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Effort estimation is a critical aspect of software project management. Without
accurate estimates of the developer effort a particular project will require, the
project’s timeline and resourcing cannot be efficiently planned, which greatly
increases the likelihood of the project failing to meet at least some of its goals.

The goal of this thesis is to apply machine learning methods to analyze the
work hour data logged by individual employees in order to provide project man-
agement with useful estimations of how much more effort it will take to finish a
given project, and how long that will take. The work is conducted for ATR Soft
Oy, using the data from their internal work hour logging tool.

At first a literature review is conducted to determine what kind of estima-
tion methods and tools are currently used in the software industry, and what kind
of objectives and requirements organizations commonly set for their estimation
processes. The basics of machine learning are explained, and a brief look is taken at
how machine learning is currently used to support software engineering and project
management. The literature review revealed that while machine learning methods
have been applied to software project estimation for decades at this point, such
data-driven methods generally suffer from a lack of relevant historical project data,
and thus aren’t commonly used in the industry.

Initial insights were gathered from the work hour data and analysis goals
were refined accordingly. The data was pre-processed to a form suitable for training
machine learning models. Two different modeling scenarios were tested: Creating a
single general model from all available data, and creating multiple project-specific
models of a more limited scope.

The modeling performance data indicates that machine learning models based
on work hour data are capable of achieving better results in some situations
than traditional expert estimation. The models developed here are not reliable
enough to be used as the sole estimation method, but can provide useful additional
information to support decision making.

Keywords: software development, effort estimation, machine learning, project man-
agement
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1 Introduction

For most software projects, developer effort is the most important resource, whose

allocation has a significant role in determining how the project’s cost and timeline

will ultimately play out. Consequently, the ability to estimate the required developer

effort in advance, and adjust those estimations during the whole project life cycle

is paramount to achieving success in a single project instance. Inaccurate (typically

overoptimistic) effort estimations are a common cause for project failure [1], with

obvious implications for the wider organization’s success.

As a result, effort estimation has been the focus of a considerable amount of

research in the past decades, with the goal being to evaluate and improve upon ex-

isting estimation methods, and devise some entirely new ones [1] [2] [3]. Historically,

the most commonly employed estimation method is some variant of expert estima-

tion, ie. relying on human subject matter experts to study the relevant data and

come up with an estimation. Data-driven methods have also been developed, but

these are less commonly used in practice for a variety of reasons [3]. Among these

data-driven methods are various machine learning techniques. Applying machine

learning methods to this problem area is not a new development, research in this

direction has been conducted fairly consistently in the past decades even before the

current surge of AI-related interest and research [1].

The goal of this thesis is to apply machine learning techniques to individual

employees’ hours tracking data in an attempt to predict their workloads, and thus
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provide information that project and company management can use to support

their decision making when determining how to allocate developer time to different

projects. Additionally, we will perform some exploratory analysis of the data, at a

minimum to determine how the hours logging process might be improved to support

potential future data analysis projects.

It is worth noting that while some research has been done regarding prediction of

individual workloads or developer availability [4], the majority of research appears

to consider wider project management issues. This division is somewhat arbitrary

however, and obviously the two cases have overlap. In this thesis the initial focus is

on predicting individual workloads, but by necessity this work needs to be grounded

in the background of more general project management and effort estimation the-

ory. Thus these topics will be covered in the background chapters in some detail.

Furthermore, it is possible that the focus of analysis will need to be shifted during

the process as new insights are discovered from the data.

The research questions we seek to answer are the following:

• How is machine learning currently utilized to support project man-

agement / software engineering work? Before we attempt to analyze the

actual data set on hand, we must know what has been done in the field thus

far; are there ready-made tools for such a case, or do we need to adapt general

machine learning techniques for the task.

• Is it possible to predict an employee’s workload from their reported

hours data?

• How might the hours logging process be improved to better support

data analysis projects in the future?

The data set we have available consists of the logged work hours of all employees

of ATR Soft Oy since spring 2009. The data contains the number of worked hours,
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the related project and task, as well as short free-form descriptions of assignments

done during those hours. The objective of the analysis is to determine how full

the employee’s workdays currently are, and to hopefully predict when their current

projects might wind down sufficiently for them to take on a new project. This and

any additional unforeseen insights that may be found during the analysis process

should be combined to form suggestions to management regarding how to staff

upcoming projects.

The rest of the thesis consists of 5 chapters.

Chapter 2 provides background information regarding project effort estimation,

the classical methods used for it, the reasons for its importance, and various problems

that tend to occur due to inaccurate estimations.

Chapter 3 provides detailed background information about machine learning

(ML) techniques and their application in general. A brief look is also taken at how

they are currently applied to support software engineering and project management.

Chapter 4 explains the background and goals of the practical analysis work.

The ATR Soft data set is introduced and the assorted initial understanding and

pre-processing steps of the data analysis are performed.

Chapter 5 describes the practical application of various machine learning meth-

ods on the previously prepared data set. Model performance is evaluated and results

are discussed. Potential directions for future work are also presented.

Chapter 6 provides the conclusions and final discussion of the results of the

practical sections. Research questions are answered, and the results are discussed

in a broader context in comparison to the starting assumptions and background

information.



2 Resource/project management in

software engineering

In general terms, project management consists of the various tasks needed to steer a

project to successful completion. In practice this means communicating with various

stakeholders, planning and allocating the use of any and all resources available to

the project, monitoring progress and, as circumstances evolve, adjusting the afore-

mentioned plans and allocations accordingly. This is generally a well-studied and

commonly applied discipline, universally used to steer projects in countless domains,

from bridge building to software engineering. The particulars will vary somewhat

by domain, but the idea of balancing the goals of scope, cost and time are universal

[5].

For software engineering in particular, project management has been a very

active discussion and research topic for decades, due to the field’s constant difficulties

in consistently achieving success in its projects. The exact numbers vary between

sources and definitions of success and failure, but generally less than a third of

software projects are considered fully successful, with the remainder being partial

or total failures [6] [7].

This so-called software crisis was first identified in the late 1960s, as increasingly

powerful computers enabled the creation of increasingly complex software, and this

increased complexity then overstressed the software engineering tools and processes
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of the time. Since then, considerable amount of improvement has happened in both

categories, but the demands placed on software have also kept growing. As a result,

the fundamental issue of software projects slipping outside their time, quality and

cost constraints remains [2] [6] [8].

2.1 The role of estimation

One of the key challenges in software project management is accurately estimating

the total effort needed to create a given piece of software. Such estimations have a

significant effect on the budget and expected time frame of a project (though other

factors also play into this), so their accuracy or lack thereof will have a considerable

effect on the project’s chances of success right from the start. Poor estimations result

in over-optimistic project plans, which then contribute to projects missing deadlines

and going over budget. Because of this phenomenon, improving software project

estimation tools and processes has been an active field of research for decades [1]

[8].

The concepts of estimation and measurement go hand-in-hand. Anything that

can be measured can be estimated (with varying methods and degrees of accuracy),

and anything you wish to estimate has to be measurable in some form. Measure-

ments can generally be divided into two categories: Direct and indirect. Direct

measures are things that can be measured objectively, like number of lines of source

code, project cost or running time of a particular task. Indirect measures are more

subjective in nature, things that can’t be directly calculated but have to be based

on the judgement of a person or group, like quality or usability [2].

In addition to effort, defined here as person-hours needed to achieve the project

goal, measures like time and cost are commonly estimated during project planning

and tracked during the project’s life cycle. The exact collection of measures and

estimation methods used will vary depending on the project’s needs and the prefer-
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ences of the people running it, but they tend to be strongly connected to each other;

a change in one will have an impact on others. Furthermore, the actual low-level

tasks that a software development process consists of are highly interconnected, and

in many cases contain inherent uncertainties that make them difficult to measure

accurately [2] [3].

The result of this interconnectedness and inherent uncertainty is that accurately

estimating software project parameters during planning is extremely challenging.

Indeed, even shorter-term prediction later in the project life cycle when there al-

ready is some amount of project-specific data to base such predictions on can still

be a challenge. This in turn greatly increases the risk of the project failing in part

or even in its entirety. An additional complication is that many estimation meth-

ods specifically tend to err towards the over-optimistic. Projects don’t exist in a

vacuum, cost overruns and missed delivery deadlines have very real implications for

the surrounding business processes. While inaccurate effort/time/cost estimations

aren’t the sole cause of project failure, it is a significant enough of a problem to

merit study.

2.2 Objectives, requirements and restrictions

At a high level, the purpose of software project estimation is to produce information

to support decision making in and around the project. The exact objectives will

however vary somewhat between organizations. Trendowicz et al. (2011) [3] found

the following:

• Project planning and tracking: Self-explanatory. Estimating the time and

resources needed in advance, and keeping track of them during execution is a

staple of project management work across all fields.

• Process improvement: Improvements to the software development process
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in terms of quality, cost, etc. is a constant need in the industry. Information

obtained from effort estimation can support this goal.

• Project management overhead: Somewhat overlapping with the previ-

ous objective, keeping unproductive overhead to a minimum is a common

goal. This applies to project management in general, and the effort estimation

methods employed themselves. Organizations want effort estimation to be as

lightweight a process as possible.

• Negotiating project costs: Effort estimation can be used to justify devel-

opment costs and projected timelines during software procurement process.

• Risk management: Effort estimation can provide information for identifying

project risks in general. Conversely, estimation should be clear on its own

assumptions and expected accuracy, to help manage the risk caused by the

estimation itself.

• Productivity improvement: Estimation can help identify parts of the de-

velopment process with most potential for increased development productivity.

• Project benchmarking: Effort estimation can help compare different projects,

and potentially the organizations that ran them, thus assisting with decision

making in relation to scenarios like outsourcing and selection of suppliers.

• Change management: Estimation can support the management of changes

during project execution, when requirements are modified due to some unfore-

seen circumstance.

Estimation methods need to be selected to meet the organization’s estimation

objectives, but the objectives themselves aren’t the only parameter that affects

method selection. Methods should also be evaluated based on some qualitative
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requirements of the method itself. Some of the most critical such requirements

according to Trendowicz et al, (2011) [3] are:

• Expert involvement: How much expert effort is needed to apply the method?

Generally organizations would rather have their experts doing something other

than estimation, so methods that require less expert effort are favored.

• Required data: Organizations tend to have fairly sparse data available about

past similar projects. Thus if a method requires a large amount of input data,

it will likely be unfeasible to apply.

• Robustness: How well the method handles poor quality data. While you

can’t expect good results from poor quality data ("Garbage in, garbage out"),

some methods handle various data quality problems (incompleteness, incon-

sistency, etc.) better than others. As such, focus should be on selecting a

method that deals well with the quality issues in the data set at hand, which

of course implies that those issues are actually known.

Several other requirements such as flexibility, complexity, support level, etc. [3]

might also be evaluated, as well as possible budget constraints and personal pref-

erences of the team itself. The end result of all of this is that the selection and

application of estimation methods tends to be a very team/organization-specific

process, and as such the resulting method selections generally aren’t portable be-

tween teams as-is. This is in addition to any team- and project-specificity inherent

in any generated models themselves.

It should be noted here that while problems with effort estimation are a signifi-

cant contributor to software project failure, they aren’t the only cause. Because of

this, improvements in effort estimation (whether better method selection or improve-

ments in the methods themselves) will not be a comprehensive solution to project

failure, merely a piece of the puzzle. This in turn means that for an individual
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organization, the role of estimation itself, the related tools and any available im-

provements to them will likely be a part of a wider process improvement endeavour,

where the local circumstances formed by that endeavour will affect the estimation

part in some way.

For example, one of the most commonly applied software engineering process

improvements in the past two decades has been the adoption of agile development

methodologies. In contrast to the old so-called waterfall method of software devel-

opment, agile methods seek to make it easier to adjust things like requirements and

specifications during the course of the project, as any deficiencies in the initial plans

make themselves known during the development process. In practice this means

(among other things) that there’s less emphasis on planning and analysis, because

the goal isn’t to have the plans set in stone before starting the implementation. A

process like this won’t make effort estimation unnecessary, but it will change its

focus and set some practical constraints.

Currently, the estimation methods most commonly used in agile software devel-

opment are various expert-based subjective assessment techniques [9]. This is likely

because such methods are relatively lightweight in terms of required data and man-

ual work, and thus fit well into a process where time is rather spent on something

like practical prototyping. However, research suggests that estimation accuracy is

fairly poor in this context too [9], which can cause problems for the project even if

an agile development process is less sensitive to such issues at the level of individual

development tasks.

2.3 Classical estimation methods

For the purposes of this thesis, the definition of a classical method of effort estimation

is anything that isn’t based on machine learning. This is a somewhat arbitrary

definition, since the field of machine learning does contain methods that aren’t
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necessarily all that distinct from some of the more data-driven effort estimation

techniques that we’ll cover here as classical methods. Furthermore, older machine

learning methods like linear regression and decision trees are often referred to as

classical methods within the field of machine learning, which might cause confusion

in the context of this thesis if not addressed specifically here.

The estimation methods covered here can be broadly divided into three cate-

gories, based on whether they focus more on expert opinion, project data, or in-

clude both (hybrid). Most estimation methods of course do contain features of

both camps, but calling them all hybrid methods based on that alone would be an

oversimplification, since most methods do have a clear focus one way or another.

2.3.1 Expert-based methods

These methods mostly rely on expert judgement to estimate projects and their

components. The exact methodology may be highly structured or more ad-hoc in

nature, and while individual experts are likely to factor any data they are aware of

into their estimations, it’s not the focus of the method itself.

Expert-based methods are currently the most commonly used method class in

the industry, which is somewhat incongruous given how loath software organizations

appear to be to allocate expert effort into estimation tasks when said experts have

other project tasks to perform. The discrepancy is likely explained by the fact that

expert-based methods generally require little if any past project data, and many of

these methods can be used to estimate projects even when said projects are very

poorly or sparsely defined. Humans can always produce some kind of a guess after

all, even with very limited prior experience or knowledge of the problem at hand

(accuracy will of course be impacted). Nevertheless, the unwillingness to allocate

much expert effort to estimation may still result in a situation where the estimation

isn’t performed by the actual experts best suited to the task, but someone else in
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the project organization who was available [3] [10].

PERT

This method was developed in 1958 by the US Navy as a tool for estimating the

schedule of any large-scale research and development project. The project that drove

the development of this method, and the first one it was applied to was the Fleet

Ballistic Missile (FBM) program, which eventually produced the Polaris missile.

Since then the method has been applied to various other types of projects, software

among them.

In simple terms, the method seeks to identify the key events (tasks) of a given

project, and the order those events take place. This sequence of events produces

the desired end result. The sequence and the interdependencies of the events are

depicted as a directed graph (called flow plan), where the nodes are events and the

arrows between them depict the estimated time needed to accomplish an event once

its pre-requisite events are complete. The time estimate is produced by combining

expert estimations of best, most likely and worst case scenarios into a single time

distribution. Thus, while statistical techniques are employed, at its heart the method

still relies on expert opinion [11].

PERT is commonly combined with the Critical Path Method (CPM, developed

at around the same time as PERT), and is mostly concerned with estimating the

project schedule, rather than effort or cost. The method is fairly cumbersome to

apply, and as such it is most commonly used in large-scale projects.

Wideband Delphi

Wideband Delphi [12] is an evolution of the Delphi method originally developed by

the Rand Corporation in the 1940s. The idea is that each member of a group of

experts (estimators) provides their estimation of the given problem, and these are
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then summarized by a coordinator, who presents the initial estimates to the group

members, who can then revise their original estimates based on this new informa-

tion. This process of feedback and revision continues until either the estimations

have converged sufficiently (the criteria for this can be defined on a case-by-case

basis), the estimators are unwilling to revise their estimates any further, or simply

a pre-determined number of rounds have been completed. The estimations are kept

anonymous, ie. the estimators don’t know who made which individual estimate.

In the original Delphi method, the feedback was delivered in writing, but this

was later determined to be a bottleneck. The written format didn’t allow suffi-

cient transfer of information between participants for them to meaningfully adjust

their estimates based on the feedback. This resulted in the development of the

wideband version in early 1980s. The basic mechanism remains the same, but in

Wideband Delphi each estimator prepares in advance, and then the actual feedback

process is done as a meeting. The estimations are still written down and presented

anonymously by the coordinator, but feedback is handled as a face-to-face group

discussion.

The main advantage of Wideband Delphi is that it requires no historical project

data whatsoever. Additionally, structured group consensus as an estimation paradigm

has been studied and validated fairly extensively in both academic and industrial

contexts. The greatest weakness of this method is that it requires quite extensive

expert involvement, which makes it both expensive and cumbersome to apply in

practice [10].

Planning poker

Planning poker was introduced in the early 2000s as an estimation technique suitable

for use in an agile software development process [13]. As agile development places

less focus on extensive planning, estimation techniques used in such a context need



CHAPTER 2. RESOURCE/PROJECT MANAGEMENT IN SOFTWARE
ENGINEERING 13

to be correspondingly lightweight.

The estimation process is something of an evolution of the Wideband Delphi

method, but there are important differences in the details. In planning poker, what

the experts actually estimate is the size of a given user story. Once consensus is

achieved on that, the estimated size of the story is compared to previously imple-

mented stories, which gives the team an idea of how much effort the development

will take.

In practice, each estimator has a deck of cards with different story point values

printed on them. After an initial discussion about a user story, each estimator as-

signs a point value to the story size, by playing one of their cards face down. This

avoids the anchoring effect as other members can’t initially see each other’s estima-

tion. Then the cards are flipped, and the estimations are discussed and justified

(particularly outliers), after which estimations are revised and once again presented

with the cards face down.

Planning poker is less cumbersome to use than Wideband Delphi, while providing

a fairly similar feedback cycle process. However, it does still require a significant

amount of expert involvement, even though there is less overhead. The method is

typically used in agile development processes for iteration and release planning [10].

2.3.2 Data-driven methods

These methods basically seek to fit some model using data from previous projects,

and use that to estimate the current project. In a broader sense, this is very close if

not outright identical in concept to classical machine learning methods, and indeed

some of these methods feature some kind of regression/curve fitting components that

are a staple of classical ML. In addition to differences in the models themselves, these

methods differ from each other in the scope and type of the data that is used. Some

methods seek to be universal in the field, such that the model itself is formed from
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some given set of project data from across the industry (resulting in a fixed model),

whereas others rely more on data from the project organization at hand.

A core limitation of these methods is naturally the data they are based on. In

case of a fixed model, it is important to ensure that the data set underpinning the

model is actually sufficiently reflective of the project to be estimated. This is not a

trivial thing to check, especially given that the data set might be proprietary (the

actual algorithm is rarely a secret, but the data set can be hidden as part of a

software tool or such) and thus access to it can be very limited. On the other hand,

a fixed model does largely bypass the problem of needing historical data from the

project organization. This can be a useful feature, because in many organizations

there is little if any available data on relevant past projects, which makes it outright

impossible to use any method that requires such [10].

In general, data-driven methods are less commonly used than expert-based meth-

ods. There are also considerable differences between the popularity of different

methods belonging to this category. Regression-based methods are fairly common,

whereas fixed models like COCOMO (see below) are much rarer [3].

COCOMO II

The Constructive Cost Model (COCOMO) is a fixed-model estimation method that

was originally published in 1981 [12], and has since been updated and adapted as

the software engineering field has evolved. Several versions of the method have

been developed, with various levels of detail, and with some even being more hybrid

than data-driven in nature (Expert-COCOMO, COCOMO-U). COCOMO II was

introduced in 2000 as a response to the field having moved away from processes and

techniques that were common when the original model was developed. Among the

new and updated features are support for different size metrics, support for re-use

and re-engineering, and various updates to assorted effort drivers included in the
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model.

At its heart, COCOMO is based on a statistical regression model, described by

the following equation [10]:

Effort = A ∗ SizeE ∗+
n∏︂

i=1

EMi (2.1)

where

• Effort is the total project effort in person-months

• A is the productivity coefficient (initially 2.94)

• EM are the effort drivers

• E is the effect of scale, which is calculated from a constant and a number of

scaling factors

Scale factors and effort drivers are essentially numeric coefficients that represent

the benefit or detriment caused by some characteristic of the project, organization

or circumstance [10].

