
Sleep detection with
photoplethysmography for wearable-based

health monitoring

Master of Science Thesis
University of Turku
Department of Computing
Medical Analytics and Health IoT
2021
Susanna Landström

Supervisors:
Ph.D. Iman Azimi
Ph.D. Pasi Liljeberg

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.



UNIVERSITY OF TURKU
Department of Computing

SUSANNA LANDSTRÖM: Sleep detection with photoplethysmography for wearable-based
health monitoring

Master of Science Thesis, 52 p.
Medical Analytics and Health IoT
May 2021

Remote health monitoring has gained increasing attention in the recent years. Detect-
ing sleep patterns provides users with insights on their personal health issues, and can
help in the diagnosis of various sleep disorders. Conventional methods are focused on
the acceleration data, or are not suitable for continuous monitoring, like the polysomnog-
raphy. Wearable devices enable a way to continuously measure photoplethysmography
signal. Photoplethysmography signal contains information on multiple physiological sys-
tems, and can be used to detect sleep patterns. Sleep detection using wearable-based
photoplethysmography signal offers a convenient and easy way to monitor health.
In this thesis, a photoplethysmography-based sleep detection method for wearable-based
health monitoring is described. This technique aims to separate wakefulness and asleep
states with adequate accuracy. To examine the importance of good quality data in sleep
detection, the quality of the signal is assessed. The proposed method uses statistical
and heart rate based features extracted from the photoplethysmography signal. Using the
most relevant features, various supervised learning algorithms are trained, compared and
evaluated. These algorithms are logistic regression, decision tree, random forest, support
vector machine, k-nearest neighbors, and Naive Bayes.
The best performance is obtained by the random forest classifier. The method received
an overall accuracy of 81 percent. It was able to detect the sleep periods with 86 percent
accuracy and the awake periods with 74 percent accuracy. Motion artifacts occurring
during the awake time caused distortion to the signal. Features related to the shape of
the signal improved the accuracy of sleep detection, since signal distortion was associated
with the awake time. It is concluded that photoplethysmography signal provides a good
alternative for wearable-based sleep detection. Future studies with more comprehensive
sleep level analysis could be conducted to provide valuable information on the quality of
sleep.

Keywords: classification, health monitoring, photoplethysmography, sleep detection, su-
pervised learning, wearables
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Viime vuosina etänä tapahtuva terveyden seuranta on saanut yhä enemmän huomiota.
Unen tunnistaminen antaa käyttäjille tietoa heidän henkilökohtaisista terveysongelmis-
taan ja voi auttaa erilaisten unihäiriöiden diagnosoinnissa. Tavanomaiset menetelmät käyt-
tävät kiihtyvyyteen perustuvaa dataa, tai eivät ole soveltuvia jatkuvaan seurantaan, kuten
polysomnografia. Puettavan teknologian avulla fotopletysmografiasignaalin jatkuva mit-
taus on mahdollista. Fotopletysmografiasignaali sisältää tietoa useista fysiologisista jär-
jestelmistä ja sitä voidaan käyttää unen tunnistamiseen. Puettavan teknologian avulla mi-
tatun fotopletysmografiasignaalin käyttö unen tunnistuksessa tarjoaa kätevän ja helpon
tavan seurata terveyttä.
Tässä diplomityössä kuvataan fotopletysmografiaan perustuva unenhavaitsemismenetel-
mä, joka soveltuu puettavaa teknologiaa hyödyntävään terveyden seurantaan. Tekniikalla
pyritään erottamaan hereillä olo ja uni riittävän tarkasti. Signaalin laatu arvioidaan, jot-
ta voidaan tutkia datan laadun tärkeys unen tunnistuksessa. Kehitetty menetelmä käyttää
tilastollisia ja sykkeeseen perustuvia ominaisuuksia, jotka on erotettu fotopletysmogra-
fiasignaalista. Tärkeimpiä ominaisuuksia käyttämällä erilaisia valvottuja oppimisalgorit-
meja koulutetaan, vertaillaan ja arvioidaan. Käytetyt algoritmit ovat logistinen regressio,
päätöspuu, satunnainen metsä, tukivektorikone, k-lähimmät naapurit ja Naive Bayes.
Paras tulos saadaan käyttämällä satunnainen metsä -algoritmia. Menetelmällä saavutetaan
81 prosentin kokonaistarkkuus. Uni pystytään tunnistamaan 86 prosentin tarkkuudella ja
hereillä olo 74 prosentin tarkkuudella. Hereillä ollessa liikkeestä johtuvat häiriöt aiheutta-
vat vääristymää signaaliin. Signaalin muotoon liittyvät ominaisuudet paransivat unentun-
nistuksen tarkkuutta, koska signaalin vääristyminen yhdistettiin hereilläoloaikaan. Tutki-
muksen tuloksista voidaan tehdä johtopäätös, että fotopletysmografiasignaali tarjoaa hy-
vän vaihtoehdon puettavaa teknologiaa hyödyntävään unen tunnistamiseen. Tulevaisuu-
dessa unen eri vaiheita voitaisiin tutkia kattavammin, jolloin saataisiin arvokasta tietoa
unen laadusta.

Asiasanat: luokittelu, terveyden seuranta, fotopletysmografia, unentunnistus, valvottu op-
piminen, puettava teknologia
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1 Introduction

In the recent years, there has been a growing interest towards sleep monitoring. Why it is

important to get enough good quality sleep [1], how can sleep help with recovery [2], how

it impacts the overall well-being of humans [1] and how it can be measured using different

devices and setups [3] [4] [5] [6]. Inadequate amount of good quality sleep can lead to

various health problems and diseases. Sometimes it might not be enough to go to bed early

and sleep for 8 hours per night. People suffer from various sleep disorders that reduce the

quality of sleep. [7] Sleep apnea patients suffer from decreased airflow or interruptions in

breathing during sleep. [8] Detecting these sleep disorders and disturbances is important.

Early diagnosis of sleep disorders can prevent the development of other diseases, improve

well-being and reduce health problems. [7] [8]

Polysomnography (PSG) is the gold standard for sleep monitoring. PSG is usu-

ally conducted in a sleep laboratory and requires educated specialists and special equip-

ment. PSG uses multiple sensors to simultaneously monitor many biological signals. It

records electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG)

and electrooculogram (EOG). PSG produces accurate data and results, but it is obtrusive

to the patient. PSG is measured by attaching multiple sensors to the body. Each sensor is

connected to the recording unit by a wire. These wires restrict the movement that might

normally occur during sleep. Another issue is that the monitoring is performed in a sleep

laboratory, which is not a normal environment for the patients and can affect the sleep. [4]

Because PSG measurements are usually done for one or two nights, it does not provide a
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feasible way to continuously monitoring sleep.

Activity-based (actigraphy) sleep monitoring has been widely used for many decades

in clinical research. [9] Actigraphs are wearable devices, that are usually worn around

the wrist or the ankle. Actigraph derives sleep and wake patterns from acceleration data.

