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ABSTRACT  
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_______________________________________________________________ 

 

Background Extracellular vesicles (EVs) are nano-sized cell membrane derived 
structures that function as intercellular messengers and hold potential for 
applications in diagnostics and drug delivery. There is a need to establish efficient 
methods of production and quality control for EV preparations. The International 
Society for Extracellular Vesicles has suggested the protein/lipid ratio of the 
vesicle components as a measure of purity for EV samples. Spectroscopic 
methods such as FTIR and Raman are promising options for characterization of 
these EV biomolecular properties. Hypoxia is a common feature of solid tumors 
such as prostate cancer and increases the secretion of EVs from cells. 

Aims The aims for this study were to 1) establish a bioreactor cell culture protocol 
for 22Rv1 and RWPE-1 cell lines, 2) characterize the EVs obtained from these 
cell lines using Raman and FTIR spectroscopy and subsequently obtain the 
spectroscopic protein/lipid (P/L) ratio, and 3) to analyze the spectroscopic P/L 
ratio as a measure of EV composition and purity as a function of time in cell 
culture 4) to investigate EV secretion from these cell lines under hypoxic 
conditions.  

Methods Prostate cancer (22Rv1 and PC3) and normal prostate cell lines 
(RWPE-1 and PNT2) were cultured in CELLine bioreactor conditions, and EVs 
were extracted from the cell culture media once per week. The collected culture 
media was subjected to a series of (ultra)centrifugations and size-exclusion 
chromatography to purify the vesicles. The purified vesicles were characterized 
by means of Western blotting, nanoparticle tracking analysis and Raman and 
ATR-FTIR spectroscopy, and the spectral protein/lipid ratios were analyzed. 
Culturing of 22Rv1 and RWPE-1 cell lines in hypoxic conditions was also 
attempted.  

Results The obtained results suggest that this protocol was effective for 
producing purified EV preparations. However, notable variation in EV sample 
protein/lipid ratios between weekly samples from newly established bioreactor 
cultures was detected. These results highlight both the utility of spectroscopic 
methods in distinguishing the biomolecular compositions of different EV 
populations, and the volatility of EV preparations to changes in the cell culture, 
therefore indicating a need to carefully optimize stable EV culture conditions.  
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1. Introduction 

1.1 Prostate cancer 

1.1.1 Prostate cancer in Finland 

Prostate cancer (PrCa) is the most commonly diagnosed cancer in adult men in 

Finland. With an average of about 5000 new cases diagnosed each year (2015-

2017), PrCa accounts for 30% of all cancer diagnoses and it is the second most 

lethal cancer in males after lung cancer (Pitkäniemi et al., 2018). Age is a major 

risk factor for PrCa, and the current trend of increasingly ageing population 

means that the disease burden posed by PrCa on the Finnish society may be 

expected to further increase. It is estimated that the incidence of new PrCa cases 

will rise by more than 20% to 6600 new cases diagnosed per year by 2035 

(Pitkäniemi et al., 2018). 

The prognosis for PrCa has improved over the past decade, and the current 5-

year survival rate for localised PrCa is good (94%) (Duodecim, 2014), Although 

most of the early-stage PrCas detected are curable, a notable segment of 

patients will experience disease progression with biochemical recurrence, 

defined usually as recurrence of increased prostate-specific antigen (PSA) levels 

(Hackman et al., 2019). In a Finnish trial evaluating the potential benefits of 

adjuvant radiotherapy after radical prostatectomy, 18% of the patients receiving 

adjuvant radiotherapy and 39% of those who did not, experienced biochemical 

recurrence of PrCa within 10 years of the surgery (Hackman et al., 2019). 

For the 23% of patients initially diagnosed with locally advanced or metastatic 

PrCa, the 5-year survival rate is significantly poorer at 33% and the average life 

expectancy is only 2-3 years (Duodecim, 2014), indicating poor efficacy of 

currently available treatment options for advanced forms of PrCa. Treatment 

resistance acquired by the tumor cells is a problem especially with castration-

based treatment approaches intended to inhibit androgen signalling to the tumor. 

