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A methodology to explore quantum entanglement phenomena on near-term quantum
computers is presented. The method combines two prominent Noisy Intermediate-
Scale Quantum (NISQ) algorithms, the variational quantum eigensolver (VQE) and
pairwise tomography, to extract pairwise quantum properties from quantum many-
body systems. VQE prepares a parametrized quantum circuit and optimizes it
to represent the ground state of the system under study. Pairwise tomography
provides an exponential decrease in the required measurements to construct two-
qubit reduced density matrices.

Two pairwise quantities, mutual information and concurrence, are used to construct
complex network representations of the system. Then, network properties can be
used to analyze the entanglement structures. Three quantum spin chains are ex-
plored: the Ising model, the spin-1/2 XX model and the XXZ model. The method-
ology is benchmarked with known results and new results for the XXZ model are
presented.

Applications for the study of fundamental physics are explored. More specifically,
emergent space from quantum entanglement is studied. Mutual information be-
tween parts of a redundancy-constrained system is used to define a metric that is
then embedded into a smooth manifold embedded in RP. Effects of entanglement
perturbations on the geometry of the embedding are studied.

Keywords: quantum computing, quantum computer, variational quantum eigen-
solver, VQE, pairwise tomography, NISQ, entanglement, emergent space, complex
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Tassd Pro Gradussa esitetddn metodologia, jonka avulla voidaan tutkia kvant-
tilomittumisilmioita lahitulevaisuuden kvanttitietokoneilla. Tamé metodi yhdistéa
kaksi merkittdvad kvanttialgoritmia, jotka ovat Variaationaalinen KvanttiOminais-
arvoLaskija (VKOL) (eng. Variational Quantum Eigensolver (VQE)) ja parittainen
kvanttitilatomografia (eng. pairwise quantum state tomography). N&mé algorit-
mit on suunniteltu ldhitulevaisuuden meluisille keskikokoisille kvattitietokoneille
(MEKEKVA (eng. noisy intermediate-scale quantum (NISQ)) sopiviksi. VKOL
valmistaa parametrisoidun kvanttipiirin, jonka se optimoi edustamaan tutkitta-
vana olevan systeemin perustilaa. Parittainen kvanttitilatomografia laskee expo-
nentiaalisesti tarvittavien mittausten maéraé, jotta systeemin perustilasta saadaan
rakennettua redusoidut tiheysmatriisit kaikille kahden kubitin pareille. Naisté re-
dusoiduista tiheysmatriiseista voidaan laskea parittaisia ominaisuuksia systeemin
perustilalle.

Kahta parittaista ominaisuutta, yhteista informaatiota (eng. mutual information) ja
konkurrensia (eng. concurrence), kiiytetdin muodostamaan systeemille kompleksiset
verkostoesitykset. Naiden verkostojen ominaisuuksilla voidaan sitten analysoida
kvanttilomittumisrakenteita. Kolmea kvanttispiniketjua tutkitaan: Ising mallia,
spin-1/2 XX mallia sekd XXZ mallia. Téassé tutkielmassa esitetyn metodin suori-
tuskykyé testataan vertaamalla saatuja tuloksia jo tunnettuihin tuloksiin. Sen
lisdksi, my0Os uusia tuloksia esitetddn XXZ mallille.

Metodin kayttokohteita fundamentaalisen fysiikan tutkimuksessa tutkitaan myos.
Tutkimuksen kohteena on emergentin avaruuden syntyminen kvanttilomittumisesta.
Redundanssirajoitettujen (eng. redundancy-constrained) systeemien vélista yhteisté
informaatiota kiytetddn luomaan metriikka, joka upotetaan sileddn monistoon, joka
on upotettuna R”:hen. Kvanttilomittumisen hiirididen vaikutusta upotuksen ge-
ometriaan tutkitaan.

Avainsanat: kvanttitietokone, kvanttilaskenta, variaationaalinen kvanttiominais-
arvolaskija, parittainen kvanttitilatomografia, kvanttilomittuminen, emergentti
avaruus, kompleksiset verkostot, kvanttisimulaatio
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Introduction

In the age of developing quantum technology, advances in hardware and algorithms
are both important. However, hardware is usually the limiting factor and algorithms
have to be designed while keeping the limitations of hardware in mind. Through
clever design much can still be achieved and, in this thesis, I will introduce a new
method that combines existing algorithms in order to study quantum entanglement
phenomena in many-body systems efficiently.

A quantum mechanical model of Turing machine was proposed by Paul Benioff
in 1980 [1] but the idea to simulate systems that classical computers could not by
using quantum computers came from Yuri Manin and Richard Feynman in 1981 [2],
[3]. The field did not kick off until Peter Shor developed an algorithm for integer
factorization, a threat to RSA-encryption, which would beat even the best classical
computers at the task [4].

Unfortunately, we are still far away from utilizing Shor’s algorithm and many
other similar algorithms that are designed to be used with large amounts of fault-
tolerant (error free) quantum bits, qubits. The advantages brought by the quantum
mechanical properties of quantum bits are easily destroyed by noise and environ-
mental effects.

In the near term era we are forced to rely on Noisy Intermediate-Scale Quantum
(NISQ) devices and algorithms designed specifically to bypass the limitations of
the current state of the art quantum technologies [5]. The development of these
algorithms has been swift and we are nearing the point when we achieve quantum
supremacy on a problem with real-life consequences. It is likely that in the next five
years some NISQ algorithm will be used in drug or chemical development [6, 7].

Meanwhile, the same algorithms can be used for fundamental research of physics.
Development in quantum information and the theory of quantum many-body sys-

tems is also in acceleration. A recent approach is the study of emergent phenomena



that cannot be described by laws of reduced parts of the system but instead need
a holistic view of the whole system. Interesting examples are network entangle-
ment structures in quantum many-body systems and space emerging from quantum
entanglement both of which will be studied in this thesis [8, 9.

The goal of this thesis is to introduce a method that one can use for research of
various different quantum entanglement phenomena. The study of these phenom-
ena quickly becomes classically intractable as the systems size grows beyond trivial
problems. Also, classical simulations are restricted to problems with low amount of
entanglement. Here, the method is proven to work with examples of systems with
small number of qubits. The method is scalable and as the development of quantum
hardware proceeds, it can be used with systems of arbitrary sizes and amounts of
entanglement.

The method consists mainly of two parts: a Variational Quantum Eigensolver
(VQE), which is used to find the ground state of the system under investigation, and
pairwise tomography, which can efficiently extract pairwise quantum information
from this ground state [10, 11]. Both algorithms have been recently developed and
their efficiency can still be improved. Although many advanced versions exist for
VQE, only the simplest version of it will be considered here.

The structure of this thesis is the following. The first chapter will introduce
the tools that are needed to construct the whole method. Quantum computing will
be introduced followed by VQE and pairwise tomography. In the second part of
this thesis, this method is then used, as a proof of concept, first to explore network
entanglement structures of quantum many-body systems and then to study quantum

gravity and space emerging from entanglement.



1 Quantum computing now and in the near future

We live in the age of information technology where mobile phones, computers and
other electric devices all work on the principle of a binary computation system,
bits. Even though technology keeps advancing and faster computers with more
computing power are built, they all are still just physical representations of the
same computation model called Turing Machine. Being essentially the same model,
they all share the same limitations and the classes of problems they can calculate.
On the other hand, in the world of physics, we are exploring this new frontier of
quantum information and quantum entanglement. A great question then arises: are
quantum systems computable with the Turing Machine model? We know that some
systems are, but generally the answer is not yet known. The general consensus
though is that all systems are not and the essence of this is captured in the quote
from Richard Feynman in 1981: "Nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it doesn’t look so easy. "[3] And so the idea
of quantum computing was born.

Instead of bits, as in classical computers, we now have quantum bits as our fun-
damental information-carrying components [5]. These quantum bits, which are also
called qubits, are abstract mathematical objects that can be realised in various phys-
ical settings. The most common and also promising technology is superconducting
circuits, which are cooled down to near absolute zero to minimize environment inter-
action. This technology is used by IBM in their quantum computing platform IBM
Quantum Experience, which is available as a cloud service and is used through-
out this thesis. Other possible technologies for quantum computers are based on

quantum optics and trapped ions.



1.1 The model of quantum computing

Quantum computing is based upon manipulation of quantum bits, qubits. A qubit
lives in 2 dimensional Hilbert space where the basis vectors in Z-base are generally
denoted |0) and |1). These can be used analogously to classical bits for computation
but the quantum advantage of this model lies in states that are in superposition. A

superposition of these basis states is just a linear combination of them

[¥) = al0) + 5[1) (1)

where a and [ are called amplitudes of the corresponding basis states. The state

can also be presented in vector notation as (a

B)’ A qubit stays in superposition until

measurement if not disturbed and then the probability to measure |0) is given by
the Born rule P(]0)) = |(0|¢)]* = |a|? and similarly P(]1)) = [(1]1))]* = |B8]?. A su-
perposition of states allows for computational advantage with parallel computation.
However, the measurement process in the end results in only one measurement result
and the superposition state is destroyed in the process. Therefore, all the informa-
tion encoded in the superposition of the state is not available at once and clever
manipulation of the interference is required to obtain computational advantage.
The other quantum resource, in addition to superposition, is quantum entangle-
ment. Entanglement means correlation between states on a quantum level which is
quite different from classical correlation. Imagine a book with 100 pages. If the book
were classical, you would learn 1% of its contents by reading one page. If the book
instead were quantum with information spread in the entanglement between all the
pages, you would learn nothing by reading just one page. To obtain information
from this quantum book you would need to observe the contents of many pages at

once [5]. An example of an entangled state is

1

V2

Notation |00) is a shorthand for the tensor product of two qubits |0) ®]0) = |0)|0) =

W) (100) +[11)). (2)



|00), which is a state with Hilbert space of 2V = 22 = 4 dimensions, where N is
the number of qubits. The state (2) is entangled in such a way that if qubit one is
measured we know immediately the state of the second qubit to be the same as the
measurement value of the first, and vice versa.

The amount of entanglement is usually the key aspect determining whether a
quantum state can be simulated on a classical computer or not. Simulating a quan-
tum system requires storing the information of its quantum state into a memory
and then using it in calculations, e.g., how the state evolves in time. In a highly
entangled state, the amount of amplitudes that one needs to store increases as 2%,
so a system of just a few hundred qubits would require more bits than there are
atoms in the observable universe [5]. Therefore highly entangled systems with non-
trivial amount of qubits can not be simulated efficiently with classical computers.
For systems with low entanglement there exist many techniques to approximately
simulate them such as Tensor Networks using Matrix Product States (MPS)[12].