While the model can be used as-is with a default configuration, in most cases

it is necessary to tailor the model to the organization using it, by adapting the as-

sorted parameters like effort drivers and scaling factors to more accurately represent

the organization’s situation. Furthermore, COCOMO II accounts for the varying

amounts of information available at different phases of a project by including two

sub-models. The Early-Design model is intended to provide a rough estimate early

on in the development process, when only limited data is available about the project.

The Post-Architecture model is intended to provide more detailed predictions later

on, when the architecture already exists.

As a fixed model, COCOMO II doesn’t technically require any historical data

from the organization that uses it. However, in order to tailor it for improved
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accuracy for a given organization, some data is required, which can still make the

model difficult to adopt when data is scarce. Similarly, while expert effort from

software engineers isn’t required, a considerable amount of method-specific expertise

is still necessary to adapt the model to the organization’s circumstances [10]. As

such, while COCOMO is one of the more well known estimation methods, it is

much less commonly applied than expert-based methods or define-your-own-model

statistical regression [3].

There are several conceptually similar parametric estimation methods, like SLIM

and SEER-SEM [10].

Case-based reasoning

Case-based reasoning is a memory-based estimation method, that seeks to predict

new projects based on how similar past projects went. The estimation is entirely

based on quantitative project data.

This is essentially identical to the classical machine learning method called k-

nearest neighbors (kNN). The only things needed for case-based reasoning are quan-

titative data from past projects, and some definition of a similarity metric between

said projects. Some collection of important project characteristics (effort drivers)

are selected, and then the values of those from the past project data (so-called

analogs) are compared to the corresponding values in a new project (called target).

Prediction for the target is derived from the known effort values of a number of

closest-matching analogs.

As with kNN, there are various ways to measure distance between projects. The

most common way is to calculate the Euclidean distance from the respective effort

driver values of the analogs and the target. The number of closest analogs to be

considered will likely have a significant effect on the produced predictions, so some

consideration will need to be given to the matter of selecting that number. Effort
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drivers will also likely vary in importance, so scaling them to favor the ones deemed

most important may be necessary. The prediction itself may also be conducted in

different ways, for example you could take the mean or median value of the closest

analogs.

Case-based reasoning doesn’t require a great deal of expert involvement, and

doesn’t require any highly-specific pieces of data. Anything available can be used,

though poor data will of course still lead to poor predictions. As it is essentially an

application of kNN, it has the same weaknesses: sensitivity to outliers, inability to

deal with very high-dimensional data sets, and inability to learn to weight the input

data in any particular fashion (ie. if weighting of features is needed, it will need to

be done as pre-processing) [10] [14].

2.3.3 Hybrid methods

Hybrid methods seek to to improve estimation accuracy by combining the strengths

of expert-based and data-driven methods. The exact means of achieving this vary

by method, but the general idea is to use expert evaluation where necessary, and

then complement that with relatively lightweight data-driven methods to mitigate

the biases and inaccuracies potentially introduced in the experts’ opinions. This

way the expert effort will reduce the amount of data needed, making the general

method more accessible, but at least some of the benefits of a quantitative approach

are still retained. The results of a hybrid estimation process also tend to be more

human-comprehensible than those of a purely data-driven method, due to human

experts being closely involved in the process.

On the other hand, hybrid methods do tend to be fairly complex as a whole. The

techniques involved extend outside the normal software engineering skill set, which

might necessitate additional training for the personnel involved. Furthermore, most

currently existing hybrid methods aren’t very good at dealing with redundant, incon-
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sistent or incomplete information. The combination of data and expert judgement

can identify such situations fairly well, but means of coping with it beyond that are

limited [10].

CoBRA

Cost estimation, benchmarking and risk assessment (CoBRA) is an effort estimation

method developed in 1998 for the express purpose of estimating software projects

[15]. It is parametric and model-based like other, more data-driven methods, but

has considerably lower requirements of measurement data and is also able to include

expert judgement.

At its heart, CoBRA divides software development effort into two categories:

Nominal effort and effort overhead. Nominal effort means the effort required to

complete a project in ideal circumstances, and overhead means the effort consumed

by the necessity of overcoming various difficulties encountered in real-world software

projects. This principle is implemented via two models; effort overhead model and

productivity model.

The effort overhead model is obtained from experts like experienced project man-

agers. At first effort drivers (circumstances that affect the development positively or

negatively) are collected as qualitative data, which is then converted to quantitative

effort multipliers via expert judgement. Effort multipliers are essentially percentage

increases to the nominal effort.

The productivity model is derived from the organization’s historical data. This

is achieved by fitting a simple regression line to past project data where the amount

of overhead is known, and thus the nominal effort can be estimated to a reasonable

degree. It only takes approximately ten past projects to fit a regression line, and

CoBRA doesn’t require any measurement data other than that. Thus the typical

issue of sparse measurement data is less of a problem for applying CoBRA.
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The final effort estimate is produced from the new project’s size, effort overhead

and the (nominal) productivity model. As the exact project characteristics aren’t

typically known with certainty early on, the characteristics are modeled as distri-

butions. Overhead and final effort distributions are then derived from those via a

Monte Carlo simulation.

As the theoretical basis for CoBRA is relatively simple and expert opinion is

involved in the process, the method tends to produce fairly human-comprehensible

predictions. The data requirements are fairly light, but the requirement of expert

involvement may still be an issue, even though it isn’t the sole focus of the method

[10].

2.4 Estimating individual workloads

Classical effort estimation methods are generally targeted at estimating the effort

required by a whole project, with individual development tasks being about the

smallest estimation target seen in literature. The estimation (and prediction) of

an individual software developer’s workload appears to be an area that classical

effort estimation has generally not been applied to, beyond dividing the estimated

aggregate effort between the available development team members in some fashion.

As the topic appears absent in the literature, we cannot say for certain why this

might be, but we can speculate on the reasons, and infer some requirements for a

potential individual effort estimation tool from that.

Effort requirement: An obvious explanation is that even the most lightweight

estimation systems are too cumbersome to apply to a significant amount of individ-

ual developers. A common trend seen in estimation method selection and application

is that it should take as little time and expert effort to apply a method as possible,

and more complicated methods will only ever be applied if the project itself is very

large in scale. This already rules out the majority of classical methods; it simply
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isn’t considered worthwhile for 5 people to spend time trying to predict what one

person might be doing a week or month from now, especially if the same process

would then have to be repeated for a significant number of team members.

Accuracy/usefulness: Another potential issue is the accuracy and usefulness

of any predictions obtained. Effort estimation is a notoriously difficult process at

all levels. When dealing with the lowest commonly encountered level of estimation,

ie. that of individual development tasks, the estimations are often off by a signifi-

cant margin even when the project is already somewhat mature and the developers

have some experience-based knowledge of how the system works. Given such inher-

ent volatility, it might simply be that no known method produces estimations of

sufficient accuracy to be useful at this level.

Psychology, privacy: People generally don’t like to be micromanaged or have

their activities scrutinized in great detail. Focusing a significant amount of such

effort is likely going to upset at least some people, which will then have various

problematic effects on the general work environment. Furthermore, at some point

privacy concerns will also enter the picture, especially now that GDPR is in force

and and some data collection and processing techniques will likely run afoul of the

new lawfulness, fairness and transparency regulations [16].

With these considerations in mind, it is not surprising that organizations would

generally prefer to handle individual workload estimation as more of an ad-hoc man-

agement task than any strictly defined estimation process. Estimating the workload

of individual people is simply left up to them and their closest superiors, to be dealt

with as the working relationship between them dictates. Assorted reporting tools

(hours tracking, various business intelligence systems etc.) can be used as deemed

necessary, but ultimately people are expected to make the best of their circumstances

among project deadlines and other organizational goals.

Given such general situation, any individual effort/workload estimation system
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needs to be very lightweight; its application cannot require a significant amount of

time and expert knowledge. This essentially dictates an automatic tool of some kind,

operating on data that is already being generated as part of the normal work process

(ie. no added reporting responsibilities to developers or their closest superiors).

While some tuning of the prediction process parameters needs to be possible to

adapt to changing circumstances, the basic use cases should be available to the

manager with one or two clicks.

Prediction accuracy also needs to be better than what any existing ad-hoc pro-

cess can produce. The cut-off point for this will likely vary from one organization to

another, and may indeed vary considerably within even a single small (<10 people)

team. A developer and manager who enjoy a good rapport built over a sufficient

number of past projects can be able to come up with surprisingly good estimates,

whereas a more troubled relationship (personal conflicts, varying levels of compe-

tence) may start at such a low level of estimation accuracy that almost anything is

an improvement.

It is entirely possible that a good reporting/visualization tool for existing re-

porting data alone improves workload estimation and tracking considerably, even

without explicitly predicting anything. Organizations often struggle to make use

of data they already possess, turning that into useful knowledge might simply be a

matter of presenting it better. Any actual prediction system should thus be able to

offer something better than what most existing business intelligence (BI) tools can

already provide.



3 Machine learning

Machine learning (ML) is a broad category of methods for solving problems that

are difficult to approach with traditional, manually written software. The idea is

to create algorithms that can be molded to different tasks by training them with

different sets of input data, essentially learning a pattern from the training data

that can be generalized to perform some task for as-yet unseen data [17] [18].

The machine learning field is essentially a subset of general artificial intelligence

(AI). AI is a catch-all term for systems that mimic human intelligence, and machine

learning deals specifically with the learning part of it. Learning is understood here

as the ability to remember, adapt and generalize based on past experiences. Other

aspects of intelligence, such as reasoning or logical deduction are less relevant here,

though the demarcation between these can be a bit arbitrary at times [17].

It is important to note that the terminology can often get confused in public

discourse, with terms like artificial intelligence, machine learning, deep learning, data

mining, pattern recognition, etc. often being used inaccurately or interchangeably.

This is particularly evident due to the field of AI experiencing an ongoing boom in

interest, which brings in people and organizations not well-versed in the underlying

science.

The field of AI came into existence in the 1940s, alongside the creation of the first

digital computers, when the first mathematical neural network model was developed.

The notion of intelligent machines has been a compelling one for scientists, fiction
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writers and the general public alike, with the field going through ups and downs as

interest in the topic has waxed and waned. For scientists and engineers, the cycle has

mostly been driven by development of new methods and the subsequent discovery

of their limitations [19]. For example, the first algorithm representing an artificial

neuron, the perceptron, was introduced in the late 1950s [20], and prompted a great

deal of interest in artificial intelligence until the late 1960s when Minsky and Papert

proved the limitations of the perceptron [21]. However, while general AI has proved

to be incredibly difficult to achieve, there has been steady progress in more limited

applications, including in various machine learning methods. Things like the nearest

neighbor method, neural networks with backpropagation, decision trees, ensemble

models etc. have proven to be quite adept at tasks like image recognition, sound

recognition, and complex association analysis for large data sets, where conventional

statistical and software engineering techniques have difficulty.

The latest AI/ML boom has largely been precipitated by the explosion of avail-

able data resulting from the wide adoption of computers and assorted smart devices

in the last two or three decades. With people spending more and more time online

and most if not all of this activity generating data, the past problems with scarcity

of data have turned into a new problem of overabundance of it. Data itself isn’t

valuable, the knowledge extracted from it is, but extracting said knowledge is a far

from trivial process. Machine learning methods have proved to be an effective way

to find interesting patterns (knowledge) from this so-called Big Data [14].

3.1 Types of machine learning

There are several different types of machine learning, essentially defined by how the

learning algorithm is supposed to improve (ie. learn) from data. The method of

improvement has far-reaching implications on what kind of data is needed to train

a model, and what kind of problems can the model be expected to solve [17].
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3.1.1 Supervised learning

In this variant, our training data set includes the correct responses that are expected

from the ML model. That is, we know what output the model is supposed to provide

for a given training input. This data is fed to the algorithm, which afterwards will

hopefully be able to generalize from these known input-output pairs the correct

responses to new, previously unseen inputs. This is the most common type of

machine learning process, and is naturally suited to classification and regression

problems [17] [18].

Classification

In classification, the goal is to predict which of a limited number of classes/labels is

the correct one for a given input. Here we generally assume that for each input there

is exactly one correct class, and we know all possible classes an input can belong

to. We train the classifier as described above, by feeding it example inputs and

their matching correct outputs (classifications). Afterwards the model can hopefully

accurately classify new, unseen inputs. Essentially we define a decision boundary

(see figure 3.1), some function that separates the different classes from one another.

This kind of an approach can be used for example to find out which images in a

set have some particular item in them, or what kind of a customer is interested in

a given type of product [17] [22] [18].

The typical assumptions about us knowing all possible classes, and each input

having exactly one correct class don’t necessarily hold for all real-world problems.

For example it is possible that something was overlooked in problem definition and

there are in fact more classes than we know of. In this case it might be desirable for

the classifier to be able to detect that some input is outside the normal operating

envelope. This is called novelty detection, and if such a behavior is desired, it will

need to be considered when training the model.
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Figure 3.1: Decision boundary that separates three different classes. Note that here

the separation is very clean, but in reality there tends to be some overlap. Here

the boundaries are also straight, but there are techniques capable of drawing much

more convoluted borders.

There is also the potential situation of a single input belonging to several classes

at once. For this problem there are so-called fuzzy classifiers specifically built for

such considerations. Incidentally, this kind of classification has in fact been sug-

gested for use in software project estimation, as a way to account for the inherent

uncertainties in the development process [17].

Regression

Otherwise a fairly similar problem as classification, but in regression the target value

we’re trying to predict is a number, rather than a set of discrete classes [18]. Common

problems like these would be trying to predict the future value of something in the

stock market, an interest rate, or some such.

For example, we might have a set of X and Y coordinate pairs, and we need to

find out the value of Y for some given X value that isn’t among the known pairs.

We can try to find a function that seems capable of reproducing the known points

(up to a point, typically we won’t match the points exactly), and then see which
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Figure 3.2: Different ways to fit a curve to a given data set. Predicted values will

differ based on what kind of a function you select to describe the data set.

value the function would produce for the given X value. In figure 3.2 you can see

how a different choice of function can affect the prediction a model will produce.

This kind of curve fitting is a fairly common technique in machine learning, and

in fact some of the classical software estimation methods covered in the previous

chapter use techniques like this [10] [18].

3.1.2 Unsupervised learning

Here our training data set does not contain the correct responses. The algorithm

simply tries to find any similarities between individual items in the data, and thus

hopefully describe at least some part of the underlying process that generated the

data. This kind of machine learning is more exploratory in nature. Rather than try-

ing to solve a very specific problem, we look for essentially any interesting patterns

in the data. The advent of big data has considerably increased interest in unsu-

pervised learning, as the newly available large repositories mostly contain unlabeled

data [22] [17].

This type of machine learning is commonly used to solve problems like cluster-

ing and outlier detection. In statistics, this kind of analysis is known as density

estimation [18].
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Clustering

Clustering is the problem of dividing some data set into groups of items that meet

some criteria for similarity. For example, we might look at a store’s transaction data

in an attempt to divide the clientele into groups based on items that they tend to

buy together.

The exact criteria of similarity, and thus the kinds of clusters created vary greatly

between different methods. Focus can be on things like how compact a cluster is,

or how clearly it is separated from others. The result of any such analysis will

invariably need some expert evaluation of its usefulness, as the methods themselves

cannot guarantee that any associations or correlations they discover are actually of

interest.

Clustering can also reveal outliers in the data, though again such cases will need

to be carefully evaluated. Assuming the achieved clustering is considered to be

satisfactory, items falling outside the found clusters can be considered outliers in

some respect [14] [18].

3.2 Data, knowledge and preparatory tasks

As alluded to before, data and knowledge are separate things. Data can be under-

stood as the record that something happened, or what the state of something was

at a given time. Knowledge on the other hand covers things like why something

happened, or how the state might change over time. The value of data comes from

the knowledge that can potentially be extracted from it, which can then guide our

actions later on. However, the data itself simply exists, and won’t do anything by

itself.

An important early step in a data analysis process is obtaining an intuitive

understanding of what kind of data there is at hand. This might be less trivial than
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it sounds [14].

3.2.1 Data format and feature domains

Generally, data is understood as a matrix rows and columns, where rows repre-

sent instances and columns represent features. An instance for example might be

something like a particular car, with the features being the car’s model, color, num-

ber of doors, engine power, size of the gas tank, etc. Each feature can further be

categorized into various domains [14].

Feature domains

Domain is essentially the definition of the type of values the feature can have. The

domain of a feature has a considerable effect on how it can be used in the analysis

process. There are three main domains: nominal (categorical), ordinal and numeric.

The numeric domain has some further subtypes [14].

Nominal (or categorical) features’ values come from a finite set. An example

of such a feature could be the species of an animal (dog, cat, etc). Features like

this can often serve well as labels for the data, so they are sometimes referred to

as classes or categories. For nominal features, there is no further structure to the

values than whether they are identical or not. There is no hierarchy between two

different values, you can’t for example say that one is greater than the other.

The issue of granularity might however come up with these features. That is, is it

sufficient to operate at a rough level where values might be "electronics, cookware"

or are more detailed ones like "phone, computer, etc." necessary.

Additionally, while the values come from a finite set, the set might not be static.

In some cases, values can be added and removed as time goes on. This can have a

significant effect on analysis results, as for an example the learning data set might

be dominated by items that are no longer sold [14].



CHAPTER 3. MACHINE LEARNING 29

Ordinal feature values also come from a finite set, but there is a linear ordering

to them. That is, you can say one value is greater than another. For example,

school grades are like this. At the same time, it is important to understand that

while an ordinal feature may be (and often is) represented by numbers, the only

thing that can be said when comparing values is which one is greater. The actual

numeric difference between values however typically doesn’t mean anything. This

is important to keep in mind to avoid inferring something from the data that isn’t

actually there. Operations commonly done with numeric features, like calculating

the mean will produce meaningless values if performed on an ordinal feature [14].

Numerical features have number values. Numerical features can be discrete or

continuous, and may have an interval, ratio or absolute scale.

As mentioned above, discrete numerical features can easily be confused with

ordinal features, due to the superficial similarity in values. However, numerical

operations like calculating the mean value are actually valid for discrete numerical

features, even though the resulting value might not fit into the discrete value space.

The difference between interval and ratio scales is the definition of zero. For

intervals, the definition is arbitrary, whereas for ratio scales some canonical definition

exists. An absolute scale is defined by a unique measurement unit, and the meaning

of the field is dependent on that (for comparison, ratio scales retain their meaning

even if the unit changes, since it’s all in relation to the canonical zero).

Complex data types: In addition to the main feature domains discussed above,

there are numerous other data types that don’t fit into such concise categories. The

generic term for these is complex data types. An exhaustive list can’t feasibly

be provided here, but some examples are text (ie. natural language, rather than

categorical labels), graphs and images. Highly structured data like this generally

isn’t suitable for most analysis methods as-is, so it is usually necessary to either

extract some kind of simpler features from this data, or adapt the methods being
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used to deal with the specific kind of complexity exhibited by the data at hand [14].

Feature extraction/engineering is covered in section 3.2.3.

Dimensionality

Dimensionality refers to the number of features we have in our data. While generally

having more training data is considered a good thing, more features (ie. higher

dimensionality) can be problematic. For starters, early-phase data understanding

efforts often revolve around visualizing the data, ie. plotting it and looking for

any interesting correlations. One graph can’t effectively show more than two or

three dimensions however, and while you can work around this by drawing multiple

pair plots for example, or reducing the dimensionality with techniques like principal

component analysis (PCA), interesting information can still be missed as a result

[14] [17].

Another consideration is that not all features are actually useful. Some features

are simply redundant or irrelevant for some particular analysis. In this case, there’s

no benefit to having them around, and some ML methods (like k-nearest neigh-

bors) can actually perform significantly worse with such features present in terms of

accuracy. Higher dimensionality will also of course increase the computational com-

plexity of method application, though how much of a problem this actually is will

depend on how the method in use scales in this regard, and what kind of processing

resources are available [18] [14] [17].

