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Energy-efficiency is essential for vast majority of mobile and embedded battery-powered
systems. Internet-of-Things paradigm combines requirements for high computational
capabilities, extreme energy-efficiency and low-cost. Increasing manufacturing process
variations pose formidable challenges for deep-submicron integrated circuit designs. The
effects of variation are further exacerbated by lowered voltages in energy-efficient de-
signs. Compared to traditional flip-flop-based design, latch-based design offers area,
energy-efficiency and variation tolerance benefits at the cost of increased timing behavior
complexity. A method for converting flip-flop-based processor core to latch-based core at
register-transfer-level is presented in this work.
Convolutional neural networks have enabled image recognition in the field of computer
vision at unprecedented accuracy. Performance and memory requirements of canonical
convolutional neural networks have been out of reach for low-cost IoT devices. In collab-
oration with Tampere University, a custom popcount instruction was added to the cores
for accelerating IoT optimized vehicle classification convolutional neural network.
This work compares simulation results from synthesized flip-flop-based and latch-based
versions of a SCR1 RISC-V processor core and the effects of custom instruction for CNN
acceleration. The latch core achieved roughly 50% smaller energy per operation than the
flip-flop core and 2.1x speedup was observed in the execution of the CNN when using
the custom instruction.
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Chapter 1

Introduction

Energy efficiency is vital for vast majority of battery powered systems. The higher the en-

ergy efficiency, the more computations a system can perform between recharges or battery

swaps. In the field of mobile and embedded devices, long battery life is often as important

or more important feature than computation speed. In addition to prolonging the operat-

ing time of such devices, increasing energy efficiency enables countless new applications.

More and more complex functionality can be realized with less and less energy. Energy

efficiency is one of the key enablers for the growing Internet-of-Things (IoT) market and

the technologies of the future. Increasingly wireless, mobile and interconnected systems

require massive amounts of data to be processed in real-time, while being operational

for extended periods of time without a constant power supply. Advances in neural net-

works have made many data analysis tasks like image recognition possible with much

higher speed and accuracy than ever before. However, in many cases the memory and

computation requirements cannot be met by current low-cost IoT devices. To truly reap

the benefits of neural networks and to bring them to IoT realm, efficient hardware and

optimized algorithms are both required. The amount of transistors in integrated circuits

has been growing exponentially in the past decades causing power density and power

consumption to increase towards practical limits. Heat dissipation has become a major

issue for data centers and high performance computing in general. Offloading some of
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the computation to the network edges for improved latencies and reduced costs calls for

highly energy-efficient hardware. Besides, the available energy to harness is finite. As

Jan Rabaey illustrates with his playful extrapolation in [1], the entire energy of the Milky

Way galaxy would be spent in just 180 years, if computational requirements are assumed

to double every year. This work explores potential benefits of latch-based design in terms

of energy-effiency and variation tolerance. Additionally, acceleration of an IoT optimized

Convolutional Neural Network (CNN) by adding custom popcount instruction to the core

was simulated and confirmed.

Most modern digital devices are built with Complementary Metal-Oxide Semicon-

ductor (CMOS) logic. For digital CMOS circuits energy can be estimated with equation

1.1 [1]1. The dynamic energy dissipation is dependent only on the total capacitance C

and voltage V . Leakage energy is defined by the voltage V and leakage current Ileak over

operation time t. It is important to notice that energy is not dependent on operating fre-

quency. Leakage current of a gate can be estimated with equation 1.2 [1] , where kT/q is

thermal voltage and equals roughly 25mV at room temperature [1]. W is the width of the

gate and Vth is the threshold voltage. I0, W0 S, and λd are technology specific constants

corresponding to minimum current, minimum gate width, sub-threshold swing and Drain

Induced Barrier Lowering (DIBL) factor.

Leakage currents of the gates are strongly dependent on drain-source voltage VDS

and threshold voltage VTH . While lowering the operating voltage impacts mostly energy

dissipation at first, it also pushes the threshold voltages down. At a certain point leakage

energy starts to dominate when the transistor’s ability to turn off diminishes. Additionally,

as the voltage lowers propagation delay of the signals starts to increase until the circuit

fails. Thus lowering the voltage limits the maximum operating speed of the device as

well.

1Equation 1.1 can be obtained by combining several equations from [1]
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The capacitance C in equation 1.1 correlates to the amount of transistors switching at

a given time. It is also dependent on the CMOS technology and implemented architecture.

The capacitance component of energy dissipation can therefore be reduced by migrating

to a newer CMOS technology process or by architectural optimizations.

The switching rate of transistors per clock cycle is often estimated by activity factor α,

a percentage of transistors in the device. For processors, α varies depending on the exe-

cuted operations and the architectural design of the system. While software optimizations

can reduce α in many cases, ultimately they are bound by the hardware capabilities. Soft-

ware optimizations relying on nonstandard hardware functionality can further improve

the performance at the cost of software portability. Implementing hardware specific op-

timizations might also require significant efforts on the software side, depending on the

software stack. Architectural hardware optimizations are more generic and reliable, since

they potentially require little to no additional effort from the software developers. Im-

proving the energy efficiency and speed of most commonly executed instructions and the

execution pipeline in general benefits all of the use cases. At some point the benefits

gained start to diminish and optimizing the common case is no longer feasible. Another

path to improvements, albeit usually more application specific, is adding new instructions.

For example, a new instruction can be added to the Central Processing Unit (CPU) for a

common instruction pattern. Instead of executing multiple instructions to achieve certain

behavior, the task can now be done entirely in hardware by a single instruction. In order

to utilize the new instruction, support for its encoding must be added to the toolchain and

the software has to be recompiled, possibly after some modifications. For most real world

instruction sets modifications are either difficult and prohibitively costly or prohibited all
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together. Fortunately, free and open RISC-V Instruction Set Architecture (ISA) standard

is designed to support instruction set extensions, providing the means to implement cus-

tom instructions.

Previously shrinking process nodes have offered gains in performance, energy savings

and area reduction for relatively low effort compared to architectural optimization. How-

ever, as the feature sizes have started to approach the thickness of just a few atoms, the

effects of variation in manufacturing process have magnified. Migrating to new deep-

submicron CMOS nodes has become increasingly difficult and costly due to reduced

yields, caused by increased process variation, among other challenges. High local vari-

ability adds an element of uncertainty to the timing of the chips, causing higher rates of

failure. As a consequence, alternative ways to increase energy-efficiency are becoming

more attractive.

The theoretical minimum energy required for a signal to be distinguishable from noise

is defined by Shannon-von Neuman-Landauer limit to be 0.29 ∗ 10−20J at room tempera-

ture [1]. Reaching this limit in practice is not very likely, but it sets the ultimate goal for

improvements. Modern devices operate few magnitudes above this limit, based on simula-

tion results from [2]. In practice some voltage margin is added to ensure the functionality

of the fabricated devices. In order to confirm that as many of the manufactured devices

as possible are functional despite variations in the manufacturing process, the operation

of the device is tested on different manufacturing process corners. The process corners

represent global inter-die variations affecting the whole chip. Before manufacturing the

corners are simulated and the design is tuned to tolerate the variations, often translating

to adding margin to the typical case. Common corner choices for testing CMOS process

transistor variation are SS (Slow-Slow), TT (Typical-Typical) and FF (Fast-Fast), though

other combinations are also possible. The letters signify carrier mobility for NMOS and

PMOS transistors respectively. In addition to global variations between chips, local intra-

die variations are present within each chip. While some local variation sources are deter-
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ministic, random local variations are also present. Statistical timing models are needed to

predict the effects of random local variations more accurately.

Energy per Operation (EOP) is a commonly used metric to measure processor effi-

ciency. Because reducing the voltage reduces not only the required energy, but it also

reduces the maximum operating speed due to increased delays, reducing EOP is a bal-

ancing act between energy and performance. There exists a point for optimal EOP also

known as Minimum Energy Point (MEP). Hiienkari et al. have reached the EOP of 2.87

pJ/cycle with ARM Cortex-M3 CPU by using state-of-the-art energy saving techniques to

drastically cut down voltage margins [3]. Figure 1.1 shows EOP measurements from the

core manufactured at different process corners over operating voltage range. As shown

in figure 1.1 when the operating voltage is reduced the EOP improves at first, but when

the voltage is reduced further EOP starts to increase at a certain point. MEP is located at

the lowest point of the curve. The core was measured over different process corners and

the effects of process variations are evident. In the FF process corner the energy is much

higher than in the TT or SS corners.

On the downside as the voltage decreases the the effects of process variation are mag-

nified. Majority of CMOS designs use flip-flop cells for sequencing, due to their relatively

simple and well understood timing behavior. As an alternative to flip-flops the sequencing

can also be realized with latch cells at the cost of increased timing behavior complexity.

While latches and flip-flops are on equal footing in terms of performance under traditional

timing models, latches are able to give better yields under statistical timing models. Sta-

tistical timing models are used to predict the circuit timing more accurately when process

variations become significant. Hurst et. al have shown in [4] that transparent latches can

reduce the rate of failures by four times compared to flip-flops. Latches are able to meet

more timing corners, because in latch-based sequencing the signal propagation window is

much wider than in flip-flop-based sequencing. Additional benefit of latch-based designs

is that latches are less complex devices than flip-flops and thus they can be constructed
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Figure 1.1: ARM Cortex-M3 EOP[3] © 2020 IEEE

with fewer transistors, resulting in area and energy savings.

Focus of this master’s thesis is in latch-based energy-efficient design, but other com-

plementing low-power techniques could be added on top of this approach to further in-

crease the energy efficiency of the design. An overview of RISC-V and rationale for

choosing an open-source RISC-V core as a starting point for latch-based core is given in

chapter 2. Chapter 3 introduces the custom popcount instruction used to accelerate con-

volutional neural networks. The characteristics of latches and flip-flops from sequencing

perspective are detailed in chapter 4. Chapter 5 explores a methodology for latch-based

sequencing, conversion of flip-flop-based designs to latch-based designs and related chal-

lenges. Simulation results are shown and examined in chapter 6. Finally, the conclusions

are presented in chapter 7.



Chapter 2

RISC-V

RISC-V is fifth generation of an open Instruction Set Architecture (ISA) standard devel-

oped originally at UC Berkeley for academic use. While RISC-V began as an academic

endeavor to provide a realistic ISA for research and classroom use, it has gained a lot

of traction especially in IoT and low power applications. RISC-V ISA is designed with

flexibility and extensibility in mind, making it an excellent candidate for creating cores

optimized for specific use cases. As a new ISA RISC-V has had the opportunity incor-

porate the knowledge gained from older ISA specifications and decades of field testing.

The base instruction set has been carefully designed to contain only the most universal

instructions. Application domain specific instructions can be added in a modular fashion

on top of the base instruction set depending on the implementation requirements. This

enables software compatibility across different implementations, given that the available

software stack is able to emulate optional instructions when they are not supported by the

implementation. RISC-V ISA standard is maintained by the RISC-V foundation, which

accepts companies as well as individuals as members. The RISC-V specification is freely

available for anyone to download and implement without any costs. The specification

version used as reference in this work is The RISC-V Instruction Set Manual Volume 1:

Unprivileged ISA [5].

Currently, most widely-adopted ISAs are proprietary. To create an implementation
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for proprietary ISA lengthy negotiations and expensive licenses are required. Custom im-

plementation of proprietary ISAs has therefore been possible only for a few companies.

Most companies have had to settle with integrating premade designs and components to

their products. The free and open licensing model of RISC-V permits anyone to cre-

ate their own RISC-V compatible processor implementations, while allowing proprietary

implementations as well. In the light of expensive licensing and possible royalty costs

associated with proprietary ISAs the RISC-V is very tempting from a financial point of

view.

An ISA is an abstract interface between hardware and lowest level of software. It

contains all the details needed to create machine language programs that can be run on

the hardware. For a program to be executable in certain hardware it must be written in or

translated to a format defined by the ISA. Usually ISA is accompanied with a compiler

toolchain capable of transforming high level code, such as C, to a format specified by the

ISA. The RISC-V ISA specification avoids implementation style or technology specific

details for increased flexibility. RISC-V implementations can range from single core pro-

cessor to multi-core System-on-a-Chip (SoC) and server clusters with thousands of cores.

In [6] Asanović and Patterson, both very closely involved in the creation of RISC-V, argue

that ISA, one of the most important interfaces, should not be proprietary. They envision

that having a widely used open ISA could lead to increased innovation, shorter time to

market, lower costs, fewer bugs and transparency. Ambitiously, the authors set the goal

of RISC-V to eventually become the standard ISA for all computing devices.