The state of the system does not provide all the interesting information. If one
wants to know the energy of the system and how it evolves in time then more is
needed. The Hamiltonian of a given system encodes all this critical information.
In addition to characterising physical systems, other problems can also be encoded
into a Hamiltonian form such as optimisation problems. [13]

There are broadly two ways in which a quantum computer can be used. The first
one is the simulation of quantum systems which can also be divided into analog and
digital quantum simulation. In analog quantum simulation the problem Hamiltonian
is mapped to the Hamiltonian of the system performing the computation. The
problem is then run on the quantum simulator and the result is mapped back to the
original problem. This method is limited by the class of system Hamiltonians that
are possible to be simulated on a given analog simulator. Instead, digital quantum

simulators can simulate any physical systems regardless of its Hamiltonians. The



problem is mapped to the discrete building blocks of the quantum simulator such
as quantum gates in the quantum circuit model. [13]

The other use of quantum computers is different algorithms. The two well-known
examples are Shor’s algorithm for integer factorization and Grover’s algorithm for
database searching. These belong to computation complexity class Bounded-error
Quantum Polynomial-time (BQP) for which there does not yet exist efficient clas-
sical algorithms and therefore these algorithms offer speed-ups compared to their
classical counterparts. The speed-up with Grover’s algorithm is just quadratic, but
with Shor’s algorithm, one can get exponential speed up, which is why it is often in-
troduced when discussing possible quantum computing advantages. However, these
algorithms are not yet actually usable for interesting problem sizes because they
need large amounts of fault-tolerant qubits. A fault-tolerant qubit is free from all
noise coming from environment and errors occurring during computation, which is
not achievable with current state-of-the-art technology. Methods to counter qubit
errors exist, called quantum error correction codes, but they all rely in huge over-
heads of physical qubits. For context, factorisation of a 2084 bit integer with Shor’s
algorithm using a planar quantum error correction code would take 8 hours and use
20 million noisy qubits [14]. The current state-of-the-art quantum computer is 65

noisy qubits [15].

1.1.1 NISQ era

Constructing a qubit with desired properties is challenging. The qubits need to be
sufficiently protected from environment to preserve the quantum information. At
the same time, the qubits are required to strongly interact with other qubits in order
for us to perform quantum computation with them. We need to be able to control
the qubits and, in the end, measure them. Different physical approaches are better

at dealing with these requirements than others, but it is hard to satisfy all of them.



In the far future, all these can most likely be achieved, but in the near future, we
have to make the best of what we have available. [5]

This near term quantum computing era is described by the term coined by John
Preskill: NISQ, which stands for Noisy Intermediate-Scale Quantum. In this era, we
will have access only to quantum computers with numbers of qubits ranging from
50 to few hundred. 50 qubits itself is a significant milestone because an entangled

2°0 amplitudes is more than the most powerful existing su-

quantum system with
percomputers can store and compute. However, the qubits are noisy, which greatly
limits the power of these quantum computers. The error rate per two-qubit gates in
best superconducting circuit hardware is above 0.1% [16]. This limits the length of
computable quantum circuits around 1000 gates, as the noise accumulates in longer
circuits and overwhelms the signal making the quantum information unreadable.
The execution time of these gates also matters and long computation times also
lead to decoherence of results. Finally, the physical layout of the qubits also affect

how the qubits can interact with each other. Keeping these in mind we can design

algorithms suitable for current quantum devices. [5]

1.1.2 Circuit model of quantum computation

Before discussing NISQ algorithms, I will first explain the general circuit model of
quantum computation. Other models such as adiabatic quantum computing and
one-way quantum computing exist, but the circuit model is the most widely used
and it is the one used by IBM’s quantum computers. The quantum circuit model is
somewhat analogous to classical electrical circuits, as it consists of wires and logical
gates. An example circuit is shown in Figure 1. The computation according to the
circuit diagram advances from left to right. Each line represents a qubit and its
evolution, and the elements on the line are the logical actions applied on the qubit.

The line is not a physical wire, but can instead describe the passage of time or the



Figure 1: An example of a quantum circuit that creates one of the Bell states and
measures it. First, the qubits are initialized in the |01) state. Then, a sequence of
quantum gates are applied and the state becomes £(]00) —[11)). The dashed line is
just a barrier for visualization purposes. In the end, both qubits are measured, and

the results are stored into classical bits. [18]

movement of a particle through space. A quantum computation in the circuit model
begins with the initialization of the qubits, followed by an arbitrary amount of gates
applied to the qubits, and the qubits are finally measured. [17]

The quantum circuit is first initialized to some initial state. Generally it is
initialized in the computational basis state as the state consisting of all |0)s. So, for
a system of N qubits, the initial state is the product state |[0)®V = ]0) ® . .- ®10).
Other initial states can be prepared by using quantum gates. Anothel;I t(i?lislmon
initial state is the state |[+)®" where the state of one qubit |+) = \%(\0) + 1)) is a
balanced superposition of the computational Z-basis. In the X-basis, states |[+) and
|—) form the basis set, where |—) = \/ig(|0> —11)). [17]

After the initialization, the state is then modified by different quantum gates.
The set of gates that are physically available depend on the physical quantum com-
puter in use and they are commonly one-qubit and two-qubit gates, i.e., they act

on one qubit and two qubits at a time, respectively. However, we can perform any

arbitrary unitary quantum operation if the available set of gates is universal [17]. A



Operator Gate Matrix
Pauli-X (X) X - { o1 }
1 0
Pauli-Y (Y) vy [ o }
i 0
. 1 0
Pauli-Z (Z) —Z [ }
—1
] | 1 1 1
Hadamard (H) H 7 [ L }
1 0 0 O
Controlled Not (CNOT, CX) oo
0 0 0 1
0 0 1 0
1 0 0 O
Controlled Z (CZ) Iz oo
0O 0 1 0
o 0 0 -1
NS 1 0 0 O
SWAP 0 0 1 O
N 01 0 0O
0 0 0 1

Table I: Set of important one-qubit and two-qubit gates with their gate and matrix

representation.

qubit gate U is unitary if UTU = I, where U is the adjoint of U and a set of gates is
universal if any quantum operation can be approximated to an arbitrary precision
by a finite combination of those gates, as implied by the Solovay-Kitaev theorem
[19].

The simplest one-qubit gate is the X-gate, which switches |0) to |1) and vice
versa. The X-gate is also called the Pauli-X operator, and we can also use Pauli-Y
and Pauli-Z operations as gates. Another important one-qubit gate is the Hadamard
gate H which takes the state |0) to \%(|0>+|1)) and |1) to \/Li(|0>—|1>) Some impor-
tant one-qubit and two-qubit gates are presented in Table I along with their matrix

presentations. In this thesis, we also need rotation gates that can be parameterised.
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A rotation of the state vector about the z-axis in Bloch sphere representation is
given by the gate R,(0) = exp(—iZ6/2). The matrix representation for it and other

rotations are, following [17],

R.(0) = exp(—iX80/2) = cos(0/2)  —isin(0/2) |

I —isin(0/2)  cos(0/2)

Ry(6) = exp(—ivy2) — | <O 7m0 N
i sin(6/2)  cos(6/2)

exp(—10/2 0

R.(0) = exp(—iZ6/2) = p(=i0/2)

0 exp(i6/2)

From two-qubit gates the most important one is the controlled-NOT gate (CNOT).
In the CNOT-gate, one qubit is the control qubit and the other one is the target
qubit. If the control qubit is in the state |0), the target qubits stays unchanged and
if it is in the state |1), the target qubit flips. In the circuit representation, the control
qubit is marked as a filled dot and the target as an open circle, as seen in Figure
I. Other gates can also be controlled , e.g., controlled-Z gate and controlled-R,(6)
gate. SWAP gate switches the place of two qubits.

To obtain classical information from the quantum computation, the qubits are
measured in some chosen basis. Usually, all qubits are measured at the end but,
technically, they can be measured at any point during the computation. The mea-
surement process collapses the quantum state and destroys the information stored
in its superposition. The measurement is usually performed in the Z-basis but, by
applying suitable gates before the measurement, any other basis can be chosen. The
results are stored in classical bits and can then be analysed or used in subsequent
conditional gates. [17]

The quantum computing platform used in this thesis is Qiskit, developed by IBM
[18]. Qiskit provides the methods to create and perform simulations with quantum

circuits either by using simulators on a local computer or real quantum devices
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available in the cloud. Qiskit is provided as an open-source python package and
includes many libraries that include different algorithms and tools. There are es-
sentially two different kinds of local simulators. The statevector simulator simulates
the ideal computation of a quantum circuit without any error or "shot noise", i.e.,
statistical fluctuations from limited number of measurements. The qasm simulator
mimics more accurately the execution of a real quantum device, as it samples with
finite amount of shots from the probability distribution of the quantum circuit which
can lead to errors due to statistical fluctuations. It is also possible to set the gasm
simulator to simulate the noise model of any real quantum device of IBM to mimic
it more closely. Ideally, I would use qasm simulator for all analyses in this thesis,
but due to limited amount of computing power and time, I will have to resort to

using the statevector simulator, as is the common practice [18].

1.2 Exploring quantum systems with near term quantum al-

gorithms

The main goal of this thesis is to introduce a method to investigate quantum prop-
erties of intermediate sized systems. This is done by combining two prominent
algorithms, designed for near-term quantum computers that will be properly intro-
duced later in their own chapters. Shortly, the Variational Quantum Eigensolver
is used to find the ground state of the system under examination and then pair-
wise tomography is used to efficiently extract information from the ground state of
the system. We are currently in an era in which our understanding of entangled
quantum many-body systems is advancing and more advanced tools are required
to extract and analyze information from them. These methods can also be used
to study fundamental physics by using simple quantum models. A key property of
these methods is their scalability. As better and larger quantum computers become

available, these methods are ready to be used with arbitrarily large systems.
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In the current NISQ era of 50-to-100 qubit devices, quantum supremacy has
already been achieved |20, 21]. Quantum supremacy is another term coined by John
Preskill, and it means that a quantum computer outperforms the best classical
supercomputer at some task [22]. However, these particular tasks that have been
used to achieve quantum supremacy are non-practical mathematical problems. In
the near future, quantum supremacy with a practical application will most likely
come from using a Variational Quantum Algorithm (VQA). VQA is a term for
many different algorithms, which all have in common that they are designed to be
used with limited number of noisy qubits in quantum computers with limited qubit
connectivity and circuit depth. Common aspect of variational algorithms is that
they are quantum-classical hybrid algorithms utilizing the best of both computation
models. In a sense, they are analogous to classical machine learning neural networks
with few key differences. In VQAs, the object to be optimized is a parametrized
quantum circuit that is run on a quantum computer. The object function is also
measured on a quantum computer, but the parameter optimization is done on a

classical optimizer. [23]

1.2.1 Variational quantum eigensolver

In this thesis, I will be using a variational algorithm called Variational Quantum
Eigensolver (VQE), the first of the variational algorithms ever developed [24]. VQE
is used to calculate the eigenvalues and eigenvectors of a given system. Eigenvalues
and eigenvectors are important for many systems, as they represent the ground and
exited states of quantum systems. The ground state, especially, provides valuable
information of the system’s properties. Also, optimization problems can be mapped
into Hamiltonians such that their lowest eigenvalue and the corresponding eigen-
vector represent the solution to the problem. In the future, the quantum phase

estimation algorithm may be used to calculate minimum eigenvalues but it requires
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more coherent and longer circuits than those implementable in the NISQ era [25]. In
recent years, VQE has been heavily used in quantum chemistry applications because
the ground state of an molecule provides valuable information such as the equilib-
rium bond length, bond angle, and dissociation energy [26-28|. There are potential
benefits in drug discovery and studying other useful chemical reactions of e.g. new
fertilizers that could lower the global carbon emissions by 2% [6, 7].

The focus here will be on simpler systems. These will be quantum spin chains
and in particular, the quantum Ising model, the spin-1/2 XX chain and the XXZ
model. These are chosen for their simple Hamiltonian and the fact that they have
been extensively studied in the literature. In fact, the transverse Ising model has
been called the fruit-fly of quantum many-body physics [29]. But before applying
VQE to specific problems, I will first introduce the general formalism for VQE.