Dimensionality of data also affects how much data we actually need to train our

model. The higher it is, the more data is required in order for the model to learn to

generalize well. This phenomenon is known as the curse of dimensionality [17].
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3.2.2 Data quality

The most important question when starting a data analysis process is whether the

knowledge we seek can actually be found in the data we have. In addition to

understanding exactly what data we have, we must also form an understanding of

the quality of the data, that is, how accurate, complete and relevant the data set

is. If accuracy is poor and/or the data set doesn’t properly represent the situation

we’re trying to model, then our analysis isn’t likely to produce useful results even if

theoretically the kind of records and features we have should contain the knowledge

we seek [14].

Accuracy

Accuracy means how close a value in the data is to the true value. There are

numerous causes for why a given feature value might deviate from the true value. For

numerical features, the instrument used in measuring said value might be limited in

precision, or there might be some source of noise. For categorical attributes, values

might be misspelled. How difficult such issues might be to detect and correct or

compensate for depends on what kind of inaccuracy we’re dealing with. There are

two kinds: syntactic and semantic.

Syntactic accuracy means that values are within the acceptable bounds for a

given feature. For example, if a feature is supposed to contain integers between 1

and 5, values like 7 or 3.6 would be obviously wrong, as the first is out of bounds and

the second isn’t an integer. These kinds of errors are quite easy to detect, though

what is to be done with such values will still need some consideration.

Semantic accuracy means the actual correctness of the value. A syntactically

correct value can still be semantically wrong, for example in the aforementioned case

of integers between 1 and 5 being acceptable, a value of 4 would be syntactically

correct but if the true value is 3, it would still be semantically wrong. Semantic
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accuracy is difficult to check, and can in fact be completely impossible in some

cases. Domain knowledge, data visualization and other techniques can still give us

some idea of what kind of semantic inaccuracies we might be dealing with, even if

we can’t easily find them all [14] [18].

Completeness

Completeness deals with the question of what is missing from our data. Records,

features, feature values, or some combination of the three? Each has its own impli-

cations on the accuracy of our analysis results, and recognizing that something is

missing (and what that might be) is a non-trivial task.

The simplest case is when feature values are explicitly marked as missing. That

is, the field contains some defined marker for a missing value (null, n/a, etc.). How-

ever, some times the missing value is simply denoted by some default value, for

example a zero in a numerical field, which can still be a syntactically and semanti-

cally correct value for that field. In this case we’re left wondering whether the zero

is an intended, valid value (measurement or some such), or just something that was

filled in lieu of an actual measurement.

Whole records can also be missing from the data. It might be that certain records

were lost over time in data migrations, or maybe the data wasn’t collected in the first

place for some reason. This can be difficult to detect, because we’re quite literally

looking for something that isn’t there. Sometimes the absence of records can be

inferred from the data, typically by reflecting against domain knowledge [14].

It might also be that our data set doesn’t contain some important/useful feature

at all. It might not have existed in the data set in the first place (ie. it wasn’t

recorded to begin with), or we might have even discarded it ourselves during feature

selection (see below) because it didn’t appear important. In such a case we might

still be able to usefully predict something via another feature or combination of
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features, and the effect of the neglected (hidden, latent) feature looks like noise in

the analysis [18].

Fundamentally, completeness is a part of understanding how well the data set

at hand actually represents the real-world situation. The missing data itself (be it

values, records or features) might form a pattern, and if it does, understanding it is

crucial because it likely means the data set is biased in some way. If we understand

the circumstances that cause a value or record to be missing (temperature sensor

only works above a certain temperature, for example), we can either compensate for

it or limit our analysis conclusions to situations we actually have data for. On the

other hand, if the data is simply missing at random, there’s less need to correct for

it, since it shouldn’t affect the actual value distribution much as long as the data

set is sufficiently large [14].

Either way, it is necessary to consider how to deal with the missing data. Should

we fill in some kind of default values or best guesses to empty fields? Should records

with missing values be dropped entirely, or otherwise ignored in analysis? The

answers will always have to be decided on a case-by-case basis, keeping in mind

what kind of an effect they will have on the distribution of the data.

Other data quality issues

Unbalanced data sets can be a problem. If for example we know the records in our

data set fall into two different classes, but the vast majority of the data belongs

to the first class and the second is barely represented, we’ll obviously have trouble

predicting the second class, since training examples for it are much rarer. This kind

of a situation isn’t uncommon in industrial production for example; the majority of

the time the machines are running as expected, so any sensor logs are mostly going

to contain data about normal operations, rather than fault situations. This is a

somewhat related concept to completeness, as a pattern of missing data can result
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in an unbalanced data set.

Another potential issue is timeliness, ie. is the data sufficiently recent to still

be useful? While some data might be useful almost indefinitely, in practice it is

common that old data is less worthwhile to analyze. As business processes evolve,

old data eventually ends up describing situations that no longer exist. For example,

past a certain point a store’s transaction records may contain products that are no

longer sold, which might not be useful for analyzing current market trends [14].

Outliers

Outliers are feature values, value combinations or even whole records that fall signif-

icantly outside the constraints that the majority of a given data set follow. There is

no universally applicable formal definition for them beyond that, and neither is there

any universally reliable detection method for them. They may be simply erroneous

data, but they might also be correct data produced by some rare circumstances.

For single attributes, outlier detection can be done with visualization tools like

boxplots, or statistical tools like Grubb’s test. For multidimensional data, visual-

ization tools like scatter plots can be used, possibly combined with some kind of

a dimensionality reduction technique like PCA. It’s worth noting that while these

techniques may suggest values/records that might be outliers, any findings will al-

ways still have to be judged on a case-by-case basis because of the inherent looseness

of the concept of an outlier.

The handling required by outliers once identified is as varied as the potential

detection techniques. If the values can be shown to be simply erroneous, they can

be rectified or removed from the data, but even non-erroneous outliers may require

exclusion. This is because some machine learning methods are especially sensitive

to outliers. That is, even just a few wildly abnormal values/records in the input

can have a considerable adverse effect on result accuracy if the used method isn’t
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sufficiently robust with regards to outliers.

Alternatively of course, the outliers may in fact be the precise information we’re

interested in, and we might specifically tailor our method selection to cater to this

need [14].

3.2.3 Data preparation

Data preparation consists of various tasks that we perform on the data in order to

improve its quality and thus give the actual modeling phase the prerequisites for

success. Care must be taken here to ensure we don’t inadvertently bias the data set

in some fashion; in extreme cases even data that actually has no signal at all can

appear to yield some insight in the analysis phase if some part of data preparation

is done carelessly [14].

Data/feature selection

The first task is selecting the records we wish to use for modeling. While generally

we wish to have as much data as possible, in practice all the data at hand may well

not be suitable or relevant to analysis. A good example is data that falls afoul of the

timeliness issue mentioned previously. If the data contains entries that are deemed

too old to accurately represent the current situation, it is best to exclude those from

further analysis.

Similarly, not all features in the data are necessarily useful. We might wish to

exclude an entire feature column if the data in it is deemed too noisy or sparse.

Alternatively a feature may simply be irrelevant or redundant, even if the values

themselves are deemed sufficiently accurate. Determining whether a feature is po-

tentially useful or not can be done in many ways, but the fundamental goal is to

pick features that we think contain the most useful information, and to discard the

rest. This will simultaneously reduce the dimensionality of the data [14] [18].
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One way to do feature selection is via subset selection. The idea is to find the

best performing subset of a given set of features. Performance is measured via some

suitable error function. In practice, unless our feature set is very small, we can’t

feasibly test every single subset, but with suitable heuristics we can narrow the

selection down to a feasible number of good enough subsets. The actual selection

can be done either forwards or backwards. In forward selection, we start with no

features, and we add features one by one, until we reach the point where new features

no longer reduce the error. In backward selection, we start with all features in the

set, and remove them one by one until we reach a point where removing any more

would increase the error measure [18].

Data cleaning

Cleaning means correcting assorted simple errors that have been identified in the

data earlier in the process. Common actions at this point are things like unifying

the format of numeric values and dates, fixing spelling mistakes in categorical values

as well as leveling case sensitivity, and splitting fields with mixed information (ie. a

"weight" field with 100g as value turns into "weight" and "unit of weight", with 100

and g values respectively). The goal is to ensure the data is consistent in format.

At this point missing feature values can also be dealt with. As mentioned before,

how exactly these are handled will need to be determined on a case-by-case basis, but

common techniques are removing the whole record from further analysis, imputing

some suitable default value (mean value of the column for example), or marking the

field with some explicit value that denotes the value is missing.

Generally it is a good idea to document any changes made to the data. Changes

that seemed reasonable at the time can turn out to be problematic later on, or may

simply have an impact on the final analysis results that needs to be known to put

the result in a proper context [14].
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Feature engineering

Feature engineering covers techniques for transforming the existing data into some

desirable format, and generating entirely new features from the raw data. There

are three typical goals for this. To ensure the data is in a format that our chosen

analysis method can actually use, to curtail the disproportionate influence that

larger magnitude features can have, and to improve analysis efficiency in general.

Most machine learning methods have some limitations on what kind of data they

can process, so at a basic level, we’ll need to ensure all our data fulfills such criteria.

All input values might need to be numbers for example, in which case categorical

feature values will need to be represented by numbers somehow. With such transfor-

mations, it is important to consider what kind of operations are going to be applied

to the feature, and whether they will be meaningful in the end. For example, trans-

forming a categorical variable into a sequence of numbers is a fairly trivial task,

and such design is commonly seen in database tables, but for data analysis this can

have unwanted consequences if mathematical operations like calculating the mean

are performed on the feature column. The operation can be done, but the result

will likely be meaningless or outright harmful, since it implies certain assumptions

about the values having an order and distance.

Raw numeric feature columns will often contain wildly different value magni-

tudes. This can cause the features with larger magnitude values to dominate the

analysis, even though in reality the particular feature’s importance doesn’t warrant

such. This issue is typically rectified by normalizing the feature values, with tech-

niques such as min-max normalization, z-score standardization or decimal scaling.

The idea is to retain the features’ individual distributions, but scale the actual values

so that the overall scale across different features is roughly the same.

Efficiency improvements are perhaps the hardest to formally pin down. Beyond

basic operability, it is worth considering how well a model can learn from some
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particular representation of data. For example, in the practical section of this thesis

we will deal with software project logged hours, which sometimes contain the planned

deadline of the project as a date. While a neural network might eventually be able

to learn the connection between that and the date of the logged hours, the amount

of data needed for such training might be unfeasible. On the other hand, a simpler

model like k-nearest neighbors is unlikely to make such a connection in the first

place. In this case, it could be useful to transform the planned end date field into a

"planned days left" field, where we calculate how many days are left from the logged

date to the planned end date. The original information is still essentially there, but

in a more easily digestible format [14].

Among other things we might do to improve efficiency would be to eliminate

observed non-linearities via some suitable mathematical operation, or apply tech-

niques like PCA to hopefully retain the most important information (for PCA this

means preserving variance) in a high-dimensional data set that is intuitively difficult

to understand [18].

3.3 Model selection

Model selection covers two related tasks: selecting the model class (aka method) to

use, and selecting a particular model produced by that class.

Model class selection is based on our understanding of the analysis goal and

available data. The goal itself will narrow the choice down somewhat, since most

classes are only suitable for certain kinds of analyses, but generally this will still

leave a number of methods for consideration. Some common criteria for further

narrowing the choice down are [14]:

• Data characteristics: Does the data set contain a significant amount of

outliers or non-linearities that we can’t or don’t want to remove in the data
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preparation phase? Is the data noisy or sparse? Different model classes have

varying degrees of sensitivity to such issues, so naturally we should try to select

a model class that is robust against the issues we know to be present.

Data set size is also something to consider. Complex models such as neural

networks generally require more data to perform well, so if we deem our data

set to be too small to support such a model class, we will have to restrict

ourselves to simpler classes like k-nearest neighbors or linear models.

• Interpretability: Different classes of models vary wildly in how well they

explain the predictions they make. A decision tree for example can be followed

from root to leaf, to see exactly what kind of decision rules produced the

final result. Neural networks on the other hand are essentially opaque to this

kind of exploration. In many cases so-called black-box models like this are

unacceptable, because the explanation is often deemed as important (if not

more so) than the actual prediction/decision. Indeed, making unexplainable

decisions can be outright illegal in some circumstances, like in the field of

medical care.

• Computational complexity: Model classes differ in what kind of computa-

tional resources (processing power, memory, etc.) are needed to train and use

them. While cloud computing has made computational resources more easily

available, the time and cost of some complex models can still be prohibitive.

In practice the tasks of selecting the class and individual model tend to overlap

somewhat. That is, we’ll likely do at least some preliminary experiments and eval-

uation on models from multiple classes, before focusing on finding the best model

in a single class. This is because even careful consideration of the aforementioned

model selection criteria often won’t narrow the class choices to one, and estimating

which class can produce a better model isn’t very intuitive without running some
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kind of evaluations, to have some preliminary performance data to guide the class

selection.

Model selection means finding the best configuration of the selected model class.

What this entails in practice is very dependent on the class, but typically involves

finding the best values for whatever class-specific hyperparameters there are. This

can mean something as simple as finding the best-performing k-value and distance

measure for a k-nearest neighbors model, or something as complicated as coming

up with a good setup for an artificial neural network (number of neurons, layers,

training system, etc.) [14].

The goal is to find a model that generalizes well, not one that simply memorizes

the training data. This means that model selection is something of a balancing

act; you want to find a model sufficiently complex that it is capable of capturing the

underlying pattern in the data reasonably well, but no more complex than that. Too

rudimentary a model is unable to find the pattern, this is called underfitting. A too

complex model on the other hand will capture the individual training data points

(including any inaccuracies and noise) but not the pattern, this is called overfitting

[17] [18]. Figure 3.3 illustrates the issue.

How model selection happens in practice will depend on what kind of learning

are we doing and what kind of result domain we’re operating with.

In supervised learning, model selection happens by fitting (training) different

models and checking how well their results (predictions) match with the known

target values. How this matching is done will depend on the domain of the values

we’re predicting; in case of numeric values we might calculate the mean square error

from the predicted and true values, and then find the model that minimizes that.

In case of classification, a basic metric could be classification accuracy, that is, how

many times the model predicted the correct class. Various ways of measuring model

performance, and assorted pitfalls involved in the process are covered in more detail
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Figure 3.3: In plot a, our model is too rudimentary and underfits, ie. fails to

capture the pattern from the training data. In plot b, the model appears to capture

the general pattern reasonably well. In plot c, the model is too complex and overfits,

ie. appears to be be learning noise. Notice that the model in plot c would still have

the lowest measured error between the model predictions and and the training data

points, but it’d likely generalize poorly to previously unseen data.

in section 3.3.2.

With unsupervised learning, the process is somewhat less well defined, simply

because we don’t know the correct values for our training data. As such, the process

revolves more around trying to determine if the patterns found appear interesting or

coherent. If the goal is clustering, we might for example concentrate on how clearly

the found clusters are separated from one another, or how closely-packed they are.

Tools like calculating the silhouette score might be used here [14].

Another thing that needs consideration is how exactly is the training done. For

some simpler methods this might be essentially a non-issue, but with neural networks

you might get very different results depending on whether training data is input

sequentially or as a batch. The former means that the network’s neurons adjust

their weights (learn) after every single input, whereas in the latter the learning only

happens after a larger batch of training data has been processed. The order or

distribution of the training data itself might also be altered during training, to focus
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more on cases that the nascent model is doing poorly on [17].

3.3.1 Model class examples

k-nearest neighbors

The method of k-nearest neighbors is based on the idea that the value of a given

attribute can be derived by looking at known attribute values in other records that

are similar to the one being predicted [23] [24]. Similar records (ie. closest neighbors)

are found by calculating some distance measure between records in the data set, and

choosing the k nearest based on that. Once the k nearest neighbors are found, the

prediction is formed by having those vote on the value. This nearest neighbor

method can be used for both classification and regression, the only difference is

in how the final vote is conducted. For classification, typically the majority vote

is selected, whereas for regression the value is typically the mean of the neighbor

values.

In terms of model selection, the most important choice with kNN is selecting the

value of k, ie. how many neighbors are included in the final vote. The behavior of the

model changes considerably depending on the selected value, with low values being

prone to overfitting, and too high values essentially producing averages of the whole

data set. The best value of k is usually found simply via trying different values and

seeing which produces best results according to some suitable performance metric.

This is commonly done with cross-validation. Some other model parameters can also

be tuned, like the type of distance measure to use (typically the Euclidean distance

between feature values is used), and whether all neighbors should have equal weight

in the final vote or not.

This method is simple and easy to apply, and can often perform surprisingly well

compared to more complex methods. Some drawbacks are that it cannot perform

any feature selection, so redundant and irrelevant features can compromise predic-
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tion accuracy, and the model runs into performance issues with a large number

(in the thousands) of features. KNN also cannot handle missing feature values, so

those either need to be filled in somehow, or the records with missing values need

to be dropped from the data set. The model is sensitive to the scale of feature val-

ues, so input data should be for example z-score standardized to ensure all features

contribute to the distance measure equally [18] [22].

Decision trees and random forests

A decision tree is essentially a sequence of questions about the features in our data.

We start at the root, and each answer to a question directs us down one of several

paths, until we reach the leaves of the tree, where we obtain some prediction/decision

(see figure 3.4). They are most commonly used for classification and regression,

though clustering applications are also possible.

Figure 3.4: Example of a simple decision tree for determining whether to sell a health

insurance policy to a potential customer, and under what terms. Each answer directs

us further down, until we reach a decision.

There are several ways to construct decision trees. Most are variations of the

general theme of starting at the root, and selecting the best feature to evaluate
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at each node. Comparing features in this respect can happen in several ways as

well, with information gain and the chi-squared test being some common ones. In

case of continuous attributes, suitable splitting points also need to be determined.

Furthermore, as tree depth increases, the risk of overfitting grows, so it might be

necessary to prune the initial tree into a more simple configuration, by replacing

problematic branches according to some criteria.

For more complex cases, several trees can be combined into an ensemble model,

known as a random forest [25]. Here the idea is to train several trees on different

samples of the data with randomly chosen attribute subsets, and combining their

individual predictions into a final result.

Trees deal well with sparse data, and forests can also handle high-dimensional

data quite well. Trees are also quite easy for humans to interpret (ie. it is easy

to tell how some prediction was reached by following the tree to the relevant leaf),

which makes them suitable for applications like the medical field, where unexplained

decisions are not allowed. Forests are less so, though still a considerable improvement

on models like neural networks. Decision trees have also been applied to software

project estimation, with the so called CART model (Classification And Regression

Trees) [17] [10].

Multi-layer perceptron

The perceptron [20] was the first model of an artificial neuron, and the multi-layer

perceptron (MLP) is an evolution of that concept. It is a network of multiple

perceptrons arranged into a number of layers. Unlike the perceptron, a suitably

configured MLP is capable of solving linearly inseparable problems, and forming

nonlinear mappings in general.

Essentially, an MLP consists of an input layer, output layer, and one or more

hidden layers of neurons between them. Each neuron has a number of numerical



CHAPTER 3. MACHINE LEARNING 45

weights that are applied to its inputs, and some defined activation function (often

each neuron in a given layer has the same one), that maps the neuron’s weighted

inputs into some output value. Training the model consists of feeding it data, and

then adjusting the weights in each neuron based on some error calculation. This is

typically done via the so-called back propagation method, where errors are calculated

at output, applied to the output layer’s weights, and then proceeding from that to

update the next last layer’s weights, and so on until the input layer is reached (ie.

error propagates backwards through the network).

MLP is a universal approximator, that is, given sufficient data it can learn any

problem. It is quite prone to overfitting, so care needs to be taken to stop the

training before that happens. MLP training is also computationally intensive and

requires a very large amount of data (old rule of thumb being that it needs 10 times

as many training examples as there are weights in the model) [17].