Thus, actigraphy provides a non-invasive and continuous way to monitor sleep. Acti-

graphs are also affordable, which has enabled their extensive usage. [10] However, actig-

raphy has its limitations and restrictions. Actigraphy may fail to recognise afternoon naps

as sleep periods. Also times, when the device has not been used, might be falsely clas-

sified as sleep, especially if the device has been taken off right before or after bedtime.

[11]

Remote health monitoring using wearable devices, such as smartwatches and smart

rings, presents an interesting choice for the traditional methods. Wearable devices are

light and convenient to use, and more often provide multiple features for the user. New

wearable devices are constantly being developed, and more and more people are buying

these devices to monitor their health [12]. Utilizing the data that is already being collected

by the devices to accurately detect sleep patterns could bring individual health monitoring

to a new level.

In this thesis, we have developed a photoplethysmography-based (PPG-based) sleep

detection method for remote sleep monitoring. The focus was on the sleep-wake classifi-

cation. The raw PPG data was filtered using a standard Butterworth bandpass filter and the

data was split into 30 seconds epochs for analysis. Statistical and heart rate based features

were extracted for each epoch. The most important features were selected by using ran-

dom forest classifier. Using the selected features, six machine learning algorithms were

trained, compared, and evaluated. These algorithms were logistic regression, decision

tree, random forest, k-nearest neighbors, naive Bayes and support vector machine.

The proposed method was implemented using a case study, where data was gathered

from 46 participants for one week. PPG data was collected with a wearable device, that
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had a PPG sensor. Actigraphy was used as the reference method in this thesis.

The structure of this thesis is as follows: This chapter explains the traditional health

monitoring methods and the reasoning behind our proposed method. Chapter 2 presents

other work done in this area. Chapter 3 presents general information regarding PPG,

classification methods and evaluation metrics. Chapter 4 describes the data preparation

steps for our analysis. Chapter 5 presents the feature extraction and selection phases.

Chapter 6 describes the training of the classification algorithms. Chapter 7 presents the

results of this thesis as well as the conclusions.

1.1 Research questions

This thesis addresses the following research questions:

• RQ1 Can wearable-based PPG signal be used in sleep detection?

• RQ2 Does quality assessed PPG signal improve the performance of the sleep de-

tection method?

For RQ1, PPG signal based sleep-wake classifier is built and evaluated to determine

the usability of wearable-based PPG signal for sleep detection. For RQ2, the quality of

the PPG signal is assessed. Using two data sets, the first containing the complete signal

and the second containing only good quality signal, the performance of the algorithms

is compared and evaluated. Explicit answers to these research questions are presented in

Chapter 8.



2 Related work

Sleep monitoring has been widely studied in the recent years. Some of the studies have

focused on sleep-wake classification [3] [4], and others have done more comprehensive

sleep stage analysis, differentiating multiple sleep stages [6] [13], such as light sleep

(LS), deep sleep (DS) and rapid eyes movement sleep (REM) in addition to sleep-wake

classification. The goal of many studies is to provide continuous sleep monitoring with

minimum intrusion [3] [5]. In the studies, they have used for example face video [3],

ultra-wideband radar [5] and pulse oximeter [4] to collect the biological signals.

Completely non-intrusive vision based method using convolutional neural networks

has been proposed in [3]. In the study, they extracted remote PPG signal from face videos

using face-color intensity. The goal was to classify sleep-wake stages in eye-closed sit-

uations. To overcome the issue of low temporal resolution of the estimated heart rate as

well as substantial noise existing in the estimated PPG signal, dynamic heart rate filtering

was applied.

The dynamic heart rate filter is a second order Butterworth bandpass filter with a goal

of removing noise but preserving the information about heart rate. HR data acquired with

a wearable sensor is used as a reference. Three comparisons are conducted in the study:

wearable heart rate vs. camera heart rate, heart rate vs. PPG signals and PPG signals with

or without noise reduction filters. The area under ROC curve (AUC) is used as the base

for the comparison and evaluation of the proposed method. By using the dynamic heart

rate filtering they get better results compared to the static heart rate filtering, since the
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bandwidth is adaptive and utilizes the heart rate information. Video-based methods have

limited spatial coverage and might not be suited for extensive usage, as they would require

a camera to be installed at home. Cameras raise issues related to privacy and safety.

In [4], they acquired PPG signal using a pulse oximeter placed on a fingertip. Statisti-

cal features were extracted from the PPG signal and used to train four different supervised

machine learning models for sleep-wake classification. The goal of the study was to sepa-

rate wakefulness and asleep in overnight sleep. The used machine learning methods were

cubic and weighted k-nearest neighbors as well as quadratic and medium Gaussian sup-

port vector machines (SVM). In the comparison of the accuracy between the classifiers,

medium Gaussian SVM exceeded the others. To improve the classification, the use of

morphological features together with the statistical features can be studied.

[5] proposes a solution that uses ultra-wideband (UWB) radar, environmental sensor

board and PPG sensor to overcome issues like discomfort of PSG. Their goal is to develop

an easy and convenient sleep monitoring service for public users. The service should be

affordable, provide relatively good accuracy and be as comfortable as possible for the

users. UWB radar is used to measure breathing rate, heart rate and movement. PPG

is used to complement the weaknesses of UWB radar such as sensitivity to movement,

therefore heart rate and movement are also measured with PPG. UWB radar provides

contactless way of measuring, has low power consumption, simple hardware structure

and high resolution. In the study, they will only validate that the system can accurately

measure heart rate and respiratory rate. This was done by comparing the results from

the system to the heart rate and respiratory rate counted by the subjects themselves. The

system was able to measure the biological signals accurately. However, further research

needs to be done to be able to use the system for sleep monitoring.

Validating an automated sleep analysis based on inter-beat-interval (IBI) series ob-

tained from PPG signal was the goal in [6]. They were interested in the possibility of

utilizing the PPG sensors used in many wearable devices and PPG’s capability of rec-
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ognizing inter-beat-intervals. Inter-beat-intervals reflect the changes of the autonomic

nervous system. Their analysis aimed on making a distinction between wakefulness and

sleep as well as making a separation between different sleep stages such as LS, DS, and

REM. For the validation of this study, they used a previously validated sleep diagnostic

software based on ECG and heart rate variability (HRV) with some modifications. The

software was adjusted to use only the IBI series acquired from the ECG signal. The IBI

series obtained from the PPG signal were analysed using their sleep analysis algorithm

and its reliability, accuracy and applicability was evaluated. The results were compared to

the gold standard PSG manual scoring and show that the PPG based IBI scoring performs

well in making a distinction between different sleep stages, but it is not accurate enough

separating sleep and wakefulness. By using other features from the PPG signal together

with IBI, the separation between sleep and wakefulness might improve.

[8] and [13] propose an algorithm that uses long short-term memory and HRV. In [8],

they propose a method that could be used to detect sleep apnea syndrome in a home en-

vironment. Apnea causes decreases in peripheral oxygen levels, which leads to changes

in the autonomic nervous system. Autonomic nervous system has been shown to have an

affect on the HRV. In the study, they used PSG data collected in laboratory environment.