The first ingredient of the algorithm is the Hamiltonian H of the system. For
physical applications, it gives the energy and time evolution of the system. Opti-
mization problems can also be mapped to Hamiltonian form and then used with
the VQE algorithm to find the lowest energy eigenstate, which then corresponds to
the optimal solution to the problem. A distinction needs to be made between the
system Q we are interested in and the physical system S that is doing the actual
quantum computation. A requirement for the system S is that the number of qubits
N in it is larger than or equal to what the system Q requires. The Hamiltonian
of the system () needs to be mapped to a system’s S operator in order to perform
the computation. If the systems are similar, this mapping is trivial but, in general,
it is not. As an example, operators of fermionic systems can be mapped to qubits
operators with the Jordan-Wigner transformation, which takes care of the fermionic
commutation relations. Once the mapping is done we can use the system S to study
the system () we are interested in.

Consider an arbitrary state |¢)) and an arbitrary operator O. The expectation
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value of this operator with respect to this state is

O}y = % (1)

Let us assume from now on that the wavefunction is normalized, (|¢)) = 1. [10]
In VQE, we want to measure the expectation value of the system’s energy, which
is done by calculating the expectation value of the system’s Hamiltonian (¢|H|).
Calculating this directly would require measuring it in the eigenbasis of the system
which we actually do not know yet. Measurement in arbitrary basis can be done
but is often hard and introduces many additional gates which is a problem in NISQ
devices. Therefore, we solve this problem by decomposing the Hamiltonian into a

polynomial sum of M operators that are easily measured by the quantum computer

with some complex coefficients c;. The operators Hj are often chosen to be Pauli
strings, which are tensor products of Pauli matrices and the identity operator, P =
®§.V:1 o}, where 0 € {I,07,0],0%}. Measuring 0 is easy as it is just a measurement

in the standard computational basis and measuring ¢, ¢¥ requires only an addition

of a one-qubit gate. Then the Hamiltonian is given by

M
H=Y ch (6)
k=1

Now, the expectation value of the Hamiltonian decomposes into a weighted sum of

expectation values of easily measurable Pauli strings [13|

M

(H)py = > cr{ Py (7)

k

Next we need a parametrized quantum state that can be transformed into any

state in some family of states. The state of the solution should be contained in this
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family. The parametrized quantum circuit is formed by constructing a parametrized
circuit called ansatz. This state is denoted with parameters 6 as [¢(0)) and is

obtained from the initial state |¥) with a unitary transformation /(0) as

[4(8)) = U()[Wy). (8)

The initial state is often just the computational basis state |0)*", but sometimes
other initial states are more convenient. For example, in chemistry applications the
Hartree-Fock approximation is usually a good starting place. To simplify, we can

fuse the initial state preparation to the unitary evolution of the ansatz to obtain

[13]

[4(8)) = U(6)0)°". (9)

The eigenvalues of the Hamiltonian can be ordered as A\; < Ay < ... < Ap.
The lowest few eigenvalues are often the most interesting ones and we will focus on
finding the lowest one, the ground-state energy. The variational theorem of quantum

mechanics states that

(H) o)) = (V(O)|H[1(0)) > . (10)

No matter how we tweak the parameters @, the expectation value of the Hamilto-
nian will not go below the lowest eigenvalue. Therefore, when trying to find the
ground state of the system the optimal choice for the parameters € is the one which

minimizes the expectation value of the Hamiltonian

Bupi = axgming ((0)| |1 (6)). (11)

The approximation to the ground state energy will be then Eqp = (1(0opt) | H |1 (@opt))
and approximation to the ground state |t)(Bopt)) = U(opt)[0)®N. [13]
We now have the tools to describe the VQE algorithm. First, we prepare the

ansatz [1(0)) on a quantum computer. There are many different choices of ansatz
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Figure 2: An illustration of one VQE cycle. If it is the first iteration, the parameters
of the ansatz are initialized in some random or predetermined state. Otherwise, pa-
rameters from previous iteration are used. The objective function is then measured
respect to the state of the ansatz. The results are sent to a classical optimizer that
determines how to adjust the parameters such that the measurement value would
decrease in the next iteration. The new parameters are then updated in the ansatz
and the algorithm enters the next iteration. The cycle halts when some criteria for
the convergence has been met. Usually it is when the variance of the measurement

expectation value decreases below a certain limit. The figure is extracted from [30].

depending on the hardware and the system under study. Next, we measure the
expectation value of the Hamiltonian (), )y with respect to this state. Then, these
values are used with classical optimizer algorithm to determine how the parameters
of the ansatz § need to be changed in order to decrease (H)y(9). There are many

different options for the optimizer. These new parameters are then updated in
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the ansatz and the algorithm continues to a new iteration. This is repeated until
convergence i.e. when variation of the expectation value (H) ), decreases below a
desired limit. The VQE cycle is shown in Figure 2. [10]

Ansétze can be dived into two groups: problem-inspired ansétze and hardware-
efficient ansétze. In problem-inspired ansédtze the parametrized quantum circuit is
constructed with generators that are derived from properties of the system of in-
terest. In quantum chemistry, for example, the unitary coupled-cluster approach is
often used [31]. Problem-inspired ansétze are problem specific and can be efficiently
trained in those specific problems. However, they often require deep and highly
connected circuits and thus require hardware we currently do not have. Hardware-
efficient ansétze accommodate the constraints of current technology. They are con-
structed with a limited set of quantum gates and limited connectivity. The gate
set consists usually of few single-qubit gates and one two-qubit entangling gate, e.g.
a CNOT gate. These are used to construct a layer of circuit that can then be re-
peated as many times as necessary. Hardware-efficient ansétze are shallower than
problem-inspired ansétze but they can suffer from trainability issues. [13, 23|

Important for an ansatz is its entangling power which measures the set of states
it can represent [32]|. If the ansatz can prepare any state in the Hilbert space
then the solution state is guaranteed to be there, however, finding it might be a
hard task. Problem-inspired ansétze limit the set of states they can represent,
which is one of the reasons they converge faster to the solution state. Hardware-
efficient ansétze can be made to represent an arbitrarily large amount of states, as
guaranteed by the Solovay-Kitaev theorem. Any state can be generated by some
unitary transformation applied to the initial state and this theorem states that an
arbitrary unitary acting on n qubits can be approximated with precision € by using
at most order O(log®(1/¢)) elementary gates from an universal gate set. © is used

to describe the growth rate of a funtion. The value for ¢ depends on the proof for
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Figure 3: Variational hardware-efficient layered ansatz with six qubits and three
layers. The red box indicates one layer of the ansatz with parametrized R, (6)

rotations and entangling CNOTs.

this theorem but it is known to lie between 1 < ¢ < 4. [32]

The ansatz layout that is used in this thesis is a hardware-efficient layered ansatz,
which can be seen in Figure 3. The ansatz is constructed from subsequent layers
of single-qubit gates and entangling two qubit-gates. The single-qubit gates are all
parametrized R, (f) gates, and the two qubit gates are entangling CNOTs. Inside one
layer, the rotation gates and CNOTs are alternated and, furthermore, the control
and target qubits of CNOTs change. This circuit can be interpreted as the Trotter
approximation to the unitary U(f) of Equation (9), which takes the state [0)®V
to the parametrized state [1/(f)) [32]. The parametrized R,(f) gates are chosen
because the operations are real (no imaginary components) and the Hamiltonians
(see equations (14), (15) and (16)) of interest are also real. The entangling power of
this circuit can be adjusted by adding more layers to it. The more layers are added,
the more accurately it can approximate the ground state of the system under study.
As every layer adds a CNOT between all pairs of adjacent qubits, adding a layer
creates one bit of entanglement per pair and per layer. [32]

Choosing the right optimization method is critical for the success of the VQE
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algorithm. The inspiration for these methods is taken from classical optimizers, and
many are exactly the same. However, there are new challenges due to the quantum
nature of the problems, such as the stochastic environment due to limited mea-
surements, hardware noise, and barren plateaus (regions of non-convergence) [33].
Therefore, more quantum-aware optimizers have been developed but no clear winner
has been found yet. Optimizers can be broadly grouped into two categories, depend-
ing on whether they use some kind of gradient descent method or not. Gradient
descent methods optimize by taking iterative steps into the direction of the gradi-
ent. Sequential Least Squares Programming optimizer (SLSQP) is an example of an
iterative method that works well for problems where the objective function and the
constraints are twice continuously differentiable. When working with statevector
simulator, SLSQP is the optimizer that is used in this work. [23]

Because of the limited number of measurements, quantum algorithms actually
use Stochastic Gradient Descent methods (SGD). An example of a SGD method is
Adam [34]. The other methods do not directly utilize gradients, and an example of
such is the Simultaneous Perturbation Stochastic Approximation (SPSA) method
[35]. SPSA approximates the gradient by calculating a single partial derivative along
randomly chosen direction. The partial derivative is computed as a finite difference,
and therefore requires only two measurements of the objective function. SPSA is an
optimal choice to be used with a gasm simulator or a real quantum device, as it can
be used in the presence of noise and uncertainty in the measurement [18]. Based on
these considerations and also on experiments, SPSA was chosen as the optimizer to
be used in this thesis when working with gasm simulator. [23|

It is important to know when to stop the iteration of the VQE algorithm. Earlier,
I mentioned that the iteration is continued until the variance of the expectation
value decreases below certain limit, and this can be made more precise. In density

matrix formalism, the expectation of an arbitrary operator O for a state p is given
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as (O), = Tr[pO]. The variance of an arbitrary operator is then given as Var[O], =
(O =10),)*), = (0?), = (O)2. Now, for any eigenstate |Wy) the variance of any

operator O is
(0O 0y) — (T4 ]O[T1)* = (M) — (A)* = 0. (12)

Therefore, when converging near an eigenstate, we can aim at decreasing the variance
of the energy as much as possible and for any approximate eigenstate |:I/> we have

that [10]

Var[O] g, > 0. (13)

1.2.2 Quantum spin chains

Now we are going to look at specific models and how to apply VQE to simulate
them. Our three quantum systems are the Ising model in transverse field, the spin-
1/2 XX chain and the XXZ model. These three systems and their properties will

be analyzed in the remaining thesis. The Hamiltonian for the Ising model is
N
Higng = —J » _ [007,, + Boy], (14)
i=1

where B is the strength of the transverse magnetic field and we set J = 1 without
loss of generality. The spin chain is set to have open boundaries, so o3,; = 0.
For small values of B (B < 1), the ground state of the system is in a degenerate
and ferromagnetic phase where all the spins are in a GHZ like superposition of all
spins aligned in the positive z direction and in the negative z direction. For large
values (B > 1) the system is in paramagnetic phase and the spins are in disorder.
In both phases the Hamiltonian is gapped i.e there is a finite difference between
the ground state energy and the first exited state energy. Note that for B < 1 the

ground state is degenerate, so the gap is actually between the second and the third
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smallest eigenvalues. The system has Z, symmetry in both phases so that applying
spin flip to all spins ] ;05 does not change the energy of the system. At exactly
B =1 the system is in critical phase and the Z, symmetry breaks spontaneously.
The physics of the system is very different in the critical phase and in other phases.
The main aspect that is important in this thesis is that the paramagnetic phase
is shortly correlated and gapped and so fulfills the area-law of entanglement. The
ferromagnetic phase is partly gapped but exhibits long range correlations and the
critical phase is gapless and also exhibits long range correlations. This will be
elaborated in later sections. [32]