RISC stands for Reduced Instruction Set Computer as opposed to Complex Instruction

Set Computer (CISC). RISC architecture is based on the idea of defining a small, yet com-

prehensive, set of simple instructions and executing them really fast. CISC architecture

on the other hand defines a large set of instructions including complex instructions that

can take longer to execute. While CISC implementations have dominated in the high per-

formance domain and RISC implementations have prevailed in the embedded and mobile
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domain, there is no fundamental reason why RISC architecture could not be used for high

performance applications or CISC architecture for energy-efficient designs. In [7] Blem

et. al compared effects of ISA on performance and energy-efficiency for ARM (RISC)

and x86 (CISC) implementations. They found that modern microarchitecture techniques

and compiler optimizations help to mitigate CISC implementation overheads. For exam-

ple, complex instructions are split to RISC-like micro-ops and compilers tend to favor

RISC-like instructions over the complex ones. They concluded that the differences be-

tween ARM and x86 implementations are largely dependent on the design point and not

so much on the ISA. But they also note that for simple very low performance processors

CISC ISA such as x86 or even ARM’s full RISC ISA would be too complex and add

unnecessary overhead.

The IoT domain covers a wide range of applications requiring high energy effiency

and low cost. Typically IoT end-nodes stay in sleep mode most of the time to save energy

and wake up to quickly execute pending tasks, triggered by external events, before going

back to sleep. The computational requirements can range from reading and storing a

sensor value to complex signal processing. To cover the wide range of use cases different

kinds of programmable cores are needed for various desing constraint combinations. The

shared or partially shared RISC-V ISA between various cores brings benefits in terms of

bus interconnect, interface and software compatibility.[8]

The RISC-V specification defines four related base integer ISAs and optional exten-

sions. Base ISA is mandatory and can be either RV32I, RV32E, RV64I or RV128I. The

base ISA defines the width of integer registers, the number of registers and size of the

address space. RV128I is less polished and the primary base ISA variants are RV32I and

RV64I for 32-bit and 64-bit architectures respectively. The RV32E base ISA is a vari-

ant of RV32I with only 16 registers for small implementations. RV32I and RV64I base

ISAs have 32 registers. The base ISAs are considered independent variants to allow bet-

ter optimization, therefore they might have slight differences in encoding and behavior of
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the extensions. The memory consistency model of the RISC-V ISA is quite flexible and

defaults to RISC-V Weak Memory Ordering (RVWMO), which is the weakest allowed

memory model. Under RVWMO memory instructions executed within a hardware thread

(hart) appear in order from the perspective of other memory instructions executed in the

same hart, but may appear in different order from the perspective of other harts’ memory

instructions. Further constraints can be added for stricter memory model as needed.

Because the RISC-V specification is still under development a part of the specified

extensions might undergo some changes. Commonly used extensions M, A, F, D, Q,

C, Zicsr and Zifencei are quite stable and only minor changes, if any, are expected on

their specification. M extensions adds multiplication and division instructions for inte-

gers. Extension A adds atomic operations for inter-processor synchronization. F, D and

Q extensions respectively add single-, double- and quad-precision floating point instruc-

tions and registers. C extension add compressed 16-bit forms of common instructions

for reduced instruction memory footprint. Zicsr adds CSR access instructions. Zifencei

adds instruction to synchronize writes and fetches to instruction memory. Additionally

G shorthand is used to denote IMADZifencei extension combination and floating point

extension implicitly include the Zicsr extension.

2.1 Cores

Since RISC-V ISA only defines the interface between software and hardware, but not the

actual hardware, how a RISC-V compliant processor core is realized is up to the designer.

Digital hardware is described in Register-Transfer level (RTL) with a Hardware Descrip-

tion Language (HDL). RTL code describes the signals, registers and behavior of logic in

the circuit at high abstraction level. The circuit behavior is first tested and verified in RTL

simulations. Considerable RTL verification effort is required to ensure that the features of

the manufactured devices will behave as expected. Correctly functioning RTL description
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is the starting point for creating the actual circuit. Since RISC-V ISA itself is not encum-

bered by restrictions that come with proprietary ISAs, the RTL can be shared much like

open source software. By itself the RTL code can be used for Field-Programmable Gate

Array (FPGA) implementations, but it is not enough to produce an Application-Specific

Integrated Circuit (ASIC), since it does contain any information about the physical im-

plementation.

Numerous proprietary and open source RISC-V implementations are readily available.

While some of the available cores utilize latches to some extent, it seems that currently

there are no fully latch-based cores available. Therefore to reduce the scope of this work

a small, energy-efficient and mature flip-flop-based RISC-V core was chosen as a start-

ing point to be transformed to a latch-based implementation. Naturally, only open source

RISC-V cores were considered for this work. Due to the nature of open source the quality

of the implementations can range from hobby projects to academic research work and

production ready cores equivalent to proprietary solutions on the market. 20 RISC-V

cores were compared, in order to find a good candidate to modify. A comparison of the

cores can be seen in table 2.1. The RISC-V Foundation provides a compliance test suite

to ensure compatibility of the implementation with the RISC-V specification. Cores that

were not compliant and the cores for which the compliance was unclear (N/A) as well as

cores with too restrictive licensing were deemed unsuitable. Cores built with 64-bit base

ISA, like Ariane and BOOM, are targeting towards higher performance and even running

multi-user operating systems like Linux. As a consequence they are also considerably

more complex. To limit the development effort and since 32-bit ISA is enough for most

embedded applications Ariane and BOOM were left out. Support for latch-based digital

logic varies among HDLs. Since implicit latches as a result of incomplete conditional

expressions are a common source of bugs in RTL code, many HDLs and Electronic De-

sign Automation (EDA) tools have better support for avoiding latches than actually using

them. While creating latches is certainly possible in most HDLs, in general the support for
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latch-based sequencing is quite limited. SystemVerilog was chosen as the target language

since it has at least some support for explicitly modeling latched logic and the language

itself is quite well supported by EDA tools. After this consideration cores that were not

written in SystemVerilog were discarded.

Out of the 20 RISC-V implementations two of them fit the criteria the best: SCR1

and Zero-riscy. Both cores are well tested, very small low power cores written in Sys-

temVerilog. SCR1, maintained by Syntacore, a semiconductor IP company specializing

on RISC-V ISA, is mature and highly configurable core. SCR1 repository includes a good

quality development environment with easy-to-extend testbench. Zero-riscy1 was created

as a part of Paraller Ultra Low Power (PULP) platform, a joint project between Inte-

grated Systems Laboratory, ETH Zurich and Energy Efficient Embedded Systems group

of University of Bologna. Unlike SCR1 Zero-riscy does not come with directly a cou-

pled development environment. Instead it is intended to be used with PULPino single

core microcontroller system. Like SCR1 the development environment for Zero-riscy is

mature and comes with a testsuite. Development environments of both of the cores have

support for FPGA targets as well. Ultimately the choice came down to personal prefer-

ence. Both cores are well suited for small scale experimentation. SCR1 was chosen as

the target core for latch transformation, because it’s slightly more configurable and the

development environment seemed more straightforward.

2.2 SCR1

SCR1 is well documented: the external architecture specification, user manual, and FPGA

specific Software Development Kit (SDK) instructions are included in the core repository

[9] and in related SDK repository [10]. The core can be configured with either RV32I

or RV32E base ISA and optionally with C extension for compressed 16-bit instructions

1Zero-riscy has been renamed to Ibex and contributed to lowRISC non-profit since this evaluation
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Core License ISA HDL Compliance Notes

Ariane Solderpad Hardware

License v. 0.51

RV64IMAC SystemVerilog Yes PULP platform

BOOM BSD RV64GC Scala (Chisel) Yes Out-of-order

Hummingbird E200 Apache 2.0 RV32IMAC Verilog Yes Targeted for Chinese

Minerva BSD/LambdaConcept RV32I Python No Uses nMigen toolbox

MR1 Unlicense RV32I SpinalHDL Yes Hobby project

ORCA Vectorblox Orca RV32IM VHDL N/A -

OPenV/mriscv MIT RV32I Verilog No -

PicoRV32 ISC RV32IEMC Verilog Yes -

ReonV GPL v3.0 RV32I VHDL N/A RISC-V port of Leon3 core

(from GRLIB IP library)

Reve-R Apache 2.0/BSD RV32IMAC CDL No -

Roa Logic RV12 Non-commercial RV32|64I SystemVerilog Yes -

Rocket BSD RV32|64G Scala (Chisel) Yes Rocket chip generator

Riscy Processors MIT RV64IMAFD Bluespec SystemVerilog Yes -

RI5CY Solderpad Hardware

License v. 0.51

RV32IMFC SystemVerilog Yes PULP platform

SCR1 Syntacore/Solderpad

Hardware License v.

0.51

RV32IEMC SystemVerilog Yes -

SERV ISC RV32I Verilog Yes Bit-serial core

Shakti BSD, 3-clause RV32|64IMAC Bluespec SystemVerilog Yes Core family

SweRV EH1 Apache 2.0 RV32IMC SystemVerilog N/A -

VexRiscv MIT RV32IMC SpinalHDL Yes -

Zero-riscy Solderpad Hardware

License v. 0.51

RV32IMCE SystemVerilog Yes PULP platform

Table 2.1: RISC-V core (platform) comparison, collected in Spring of 2019

and M extension for integer multiplication and division instructions. SCR1 implements

only machine mode privilege level for running trusted code. The core is quite small and

according to documentation synthesizes to only around 11-33 kGates depending on the

configuration.

2.2.1 Memory

SCR1 implements harvard architecture i.e. the instruction and data memories have ded-

icated memories and access buses, but the core also has up to 64 kBytes of low latency
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dual-port Tightly Coupled Memory (TCM), which is shared by instructions and data.

TCM is designed for storing commonly used instructions and data for increased through-

put. Memory access interfaces can be configured either as Advanced eXtensible Interface

4 (AXI4) or AMBA High-performance Bus-lite (AHB-lite). The memory is byte ad-

dressed and little endian. Instruction and data memories both have 32-bit continuous ad-

dress space. SCR1 uses strong memory access model, guaranteeing one-to-one match of

the sequence and number of memory accesses performed with the executed instructions.

The memory is only accessible by load and store instructions.

2.2.2 Pipeline

SCR1 implements in-order 2-4 stage pipeline depending on the configuration. The pipeline

is divided to following phases: request to instruction memory, instruction fetch, instruc-

tion decode, execution, and commit point. The execution consists of operand fetch, arith-

metical and logical operations, load and store operations, and instruction flow control.

In 2-stage pipeline configuration the first stage contains request to instruction memory,

instruction fetch and instruction decode phases and the second stage contains execution

phase and commit point. For 3- and 4-stage configuration a queue can be added before

instruction decoding or execution phase or before both phases. Since operand fetch and

commit point are always in the same stage SCR1 pipeline has no data hazards. Structural

hazards are resolved by stalling execution until the occupied resource becomes available

and control hazards are dealt with by simply flushing and restarting the pipeline.

2.2.3 Other optional features

Optionally the core also supports low latency Integrated Programmable Interrupt Con-

troller (IPIC) with up to 32 interrupt signals, vectored interrupts, global clock gating and

single cycle integer multiplier. In addition the core comes with optional debugging sub-

system with Joint Test Action Group (JTAG) interface.
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2.2.4 Configuration

To reduce development efforts the core was configured for RV32IC target with 2-stage

pipeline and without any optional blocks. AHB-lite was used for the development and

testing, since it’s less complex and more energy-efficient than AXI4 [11]. Though, the

core top level environment, including the memories and memory bus interface, was not

included in the synthesis and only simulated as a part of the testbench in netlist simula-

tions.

2.2.5 Testbench

The testbench of the core has ready made targets for multiple simulators and it integrates

with RISC-V compliance tests. After setting up the environment, RISC-V compliance

tests and benchmarks were run with Verilator and VCS simulators in order to confirm

the correct functionality. Additionally after initial RTL simulation tests DE10-lite FPGA

and DE10-lite SDK provied by Syntacore was used to verify core functionality. Since

FPGAs in general are not feasible for latch-based designs, no further FPGA experimenta-

tion was done beyond verifying that the original RTL is indeed functional. The testbench

was augmented with SHA-256 test in addition to the included Dhrystone 2.1 and Core-

mark benchmark in order to increase the variety of simulated activity. Based on previous

experience looping SHA-256 test tends to generate slightly more computationally inten-

sive activity than Dhrystone 2.1. or Coremark. The SHA-256 test is lightly modified

version of an implementation by Brad Conte [12] and it runs 1000 rounds of SHA-256

starting from a known plaintext and compares the result to an expected value. In order to

avoid timing errors while running the testbench with synthesized design, I/O delays at the

boundary have to be compatible with the timing of the synthesized design. Therefore a

wrapper module adding delay to the I/O signals was added around the core instantiation

in order to simulate I/O delays more realistically.
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CNN ISA extension

A Convolutional Neural Network (CNN) is a type of artificial neural network that is most

commonly utilized for image recognition tasks. Generally CNNs consist of alternating

convolutional and pooling layers followed by fully connected layers. Convolutional layers

are used to detect features from the image, the pooling layers are used to reduce the

dimension of the data and finally the classification is done by fully connected layers. The

final layer outputs a value for each type of class the network can detect. The values can

be negative or positive and the higher the value the higher confidence the classification

has. The class with highest value is the classification the network sees as most likely, but

it is also possible that scores are quite close to each other, if the CNN cannot classify the

image with high confidence or very low if the image does not fit in any of learned the

categories.