HRV features were extracted and used to train long short-term memory neural network

that classified subjects as healthy or potential apnea patients. They received high sensitiv-

ity and specificity, but concluded that more extensive research has to be done to validate

the model. The model should also be tested with data collected with a device that can be

used at home environment. As the next step they presented that the developed model will

be integrated in a smartphone application, and the data is collected with a wearable RRI

sensor.

[13] performs more comprehensive study and classifies data into 4 classes separating

wakefulness and 3 other sleep stages. These sleep stages were REM, light non-REM

sleep (N1 and N2) and slow wave sleep (N3). 132 HRV features were extracted from
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30 second ECG signal segments. These features were then used to train long short-term

memory neural network algorithm. In the study, they received promising results utilizing

temporal patterns that occur during sleep. HRV features can be extracted also from other

sensors, such as PPG. Therefore, the model could be used with more than one type of data.

Further research could be done by using other data acquired unobtrusively to complement

the HRV data. The neural network could also be improved through additional learning

tasks.



3 Background

3.1 Photoplethysmography

Photoplethysmography (PPG) is an optical method that can be used to discover and mea-

sure change in blood volume as it dilates veins and capillaries in subcutaneous tissues

[14]. Blood is pumped to the arteries and eventually to the periphery with each cardiac

cycle. Ventricular contraction pushes blood to the arteries and makes them dilate. This

pressure pulse can be detected, even though the pulse will be attenuated when it reaches

the skin.

There are two ways to measure PPG signal, absorption and reflection. The basic idea

behind the measurement of PPG signal in both ways is that a light emitting diode (LED)

sends light to the skin and a photo diode receives the light. Receiving photo diode detects

changes in the absorption or reflection of the light. Depending on the way used to measure

the changes in blood volume, the diodes are placed either on opposite sides of the tissue

or on the same side. [14]

In clinical settings, PPG is usually obtained with pulse oximeters attached to a patients

fingertip. Pulse oximeters measure PPG using light absorption where the diodes are on the

opposite sides of the finger. On the device, light emitting diode sends a ray of light from

one side of the finger. On the other side, a photo diode receives the light that has travelled

through the finger and measures the changes in light absorption. More blood absorbs

more light, meaning that on each heartbeat the measured light drops since the increased
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blood volume absorbs more light. [14] The pulse oximeter used in clinical settings does

not perform well if the blood flow to the periphery is weak [15]. In these cases, the

measurements can be done from the head area, like the forehead, ear or nasal septum [14].

PPG can also be measured from multiple places simultaneously which allows exploring

disorders in blood circulation. [16]

Smartwatches collect the PPG signal from the wrist using reflection. When PPG is

measured in a reflected state, the light is transmitted and received from the same direc-

tion. The reflected light changes when the blood volume in the veins change. [14] Blood

absorbs more light than the surrounding tissue, so when the blood volume decreases in

the veins the reflected light increases and vice versa [17].

Since multiple physiological systems have an impact on the blood flow to the skin,

PPG can be used to measure heart rate and HRV, respiratory rate, blood oxygen saturation,

blood pressure and hypovolemia or other abnormalities in blood circulation. [14]

3.1.1 PPG signal artifacts

Measuring PPG signal with a wearable device such as a smartwatch can be affected by

the ambient light that changes in different environments and day times. These changes

in lighting conditions can be seen in the signal especially if the connection between the

sensor of the device and skin is not ideal. If the contact between the sensor and skin

changes over time, the PPG signal can suffer from motion artifacts. This is very likely

when continuously measuring PPG signal with a wearable device, since it is impossible

to constrain the movement of the subjects. [14] Noise caused by motion might not be

easily removable by conventional filtering methods, since the spectral content overlaps

with cardiac signal band [18]. In addition to the lighting and motion artifacts, the quality

of the PPG signal can be affected by other factors as well. Skin color, structure of the skin

and skin temperature also have an impact on the PPG signal. Dark skin has more pigment

that dampens the light more effectively and thus prevents it from penetrating the tissue.
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Figure 3.1: PPG signal

These issues are usually dealt with using more powerful light sources or selecting another

light frequency. [14]

3.2 Classification

Classification is a supervised learning technique. In supervised learning, an algorithm

is taught by giving it pairs of input and a desired output for that input. The algorithm

learns that certain patterns in the data are related to a specific output. In classification, the

class labels are discrete, for example true and false or 0 and 1. The simplest classification

problem is a binary classification, where the number of classes is two. [19]

In order to build a proper classification model, the data has to be split into training

and testing sets. Typically the data is split so that 70 or 80 percent is used for training the



CHAPTER 3. BACKGROUND 11

model. The remaining data is used for testing the performance of the model. [19]

3.2.1 Classification methods

Six machine learning algorithms were trained and evaluated in this thesis. The selected

algorithms are some of the most common ones, and they are all suitable for classification

task. In the following, the algorithms are briefly described.

Logistic Regression

Logistic regression is a popular statistical model which is mainly used for classification.

It predicts the probability of a discrete value, which in our case is sleep or awake. Logistic

regression fits an S-shaped logistic function called Sigmoid function to the training data

using maximum likelihood as demonstrated in Figure 3.2. [19] In the figure, the circles

represent observations from class 1 for the training data, and the diamonds on the other

hand represent class 0. For each observation we get a probability between 0 and 1 of it

belonging to a certain class.

Logistic regression can be used for both binary classification or multi-class problem

with ordered or unordered classes. In multi-class problem it is usually used in a way that

one class is compared to the rest of the classes. [20] Logistic regression is computationally

inexpensive and can be used for large data sets [21].

Decision Tree

Decision tree is a supervised learning method often used for classification. It can be used

for both discrete and continuous variables. It works by continuously splitting the data into

two or more sub-populations based on some feature or metric. The complete data set is

called a root node and first it is split into two or more nodes. If a node is still split into

other nodes, the node is called a decision node. If the node is the last node, and there are

no arrows pointing away from it, it is called a leaf node. Decision tree helps to determine
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Figure 3.2: Logistic Regression.

the best feature or metric to make the split in each case by considering all possibilities

and selecting the one that has the highest information gain. In the ideal case, all the leaf

nodes would be pure. A pure leaf node contains observations from a single class. [22]

One example could be that we have data for basketball throws that are either success-

ful or not, meaning that they produce scores or not. As features we have the information

whether the player who tossed the ball was a professional or amateur as well as the dis-

tance between the hoop and the player. The data is presented in Table 3.2.1. This data

is used to build a decision tree that classifies observations which is shown in Figure 3.3.

Decision nodes are marked with a red color and the leaf nodes are marked with green

color. In this case all the leaf nodes are pure, since they all have observations from only

one class. The small circles and diamonds represent the data classes. The circles indicate

that a throw has been successful, and the diamonds present the unsuccessful throws.