The spin-1/2 XX model has the following Hamiltonian
alNyp|
Hyx =03 |jlotot +alotl) + Boi. (15)
j=1

where again B is the strength of the magnetic field, J is set to unity, and open
boundaries are fixed using o, = 0. For B > 1, the ground state of the system
is aligned along the z direction and separable. The system undergoes a quantum
phase transition at B = 1 to a critical phase in the thermodynamical limit. Between
0 < B < 1 the system is critical and it undergoes NV level crossings at magnetic field
values By, = cos[km/(N +1)], with 1 < k < N. Above B > 1 all spins are aligned in
the z direction. At each crossing, one of the spins, that already has not, gets flipped
and the result is a highly entangled state, given as a symmetric superposition of all
possible flips. [9, 36|

The XXZ model has the following Hamiltonian
N
Hxxz = JZ [of ol +oloty, + Aofoi,] (16)
j=1

where J is again set to unity, open boundaries are set, o7 = 0, and A is now the
spin anisotropy. This system is gapped for A > 1 and A < —1 being ferromagnetic
for A < —1 and anti-ferromagnetic for A > 1 along the z direction. Between

—1 < A < 1, the system is critical, and describes the physics of a compactified
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boson. All models, the Ising, the spin-1/2 XX and the XXZ model, in critical phase
can be described with a conformal field theory (CFT) with different central charges
[37, 38]. [32]

1.2.3 Depth scaling of the VQE ansatz

To benchmark the VQE algorithm I will study the scaling of the accuracy in terms
of the ansatz depth. I do this by using the Ising model with values of B =
0.5,0.8,1.0,2.0 and 10.0 for the magnetic field and the hardware efficient ansatz dis-
cussed previously. The simulation is done using the statevector simulator. The accu-
racy is evaluated with two quantifiers and the first one is the accuracy of the ground-
state energy 0p evaluated with the formula 6 = loglo(%), where € = Fyqr — Eexact,
with Feyact the true ground state energy calculated by diagonalizing the Hamiltonian
exactly and choosing the lowest eigenvalue, and Evyqg is the energy achieved with
VQE. The second quantifier is the fidelity of the exact diagonalized state peyact and

2
VQE state pyqg calculated as F' (pexact, pvqr) = Tt [\/ /Pexact PVQEA /pexaCtJ )

The results for the scaling of the accuracy of the ground-state energy, and fidelity

as a function of circuit depth can be seen in Figures 4 and 5, respectively. From
both graphs, it can be seen that for lower values of magnetic field, the convergence
towards ground state is slower and requires higher ansatz depth. The graph for
fidelity more clearly shows the limit point for finding a good approximation for the
ground state. The systems with magnetic value above one immediately approach the
ground state but for systems with B < 1 it takes a certain amount of layers. With
the exception of the case of B = 0.5, they all converge to ground state eventually.
For large amounts of layers, the accuracy is approximately the same in all cases.
The figure for accuracy matches, in essence, the results of systems with B > 1
to the results of Bravo-Pierto et al. [32] although the numbers do not exactly match

because of different system sizes. Moreover, they consider spin chains with periodic



23

7 qubits
4.0 N B U
Ry N %———'t”::_laz._k;f’e:f,
35 1 ,’ ,/ \\*___ﬁ_’.-’ ’ :
I/ /, ”‘r
3.0 1 ,l ‘ PO
> / / //
(&} / / ,
© / -,
5 2.5 1 II ”{,‘W,,‘y‘
v} oL L - o o
< §-— B S0 -8-——b——-G-——0-—-0
2.0 A 1) II .
i -@- B=0.5
154 LS —e- B=08
V& -®- B=1.0
104 ¢/4" —@- B=2.0
=I -@- B=10.0
1 2 3 4 5 6 7 8 9
Depth

Figure 4: The scaling of accuracy of the ground state energy, dg, for different mag-
netic field values, B. The magnetic field is rescaled by J. The x-axis depicts the
number of layers in the ansatz. The graph illustrates how many layers are needed for
a given magnetic field value to achieve good convergence. Cases with higher B need
fewer layers to achieve good accuracy. The case with B = 0.5 does not converge

with the number of layers presented here.

boundary conditions. One of the results of that paper is that the accuracy of the
energy for Ising model with B > 1 increases exponentially as a function of the ansatz
depth. For the critical phase, B = 1.0, the accuracy is first in a finite-depth regime
and stays constant until the depth of the circuit crosses a limit point, after which
it enters into a finite-size regime where the accuracy increases exponentially. The
limit point scales linearly with the number of qubits. However, no analysis was done
for systems with B < 1 and the behaviour was explained to happen with systems
in the critical phase. Here I find new results that the same behaviour happens for
all Ising model systems with B < 1 and more strongly for lower B. As seen later

in Figure 23, the energy gap in the Hamiltonian might be one of the causes behind
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Figure 5: The scaling of fidelity of the VQE ground state and exactly diagonalized
ground state for different magnetic field values, B. The magnetic field is rescaled
by J. The x-axis depicts the number of layers in the ansatz. The graph is similar to
Figure 4, but illustrates even more clearer how many layers are needed for a given
magnetic field value to achieve good convergence. Cases with higher B need fewer
layers to achieve good accuracy. The case with B = 0.5 does not converge with the

number of layers presented here.

this behaviour. By testing the convergence of the Ising model for different magnetic
fields, it was noted that finding the ground state for systems with B < 0.5 was much
harder and required much deeper ansétze than for other values. This behaviour will

be investigated more in depth in future work.

1.2.4 Pairwise quantum tomography

Now that we have the means to find the ground state of a given system, how can we
extract information out of it? The state is stored in a parametrized circuit, which

we can initialize as many times as we want, but we still do not know much about
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its properties other than its energy. If we were to have an explicit description of its
state vector or density matrix, we would be able to calculate any interesting quan-
tity from it. The process of reconstructing a quantum state from an ensemble of
measurements in different bases is called quantum state tomography. As measure-
ment destroys the quantum information, the state needs to be initialized again after
every measurement process. Luckily, with our parametrized quantum circuit this is
not hard although errors during initialization may happen. This kind of full state
tomography presents two problems: it requires exponential amount of measurements
with increasing system size and the result is a matrix which requires exponential
amount of storage capacity with increasing system size. [11]

A more efficient method is to perform pairwise tomography instead of full state
tomography. By measuring just pairwise correlators with a clever measuring scheme,
the scaling reduces from exponential number of measurements to just logarithmic
number of measurements in terms of system size. It does not contain all the informa-
tion, as full state tomography would, but we do obtain interesting pairwise quantities
that are enough to study some relevant properties of the system. Examples of quan-
tities that one can extract are pairwise entanglement, mutual information, classical
correlations, von Neumann entropy, quantum discord and purity. [11]

To construct pairwise density matrices we need to calculate correlators of the
form (o¢ ® a;?> between all pairs of qubits, (4, j), with a and b taking values x, y and
z. Hence, calculating all pairwise correlators, for a pair of qubits involves measuring
9 different correlators and for all pairs this amounts to measuring IN(N — 1)/2
observables. With simple parallel measurements this is reduced by a factor | N/2],
so that it can be done in O(N) measurements setups, but a better method will be
shown next to reduce it to O(logN). [11]

The easiest part is measuring correlators (of @ 0f), where the measurement

basis is the same for both qubits. This is done with three measurement setups, first



26

measuring all qubits in the x basis, then y and lastly z. For all other correlators,
we need an efficient scheme that ensures that all non-trivial correlators are covered.
In this scheme, qubits are repeatedly assigned letters a, b and ¢ which mark the
different combinations of measurements that will be done, as explained below. [11]

Each qubit is first indexed from 0 to N — 1. In base three representation, these
indexes use [logs N digits. We use [logzN| labellings, [ = 1,..., [logsN], where
each labelling is such that it assigns for each qubit ¢ the letter a, b or ¢ based
on the value of its [-th digit in its base-three representation. An example makes
this clearer. Consider a system of 15 qubits indexed 0, ..., 14, so the number of
labellings is L = [logz15] = 3. Then, the index of its 12th qubit, 11, is presented
in base three as 1023. Then for labelling [ = 1, the 12th qubit would be assigned
the letter ¢, for labelling [ = 2, the letter a, and for labelling [ = 3, the letter b.
After this, the letters a, b, ¢ are substituted by the six different permutations of x,y
and z, and the corresponding measurements are performed. Generally, as any two
qubits have different indexes and therefore at least one distinct digit in the base-
three representation, it is guaranteed that every pair of qubits will have at least
one labelling where their non-trivial correlators will be measured. Furthermore, this
scheme is optimal. [11]

With 3 trivial measurement settings of the same basis and 6 setting per labelling,

the total number of measurement settings is
6[logsN'| + 3. (17)

In this thesis I will cover systems of sizes between 6 and 12. For N = 12 qubits the
total number of measurement settings with this scheme is 21. The naive parallel
approach would have required (9 x 12 x (12 — 1)/2)/(|12/2]) = 99 measurement
settings. The difference is huge even for small systems, and even more so with
increasing system size. [11]

The algorithm is then the following. First perform the three measurements where
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Figure 6: Groupings of the pairwise tomography algorithm for N = 10 qubits.
Here there are L = [logz10]| labellings. The top-most qubit is the first qubit with
index i=0 and counting continues clockwise. Each qubit is assigned letter a,b and c

according to the result of [i/3'"1] mod 3. [11]

all qubits are measured in the same basis z, y, and z. Then, calculate the number of
labellings needed L = [logsN| and for each | = 1,..., L do the following substeps:
a) First divide the qubits into groups of subsequent 3'~! qubits and for each group
assign cyclically a,b,c,a,b,.... The last group may have fewer qubits than other

groups. b) Then assign all permutations of x, y and z to letters a, b and c:

1 2 3 45 6
a <— T T Yy y z 2z (1)

b «— vy 2z x z = vy

c «— 2z Yy z T Yy
and for all permutations perform measurements as indicated by the assigned letter.

An example for this algorithm can be seen in figure 6 for N = 10 qubits. [11]

After all measurements are performed, the results are used for the tomographic
reconstruction of the reduced density matrices for all pairs of qubits. This can be

done in various ways such as simple linear inversion or Bayesian methods. The code

used in this thesis uses Qiskit’s tool, which employs a maximum-likelihood method.
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Figure 7: Pairwise entropies for the Ising model with 10 spins and B = 1.5. The

magnetic field is rescaled by J.

[11]

1.2.5 Quantifiers of pairwise correlations for quantum systems

We now have the tools to obtain pairwise information from quantum systems, but
what are the properties that we are interested in? There are many different quanti-
fiers to characterize a quantum system, and in this thesis we are mainly interested in
two of them: quantum mutual information, and concurrence. Because the properties
that are to be investigated here are extracted from the system using the introduced
pairwise tomography method, the quantifiers are all pairwise, i.e., they are calcu-
lated from two-qubit reduced density matrices. [11]

A key concept in quantum information theory is entropy. Shannon entropy is
familiar from statistical mechanics and has multiple interpretations. It can measure
the uncertainty of a random variable before we learn about it, or it can quantify the
amount of information we would get by measuring it. From an information theory
perspective, the most interesting interpretation is that entropy measures the amount
of physical resources needed for storing and also transporting information. There is

a corresponding quantity for quantum states with similar interpretations called Von
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Neumann entropy, defined for state p as

S(p) = —tr(plog(p)). (19)

Here, and later on, the logarithm is taken to be base two. Also, from now on,

entropy always refers to Von Neumann entropy. If A\, are the eigenvalues of p, then

S(p) == Mloghs. (20)

While having similar interpretations as the classical entropy, quantum entropy is
still fundamentally different. Classical entropy originates from lack of knowledge in
thermal states, while quantum entropy originates from quantum entanglement, and
even at zero temperature, states with non-zero entropy are common [39].