Each convolutional layer has at least three dimensions: width, height and depth, where

the depth corresponds to the amount of filters in the layer. Filters correspond to the fea-

tures the layer is attempting to detect. Each filter has associated weights learned during

the training of the network. For example, a layer with a depth of three could be used for

detecting a feature from each of the color components RGB in an image, but in practice

the layers are usually deeper. Each filter is slid over the inputs of the previous layer along

width and height dimensions. At each step all of the filter weights are applied to the re-



CHAPTER 3. CNN ISA EXTENSION 17

gion producing a single output value. The weights are multiplied with the related inputs

in the current region and added together. Typically the output value is passed to the next

layer through an activation function, for example max(0, x). If the input pixels of an

image are flattened to one dimensional vector the application of weights can be seen as

a dot product. In the fully connected layers all of the inputs are connected to each of the

outputs, hence the name.

For example, applying three 3x3 filters to equal size input, depending on the imple-

mentation, could require nine multiplications, eight additions and a division for each filter

and additional three multiplications and two additions for the dot product, if the output

is 1x1x1. Additionally 27 weights have to be stored for the filters. It is easy to see that

even for relatively small images the computation complexity and memory requirements

increase quickly with image size and filter count, given that CNNs used for real life ap-

plications contain many filters and multiple fully connected layers.

Advances in CNNs have enabled image recognition at unprecedented accuracy and

opened up many new possibilities in the field of computer vision. But the memory and

computation requirements have been out of scope for many IoT applications. Payvar et

al. have developed an IoT suitable CNN for vehicle image recognition. In [13] they used

a method of efficiently packing the weights of CNN with minimal loss of accuracy and

a method for accelerating CNN operations. In their work they use a binarization method

to condense 32-bit floating point weights of the CNN to just 1-bit and pack the weights

to 32-bit vectors, saving around 95% in the data memory size, while losing under 5%

in accuracy. Additionally they used a popcount instruction in place of multiplication for

both convolutional and fully-connected layers to speed up the computation. The pop-

count calculates hamming weight or the number of the amount of bits with value “1” in a

register. The use of popcount instead of multiplication saves energy and potentially chip

area, if hardware multiplier is not needed for the use case. Current hardware support for

popcount is mostly targeted towards Graphics Processing Units (GPUs), which rules out
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1 unsigned int popcount_emulated(unsigned int x) {
2 x = x - ((x >> 1) & 0x55555555); // 0x55 is 01010101
3 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); // 0x33 is 00110011
4 x = (x + (x >> 4)) & 0x0F0F0F0F; // 0x0F is 00001111
5 x = (x + (x >> 16));
6 return (x + (x >> 8)) & 0x0000003F; // 0x3F is 00111111
7 }

Listing 1: Software emulation of popcount instruction

IoT applications. Despite the lacking hardware support the authors were able to test their

algorithm with software emulated popcount, shown in listing 1, and with RISC-V ISA

simulator. In simulation they tested for 55% improvement in execution with hardware

popcount instruction compared to emulated popcount. In collaboration with Tampere

University, the popcount instruction is implemented in this work to measure the speedup

with synthesized RISC-V core.

The emulated popcount algorithm in listing 1 counts the number of “1” bits in 32-bit

register with divide and conquer approach. Bit masks are used to filter out unwanted bits.

On the first row the register is divided to two bit long bins, each bin containing the amount

of bits in in the original register value at each bin location. On the second row the two

bit bins are shifted on top of each other and added together producing 4-bit bins. Note

that maximum value in each 4-bit bin is only 3-bits wide. The process of shifting and

adding the bins is repeated until the values contained in the bins have been added to the

beginning of the register. Each time the bin size is increased by a power of two, while the

length of the maximum value increases by one bit. Finally, the maximum count of “1”

bits is contained in first six bits of the register since 3210 equals to 1000002.

3.1 Toolchain extension

Before hardware implementation of the popcount instruction, the RISC-V GNU toolchain

was modified to allow software development with the new instruction. Popcount was



CHAPTER 3. CNN ISA EXTENSION 19

1 unsigned int popcount(unsigned int value) {
2 unsigned int result;
3 asm volatile
4 (
5 "pcnt %[z], %[x], %[y]\n\t"
6 : [z] "=r" (result)
7 : [x] "r" (value), [y] "r" (value)
8 );
9 return result;

10 }

Listing 2: Using popcount assembly in a C program

added to binutils and to the RISC-V ISA simulator, Spike. This allows the use of popcount

instruction via assembly and simulation of programs utilizing popcount without actual

hardware. While adding new instructions to the assembler is somewhat trivial, adding

custom instruction support for the compiler is more involved and out of scope for this

work. The popcount hardware instruction was added to the CNN C-code as embedded

assembly.

A version of the CNN code from [13] was kindly shared by the authors. The received

code was slightly modified to include all the CNN weights and the test image inside a

single binary instead of separate files. Having a single test binary is preferable from the

HDL testbench perspective, since it is more convenient to directly load it to the memory.

Additionally, to compare the speed up gained with hardware popcount, two versions of

the CNN were compiled. First version was compiled with the software emulated pop-

count show in listing 1 and the second version was compiled with hardware popcount

instruction shown in listing 2. Both versions were first tested with Spike and the CNN

with emulated popcount was also tested in SCR1 RTL simulation, before implementing

the ISA extension.

Popcount instruction is planned as part of official RISC-V bit manipulation extension

(B) standard, but at the time of writing the standard has not yet solidified. To align with

current draft version of the bit manipulation extension pcnt mnemonic was chosen for



CHAPTER 3. CNN ISA EXTENSION 20

this popcount instruction implementation. The RISC-V ISA specification guarantees that

certain instruction encodings will be left unused. These unused encodings are specifically

meant for implementation of custom instructions in order to avoid conflict with possible

future standard extensions. Custom-0 encoding space was chosen as recommended by

the RISC-V instruction set manual for 32-bit implementations. For custom-0 encoding

space, the first seven bits of the RISC-V instruction are set to 00010112. Since popcount

requires only source and destination register, bits 19-15 and bits 11-7 of the instruction

respectively, the other fields were fixed to zero.

3.2 Hardware extension

After selecting the instruction encoding format the RTL code of the SCR1 core was mod-

ified to support the new instruction. Instruction decoding unit was modified to accommo-

date for the new popcount instruction and a single cycle implementation of the popcount

was added in to the Arithmetic-Logic Unit (ALU). The ALU muxes the correct operation

to output depending on the instruction. The adder structure is similar to the parallel in-

crementer evaluated in [14]. The implementation sums the bits of the register in parallel

as shown in figure 3.1. In first layer pairs of one bit values are added in parallel to form

two bit values, in the second layer two bit pairs are added to form three bit values and

so forth. Because the maximum value for popcount on 32-bit register is 32 (1000002),

only 6-bits are required to represent the final result. The final register shown in the figure

is not actually required since the value can be directly assigned to 32-bit output of the

ALU. The verilog code to generate this structure is shown in listing 3. Since the hardware

implementation was not on critical timing path no further optimization was done.
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Figure 3.1: Parallel popcount example

1 genvar i;
2 generate
3 for (i = 0; i <= 30; i = i + 2) begin : gen_pcnt_L0
4 assign pcnt_L0[i+1:i] = ialu_op1[i+1] + ialu_op1[i];
5 end
6 for (i = 0; i <= 28; i = i + 4) begin : gen_pcnt_L1
7 assign pcnt_L1[i+3:i] = pcnt_L0[i+3:i+2] + pcnt_L0[i+1:i];
8 end
9 for (i = 0; i <= 24; i = i + 8) begin : gen_pcnt_L2

10 assign pcnt_L2[i+7:i] = pcnt_L1[i+7:i+4] + pcnt_L1[i+3:i];
11 end
12 for (i = 0; i <= 16; i = i + 16) begin : gen_pcnt_L3
13 assign pcnt_L3[i+15:i] = pcnt_L2[i+15:i+8] + pcnt_L2[i+7:i];
14 end
15 endgenerate
16

17 always_comb begin
18 pcnt_res = '0;
19 if (ialu_cmd == SCR1_IALU_CMD_PCNT) begin
20 pcnt_res = pcnt_L3[31:16] + pcnt_L3[15:0];
21 end
22 end

Listing 3: Hardware implementation of popcount
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Latch sequencing

Memory elements are fundamental for the operation of all sequential digital circuits. In

addition to storing information from previous states they are used to synchronize vari-

ous signals traveling through combinational logic stages. Signals traveling through long

and complex combinational paths take longer to arrive at an endpoint than signals travel-

ing through short and simple combinational paths. Memory elements are needed to slow

down the faster signals in order to synchronize all inputs for the next state to a stable

value. If the outputs of previous computation stage were not stable when the computation

of next state begins we are bound to get invalid results. From this perspective the main pur-

pose of memory elements is to separate previous state of the computation from the next.

While there are many different memory elements most CMOS systems use only edge-

triggered flip-flops, transparent latches and pulsed latches [15]. This chapter focuses on

edge-triggered flip-flops and transparent latches. Behavioral differences between latches

and flip-flops can be seen in figure 4.1. Figure 4.2 shows traditional flip-flop and latch

implementations from [15]. Note that output signal of the flip-flop design is inverted. For

the latch circuit in figure 4.2 (b) the inverter between clock signal and PMOS, can be

moved between clock signal and NMOS to produce a latch operating in opposite phase.
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clk

D

Q (latch)

Q (flip-flop)

Figure 4.1: Transparent latch and positive edge triggered flip-flop timing behavior

(a) Flip-flop

(b) Latch

Figure 4.2: Traditional flip-flop and latch implementations
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4.1 Flip-flop

Flip-flops are edge triggered devices, i.e. they allow the value at the input to propagate to

the output only when an edge occurs in the control signal driving the flip-flop. Positive

edge triggered flip-flops are the most common way to sequence program execution due to

their simple timing behavior. While negative edge triggered flip-flops are also possible,

they are not as common as positive edge triggered flip-flops. Mixing positive and negative

edge triggered flip-flops can be done, but it is avoided in general to keep the timing of the

circuit simpler, unless there is a good reason for it.

4.2 Transparent latch

Latches have varying properties depending on the clocking scheme. For example pulsed

latches are driven by short clock pulses and usually accompanied by local pulse gener-

ators, while transparent latches are usually driven by longer clock pulses in at least in

two different phases. This work focuses on transparent latch design and all references to

latches mean transparent latches, unless specified otherwise. For simplicity the focus is

on latches operating in two complementary phases with 50% duty cycle clocks.

When the control signal is active the latch is said to be transparent (or open). While the

latch is transparent, output signal of the latch follows the input signal. While the control

signal is not active latch is said to be opaque (or closed). While the latch is opaque, the

output signal is “locked in” and does not change with the input signal. Latches can be

either active high or active low, but unlike flip-flops at least two alternating active phases

are needed for sequencing. As a device latches are simpler to build and require less

transistors than flip-flops. In fact two transparent latches placed back to back operating

in opposite phases as show in figure 4.3 are behaviorally equivalent to a single flip-flop.

Compared to flip-flops latches have a wide window during which a signal can propagate,

which gives latches an useful feature called time-borrowing. As long as the input data
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Figure 4.3: Two latches forming a functionally equivalent flip-flop

stabilizes to correct value before the latch becomes opaque the timing will not be violated.

Because data does not have to stabilize before the active clock edge, the delays between

latches do not have to be as evenly divided as delays between flip-flops. Instead the logic

in some stages can borrow time from subsequent stages. The timing will be met if some

parts of the subsequent stages are fast enough to compensate for the delays introduced in

the slower stages.

4.3 Timing behavior

In digital circuit design the timing of the circuit is the most important aspect of the design.