Castration resistant prostate cancer (CRPC) is defined as progression of tumor 

growth even when the amount of testosterone in the serum is below castration 

level (Duodecim, 2014). While little current statistics exist regarding Finnish 

CRPC patients, the global estimates range from 20% of patients developing 

CRPC within 5 years of androgen deprivation therapy (ADT) to 28% developing 



2 
 

CRPC within 10 years (Kirby et al., 2011; Hirst et al., 2012). Most patients (86%) 

diagnosed with CRPC already have metastases at the time of diagnosis, and third 

of the patients initially diagnosed with non-metastatic CRPC may expect to 

develop tumors within two years of diagnosis (Kirby et al., 2011). The prognosis 

for CRPC patients is poor, with the median survival being14 months from CRPC 

diagnosis (Kirby et al., 2011; Hirst et al., 2012). 

1.1.2 Current options for PrCa treatment 

The choice of treatment for PrCa depends on the metastatic state of the tumor 

and the responsiveness to ADT. Non-metastasized, local tumors may be treated 

curatively by radical prostatectomy, and/or radiation therapy, and the prognosis 

for this type of cancer is good (Duodecim, 2014). However, within 10 years, 20–

40% of patients will experience biochemical recurrence of the disease 

progression (Hackman et al., 2019). 

For those patients who experience biochemical relapse after radical 

prostatectomy and/or radiation therapy, and patients initially diagnosed with 

metastatic PrCa, ADT is the first line of treatment recommended by both Finnish 

Current Care Guidelines and by the expert consensus of Advanced Prostate 

Cancer Consensus Conference 2017 (Duodecim, 2014; Gillessen et al., 2018). 

Androgens are known to promote growth of PrCa cells, and the aim of ADT is to 

slow down the growth and proliferation of the cancer cells by depriving the cancer 

of these hormones (Tammela, 2012). Suppression of the production of 

androgens can be achieved by blocking the function of the testes through 

castration. This may be achieved for example through surgical removal of the 

testes, however medical castration using drugs that lower the amount of 

testosterone made by the testicles is often preferred. Luteinizing hormone-

releasing hormone (LHRH) agonists work by mimicking the hormones necessary 

for testosterone production and activating the body’s own negative feedback 

loop, drastically reducing the amount of testosterone produced in the body 

(Tammela, 2012).  Alternatively, LHRH antagonists may be employed, with the 

advantage of avoiding the initial surge in testosterone production activated by 

LHRH agonists (Tammela, 2012). For patients diagnosed with an aggressively 

metastatic disease, addition of chemotherapy along with the hormonal therapy is 



3 
 

considered, and the preferred chemotherapeutic agent is docetaxel (Gillessen et 

al., 2018).  

However, the response to ADT varies, and estimated 15% of men with metastatic 

disease primarily fail to respond to ADT, resulting in early treatment failure, 

defined as death within 12 months of ADT initiation (Varenhorst et al., 2016). 

Additionally, many PrCas become resistant to hormone treatment over long-term 

treatment (Kirby et al., 2011; Hirst et al., 2012).  

For metastatic CRPC, the recommended first-line treatment approach is using 

antiandrogens, with the addition of docetaxel if the patient is symptomatic. 

Antiandrogen therapy utilizes androgen antagonists that block androgens from 

binding to their respective receptors by occupying androgen receptors (AR) 

themselves (e.g. enzalutamide, darolutamide), or androgen synthesis inhibitors 

to reduce the amount of androgens produced in the body (e.g. abiraterone). For 

those patients that have acquired resistance to antiandrogens, treatment with a 

taxane is the preferred first line approach, with docetaxel being the primary 

option, whereas if the patient has received docetaxel as part of the first-line 

treatment, abiraterone or enzalutamide are preferred as second-line treatment. 

Cabacitaxel or platinum compounds are only recommended as final treatment 

options for those patients who have already received docetaxel and/or 

abiraterone or enzalutamide during the first- and second-line treatment. 