Pairwise entropy for qubits a and b is calculated from the reduced density matrix

Pab A8

S(pav) = —tr(pabl0g(pab)), (21)

where py, is calculated by tracing out the other qubits of the system S as pg, =
trs/1a01(p). An example of an pairwise entropy network can be seen in Figure 7 for
the Ising model with 10 spins and B = 1.5. [17]

Classical mutual information measures how much common information two ran-
dom variables X and Y have in common. The quantum analog carries a similar
meaning but it also includes quantum correlations. For a bipartite quantum system
pap (a quantum system with two parts) quantum mutual information is a measure

of correlation between those two parts and it is defined as
S(A:B)=S(A)+ S(B) — S(AB), (22)

where S(A) and S(B) are the entropies of the reduced subsystems p4 and pg, and

S(AB) is the entropy of the complete system. For pairwise mutual information,
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Figure 8: Pairwise mutual informations for the Ising model with 10 spins and B =

1.5. The magnetic field is rescaled by J.

the complete system AB is the reduced two-qubit system, and A and B are single
qubits. An example of a pairwise mutual information network can be seen in Figure
8 for the same system as previously. [17]

Many relevant physical properties of ground states of quantum spin chains can be
inferred from pairwise quantities such as mutual information. One interesting topic
is the study of Quantum Phase Transitions (QPT) which are often characterized
(2 _ (

= (0f05) — (07)(07). However, it is not

with two-point correlators of the form g 7)o

generally know a priori what the right correlators are. The mutual information

S(A : B) gives upper bound to any two-point correlator as [8]

S(A: B) = S (panllos @ pi) (23)
>~ lpas — o @ il (24)
> {TI‘ [(pAB —pAa® pB) (S)AOB)]}Q (25>

2[0all O]
_ (0408) — (04) (05} o6
20l [l

As the mutual information is a more general quantifier than any particular physical
correlator, it is a suitable tool for analysing QPT [29].

Concurrence is a measure of entanglement that can be used to calculate the
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Figure 9: Pairwise concurrences for the Ising model with 10 spins and B = 1.5. The

magnetic field is rescaled by J.

entanglement of formation. Entanglement of formation is an entanglement measure
that quantifies the resources needed to create a given entangled state and is an
important quantity in analyzing entanglement. However, concurrence is in its own
right a good measure of entanglement and so I will focus only on it. To calculate
concurrence, we first need to do a spin flip transformation to the state, which for a

density matrix of two qubits is calculated as
p=(c"®d")p" (0¥ ®ad¥), (27)

where p* is the complex conjugate taken in the standard basis. The concurrence is

then calculated as
C(p) = max{O, )\1 - >\2 - >\3 - )\4}, (28)

where \; are the eigenvalues of the Hermitian matrix R = /\/pp/p, in decreasing
order. Concurrence is an entanglement monotone. It is a non-negative function,
zero only for separable states and it does not increase under Local Operations and
Classical Communications (LOCC). An example of a concurrence network can be

seen in Figure 9, again for the same system as previously. [40, 41]
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2 Emergent entanglement phenomena in quantum
systems

Emergent quantum entanglement structures in quantum many-body systems is a rich
and interesting research area that has seen increasing interest in the last decades.
Advancements in these topics impact relatively new fields such as quantum biology,
quantum thermodynamics, and more established fields such as quantum chemistry
and quantum gravity. More obvious impact areas are, of course, quantum technolo-
gies, quantum computing, quantum internet, and quantum simulations that can be
used for researching drugs and materials. The key conceptual ingredient binding
all these topics is emergent phenomena and behaviour. These are properties that
cannot be reduced to or be derived from laws governing the smaller parts of the
system. Instead, one has to study complex collective structures that arise from a
large number of individual interacting systems. [9]

Entangled quantum many-body states are complex structures that require ad-
vanced methods in order to study them. In the past, classical statistical physics has
offered powerful tools for analyzing complex classical systems, including the study
of complex networks. These have been used in quantum systems, but with the ap-
proach of explicitly enforcing complex structures on quantum connections [29]. An
alternative approach is to combine the powerful instrument of quantum information
with network representations to describe complex many-body quantum states and
this is the approach taken in this thesis. [9]

The unique combination of methods introduced in this thesis allows for efficient
analysis of quantum entanglement structures. Normally one would use a classical
computation method, such as the MPS approximation, to perform the numerical
calculations needed to find the ground state of the system of interest and extract

its properties [42]. The method presented here does not suffer from the limitations
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that MPS have: bad scaling in terms of entanglement and system size. Instead, it
scales to arbitrary system size and amount of entanglement with the development
of suitable quantum devices. VQE will find the desired ground state or exited state
and pairwise tomography will extract the necessary pairwise quantities to construct
the complex entanglement networks to then be analysed.

Two different analyses will be done in the remaining of this thesis. In the first
part, I analyze the topological properties that emerge from entanglement networks
of quantum many-body systems. In the second part, I study the application of
the methods for studying quantum gravity and emerging space from entanglement.
The analysis is done using the three already introduced quantum spin chains with
equations (14), (15) and (16). The Ising model and the spin-1/2 XX chain have been
extensively studied in references (9], [29] and [36], and the goal is to match their
results to benchmark the methodology. These papers have used large amount of
spins in their analyses, which needs to be taken into consideration when comparing

the results. For the XXZ spin chain, I will present new results.

2.1 Topological properties of quantum many-body systems

It is now clear that we have great motivations to study the entanglement properties
of quantum many-body systems. If we understand how entanglement works in
relatively simple systems, then we can apply that knowledge to harder and more
complex problems. Even in simple and extensively studied systems, we can find
new and interesting emergent phenomena. With the three spin chain models I will
study (i) the effects of being in and near the critical phase of the model, (ii) the
emergent entanglement structures, (iii) scaling of the entanglement in different parts
of the spin chain and (iv) network properties of the entanglement networks. [9]
These phenomena are studied with the use of complex networks, where the links

represent either mutual information or concurrence. Mutual information measures
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all correlations of the system, quantum and classical, which gives a good overall
picture of the properties of the system. If one wants to study only entanglement
phenomena, then concurrence is a more suitable quantifier. Pairwise concurrence

networks show how the entanglement is distributed in the system.

2.1.1 Complex networks

To analyze the pairwise networks of quantum information properties that we obtain
from the introduced methods, we need key concepts of network theory that I will
now introduce. Complex networks are tools to represent complex systems as graphs,
where nodes are individual systems and the links represent different relationships
between them. Classical examples are social networks and internet connections.
Graphs of complex networks can be visually presented for easy reading, but only
when the number of subsystems is small enough that they do not clutter the view.
Complex networks can be described with properties that give a holistic view of the
whole system. These properties only emerge from the combination of the subsystems
and cannot be reduced into microscopic rules that govern them. These properties are
even more useful for describing networks where the number of subsystems is too large
for visualization. In this thesis, the individual systems will be single spins and the
links will represent the pairwise quantities that are extracted from the system using
pairwise tomography. As the system sizes are small, everything can be visualized in
addition to the quantitative analysis. [43]

The simplest quantity is the degree of a node. It measures the number of links
that intersect the node without considering the weights of the links. Let us denote
an arbitrary quantity of a weight between nodes i and j as w;; which can be e.g.
concurrence or mutual information. Then, the presence of a link is denoted by

a;; = ©(w;;) where © is the Heaviside function, so a;; = 1 if a link exists between i



35

and j and a;; = 0 otherwise. The definition for the degree of a node 7 is then

N
j=1

Node degrees quantify the properties of the unweighted structure of the network,
also referred to as its topology. A similar quantity, which is called the strength of

the node 17, is

N
S; — Zwlj. (30)
j=1

This quantifies the weighted structure of the network. [9, 29
The local clustering coefficient counts the ratio of triangles i.e. three nodes with
all three links present, to triples with at least two links present, in an unweighted

network

N
D Qi Qik

- 31
T Td(di— 1) (1)
For a weighted network, this is instead
N 1/3
= >k (Wijwirwjn) (32)

~d; (dy — 1) maxy, Wi
where the geometric mean of each triangle is calculated and normalized with the

largest weight in the whole network. [9]

The density D of the network is the weighted fraction of all the possible (];[ )

links that actually are present in the network

D S s

- N(N—1) (33)

A network is said to be sparse if D — 0 as N — oo and dense otherwise. [29]
The disparity Y; of a node ¢ quantifies the heterogeneity of the distribution of its

connections’ weights as

1 N
Y= (wig)?. (34)
1 j:1
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Figure 10: Mutual information networks for the Ising model with three different

magnetic field values B. The magnetic field is rescaled by J.

For a uniform distribution of the weights of node i, the disparity is Y; = 1/d; and
it approaches 1 if one of the links dominates. The average disparity over the whole
network is then Y = % sz\; Y;. It is a good indicator of how the links are distributed

across the network. [29]

2.1.2 The Ising model

First I will analyze the Ising model, as it is the simplest of the spin chains. The
Hamiltonian for the Ising model was introduced in Equation (14). Recall that it is
ferromagnetic for B < 1, paramagnetic for B > 1 and undergoes a QPT at B = 1,
where the system is in a critical phase. As expected, the properties of the system
are very different in different phases.

For benchmarking, I will first study the complex network of mutual informa-
tion, reconstructed with VQE and pairwise tomography, in different phases and
compare them with ones in the paper of Valdez et al. [29]|. Figure 10 shows the
mutual information network with three different values of the magnetic field. In the
ferromagnetic phase, the graph is dense, with most links strongly present. When
approaching the critical value, the longest links start to fade out and, in the para-

magnetic phase, only nearest-neighbour links are strong. These results match those

Mutual Information

=
=

o
=1
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Figure 11: Network measures of mutual information for the Ising model. The mag-

netic field is rescaled by J.

of Valdez et al. [29]

We can further analyze the mutual information network using different network
measures. In Figure 11, the density, the average clustering and the average disparity
are displayed for the Ising model with 6 qubits. Both exact diagonalization and
VQE solutions are presented so one can see that aside from slight deviations they
are same. The results also match those of Figure 10, as one can see that the density
of the links and the average clustering drop as the magnetic field increases. The
distribution of links is very homogeneous for low magnetic field values as one can see
from the low average disparity. It then approaches the value of 1/2 as the magnetic
field increases and the links to nodes farther away fade out and links to nearest
neighbors start to dominate. When comparing the results to those of Valdez et al.,
one can see that the density and average clustering have a good match when taking
into consideration the difference in the system size. However, in their result, the
average disparity approaches 1 as the magnetic field increases. As discussed before,

the value of disparity of a node should be 1 only when one of the links connected to
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Figure 12: Concurrence networks of the Ising model for various magnetic field values.

The magnetic field is rescaled by J.

the node dominates over the others. In our case, for B = 2, the mutual information
graph is close to a nearest-neighbour chain, i.e., every node has similar links to both
neighbors, left and right, and very low connection to every other node. Considering
this, we can do a short calculation. If one approximates the links to farther away
nodes to be zero and the links to nearest neighbors to be w, we get the following

value for the disparity of the node :

N 2

Vim =3 (wy)? = (;%)2 == (35)

j=1
This result is consistent with Figure 11. Following this reasoning, I conclude that
the results presented here are accurate.