If the design fails to meet it’s timing requirements the manufactured chip will not be

functional. While in digital domain signals can have only values 0 and 1, in real devices

signal transitions are not instantaneous. Each cell in the design has a propagation delay,

which is the time it takes for a change in input signal value to appear on the output of the

cell. All cells and wires, through which the signal propagates, add delay to the signal. To

successfully capture a signal value to a memory element the signal must be stable while

the value is being stored. Otherwise the captured values become unpredictable causing

the system to fail.

Sequential systems introduce overhead which increase the clock cycle time from three

sources: propagation delay, setup time and clock skew [15]. The time a signal must be
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stable before an edge is called setup time (∆DC) and the time a signal must be stable

after an edge is called hold time (∆CD). If a signal does not meet setup or hold re-

quirements the captured value becomes unpredictable. The maximum clock frequency

for which a path can meet the timing requirements is limited by max-delay consisting

of the total propagation delay of logic (∆logic) on the path and a sequencing overhead

(Tc = ∆logic + overhead). If two or more memory elements are placed back-to-back

without any logic between them, a common way to delay a signal, care must be taken to

make sure the signal takes at least min-delay amount of time to propagate. Otherwise the

subsequent memory elements might capture an incorrect value. While a system violating

max-delay can still function at lower frequencies, usually min-delay violations cannot be

compensated afterwards and they can render the system inoperable. Even for relatively

small systems distributing a completely synchronous clock signal to all clocked compo-

nents is not possible in practice. The clock will arrive to different parts of the system at

slightly different times. Therefore some margin needs to be added for compensating the

clock skew tskew to ensure correct operation. For example, if the clock arrives late to a

memory element and early to a subsequent memory element, the time the signals has for

propagating through the logic between the memory elements is reduced.

Table 4.1[15] shows comparison of flip-flop and latch performance. For latches the

tnonoverlap denotes the time between clock falling and rising edge of subsequent stages.

For 50% duty cycle two-phase complementary clocks the tnonoverlap is zero. Reducing the

duty cycles of the clocks would increase the non-overlap time. For sequencing overhead

of flip-flops the data propagation delay at clock edge ∆CQ, setup time before the clock

rises again ∆DC and clock skew tskew must be taken in to account. Sequencing overhead

of latches depends only on propagation delay 2∆DQ (two latches in clock cycle Tc). The

min-delay requirement for both latches and flip-flops are quite similar. The δCQ denotes

the minimum time from clock switching until the data at the output becomes valid. The

related delays are visualized in figure 4.4.
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Element Sequencing overhead Time borrowing Min-delay

Flip-flop ∆CQ + ∆DC + tskew 0 ∆CD + tskew − δCQ

Transparent latch 2∆DQ
Tc
2
−∆DC − tskew − tnonoverlap ∆CD + tskew − δCQ − tnonoverlap

(in each half-cycle)

Table 4.1: Flip-flop and latch performance

clk

D

Q

tskew

∆DC ∆CD

∆CQ δCQ

(a) Flip-flop timing

clk

D

Q

tskew

∆DC ∆CD

∆DQ
δCQ

(b) Latch timing

Figure 4.4: Positive edge triggered flip-flop and transparent latch timing delay compo-

nents visualized
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4.4 Process variations

Essentially, all properties of all components of a circuit are subject to Process, Voltage,

and Temperature (PVT) variations. Detailed PVT analysis is out of scope for this work,

and here the clock skew is surrogate for all PVT variations. Depending on the location of

the memory elements, the phase of the clock signal is skewed slightly. While careful clock

tree design can mitigate the clock skew it cannot be completely eliminated. Process vari-

ations, which are especially troublesome in low-power designs, reduce the manufacturing

yields. Latches offer some benefits over flip-flops for designs which are subjected to large

manufacturing process variations. Hurst et. al have shown in [4] that transparent latches

can reduce the rate of failures by four times compared to flip-flops. While under tradi-

tional timing models the maximum performance of latches does not differ from flip-flops,

under high variation and statistical timing model latches have advantage over flip-flops.

Because each manufactured instance has unique timing characteristics it is impossible to

create an optimal timing for every scenario at design time. Instead only the best solution

for largest number of devices can be selected. Flip-flops are affected by variations more

than transparent latches, because they can only capture value at the clock edges. Trans-

parent latches have a much wider window for the signals to propagate, allowing a larger

number of the possible variations to meet the timing.
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Latches — replacing flip-flops

As explained on previous chapter latches have some advantages over flip-flops for designs

affected by large manufacturing process variations. Because latches are also simpler de-

vices it is expected that latch-based design would also have smaller area than equivalent

flip-flop-based design. Since no open-source latch-based RISC-V cores were available,

SCR1 was previously selected as a target for transforming the flip-flop-based logic to

latch-based logic, while keeping the core behaviorally intact. This chapter presents an

HDL approach developed for transforming the flip-flop-based core to a latch-based core.

A SystemVerilog analysis tool and simple python preprocessor were developed to gener-

ate signal dependency graphs. The analysis tool replaces each flip-flop vertex in the graph

with a single latch, assigns phases to the signals and detects feedback loops which need

additional latch inserts.

Synthesis tools transform the RTL description of the circuit to gate level representation

by mapping the described logic to cells. The cells are picked based on what kind of logic

the RTL description implies, the properties of available cells and the given constraints. In

order to synthesize latches instead of flip-flops and vice versa, the RTL has to be written in

a way that implies the desired type of cells. While it is possible to specify cells explicitly,

doing so at scale quickly becomes tedious and error prone. Explicit definitions are also

tied to specific cell libraries and reduce portability between different libraries.
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The SCR1 core is written in SystemVerilog. In SystemVerilog it is possible to ex-

press designer intent more strongly than some in other HDLs commonly used in the in-

dustry, such as Verilog or VHDL. SystemVerilog standard [16] specifies separate al-

ways_ff and always_latch procedures which allows user to define explicitly the

intent to generate flip-flops or latches. However, if the statements inside always_ff

or always_latch procedures do not also imply flip-flops or latches then something

else will be generated. SystemVerilog does not enforce checks on whether logic inside

always_latch block is really representing a latch, but it urges tools to check and gen-

erate warnings in case of mismatch. Separate blocks for flip-flops and latches improve

readability and help with debugging.

5.1 Methodology

Latch-based design requires a slightly different methodology than flip-flop-based design.

Usually most flip-flops operate in the same clock phase, while in transparent latch designs

the latches operate in alternating phases.

In latch-based circuit operation each signal is either stable when the driving latch is

opaque or unstable when the driving latch is transparent. Wide signal propagation window

of transparent latches introduces some constraints that are not present in flip-flop-based

designs. In flip-flop designs connecting two positive edge triggered flip-flops back-to-

back delays the signal by one clock cycle. Connecting two latches operating in a same

phase rarely make sense, because this would create a one long path, where the second

latch acts as a delay buffer. To keep the circuit “sane” there are several rules on how the

signal phases can be connected. Connection rules are shown in table 5.1 in terms of HDL

assignments, where “RHS” denotes right-hand side of the assignment and “LHS+cond”

denotes left-hand side of the assignment and conditionals affecting the assignment. The

rationale for forbidden connections is shown in table 5.2. In HDL code it is perfectly
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RHS/LHS+cond Comb. s1 Comb. s2 Latch s1 Latch s2

Comb. s1 Yes No No Yes

Comb. s2 No Yes Yes No

Latch s1 Yes No No Yes

Latch s2 No Yes Yes No

Table 5.1: Allowed and forbidden connection matrix.

legal to mix phases in a way that can mess up the synchronization of the signals. Due to

differences in timing behavior writing latch-based HDL code requires a slightly different

mindset than writing flip-flop code. Managing multiple phases increases the complexity

from timing perspective compared to traditional positive clock edge triggered flip-flop

design. Coherent signal names are very valuable for debugging signal phase related issues

in the design. A signal naming scheme shown in table 5.3 based on scheme proposed in

[15] was adopted. Adding a suffix indicating the signal phase and assignment type helps

to identify timing problems. Suffixes “ s1” and “ s2” indicate continuous assignment

stable in phase 1 and phase 2 respectively. Additional letter “l” indicates that the signal

originates from an assignment implying a latch. Special cases “ l2t1” and “ l1t2” signify

a latch inserted to delay the signal by a half-cycle and change the phase of the signal

from phase 2 to phase 1 and from phase 1 to phase 2, respectively, without any logic in

between.

5.2 Signal dependencies

Signal dependencies of a circuit described in RTL can be represented by a directed graph,

where each vertex is a signal node and directed edges represent dependencies formed

between the vertices by assignments. The underlying functions of the assignments are
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Forbidden connection Reason

1. Latch→ latch, same phase Second latch acts as a buffer instead of synchronization element.

2. Comb→ latch, same phase Latch acts as a buffer instead of synchronization element.

3. Comb→ comb, different phase Signal becomes unpredictable, because phases are mixed.

4. Latch→ comb, different phase Comb signal is not stable in the intended phase.

Table 5.2: Rationale for forbidden connections for two phase transparent latch design

Output type Output stable Input type Input stable Output suffix

Comb Phase 1 Comb or Latch Phase 1 s1

Comb Phase 2 Comb or Latch Phase 2 s2

Latch Phase 1 Comb Phase 2 s1l

Latch Phase 2 Comb Phase 1 s2l

Latch Phase 1 Latch Phase 2 l2t1

Latch Phase 2 Latch Phase 1 l1t2

Table 5.3: Signal naming methodology
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not relevant for the dependency graph. Signal assignments can be either sequential or

combinational and either conditional or direct dependencies. Propagation of sequential

assignments is controlled by a clock signal and combinational assignments propagate

constantly. Dependency is conditional if the signal is not directly assigned to dependent

signal, but it has an effect to the evaluation of the assignment via conditional statements.

Each vertex and edge in the graph is “colored” to be either sequential or combinational as

defined by the RTL assignment expression. Additionally each edge can be direct or con-

ditional. Example visualizations of graphs and of the RTL code the graph was generated

from can be seen in figure 5.1. Input and output ports are represented by bright and dark

yellow nodes. Signals values flow from input to output. As can be seen in figure 5.1 (a)

both assign statements and blocking assignments inside always_comb blocks result

in combinational dependency. Dashed edges denote conditional dependency. In figure 5.1

(b) all assignments are sequential. Notice that the cyc2 signal has a dependency to itself,

because it needs the previous value of itself to evaluate correctly, depending on the state

of or_prev signal. With flip-flops feedback from cell output to it’s input is allowed,

because the signal can only propagate on clock edge.

5.3 Transform

Transforming flip-flop-based design to a latch-based design could be accomplished by

simply replacing all instances of flip-flops with two back-to-back latches. On the other

hand the transformation could be done by replacing a flip-flops with just one latch and

then adjusting the signal phases and inserting latches to feedback paths when necessary.

The latter approach was chosen, because the resulting RTL code is truly in latch-based

style.

Before the input files are parsed by the analysis tool, they are run through a prepro-

cessor. A simple python preprocessor was developed for the purpose of making the job
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1 module comb_example(
2 input logic in1,
3 input logic in2,
4 input logic cond,
5 output logic out
6 );
7 logic a;
8 logic b;
9

10 assign a = !in1;
11 assign b = !in2;
12

13 always_comb begin
14 if (cond) begin
15 out = in1 & in2;
16 end
17 else begin
18 out = a & b;
19 end
20 end
21 endmodule : comb_example

(a) Combinational example

1 module seq_example(
2 input logic clk,
3 input logic rst_n,
4 input logic in,
5 input logic or_prev,
6 output logic out
7 );
8 logic cyc1;
9 logic cyc2;

10

11 always_ff @(posedge clk) begin
12 if (˜rst_n) begin
13 cyc1 <= 1'b0;
14 cyc2 <= 1'b0;
15 out <= 1'b0;
16 end
17 else begin
18 cyc1 <= in;
19 if (or_prev == 1'b1) begin
20 cyc2 <= (cyc2 | cyc1);
21 end
22 else begin
23 cyc2 <= cyc1;
24 end
25 out <= cyc2;
26 end
27 end
28 endmodule : seq_example

(b) Sequential example (clk and rst n left out for clarity)

Figure 5.1: Visualization of assignment graphs generated from RTL
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of analysis tool easier. The preprocessor handles expansion of macros, preprocessor con-

ditionals and include statements. Preprocessor outputs a single file which combines all

the included files, has all macro values expanded and contains only the blocks selected by

conditional macros.

A SystemVerilog analysis tool was developed to identify logical dependencies in the

circuit. The tool was built with ANTLR4 parser generator. Given a grammar description

of a formal language ANTLR4 generates lexer and parser. First the lexer tokenizes the

input for the parser. Each token represents character strings of the code with distinct

meaning, such as keywords, identifiers, comments, etc. Based on the token stream the

parser then generates a parse tree data structure describing the code in a structured manner.