(Gillessen et al., 2018) 

Until recently, there has been no treatment options available specifically for the 

minority of CRPC patients with non-metastatic disease, and as such these 

patients would continue to receive ADT, either alone or possibly with added 

alternative hormonal therapies. However, treatment of non-metastatic CRPC has 

increasingly gained attention and research efforts in hopes of delaying disease 

progression to metastatic state. Today, three drugs exist that have been 

approved by The United States Food and Drug Administration (FDA) for non-

metastatic CRPC specifically: apalutamide in 2018 (FDA, 2018a), enzalutamide, 

first approved for metastatic CRPC in 2012, with non-metastatic CRPC indication 

added in 2018 (FDA, 2012; FDA, 2018b), and the most recent addition, 

darolutamide in 2019 (FDA, 2019). All three have also received European 

Medicines Agency (EMA) authorization for use in the European Union for the 
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indication of non-metastatic CRPC (EMA, 2018; EMA,2019 ; EMA, 2020). These 

novel drugs are so called second-generation AR antagonists, and work similarly 

to traditional AR agonists, in that they inhibit androgen binding to AR receptors. 

The main improvements of second-generation AR antagonists include increased 

specificity to AR over steroidal receptors as well as a higher affinity to the AR 

receptors. As these novel drugs are almost exclusively antagonistic to AR, they 

do not induce androgen withdrawal syndrome in the case of treatment 

discontinuation (Rice et al., 2019). Benefits of darolutamide specifically include 

higher AR inhibition potency as compared to enzalutamide and apalutamide with 

less risk of central nervous system related side effects due to minimal blood-brain 

barrier penetration (Bastos and Antonarakis, 2019). Additionally, unlike 

enzalutamide and apalutamide, darolutamide does not activate mutant AR 

related to promiscuous AR activation (Bastos and Antonarakis, 2019).  

1.1.3 Unmet medical need for targeted therapies 

While progress has been made in the treatment of PrCa and specifically non-

metastatic CRPC, the currently available treatment options for metastatic PrCA 

and CRPC remain insufficient. This is highlighted by the short life expectancy and 

poor overall survival of PrCa and CRPC patients with metastatic disease (Kirby 

et al., 2011; Hirst et al., 2012). Additionally, it is important to consider that as there 

is currently no cure for advanced PrCa, even the patients with a manageable form 

of the disease will require medical treatment for the rest of their lives. This 

subjects them to long-term treatment-related morbidities. Side-effects of PrCa 

therapies, especially chemotherapeutics, may be severe. With targeted delivery 

of anticancer therapeutics directly into the tumor cells, the therapeutic potential 

of the drugs could potentially be achieved without simultaneous induction of 

unwanted effects on healthy cells. This would allow for effective treatment options 

to be employed earlier on in treatment without as much concern for side-effects 

and likely increase the chances of achieving better treatment responses 

(Senapati et al., 2018). 

1.1.4 Immortalized cell lines as in vitro models of PrCa 

In vitro cell cultures of immortalized cell lines are a stable of biomedical research, 

due to their ability to be genetically modified to elucidate specific cellular 

mechanisms of diseases, as well as their cost-effectiveness. Numerous 
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immortalized cell lines have been established as in vitro models of PrCa, with 

each modeling different stages of the disease and exhibiting specific 

characteristics regarding AR expression and androgen responsiveness 

(Sampson et al., 2013). The first cell lines to be established for this disease, and 

still among the most commonly used PrCa cell lines are LNCaP (Horoszewicz et 

al., 1980)PC3 (Kaighn et al.,1979) and DU145 (Stone et al.,1978), whereas 

normal prostate epithelial cell lines PWR-1E (Webber et al., 1996), RWPE1 (Bello 

et al., 1997)  and PNT2 (Berthon et al., 1995) are usually used as a normal 

prostate control for the disease model (Sampson et al., 2013). 

For this thesis, 22Rv1 was chosen as the PrCa model. This cell line was 

established in 1999 by Sramkoski et al., through propagating a relapsed strain of 

an androgen-dependent parental xenograft in castrated mice. This parental 

xenograft was derived from a primary prostatic carcinoma from a patient with 

bone metastases. 22Rv1 therefore models primary, castration relapsed PrCa 

(Sramkoski et al., 1999). The cell line expresses AR receptors and is androgen 

responsive but not dependent on androgens for growth and compared to the 

androgen dependent LNCaPs the 22Rv1 cells express less AR (Sampson et al., 

2013). Additionally, 22Rv1 has unique AR composition. Several alternatively 

spliced AR variants have been found to be expressed in 22Rv1 cells, for example 

a full-length AR with a mutation of lacking duplicated exon 3 and two truncated 

versions lacking the COOH terminal domain have been identified (Dehm et al., 

2008; Marcias et al., 2010).These AR isoforms are functionally active, and the 

truncated isoforms specifically have been shown to be able to induce expression 

of many endogenous AR target genes, as well as the ligand independent growth 

of 22Rv1 cells in the absence of androgens. The existence of these truncated 

isotopes has been hypothesized to be the cause for the androgen-refractory 

phenotype of 22Rv1 (Dehm et al., 2008; Marcias et al., 2010) This unique AR 

composition allows for 22Rv1 to be utilized in studying AR function, as well as in 