The concurrence networks of the Ising model have not been studied before in

the literature, so I will now present some new results. The concurrence networks
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for various magnetic field values are shown in Figure 12. Concurrence increases as
the magnetic field grows and caps at the critical value B = 1 after which it starts
to slightly decrease. In all cases, the concurrence of the edge pairs is higher than of
the bulk. This can be seen more clearly in Figure 13A. The rate of change for both
pairs is almost the same aside for low values of B, for which the concurrence of the
edge pair increases faster. This behaviour is different from spin-1/2 XX chain as for
it the order switches as the magnetic field is varied [36]. The results for low values
of B (e.g B = .01 in Figure 12) are not reliable, because when there is low amount
of entanglement, the fluctuations due to finite statistics are significant and can even
lead to non-zero values even for separable states [11].

Other properties of the concurrence network of the Ising model are seen in figure
13. The disparities of each spin are shown in figure 13B. For all values of B the
bulk of the chain is clearly more homogeneous while the edge spins present high
disparity since their local connectivity is dominated by a single link. The disparity
does not exhibit significant changes for different magnetic field values except for
B = 0.1 when the aforementioned statistical fluctuations are large. In figure 13C
one can see that the total strength is highest at the critical value B = 1.0. Also the
edge spins have less strength than the bulk spins. In figure 13D it is seen that the
density peaks just before the critical value but stays generally low as can be also
been seen in the concurrence graphs of Figure 12. The average clustering fluctuates
slightly and the average disparity slowly increases with the magnetic field. These
fluctuations are most likely due to the limited number of shots used in the pairwise
tomography. This would be reduced by increasing the number of shots, but it would
also make the tomography more time consuming. The increase of average disparity
is seen in the concurrence network as for lower values of B the network has few
next-nearest links which fade out as B increases and the network becomes nearest

neighbor dominant and heterogeneous.
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2.1.3 The spin-1/2 XX model

Next the spin-1/2 XX model with the Hamiltonian given in Equation (15) will be
explored. The system has been studied in papers of Son et al. [36], Sokolov et
al. [9] and Garcia-Pérez et al. [11] and the goal is to first reproduce these results
and then present new ones. As explained in an earlier chapter, the ground state is
characterized by sequence of N energy level crossing which happen at magnetic field
values of By = cos[kn/(N + 1)], with 1 < k < N, for 0 < B < 1. Models with
exactly the magnetic field value of B = By, for some k have degenerate ground state,
which leads to some arbitrariness in trying to find the ground state with VQE. To
counter this, I will consider magnetic field values that lie in middle points of these
energy level crossing. The considered values are therefore By, = (cos[kn/(N + 1)] +
cos[(k + 1)m/(N + 1)])/2 for k ={1,... N — 1}.

Figure 14 shows the concurrence networks for these values of the magnetic field.
One can easily see the changes in the network structure. These results match almost
exactly the ones in the paper of Garcia-Pérez et al.[11]. In that paper, they used the
exact solution of the ground state of the XX model and then did pairwise tomography
on it. Here, the ground state is found with VQE and the same pairwise tomography
method is used. In the paper of Sokolov et al. [9] the structure of entanglement
communities, i.e., groups of nodes with higher density of connections, were studied
and they noted that the number of communities matches exactly the value of k£ in
the magnetic field for 0 < B < 1. The same phenomenon can be observed in Figure
14. One can also notice the change in the entanglement of edge spins versus bulk
spins as was studied in the paper of Son et al. [36]. When B is near either 1 or -1,
the bulk spins are stronger than the edge spins and when B approaches 0, the edge
spins take over and display much higher concurrence. The scaling of concurrence for
edge spin pair, 1 and 2, and for bulk spin pair, 4 and 5, for varying magnetic field

is shown in figure 15A.
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Figure 14: Concurrence networks of the spin-1/2 XX model for different Bj where
k= {1,...,8}. The magnetic field is rescaled by .J.

The disparity of each node is shown in figure 15B. When the magnetic field is
close to values 1 or -1, the distribution of links is very homogeneous. At the same
time, the bulk of the chain has much higher strength than the edges. Also, figure
14 shows that the graph is fully connected. Therefore, while the concurrence is
distributed heterogeneously on the larger scale, as shown in the strength figure, the
local heterogeneity is constant across the chain, as seen in the disparity figure. The
same behaviour was noticed in the paper of Sokolov et al. and in it was explained
that this behaviour indicates high symmetry close to the quantum phase transition
[9]. Close to B = 0 the distribution changes into a more heterogeneous one.

The small size of the system restricts the comparison between the paper of

Sokolov et al. of the peaks in the disparity figure 15B as there was discussed.
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Figure 15: Analysis of the concurrence network of the spin-1/2 XX model for 9
spins. A) Concurrence of edge spin pair, 1 and 2, and bulk spin pair, 4 and 5, as
the magnetic field is varied. The spins are same as in figure 14, counting counter-
clockwise and starting from upper rightmost spin. B) Disparity of each node for
different values of B. C) Strength of each node for different values of B. D) Average

network measures for varying magnetic field B. The magnetic field is rescaled by J.
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Still, it can be noted that the disparity of the edges increases compared to the bulk
for values of B < 0.5. For low values of B, the system changes from long interactions
to only nearest neighbor interactions, which causes the disparity of edge spins to
become 1. The strength figure 15C displays similar properties as in the reference.
The number of peaks matches the number £ of the magnetic field which matches
the number of detected communities in the system.

Average network properties of the system are shown in figure 15D for 0 < B <
1.2. The quantum phase transition can be seen at B = 1.0 when the average strength
and density drop close to zero. Some weak non-zero links still exists for B > 1 as
seen from the average clustering and small average strength. In this region, the state
is separable, so these fluctuations originate from the finite number of measurements
for the tomography.

For completeness and as new results, the same analysis as done previously for
concurrence is now done for mutual information. In Figure 16 the mutual informa-
tion networks for different energy levels are shown. Same properties can be seen
as in concurrence networks 14. In addition, new phenomena can be observed, be-
cause mutual information quantifies both classical and quantum correlations. Even
though the system changes into nearest neighbor correlations for low values of B,
classical correlations still persist as can be seen from the many non-zero links in
the mutual information graphs. The community structure formations can still be
observed, although not as strongly as in concurrence networks. However, the in-
crease of entanglement for edge spins can clearly be seen. In figure 17A the of edge
and bulk mutual information scaling is shown and the shape is very similar to the
concurrence one.

Figure 17B shows the disparities of each spin for different values of the magnetic
field and displays some of the properties as in concurrence: Disparity is low for B

near 1 and -1 and it increases with magnetic field. The relative increase of edge
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Figure 16: Mutual information networks of the spin-1/2 XX model for different Bj,
where k£ = {1,...,8}. The magnetic field is rescaled by .J.

spin disparities is much stronger that in concurrence. For B near value 0, not
only the spin closest to the edge but also the second most see increase in disparity
unlike for concurrence where the spin nearest to the edge was much higher than the
second one. Note that the absolute values for disparities are lower but the relative
difference between two edge and bulk spins is higher. The increase of pairwise
mutual information is much stronger than for concurrence which is why the second
closest spin has heterogeneous distribution of links as the edge link dominates all
others. Figure 17C also shows similar effects as with concurrence: The number of
peaks matches the value of k although this is obscured for the values of B closest to
zero. The difference is that as B decreases the total strength increases as can also

been seen in figure 17D. The reverse happened for concurrence. Figure 17D also
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Figure 17: Analysis of the mutual information network of the spin-1/2 XX model
for 9 spins. A) Mutual information of edge spin pair, 1 and 2, and bulk spin pair, 4
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Figure 18: Concurrence networks of the XXZ model for 6 spins. The spin anisotropy

is rescaled by J.

shows the same effect of the quantum phase transition at B = 1.0. The fluctuations
originating from the finite amount of shots in the tomography can again be seen for

B > 1.

2.1.4 The XXZ model

The XXZ model, with the Hamiltonian introduced in Equation (16), is the third ex-

ample studied in this thesis. No previous studies of the pairwise correlation network
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Figure 19: Analysis of the concurrence network of the XXZ model for 6 spins. A)
Concurrence of edge spin pair, 1 and 2, and bulk spin pair, 3 and 4, as the spin
anisotropy is varied. The spins are same as in figure 18, counting counter-clockwise
and starting from upper rightmost spin. B) Disparity of each node for different values
of B. C) Strength of each node for different values of B. D) Network measures for

varying spin anisotropy A. The spin anisotropy is rescaled by J.

properties of XXZ model have been carried out before to the best of my knowledge,

so all results presented here are novel. This section is a proof of concept on how
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the method presented in this thesis can be used to study any quantum system with
simulations rather than analytically.
[ remind that the XXZ model is ferromagnetic for A < —1 and anti-ferromagnetic
for A > 1. Both phases are also gapped. Between —1 < A < 1, the system is critical.
The XXZ model does not have the same kind of symmetry for the spin anisotropy
as the spin-1/2 XX had for magnetic field, as can be seen from the concurrence in

Figure 18 and mutual information in Figure 20. For positive values of A the system
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Figure 21: Analysis of the mutual information network of the XXZ model for 6
spins. A) Mutual information of edge spin pair, 1 and 2, and bulk spin pair, 3 and
4, as the spin anisotropy is varied. The spins are same as in figure 18, counting
counter-clockwise and starting from upper rightmost spin. B) Disparity of each
node for different values of B. C) Strength of each node for different values of B.
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by J.
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does not undergo any significant changes. For negative values the entanglement
structure exhibits notable transformations. Below A < —1 the system seems to
be separable, because the small links seen in the Figure 18 are most likely due to
statistical fluctuations. A change in the network happens at the QPT point at
A = —1.0. As the spin anisotropy increases to around A = —0.9, the average
strength of the concurrence network jumps to its highest point as seen in Figure
19D and the distribution is very homogeneous. As the spin anisotropy continues
to increase, the strengths of concurrence links decrease slightly and the distribution
changes to more heterogeneous one as the entanglement concentrates on three strong
pairwise links. For B > —0.5 the edge pairs have slightly stronger entanglement
than the middle pair as seen from the concurrence strengths in Figure 19C. The
relative entanglement evens out when A increases. The effect is seen much more
strongly in the mutual information disparities in Figure 21 and instead of fading as
A increases, it becomes stronger. Although there is a QPT point at B = 1.0 no
significant changes are visible in the results presented here. This might be due to
the finite size of the system but is not explored further as it is beyond the scope of
this work.

The phenomena for values A > —1 are replicated in the mutual information
networks in Figure 20 but one can also see the classical correlations even when no
entanglement exists. Classical correlations are the strongest below A < —1 as seen
from the strong networks in 20 even though the concurrence graphs in 18 are very
weak.

In Figures 19A and 21 the pairwise concurrence and pairwise mutual informations
of spin 1 and 2 at the edge, and 3 and 4 at the bulk, are shown. They match
at A < —1 and above that, the edge pair initially becomes more entangled after
which they scale similarly. In Figures 21C and 21D, the total strength of mutual

information deceases as the spin anisotropy increases.
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The ground state of the system was hardest to find for values is A = —1.0, —1.1
and —1.2 because the ground state energy was degenerate. This could lead to some

errors in the data for those values.