Lexer and parsers are commonplace in compiler front-ends and various tools have

been developed for generating parsers from formal grammar definitions. Complex lan-

guages, such as SystemVerilog, often have relatively complicated grammar. Fortunately

Carr et al. have developed SystemVerilog ANTLR4 grammar for Microsoft’s static anal-

ysis platform, gNOSIS [17], and released it under MIT license. Additionally the grammar

of SystemVerilog is comprehensively described in [16]. While the grammar file was in

quite good shape, it required minor tweaks (appendix A) before the code was parsed prop-

erly. Given a grammar description, ANTLR4 generates a parser skeleton, which by itself

does nothing with the parse tree. Additional functionality was added to the parser to gen-

erate a directed graph of the signal dependencies with JGraphT library while traversing

the parse tree.

As the parse tree is being traversed, for each new signal encountered a vertex rep-

resenting the new signal is added to the graph. If a vertex corresponding to the signal

already exists, only the edges representing dependencies are updated. Vertices or signals

from which the assignment depends are connected by a directed edge. Dependencies are

categorized either as direct dependencies or conditional dependencies. Direct dependen-

cies of an assignment are defined by the right-hand side of the assignment statement, i.e.



CHAPTER 5. LATCHES — REPLACING FLIP-FLOPS 36

what is being assigned to the signal node. Signals can also be conditionally dependent on

another signal. For example, if an assign statement for signal A is chosen based on value

of signal B, but the signal B is not directly assigned to signal A, a conditional depen-

dency is created. After the graph is constructed clock and reset signal nodes are removed,

because they are not dependent on any other signal.

Then all sequential nodes are treated as latches and nodes of the graph are then ranked

by whether the connections are valid or not based on the connection rules show in table

5.1. The direction of the graph is reversed and the graph is traversed depth-first from out-

puts to inputs until all vertices have been assigned a score. The purpose of the ranking is to

assign signal phases in a way that the number of invalid connections will be small before

adding any additional latches to fix the sequencing. For the purpose of this work a rather

simple scoring scheme was created by experimentation and it is by no means guaranteed

to be optimal. Score of a node is incremented for valid connections and decremented for

invalid connections based on the initial phases and signal type. After all nodes have been

scored, the nodes are assigned phases starting from the node with highest score (most

valid connections) to the node with lowest score (least valid connections). Each time a

node is assigned a phase, also unassigned nodes with connecting edges are assigned to

suitable phase.

After the nodes have been assigned phases, additional latches need to be inserted to

fix the remaining invalid connections. For example, a flip-flop with feedback from it’s

output to it’s input cannot be replaced by a single latch. An additional latch needs to be

inserted in the feedback path to preserve the correct sequencing. Actual implementations

of even a relatively simple cores such as SCR1 have a huge number of connections and

visualizing them as a graph is not very useful. Instead of a graph, the analysis tool outputs

a list of signals along with assigned phases and required latch inserts for the module. The

RTL code was then modified by hand based on the output of the analysis tool. In order to

reduce the tool complexity and development time, the analysis tool is limited to operating
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on a single module at a time and the process has to be repeated for each module. Assigning

the phases of the whole design at the same time might have yielded more optimal results.

5.4 Latch synthesis

Writing SystemVerilog code that synthesizes to flip-flop-based logic is quite straightfor-

ward and well supported. In the case of sequential latch code the situation is not as clear.

How well the surrounding logic synthesizes is dependent on the cell libraries and how the

latch is described inside the module.

Simple latches with just a clock and data inputs synthesize as expected. When reset

was added the synthesis results became somewhat unpredictable. Even though there was a

latch cell with reset in the cell library the synthesis tool created ad hoc reset logic around

a reseteless latch cell instead. In general, writing latches with the same style as flip-

flops, seems to produce unnecessarily complicated logic as seen in figure 5.3. Separating

the combinational logic outside always_latch block as combinational statemets pro-

duced simpler logic, shown in figure 5.2. Despite many trials the synthesis tool refused

to synthesize latch logic with latch cells that actually have a reset input. In the end the

desired results were achieved by hardcoding the desired library cells as seen on figure 5.4.

Because the synthesis of latch-based logic is somewhat unpredictable, a wrapper mod-

ule was created for each type of utilized latch components. The module is parameterized

for size and reset value to enable generic usage. A wrapper for latch with output stable

at phase 1 is shown in listing 4. All combinational logic inside always_ff blocks was

moved to separate always_comb blocks which were connected to the latch wrappers

as shown in listing 5. An enable signal was added to the latch wrapper to allow retaining

the data as needed by gating the clock locally. During synthesis the latch wrappers were

synthesized by themselves first and size_only constraint was set on all cells inside

the wrappers. This prevents the synthesis tool from swapping the cells to something un-
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1 module test_latch_reset(
2 input logic clk,
3 input logic reset,
4 input logic d,
5 output logic q
6 );
7 logic a;
8

9 assign a = (reset) ? 1'b0 : d;
10

11 always_latch begin
12 if (clk || reset) begin
13 q <= a;
14 end
15 end
16 endmodule : test_latch_reset

Figure 5.2: Synthesis of latch with reset. Output value assigned outside the always latch

block.
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1 module test_latch_reset2(
2 input logic clk,
3 input logic reset,
4 input logic d,
5 output logic q
6 );
7 always_latch begin
8 if (reset) begin
9 q <= 1'b0;

10 end
11 else if (clk) begin
12 q <= d;
13 end
14 end
15 endmodule : test_latch_reset2

Figure 5.3: Synthesis of latch with reset written in flip-flop style.

1 module test_latch_reset4(
2 input logic clk,
3 input logic reset,
4 input logic d,
5 output logic q
6 );
7 latch_cell q_latch ( .GN(!clk), .RN(!reset), .D(d), .Q(q) );
8 endmodule : test_latch_reset4

Figure 5.4: Synthesis of latch with reset written with hardcoded latch cell. The actual cell

name is not shown.
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wanted, while allowing the cells to be resized for different drive strengths. The rest of

the design was then synthesized after processing the latches to achieve desired results.

However, for some reason the synthesis tool did not time the clock paths for the latches

correctly. According to the synthesis tool there were no timing violations, but when the

design was simulated it was apparent that the delay added by enable signal clock gate

was not taken in to account. Since the synthesis tool itself did not see any errors the issue

proved quite hard to debug. As a workaround the delay added by the gating cells were

overridden with a smaller value than in the real model. Since there are only 1-2 additional

cells added just before the latch clock pin for latches with enable the simulated timing is

still close to what the actual values would be. This issue might have been easier to solve

in place-and-route stage, but this was not tested due to limited scope of this work.
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1 `ifndef VERILATOR
2 `define SCR1_LATCH_S1_STRUCT
3 `endif //VERILATOR
4 module scr1_latch_s1 #(
5 parameter SCR1_LATCH_BITS = 1, SCR1_LATCH_RESET_VALUE = 0
6 ) (
7 input logic clk,
8 input logic rst_n,
9 input logic en,

10 input logic [SCR1_LATCH_BITS-1:0] d,
11 output logic [SCR1_LATCH_BITS-1:0] q
12 );
13 `ifdef SCR1_LATCH_S1_STRUCT
14 localparam bit [SCR1_LATCH_BITS-1:0] rst_val =

(SCR1_LATCH_BITS)'(SCR1_LATCH_RESET_VALUE);↪→
15

16 logic clk_n;
17 logic clk_n_gate;
18 logic clk_n_gate_n;
19 logic [SCR1_LATCH_BITS-1:0] din;
20 logic [SCR1_LATCH_BITS-1:0] dout;
21

22 // Clock gate active low, latch active low
23 inverter_cell inv_clk ( .A(clk), .Z(clk_n) );
24 and2_cell and2_clock_gate ( .A(clk_n), .B(en), .Z(clk_n_gate) );
25 inverter_cell inv_clk_gate ( .A(clk_n_gate), .Z(clk_n_gate_n) );
26
27 generate
28 genvar i;
29 for (i = 0; i < SCR1_LATCH_BITS; i = i + 1) begin : q_latch_s1
30 // If latch bit has non-zero reset value, it needs to be inverted
31 // before and after latch. No need to invert for zero reset value.
32 if (rst_val[i] == 1'b0) begin : rst_bit_0
33 always_comb begin
34 din[i] = d[i];
35 q[i] = dout[i];
36 end
37 end
38 else begin : rst_bit_1
39 inverter_cell inv_din ( .A(d[i]), .Z(din[i]) );
40 inverter_cell inv_dout ( .A(dout[i]), .Z(q[i]) );
41 end
42 latch_cell q_latch_s1 ( .GN(clk_n_gate_n), .RN(rst_n), .D(din[i]),

.Q(dout[i]) );↪→
43 end
44 endgenerate
45
46 `else //˜SCR1_LATCH_S1_STRUCT
47 logic clk_gate;
48 logic [SCR1_LATCH_BITS-1:0] dout;
49

50 always_comb begin
51 clk_gate = ˜rst_n || (en && ˜clk);
52 end
53

54 always_comb begin
55 if(˜rst_n) begin
56 dout = (SCR1_LATCH_BITS)'(SCR1_LATCH_RESET_VALUE);
57 end
58 else begin
59 dout = d;
60 end
61 end
62

63 always_latch begin
64 if (clk_gate) begin
65 q <= dout;
66 end
67 end
68

69 `endif //SCR1_LATCH_S1_STRUCT
70 endmodule : scr1_latch_s1

Listing 4: Parameterized latch wrapper with output stable at phase 1. Actual cell names

are not shown.
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1 always_ff @(posedge clk, negedge rst_n) begin
2 if (˜rst_n) begin
3 init_pc_v_s2l <= '0;
4 end else begin
5 if (˜&init_pc_v_s2l) begin
6 init_pc_v_s2l <= {init_pc_v_s2l[2:0], 1'b1};
7 end
8 end
9 end

(a) Original flip-flop block

1 always_comb begin
2 init_pc_v_s2l_enable_s1 = 1'b0;
3 init_pc_v_s2l_next_s1 = {init_pc_v_l2t1[2:0], 1'b1};
4

5 if (˜&init_pc_v_l2t1) begin
6 init_pc_v_s2l_enable_s1 = 1'b1;
7 end
8 end
9 scr1_latch_s2 #($bits(init_pc_v_s2l)) i_latch_init_pc_v_s2l(

10 .clk(clk),
11 .rst_n(rst_n_s1l),
12 .en(init_pc_v_s2l_enable_s1),
13 .d(init_pc_v_s2l_next_s1),
14 .q(init_pc_v_s2l)
15 );

(b) Resulting combinational logic and latch wrapper

Listing 5: Snippets showing the original flip-flop block and the latch version.
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Results

This chapter compares latch core and flip-flop core in terms of area, power, energy over

different process corners. Only the cores were synthesized for these netlist simulations.

The top level environment, including instruction and data memories were kept as part of

the testbench. The synthesized core was connected to the testbench environment via I/O

delay wrapper in order to simulate the actual environment more realistically. No clock

gating was inserted by the synthesis tool to either core, but the latch core contains some

inherent local clock gates due to the way it is structured as presented in previous chapter.

The following results were obtained by simulating the synthesized cores.

• Latch core area is 17-20% smaller

• Target frequencies that caused flip-flop core area to increase, did not cause signifi-

cant increases on latch core area

• Latch core internal power is 2.9-3.6 times smaller (SHA-256)

• Latch core switching power is 1.06-1.16 times larger (SHA-256)

• Latch core leakage power is 1.1-2.4 times larger

• Latch core total power is 1.6-2.1 times smaller
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• SHA-256 activated the core most, followed by Coremark and Dhrystone 2.1 bench-

marks

• Latch core energy consumption is 3.9-8.5 uW/MHz with activity from SHA-256

simulation

• Flip-flop core energy consumption is 8.2-14.0 uW/MHz with activity from SHA-

256 simulation

The simulations of the original flip-flop-based core and the latch-based core were run with

identical testset. The testbench is based on the testbench provided in Syntacore’s SCR1

repository, with some minor augmentations. Switching activity for power estimation was

extracted from RTL simulations and then mapped to synthesized netlist. The power cal-

culations do not include clock tree power or wire loads, which adds some uncertainty to

the power numbers.

