrovascular disease, 

and also provides a reference plan for surgical treatment, which is of great significance 

for the study of cerebrovascular disease.  

This thesis takes the DSA images of moyamoya disease and AVM as the research object. 

We explore a time-phase analysis method for DSA video. On this basis, the process for 

diagnosis of cerebrovascular disease without manual intervention, including the 

positioning of moyamoya lesions, the differentiation of DSA phases, the diagnosis of 

AVM, and the AVM staging is proposed, which assists doctors to improve their 

diagnosis efficiency and accuracy. The main contributions can be summarized as follow: 

1. For the study of DSA video, we have introduced a time phase analysis method, 

based on Faster-RCNN, to provide dynamic temporal features from limited frames. 

According to the order and type of blood vessels, DSA can be divided into four 

phases with an average accuracy of 90.8%.  

2. In moyamoya disease, the time phase analysis method is applied to locate the 

moyamoya lesions. The results showed that the ROI obtained by automatic location 

has achieved accuracy of 93% that is close to manual-location on the same deep 

network, improving DSA image reading efficiency. 

3. In the AVM, we design a model for AVM diagnosis and AVM staging, where the 

temporal features are integrated with the radiomics features. The results verify that 

time information is of great significance in DSA diagnosis, and the fusion features 

can improve the classification accuracy of the model. 
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6.2  Future Work 

This paper proposes a time phase analysis and radiomics method for DSA video. 

However, these methods still have shortcomings. The model can be improved from the 

following perspectives. 

1. From the perspective of data sources, we do not include multi-position images to 

establish the DSA diagnostic model. Although many studies have reported that 

multi-modality images can help classify tasks, multi-position images are not 

available for all included patients in the current study. Meanwhile, the number of 

cases used in this thesis is relatively limited; more data with pathological results 

need to be collected in the future.  

2. DSA is only a two-dimensional image and cannot describe blood vessels' shape and 

blood flow rate. Combining CTA and DSA images, more comprehensive modeling 

of cerebral blood vessels can be carried out in the future. The influence of drainage 

veins and supply veins on the size of malformations also can be analyzed. 
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