Random Forest

Random forest is a popular and frequently used supervised learning algorithm, and it can

be used for both classification and regression problems. Random forest is combined of

multiple decision trees. The basic principle of the random forest is that each decision tree

gives a class label to a sample, and the forest chooses the class that is the most common
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Figure 3.3: An example of a decision tree.

Professional Distance Scores

Yes 5 Yes

Yes 7 Yes

Yes 10 No

No 3 Yes

No 6 No

Yes 8 Yes

No 4 Yes

Yes 11 No

No 8 No

No 7 No

Table 3.1: Data of basket ball throws.

between all the trees. [22] The basic idea is demonstrated in Figure 3.4.

Random forest models provide good and reliable results and reduce model’s overfit-

ting if the number of decision trees in the forest enough. Random forests are more robust

and provide usually better results compared to decision trees. However the computational
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Figure 3.4: Random forest.
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time is much higher, which might limit their usage in real-time applications. [23] Ran-

dom forests can also be used in feature selection, as was done in this thesis. Using random

forest in feature selection is described in chapter 5.2.

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm, which is mostly used

for classification tasks but is also suitable for regression problems. The basic idea behind

the SVM is that each data point is represented in an n-dimensional space, where n is the

number of features. The goal is to find the most optimal (n-1)-dimensional hyperplane that

separates the two classes which for us are asleep and awake. [24] In our case we have 8

features selected and used for the complete data set and 13 features for the quality checked

data set. This means that we have 8 and 13 dimensions for these data sets respectively.

In the most simple case where there are only two features and thus 2 dimensions,

the hyperplane needed to separate the data points belonging to different classes is a line.

There are multiple possibilities for hyperplanes and the most suitable hyperplane is the

one that is the furthest away from the data points of both classes. This will give more

confidence that new data points are classified correctly. [24] Figure 3.5 indicates mul-

tiple possible hyperplanes marked with a dashed line to separate the two classes in a

2-dimensional space. The black dashed line presents the most suitable line since it max-

imises the distance from both classes.

The data points, which are the closest ones to the hyperplane and therefore affect

the position and orientation of the hyperplane, are called support vectors. The SVM is

built using the support vectors. Removing the data points that act as support vectors will

influence the hyperplane and also the SVM itself. [24]
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Figure 3.5: Support Vector Machine.

K-Nearest Neighbors

K-nearest neighbors (KNN) method can be used for both classification and regression.

[25] KNN works such that all observations are stored and new ones are classified by

looking at the nearest data points of the observation. k is the number of the closest obser-

vations that are used to determine the class for the new observation. The class for the new

observation is selected using the majority vote of the k-neighbors, meaning the class that

is most presented by its neighbors. For a binary classification problem the number of k is

usually an odd number to make sure that one class always wins. [26]

Let’s say that we have two classes: circles and diamonds. The new observation marked

as a triangle should be classified to one of these two classes using k-nearest neighbors

method. Let the k be in this case three. Figure 3.6 shows that the three nearest neighbors

are all diamonds, so we will classify the new observation as a diamond as well.

Naive Bayes

Naive Bayes is a well-known and frequently-used machine learning algorithm for classi-

fication. It is based on a probability theory called Bayes’ theorem. Bayes’ theorem uses

conditional probability to predict the probability of an event or a class. Mathematical

equation for Bayes’ theorem is presented below. [22]
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Figure 3.6: K-nearest neighbors.

P (c|f) =P (f |c)P (c)

P (f)
(3.1)

P(c | f) is the probability of class c given that f is the features.

P(c) is the probability of class c independently.

P(f | c) is the probability of features given that class is c.

P(f) is the probability of features.

In Naive Bayes classification, we assume that there is no dependency between the

features. We calculate how many times each feature value is presented in each class.

For discrete values, it works quite well but continuous variables are assumed to follow

normal (Gaussian) distribution which can cause the model to perform poorly if the data

is not normally distributed. Another issue is the assumption made about features being

independent, since this is rarely the case in the real life. Naive Bayes algorithm performs

well with multi-class problems. Training the algorithm is fast, and can be done with a

small training set. [27]
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3.2.2 Evaluation Metrics

Evaluating the trained classification algorithm is a relevant part of data analysis. Ac-

curacy is the most frequently used and well-known metric in evaluation. However, it

might not always tell the whole truth. If the data set is highly imbalanced, the algorithm

can receive very high accuracy by classifying each observation belonging to the majority

class. Therefore, it is best to evaluate the performance of the algorithm by using multiple

metrics. [28] The metrics used in this study are presented below.

Confusion matrix

Confusion matrix is a tool that visualizes the performance of a machine learning algo-

rithm and provides useful statistics that can be used to calculate other metrics as well.

Confusion matrix is used in supervised learning and classification. In binary classifica-

tion, the observations are classified to one of two classes. In our case, the classes are

awake and asleep. The confusion matrix has therefore two rows for the actual values and

two columns for the predicted values. [29] These constitute a matrix that is presented in

Table 3.2.2.

Predicted Awake Predicted Asleep

Actual Awake TN FP

Actual Asleep FN TP

Table 3.2: Confusion matrix

TP is the number of true positives

Predicted as sleeping and they sleep

TN is the number of true negatives

Predicted as awake and they are awake

FP is the number of false positives

Predicted as sleeping and they are awake
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FN is the number of false negatives

Predicted as awake and they sleep

Accuracy

Accuracy is the most well known metric when talking about the performance of an algo-

rithm. It is the ratio of the number of times the model predicts correctly to the number of

all the predictions. [28]

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Recall

Recall or sensitivity is the true positive rate, which indicates how well the model will

identify that the person is asleep. The number of correctly predicted positive results is

divided by the number of results that should have been classified as positive, meaning the

true positives and false negatives. Recall is calculated with the following formula. [28]

Recall =
TP

TP + FN
(3.3)

Specificity

Specificity is the true negative rate, showing how accurately the negative class has been

predicted. In our case, this means how accurately the algorithm will identify that the

person is awake. The number of correctly predicted negative results is divided by the

number of results that should have been classified as negative, meaning the true negatives

and false positives. Specificity can be calculated using the following formula. [30]

Specificity =
TN

TN + FP
(3.4)
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Precision

Precision determines how reliable the algorithm is. It shows the number of items correctly

classified as the positive class. In this study, it indicates the number of cases where the

algorithm has correctly labeled the sample as asleep. [28]

Precision =
TP

TP + FP
(3.5)

F1-score

F-score is used in statistical analysis of binary classification to calculate the algorithms

accuracy using recall and precision values. F1-score is the harmonic mean of precision

and recall. The highest possible score is 1.0 and the lowest is 0. The highest score is

achieved with perfect recall and precision values, and the lowest if either of the recall or

precision is zero. [28]

F1 =2⇤ 1
1

precision + 1
recall

(3.6)

Mean absolute error

Mean absolute error indicates how much the predicted classes produced by the machine

learning algorithm differ from the correct classes as an average. Absolute error can be

calculated with the formula below. [28]

MeanAbsoluteError =
1

N

NX

j=1

|yj � yĵ| (3.7)



4 Data preparation

Data preparation is the process of collecting data and examining the data to find incon-

sistencies, missing data and anomalies. Possible errors in the data are corrected, and the

parts of the data that are relevant for a particular analysis are selected [31].