Hold violations were corrected by a script which inserts buffers to violating paths

and sets them as size only. After buffer insertion, the design was resynthesized with

-incremental flag. The process of buffer insertion and incremental compile for flip-

flops was repeated until no hold violations were reported. The latch core required fewer

buffer insertions for a functioning simulation, but some non-critical hold violations were

left in the design. As explained in the previous chapter the synthesis tool did not correctly

time some of the clock paths during latch core synthesis, if any clock gates related to latch

data retention were present. The script used to fix the timing errors for simulations most

likely gives the latch-based core a slight advantage, but since there were only 1-2 affected

cells placed between the clock signal and latch clock pin per latch for some of the latches,

the effect is rather small.
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6.1 CNN and popcount

For CNN test a single round of image recognition was run. Using hardware popcount in-

struction as opposed to software implementation a 2.1× performance boost was observed

in the execution time as seen in table 6.1. This is in line with the observation that emulated

popcount requires 21 instructions and the hardware popcount requires only 1, excluding

function calls and return statements. While popcount reduces the computation time con-

siderably, there is a significant amount of multiplications done in the program code for

index calculations. Because the core was synthesized without a multiplier the CNN code

was compiled with loop unrolling to reduce the execution time at the cost of additional

memory footprint, resulting in 1.1Mb binary.

Popcount Execution time (ns) Execution time (ms) Relative execution time

Software 185822789 186 1.0

Hardware 87757206 88 0.47

Table 6.1: CNN execution times @ 500MHz, TT 1V 25C

6.2 Synthesis corners

Both cores were synthesized for SS -40C, TT 25C and FF 125C corners. LVT cells were

used in all synthesis trials. All corners were synthesized with 500MHz target and for each

corner target frequency was increased until area started to increase rapidly. The frequency

increase was limited by the flip-flop core. Same targets were then used for latch core. The

flip-flop cores required more hold fix buffers for functional gate level simulations, but

even after subtracting the inserted buffer area the latch core still has advantage in cell

area. Area comparison for each target can be seen in table 6.2. Latch core area is roughly

20% smaller than flip-flop core area for all targets. Since the hold fix buffers were inserted

in the synthesis stage before any cell placement information was present, the hold buffer
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counts might differ from the actually required hold buffer counts. If the hold buffer area is

not taken in to the account, the latch core had largest area advantage for FF 125C 500MHz

target and the smallest area advantage for SS -40C 588.24MHz target.

Maximum time borrow for the latch core was constrained to 40% of the clock period.

Timing issues started appearing when relaxing the time borrow constraint towards to 50%

of the clock period. Actual maximum time borrow for each corner can be seen in table 6.3.

The latch core is able utilize time borrowing quite consistently in all synthesis corners.

FF 125C 1.30V TT 25C 1.20V SS -40C 1.15V

Corner 714.29MHz 500.00MHz 625.00MHz 500.00MHz 588.24MHz 500.00MHz

Latch area 6979.411421 6857.990622 6863.974623 7076.569822 7145.984225 7146.963424

Flip-flop area 9157.913700 9031.379296 8879.168103 8746.867290 8847.507297 8919.532891

Area (latch core / flip-flop core) 0.762 0.759 0.773 0.809 0.808 0.801

Latch buffers 139 3 53 3 6 3

Flip-flop buffers 1232 758 1520 320 662 273

Buffers (latch core / flip-flop core) 0.113 0.004 0.035 0.009 0.009 0.011

Latch hold buffer area 60.492800 1.305600 17.299200 1.305600 2.611200 0.979200

Flip-flop hold buffer area 504.179200 323.571200 496.345600 115.545600 224.780800 89.216000

Hold buffer area (latch core / flip-flop core) 0.120 0.004 0.035 0.011 0.015 0.011

Latch area without buffers 6918.918621 6856.685022 6846.675423 7075.264222 7143.373025 7145.984224

Flip-flop area without buffers 8653.734499 8707.808095 8382.822503 8631.32169 8622.726497 8830.316891

Area without buffers (latch core / flip-flop core) 0.800 0.787 0.817 0.820 0.828 0.809

Area difference with buffers 2178.502279 2173.388674 2015.193480 1670.297468 1701.523072 1772.569467

Area difference without buffers 1734.815879 1851.123074 1536.147080 1556.057468 1479.353472 1684.332667

Table 6.2: Area comparison

FF 125C 1.30V TT 25C 1.20V SS -40C 1.15V

Corner 714.29MHz 500.00MHz 625.00MHz 500.00MHz 588.24MHz 500.00MHz

Max time borrowed (ns) 0.56 0.79 0.63 0.77 0.63 0.79

Max time borrowed / period 0.4 0.395 0.394 0.385 0.371 0.395

Table 6.3: Latch maximum time-borrow
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6.3 Power and energy

Coremark, Dhrystone 2.1 and SHA-256 benchmarks were used for switching power esti-

mates. For each benchmark and for both cores the switching activity was recorded in RTL

simulation and forward annotated to the synthesis tool. Figure 6.1 shows total power com-

parisons between corners and benchmarks for both cores. SHA-256 benchmark caused

the highest signal switching rate in the core in all simulation runs and was selected to

present worst case activity. The power estimate comparison calculated with SHA-256

switching activity is shown in table 6.4. Considering that latch core has roughly 20%

smaller area it is surprising that the latch core has significantly higher leakage power dis-

sipation than flip-flop core. In the worst case at FF 25C 1.3V 500.00MHz target, the latch

core leakage power is almost 2.4 times higher than the leakage power of the flip-flop core.

And even in the best case at SS -40C 1.0V 588.24MHz the latch leakage power is over 1.1

times higher than in the corresponding flip-flop core. One reason for the higher leakage

might be that the cell library does not have that many latch cell variants. In fact there was

only one latch cell with reset in the library and a few other latch cell without reset. Cell

libraries are typically more geared for traditional flip-flop-based design and the quality

of latch cells might not be as good as flip-flop cells. The Flip-flop core comes ahead in

terms of switching power as well. In the worst case at TT 25C 1.0V 500.00MHz target,

the latch core switching power is over 1.1 times higher and in the best case at SS -40C

1.0V 500MHz target, the latch core leakage is 1.06 times higher. The time borrowing pro-

prety of the latches might be a contributing factor to the higher switching power, because

signals have a wider arrival window and potentially more toggling activity can take place

before the signals stabilize. However, the latch core internal power is 3.6 times smaller in

the best case at SS -40C 1.15V 500.00Mhz target and 2.9 times smaller in the worst case

at FF 125C 1.3V 714.29MHz target. The internal power contains all power dissipated

within cell boundaries. The internal power is mainly caused by short-circuit power for

simple cells, but charging and discharging capacitances internal to the cell may dominate
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for more complex cells. Because of the large internal power reduction the latch core has

lower total power consumption in all corners, ranging from 2.1 times to 1.6 times lower

total power consumption in the best and worst case respectively.

The cores were synthesized for several clock frequency targets. The total power typ-

ically increases along with higher target frequencies, if no other paremeters are adjusted.

While it is possible that in some cases the increase in the clock frequency outweighs the

increase in power and results in lower energy, here it was not the case. The synthesis

targets with the lower 500.00MHz target frequency produced the most energy efficient

cores. The best (lowest) and the worst (highest) core energies were found at SS -40C

1.15V 500.00MHz and FF 125C 1.3V 714.29MHz targets respectively. Overall, the latch

core is roughly two times more energy efficient than the flip-flop core.

FF 125C 1.30V TT 25C 1.20V SS -40C 1.15V

Corner 714.29MHz 500.00MHz 625.00MHz 500.00MHz 588.24MHz 500.00MHz

Latch core internal power (mW) 2.393100 1.107500 1.529100 0.930300 1.222300 0.852900

Flip-flop core internal power (mW) 7.044200 3.623100 5.053100 3.270100 4.193000 3.081600

Internal power (latch core / flip-flop core) 0.340 0.306 0.303 0.284 0.292 0.277

Latch core switching power (mW) 2.443800 1.244100 1.855800 1.185600 1.615300 1.101700

Flip-flop core switching power (mW) 2.118100 1.138000 1.622200 1.018700 1.404400 1.042700

Switching power (latch core / flip-flop core) 1.154 1.093 1.144 1.164 1.150 1.057

Latch core leakage power (mW) 1.258100 0.498800 0.026355 0.013720 0.000804 0.000358

Flip-flop core leakage power (mW) 0.809700 0.208700 0.011452 0.006410 0.000711 0.000250

Leakage power (latch core / flip-flop core) 1.554 2.390 2.301 2.140 1.131 1.432

Latch core total power (mW) 6.095000 2.850400 3.411255 2.129620 2.838404 1.954958

Flip-flop core total power (mW) 9.972000 4.969800 6.686752 4.295210 5.598111 4.124550

Total power (latch core / flip-flop core) 0.611 0.574 0.510 0.496 0.507 0.474

Latch core energy (uW/MHz) 8.533000 5.700800 5.458008 4.259240 4.825287 3.909916

Flip-flop core energy (uW/MHz) 13.960800 9.939600 10.698803 8.590419 9.516789 8.249100

Energy (latch core / flip-flop core) 0.611 0.574 0.510 0.496 0.507 0.474

Table 6.4: Core power and energy estimates (SHA-256)
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Conclusions

Latch-based designs have a lot of potential for increasing the energy efficiency and de-

creasing manufacturing costs via reduced area and improved tolerance for process vari-

ations. The results are only indicative and further experimentation with different cell

libraries and full flow, including the back-end, would be needed for more accurate energy

predictions. Also the process variation tolerance could be confirmed by simulating the

design over more corners and with statistical timing models. Overall the latch-based core

was around 50% more energy-efficient and had 17-20% smaller area. The hold timing of

both of the cores was fixed at the end of the synthesis by inserting extra buffers due to

limited scope of this work. Usually hold timing is fixed during PnR for more accurate

results. The energy numbers presented in this work are probably rather optimistic, but

the difference between flip-flop and latch cores is large enough to conclude that there is

definitely an advantage for the latch-based version of the core. Applying other energy

saving techniques, such as clock gating could increase the energy-efficiency even further.

Compared to flip-flop-based design latch-based design adds design complexity, but

at least some of the problems could be mitigated by the tooling, if better support for

latch-based sequencing would be added. The cell libraries that were available had more

limited selection of latch cells than flip-flops. A cell library geared towards latch-based

designs might help with some of the synthesis issues. It remained unclear why the syn-
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thesis tool preferred resetless latches with ad hoc reset logic, instead of the latch cell

with reset. Based on the library datasheet there was no clear advantage for the resetless

latch cells over latch cell with reset. Having a typing mechanism for signals in different

phases built-in to the SystemVerilog would allow for a much easier debugging. While the

always_latch keyword helps with the readability, the contents of always_latch

block can still synthesize to something other than latches as allowed by the SystemVerilog

standard. In my opinion generating an error by default and having a mechanism for waiv-

ing the errors as needed would be better for avoiding some of the pitfalls. Moreover, the

core conversion tool could be further developed to automate the process of transforming

flip-flop cores to latch-based cores in RTL.

Without the RISC-V ISA this work would not have been possible. Inserting new

instructions to the core can have very profound impact on the performance of specialized

tasks. Adding the popcount instruction decreased the execution time of the CNN by 2.1

times. Combining software and hardware techniques can definitely help to bridge the gap

between IoT and high-performance computing, enabling new applications. Because the

SCR1 was not synthesized with a dedicated multiplier the CNN code was unrolled at the

expense of increased instruction memory footprint. It would be interesting to compare the

achieved performance to a core with dedicated multiplier and less loop unrolling. Overall

both latch-based design and RISC-V show great promise for highly energy-efficient IoT

designs.
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Appendix A

SysVerilogHDL.g4 version 0.2.0 patch

1 --- SysVerilogHDL.g4 2021-02-23 21:42:06.715813397 +0200
2 +++ SysVerilogHDL_mod.g4 2021-02-23 21:45:14.383131244 +0200
3 @@ -215,7 +215,15 @@
4 Supply0 : 'supply0' ;
5 Supply1 : 'supply1' ;
6 Task : 'task' ;
7 +Tick_define : '`define' ;
8 +Tick_else : '`else' ;
9 +Tick_elsif : '`elsif' ;

10 +Tick_endif : '`endif' ;
11 +Tick_ifdef : '`ifdef' ;
12 +Tick_ifndef : '`ifndef' ;
13 +Tick_include : '`include' ;
14 Tick_timescale : '`timescale' ;
15 +Tick_undef : '`undef' ;
16 Time : 'time' ;
17 Timeprecision : 'timeprecision' ;
18 Timeunit : 'timeunit' ;
19 @@ -258,6 +266,7 @@
20 Escaped_identifier : '\\' ˜[ \r\t\n]* ;
21 Simple_identifier : ALPHA (ALPHA | DIGIT)* ;
22 String_literal : '"' (˜('"'|'\n'|'\r') | '""')* '"' ;
23 +Filename_literal : (˜('"'|'\n'|'\r'))+ ;
24