screening of both existing and putative drugs for their anti-AR efficacy (Sampson 

et al., 2013). 22Rv1 cell line was chosen for this thesis due to its unique properties 

and relevance in PrCa research, as well as its relative underrepresentation in 

current PrCa  research as compared to the more popular PC3 and LNCaP cell 

lines. 
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For the normal prostate control in this thesis, RWPE-1 was chosen. RWPE-1 is 

a commonly used model of benign prostate epithelial cells mainly employed as a 

control for carcinogenic cell lines when investigating drug efficacy or gene 

expression (Sampson et al., 2013). The RWPE-1 cell line was immortalized in 

1997 by Bello et al. from human prostatic epithelial cells donated by a healthy 

male, using human papilloma virus 18. The cell line is androgen responsive, and 

expresses AR as well as PSA, however it is non-tumorigenic and does not form 

tumors when injected into immunocompromised mice (Bello et al., 1997). This 

allows for RWPE-1 to be used also in the screening of potential oncogenes or 

carcinogens, and as a model to investigate tumorigenesis and oncogenic 

transformation (Sampson et al., 2013).  

 

1.2. Extracellular vesicles are messengers of cell signaling 

 

Extracellular vesicles (EVs) are nano-sized cell membrane derived structures 

surrounded by a lipid bilayer. Such vesicles are secreted into the extracellular 

space and biofluids by all types of cells. What originally was thought as simply a 

mean of cellular waste excretion, has been since realized to be an important 

mechanism of intracellular communication (Van Niel et al., 2018). Today, EV 

mediated cell signaling has increasingly gained the attention of the scientific 

community for its continuously emerging roles in various physiological and 

pathological processes. 

1.2.1 Classification and biogenesis 

EVs are a highly heterogenous group of vesicles; within any population of EVs, 

diverse subpopulations of vesicles differing in size, morphology or composition 

may be found (Van Niel et al., 2018). This heterogeneity and lack of exact 

nomenclature and classification continue to propose challenges for 

characterizing specific properties and functions of EV subpopulations. Currently, 

the vesicles are commonly classified into two main categories based on the 

method of biogenesis; exosomes are typically smaller, 30-100 nm in diameter, 

and originate from the endosomal system. First, the EV precursors, titled 

intraluminal vesicles are formed by the inward budding of the outer membrane of 

multivesicular endosomes, and when the multivesicular endosomes fuse with the 
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plasma membrane releasing their contents, these vesicles are termed exosomes 

(Kowal et al., 2014). This biogenesis pathway has been found to be regulated 

mainly, although not solely, by the endosomal sorting complexes required for 

transport (ESCRT), as silencing genes of selected ESCRT components was 

found to affect EV production (Colombo et al., 2013). Microvesicles are typically 

larger structures of 50-1000 nm in diameter, and they are formed via outward 

budding of the cell’s plasma membrane. When discussing microvesicles 

originating from cancer cells, the term oncosomes is often used (Van Niel et al., 

2018). 

Figure 1 EV composition, biogenesis and uptake. A) EVs are nano-sized vesicles surrounded by 

a lipid bilayer, with transmembrane proteins embedded in the lipid bilayer. The lumen of EVs may 

contain many types of water-soluble cargo, including cytosolic proteins and nucleic acids. B) 

Exosomes originate via the endosomal pathway (1) intraluminal vesicles are formed by the inward 

budding of the outer membrane of multivesicular endosomes and are then released as exosomes 

as the multivesicular endosome fuses with the plasma membrane of the cell. Microvesicles 

originate from the outward budding of the cell plasma membrane (2). C) EV uptake by the 

recipient cells may happen via multiple mechanisms, including (3) receptor mediated interaction 

of the EV and recipient cell, (4) different forms of endocytosis, and (5) direct fusion with the plasma 

membrane. 