4.1 Data collection

Data collection is a method of gathering and measuring information. There are several

ways to collect data. It can be done by the means of surveys or questionnaires, interviews,

observing or physically measuring it with some type of devices. Data collection occurs

after defining the research problem and deciding what data will be needed and how to best

collect it. [32]

The data used in this thesis was part of the data collected in a case study [33], which

was conducted by the Digital Health Technology group, Department of Computing, Uni-

versity of Turku 1. The study had 46 participants, and measurements were taken con-

tinuously during the monitoring period of one week. For this thesis, we used data from

two devices, a wearable device and and an actigraphy device. Both devices were worn

in the wrist of the non-dominant hand. Participants reported their sleeping times, such as

in-bed-time, wake-up-time, and possible nap time as well as times when they had taken

the devices off the wrist.

The wearable device used in the study was the Samsung Gear Sport watch [34], which

1https://healthtech.utu.fi/
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has an embedded PPG sensor. In the case study, the watch was programmed to collect

both PPG and acceleration data. They had also developed an application that uses Wi-Fi

to send the collected data to a data server.

The actigraphy device used in the case study was ActiGraph’s wGT3X-BT [35], which

measures acceleration data in three dimensions. In this study, actigraphy was selected as

the reference method for sleep detection.

4.1.1 PPG in this study

In this study, the raw PPG signal was measured with the Samsung Gear Sport watch. As

stated before, PPG measures the changes in blood volume and therefore it can be used

to observe biological signals, like heart rate and HRV. Figure 3.1 shows a view of a PPG

signal used in this thesis. From the signal we can see that when blood volume increases in

the veins, the measured signal is weaker and when the blood volume decreases the signal

is stronger. When a person is sleeping, their heart rate decreases. HRV on the other hand

increases during sleep. [36] These physiological values in addition to many others can be

used to distinct sleep and wakefulness from each other.

To reach the goal of differentiating between sleep and awake stages, features were

extracted from the PPG signal. Part of these features were simple statistical features, but

others utilized the heart rate and HRV.

HRV means how the heart rate changes over time. The basis for many HRV param-

eters is the intervals between normal heart beats, also called NN intervals. The most

common HRV parameter is SDNN, which is the standard deviation of all NN intervals.

Normally SDNN is calculated for the entire recording, but can also be calculated for

shorter time periods. [37] In this thesis, the SDNN parameter was calculated for each

30 second epoch. rMSSD, pNN20 and pNN50 are parameters that measure how HRV

changes from beat to beat. The abbreviation rMSSD comes from root mean square of

successive differences, and it indicates how the inter-beat-interval between beats changes
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on average for one epoch. pNN20 and pNN50 describe the percentage of all beats where

the difference from one beat to the next beat is more than 20 or 50 seconds respectively.

[37]

4.2 Data discovery and profiling

In data discovery and profiling, we are examining the data to understand its structure, the

sampling rate, the errors, and the missing values. [31] In this step we choose the part of

the data that we will be using in this thesis.

The watch data consists of PPG, acceleration in three dimensions and timestamps. The

actigraphy data had only acceleration in three dimensions and timestamps. The sampling

rates were 20 Hz for the watch and 80 Hz for the actigraphy. The actigraphy data had

several errors, when it was compared to the self-report data from the participants. When

comparing the acceleration data from both devices, we noticed that they were not in sync.

Figure 4.1 demonstrates the out of sync acceleration data, which needed fixing.

4.3 Data cleansing

Data sets might have missing data values or erroneous data. In data cleansing, the errors or

abnormalities are corrected or removed from the data set [31]. An example of correcting

erroneous data could be fixing typing errors in surveys used in data analysis. It is also

possible to add missing values by combining two data sets to compensate the missing

values of the original data set.

The errors in the actigraphy data were corrected using the self-reported reports. The

timestamps of the watch data and actigraphy data were synced using a cross-correlation

technique. The acceleration data from both of these devices was used to find the shift

between the timestamps. A shift value was calculated separately for each subject and

used to calculate new timestamps for the watch data.
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Figure 4.1: Out of sync acceleration data from the actigraphy (green) and the watch (blue).



CHAPTER 4. DATA PREPARATION 25

Figure 4.2: Synced acceleration data from the actigraphy (green) and the watch (blue).

Figure 4.1 shows both the actigraphy and the watch acceleration data before shifting

the timestamps. In Figure 4.2, the timestamps of the watch data have been shifted with

the calculated value. We can see that the acceleration data for these two devices is now

aligned.

Some subjects were excluded from the analysis since their data were incomplete. A

few subjects had missing PPG recordings due to the fact that the device was not used.

A few other subjects had missing data related to the time they had evidently used the

devices. This data is important in this study since the times were used as one basis for

labeling. As the result, we ended up using data collected from 42 subjects.
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Figure 4.3: PPG signal before (green) and after (blue) filtering.

4.4 Filtering

The PPG data was filtered in order to remove possible noise. We used a standard But-

terworth bandpass filter with cutoff frequencies of 0.6 Hz and 3.0 Hz. These cutoff fre-

quencies were selected because we only wanted to include frequencies that could contain

information about the heart rate. 0.6 Hz and 3.0 Hz correspond to 36 bpm and 180 bpm

respectively.

Figure 4.3 shows PPG signal prior to filtering and after the signal has been run through

a Butterworth filter.
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4.5 Labeling

Data labeling means that images, videos, data points etc. are identified and marked with

labels. This is necessary for implementing supervised machine learning methods for a

data set. [38]

Two steps should be considered, when determining a label (i.e., asleep or awake) to

a data point. The first step was the inclusion of the trial period: i.e., the time when the

subject used the devices. Any data point outside this trial period would be labeled as none

and would not be used in the later stages of the analysis. The second step was the inclusion

of the sleep periods collected from the automatic sleep detection of the Actigraph. The

sleep periods have values for in bed time and out bed time for each night, so the data

points with timestamps between some of these values were labeled as asleep. Data points

outside the sleep periods were labeled as awake.

4.6 Splitting into epochs

For feature extraction and further steps in the analysis, the data has to be split into epochs

of suitable length. Single data points cannot be used since we are analysing a signal. We

used epochs of thirty seconds in this thesis. After the data had been split into epochs, the

epochs were evaluated. Only epochs that contained data points with the same label were

included in the analysis. If epochs contained both labels for sleep and awake, they were

discarded.

4.7 Quality assessment

The signal quality was assessed to investigate whether the results could be improved by

selecting PPG signal with only good quality to be used in the analysis. Quality assessment

method from [39] was used to extract features from the data. The extracted features were
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used with a support vector machine algorithm to classify the epochs as either good quality

or bad quality. Only the good quality epochs were included in the quality checked data

set.