2.2 Emergent space from quantum entanglement

Quantum gravity has been long thought to be the missing piece in fundamental
physics [44]. Finding the theory of quantum gravity has been very elusive despite
the many different attempts, such as string theory and loop quantum gravity [45],
[46]. The common approach has usually been to take an already existing theory
and try to quantize it to make it work even in the smallest scales. An alternative
approach, which has seen lots of research activity in the last decades, is to try find
gravity in quantum mechanics itself. Gravity could be an emergent phenomenon of
complex quantum systems. Approaches to study quantum gravity trough complex
quantum network manifolds and emergent complex network geometry have been
made [47, 48]. The tools introduced in this thesis can enable research in this area
beyond purely analytical work. We have already seen how the methods can be used
to extract information from the network entanglement structures of quantum may-
body systems. By properly analyzing this information, I will study how geometry
can emerge from entanglement.

Entanglement is a fundamental aspect of quantum mechanics and it constructs
complex structures in quantum systems. It has been suggested that these structures
could lead to emergent phenomena with relations to gravity and space|8|. Reasons
to believe that quantum mechanics has connections to the geometry of space have
emerged from holographic models and, more specifically, from the AdS/CFT corre-
spondence [49]. A mapping between a d+ 1 -dimensional gravitational theory and a
d-dimensional quantum field theory on the boundary was found by Juan Maldacena

in 1997 [50]. The field has since evolved and it now combines many areas of physics
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,such as quantum information and black hole thermodynamics. The same theory
can also be used to reason that there is a connection between highly entangled
particles and wormholes, the so-called EP=EPR conjecture [51], [52]. Commonly
these phenomena are studied in the context of black holes, which makes it mostly
theoretical research. However, this line of research is important in the study of
fundamental physics, which motivates alternative approaches that can benefit from
using quantum computers.

Here, we adopt the approach of Cao et al. [8]. First, few specific properties
are checked that the systems need to fulfill to be applicable in this analysis. These
will be explained below. Then, pairwise mutual information between parts of the
system are used to construct a metric which tells how different parts of the Hilbert
space are connected. This metric is then used to embed the system into a smooth
manifold. Then the effect of entanglement perturbations on the state’s geometry can
be studied. Eventually, with the information obtained from theses studies, equations
linking the energy of the state and its geometry, which are reminiscent of Einstein’s
equations, can be constructed. This procedure is general and can be done with any
quantum systems which fulfill the requirements. Here, I will perform the procedure

with the Ising model.

2.2.1 Entanglement area laws

One of the most interesting ideas from the holographic principle is the formula of the
entropy of a black hole. Instead of scaling with volume, as one would expect, this
idea suggests that the scaling is proportional to the area of the black hole instead.
This has lead to advances in the study of quantum information in black holes and
towards a possible solution to the so called black hole information paradox [53].
Any system with GM > R/2 (G is the gravitational constant, M is the mass of the

system and R is the radius of the system) collapses into a black hole, the entropy of
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a black hole has to be the upper bound for the entropy of any system in the space.
This constraint is known as the holographic bound.|8]

A related interesting question is whether the Hilbert space describing a region of
space is finite- or infinite-dimensional. According to quantum field theory, our most
established and experimentally tested theory, a region of space has infinite degrees
of freedom. As a consequence, the entropy of such region is also infinite because
its infinite degrees of freedom are entangled with infinite degrees of freedom outside
the region. But if the discussion above is considered, a finite part of space cannot
have infinite entropy and therefore quantum field theory is not the final answer in
physics. [54]

A possible solution to this problem is to assume that a physical theory giving
full description of nature, including gravity, has to be a finite-dimensional factor of
Hilbert space for any local region. If a region R of space is finite, we should be then
able to decompose the Hilbert space of the whole space into parts Heys = Hr @ Hp,
where R is the complement of the system. How many times the decomposition
can be done depends on the system. For example, the Hilbert space of a spin
chain can be decomposed all the way to the product of single-qubit Hilbert spaces,
Hepinehain = @, s [54]

When studying entanglement phenomena, it is often more interesting to consider
how the entanglement scales when the system size grows, rather than its detailed
value. Before, I explained that black holes obey an area law for entanglement entropy
and, interestingly, the same kind of scaling can be found in all kinds of systems,
even in quantum spin chains. However, a typical quantum system picked at random
will most likely obey a volume law as one can deduce by considering the expected
entanglement entropy of a system divided in two parts, I C L and O = L/I, each

composed of d-dimensional constituents. One then finds for the unitarily invariant
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Figure 22: Graph where the nodes represent parts of the Hilbert space and links some
interactions or correlations between them e.g. mutual information. Highlighted is

a region of the system where its boundary consists of the links crossing the border.

18]

Haar measure

J1-10]

E[S (pr)] > [1]logy(d) — Plog, (2)

(36)

Therefore, the typical entropy of a subsystem is asymptotically almost maximal and
linear in the number of constituents |/|, which means that it follows a volume law.
It is therefore intriguing to find that typical ground states usually follow an area
law, sometimes with a small logarithmic correction. The entropy of a region in those
systems is then linear in the boundary area of the region. [39]

In quantum many-body systems, this kind of behaviour arises from interactions
that are typically local, i.e., subsystems interact mostly in short distance with near-
est neighbors. Therefore, quantum correlations between a given region and its sur-

roundings are established mainly trough its boundary. To visualize this, its helpful
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Figure 23: The energy gaps between the first eigenstate, Fy and the second eigen-
state, F;, and the second eigenstate and the third eigenstate, 5 of the Ising model

for 12 spins. The energies and the magnetic field are rescaled by J.

to think of the system as a graph G of nodes L and links F, G = (L, F), where the
nodes represent subsystems of the Hilbert space and links the interactions or corre-
lations between them, as in Figure 22. 1D spin chains can still be represented by
2D graphs, as correlations can go beyond the nearest neighbors, but for spin chains
following an area law, the graphs will be approximately 1D, and the boundary of a
region is then just the 2 spins at its edges. Chains with periodic conditions will not
have an edge. The area law then states that the entropy of a block I = {1,...,n}

is then
S(pr) = 0(1), (37)

where the big O notation describes the asymptotic growth rate of the function. In
this case, it means that the entropy stays constant.

Quantum systems with local interactions and gapped Hamiltonians follow the
area law [39, 55]. The ground states of quantum spin chains are usually gapped and

local and therefore obey the area law behaviour [39]. In Figure 23, the energy gap
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between the first and the second eigenvalues, and the second and third eigenvalues
of the Ising model for 12 spins are shown. As the ground state of the system is
degenerate for B < 1, the energy gap between the first two is expected to be almost
zero and the gap between the ground state and the first excited state corresponds
to the gap between the second and the third eigenstates. However, the energy
gap between the first and second eigenstates is very close to zero only for values
B < 0.5 after which the gap starts increasing, which is caused by the finite size of
the system. When discussing area law, the gap between the ground state and the
first excited state is considered. In Figure 24, the entropy of a subsystem is plotted
as a function of its size for various magnetic field values. One can see that the
area law is approximately followed by all values of B except for the critical phase
B = 1. The area law is followed more accurately with values of B farther away
from the critical value. Systems with B = 1.5 and B = 2 follow the area law quite
accurately except when the size of the subsystem changes from 1 to 2 and from 10
to 11. The latter change originates from the finite size of the system, as the size of
the subsystem becomes almost the same as the whole system.

The Hamiltonians for critical spin chains are gapless and therefore they do not
strictly follow area laws but instead present a logarithmic scaling. They can be
described by Conformal Field Theories (CFT), and the entanglement entropy is

then

S(n) = glog(n) +d, (38)

where c is the central charge of the corresponding CFT and d is some non-universal
constant. [32]

The following study will be conducted with states that obey area law. The
discussion will first be general and will then move towards a specific use case, the
Ising model, which has been noted to follow the area law accurately for magnetic

field values B > 1. Consider again the graph representation for a system divided
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Entropy vs subsystem size, n=12
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Figure 24: The scaling of entropy in 12 qubit Ising model for different magnetic field
values. The entropy has been calculated for a subsystem taken from the middle of
the spin chain by tracing others out. Chains with B > 1 approximately obey area

law.

into sufficiently large regions A,. We can calculate the entropy S(A,) of any region
and the mutual information I(A4, : A;) between any two regions. A consequence of
the area law is that we can use mutual information to calculate the entropy of any
region. Consider a region B consisting of non-overlapping subregions A, and the
complement of this region B. We can then calculate the entropy of B by summing
together all mutual informations crossing the boundary between B and B as

S(B) = > I(A4,: Ay (39)

pEB,geB
In Figure 22, one would get the entropy of the shaded area by calculating the mutual
information of the links crossing the cut line. This formula applies for most area law
states, but the finite size of a system can affect. Even though the Ising model follows
area law for B < 1, Figure 10 shows that it still exhibits long range correlations.

Despite this, and for other systems which do not follow area law, Equation (39)
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Spin 1 2 3 4 5 6 7 8 9 10 11 12

Error [%| 3.23 213 4.12 456 4.67 501 490 4.87 4.69 428 242 3.51

Table II: The relative differences of the entropy calculated by two different means

for each qubit. The state is approximately redundancy-constrained.

can still be a good approximation. The states that obey this expression are called
redundancy-constrained. 8]

In the paper of Cao et al. [8] they first considered general systems and then used a
1-dimensional antiferromagnetic Heisenberg chain as an example. However, instead
of actually using mutual information in their analysis, they opted for estimating
the mutual information by calculating the magnitude of the squared correlator in
Equation (26) with Bessel functions [8]. The setup of this thesis allows for the
entropy to actually be calculated through mutual information obtained from pairwise
tomography. The quantum system that will be investigated is the 12-qubit Ising
model with B = 2 as it was observed to obey the area law with decent accuracy.
To make sure that the redundancy-constraint is fulfilled, the entropy of each qubit
is calculated first by simply calculating the average of entropy obtained by tracing
out the other qubits from every pairwise density matrix obtained from the pairwise
tomography. Then, the mutual informations that are also obtained from the pairwise
density matrices are used with Equation (39) to calculate the entropy. The relative
differences for each qubit are shown in the table II. Small errors in redundancy-
constrainedness are a consequence of the small size of the spin chain.

The total strength of a node which is the sum of the mutual informations of the
links intersecting it, is upper bounded by the maximum entropy of the node as

S(A,) = 3 1(4y : Ay) < 25mu(A,) < 2In(D,), (40)

q

where D, = dimH 4, [8]. For a spin chain of qubits, the limit is then S(A,) < 2.
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2.2.2 Constructing the metric

Consider the mutual information graph of our quantum system. The goal is now to
transform these mutual informations into distances between the nodes to construct
a metric for the space. For a general graph G(E,V), the transformation from

information graph to distance graph is
G(V,E) = G(V,E), (41)

which might be a non-trivial transformation. One easy simplifying assumption to
make is to keep the vertices and edges fixed so that only the weights of the edges
change. It is reasonable to assume that mutual information is higher between nearby
parts of space and lower for distant ones. However, this is not always true as
maximally entangled particles can be at arbitrarily distances from each other. One
can think of this construction as being a new kind of notion for what is close and
what is not. Even though entangled particles may not transfer information instantly
to arbitrary distances, they are still strongly correlated. This kind of idea is known
as the EP=EPR conjecture that will be discussed later. [8]

Now the distance graph’s weights are defined as

gRC ApiAq 0
w(p.q) = O (1( ) /o) (p# ) (12)

0 (»=1q)

where (r¢ is the redundancy-constraint scale, ® is some function and I is for nor-
malization. I set frc = 1 without loss of generality. Also, if (A, : A;) = 0 no edge
is drawn. The normalization is chosen such that I (A4, : A,) /Iy = 1 for a maximally
entangled state. This is the same as the limit for the entropy in Equation (40), so
Iy = 2.