While this exosome and microvesicle nomenclature remains popular in EV 

publications, it is however not recommended by International Society for 

Extracellular Vesicles (ISEV), as the method of biogenesis is difficult to determine 

from the extracted EV sample. Rather, classification by size into small, medium 

and large extracellular vesicle is encouraged (Théry et al., 2018). This 

classification is deemed more fitting also because the methods that are 

commonly employed with the purpose of separating EV subpopulations are 
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commonly ones based on the size or the density of the particles (eg. differential 

centrifugation, size exclusion chromatography (SEC), density gradients). 

According to ISEV, as sizes of exosomes and microvesicles overlap, this method 

of separation is insufficient for classifying the resultant EVs strictly as exosomes 

or microvesicles and thus methods to identify the biogenetic origin of the vesicles 

should be used if nomenclature specific to the vesicles secretion mechanisms is 

to be used. In this thesis, the umbrella term EVs will be used.  

1.2.2 Cargo and molecular composition 

The type and quantity of EV composition and cargo has been found to be specific 

to the secreting cell type, and it is influenced by the physiological or pathological 

condition of the cell; each cell type adapts EV biogenesis depending on its 

physiological state and releases EVs with distinct lipid, protein and nucleic acid 

compositions (Van Niel et al., 2018). EVs consist of a lipid bilayer originating from 

the plasma membrane, and the EV membrane is enriched in common plasma 

membrane lipids. Recently, this lipid composition of EVs was shown to be cell 

type dependent; Brzozowski et al., (2018a) evaluated the lipid composition of 

PrCa and normal prostate cell derived EVs and found that fatty acids, 

glycerolipids and prenol lipids were enriched  in EVs from benign prostate cells, 

while  EVs from PrCa cells were more abundant in sterol lipids, sphingolipids and 

glycerophospholipids. Hosseini-Beheshti et al., (2012) reported that EVs derived 

from PrCa cell lines contained significantly more cholesterol as compared to the 

benign RWPE-1 cell line. Differences between lipid compositions of EV subtypes 

separated by size have also been detected with small, exosome sized EVs being 

more enriched in glycolipids, free fatty acids and phosphatidylserine, whereas 

larger, microvesicle sized EVs were characterised by their abundance in 

ceramides and sphingomyelins (Haraszti et al., 2016). 

The lipid membrane limits a small lumen containing proteins and metabolites from 

the secreting cell’s cytosol. Additionally, transmembrane proteins are embedded 

in the lipid bilayer. The protein component of EVs consists of a specific subset of 

cellular proteins derived both from the plasma membrane and the cytosol. 

Additionally, vesicles formed via the exosome biogenesis pathway contain 

proteins from endosomes (Kowal et al., 2014). Evidence points to both the protein 

and lipid components being actively sorted into EVs during their biogenesis, 

rather than only spontaneously being tagged along from the secreting cells. 
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Hosseini-Beheshti et al., (2012) described enrichment of sphingolipids and 

glycosphingolipid in EVs, as EVs had higher content of these lipids compared to 

their PrCa and normal prostate parent cells. A comprehensive proteomic and 

lipidomic analysis of EVs revealed that the enrichment of specific proteins and 

lipids was cell type specific, however the EV proteome was more effective than 

the lipidome at distinguishing EVs secreted from different cell types (Haraszti et 

al., 2016)  

Proteins commonly attributed as EV biomarkers include predominantly ones 

related to the lipid-bilayer structure of EVs, for example tetraspanins and 

integrins, proteins that bind to plasma membranes or to transmembrane proteins, 

such as flotillins, caveolins and heat shock proteins,  and proteins associated with 