As a result, the number of epochs was reduced by 54 percents from 197 500 epochs

to 90 966 epochs. Another outcome was that 83 percent of the epochs passing the quality

inspection were labeled as asleep. This was not surprising, and it supports the fact that

it is easier to extract good quality data at rest. While the subjects are awake, they might

engage in various activities, with the extremities being exercising and laying on the couch.

As stated in chapter 3.1.1, noise caused by motion can not be filtered out using standard

filtering techniques. This explains why the epochs measured while the subjects are awake

are more often discarded.



5 Feature Extraction and Selection

5.1 Feature extraction

In feature extraction, combinations of the variables in the original set of raw data are

calculated. These combinations are the features that describe the original data set. Feature

extraction reduces the dimensionality of the original set of raw data by still preserving the

characteristics of the data. By reducing the dimensionality of the data, feature extraction

makes the machine learning process faster and computationally less expensive. [40]

In the feature extraction phase conducted in this thesis, each thirty second epoch is

handled separately and features are extracted for that specific epoch. Each epoch also has

a label that is needed when training the classification algorithms. In our case, the epochs

were 30 seconds long and our sampling frequency was 20 Hz. This means that each epoch

includes 600 samples of PPG. The total number of features extracted in this thesis was

32. Therefore, when we extract features from each epoch, we reduce the dimensionality

from 600 to 32.

In this thesis, several types of features were extracted from the PPG data. First sta-

tistical features in time domain were extracted from the PPG data. Second, PPG signal’s

Power Spectral Density (PSD) was calculated using Welch’s method, and statistical char-

acteristics of the PSD were extracted. For the PSD, some additional features were also

calculated, such as spectral entropy, mean frequency and median frequency.

Third, features related to biological properties are extracted. In this regard, we used
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a Python Heart Rate Analysis Toolkit called HeartPy. HeartPy has been developed to

analyse noisy PPG signal collected with PPG sensors, smartwatches and smart rings in

experimental studies [41] [42].

Two types of measures were extracted from a heart signal: i.e., measures related to

heart rate and measures related to HRV. The most well known heart rate measure is beats

per minute (bpm), which is also called a pulse. Another measure for heart rate is inter-

beat-interval, which is the time interval between two heart beats. HRV measures the

changes of the inter-beat-intervals over time. [41] [42] The list of features extracted is

presented in the following.

1. Statistical features extracted in time domain as well as frequency domain.

• Mean absolute deviation

• Interquartile range

• Twenty-five trimmed mean

• Max value

• Min value

• Skewness

• Kurtosis (Fisher)

2. Additional features extracted in frequency domain.

• Geometric mean

• Harmonic mean

• Spectral entropy

• Mean frequency

• Median frequency

3. Heart rate and heart rate variability features extracted.
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• Beats per minute (BPM)

• Interbeat interval (IBI)

• Standard deviation of NN intervals (SDNN)

• Standard deviation of successive differences (SDSD)

• Root mean square of successive differences (rMSSD)

• The proportion of NN20 divided by total number of NNs. (pNN20)

• The proportion of NN50 divided by total number of NNs. (pNN50)

• Heart rate median absolute deviation (HR MAD)

• Poincaré plot standard deviation perpendicular the line of identity (SD1)

• Poincaré plot standard deviation along the line of identity (SD2)

• Area of the ellipse which represents total HRV (S)

• Ratio of SD1-to-SD2 (SD1/SD2)

• Breathing rate

Features were extracted for two sets of data. First, feature extraction was performed

on the original data set that contained all epochs. Second, features were extracted from

the data that had been quality checked. Therefore, we have two set of features that are

used separately in the next steps. The data set containing all epochs is later referred as the

complete data set, and the data set composed of the quality checked epochs is called the

quality checked data set.

5.2 Feature selection

In feature selection, the most relevant features that best describe the data are selected.

The goal is to identify redundant and irrelevant features, which can be removed without

causing loss of information. Redundant features are those that in itself are relevant to
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describe the data, but that correlate strongly with another relevant feature. Thus, the

redundant feature can be removed since the correlating feature is used for the modeling.

[43]

There are many advantages of selecting only the most essential features to be used in

the training of the machine learning algorithms. This step reduces the dimensionality of

the data even further. With fewer features, the training of the algorithms becomes faster,

meaning that the time needed to train the algorithms is shorter, and less computational

capacity is required. It is also easier to interpret the results of the algorithm, when fewer

features are used. Amachine training algorithm trained with fewer features might perform

better when tested with an unknown set of data. If the algorithm is trained using too many

features, it might become overfitted which means that it presents the data set used in

training too well and might include features of noise in the data set. Overfitting causes an

algorithm to perform poorly when used on a new set of data. [43]

Feature selection can be done manually or automatically. [43] In manual feature se-

lection, humans evaluate the correlations between features, and select the ones that best

describe the data. This is possible if the number of features is not too large. With large

data sets, where many features are extracted, it is much more efficient to use automatic

feature selection. In automatic feature selection, the importance of each feature is calcu-

lated using an algorithm, and only the ones that score higher than predefined threshold are

selected. The threshold can be determined arbitrary, or it can be calculated for a specific

case by for example using the importance scores for all features and taking the mean value

as the threshold.

Random Forest was used as the method to select features, which were used to train

the machine learning algorithms. Random Forest gives the importance of each feature.

The importance indicates how much that feature affects the decision. The importance is

based on the mean decrease of impurity (MDI). For classification, Gini index is used as

the measure to determine the reduction of the impurity. [44] Random forests are very
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Figure 5.1: Histogram of features from complete data set sorted by their importance score.

popular method to select features because the results are easy to interpret, and they also

provide high accuracy and low overfitting. [45]

In this study, we utilised Sklearn’s Random Forest Classifier with the number of trees

being a hundred. Before using the machine learning algorithm, the data was split into

training and testing sets with 70-30 split respectively. Only the training set was used for

feature selection. Features with importance score higher than the mean importance of all

features were selected. [45]

Figure 5.1 shows the features extracted from the complete data set sorted by their

importance score. In this case the threshold score was 0.0312, so the features in Table 5.1

were selected.

Figure 5.2 shows the features extracted from the quality checked data set sorted by
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Feature Score

Kurtosis 0.1422

PSD Spectral Entropy 0.08

Inter-beat-interval 0.0793

PSD Skewness 0.0679

Beats per minute 0.0617

25 Trimmed Mean 0.0499

PSD Kurtosis 0.0428

Skewness 0.0378

Min Value 0.0321

Table 5.1: Selected features for the complete data set.

their importance score. Threshold in this case was 0.0313, and so the features in Table

5.2 were selected.

When comparing the histograms for both data sets, we can notice that there is more

variance between the features in the complete data set. With more variance, it is easier to

select the most important features to be used in the classification algorithms. Therefore,

we could assume that the final results would be better for the complete data set.
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Figure 5.2: Histogram of features from quality checked epochs sorted by their importance

score.
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Feature Score

Inter-beat-interval 0.0591

Beats per minute 0.0542

PSD Mean Frequency 0.0536

Skewness 0.0461

Kurtosis 0.0419

Breathing rate 0.0419

25 Trimmed Mean 0.0417

PSD Median Frequency 0.041

Interquartile range 0.0334

PSD Mean Absolute Deviation 0.0328

Mean Absolute Deviation 0.0327

Min Value 0.0316

Table 5.2: Selected features for quality checked data set.