The function ® is generally determined by the system, but it has to fulfill some
basic properties. The argument of the function is 1 for maximally entangled states,

which are assumed to be close, so the first requirement is that ®(1) = 0. Unentangled
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states are far apart from each other, so the second requirement is that lim,_,o ®(x) =
o0o. Also, ¢ has to be non-negative and monotonically decreasing. For our simple
system, ®(z) = — In(z) will be suitable. [8]

These weights could be readily used to setup the metric. However, for vertices
that are connected by multiple paths, the shortest one needs to be chosen. Let
P be any path connecting two nodes p and ¢, and denote the path of vertices as
P = (p=po,p1,D2,---,Pr = q). The metric gi(p, q) is then constructed by choosing

the shortest path between any two pairs as

k-1

d(p, q) = min {Z w (pn,pnﬂ)} : (43)

n=0
By construction, this metric satisfies the requirements for metric space: 1) gl(p, q) =

d(q,p), 2) d(p.q) =0 for p = g and 3) d(p,q) < d(p, s) + d(s,q), for any s € G.

2.2.3 Classical multi-dimensional scaling

To construct the emergent space from quantum entanglement, we need tools to
embed the metric obtained from mutual information to a smooth manifold. One
approach is Regge calculus, which was originally crafted to study Einstein’s gen-
eral relativity in discrete space and it contains tools to construct a manifold from
distances between vertices [56]. The approach used in this thesis is a method from
classical data analysis called Multi-Dimensional Scaling (MDS). With it we can
embed the metric into a symmetric manifold. The embeddings will be done to Eu-
clidean R? manifolds, and later perturbations to this manifold are considered. The
embedding is isometric i.e. a distance-preserving transformation for flat geometries
and a good approximation for spaces with small distortion. The goal is to find an
embedding with the smallest dimension D which is still approximately isometric.
Some distortion can arise from the arbitrarily chosen function ®. [§]

Next I will describe the procedure to obtain a coordinate matrix X embedded

in a D-dimensional space. The input will be the metric gi(p, q) for N vertices and
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the output an N x D matrix X, where the n-th row contains the D coordinate
values of the n-th vertex in R”. First, define a new matrix B which is related
to the coordinate matrix by B = XX* = (X0)(XO0)*, where O can be some
arbitrary orthonormal transformation. The metric can be then related to the matrix

B through the coordinates as follows [8]

(Xpr = Xor)* (44)

M=

d(p,q)* =

r=1

M=

(X Xpr + X X — 22X, Xy (45)

r=1

— By + Byy — 2B,,. (46)

An unique solution is obtained by setting a constrain to center the embedding

at the origin

N

> X, =0, vr. (47)
p=1

From this follows that Zflvzl B,, = 0 and then we finally get the equation to construct

the B matrix

B, — — ;( . —%g&p, Z::Ezzq Z&z(z,@?). (48)

To obtain the coordinate matrix X we just need to diagonalize B as B = VAV?,
calculate its eigenvalues Ay > Ay > ... > Ay, and choose the D non-zero eigenvalues

and corresponding eigenvectors to construct the solution

X =/ Mv1, ..V AbvDp). (49)

This is an isometric embedding of N points to a D dimensional Euclidean space and,

if we wish to obtain an embedding into a lower dimensional space, we can choose
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Figure 25: The embedding from multidimensional scaling for the Ising model with

12 spins and B = 2.0. The magnetic field is rescaled by J.

the D eigenvectors the highest eigenvalues. The error of the embedding will then be

D
=1 17"

2.2.4 Embedding the Ising model to a manifold

The procedure described above will now be applied to the Ising model of 12 spins
with magnetic field value of B = 2. VQE is used to find the ground state of the model
and pairwise tomography is then used to extract the mutual information network
from it. The redundancy-constrainedness of the state was already explored in the
table II. Using Equations (42) and (43), the weights and the corresponding distance
metric were calculated. Then, classical MDS was applied by using Equation (48)
to calculate the B matrix, and from that the coordinate matrix X. The resulting
embedding to 2-dimensional Fuclidean space can be seen in Figure 25. One can see

that the spin chain is reconstructed with great accuracy, although the edges bend
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Eigenvalues

100 L
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Figure 26: The eigenvalues of the B matrix of the embedding of the Ising model.

Dimensions of embedding 1 2 3

Error of the embedding, € [%] | 35.99 | 17.93 | 14.04

Table III: The errors in 1,2 and 3 -dimensional embeddings of the Ising model to an

Euclidean manifold.

slightly. Slight bending happens due to the finite size effect, but the reason is mostly
in errors coming from the methods. The errors are due to three things: 1) The state
is only approximately redundancy-constrained, 2) the VQE result is good but not
exact and 3) the pairwise tomography results in small errors due to finite statistical
sampling. The resulting error is not large, but the MDS procedure seems to be
sensitive to small changes in edge weights.

The eigenvalues of the B matrix are shown in figure 26. The first eigenvalue is
much higher than the rest so the embedding is mostly 1-dimensional. However, the
second eigenvalue is also quite high, so much better embedding is achieved onto a
2-dimensional manifold. The errors for 1,2 and 3 -dimensional embeddings can be

seen in the table III.
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2.2.5 Perturbations

VQE gives us the ground state of a system and now we will consider perturbations
away from it and how it affects the MDS embedding and the emerging space. This
line of research was proposed and shortly explored in the paper of Cao et al. to
understand the relationship between entanglement and curvature of space[8]. The
work was purely theoretical and with some assumptions on the quantum state, so
no direct correspondence were stated. The following discussion is more hypothetical
in nature, but it illustrates a use case for the method of the thesis.

For the perturbation, I have chosen the controlled R, (6)-gate between two qubits,
where qubit 2 is the control and qubit 9 is the target. The gate is added after the
parametrized circuit that represents the ground state of the Ising model. The param-
eter of the gate is varied from 0 to 27. The idea behind this numerical experiment
is to study the EP=EPR conjecture, which states that the entanglement between
two systems is, in some sense, analogous to a quantum wormhole. Two entangled
particles can affect each others” quantum state through arbitrary distances, so in the
language of our theory of emergent space, they can be considered to be close to each
other. The effects of the perturbation are shown in Figure 27 for various values of 6.
One can see that the spins 2 and 9 start closing on each other and eventually almost
overlap. One needs to keep in mind that the embeddings are an approximation and
there is ambiguousness in the interpretation.

Figure 28 quantifies the effects of the perturbation. The sum of pairwise mutual
information of the whole system increases from the perturbation and one can see
that the maximum of the perturbation happens at about & = w. The perturbation
increases the mutual information of spins 2 and 9, the control and the target which
corresponds to the spins closing on each other as seen in the Figure 27. Interestingly,
the mutual information of the control spin, 2, and its neighbor, 1, and also of the

target spin, 9, and its neighbor, 8, decrease as the perturbation grows. In addition,
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Figure 27: The MDS embedding in 2D of the Ising model which has been perturbed
by a control-R,(#)-gate where qubit 2 is the control and 9 is the target. The figures

show the effect of the perturbation for different values of 6.

the mutual information of the control, 2, and the targets neighbor, 9, grows with the
perturbation and same with the target, 9, and controls neighbor, 1. This behaviour
was predicted in the paper of Cao et al. for two spins that become increasingly
entangled with each other. This effect can be interpreted as a quantum proto-
wormhole. It has no smooth classical geometrical presentation so the embeddings
shown in figure 27 are not completely accurate, but partly capture the effects on the
geometry. The embedding error is also plotted in the bottom of the Figure 28, and
one can see that as soon as the perturbation starts, the 1-dimensional embedding
error quickly increases. The 2 and 3-dimensional embedding errors also increase

slightly. It is clear that no smooth Euclidean embedding exists even in 3 dimensions
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Figure 28: Effects of the perturbation on the Ising model. A control-R,(#)-gate was
applied so that spin 2 was the control and 9 was the target. In each figure the x-axis

represents the parameter § which was varied from 0 to 2.
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for a highly perturbed system. Finding a connection between the entanglement
perturbations and Einstein’s equations of general relativity was also considered in

the paper of Cao et al [8], which will be investigated in future work.
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3 Conclusions

The main focus of this thesis has been to introduce a methodology to explore quan-
tum entanglement phenomena on near term quantum computers. This methodology
combines two existing quantum algorithms, VQE and pairwise tomography, which
were first introduced, and then used, as a proof of concept, in two different case stud-
ies. An important aspect of the methodology is that it does not need a fault-tolerant
quantum computer with millions of qubits, as those are still far in the future. In-
stead, the methodology can be used right now for small systems, and in the near
future, for intermediate sized systems, which can already represent problems that
can benefit from quantum advantage.

In this thesis, the simplest form of the VQE algorithm was used. Despite this,
it efficiently worked with the studied examples. For more complex systems some
advancements might be needed of which many examples already exist. Adapt-VQE
changes the ansatz such that it is iteratively built from a set of building blocks to
better suit the problem under study [57]. In the paper of Garcia-Pérez et al., a
method is introduced to optimize the measurement part of the VQE algorithm on-
the-fly to increase the rate of convergence [26|. The same method can also be used to
construct quantum state tomography, which could replace the pairwise tomography
used in this thesis.

Pairwise mutual information and concurrence were proven to be good quantifiers
of entanglement structures. They are complementary: concurrence provides infor-
mation about the purely entanglement phenomena and mutual information consid-
ers both classical and quantum correlations. Together they give information about
entanglement community structures, quantum phase transitions and network prop-
erties of the system.

Two study cases were considered as a proof of concept to benchmark the method-

ology, and also to study the problems themselves. First, the entanglement network
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structures of quantum many-body systems was studied. Many results of the pa-
pers of Sokolov et al. |9], Valdez et al. [29] and Son et al. [36] were reproduced and
also new results were presented. The systems under study were simple quantum
spin chains, because 1) they did not require more advanced versions of the algo-
rithms given their simplicity, 2) they are extensively studied in the literature, which
is good for benchmarking, and 3) despite their simplicity, they still presented in-
teresting properties that are not well understood without studying their emergent
properties.

The methodology can also be used in the research of fundamental physics, which
was proven by studying topics in quantum gravity, and more specifically, emergent
space from quantum entanglement. The entropy distribution of a state fulfilling
the area law and redundancy-constraints can be calculated from pairwise mutual
informations, which was done using the ground state of the Ising model. This
information was used to construct a metric that was embedded into a R” Euclidean
space using classical multi-dimensional scaling. Also, the effect of entanglement
perturbations on the emerging geometry was explored.

All experiments for this thesis were performed on classical simulators, because
of computation and time constraints. Also, with the current quantum computers
provided by IBM that are accessed through the cloud, one would need to submit a
separate job of quantum circuit simulation for each iteration in the VQE algorithm,
which would slow down the process. In the future, it may be possible to submit
the entire process of the algorithm at once, eliminating this limitation. In gen-
eral, advancements in quantum technologies will enable more efficient usage of the
methodology presented here, maybe to achieve quantum advantage for real world

applications in the near future.
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