EV biogenesis, for example proteins related to the ESCRT pathway such as 

tumor susceptibility gene 101 (TSG101) and ALIX (Théry et al., 2018). A large 

proteomic study including EVs from 60 different cancer cell lines investigated the 

enrichment of the proteins traditionally thought of as universal EV biomarkers in 

cancer derived EVs. Out of 6000+ proteins analyzed, 213 were found to be 

expressed in all cancer EVs regardless of the tissue of origin, including cluster of 

differentiation (CD) 81, ALIX, and heat shock cognate 71 kDa protein. Most of 

these conserved EV proteins were found to be functionally linked to the EV 

biogenesis pathways. TSG101, syntenin‐1, flotillin‐1 and tetraspanins CD63 and 

CD9 were found to be present in two‐thirds of the samples. However, the 

expression of some proteins previously thought of as universal EV markers, such 

as matrix metalloproteinase (MMP) -2 was found to be inconsistent and that 

expression of these proteins was dependent on their cellular origin rather than 

being constitutive in all vesicles. (Hurwitz et al., 2016) 

In studies investigating proteins enriched in PrCa cell line derived EVs 

specifically, tetraspanins CD9 and CD81 were highly enriched in EVs from all the 

studied PrCa cell lines (Yoshioka et al., 2013). Other common EV proteins 

TSG101 and CD63 were also present in all PrCa EV samples, however the 

degree of enrichment of these proteins varied depending on their cancer cell line 

of origin. Another study found that all PrCa and benign prostate EV samples 

contained heat shock protein (HSP) 70, HSP90 and CD9, and that HSP90 which 

is a cellular stress marker often associated with cancer, was less abundant in 

benign RWPE-1 EVs than in cancer EVs (Hosseini-Beheshti et al., 2012). They 
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further identified 220 biomarker candidates specific to EVs of PrCa origin as 

opposed to normal prostate origin, including several which had been previously 

been suggested as biomarkers for PrCa diagnosis  (e.g. annexin A2 and 

calsyntenin 1), and detected markers specific to AR negative (endoplasmin and 

annexin A2-like protein) and AR positive (e.g. trichoplein keratin filament-binding 

protein) PrCa cell lines only.  

1.2.3 EV uptake 

EVs are capable of transferring their cargo between cells and eliciting changes in 

the receiving cell’s phenotype. As EVs are excreted into the extracellular space, 

they are able to enter the bloodstream, thus EV-mediated cargo transfer is 

possible both between long distances in the body as well as in an autocrine 

manner. EVs are targeted towards specific cell types based on the specific set of 

proteins enriched at their surface, which allow the vesicles to interact with the 

plasma membrane of the recipient cells. Known factors that mediate EVs cell-

specific targeting include tetraspanins, integrins, leptins and heparan sulfate 

proteoglycans as well as certain lipids and components of the extracellular matrix 

(Van Niel et al., 2018).   

Although the detailed mechanisms of EV uptake remain to be elucidated, it is 

known that there are a multitude of pathways through which an EV may be 

internalized by the receiving cells. The vesicles may be directly fused into the 

plasma membrane of the cell, or be taken up via different types of endocytosis, 

including phagocytosis, macropinocytosis, receptor mediated endocytosis and 

lipid rafts (Van Niel et al., 2018). In some cases, EVs need not to be internalized 

at all and instead will exert their effects by binding to receptors on the receiving 

cell's plasma membrane, activating downstream signaling cascades. 

The preferred method of uptake is thought to be influenced by the specific 

compositions of the EV membrane and the receiving cell's plasma membrane as 

well as the size of the vesicles. For instance, clathrin-independent endocytosis 

and macropinocytosis have been reported as the predominant methods for EV 

uptake in human epidermoid and cervical carcinoma cell lines (Costa Verdera et 

al., 2017), whereas clathrin-dependent endocytosis was found to be more 

prominent in a study using PrCa cell lines (Tian et al.,2014). Saari et al. (2018) 

demonstrated that EV size affects their method of internalization. Studying the 
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utility of paclitaxel loaded PrCa derived EVs as drug carriers, they found that 

larger, microvesicles sized EVs entered the cells by both endocytosis and fusion 

with cell membrane, whereas the primary uptake pathway for smaller, exosome 

-sized vesicles was via endocytosis.  