3.3.2 Performance evaluation

Finding out which class/model performs the best requires some way of comparing

models, that is, to evaluate their performance against each other. Additionally, we

of course want to have an accurate assessment of our model’s ability to generalize

with unseen data. It is important to understand that while same techniques can

be used for both of these tasks, they are still separate tasks. Depending on how

model selection is done, it is possible the performance metrics obtained during the

selection process don’t accurately reflect the generalization performance, even if they

do indicate which model is likely to be better.

There are numerous ways to measure model performance, and even more special

circumstances that may need to be considered/accommodated to get a reasonably

accurate performance estimate. Realistic performance estimation requires that the

validation/test setup accurately reflects the actual planned use case for the model.
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Furthermore, the old adage "you get what you measure" very much holds in this

regard, since model selection as a task is essentially optimizing the result of some

performance measure. If the performance measure doesn’t represent reality well,

then the model selected based on that measure is unlikely to be of much use either

[14] [17].

Since we’re interested specifically in the model’s ability to generalize to data

it hasn’t seen before (during training), at a minimum we’re going to need a set of

testing data separate from the training data. We’ll train the model with the training

data, then see how well it predicts the relevant values for the test data. There is

no hard and fast rule for how to split the data into training and testing sets, but

usually the training set is larger of the two, comprising of 2/3 of the whole set for

example. For some scenarios however, training and test sets aren’t enough.

Consider model selection: We train a number of different models with the train-

ing set, and then measure their performance against the test set. We select the model

with the best score. While we may now have the best model, what we don’t have is

an accurate estimate of its performance, because the model was specifically selected

based on its performance on the test set. That is, while the measured performance

is likely better than what the other tested models had, it’s likely over-optimistic

with regards to unseen data. To rectify this, we need yet another set of unseen test

data. This would mean splitting our data set into three parts; training, validation

and test sets. We train the model with the training set, we perform model selection

against the validation set, and we obtain the final performance estimate by running

the selected model against the test set [14] [17].

The problem here is that there might not be enough data for all of this. When

working on some Big Data project, this likely isn’t an issue, but in many cases

the data set at hand is small enough that splitting it into three parts will reduce

the amount of training data to an unacceptable degree. A common technique for
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overcoming this problem is cross-validation (covered later in this section) [17].

When splitting the data into training, validation and test sets, the requirement

for good representation of the real-world use case needs to be kept in mind. For an

example, if we’re solving a classification problem, then the distribution of the classes

should generally be about the same in all data sets. If each class is approximately as

common, then just splitting the data randomly may be acceptable. However, many

data sets are skewed in some way. If the data set contains two classes, A and B, but

A makes up 90% of the data, then a split that doesn’t take this into consideration

may result in a case where the B class is almost or completely missing from training

or test data. This will of course result in problematic performance evaluations,

because either the model hasn’t seen the minority class at all in training, or its

ability to distinguish the minority class hasn’t actually been tested at all. This can

be rectified via stratification [18], ensuring that the proportion of classes is equal in

each set.

A common assumption in ML performance evaluation is that the data is inde-

pendently and identically distributed (IID). In intuitive terms, this means that a

single record in the data doesn’t tell you anything about the other records. For a

practical test case, this would mean that a model fitted with some training data set

and tested on a separate test set essentially hasn’t "seen" the test data, and thus

its ability to predict the test data is a realistic measure of the model’s generaliza-

tion performance. There are plenty of cases where the IID assumption doesn’t hold

however [26].

For example, say we have a number of samples of various fluids, and our data

consists of measurements taken from those samples, but we know our measurement

process produces somewhat noisy values. To mitigate the effect of noise in the

analysis we might repeat each measurement several times per sample. This means

that several records in our data set are in fact related, as they were taken from
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the same fluid sample. If this isn’t considered in the data split, we’ll end up with

a poor performance estimation. If our real-life scenario is a case where we don’t

expect to have actually measured a particular fluid before, then our performance

estimation will be overly optimistic. In the data split, this situation can be simulated

by ensuring that all measurements of a given sample are either in the test or training

set, but not split between both.

Cross-validation

Cross-validation (CV) means splitting your data into several sets called folds, and

then training a model with all but one of the folds, and using the last fold for

testing. The process is then repeated so that each fold is left out of the training set

in turn, with the end result being that the model has been tested against all records

in the data (see figure 3.5). The number of folds can be selected on a case-by-case

basis, generally driven by processing time constraints. The more folds, the longer

the processing takes, with the extreme case being where each record alone is a fold

(so-called leave-one-out cross-validation). The more common case is called k-fold

cross-validation, where k is the selected number of folds [17] [18].

Cross-validation allows you to get the most out of a limited-size data set, but

the usual considerations about data splitting still apply. That is, for unbalanced

data stratification should be used, and any possible underlying connections in the

data will need to be considered in terms of whether they can bias the performance

estimation. Cross-validation assumes that the data is independently and identically

distributed (IID), so any violation of this principle will need to be considered in the

data split [26]. For example, time-series data is not IID, as records closer to each

other in the timeline tend to be more similar than records further apart.

Furthermore, in order to get useful results from CV, the learning algorithms used

should be relatively stable, ie. a small change in input results in a small change in
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Figure 3.5: k-fold cross-validation. Each rectangle represents the whole data set,

with each sphere being a fold of data. For each round, we set aside one fold (red

sphere), train a model with the remaining data (the black spheres), and then test

the model against the fold that was left out. Process is repeated for each fold, so k

times in total.

output.

Confusion matrix

For classification problems, a simple performance measure is how often the model

predicts the correct class for a test set. However, beyond this basic accuracy measure,

we might be interested in what kind of misclassifications the model most commonly

does. This can be visualized with a confusion matrix.

The idea is simple. We create a matrix where all classes are listed on both

horizontal and vertical axes. The horizontal coordinate represents the predicted

class, and vertical represents the true class. Thus correct predictions are along

the diagonal starting from top left square, and other coordinates show how often

a particular misclassification happened. Figure 3.6 shows an example confusion

matrix.
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Figure 3.6: A confusion matrix obtained in an exercise where ship types were to

be predicted from various measurements (size, speed, etc.). Leave-one-out cross-

validation was used to test model performance, and the result was plotted in a

confusion matrix. We can see cargo ships and tankers were identified with fairly

good accuracy, but tugs were misclassified most of the time. This was a fairly

expected result, since the data set contained a very limited number of tugs, so the

model had very little training data to go by.

This information can be useful for understanding in more detail the particular

weaknesses a given model has. From this information we might be able to identify

ways to improve our model fitting process, or at least know which particular classes a

generally well-performing model can’t be expected to predict with good accuracy. A

further consideration could be differing costs assigned to different misclassifications,

this kind of visualization is known as a cost matrix [17].

Classifier accuracy metrics, ROC and AUC

With a binary classifier, the resulting confusion matrix is 2x2 in size, and will essen-

tially show how many true positives (TP), false positives (FP), true negatives (TN)
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and false negatives (FN) the classifier produced. In addition to simple classification

accuracy, we can calculate other measures like sensitivity, specificity, precision and

recall (equations 3.1 - 3.5, "#" here is shorthand for "number of").

Accuracy =
#TP +#TN

#TP +#FP +#TN +#FN
(3.1)

Sensitivity =
#TP

#TP +#FN
(3.2)

Specificity =
#TN

#TN +#FP
(3.3)

Precision ==
#TP

#TP +#FP
(3.4)

Recall =
#TP

#TP +#FN
(3.5)

These can be used to track model performance in areas that classification accu-

racy alone won’t reveal, and help optimize model performance in areas considered

to be the most important for a given analysis task. Of course, care must be taken

to understand just what are we optimizing for. For example, if the model predicts

everything as positive, then there won’t be any false negatives and thus recall will

be 100%, but precision will of course be very poor [17].

These measurements can be used to compare classifiers in a number of ways. One

is to plot the Receiver Operating Characteristic (ROC) curve, which is basically the

classifier’s sensitivity (AKA true positive rate, TPR) against its false positive rate

(FPR) at various decision thresholds, and calculate the area under the curve (AUC).

Different ROC curves can be seen in figure 3.7.

This is a common way to compare diagnostic tests in medicine, but has recently

seen wider adoption in the performance evaluation of machine learning models as

well [17].
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Figure 3.7: The diagonal line represents a classifier that is essentially making random

guesses. The red and blue lines represent increasingly accurate models, which are

able to achieve higher true positive rates before the false positive rate climbs to

unacceptable levels.

Mean square error, mean absolute error

When working on regression problems, it is necessary to know how far the prediction

was from the target value, rather than just whether the prediction was correct or

not. Indeed, the latter would result in a useless performance measure, because in

practice regression almost never produces predictions that hit the target square on.

The most commonly used regression error measurement is the mean squared

error (equation 3.6). If we’re trying to fit a line y = ax + b to some data set, then

MSE is defined as

MSE =
1

n

n∑︂
i=1

(axi + b− yi)
2 (3.6)

As the difference between the target and the predicted value is squared, this

measure is somewhat sensitive to outliers in the predictions. A single really poor

prediction can result in a very large mean square error even if the model otherwise
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predicted fairly well.

Another common measure is the mean absolute error (MAE, equation 3.7).

MAE =
1

n

n∑︂
i=1

|axi + b− yi| (3.7)

Things like mean Euclidean distance between a data point and regression line,

or simply the maximum error encountered with a model might also be considered

[14].

Concordance index

Unlike measures like mean square/absolute error which depict the amount a predic-

tion deviates from the true value, concordance index (or c-index for short) measures

how well the predictions are ordered. That is, the actual predicted values for sam-

ples A, B and C aren’t important, only their order with regards to one another. If

the predicted values A’, B’ and C’ retain the original order of the true values, then

a perfect score of 1.0 is produced by the c-index metric (see figure 3.8). A score

of zero indicates the original order was reversed by the model, and a score of 0.5

indicates that the model is essentially producing random guesses [27].

This way, c-index measures how well the overall trend is captured, but the indi-

vidual predictions’ accuracy isn’t a concern. For software project effort estimation,

we’d ideally want a model that produces fairly accurate estimates of project dura-

tions, but even a model whose predictions are inaccurate but well ordered may be

of some value. While it can’t be used to plan the actual duration of an individual

project, it can still describe fairly well the order in which different projects are likely

to be completed. Furthermore, knowing that a model is inaccurate in absolute terms

(measures poorly with MSE/MAE) but good at ordering samples may allow us to

direct our efforts at improving the model in some way, rather than discarding it

outright.
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Figure 3.8: Different scenarios for c-index calculation. The blue line represents the

true values, the red line represents the values predicted by some model. In plot a,

the model has captured the trend perfectly, even though the individual predictions

are inaccurate to some degree. The c-index score here would be 1. In plot b, the

model has captured the trend in reverse and corresponding c-index value is 0. In

plot c, the model has learned nothing at all, and c-index value would be 0.5.

Baseline comparisons

When working with various performance evaluation methods, it is a good idea to

occasionally do comparisons between the machine learning models being worked on,

and absolutely basic prediction methods like random guesses, majority voters, and

the like. Surprisingly often an ML model fails to outperform such methods, in which

case it is necessary to re-evaluate the whole process thus far.

For example, if the model achieves a 90% classification accuracy on some data

set, but a majority voter (model that always predicts the most common classification

in the data set) also achieves 90% accuracy, our model isn’t actually useful. In fact,

a closer inspection of the model’s predictions in such a situation may reveal that it

has learned to behave like a majority voter. With such an unbalanced data set (one

would hope such a glaring balance issue in the data would’ve been noticed earlier,

but better late than never of course), something in our modeling process needs to be

changed in order for the model to actually start catching the minority classifications,
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otherwise the whole exercise is pointless.

3.4 CRISP-DM

In broad terms, a typical data analysis process consists of the following phases:

Data collection, feature selection/extraction, algorithm choice, model selection and

evaluation [17]. For simple, small-scale projects, some kind of an ad-hoc process

made up of these parts might be sufficient, but in a more complex case, something

more structured is necessary. There are a number of such process frameworks, but

the most commonly used one is the CRoss-Industry Standard Process for Data

Mining, or CRISP-DM [14]. An overview diagram of CRISP-DM is presented in

figure 3.9.

An important thing to keep in mind is that the CRISP-DM process isn’t expected

to be run in a waterfall-like fashion, rather it is expected that each phase will likely

need to be performed several times. This is because initial assumptions about the

project are often proven incorrect in some fashion as the analysis proceeds, which

will necessitate returning to previous phases to revise goals and redo various tasks

based on the newly discovered information. The most typical phase rollbacks are

included in figure 3.9, but in practice it is possible to end up returning from any

phase to any preceding phase [14].

Project understanding is somewhat similar to the typical kick-off and plan-

ning phases in software development. The goal is to understand what exactly is

the target or expected utility of the analysis project and what kind of a solution

are we looking to produce. General understanding of the problem domain is also

sought, as typically data analysts aren’t familiar with the particular business envi-

ronment a new project resides in. Conversely, the domain/business experts typically

aren’t well-versed in data analysis and machine learning, so effective communication

between the parties can be an issue (one typically encountered in software engineer-
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Figure 3.9: The CRISP-DM process, adapted from [14]
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ing at large). This can potentially be somewhat eased by the different parties and

stakeholders establishing some kind of a common understanding of the project.

Data understanding seeks to find some initial insights about the data. For

starters, what data is actually available, how well does it appear to reflect the

real-world situation, and does it seem to contain the answers we are seeking? Of

course the last part won’t truly be known until the data analysis project has been

completed, but some favorable indicators at least should be found at this point to

justify proceeding with the analysis. In practice, data understanding is going to

involve mapping out the general structure of the data (tables, fields, relations, etc.)

and trying to find any obvious correlations, redundancies, potential data quality

issues (missing values, outliers, unbalanced value distributions, etc.) with simple

visualizations, statistical tests and simply looking over the data manually.

The initial insights gained from data understanding may well necessitate a review

of the project objectives, or may indeed result in project cancellation if it appears

the prerequisites for success simply aren’t there. On the other hand, if data under-

standing suggests that the amount, relevance and quality of data are acceptable for

the goals set in project understanding, the process can move on to data preparation.

Data preparation consists of selecting the most interesting parts of the data,

and doing some pre-processing in an effort to improve data quality and generally

make sure the data is in a suitable format for the modeling phase. Typical quality

improvements are things like dealing with missing values and outliers, unifying the

spelling of categorical attributes and applying some kind of a normalization scheme

to numerical attributes. Features might be converted to some format more easily

comprehensible to the planned modeling techniques, and entirely new features might

be generated in an effort to prod the modeling to some particular direction. Care

must be taken in this phase to not inadvertently bias the data in some way, as all

of the aforementioned operations can have unintended consequences.
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Modeling is the process of selecting suitable model types and finding the best

configurations for them. While this is in a sense the central part of the analysis

process, in practice the earlier steps in the process often take much more time.

This is because model selection usually needs much less manual work than the

preparatory tasks. Of course it is entirely possible that the modeling itself reveals

some unforeseen issue that sends us right back to data preparation, if for example

an otherwise promising model appears to have a problem with the results of some

particular data pre-processing technique that was previously applied.

Evaluation can somewhat overlap with modeling, as discussed before. This is

because different models are typically compared based on some performance mea-

sure, but it is important to understand where this overlap is acceptable, and where

it results with inaccurate performance estimates. Ultimately the goal of evaluation

is to get an accurate measure of how well the produced model is likely to perform

once deployed. This may again lead to project closure or a return to some earlier

phase (even right back to project understanding) if it turns out the performance

simply doesn’t meet the goals of the project.

Deployment is the final stage of the CRISP-DM process. The model is deemed

to be of acceptable quality, so it’s time to apply it in practice. Notice that this

doesn’t necessarily mean a practical deployment of the created model as-is, more

development work may still be required to turn the model into a product or system

that can be used as part of business operations. Further maintenance work may also

be necessary if the model needs updates during operation (a common enough case),

and it may indeed be that no practical deployment is even done; the model may

simply form the basis of some report of findings made during the modeling process.

For an example, it might be that the desired end result is simply the knowledge

of what kind of data will need to be collected to enable some future data analysis

project years down the line [14].
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3.5 Machine learning and the software industry

The application of machine learning to various software development processes is a

fairly natural fit. ML and software engineering skill sets overlap to a significant de-

gree, and the software development field constantly deals with various uncertainties

at all levels of the process, so there is demand for tools that can deal with such. As

a result, ML/AI techniques have been explored for both the practical engineering

work (design, programming, testing, etc.) and the broader process management

(estimation, planning, etc.) [28] [1].

Currently, it appears most of the practical deployments of ML technology in

software development are centered on the practical engineering work, in the form

of AI-driven code completion tools and various review and testing aids [29]. More

elaborate tools for assisting in higher level design and architecture work are the

subject of ongoing research [30] [31] though with these there still seems to be some

way to go before they can be adopted in practical software engineering work. For

project management and effort estimation, it appears most organizations still rely

on some form of expert evaluation, though in academic circles applying ML to effort

estimation has been a fairly active topic for decades at this point [2] [3] [1].

The most likely reason for this discrepancy between research and practical de-

ployment is that ultimately ML techniques require data to learn from, and relevant

historical project data seems to be fairly scarce in most organizations. As discussed

in chapter 2, this issue has restricted the use of classical data-driven effort estimation

methods to large, mature organizations and projects capable of producing such data.

It seems logical that the same problem makes the deployment of ML-based effort

estimation methods unfeasible for most industry organizations. Additionally most

software development is currently done in some kind of an agile project framework,

where inherently cumbersome planning processes are avoided on purpose [9].

The software industry does appear to have considerable interest in various AI-
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powered tools, and consequently such tools are actively developed in various com-

mercial and open-source ventures [29]. As such, issues like usability and suitability

for agile processes in estimation tools will likely be overcome eventually. The avail-

ability of suitable data to learn from will likely be a bigger hurdle. Even when

working around the same general topic (like software development), different or-

ganizations can produce data in very different format, quantity and quality. This

means that any individual ML-based effort estimation tool, even if built/trained as a

universal/fixed model, is unlikely to fit the organization’s data and goals as-is. Thus

the deployment of any ML-based tool for effort estimation will probably require a

great deal of expert involvement for the foreseeable future. Said expert involvement

will likely consist of various data pre-processing and model configuration tasks, or

even building an entirely custom machine learning model for the organization, in

case available tools aren’t deemed suitable even as a starting point for customization.

Finally, while the software industry is in a unique position with regards to the

adoption of machine learning and other AI technologies in their work processes,

a lot of the progress in the field is driven by the needs of other industries and

organizations. In some cases ML solutions originally developed for some particular

industry or organization may have considerable cross-industry appeal. For example,

a study has been conducted on predicting software developer turnover from monthly

reported work hours data [32]. Something like this could be applicable and of great

interest for companies in other industries as well.



4 Case ATR Soft / ATR Works data

ATR Soft is a mid-size software company that does both consulting work and own

product development. Both kinds of work are generally organized as projects of

varying types, ranging from small internal product development needs that may

last only a day or two, to larger customer projects that may last several years. Due

to the great variance in project scopes, durations and assorted customer needs and

preferences, project planning, estimation and tracking processes also vary somewhat.

There is however a general desire to improve project effort estimation capability both

in the planning stages and later on in the project life cycle.

Improved effort estimations at all points of the project life cycle are expected to

produce at least the following benefits:

• Work allocation efficiency. While resource allocation isn’t done solely

based on project estimation (employee preferences and opinions are given con-

siderable weight), allocation can still be made with greater ease and efficiency

when good quality estimations are available. This in turn can improve the

utilization and productivity of employee time.

• Improved customer satisfaction. Better initial estimations mean that

projects are less likely to exceed their schedules and budgets. Adjustments

to schedule or budget due to scope changes and such are also easier to accom-

modate for both the customer and the provider.

• Improved sales. It is possible that an available project isn’t taken because
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management is not certain the resources needed are actually available at the

desired time. This can result in essentially money being left on the table.