25

26 // punctuation
27 @@ -339,6 +348,10 @@
28 design_attribute : attribute_instance ;
29

30 compiler_directive : timescale_compiler_directive
31 + | include_compiler_directive
32 + | define_compiler_directive
33 + | undefine_compiler_directive
34 + | conditional_compiler_directive
35 | default_nettype_statement
36 ;
37

38 @@ -1343,14 +1356,11 @@
39 /**********GENERATES**********/
40 /**********CONDITIONAL STATEMENT**********/
41

42 -// ADD ELSE_IF
43 -conditional_statement : if_statement (else_if_statement)* (else_statement)? ;
44 +conditional_statement : if_statement (else_statement)? ;
45
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46 -if_statement : If Open_parenthesis conditional_expression Close_parenthesis
statement_semicolon ;↪→

47 +if_statement : If Open_parenthesis conditional_expression Close_parenthesis
statement_semicolon ;↪→

48

49 -else_if_statement : Else If Open_parenthesis conditional_expression Close_parenthesis
statement_semicolon ;↪→

50 -
51 -else_statement : Else statement_semicolon ;
52 +else_statement : Else statement_semicolon ;
53

54 conditional_expression : expression ;
55

56 @@ -1426,8 +1436,7 @@
57

58 primary_range : primary dimension ;
59

60 -primary : type_cast_expression
61 - | number
62 +primary : number
63 | concatenation
64 | multiple_concatenation
65 | function_call
66 @@ -1436,7 +1445,7 @@
67 | imported_function_call
68 | primary_imported_hierarchical_identifier
69 | primary_hierarchical_identifier
70 - //| type_cast_expression //MOVED UP
71 + | type_cast_expression
72 | parenthesis_expression
73 ;
74

75 @@ -1859,7 +1868,7 @@
76

77 //library_identifier : identifier ;
78

79 -//file_path_spec : String_literal ;
80 +file_path_spec : String_literal ;
81

82 //config_declaration : Config config_identifier semicolon design_statement (
config_rule_statement )* Endconfig semicolon? ;↪→

83

84 @@ -1891,3 +1900,69 @@
85 //instance_identifier : identifier ;
86

87 /**********LIBRARY**********/
88 +/**********INCLUDE DIRECTIVE**********/
89 +
90 +include_compiler_directive : Tick_include '"' Filename_literal '"'
91 + | Tick_include '<' Filename_literal '>'
92 + ;
93 +
94 +/**********INCLUDE DIRECTIVE**********/
95 +/**********DEFINE DIRECTIVE**********/
96 +
97 +define_compiler_directive : Tick_define text_macro_name macro_text ;
98 +
99 +text_macro_name : text_macro_identifier ( '(' list_of_formal_arguments ')' )? ;

100 +
101 +list_of_formal_arguments : formal_argument (',' formal_argument)* ;
102 +
103 +formal_argument : Simple_identifier ('=' default_text)? ;
104 +
105 +text_macro_identifier : Simple_identifier ;
106 +
107 +default_text : String_literal
108 + | Binary_number
109 + | Decimal_number
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110 + | Fixed_point_number
111 + | Hex_number
112 + | Octal_number
113 + | Real_exp_form
114 + | Unbased_unsized_literal
115 + ;
116 +
117 +macro_text : Simple_identifier
118 + | Decimal_number
119 + ;
120 +
121 +/**********DEFINE DIRECTIVE**********/
122 +/**********UNDEFINE DIRECTIVE**********/
123 +
124 +undefine_compiler_directive : Tick_undef text_macro_identifier ;
125 +
126 +/**********UNDEFINE DIRECTIVE**********/
127 +/**********CONDITONAL DIRECTIVES**********/
128 +
129 +conditional_compiler_directive : ifdef_directive
130 + | ifndef_directive
131 + ;
132 +
133 +ifdef_directive : Tick_ifdef text_macro_identifier ifdef_group_of_lines (Tick_elsif

text_macro_identifier elsif_group_of_lines)* (Tick_else else_group_of_lines)?
Tick_endif ;

↪→
↪→

134 +
135 +ifndef_directive : Tick_ifndef text_macro_identifier ifndef_group_of_lines (Tick_elsif

text_macro_identifier elsif_group_of_lines)* (Tick_else else_group_of_lines)?
Tick_endif ;

↪→
↪→

136 +
137 +ifdef_group_of_lines : source_text
138 + | module_item
139 + ;
140 +
141 +ifndef_group_of_lines : source_text
142 + | module_item
143 + ;
144 +
145 +elsif_group_of_lines : source_text
146 + | module_item
147 + ;
148 +
149 +else_group_of_lines : source_text
150 + | module_item
151 + ;
152 +
153 +/**********CONDITONAL DIRECTIVES**********/
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Flip-flop compile script

1 # Load submodule compilation proc
2 source $SCRIPTPATH/setup/config.tcl
3

4 if { $conf_clear_design == 1 } {
5 remove_design -all
6 }
7

8 # Load mw lib for topographical mode
9 if { [shell_is_in_topographical_mode] } {

10 open_mw_lib $mw_lib_name
11 }
12

13 saif_map -start
14

15 puts "--- LOAD FILES ---"
16 source $SCRIPTPATH/setup/load_scr1_pipe_top.tcl
17 source $SCRIPTPATH/setup/load_scr1_top.tcl
18

19 set output_filename [format "%s%s" [format "%s%s" $scr1_target_top "_"] $output_runname]
20 set default_filename $scr1_target_top
21

22 puts "--- PREPARE ---"
23 current_design $scr1_target_top
24 link
25 uniquify
26

27 check_design -multiple_designs -cells -ports -designs -nets -tristates >
$REPORTPATH/$output_filename.prechecks.rpt↪→

28

29

30 puts "--- CONSTRAINTS ---"
31 source $CONSTRAINTPATH/scr1_core_top.sdc
32

33 read_saif -auto_map_names -input ./../saifs/dhrystone21.saif -instance
scr1_top_tb_ahb/i_top/i_core_top↪→

34 saif_map -report
35

36 puts "--- COMPILE ---"
37 set_power_prediction
38 if { [shell_is_in_topographical_mode] } {
39 set_preferred_routing_direction -layers {M1 M3 M5 IA LB} -direction horizontal
40 set_preferred_routing_direction -layers {M2 M4 M6 IB} -direction vertical
41 compile_ultra
42 } else {
43 compile
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44 compile -incremental -only_hold_time
45 }
46

47 set do_hold_fix 1
48 set hold_fix_rounds 0
49 if {$do_hold_fix} {
50 while {[sizeof_collection [get_timing_paths -delay min -slack_lesser_than 0.0

-nworst 1]] > 0 } {↪→
51 source $SCRIPTPATH/utils/fix_hold_buffers.tcl
52 set_size_only [get_cells *eco* -hierarchical]
53 compile_ultra -incremental
54 incr hold_fix_rounds
55 }
56 }
57 echo "Hold fix rounds $hold_fix_rounds"
58 echo "Inserted [sizeof_collection [get_cells *eco* -hierarchical]] buffers"
59

60 change_names -rules verilog -hierarchy
61 saif_map -write_map $output_filename.namemap -type name_map
62 saif_map -write_map $output_filename.ptpxnamemap -type ptpx
63

64

65 puts "--- REPORT ---"
66 if { $conf_write_reports == 1 } {
67 source $SCRIPTPATH/utils/create_reports.tcl
68 }
69

70 puts "--- WRITE OUT ---"
71 if { $conf_write_out == 1 } {
72 source $SCRIPTPATH/utils/write_out.tcl
73 }
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Flip-flop constraints

1 # Set operating conditions
2 set_operating_conditions -library $TARGETLIB_CORE:$CORELIB_LVT $COND_WC
3

4 # Define clock
5 create_clock -name $CLKNAME -period $CLKPERIOD -waveform [list 0 [expr $CLKPERIOD/2.0]]

clk↪→
6 set_ideal_network [list $CLKPORT]
7 set_fix_hold $CLKNAME
8

9 set_false_path -fall_through [get_pins *buf_qlfy*/reset_n*/Q]
10

11 set_clock_uncertainty $CLKUNCERT [all_clocks]
12 set_clock_transition $CLKTRANS [all_clocks]
13 set_clock_latency $CLKDELAY [all_clocks]
14

15 # I/O delays
16 set_input_delay $INPUTDELAY -max -clock $CLKNAME [all_inputs]
17 set_input_delay 0 -min -clock $CLKNAME [all_inputs]
18 remove_input_delay $CLKPORT
19 set_output_delay $OUTPUTDELAY -clock $CLKNAME [all_outputs]
20

21 set_drive -rise [drive_of -rise $IOLIB/$DRIVERCELL/$DRIVEPIN] [all_inputs]
22 set_drive -fall [drive_of -fall $IOLIB/$DRIVERCELL/$DRIVEPIN] [all_inputs]
23 remove_driving_cell $CLKPORT
24 set_drive 0 $CLKPORT
25 set_load [load_of $IOLIB/$LOADCELL/$LOADPIN] [all_outputs]
26

27 set_max_area $MAX_AREA
28

29 set_fix_multiple_port_nets -all -buffer_constants [get_designs]
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Flip-flop hold fix script

1 set hold_broken 1
2

3 while {$hold_broken == 1} {
4 set worst_path_coll [get_timing_paths -delay min -slack_lesser_than 0.0 -nworst 1]
5

6 if { [sizeof_collection $worst_path_coll] > 0 } {
7

8 foreach_in_collection path $worst_path_coll {
9 set slack [get_attribute $path slack]

10 set startpoint [get_attribute $path startpoint]
11 set endpoint [get_attribute $path endpoint]
12 echo [format "%-20s -> %-20s, slack: %s" [get_attribute $startpoint

full_name] \↪→
13 [get_attribute $endpoint full_name] $slack]
14

15 echo " insert buffer $HOLD_FIX_BUFFER_CELL"
16 insert_buffer $endpoint $HOLD_FIX_BUFFER_CELL
17 update_timing
18 }
19

20 } else {
21 set hold_broken 0
22 }
23 }
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Latch compile script

1 # Load submodule compilation proc
2 source $SCRIPTPATH/setup/config.tcl
3 source $SCRIPTPATH/utils/p_incremental_compile.tcl
4

5

6 if { $conf_clear_design == 1 } {
7 remove_design -all
8 }
9

10 # Load mw lib for topographical mode
11 if { [shell_is_in_topographical_mode] } {
12 open_mw_lib $mw_lib_name
13 }
14

15 set_svf compile.svf
16 saif_map -start
17

18 source $SCRIPTPATH/setup/load_latches.tcl
19

20 # Files
21 set scr1_target_top [list scr1_core_top]
22 set scr1_target_modules [list scr1_pipe_lsu scr1_pipe_ialu scr1_pipe_exu scr1_pipe_mprf

scr1_pipe_ifu scr1_pipe_csr scr1_pipe_idu scr1_pipe_top scr1_core_top]↪→
23

24

25 set output_filename [format "%s%s" [format "%s%s" $scr1_target_top "_"] $output_runname]
26 set default_filename $scr1_target_top
27

28 write_metrics -outfile reports/progress.log -tag "Analyze/elaborate modules"
29

30 # Reset cell package for top reset syncronizer
31 analyze -format sverilog scr1_reset_cells.sv
32 elaborate scr1_reset_buf_qlfy_cell
33 # Elaborate rest of the modules
34 foreach module $scr1_target_modules {
35 analyze -format sverilog $module.sv
36 elaborate $module
37 }
38

39 current_design $scr1_target_top
40 write -hierarchy -output $DBSPATH/$output_filename.elaborated.ddc
41

42 link
43 uniquify
44
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45 source $CONSTRAINTPATH/scr1_core_top_constraints.tcl
46

47 # Apply size-only to latch cells
48 set latch_module_latches [filter_collection [all_registers -level_sensitive] -regexp

{full_name =˜ ".*i_latch.*"}]↪→
49 set_size_only $latch_module_latches true
50

51 set_ungroup [filter_collection [get_designs] -regexp {name =˜ "scr1_latch_.*"}] true
52 set timing_separate_clock_gating_group true
53

54 write_metrics -outfile reports/progress.log -tag "Starting compile"
55 if { [shell_is_in_topographical_mode] } {
56 set_power_prediction
57 set_preferred_routing_direction -layers {M1 M3 M5 IA LB} -direction horizontal
58 set_preferred_routing_direction -layers {M2 M4 M6 IB} -direction vertical
59 compile_ultra
60 } else {
61 compile
62 }
63 remove_unconnected_ports [find -hierarchy cell {"*"}]
64