6 Training classification algorithms

For the machine learning part in this thesis, features have already been extracted from

each 30 second epoch. Each line in the data set presents one epoch and its features. The

first step was to see if there were any missing values in our data. Lines containing missing

values were removed from the data set. The next step was to get a grasp of how balanced

our data is, meaning the ratio between data samples labeled as asleep and awake. If there

is a significant difference between the number of each label presented in the data, the data

set has to be balanced in order for it to be usable in the classification methods.

The data set can be balanced using up-sampling or down-sampling. In an imbalanced

data set, one of the classes is more common than the other class. The class that has more

observations in the data set is called the majority class. The more infrequent class is called

the minority class. Up-sampling means that some of the minority class observations are

randomly duplicated. Down-sampling on the other hand is done so that the majority class

is randomly reduced by removing observations. The goal in both cases is to make the

classes evenly presented so that both classes have the same amount of observations. [46]

For training different machine learning models, the data were split into training and

testing sets. The separation was done randomly and so that 70 percent of the data was

used for training and the remaining 30 percent was used for testing. The test set can be

also called hold-out set which means that the data in the hold-out set is something that

the model has not seen before. Therefore, by testing the model with the hold-out set, we

can see how the model performs with unseen data. [47] The training and testing sets do
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not share users. Raw feature values were standardized before the data was used with the

machine learning models. Standardization makes the features normally distributed with

zero mean and unit variance, so each feature has an equal effect to the decision. Scikit

learn’s StandardScaler from their preprocessing module was used to standardize the data

set. [48]

All six classification algorithms were trained using the training set and their perfor-

mance was tested with the testing set. For each algorithm, we created a pipeline, which

conducted standardization of the data before fitting the data to the model. Each of these

steps was done for both the complete data set as well as the quality checked data set.

6.1 Complete data set

The complete data set includes 197500 30-second epochs. When calculating the missing

values for the data, there were several missing values in the heart rate and HRV features.

These lines were removed from the analysis. After this step the number of lines was

reduced to 162 769. To determine the balance of the data set, we calculated how each

label was represented in the data. For the complete data set, 54 percent of the labels were

asleep. The balance was good enough, so no further steps were needed in this case.

The data was split into training set and testing set. After the split was done, we were

able to see how the labels were presented within each set. The split was very even, in both

sets 53.7 percent of the labels were asleep, which was also consistent with the balance of

the complete data set. Only features selected using the random forest classifier were used

to create the machine learning models. These features are listed in the previous chapter in

Table 5.1.
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6.2 Quality checked data set

The quality checked data set includes 90 966 30-second epochs. When searching for

missing values from this data set, we found that there were multiple missing values among

the heart rate and HRV features. This was expected, since the quality checked data set is a

portion of the complete data set. Each line containing missing values was removed from

the data set and as the result we had a data set with 85 424 lines.

When examining the balance of the data set, we noticed that 83 percent of the data was

labeled as asleep. Both up-sampling and down-sampling were tested to see how each of

them affected the results. In this case, up-sampling produced better results. Up-sampling

was only conducted on the training data.

After the quality checked data had been split into training and testing sets, we exam-

ined how each label was presented in each of these sets. The split had been even, and

both labels were equally presented in both sets. Like with the complete data set, only the

selected features were used for training the machine learning models. The features used

for the quality checked data set are listed in Table 5.2.

6.3 Used models

The classification algorithms presented in section 3.2 were trained using the settings and

parameters described below. The algorithms were implemented using scikit-learn [49].

6.3.1 Logistic regression

In our case, the number of samples was greater than the number of features. This is why

dual formulation was set false. Lbfgs solver was used in the optimization problem with

L2 penalty. Multi class value was set to auto, which chooses ovr (one-vs-rest), since our

data is binary.
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6.3.2 Decision tree

In the decision tree, at each node, the best split was chosen based on gini impurity. As

the maximum depth of the tree we used the value None, in which case the nodes are split

until each leaf node is pure. The number of leaf nodes was not limited, so the value for

max leaf nodes was None.

6.3.3 Random forest

In our forest, the number of trees was 100. As with the decision tree, in random forest gini

impurity was used as the criteria to measure the quality of each split. Maximum depth

was not set, so the splits were done as long as the leaves reached purity. The number of

leaf nodes was also not limited.

6.3.4 K-nearest neighbors

The number of neighbors in our k-nearest neighbors classifier is set to 5. The weights

parameter value is uniform, meaning that each neighbor point affects the decision with

equal weight. As the metric to determine the closest neighbors, we use parameter value

minkowski. Together with power parameter value 2, the distance metric is equal to stan-

dard Euclidean metric.

6.3.5 Naive Bayes

Gaussian Naive Bayes algorithm was used with no prior probabilities. Priors were ad-

justed based on our data, since they were not preset.

6.3.6 Support vector machine

Support vector machine (SVM) was used with linear kernel. Dual parameter can be cho-

sen for the algorithm to solve either dual or primal optimization problem. In our case, the
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number of samples is larger than the number of features. Therefore, the dual parameter

was set to false.



7 Results

Interpreting and evaluating the trained classification algorithms is the final step of data

analysis [32]. The results of our analysis are presented and evaluated using the metrics

described in section 3.2.2.

7.1 Results for the complete data set

Confusion matrices for the classification algorithms trained with the complete set of data

are presented in Tables 7.1 - 7.6. When looking at the confusion matrices, we can notice

that the numbers for logistic regression, random forest, kNN and SVM are quite similar.

For the decision tree, the number of false positives and false negatives are higher, and the

number of true positives and true negatives are lower. The false positives of the Naive

Bayes are significantly higher compared to the other models, and the number of false

negatives is the lowest. Therefore, we can assume that decision tree and Naive Bayes will

not perform as well as the other algorithms.