With improved effort estimation, such situations should be less common.

• Improved employee satisfaction. With a better idea of when a project is

actually going to wind down, management can minimize the likelihood and

degree to which different projects overlap. Such overlaps often cause various

high-stress situations in the daily working environment, so keeping them to a

minimum will improve employee well-being.

While the tools and processes for general project management can vary between

projects, all work hours are logged into ATR Works, an internally developed hours

tracking application. This hours tracking data is the subject of the practical work

of this thesis.

The practical data analysis project will follow the CRISP-DM process (see section

3.4). All the practical work (plotting, pre-processing, modeling, evaluation) will be

done with Python, using the Anaconda distribution. The Python version used is

3.8.3 and the Anaconda Individual Edition version is 2020.07 [33].

Notes about handling potentially sensitive data

Per discussion and agreement with ATR Soft management, data displayed in this

chapter will be scrubbed of potentially sensitive information, like employee and

customer names, system names and such. Things like project and task names will

be replaced with generic identifiers ("project 1", "task 1", etc.) if the original

names are considered sensitive. Employee names are always replaced with generic

identifiers, and work hours data not related to software development projects is

excluded from processing entirely.

Note that generic identifiers aren’t consistent between plots, ie. if two plots refer

to "project 1", the original underlying project isn’t necessarily the same in both. In
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cases where such consistency exists and is relevant to analysis, it will be specifically

mentioned. For more generic task names ("implementation", "testing", etc.) the

values will be shown as-is.

These measures are taken to ensure that employees and customers cannot be

identified from the data presented here.

The data processing/analysis we intend to do was deemed to be in line with the

stated purpose the data was originally collected for (project planning, estimation

and tracking).

4.1 Project understanding

While the company has the aforementioned broad goals for effort estimation im-

provement, the initial primary goal of this analysis project is limited to improving

project resourcing by predicting when a given employee’s workload is going to fall

sufficiently low that they can start work on a new project. In practice this means

predicting how a given employee’s work hours logged to his active projects are likely

to develop.

There is some reporting functionality that uses the data already, but an in-depth

machine learning analysis of this nature hasn’t been previously performed. As such,

a lot of the work we do in this project will be exploratory in nature, as current

understanding of the patterns in the data is fairly limited. At a minimum, we

will seek to form suggestions on how the hours logging process and gathered data

might be improved to support future data analysis projects. Any additional insights

encountered during the analysis process will be noted as well.
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4.2 Data understanding

ATR Works contains the logged work hours of all company employees from mid-2009

onwards. In addition to the work hours themselves, there is some related metadata

like basic information about projects, employees and customers that is needed to

give structure to the work hour logs. The system has seen some development and

expansion during use, so older data may be incomplete in some respects, because

fields that have been added later have only been filled for older projects in case there

was a specific need for it. This however is mostly an issue with the metadata, the

actual work hour data model appears to have stayed remarkably consistent.

For the purposes of this analysis, we are primarily interested in the hours data

and the metadata immediately related to it. This means the projects and tasks

that the hours data is structured around. A short description of each entity and

their interrelations follows. This is generally restricted to fields and features that

we consider interesting from the data analysis point of view:

• Booking: A single instance of logged work hours. Consists of employee id,

date of the booking, hours spent, references to the project and task this book-

ing belongs to, a short free text description of the time spent, as well as various

system fields (created and modified timestamps, etc). Project reference is al-

ways present, but task reference isn’t mandatory, as some projects don’t have

any tasks defined for them.

Note that employees can and frequently will make several bookings per day

for time spent on different projects or tasks, and the booking isn’t necessarily

created on the same day as the work was done. In general, employees have

fairly significant latitude to log their hours as and when they prefer, although

customers may have some requirements in this regard.

• Project: Basic information about any given project, like project name, de-
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scription and responsible manager. From the analysis point of view, we are

mainly interested in the fields that categorize projects (status, type, category)

as well as fields that contain information about project planning (planned start

and end dates, planned work hours).

The planning fields have been added later on, and thus old projects generally

have null values in these. The current process requires them to be always filled,

though case-by-case exceptions may still exist. The practical usage cut-off for

these fields appears to be around the start of 2015, data older than that will

seldom have the fields filled. Project category also seems to be a more recent

addition that sees more frequent use from early 2016 onwards.

• Task: A project may have tasks defined to further categorize related work

hours. Notice that it is not mandatory to create tasks for a project, and the

broader semantics of creating tasks are left entirely up to a given project’s

responsible manager. The system does contain some default tasks that can

be used if the manager wishes to, these essentially represent the traditional

understanding of project life cycle phases and common activities, like meetings,

design, development, support and such, but these kinds of task semantics

aren’t forced. Another common way to define tasks is to make each task

represent a software feature, like some particular system integration or UI

view for example.

In addition to the basic name, description and project reference fields, tasks

have a wide variety of fields that can be used for planning, like defined dead-

lines, planned and remaining hours and such. However, these appear to be

very sparsely used, likely because their use isn’t mandated by the system or

process. Due to this sparsity, the planning fields don’t appear initially very

useful for analysis.
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The data is stored in a relational database, and each of the aforementioned

entities occupies a single table. In addition to the relations described explicitly

above, things like different project statuses and categories are described in their own

tables, but from analysis point of view, those essentially form categorical attributes

so the smaller tables aren’t separately described here.

4.2.1 Employee work hour plots

The most obvious first step in data understanding is to make some basic visual

plots of the relevant interesting data, and see what turns up. As we’re interested

in predicting individual employee workloads, we plotted the February 2021 work

hours of all employees. As mentioned earlier, only work hours data related to actual

software development projects is included. Each color-coded plot represents the

hours the employee logged for a given project. Some examples from this set are

shown in figure 4.1.

It turns out there are essentially two archetypes to how employee hours are

distributed. Either they have a very limited number of projects (1-2) and very

steadily spend most or all of their time on those, or they have significantly more

projects (around 10 or more), and hours are distributed between those with high

variance and little apparent predictability.

This is problematic for our planned analysis. In the first case, the prediction ML

systems are likely to come up with is simply that the workload will continue as is.

For the latter, it is unlikely any worthwhile prediction is achievable, as the variance

between days is too great. The only potential avenue for worthwhile individual

predictions would be via analyzing the free-form booking descriptions, but that

kind of text comprehension is complicated and likely out of scope for this project.

In summary, the individual work hours data doesn’t appear likely to yield useful

trend predictions.
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Figure 4.1: Total and project-specific work hours logged by two employees in Febru-

ary 2021. Employee 1 has a very steady workload clearly focused on working full-time

on a single project. Employee 2 on the other hand has several ongoing projects that

take greatly varying amounts of time each day.



CHAPTER 4. CASE ATR SOFT / ATR WORKS DATA 68

It is worth noting that the total hours plot may be of interest to management

and HR as a general employee well-being metric. Great variance in that may indi-

cate wildly fluctuating project demands/workloads, which itself can be a problem

depending on how well an individual copes with such circumstances.

4.2.2 Project work hour plots

Another way to approach individual workload estimation is to see how each project

as a whole is proceeding, and then inferring employee workload from any trends seen

on project-level in the projects that they are working on. With this in mind, some

projects’ collective hours per day were plotted. See figure 4.2.

There is still a significant amount of variance, but at least some upward/down-

ward trends can be seen. Aggregating the data of multiple employees appears to

have somewhat evened out the problematic variance seen in individual employees’

bookings. There is still the question of how good of a general model can be derived

from the data, given that projects like the ones shown in figure 4.2 aren’t the most

common type in terms of size and duration. However, this shows at least some

promise.

Based on this, we will move forward with project-level prediction. This neces-

sitates some discussion with ATR management, as the initial findings need to be

communicated and corresponding analysis goal adjustments agreed upon.

4.3 Project understanding revisited

The first round of data understanding doesn’t appear to support the feasibility

of predicting an individual employee’s work hours to a useful degree. However, a

project-level view appears more promising. These findings were discussed with ATR

management, and the goal of this analysis was accordingly adjusted to estimating
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Figure 4.2: All logged hours from the whole duration of two projects. While there

is significant day to day variance, some general trends can be seen.
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remaining project durations. While this changes the focus of the data analysis

project somewhat, the initial goal can still be covered in an indirect way, and project-

level estimations are considered useful in and of themselves.

Thus, the new primary goal of this analysis is to predict how many work hours

are needed to complete a given project. This prediction should be obtainable at any

time during the project life cycle. So we seek to answer the following question: "On

date X, how many work hours are needed to complete project Y?" Any additional

insights encountered along the way (during data understanding and preparation)

are still welcome, and once analysis related to the primary goal has been completed,

additional unsupervised learning / pattern finding may be conducted if time permits.

4.4 Data understanding, second iteration

With the focus of the analysis moved to the project level, a closer look at project

tasks is merited. Tasks are used to give project hours some more structure and

context, and while there is some variety in how the tasks are defined and used, our

domain knowledge (previous experience in personally using ATR Works in this case)

suggests the task data may be helpful in determining which part of its life cycle a

project is in.

To see if such assumptions are warranted, we will plot daily task breakdowns of

some larger scale projects in the system. Larger scale here means at least 3-4 people

involved and the project lasting at least a few months. While discussions with ATR

management have made it known that projects of such scale are somewhat uncom-

mon (most are smaller), they are the most likely to show the suspected task/life

cycle correlation. The potential representation issue is ignored for now, though it

will need to be addressed later on if analysis proceeds along these lines. Figures

4.3, 4.4 and 4.5 contain the daily task breakdowns of three different projects. Each

vertical bar represents one day, with said day’s task-specific hours represented by



CHAPTER 4. CASE ATR SOFT / ATR WORKS DATA 71

Figure 4.3: In this project the approaching end of its life cycle is clearly represented

in the relative prevalence of tasks, with bug fixing and support appearing late in the

process. The exact meaning of the project closure task is somewhat unclear, because

the first bookings under that task appear midway through the project already.

different colored sections of the bar.

Figure 4.3 appears to support the hypothesis that certain tasks are more preva-

lent towards the end of project life cycle. In this case, bug fixing and support appear

late in the process, and support especially forms the entirety of the final bookings.

Figure 4.4 is less obvious, since the task definitions themselves don’t as clearly

represent project life cycle phases, but the project management task does get more

prevalent as the overall project hours trend down. One potential data quality issue

can be seen in this figure: Project management is included in two tasks. In this

case, it exists both as a separate task, and as a part of a task that contains other

activities as well. In this case it seems like the mixed task was more focused on
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Figure 4.4: Here the change in task prevalence is less obvious than in figure 4.3, but

project management does appear to increase in prevalence as the development winds

down towards the end. Presumably typical project finalizing tasks were recorded

under the project management task, or those tasks were handled by the customer,

with the development team’s participation in them being supportive in nature. Note

that task definitions in this project contain some overlap, with project management

present in two tasks.

the specifications and meetings part, since this task is mostly seen early on, with

lower prevalence later on when the dedicated project management task starts to

appear regularly. However, such overlap in tasks may be a problem if tasks are to

be categorized along some life cycle phase pattern.

Figure 4.5 again has test-related tasks appearing towards the end. This project is

also notable for having several feature-type tasks defined. While these don’t provide

any immediately obvious information about project life cycle phase progress, they

theoretically could. Features typically have some kind of a prioritization or schedule,

so if that data was available, it could assist in project duration prediction. Once
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Figure 4.5: This project has several tasks that represent features rather than more

generic project activities. However, test environment setup as well as test planning

and management do appear late in the life cycle again.

low-priority or late-scheduled tasks start to appear in bookings, the project is likely

getting close to the end. ATR Works doesn’t currently appear to support storing

such data, however.

In summary, the task breakdown appears to offer a way to track project progress.

Together with the insight gained in the initial data understanding phase, this would

suggest that it is worthwhile to proceed with the data analysis along these lines.
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4.5 Data preparation

With the determination that our general analysis direction appears promising, we

move on to selecting and pre-processing the data.

4.5.1 Project data

Projects in ATR Works are split into two main types: General and assigned. General

projects are visible to all employees, and are intended for tallying up hours used on

tasks like team/company meetings, generic office work (like filling out the time

sheet), business travel and assorted absences (vacations, midweek holidays, etc.).

Assigned projects are visible only to employees who have been assigned to work on

them, this contains essentially all productive software development work. Projects

are further divided into five general types, which are project, product, business

development, continuous service and product project. Of these, discussion with

ATR management suggested that business development should be left outside the

analysis, because projects of that type don’t contain any software development,

rather they’re about general process improvements and such, which likely won’t be

relevant to our analysis goals. There are some reservations about the relevance of

products and continuous services as well, but those don’t appear sufficient to leave

that data out at this point.

Based on this and the previously found insight that project planning fields start

seeing wider use around at around 2015, we fetched all "assigned" -type projects

created since 1.1.2015, whose category is anything other than business development.

These criteria yielded 615 projects in total. The basic project data was enriched

by calculating the actual hours spent on each project, as well as the actual start

and end dates (dates on which the first/last booking was made to that project).

Notice that as projects weren’t filtered by current status, this data set does contain

currently active projects where end date and actual hours are still subject to change.
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This will need to be kept in mind later on when actual modeling is done.

4.5.2 Project task data

All the defined tasks related to the aforementioned 615 projects were fetched next.

There were a total of 1469 of them. As previously mentioned, the exact semantics

of tasks are up to the people who created them, and while a default template for life

cycle -type tasks exists, it’s not mandatory to use. For this reason, the tasks aren’t

very useful as-is. Thus we decided to manually categorize them into a more formal

representation of a typical project life cycle. For this, the following 7 categories were

defined:

• Unassigned: Default value for when no category has been defined. Tasks

aren’t mandatory to use, so some bookings simply won’t have any task defini-

tion, and thus no task category either.

• Other: Tasks which aren’t obviously tied to any particular phase of the

project life cycle. Meetings etc.

• Feature: As mentioned previously, in some projects the tasks represent fea-

tures of the product or service being worked on. While these likely do have

some scheduling or prioritization attached, that data doesn’t exist in ATR

Works. As such, their place in the life cycle can’t be determined, but these

tasks form a clear category of their own, so they aren’t put in "other".

• Planning: Tasks involving design, project planning, kick-offs and other tasks

that likely happen early on in a project.

• Implementation: Tasks that are likely to happen in the main development

phase of a project.
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• Testing: Testing-related tasks. While some testing is done as part of devel-

opment in all phases of the project, a greater prevalence of testing indicates

a project has likely reached some kind of a validation phase, and is thus ap-

proaching end.

• Finalization: Final polish, bug fixing, production installations or other de-

livery activities, product support. Tasks associated with project wrap-up.

All 1469 relevant tasks were assigned one of these categories. In the future, it

might be useful to look into techniques that could automatically assign categories

to tasks, but in this case the number of tasks was sufficiently limited that it could

be done manually in a reasonable time. Additionally, to avoid such issues in future

analyses altogether, a task category field could be added to the existing data model

and made mandatory, so that life cycle classification would always be done when

tasks are created. This might allow us to derive some project phase data from

feature-based tasks as well, since those could be given category values according to

schedule/priority.

4.5.3 Project bookings

All bookings related to the selected 615 projects were fetched next. This amounted

to 65083 records. As we’re planning to calculate task category breakdowns for

various time spans from these bookings, we added the task category of each booking

directly to the booking records at this point, so that information won’t have to be

cross-referenced from task data. Approximately 22000 bookings had a null task id

(ie. no task defined). These were more common in older data. As mentioned in

previous section, these received the task category value "unassigned".

Each booking contains a short free text description of what was done. More

in-depth text analysis was deemed out of scope here, but some simple keyword
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matching was still performed, to obtain some insight from the description text.

This was prompted by discussion with ATR management, where it was mentioned

that one way to guess whether a project was about to wrap up was to check at a

glance whether things like testing and bug fixing seemed to appear commonly in

descriptions. The keywords were "test", "bug", "deploy" and "refactor/refaktor".

The refactoring match was done with two spellings to include descriptions written

in Finnish. Something similar was considered for "deploy", but a commonly used

mostly unambiguous Finnish equivalent wasn’t found. Even descriptions written in

Finnish seemed to still commonly use some variant of the word "deploy", so that

was deemed good enough.

Again, the logic is that such words are more likely to appear in descriptions

towards the end of a project, when testing, bug fixing and code cleanup activities

are more commonly performed. For each keyword, a new attribute was created,

which contains 0 if no matches to that keyword were found, and 1 if at least one

instance of the keyword was present in booking description. The matching was done

as a simple substring match (ignoring case), so the keywords don’t have to appear

as-is, they might also be part of a compound word. This means that some of these

matches likely are inaccurate, but manual inspection of some data suggests that

such cases are fairly rare.

4.5.4 Aggregation and feature extraction

With the basic work hour data and the immediately relevant metadata categorized

and enriched with some additional attributes, the remaining task is to aggregate this

data into a coherent matrix where each row represents the state of a given project at

some point in time. Various new attributes will also be generated from the enriched

raw data.

Note that while we of course seek to generate attributes that we believe will prove
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useful for modeling, ultimately the usefulness (or lack thereof) of a given attribute

can only really be known once it is used and evaluated in modeling. With this

understanding, we aren’t going to do any feature selection at this point; attributes

generated here are assumed to have at least some value, based on domain knowl-

edge obtained from conversations with ATR management and personal experience.

Depending on what kind of performance we achieve in the modeling phase, we may

attempt some feature selection there.

Each row in the aggregated data represents project bookings in the last 7 days,

with some longer term historical data for comparison. There are 58 attributes

in total, divided into the following three categories (number of attributes in each

category in parentheses):

• Tracking attributes (12) are intended to assist with partitioning the data

into subsets for training/testing, as well as to make it clear what project and

time span a row represents. These are not initially intended to be used as

training/prediction features, but may of course be used for that purpose as

well if the need arises.

• Training/prediction features (41) represent the project’s state over the

time span represented by the row, as well as longer term historical data from

the last 4 and 12 weeks.

• Target attributes (5) are the values that we seek to predict in modeling.

Notice that as mentioned earlier, some of the projects in this data set are in fact

active and ongoing. These can’t be used for model training or evaluation, because

the final values of their target attributes aren’t known at the moment. However,

they are still included here because ATR Soft might be interested in what kind of

durations are predicted for them.
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Tables A.1 - A.4 in appendix A describe all attributes in the final aggregated

data set.

4.5.5 Final notes about aggregated data

During aggregation, projects with 0 logged hours, as well as projects where either

actual start and end dates or planned start and end dates were equal (ie. project’s

planned or actual duration was just one day) were filtered out, as it was deemed these

aren’t likely to contain any interesting data about general project trends. With this,

the number of projects was reduced from the initial 615 to 537. The total number

of aggregated booking data rows was 16370.

Of the 537 projects, approximately 450 were inactive and thus potentially suit-

able for use as training/evaluation data. This set was further pruned to approxi-

mately 400 projects, based on discussions with ATR management about the char-

acteristics and circumstances that make the removed projects unlikely to represent

the general trend well. This leaves us with approximately 8400 relevant rows of

aggregated project data to be used for training/evaluation.

There are some known potential data quality issues in the aggregated data. The

most important one is, that the project-level planned hours and end date fields,

which are used to derive some of the features in the aggregated data may not be

entirely reliable. According to discussions with ATR management, these fields are

sometimes updated during a project, to reflect updated estimations or requirements.

As such, especially for time spans early on in the project, features dependent on this

information may not accurately represent what the project estimation was at the

time. This may give machine learning models an overly optimistic view of the

planning field accuracy. This might then cause those attributes to get more weight

based on faulty information.

ATR Works does store some history information about project fields, so digging
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out the actual estimate value that existed during a given time span of a project is pos-

sible, but it was deemed overly complicated to do given current schedule constraints.

This might be revisited if the modeling results and overall progress require/permit

it.

It should also be noted that the feature values haven’t been normalized in any

way yet. This is because such normalization is relatively trivial, requiring only

a single library function call, so doing it during modeling as and when necessary

doesn’t require much extra effort.