65 write -hierarchy -output $DBSPATH/$output_filename.compiled.ddc
66

67

68 # Reduce clock gating circuitry delay artificially. DC does not detect clock
69 # gate violations for some reason.
70 source $SCRIPTPATH/utils/reduce_cg_delay.tcl
71 # Annotate some addition delays to fix hold
72 source $SCRIPTPATH/utils/fix_hold_buffers.tcl
73

74 set latch_gate_clock_gates [get_cells *and2_clock_gate* -hierarchical]
75 set_clock_gating_check -hold $CLKGATE_HOLD $latch_gate_clock_gates
76

77 compile_ultra -incremental
78

79 source $SCRIPTPATH/utils/create_reports.tcl
80 write_metrics -outfile reports/progress.log -tag "Script done"
81

82 # Make sure svf file closes properly before exiting
83 set_svf -off
84

85 # Write SAIF map
86 change_names -rules verilog -hierarchy
87 saif_map -write_map $output_filename.namemap -type name_map
88 saif_map -write_map $output_filename.ptpxnamemap -type ptpx
89

90 exit



Appendix F

Latch constraints

1 proc scr1_core_top_constraints {} {
2 global TARGETLIB_CORE
3 global CORELIB_LVT
4 global COND_WC
5 global CLKNAME
6 global CLKPERIOD
7 global CLKPORT
8 global CLKUNCERT
9 global CLKTRANS

10 global CLKDELAY
11 global MAX_TIME_BORROW
12 global INPUTDELAY
13 global OUTPUTDELAY
14 global IOLIB
15 global DRIVERCELL
16 global DRIVEPIN
17 global LOADCELL
18 global LOADPIN
19 global MAX_AREA
20

21 # Set operating conditions
22 set_operating_conditions -library $TARGETLIB_CORE:$CORELIB_LVT $COND_WC
23

24 # Define clock
25 create_clock -name $CLKNAME -period $CLKPERIOD -waveform [list 0 [expr

$CLKPERIOD/2.0]] $CLKPORT↪→
26 set_ideal_network [list $CLKPORT rst_n pwrup_rst_n cpu_rst_n test_rst_n]
27 # -no_propagate prevents dont touch from applying to clock gating
28 # cells along the clock network. They will be set to size_only instead.
29 set_dont_touch_network -no_propagate [list $CLKPORT]
30 set_false_path -fall_from [get_ports *rst_n]
31 set_false_path -fall_through [get_pins *buf_qlfy*/reset_n*/Q]
32 set_fix_hold $CLKNAME
33

34 set_clock_uncertainty $CLKUNCERT [all_clocks]
35 set_clock_transition $CLKTRANS [all_clocks]
36 set_clock_latency $CLKDELAY [all_clocks]
37 set_max_time_borrow $MAX_TIME_BORROW [all_registers -level_sensitive]
38

39 # Allow enable signal delay propagate through gating cell
40 set timing_clock_gating_propagate_enable true
41

42

43 # I/O delays
44 set_input_delay $INPUTDELAY -max -clock $CLKNAME [all_inputs]
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45 set_input_delay $INPUTDELAY -min -clock $CLKNAME [all_inputs]
46 remove_input_delay $CLKPORT
47 set_output_delay $OUTPUTDELAY -clock $CLKNAME [all_outputs]
48

49 set_drive -rise [drive_of -rise $IOLIB/$DRIVERCELL/$DRIVEPIN] [all_inputs]
50 set_drive -fall [drive_of -fall $IOLIB/$DRIVERCELL/$DRIVEPIN] [all_inputs]
51 remove_driving_cell $CLKPORT
52 set_drive 0 $CLKPORT
53 set_load [load_of $IOLIB/$LOADCELL/$LOADPIN] [all_outputs]
54

55 set_max_area $MAX_AREA
56

57 # Prevent multiple ouput ports from driving a single net on any level of hierarhcy
58 set_fix_multiple_port_nets -all -buffer_constants [get_designs]
59 }
60 scr1_core_top_constraints
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Latch hold fix script

1 set rptfile "./reports/eco_buffers.rpt"
2

3 set fixable_count 0
4 set fixed_paths ""
5 set unfixable_count 0
6 set unfixable_paths ""
7 set worst_limit 1
8

9 set fix_loop 1
10 while {$fix_loop} {
11 set worst_path_coll [get_timing_paths -delay min -slack_lesser_than 0.0 -nworst

$worst_limit]↪→
12 set worst_path_count [sizeof_collection $worst_path_coll]
13 echo "Got $worst_path_count hold violating paths out of queried $worst_limit"
14 set path [index_collection $worst_path_coll [expr $worst_limit - 1]]
15

16 if {$worst_path_count > 0} {
17

18 # Path startpoint
19 set startpoint [get_attribute $path startpoint]
20 set startpoint_name [get_attribute $startpoint full_name]
21 if {[string equal port [get_attribute $startpoint object_class]]} {
22 set startpoint_ref [format "port %s" [get_attribute $startpoint

direction]]↪→
23 } elseif {[string equal pin [get_attribute $startpoint object_class]]} {
24 set startpoint_ref [get_attribute [get_cell [string range

$startpoint_name 0 [expr [string last / $startpoint_name] - 1]]]
ref_name]

↪→
↪→

25 } else {
26 set startpoint_ref [get_attribute [get_attribute $startpoint cell]

ref_name]↪→
27 }
28

29 # Path endpoint
30 set endpoint [get_attribute $path endpoint]
31 set endpoint_name [get_attribute $endpoint full_name]
32 if {[string equal port [get_attribute $endpoint object_class]]} {
33 set endpoint_ref [format "port %s" [get_attribute $endpoint direction]]
34 } elseif {[string equal pin [get_attribute $endpoint object_class]]} {
35 set endpoint_ref [get_attribute [get_cell [string range $endpoint_name 0

[expr [string last / $endpoint_name] - 1]]] ref_name]↪→
36 } else {
37 set endpoint_ref [get_attribute [get_attribute $endpoint cell] ref_name]
38 }
39
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40 # Path setup/hold slack
41 set hold_slack [get_attribute $path slack]
42 set setup_path [get_timing_paths -from $startpoint -to $endpoint -delay_type

max]↪→
43 set setup_slack [get_attribute $setup_path slack]
44

45 # Path time-borrowing
46 set time_lent [get_attribute $path time_lent_to_startpoint]
47 set time_borrowed [get_attribute $path time_borrowed_from_endpoint]
48

49 # Buffer delay is ˜0.03 with fanout of 1
50 set is_fixable [expr $setup_slack + $hold_slack*1.04 > 0]
51

52 # If timing is fixable insert buffer, otherwise increment nworst count and
continue↪→

53 if {$is_fixable} {
54 # Buffer is inserted just before the load pin
55 insert_buffer $endpoint $HOLD_FIX_BUFFER_CELL
56 lappend fixable_paths [format \
57 "\tStartpoint: %s (%s)\n\tEndpoint: %s

(%s)\n\thold_slack %-10s setup_slack
%-10s\nStartpoint time lent: %s Endpoint
time borrowed: %s\n" \

↪→
↪→
↪→

58 $startpoint_name $startpoint_ref
$endpoint_name $endpoint_ref $hold_slack
$setup_slack $time_lent $time_borrowed]

↪→
↪→

59 incr fixable_count
60 echo "Fixable $fixable_count"
61

62 update_timing
63 } else {
64 lappend unfixable_paths [format \
65 "\tStartpoint: %s (%s)\n\tEndpoint: %s

(%s)\n\thold_slack %-10s setup_slack
%-10s\nStartpoint time lent: %s Endpoint
time borrowed: %s\n" \

↪→
↪→
↪→

66 $startpoint_name $startpoint_ref
$endpoint_name $endpoint_ref $hold_slack
$setup_slack $time_lent $time_borrowed]

↪→
↪→

67 incr worst_limit
68 continue
69 }
70

71 } else {
72 # No more hold violations
73 set fix_loop 0
74 }
75 }
76

77 # Set eco cells to size_only
78 set_size_only [get_cells *eco* -hierarchical]
79

80 set fh [open $rptfile w]
81 puts $fh "Fixable paths"
82 puts $fh "============="
83 foreach fixable $fixable_paths {
84 puts $fh "$fixable"
85 }
86 puts $fh "\nUnfixable paths"
87 puts $fh "==============="
88 foreach unfixable $unfixable_paths {
89 puts $fh "$unfixable"
90 }
91 puts $fh "Fixable paths: $fixable_count, Unfixable paths $unfixable_count"
92

93 close $fh
94

95 echo "Fixable paths: $fixable_count, Unfixable paths $unfixable_count"
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Latch reduce clock gate delay

1 set rptfile "./reports/modified_cg_paths.rpt"
2

3 set cg_paths [get_timing_paths -from [get_ports clk] -to [get_pins */GN] -nworst 10000]
4 set total_cg_paths [sizeof_collection $cg_paths]
5 echo "Total $total_cg_paths clock gate paths"
6

7 # Set to 0 to disable completely
8 set cg_cell_new_delay 0.005
9

10 set cg_path_count 0
11 set cg_cell_count 0
12 set modified_paths ""
13 foreach_in_collection path $cg_paths {
14 set last_cell ""
15 set last_pin ""
16

17 # Path startpoint
18 set startpoint [get_attribute $path startpoint]
19 set startpoint_name [get_attribute $startpoint full_name]
20 if {[string equal port [get_attribute $startpoint object_class]]} {
21 set startpoint_ref [format "port %s" [get_attribute $startpoint direction]]
22 } elseif {[string equal pin [get_attribute $startpoint object_class]]} {
23 set startpoint_ref [get_attribute [get_cell [string range $startpoint_name 0

[expr [string last / $startpoint_name] - 1]]] ref_name]↪→
24 } else {
25 set startpoint_ref [get_attribute [get_attribute $startpoint cell] ref_name]
26 }
27

28 # Path endpoint
29 set endpoint [get_attribute $path endpoint]
30 set endpoint_name [get_attribute $endpoint full_name]
31 if {[string equal port [get_attribute $endpoint object_class]]} {
32 set endpoint_ref [format "port %s" [get_attribute $endpoint direction]]
33 } elseif {[string equal pin [get_attribute $endpoint object_class]]} {
34 set endpoint_ref [get_attribute [get_cell [string range $endpoint_name 0 [expr

[string last / $endpoint_name] - 1]]] ref_name]↪→
35 } else {
36 set endpoint_ref [get_attribute [get_attribute $endpoint cell] ref_name]
37 }
38

39 echo "Clock gate path $cg_path_count:\n$startpoint_name ($startpoint_ref)\n ->
$endpoint_name ($endpoint_ref)"↪→

40 foreach_in_collection point [get_attribute $path points] {
41 set object [get_attribute $point object]
42 set object_class [get_attribute $object object_class]
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43 set full_name [get_attribute $object full_name]
44

45 if {$object_class == "pin"} {
46 set pin_cell [get_cell [string range $full_name 0 [expr [string last /

$full_name] - 1]]]↪→
47 set pin_cell_name [get_attribute $pin_cell full_name]
48 set pin_cell_ref [get_attribute $pin_cell ref_name]
49

50 if {[string equal [get_attribute $last_cell full_name] [get_attribute
$pin_cell full_name]]} {↪→

51 set inpin_name [get_attribute $last_pin pin_name]
52 set outpin_name [get_attribute $object pin_name]
53 lappend modified_paths [format \
54 "Path %d Cell %d\n\tStartpoint: %s

(%s)\n\tEndpoint: %s (%s)\n\t%s (%s):%s
-> %s delay %f\n" \

↪→
↪→

55 $cg_path_count $cg_cell_count
$startpoint_name $startpoint_ref \↪→

56 $endpoint_name $endpoint_ref $pin_cell_name
$pin_cell_ref \↪→

57 $inpin_name $outpin_name $cg_cell_new_delay]
58

59 echo "Cell $cg_cell_count: [get_attribute $pin_cell full_name]
([get_attribute $pin_cell ref_name])"↪→

60 set_annotated_delay $cg_cell_new_delay -cell -from $last_pin -to $object
61 incr cg_cell_count
62 set last_pin $object
63

64 } else {
65 set last_pin $object
66 set last_cell $pin_cell
67 }
68

69 }
70

71 }; #points
72 incr cg_path_count
73 }; #cg_paths
74 echo "$cg_path_count/$total_cg_paths clock gating path delays set to $cg_cell_new_delay"
75

76 set fh [open $rptfile w]
77 puts $fh "Modified cg paths"
78 puts $fh "================="
79 foreach modpath $modified_paths {
80 puts $fh "$modpath"
81 }
82 puts $fh "Modified paths: $cg_path_count, Modified cells $cg_cell_count"
83

84 close $fh
85

86 echo "Modified paths: $cg_path_count, Modified cells $cg_cell_count"