7.1.1 Model comparison for complete data set

Tables 7.7 and 7.8 show the evaluation metrics for each of the algorithms. The tables are

sorted in descending order by precision. As we can see from Table 7.1, Random forest

has the highest accuracy of all the classification algorithms. However, as was mentioned

in section 3.2.2, we should consider all the different evaluation metrics, when determining
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Predicted Awake Predicted Asleep

Actually Awake 16487 5792

Actually Asleep 3805 24617

Table 7.1: Random Forest’s confusion matrix for complete data

Predicted Awake Predicted Asleep

Actually Awake 15936 6343

Actually Asleep 3953 24469

Table 7.2: Support Vector Machine’s confusion matrix for complete data

Predicted Awake Predicted Asleep

Actually Awake 15934 6345

Actually Asleep 4024 24398

Table 7.3: Logistic Regression’s confusion matrix for complete data
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Predicted Awake Predicted Asleep

Actually Awake 16057 6222

Actually Asleep 4520 23902

Table 7.4: K-Nearest Neighbors’ confusion matrix for complete data

Predicted Awake Predicted Asleep

Actually Awake 15534 6745

Actually Asleep 6946 21476

Table 7.5: Decision Tree’s confusion matrix for complete data

Predicted Awake Predicted Asleep

Actually Awake 13680 8599

Actually Asleep 2732 25690

Table 7.6: Naive Bayes’ confusion matrix for complete data
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Model Accuracy Precision Mean Absolute Error

Random Forest 0.810714 0.809530 0.189286

SVM 0.796927 0.794139 0.203073

Logistic Regression 0.795487 0.793612 0.204513

kNN 0.788130 0.793454 0.211870

Decision Tree 0.729966 0.760994 0.270034

Bayes 0.776513 0.749220 0.223487

Table 7.7: Model comparison for complete data set

Model Recall Specificity F1

Random Forest 0.866125 0.740024 0.836872

SVM 0.860918 0.715292 0.826181

Logistic Regression 0.858420 0.715203 0.824744

kNN 0.840968 0.720724 0.816520

Decision Tree 0.755612 0.697249 0.758293

Bayes 0.903877 0.614031 0.819314

Table 7.8: Model comparison for complete data set
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which algorithms has the best performance.

In the terms of precision, accuracy, specificity, F1-score and mean absolute error, we

can see that the Random forest has the best performance. Recall was the only metric, in

which Random forest did not exceed the all other algorithms. The highest recall value

was achieved by Naive Bayes. If we look more closely the confusion matrices, we can

notice that the Naive Bayes algorithms predicts the class asleep more often than the other

algorithms. This explains the high recall value. From the Naive Bayes confusion matrix

we can also see that the number of false positives is also the highest. This explains the

lowest specificity of the algorithm.

7.2 Results for quality checked data set

Confusion matrices for the classification algorithms trained with the quality checked data

are presented in Tables 7.9 through 7.14. When analysing the confusion matrices, we can

notice that the number of true negatives is extremely low for the naive Bayes and random

forest. This will indicate that the specificity is low and the algorithms are not able to

detect the negative class.

7.2.1 Model comparison for quality checked data set

Evaluation metrics for the quality checked data set are presented in Tables 7.15 and 7.16.

Tables are sorted in descending order by precision. The best overall performance is

achieved by SVM and logistic regression. Random forest, naive Bayes and decision tree

have higher accuracy than SVM and logistic regression. However, these algorithms have

extremely low specificity, which shows that they are not able to detect wakefulness state.

All of the algorithms have relatively low specificity, but SVM and logistic regression are

still able to detect wakefulness with 54 percent accuracy.
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Predicted Awake Predicted Asleep

Actually Awake 2343 2001

Actually Asleep 5927 17532

Table 7.9: Support Vector Machine’s confusion matrix for quality checked data

Predicted Awake Predicted Asleep

Actually Awake 2354 1990

Actually Asleep 6035 17424

Table 7.10: Logistic Regression’s confusion matrix for quality checked data

Predicted Awake Predicted Asleep

Actually Awake 2156 2188

Actually Asleep 7729 15730

Table 7.11: K-Nearest Neighbors’ confusion matrix for quality checked data
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Predicted Awake Predicted Asleep

Actually Awake 975 3369

Actually Asleep 2033 21426

Table 7.12: Random Forest’s confusion matrix for quality checked data

Predicted Awake Predicted Asleep

Actually Awake 1193 3151

Actually Asleep 3808 19651

Table 7.13: Decision Tree’s confusion matrix for quality checked data

Predicted Awake Predicted Asleep

Actually Awake 401 3943

Actually Asleep 1759 21700

Table 7.14: Naive Bayes’ confusion matrix for quality checked data
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Model Accuracy Precision Mean Absolute Error

SVM 0.714851 0.897558 0.285149

Logistic Regression 0.711362 0.897497 0.288638

kNN 0.643312 0.877888 0.356688

Random Forest 0.805704 0.864126 0.194296

Decision Tree 0.749703 0.861810 0.250297

Bayes 0.794914 0.846235 0.205086

Table 7.15: Model comparison for the quality checked data set

Model Recall Specificity F1

SVM 0.747346 0.539365 0.815594

Logistic Regression 0.742743 0.541897 0.812819

kNN 0.670532 0.496316 0.760326

Random Forest 0.913338 0.224448 0.888051

Decision Tree 0.837674 0.274632 0.849571

Bayes 0.925018 0.092311 0.883874

Table 7.16: Model comparison for the quality checked data set
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7.3 Comparing the data sets

When evaluating the results for both data sets, we can conclude that the algorithms trained

with the complete data set performed better. Based on the feature selection done in section

5.2, we predicted that the complete data set would have higher performance. One possible

explanation is that the good quality signals for both classes were more similar to each

other. Separating the classes is more difficult due to the similarity between features of

both classes. As was seen in Figure 5.2, there was not much variance in the feature scores

for the quality checked data set.

The complete data set contains distorted data due to artifacts, such as hand movement.

In this case, the noisy data works in our advantage, since it serves as a feature making a

more clear distinction between sleep and wakefulness states. By conducting the quality

assessment and removing the bad quality data, we end up with lower specificity compared

to the complete data set. The performance of the method is improved by extracting fea-

tures related to the shape of the signal from both a good quality signal and a distorted

signal.



8 Conclusion

In this thesis, we examined whether wearable-based PPG signal can be used in sleep de-

tection, and whether the results can be improved by only using quality assessed signals.

We proposed a sleep detection method using PPG data acquired with wearable devices. In

the analysis, the signal was filtered and segmented into 30-second epochs. Quality assess-

ment was conducted to the original data set, and as the result we analysed two data sets:

i.e., the complete data set and the quality checked data set. Various statistical and heart

rate based features were extracted from both data sets. Six machine learning algorithms

were trained, compared and evaluated using the selected features. The machine learning

algorithms used in this thesis were logistic regression, decision tree, random forest, kNN,

SVM and Naive Bayes.

The performance of the algorithms was evaluated using the following metrics: accu-

racy, precision, recall, specificity, F1-score and mean absolute error. A confusion matrix

for each algorithm was presented to visualize the performance. The best performance was

obtained with a random forest classifier using the complete data set with an overall accu-

racy of 81 percent. Sleep was detected with 86 percent accuracy, and wakefulness was

detected with the accuracy of 74 percent. The algorithms trained with the quality checked

data set did not perform well. The specificity metric unveils that the algorithms were not

able to detect the wakefulness state.

The comparison between the two data sets provided valuable information. It was dis-

covered that the distorted signal helped to separate wakefulness and asleep states. Thus,
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the overall performance of the method was improved by using both good and bad quality

data. It was suggested that the good quality signal was too similar for both the asleep and

awake classes which made it more difficult to separate the classes.

Wearable-based sleep detection using PPG data provides a good option for remote

health monitoring for the public users. In the future, the level of sleep using PPG data

could be studied. The separation of various sleep stages would provide more insights to

the quality of the sleep.
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