The most important thing to keep in mind is that we’re dealing with time-series

data here. Care must be taken to ensure that models aren’t trained on data that

wouldn’t exist at the point of time we’re simulating with testing data. This is the

main reason for the existence of the aforementioned tracking attributes. Between

the date and project status information contained in those, it should be relatively

simple to separate the data into training and test sets without biasing the results

with unrealistic training data.



5 Model training and evaluation

With the data pre-processed into a form suitable for modeling, we can proceed

with fitting some actual machine learning models and seeing what we can predict.

In addition to model selection and tuning, we may also need to do some more

data/feature selection in a similar fashion to what was done in pre-processing. This

depends on what kind of initial insights we gain from modeling, but as mentioned

in section 3.4, this kind of backtracking is common in data analysis processes.

General considerations regarding time-series data

As we’re dealing with time-series data, we must make sure in each experiment that

we’re not training our models on data that wouldn’t realistically be available at the

point of time where we’re trying to predict something. As the actual project end

date is included on every row of the aggregated booking data, we can easily address

this concern by designating a cut-off date between the training and test data sets,

and ensuring only bookings related to projects that ended prior to this date are used

for training. Conversely, aggregated booking rows whose time span starts after the

cut-off date can be used for testing.

Note that testing rows need to be specifically filtered by time span start date,

rather than project end date. Some of these projects were ongoing before the cut-off

date, so some aggregated booking rows of these projects depict times before cut-off,

which means some training data wouldn’t realistically have been available at the
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time.

As mentioned in the previous chapter, the earliest data we have is from 1.1.2015.

The closer the cut-off date is to this date, the less data we have for training. Con-

versely, the closer the cut-off date is to the present day, the less data we have for

testing. In the former case, the problem is obvious; too small amount of training

data means the model will likely underfit to a significant degree, and thus predict

poorly. In the latter case, the problem is the accuracy of any performance evaluation

we do, as the amount of testing data is such a small fraction of the whole data set

that we can’t be certain it properly represents the set as a whole.

As our data set is not particularly large, cross-validation would be very useful,

but unfortunately it cannot be applied here due to the previously mentioned timeline

constraints.

For the initial experiments, we’ll use the cut-off date of 1.4.2020. This was

determined by simply checking how the aggregated data splits on different dates,

with the aforementioned date yielding roughly a 3-to-1 split between training and

testing data sets in terms of both projects and aggregated booking rows.

The need to split the data along a cut-off date has some implications regarding

the representativeness of the test set. Namely, when using the aforementioned cut-off

date, our test set only represents projects that lasted a maximum of approximately

one year, or a maximum of a year’s worth of data from the tail end of projects that

lasted more than a year. While moving the cut-off date further to the left on the

timeline (ie. further into the past) would increase the maximum project run times

that can be represented in the test set, this would also commensurately shrink the

training data set. As we’re dealing with a fairly limited amount of data to begin

with, this is undesirable, and furthermore, a large number of ATR Soft’s projects are

shorter than a year, so from a practical analysis perspective the representativeness

of the test set is good enough.
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Tools and related considerations

We’re using the scikit-learn (sklearn for short) [34] library for the practical modeling

and pre-processing tools. These require that there are no NaN (Not a Number, ie.

null) values in the data, even when using methods like decision trees that could

theoretically handle such a situation. NaN values are present in the four planned

duration features (planned days left absolute and percentage, as well as planned

hours left absolute and percentage). These are likely to be quite valuable prediction

features, so dropping the whole columns isn’t an option, and there isn’t an obvi-

ous way to impute values either. As such, rows with NaN values were dropped.

This reduced the available data to 6009 aggregated booking rows representing 290

projects.

General performance baselines

For performance evaluation, it is useful to have some baselines to compare the

achieved performance against. Occasionally performance scores that look promis-

ing turn out to barely exceed some trivial baseline, meaning that the model isn’t

ultimately useful.

For classification, we will use a simple majority voter as baseline. In practice this

means always predicting the value "12w" for the "ends_in" column, which achieves

a classification accuracy of 35% with a test set created from the aforementioned

1.4.2020 cut-off date.

For regression, we have two suitable baselines: Always predicting the median

value of the label column, and predicting whatever the current expert estimate is at

the time the prediction is made. Table 5.1 contains basic performance measures for

the median baseline, table 5.2 contains the same measures for expert estimate.
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Measurement Attribute Result

C-index Hours left (abs) 0.5

C-index Days left (abs) 0.5

C-index Hours left (pct) 0.5

C-index Days left (pct) 0.5

MAE Hours left (abs) 60.4

MAE Days left (abs) 50.4

MAE Hours left (pct) 0.251

MAE Days left (pct) 0.271

Table 5.1: C-index and mean absolute error scores for median baseline.

Measurement Attribute Result

C-index Hours left (abs) 0.720

C-index Days left (abs) 0.719

C-index Hours left (pct) 0.771

C-index Days left (pct) 0.769

MAE Hours left (abs) 61.4

MAE Days left (abs) 61.6

MAE Hours left (pct) 0.458

MAE Days left (pct) 0.388

Table 5.2: C-index and mean absolute error scores for expert evaluation baseline.

5.1 General model

The best case scenario for ATR Soft would be if we could create a general model

capable of accurately predicting the duration of any project at an arbitrary point in

time from all accumulated past project data. This is a very ambitious goal given the

great variance in scope and circumstances that ATR’s software projects can have,
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but it is fairly simple to set up an experiment to see how well such a model might

perform.

5.1.1 Experiment setup

• Data: Data is split into training and testing sets along a cut-off date of

1.4.2020. Data from projects that ended before that date forms the training

set, and data from after that date forms the testing set. The feature columns

are z-score standardized to ensure they all have comparable magnitudes. No

feature or data selection is done beyond this, so both data sets contain the full

variety of project scopes and categories, and the full feature set is used.

• Models: Three different model classes will be tested. K-nearest neighbors,

random forest and multi-layer perceptron. For each, some model selection will

be done, the particulars of which depend on the model in question.

• Goals: We will attempt to predict the values for all of the five target attributes

listed in A.4. Four of these are numerical, and require a regression model, the

last is categorical and requires a classification model. The prediction will be

made for every aggregated booking row in the test set, to simulate predicting

project duration at an arbitrary point in time.

• Evaluation: The performance of each model candidate is evaluated by calcu-

lating the mean absolute error for each regression target, and by calculating

classification accuracy and a confusion matrix for the classification target.

Mean absolute error is used instead of mean square error to give a more easily

human-readable approximation of how far from the true values the predictions

typically are.

Regression results will be compared to baselines established in tables 5.1 and

5.2. Classification results will be compared to the majority voter score.



CHAPTER 5. MODEL TRAINING AND EVALUATION 86

Notes

Some of the features in the data set are conceptually somewhat problematic for this

kind of a scenario. Features that depict project history over a longer period of time

(4 and 12 weeks in this case) will obviously have misleading values when predicting

either a project that never lasted that long, or one that hasn’t yet run that long at

the point of time where the prediction is made. A cursory check shows that out of

the approximately 6000 rows in our data set, approximately 2400 depict situations

where the project has run less than 12 weeks, and approximately 1000 depict run

times of less than 4 weeks.

Prediction of absolute remaining calendar days and work hours is unlikely to

attain good accuracy. This is because regression problems generally require the

training data set to have example values of roughly similar magnitude as the correct

target value in a distribution where the prediction mechanism is likely to arrive at

some reasonably close prediction. In this case however, we know the training data

contains true hours and days values ranging from the single digits to the thousands.

Percentage values for hours and calendar days left may still arrive at a reasonable

prediction, because the scale is static (0 ... 1) for all rows in training and test sets.

5.1.2 Model selection

k-nearest neighbors

For k-nearest neighbors, model selection was performed by training a model with

various k-values and plotting the results. Distance measure was euclidean, and other

parameters were left to the sklearn defaults. The k-values tested were 5, 11, 21, 51,

101 and 201. Odd values were used to reduce the amount of ties (less significant

with regression, but potentially useful for classification) C-index and MAE result

plots for each k-value can be seen in figure 5.1.
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Figure 5.1: Regression accuracy metrics for kNN models trained with various values

of k. K-value on X axis, calendar days and work hours as absolute values and

percentages on Y axis.
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For the classification target attribute (ends_in), a kNN classifier was trained with

the same set of k-values and euclidean distance measure. Classification accuracies

for each k-value can be seen in table 5.3. For the best k-value (11), the corresponding

confusion matrix can be seen in figure 5.2.

k-value Classification accuracy (%)

5 34.1

11 34.7

21 34.3

51 29.5

101 29.5

201 27.7

Table 5.3: Results of k-NN classifier for predicting the categorical "ends_in" target

attribute.

Random forest

Random forest regressors and classifiers were selected mainly by changing the num-

ber of trees. Tree depth (values between 5 and 25) and alternate split scoring

functions (mean absolute error for regression, entropy for classification) were also

tried, but ultimately deemed to have little, mostly detrimental, effect on the results.

As such the models depicted in the following results only vary by tree count, other

parameters are left to their sklearn defaults. It should be noted that random forests

are remarkably stable models, there is very little change in results between different

numbers of trees either.

Random state was set to zero for all tests, to ensure comparable results between

them (since random forest is inherently a non-deterministic model class).

C-index and MAE result plots for different tree counts can be seen in figure 5.3.
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Figure 5.2: Confusion matrix for kNN classifier with k = 11.

For the classification attribute "ends_in", the classification accuracy achieved

by each random forest model is listed in table 5.4.

Tree number Classification accuracy (%)

20 44.8

100 47.0

200 48.1

300 48.2

400 48.1

500 48.2

Table 5.4: Results of random forest classifier for predicting the categorical "ends_in"

target attribute.

The 300- and 500-tree models achieved identical classification accuracy, so con-

fusion matrices of both models were inspected to see if there was some notable

difference in misclassification types. There wasn’t, the matrices were nearly identi-
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Figure 5.3: Regression accuracy metrics for random forest models trained with var-

ious numbers of trees. Tree number on X axis, calendar days and work hours as

absolute values and percentages on Y axis.
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cal, with cell values differing by 1-3 at most between models. The confusion matrix

for the 300-tree model can be seen in figure 5.4.

Figure 5.4: Confusion matrix for random forest classifier with 300 trees.

Multi-layer perceptron

For multi-layer perceptron models, the main variable was the size of the hidden

layer. For activation function, both rectified linear (ReLU, sklearn default) and

hyperbolic tangent were tested, of these two, hyperbolic tangent performed better

in most respects. This held for both regression and classification.

For weight optimization solver, the default "adam" (a form of stochastic gradient

descent) is recommended for data sets with thousands or more records. Our data

set is on the lower end of this, so the "lbfgs" (Limited-memory Broyden Fletcher

Goldfarb Shanno) solver intended for small data sets was also tried, but performed

worse.

Early stop training was used for all MLP models, with 10% of the training data

set aside for validation. Maximum iterations were increased from default 200 to

400 after initial experiments suggested the models had trouble converging in 200
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Figure 5.5: Regression accuracy metrics for multi-layer perceptrons with different

hidden unit counts. Unit count on X axis, calendar days and work hours as absolute

values and percentages on Y axis.
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iterations. MLP is not a deterministic model, so random state was again set to zero

to make different runs comparable.

In short, the MLP regression and classification results are from models where

hidden layer unit count varied, but other model parameters were always the follow-

ing:

• Activation function: hyperbolic tangent (tanh)

• Solver: adam

• Early stopping: true, with 0.1 validation fraction.

• Maximum iterations: 400

• Random state: 0

Regression results can be seen in figure 5.5. For classification, the accuracy with

different hidden layer sizes can be seen in table 5.5.

Hidden layer size Classification accuracy (%)

10 34.1

15 32.3

20 37.3

30 37.5

Table 5.5: Results of MLP classifier for predicting the categorical "ends_in" target

attribute.

The classification accuracies of MLPs with 20 and 30 units in the hidden layer

were very close, so again both confusion matrices were inspected to see if any major

difference in classification trends could be found. However, again the matrices were

similar enough that no particular insight can be drawn from this. The confusion

matrix for 30 hidden units can be seen in figure 5.6.
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Figure 5.6: Confusion matrix for MLP classifier with 30 hidden units.

5.1.3 Initial results and discussion

Regression

For the regression targets, random forest achieved the best performance. The only

exception was the absolute number of days attribute, where all tested multi-layer

perceptrons achieved performance comparable to random forest, with the 20 hidden

unit model reaching a significantly better result (mean absolute error 44.327) than

the best random forest (500-tree model, which achieved 51.090 MAE). With every

other regression target attribute, even the worst-performing random forests still

outperformed the best models of the other classes.

MLP’s performance with predicting the absolute number of calendar days left in

a project highlights an important issue with artificial neural networks: The inability

to explain their decisions. This model class performed noticeably worse than the

others in all other categories measured by mean absolute error, so the performance

with this single attribute is quite interesting, but we essentially cannot know why

this happened. Furthermore, the c-index results are in the range of 0.60-0.66, which
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is better than random guessing but still quite poor, which suggests that while the

predictions are closer to true values than what other models managed, their internal

order is fairly poorly preserved in the predictions.

Classification

In terms of classification, random forest again performed the best, with classifica-

tion accuracy in the 47-48 percent range for most models. KNN was the worst

with accuracy ranging between 27-34 percent, and MLP between these two with

an accuracy range of 32-37 percent. A simple majority voter reached an accuracy

of approximately 36%, so kNN and MLP can be considered completely useless for

classification here. Closer inspection of the confusion matrices drawn for the best

model of each class shows that the performance difference mainly comes from the

model’s ability to correctly predict the less common "4w" and "7d" classes, though

in kNN’s case its ability to predict the majority class was also considerably weaker

than the other types of models’ was.

Model usefulness

Overall, random forests are the most promising class of models, but in terms of

absolute accuracy measures for both regression and classification, the performance

is too poor to likely be of much use in a company’s daily operations.

In terms of calendar days, the best models are typically off by almost two months

of actual project duration, which is unlikely to be acceptable even in a larger scale

project that runs for months or years. In terms of work hours, the best models

are off by approximately a week and a half’s worth of hours (for a single full-time

employee), which would in fact be a very good prediction accuracy for large projects

which can run for thousands of hours, but we know a large number of projects in the

test set ran for less than 100 hours, so this kind of an error margin is unacceptable.
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The insufficient accuracy of absolute hours and days predictions was more or less

expected, since as mentioned before, the data set contains projects of vastly different

scope. However, the percentage predictions were also quite poor, with mean absolute

error being approximately 15% at best for work hours and 17% for calendar days.

In order to be useful, these would need to be less than 10%, preferably closer to 5%.

On the other hand, random forests achieved c-index scores ranging from roughly

0.7 for absolute days left to 0.77 for absolute hours left, with percentage attributes

evaluated to 0.74-0.75. At first glance this suggests that the order of records is

captured quite well, so there might be some potential in trying to predict project

completion order, rather than the absolute time an individual project might still

need. However, comparison with the expert baseline (table 5.2) shows that this

performance is in fact roughly the same or slightly worse than what current expert

evaluation achieves. Thus a model would likely have to reach c-index values above

0.8 to be a noticeable improvement.

In terms of mean absolute error, random forest does outperform both baselines in

all cases except for the absolute number of days left, where the median baseline result

is approximately equal to what random forest achieved. With the percentage-type

labels, the random forest models outperformed both baselines to a very large degree

(by as much as 30 points in case of hours left percentage, where expert baseline’s

mean absolute error was 45% versus the model’s 15%), but as mentioned before, this

is still likely not good enough to consider the model useful in a real-world estimation

scenario.

Potential causes for inaccuracy

One potential issue here is that we don’t know how valuable each individual feature

in our data set actually is. Nearest neighbors method is particularly vulnerable to

redundant or counterproductive features, since it cannot internally weight them by
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usefulness. Random forest on the other can do some feature weighting internally,

and it did perform considerably better than kNN.

Additionally, as mentioned in the experiment notes, some features in the set

represent lengths of history that don’t exist at the point of prediction for many

rows, since the projects either haven’t run that long at the prediction point, or

never lasted that long in the first place.

With these considerations in mind, we’ll see if we can improve general model

performance by doing some feature selection.

5.1.4 Follow-up: Feature selection

While we can’t feasibly try every possible subset of our 41 features, we can pare the

feature list down by domain knowledge. In practice, we will do backward feature

selection, that is, we’ll drop features we suspect to be useless and see whether

the model performance improves. Based on domain knowledge, the usefulness of

following feature categories will be tested like this:

• Features depicting task categories other than testing and finalization. De-

pending on how project tasks were defined, the content of these features can

be questionable. The categories had to be assigned by hand, and this pro-

cess consisted of the author’s best guess rather than involvement of the actual

people who worked in the project, so their accuracy is questionable to begin

with. Furthermore, these columns depict project phases that don’t indicate

the project ending soon, or phases where it can’t be said what phase they rep-

resent in the first place. This may be unnecessary clutter rather than useful

information to base predictions on.

• Features depicting 12-week history (all attributes with the "12w_" prefix. For

many projects and prediction points, these are irrelevant or misleading for the

aforementioned reasons.
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• Keyword match features. Again, it’s entirely possible that the simple keyword

matches don’t actually correlate well with project end. Some of these columns

are also quite sparsely populated with any non-default (non-zero) values.

All tested feature subsets can be found in appendix B. For each of these feature

subsets, model selection was run as described in 5.1.2.

5.1.5 Results of feature selection

KNN saw the most improvement from feature selection, with the removal of each of

the aforementioned subsets resulting in performance increase across all measures. Ul-

timately, the results still fall somewhat short of what random forest models achieve,

but the improvement from non-feature selected data is notable in both regression

and classification. The final regression results of kNN with all aforementioned fea-

ture categories removed can be seen in figure 5.7. Classification accuracy range was

41-46%, seeing improvement of approximately 10 or more percentage points for each

k-value, putting kNN well above majority voter and MLP in this situation.

In other model classes, the feature selection had little to no effect, and in some

cases was actually detrimental, though to a very minor degree. The mean absolute

error for absolute days left with MLP saw the higher hidden unit counts achieve

values under 50 more consistently, but everything else either stayed the same or

deteriorated slightly as features were removed. With random forests, classification

accuracy improved by two or three percentage points across all models, while re-

gression results stayed the same or deteriorated to a barely noticeable degree.

As random forest models do internal feature selection and can return the feature

importances they arrived at, we plotted the feature importances returned by the

500-tree regression and classification forests for comparison. The results can be seen

in figures 5.8 and 5.9.

Notice that mean decrease in impurity (MDI) as a metric does favor features
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Figure 5.7: Regression accuracy metrics for kNN models trained with various values

of k. K-value on X axis, calendar days and work hours as absolute values and

percentages on Y axis. Unnecessary features were pruned from the data prior to

training and testing.
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Figure 5.8: Relative feature importances calculated by the 500-tree random forest

regressor. The metric for importance is mean decrease in impurity (MDI). The error

bars represent one standard deviation.

with high cardinality (large number of different values), and sklearn documentation

recommends measuring feature importance by permutation in this case instead.

In practice this means randomly shuffling the values of a feature and measuring

how much model performance was impacted by this. However, this resulted in

near-identical feature importances to what is displayed in figures 5.8 and 5.9, so

cardinality bias doesn’t appear to be an issue here.

Both feature importance plots suggest that our domain knowledge-based fea-

ture selection was on the right track. Especially for regression, only the planned

days/hours fields seem to hold any real value, and even of those the absolute planned

hours feature is extremely dominant. For classification, the feature importance dis-

tribution was more even, though again the planned days/hours fields were the most
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Figure 5.9: Relative feature importances calculated by the 500-tree random forest

classifier. The metric for importance is mean decrease in impurity (MDI). The error

bars represent one standard deviation.

important.

This suggests that a large quantity of the available features are in fact fairly

inconsequential for making predictions, but kNN is the only model that suffers from

this to a noticeable degree. In either case, while the performance improvement for

kNN was noticeable, it still failed to improve upon what random forest achieved, so

random forest remains the most promising model class.

5.2 Limited scope models

As the general models don’t appear to offer sufficient performance, we will next try

to create models of more limited scope. This means creating models that are built

for predicting projects of a particular scope or scale, rather than trying to encompass
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all of the company’s projects in a single model. Furthermore, we will try to address

the issue of using features that describe lengths of history that a project may not

yet have at the time some predictions are made.

Discussions with ATR management about the results of the general model ex-

periment suggested that while models should of course be as accurate as possible, in

some situations there may be a preference for the model’s tendency to over- or un-

derestimate the remaining project duration. This is essentially a trade-off between

customer satisfaction and the efficiency of personnel assignments to billable work. If

a project’s remaining duration is underestimated, the company may end up making

delivery date promises that cannot be kept, which is problematic for customer re-

lations. On the other hand, if the project duration is overestimated, personnel will

potentially be out of billable work for a while as the project completes before a new

one can be assigned. While no project management decision will be made solely

based on model predictions, with the aforementioned concerns in mind it would be

useful to know which way a model is likely to err, so that management can account

for that in resource planning.

Furthermore, accurate estimates are most in demand during the last month of a

project’s run time, as then the issue of re-assigning personnel to new projects is the

most acute.

5.2.1 The plan and initial insights

Limiting the scope of a model can be done in several ways, depending on the data

we’re working with. In this case, an intuitive idea is to plot project durations (in

days) against their total work hours, in the hopes of finding some particular clusters

of project scope that could be targeted for modeling (the plot itself is omitted by

request from ATR). Unfortunately, no particular clusters were revealed by this.

However, a number of projects did appear as clear outliers in terms of scope. These
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will be addressed in experiment setup.

As no clear clusters were found, we will instead attempt to create project-specific

models that account for general project scale as well as the elapsed project run time

at the point of time where the prediction is made. The fundamental idea is to create

1-3 models for predicting each project at different parts of its run time. The models

are trained on data which contains only past projects of similar scale as the target

project. Up to three different models per project are trained with different feature

sets based on how long the project has been running at the time the prediction is

made. The first model represents the situation where a project has run for less than

4 weeks. This model is trained on a feature set where the 4- and 12-week history

features are omitted, since the project hasn’t got that much history yet. The next

model represents a project run time of over 4 but less than 12 weeks. This model is

trained on a feature set where the 12-week history features are omitted. The final

model is trained on a full feature set including all history features, this represents a

project that has run for at least 12 weeks.

The general model experiment showed that on the scale of data we’re operating

in, models are quite fast to fit, so creating project-specific models is within the

available processing resources.

We will use planned project work hours as a scale metric. Planned project

duration in calendar days was also considered, possibly in combination with work

hours. However, ultimately limiting the relevant training projects solely by planned

work hours seemed more prudent for two reasons:

• Reliability of data: It is known that the planned end date field does not

actually always represent what the field name suggests. Sometimes this field

is used to mark the project end date after the fact. Thus it doesn’t reliably

represent information that would’ve actually been available at the time a pre-

diction was made. Planned hours is less vulnerable to this issue; while it gets
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updated if additional work hours are agreed with the customer, it’s not up-

dated in response to a project falling short or running past initial estimates

like end date occasionally is.

• Data set size concerns: Limiting the training data based on both work

hours and duration would potentially reduce the available training data per

project to an unacceptable degree. For a larger set of data, this might be

feasible, but the ATR works data set is too small for this.

In practice, the scaling will be implemented in the following way: For each

testing project, we will calculate a lower and upper bound of planned hours. All

training data must be from projects that fall between these bounds. Bounds are

calculated by multiplying the testing project’s planned hours with some multiplier.

The multipliers can be set separately, so if necessary, the models can be biased

towards under- or overestimating remaining project effort by simply adjusting the

multipliers to include more or less data from smaller or larger projects.

An initial investigation into what kind of training data set sizes we can expect

to get per project was conducted for various upper and lower bound values. This

investigation suggested that for the vast majority of projects, at least hundreds of

training data rows would be available for bounds on the order of ±50% of target

project planned hours. This was deemed good enough.

5.2.2 Experiment setup

• Data: Data is split into training and testing sets along a cut-off date of

1.4.2020. Data from projects that ended before that date forms the train-

ing set, and data from after that date forms the testing set. Furthermore,

data from projects that were identified as outliers in terms of scope in the

initial analysis is excluded, this resulted in the discarding of approximately
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1000 training data rows and 100 testing data rows. The remaining train-test

split was deemed acceptable. The feature columns are z-score standardized to

ensure they all have comparable magnitudes.

Different feature subsets will be used for modeling depending on project run

time at the point of prediction. The different subsets are listed in appendix C.

Initially, each testing project’s training set will consist of projects whose scale

is between 0.5 and 1.5 times the testing project’s planned hours (ie. within 50

percent). Different upper and lower bounds may be tested to determine the

resulting bias in predictions.

• Models: As random forests performed the best in the general model ex-

periment, we will be using only them in this experiment. In the previous

experiment, increasing tree count above 300 yielded negligible performance

improvement, so in this experiment we will use only 300-tree models. At this

number, the training time is still reasonable.

As explained above, up to three different models will be trained per project.

These represent project run-times of less than 4 weeks, 4-12 weeks, and 12

weeks or more.

Random state is set to zero for all models, to ensure repeatable, comparable

results over multiple runs.

• Goals: We will attempt to predict the values for all of the five target attributes

listed in A.4. Four of these are numerical, and require a regression model, the

last is categorical and requires a classification model. The prediction will be

made for every aggregated booking row in the test set, to simulate predicting

project duration at an arbitrary point in time.

However, in contrast to the general model experiment, in this experiment each

single prediction will be made with a model built specifically for that project
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and run time category (ie. elapsed project time less than 4 weeks, 4-12 weeks

or over 12 weeks) that applies at point of prediction.

• Evaluation: C-index and mean absolute error will be calculated for the whole

testing data set for the regression target attributes. For the classification target

attribute, classification accuracy and confusion matrix are calculated.

As we are operating three distinct categories of models here, we want to know

how models perform by category as well. We will thus split the result set from

the experiment into subsets by the category of model used, and calculate c-

indexes, mean absolute errors and classification accuracies separately for each

category. This is to see whether model performance improves as project moves

forward and more history data becomes available for analysis.

Regression results will be compared to baselines established in tables 5.1 and

5.2. Classification results will be compared to the majority voter score.

5.2.3 Results and discussion

Regression

Basic performance metrics for the project-specific models (PSM) can be seen in table

5.6.

C-index values follow a similar trend to what was seen with the best random

forest models in the general model experiment. That is, the c-index for absolute

amount of days left in project is noticeably lower (sub-0.7) while for the other label

attributes the c-indexes are in the 0.75-0.77 range. The expert baseline (table 5.2)

generally achieves higher c-index values, with the only exception being absolute

amount of work hours left, where expert baseline is 0.720, ie. slightly lower than

what the PSM achieves. As with the general model, it appears that the PSM is

reasonably good at keeping the internal order of test records intact, but is still
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Measurement Attribute Result

C-index Hours left (abs) 0.743

C-index Days left (abs) 0.683

C-index Hours left (pct) 0.752

C-index Days left (pct) 0.774

MAE Hours left (abs) 34.8

MAE Days left (abs) 48.4

MAE Hours left (pct) 0.152

MAE Days left (pct) 0.147

Table 5.6: Overall regression performance for whole testing data set, with training

data scale bounds set as described in experiment setup.

slightly inferior to the expert estimation in use. Median baseline (table 5.1) is of

course exceeded considerably.

With the mean absolute error scores, the PSM outperforms the best general

model and both of the baselines, and with a considerable margin in some cases.

The only exception is the percentage of hours left, where the best general model

random forest achieved the same result (within measurement precision) as the PSM

did. For absolute calendar days left, the best general model, median baseline and

PSM were also very close, though PSM was the best by a slight margin. The largest

improvement was seen with absolute amount of hours left. Here the PSM achieved

a mean absolute error of 34.8, a drop of approximately 25 units compared to both

baselines, and a drop of 17 units compared to the best general model. Percentage

of days left achieved some improvement as well, though the difference was only 2

percentage points from the best general model. Baselines of course have much worse

scores for the MAEs of both percentage attributes.

Overall, PSM achieved either similar or slightly better performance than the



CHAPTER 5. MODEL TRAINING AND EVALUATION 108

best general models, and generally outperformed both baselines in terms of mean

absolute error. C-index scores were equal or slightly worse than what the expert

baseline achieved.

Classification

Figure 5.10: Confusion matrix for the project-specific models over the full test set.

The PSM overall classification accuracy was 43.4%. This is a drop of approxi-

mately 5 percentage points from what the best general model was able to achieve

(48.2%). A majority voter achieved an accuracy of 39.1% with this test data set.

The difference between PSM and majority voter is small enough that PSM can be

considered essentially useless as a classification tool in this scenario. The confusion

matrix for PSM was also plotted, and can be seen in figure 5.10. The general trend

there is fairly similar to what was seen in the random forest general model (figure

5.4), with the noticeably worse ability to correctly predict the "continues" label

appearing to be the main reason why the overall classification accuracy is lower

here.



CHAPTER 5. MODEL TRAINING AND EVALUATION 109

Model usefulness

The considerable improvement in predicting the absolute amount of hours left sug-

gests that the project-specific models may in fact be a worthwhile additional tool for

project planning. This improvement needs to be understood in the context of the

other performance measures however. The c-indexes suggest that PSM isn’t neces-

sarily better at predicting the order of project completions than the current expert

estimations, and in terms of predicting remaining calendar days, the improvement

offered by PSM over the expert baseline is also fairly minor.

This suggests that the primary use of the project-specific models would be ef-

fort estimation, with duration estimation being much less useful. At this level of

accuracy, the model would still be simply an additional tool for management, rather

than a complete solution for the problem however.

In order to apply such a tool more efficiently, some more detailed looks into the

produced results are merited.

5.2.4 Follow-up: Model performance by type

The project-specific models are made up of three distinct types of models, with

different feature subsets formed on the basis of elapsed project run time at the point

of prediction. As the previous experiment uncovered some differences in feature

usefulness, a look into how different PSM types perform is merited.

This is carried out by separating the PSM result data into model type -specific

subsets and calculating the basic regression performance measures (c-indexes, mean

absolute errors and classification accuracy) for each subset.

Regression

The regression performance metrics can be seen in tables 5.7 - 5.9.

It appears that as projects run longer and more features can be incorporated
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Measurement Attribute Result

C-index Hours left (abs) 0.810

C-index Days left (abs) 0.707

C-index Hours left (pct) 0.786

C-index Days left (pct) 0.719

MAE Hours left (abs) 34.6

MAE Days left (abs) 44.7

MAE Hours left (pct) 0.170

MAE Days left (pct) 0.178

Table 5.7: Performance measures for project-specific models targeted at projects

that have less than 4 weeks of elapsed run time.

Measurement Attribute Result

C-index Hours left (abs) 0.776

C-index Days left (abs) 0.727

C-index Hours left (pct) 0.702

C-index Days left (pct) 0.716

MAE Hours left (abs) 34.6

MAE Days left (abs) 46.5

MAE Hours left (pct) 0.179

MAE Days left (pct) 0.160

Table 5.8: Performance measures for project-specific models targeted at projects

that have run for at least 4 weeks, but less than 12.

into the analysis, most performance metrics actually deteriorate to some degree.

A notable exception are the percentage-based hours and days left attributes, these

actually see a considerable (around 5 percentage point) performance boost once the
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Measurement Attribute Result

C-index Hours left (abs) 0.689

C-index Days left (abs) 0.645

C-index Hours left (pct) 0.685

C-index Days left (pct) 0.695

MAE Hours left (abs) 35.1

MAE Days left (abs) 51.4

MAE Hours left (pct) 0.125

MAE Days left (pct) 0.124

Table 5.9: Performance measures for project-specific models targeted at projects

that have at least 12 weeks of elapsed run time.

full 12-week feature set is used.

The mean absolute error of the absolute hours left prediction is remarkably

consistent across all model types, but its c-index with the most limited feature set is

notably high (0.810), suggesting a significant improvement over the expert baseline

(0.720) in ordering projects by effort early on in the project run time.

This further supports the feasibility of the idea of using PSM to predict required

effort for a project, particularly in the early part of project run time. Additionally,

while absolute hours/days predictions produced later on in the project run time may

be of questionable value, the percentage predictions approach useful accuracy once

the full feature set is in use.

Classification

The breakdown of classification accuracies (see table 5.10) is quite interesting. The

shorter run-time models perform much better than baseline, and in fact reach com-

parable accuracies to what the best general models achieved. The long run-time
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Model type (elapsed

project run time)

Type-specific

Acc%

Baseline Acc%

< 4 weeks 46.2 33.6

4-12 weeks 49.1 37.1

> 12 weeks 38.5 36.2

Table 5.10: Classification accuracies for each model type (project run time at point

of prediction). Baseline (majority voter) score for each test data subset also included

for comparison.

models however perform much worse, with an accuracy approximately 10 percent-

age points lower than that of the other types, and only slightly above the baseline.

This is interesting because in the previous experiment several 12-week features

were identified by random forest internal scores as fairly relevant (see figure 5.9),

yet here their absence improves the classification accuracy to a significant degree.

Furthermore, since we’re using random forests here as well, the internal feature

selection should be able to mostly negate counterproductive features. Unfortunately,

further analysis of this result is not feasible here, as this classification accuracy is

the composite result of a total of 49 random forest models, which would have to

be analyzed separately for insights into the causes of poor classification accuracy in

this bracket.

It is also possible that this result is simply some artefact of the particular test

data subsets, since we’re already dealing with fairly limited amounts of data.

5.2.5 Follow-up: Biasing the regression model

As mentioned in experiment introduction, there is some interest in knowing whether

the model is more likely to over- or under-predict the remaining days and hours. The

ability to set the lower and upper bounds of scale for projects included in the training
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data for a given model could possibly be used to bias the model in one direction or

another. A simple way to measure this is to count the number of predictions that

were higher than the true value, and comparing the counts between modeling runs

with different values of lower and upper bounds.

The initial bounds were 0.5 lower, 1.5 upper. Two other sets of bounds were

tested, and the results can be seen in table 5.11. There are a total of 1114 records

in the test set, so any value greater than 557 suggests a model is more likely to

overestimate the remaining hours/days.

Lower and upper

bounds

Predicted hours >

actual hours

Predicted days >

actual days

0.3 - 1.25 624 714

0.5 - 1.5 669 744

0.75 - 2.0 703 744

Table 5.11: Number of times the models with different training data scale bounds

overestimated the remaining hours and days.

It turns out that the initial, balanced scale bounds (0.5 - 1.5) produce a model

that is significantly more likely to overestimate a project’s work hours and duration

than underestimate it. Even scale bounds that significantly favor smaller training

projects (0.3 - 1.25) still produce a model that will more likely overestimate a project

than underestimate it, though in terms of work hours this model is closer to an even

split.

In terms of work hours, the trend is clear here: The more room is given for

projects larger than the one being estimated, the more likely the model is to over-

estimate. This suggests that if biasing the model in one direction or another is

desirable, it can be done by simply directing the training data selection via the scale

bounds.
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For remaining days, the result is more ambiguous. Increasing the bounds from

the initial balanced scale didn’t produce a change in the number of overestimations,

but this could be caused by the distribution of the training data set, as we know

from the initial project scale plotting that data does get more sparse as project sizes

increase. The lower bounds did produce a decrease in overestimations compared

to the balanced bounds, though the model remained very heavily biased towards

overestimation.

In either case, the distribution of the scale of the projects in the data set does

put limits on how far the biasing can be taken. If a given test project is already

among the largest in the data set, the estimates for it can’t be biased upwards by

much simply because there isn’t any significant amount of larger scale projects to

train the model with. The same holds true for biasing estimates downwards for

projects that are among the smallest ones in the data set. A good understanding

of the distribution of project scale in the data set is essential to obtain desirable

results from altering the scale bounds.

5.3 Analysis of modeling results

Overall, we are able to produce models that outperform the baselines, at least to

some degree. The ability to outperform the expert baseline (table 5.2) in particular

is an important milestone, because it represents an improvement over the current

estimation process in use at ATR. However, in absolute terms even the best model

performances achieved still aren’t good enough to exclusively rely on in project

planning, though they can potentially provide useful information to support project

estimation tasks.

Generally, it seems preferable to frame project estimation as a regression prob-

lem, rather than classification. Classification models commonly had trouble out-

performing even a simple majority voter by a significant degree, and even the best
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models only predicted the correct class roughly 50% of the time. In practice this

means that the predicted classification can’t be trusted, and the confusion matri-

ces (best general model: figure 5.4 and PSM: figure 5.10) suggest there isn’t much

useful information to be derived from a wrong classification either. The only clear

misclassification pattern is models predicting that projects which actually end in 12

weeks will continue past that, which isn’t useful given the estimation goals stated

by ATR management.

The most promising modeling approach is estimating the remaining project hours

with a project-specific model, trained on data filtered to only contain projects of

roughly similar scale. With this modeling approach, both the remaining absolute

and percentage amounts of work hours reached considerably better mean absolute

error values than the expert baseline, with comparable c-index values suggesting

that the internal order of the predicted records was also retained quite well.

The performance improvement achieved by PSM over general models in this

regard suggests that applying scale filters to the training data is a good way to

improve regression accuracy. It should be noted however, that the accuracy gain

was mainly seen in the remaining hours prediction. The remaining days prediction

improved only marginally, and indeed this minor improvement may have been a

result of the outlier removal or some other aspect of the project-specific models,

rather than the training data scaling. This suggests that there is a strong correlation

between planned and actual work hours, but weak or nonexistent relation between

planned hours and project duration.

5.3.1 Other findings

Usefulness of the project task breakdown features

An important aspect of the data preparation and modeling process was the idea of

predicting project end by looking at what kind of a task category breakdown each
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project has at a given time. However, the results of the feature selection follow-up

in the general model section (see 5.1.5) suggest the task breakdown attributes are

quite inconsequential for regression in that scenario. In classification, some of the

task breakdown attributes appear more useful, but classification as a whole performs

quite poorly.

The type-specific performance data for project-specific models (see 5.2.4) also

suggests that in some cases adding features is actually detrimental, though in this

case the feature selection was being done based on the length of project history

the attributes were describing, rather than the task breakdown attribute subsets

themselves.

This calls into question the usefulness of the whole idea of using task category

breakdowns to predict remaining project days/work hours. However, that judgement

cannot be conclusively made based on this data, because there are some known data

quality issues that could skew the findings here. Most importantly, the task category

data was not actually part of the ATR Works data set, it was manually added after

the fact, based on the author’s best judgement about what broader category a given

task might belong to. While this is fairly straightforward for projects whose tasks

followed a common planning-implementation-testing-etc. pattern, even with these

projects there is the question of how the tasks were actually used in the hours

logging process. For an example, ATR personnel may have only been involved in

the development part of a project, so the testing tasks were never used.

In other projects the tasks may have been defined based on features needed in

the system being worked on. In such a case, there likely has been some prioritization

involved, but that information isn’t logged into ATR Works, so there was no pos-

sibility to categorize these based on which part of the project life cycle they would

be done in. In this case they were simply collected in the "feature" category, which

perhaps unsurprisingly doesn’t appear to be of much use for prediction of remaining
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work.

In small projects especially it was quite typical to have only a single "project

work" type task defined, in which case again there usually isn’t any obvious project

life cycle implication in the task.

The results here are sufficiently ambiguous that it can’t be said with any certainty

whether the concept is useful nor not.

Extended downtime in tail-end of project hours data

During the implementation of the project-specific models, manual inspection of some

testing data revealed that there were a fairly substantial amount of rows which repre-

sented weeks during which no hours were logged to the project. Further investigation

revealed that this was commonly caused by a project essentially becoming complete

at some point, but not being closed then (especially if there were still planned/con-

tracted hours left in it). Then weeks or even months later, some minor tweaks would

be made to the project and those hours would be logged to the original project.

This causes the project to appear to have taken much longer in terms of time

than in actually did, since there’s a considerable amount of downtime included in

the timeline between the first and last booking. As we aggregated the booking

data by splitting the timeline between the project’s first and last booking to weeks

and filling each row with the booking data from that week, the end result is the

aforementioned situation where many aggregated booking rows actually represent

project downtime.

Downtime or periods of lesser activity being represented in the data are to be

expected, but this kind of extended downtime at the tail-end of a project may be

quite problematic for analysis conducted based on the task category breakdown con-

cept. In practice, it means that a number of projects have long tail-ends consisting

of almost nothing but downtime, which can greatly skew a model’s perception of
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what kind of task category breakdown precedes project end.

Semantic ambiguity of the project end field

As mentioned before, it turned out during the analysis process that the project end

date field is initially filled as planned project end date, but the value often gets

updated to represent the actual project end/closure date, once the project finishes.

Fields with a dual meaning like this are quite problematic from a data analysis point

of view, since it means that during the analysis we cannot really know whether the

field means planned or actual end at any given time. Ultimately it was decided

to use the field in the planning sense throughout the analysis, with the mutual

understanding between author and ATR Soft that this may impact the reliability of

duration estimations.

The project planned hours field suffers of this problem to a lesser degree. It is

only updated to represent any extra hours agreed with the customer, so it doesn’t

suffer from the semantic dual meaning that the end date does, but again there is

the possibility that the planned hours value has changed during the project.

The exact impact of these issues cannot be quantified with the data we have at

hand.

5.4 Future work

There are a number of potential avenues for future work.

5.4.1 Modeling approaches

To be able to effectively utilize and improve the models, a still deeper understanding

of their behavior is necessary. While the project-specific models were able to signif-

icantly outperform the expert baseline in predicting the absolute amount of hours
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left in a project, we don’t know how large the error is in proportion to the project’s

estimated/actual scale. An error of 30 hours in the estimation is acceptable for a

project whose scale is on the order of 1000 hours total, but for a 20-hour project it

would be unacceptable.

Analyzing the behavior of the expert baseline predictions in more detail and

comparing the results of that to the model performance measures obtained in this

work would also be useful. This might more clearly highlight situations where data-

driven estimation could be a useful addition to the estimation process.

Additionally, we know from discussions with ATR management that accurate

estimations are particularly valuable during the last month of a project’s run time,

but we currently don’t know how our models’ performance changes as the project’s

end approaches. Thus investigating the prediction accuracy trends as project end

approaches is something that would need to be done before the models could be

considered for deployment.

The type-specific results of project-specific models (see 5.2.4) suggest some inter-

esting trends in modeling results when longer time span history features are added,

but thorough analysis of the causes of this was beyond the scope of this work. A

more detailed look into this topic could offer some insight into feature usefulness,

with potential tie-ins to the aforementioned interest in model performance trends

over project duration.

With project-specific models, we sought to ensure the training data for a given

model would consist of projects that are similar to the one being modeled. Here

the training data filtering was based on very simple logic, so it might be possible to

improve this process by finding new ways to measure similarity between projects.

The simplest addition would be to scale the training projects by duration in addition

to work hours. No unsupervised learning was conducted in this work, but some kind

of a clustering process might also be utilized here to find similar training projects.
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Training data set size concerns have to be kept in mind in such endeavors however.

A good definition of similarity is not useful if it ends up reducing the size of the

training data set too far.

The utilization of the booking description fields was limited to some simple

keyword matching, but some kind of more complex text comprehension could be

applied to try and extract information out that data as well. This is a more open-

ended problem however, that would likely require a much larger scale of effort than

the previous suggestions.

The interplay of outlier detection and the test set representativeness concerns

related to the use of cut-off dates brought up a potentially interesting research

topic that is entirely separate from the concrete modeling issues dealt with above.

Namely, what kind of projects can a given organization expect to be able to accu-

rately estimate based on the project data that the organization produces? In ATR’s

case, projects whose scale exceeds certain limits likely can’t ever be accurately es-

timated by data-driven methods. This is because the organization doesn’t work

on such projects often enough to accumulate a useful amount of data about them

before the oldest data becomes outdated (due to process changes etc). Analysis of

an organization’s general project profile might make it possible to determine what

kind of projects the organization could feasibly estimate with data-driven methods.

This would assist in picking the right estimation tools for each project, potentially

improving estimation quality considerably.

Another broader research topic would be to implement some of the classical effort

estimation tools and methods mentioned in section 2.3 in a proof-of-concept fashion,

and comparing the results from that to those obtained in this thesis.
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5.4.2 Data collection approaches

A number of data quality issues were identified during the modeling process. While

some of these could possibly be tackled in some way during the data pre-processing

and modeling, these should also be addressed in the wider work hours collection

process and data model to better support potential future analysis projects.

The task categories were applied manually after the fact in this work, but adding

them to the ATR Works data model would likely improve the quality of this data

considerably. While the overall project management process at ATR Soft requires

the project task definitions to remain at the discretion of the relevant project man-

ager, a mandatory categorization field could be added to tasks, to indicate where in

the project life cycle that task is likely to reside.

The project end date field’s dual meaning should be addressed. This could be

done by adding a separate field for planned project end. This might still be updated

if contracts are modified during project run time (like the planned hours field is

handled), but it would still be an improvement over the current dual meaning the

project end field has. Another option would be to use the existing field as the

planned end date, and simply show the date of the project’s last booking as its

actual end date once the project has been closed.

Some way is needed to identify the cases where a project has essentially ended,

but it remains open for months until the final tweaks are requested and delivered.

This is an issue that could be identified and addressed during data pre-processing as

well, though it likely would need some manual work to judge whether a given stretch

of project downtime represents this issue or not. Alternatively, this issue could be

addressed in the project management process by closing the original project when

the initial delivery is made, and making a separate project with the remaining hours

to be used for later post-delivery support tasks. This could be implemented entirely

as a process change, though it might be worthwhile to support this case directly in
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ATR Works by creating a new category of project for this situation, and giving users

the option to automatically create a post-delivery support project during original

project closure.



6 Conclusions

6.1 Answers to research questions

How is machine learning currently utilized to support project manage-

ment / software engineering work?

Applying machine learning to various parts of the software engineering process is an

idea that has seen fairly consistent interest for several decades already [2] [8]. As

the industry has grappled with the problem of increasing complexity of software for

most of its existence, there has been a constant demand for better tools, methods

and processes for managing the complexity and the uncertainty resulting from it at

all levels of software development.

The recent surge of interest in AI has brought the concept of various AI-powered

development tools to the forefront [28] [29]. In addition to tasks like code completion,

bug detection and testing, AI is being explored for higher-level architecture tasks

like detecting code smells and assisting in UI design [30] [31]. For lower-level day-

to-day development tasks, at least larger organizations have already made practical

deployments of assorted AI-powered tools [29], but the higher-level tools appear to

be still some ways away from being ready for practical deployment [31].

For project estimation and management tasks, the interest in AI-based tools has

been more consistent over recent decades, and classical machine learning methods

like decision trees, the nearest neighbor method and various forms of curve fitting
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have been explored and applied since the 1980s at least. In the field of software

project estimation, these form a part of an estimation method category called data-

driven methods. However, while such methods have existed for decades already, the

software engineering industry still mostly uses some form of expert evaluation to

estimate project effort requirements. This is because relevant project data needed

by data-driven methods tends to be quite scarce in most organizations, so methods

requiring it are often not feasible [3] [10]. While machine learning research is cer-

tainly still conducted with the goal of improving software development effort and

duration estimation capabilities [1], this fundamental issue of data availability will

likely continue to limit the practical deployments of data-driven estimation methods

for the foreseeable future.

The existing work in the field of software development effort estimation is mostly

focused on estimating things at the project level and early on in the planning phases

of a project. Classical effort estimation methods do often support project tracking

and the refining of estimations later on in the project life cycle as well (with separate

and/or refined models in some cases), but usually this isn’t the main focus [1] [3]

[10]. While estimating the availability of individual developers is not unheard of [4],

and project-level methods will of course account for the characteristics of the rele-

vant development teams and team members at least to some degree, the particular

scenario of predicting employee workloads from their logged work hours appears to

be a fairly scarcely covered topic. For these reasons, it was determined that the ATR

Works data would need to be analyzed with a custom machine learning solution,

rather than a ready-made tool or product.
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Is it possible to predict an employee’s workload from their reported hours

data?

The goal of directly predicting employee workloads from their logged work hours

was determined to be unfeasible early on in the analysis process. There was no

indication that any useful pattern could be found while looking at the data for

individual employees, so the focus of the analysis was shifted to the project level.

Aggregating the work hours data to provide project-level insight into effort and

time requirements could still indirectly assist with the employee workload estimation

issue, while also providing improved project planning and tracking tools. Ultimately

it was determined that there is some promise in this approach, as some of the models

trained here were able to outperform the baseline formed by estimation methods

currently in use at ATR Soft. A considerable amount of further work would be

required before a practical deployment of the developed methods would be feasible

however.

How might the hours logging process be improved to better support data

analysis projects in the future?

As expected, a number of concrete improvement suggestions to the work hours

logging process were discovered during the practical work part of this thesis. The

specific suggestions can be found in section 5.4.2. These mostly deal with removing

various ambiguities in the logged hours data, as well as seeking to formalize certain

patterns by making them an explicit part of the hours logging system’s data model,

rather than something applied in an ad-hoc manner with existing structures. The

suggested improvements should improve both the quality and quantity of available

data.

A considerable amount of data had to be excluded from the analysis due to

missing values and inconsistencies that couldn’t be addressed in the analysis process.
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Ensuring that data is recorded without such issues to begin with would help to

minimize the amount of data that needs to be pruned from the set during pre-

processing.

6.2 Other findings

Even with the aforementioned issues, the scarcity of relevant project data that com-

monly hampers data-driven effort estimation methods was less of a problem with the

approach used in this work. The typical problem is that there aren’t enough similar

historical projects to base an estimate on, but work hours data from individual em-

ployees is relatively plentiful in comparison. The time-series nature of the data still

caused some data set size and representation concerns, but analysis was still able

to be conducted, even though aggregation and pruning various missing values and

outliers shrunk the initial data set considerably. As this kind of data is commonly

collected in many other industries as well, there might be some broad cross-industry

appeal for analysis along the same lines.
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Appendix A Table of aggregated

data attributes

The following tables briefly describe all attributes that were included in / generated

for the aggregated project booking data during the data preparation phase of the

analysis process. Training/prediction attributes are marked as "feature" in the

category field of these tables, to separate them from the attributes intended to be

used for tracking or as prediction targets (labels).



APPENDIX A. TABLE OF AGGREGATED DATA ATTRIBUTES A-2

Name Category Type Description

proj_id Tracking Numeric Id of the project that this row

represents

proj_category Tracking Numeric Category id of the project

proj_status Tracking Numeric Status id of the project

proj_actual_start Tracking Datetime The date when first booking

was made to the project

proj_actual_end Tracking Datetime The date when last booking

was made to the project

proj_planned_days Tracking Numeric How many days was the

project planned to last

proj_planned_hours Tracking Numeric How many work hours the

project was planned to need

proj_actual_hours Tracking Numeric How many work hours were

needed to complete the

project

proj_actual_days Tracking Numeric How many calendar days

were needed to complete the

project

proj_spent_days Tracking Numeric How many calendar days have

been spent at the end of this

span

span_start Tracking Datetime The beginning of the time

span that this row depicts

span_end Tracking Datetime The end of the time span that

this row depicts

7d_total_hours Feature Numeric The total hours logged in this

time span

Table A.1: Features in aggregated data



APPENDIX A. TABLE OF AGGREGATED DATA ATTRIBUTES A-3

Name Category Type Description

4w_avg_hours Feature Numeric Average weekly hours from

last 4 weeks

12w_avg_hours Feature Numeric Average weekly hours from

last 12 weeks

7d_active_employees Feature Numeric How many employees have

made bookings in this time

span

planned_days_left_abs Feature Numeric How many days of planned

duration are left

planned_days_left_pct Feature Numeric Percentage of planned days

left

planned_hours_left_abs Feature Numeric How many planned work

hours are left

planned_hours_left_pct Feature Numeric Percentage of planned work

hours left

7d_unassigned Feature Numeric Percentage of logged hours

with named task category in

this time span

7d_other Feature Numeric As above

7d_feature Feature Numeric As above

7d_planning Feature Numeric As above

7d_implementation Feature Numeric As above

7d_testing Feature Numeric As above

7d_finalization Feature Numeric As above

4w_unassigned Feature Numeric Percentage of logged hours

with named task category in

the last 4 weeks

Table A.2: Features in aggregated data
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Name Category Type Description

4w_other Feature Numeric As above

4w_feature Feature Numeric As above

4w_planning Feature Numeric As above

4w_implementation Feature Numeric As above

4w_testing Feature Numeric As above

4w_finalization Feature Numeric As above

12w_unassigned Feature Numeric Percentage of logged hours

with named task category in

the last 12 weeks

12w_other Feature Numeric As above

12w_feature Feature Numeric As above

12w_planning Feature Numeric As above

12w_implementation Feature Numeric As above

12w_testing Feature Numeric As above

12w_finalization Feature Numeric As above

7d_desc_has_test Feature Numeric Percentage of bookings in this

time span whose description

included keyword "test"

7d_desc_has_bug Feature Numeric As above for keyword "bug"

7d_desc_has_refac Feature Numeric As above for keyword "refac-

tor"

7d_desc_has_deploy Feature Numeric As above for keyword "de-

ploy"

4w_desc_has_test Feature Numeric Percentage of bookings in last

4 weeks whose description in-

cluded keyword "test"

Table A.3: Features in aggregated data



APPENDIX A. TABLE OF AGGREGATED DATA ATTRIBUTES A-5

Name Category Type Description

4w_desc_has_bug Feature Numeric As above for keyword "bug"

4w_desc_has_refac Feature Numeric As above for keyword "refac-

tor"

4w_desc_has_deploy Feature Numeric As above for keyword "de-

ploy"

12w_desc_has_test Feature Numeric Percentage of bookings in last

12 weeks whose description in-

cluded keyword "test"

12w_desc_has_bug Feature Numeric As above for keyword "bug"

12w_desc_has_refac Feature Numeric As above for keyword "refac-

tor"

12w_desc_has_deploy Feature Numeric As above for keyword "de-

ploy"

actual_hours_left_abs Target Numeric How many work hours are left

until project completion

actual_hours_left_pct Target Numeric Percentage of work hours left

until project completion

actual_days_left_abs Target Numeric How many calendar days are

left until project completion

actual_days_left_pct Target Numeric Percentage of calendar days

left until project completion

ends_in Target Categorical Classification by the closeness

of project end. Values repre-

sent project ending in 7 days

/ 4 weeks / 12 weeks / contin-

uing for the foreseeable future

Table A.4: Features in aggregated data



Appendix B Tested general model

feature subsets

Each of these feature subsets was tested as part of the feature selection follow-up in

the general models section (5.1.4).

Full feature set

This is the original set that contains all 41 features. The list of features is:

7d_total_hours, 4w_avg_hours, 12w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_unassigned, 7d_other, 7d_feature, 7d_planning,

7d_implementation, 7d_testing, 7d_finalization, 4w_unassigned, 4w_other,

4w_feature, 4w_planning, 4w_implementation, 4w_testing, 4w_finalization,

12w_unassigned, 12w_other, 12w_feature, 12w_planning, 12w_implementation,

12w_testing, 12w_finalization, 7d_desc_has_test, 7d_desc_has_bug,

7d_desc_has_refac, 7d_desc_has_deploy, 4w_desc_has_test,

4w_desc_has_bug, 4w_desc_has_refac, 4w_desc_has_deploy,

12w_desc_has_test, 12w_desc_has_bug, 12w_desc_has_refac,

12w_desc_has_deploy



APPENDIX B. TESTED GENERAL MODEL FEATURE SUBSETS B-2

Subset 1

This subset was created by removing features that represent task category preva-

lences other than testing and finalization from the full feature set. The resulting list

of features is:

7d_total_hours, 4w_avg_hours, 12w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_testing, 7d_finalization, 4w_testing,

4w_finalization, 12w_testing, 12w_finalization, 7d_desc_has_test,

7d_desc_has_bug, 7d_desc_has_refac, 7d_desc_has_deploy,

4w_desc_has_test, 4w_desc_has_bug, 4w_desc_has_refac,

4w_desc_has_deploy, 12w_desc_has_test, 12w_desc_has_bug,

12w_desc_has_refac, 12w_desc_has_deploy

Subset 2

This set was created by removing the 12-week history columns from subset 1. The

resulting list of features is:

7d_total_hours, 4w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_testing, 7d_finalization, 4w_testing,

4w_finalization, 7d_desc_has_test, 7d_desc_has_bug, 7d_desc_has_refac,

7d_desc_has_deploy, 4w_desc_has_test, 4w_desc_has_bug,

4w_desc_has_refac, 4w_desc_has_deploy

Subset 3

This set was created by removing the columns representing keyword matches to

words "deploy" and "refactor" from subset 2. The resulting list of features is:

7d_total_hours, 4w_avg_hours, 7d_active_employees,
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planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_testing, 7d_finalization, 4w_testing,

4w_finalization, 7d_desc_has_test, 7d_desc_has_bug, 4w_desc_has_test,

4w_desc_has_bug

Subset 4

This set was created by removing the columns representing keyword matches to

words "test" and "bug" from subset 3. The resulting list of features is:

7d_total_hours, 4w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_testing, 7d_finalization, 4w_testing,

4w_finalization



Appendix C Limited scope model

feature subsets

Each of these feature subsets were used for modeling projects at various stages of

their run time.

Subset 1

This is the full feature set, used on project models that represent a situation where

the project has run for at least 12 weeks at the point of prediction.

7d_total_hours, 4w_avg_hours, 12w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_unassigned, 7d_other, 7d_feature, 7d_planning,

7d_implementation, 7d_testing, 7d_finalization, 4w_unassigned, 4w_other,

4w_feature, 4w_planning, 4w_implementation, 4w_testing, 4w_finalization,

12w_unassigned, 12w_other, 12w_feature, 12w_planning, 12w_implementation,

12w_testing, 12w_finalization, 7d_desc_has_test, 7d_desc_has_bug,

7d_desc_has_refac, 7d_desc_has_deploy, 4w_desc_has_test,

4w_desc_has_bug, 4w_desc_has_refac, 4w_desc_has_deploy,

12w_desc_has_test, 12w_desc_has_bug, 12w_desc_has_refac,

12w_desc_has_deploy



APPENDIX C. LIMITED SCOPE MODEL FEATURE SUBSETS C-2

Subset 2

This subset was created by removing the 12-week history features from the full set.

This depicts the situation where a project has run for more than 4 but less than 12

weeks.

7d_total_hours, 4w_avg_hours, 7d_active_employees,

planned_days_left_abs, planned_days_left_pct, planned_hours_left_abs,

planned_hours_left_pct, 7d_unassigned, 7d_other, 7d_feature, 7d_planning,

7d_implementation, 7d_testing, 7d_finalization, 4w_unassigned, 4w_other,

4w_feature, 4w_planning, 4w_implementation, 4w_testing, 4w_finalization,

7d_desc_has_test, 7d_desc_has_bug, 7d_desc_has_refac,

7d_desc_has_deploy, 4w_desc_has_test, 4w_desc_has_bug,

4w_desc_has_refac, 4w_desc_has_deploy

Subset 3

This subset has had both the 4- and 12-week history features omitted. This rep-

resents the situation where the project has run for less than 4 weeks at the time a

prediction is made.

7d_total_hours, 7d_active_employees, planned_days_left_abs,

planned_days_left_pct, planned_hours_left_abs, planned_hours_left_pct,

7d_unassigned, 7d_other, 7d_feature, 7d_planning, 7d_implementation,

7d_testing, 7d_finalization, 7d_desc_has_test, 7d_desc_has_bug,

7d_desc_has_refac, 7d_desc_has_deploy
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