 

1.3 Role of EVs in PrCa development and progression  

The hallmarks of cancer are a collection of properties deemed necessary for a 

cell to acquire to become malignant. Originally proposed by Hanahan and 

Weinberg in 2000, these hallmarks comprise of six key characteristics of a tumor 

cell: the ability to sustaining proliferative signaling, evade growth suppressors, 

resistance of cell death, replicative immortality, ability to induce angiogenesis, 

and activate invasion and metastasis. The authors updated this landmark article 

in 2011 by adding two emerging hallmarks, ability to avoid immune destruction 

and deregulation of cellular energetics, as well as two enabling characteristics, 

tumor-promoting inflammation and genome instability and mutation (Hanahan 

and Weinberg, 2011). EVs have been found to play crucial roles in the acquisition 

and development in these properties by cells, and therefore they seem to be 

pivotal in the development of cancer. Analysis of cancer cell derived EVs has 

shown the vesicles carry many cancer-enhancing signals; they are able to induce 

changes in the metabolism of tumor and tumor stomal cells, to suppress immune 

response, promote neoangiogenesis, and prep the tumor microenvironment to be 

hospitable to the cancer (Vlaeminck-Guillem et al., 2018). 

1.3.1 EVs promote tumor cell growth and proliferation 

Normal cells do not continue to proliferate in the absence of growth signaling, 

hence the hallmarks of cancer include self-sustaining of growth signaling as well 

as evasion of apoptotic signals (Hanahan and Weinberg 2011). Cancer cells 

acquire the capability to continue multiplying even in the absence of these 

signals, either by upregulating the amounts of certain receptors, alteration of 

extracellular growth signals or by initiation of autocrine proliferative signaling 

(Hanahan and Weinberg 2011).  EVs are capable of transporting RNA and 

proteins that promote tumor cell growth and proliferation; Hosseini-Beheshti et al. 

(2016) investigated the effects of EVs derived from PrCa cell lines with different 

AR phenotypes were able to significantly reduce apoptosis, increase cancer cell 
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proliferation and promote cell migration in LNCaP and RWPE-1 cells, 

independently of the AR phenotype of the originating cells. Additionally, 

intravenous administration of DU145 EVs into xenografted mice showed that 

these EVs were able to increase both the tumor volume and the serum PSA levels 

in vivo (Hosseini-Beheshti et al., 2016). Soekmadji et al. (2016) elucidated some 

of the possible mechanisms behind this EV function by proposing that CD9 

positive EVs are capable of modulating paracrine signalling, and therefore 

capable of promoting tumor growth and proliferation.  They found that 

dihydrotestosterone treatment increased the secretion of CD9 positive EVs, and 

that treatment of cancer cells using EVs enriched in CD9 after 

dihydrotestosterone exposure was able to promote proliferation in androgen-

deprived conditions. CD9 was suggested as a possible upstream regulator of AR, 

due to the finding that CD9 knockdown in LNCaP cells decreased expression of 

AR and PSA, as well as proliferation of the cells, but that knockdown of AR had 

no effect on CD9 expression (Soekmadji et al., 2016). Similar results were 

obtained using PC3 and LNCaP cells by Lázaro-Ibáñez et al. (2017); EVs from 

metastatic PC3 cells were capable of significantly increasing proliferation and 

migration of both cancer and benign PNT2 cells, whereas EVs derived from 

LNCaP cells increased proliferation of PNT2 but not PC3. EVs from PC3, LNCaP 

and primary PrCa cell line RC92a/hTERT were all able to induce increased 

migration of PC3 cells. 

1.3.2 EVs promote tumor invasiveness and prepare the metastatic niche 

Activation of invasion and metastasis is one of the original hallmarks of cancer 

(Hanahan and Weinberg, 2011).EVs originating from PrCa cell lines have been 

shown to promote cell migration on several occasions (Hosseini-Beheshti et al., 

2016; Lázaro-Ibáñez et al., 2017). Brzozowski et al. (2018b) showed that the 

addition of EVs derived from modified RWPE1 cell lines with altered tetraspanin 

CD9 and CD51 expression to naïve RWPE1 cells induced a migratory and 

invasive phenotype in the originally non-malignant cell line. Some of the 

mechanisms behind the importance of EV mediated signaling in tumor cell 

migration were illustrated  by Sung et al. (2015), as they showed autocrine EV 

secretion of fibrosarcoma tumor cells to be necessary for directionally persistent 

and effective cell migration due to the EV’s role in promoting focal adhesion 

assembly and stabilizing of leading-edge protrusions. 
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EVs have also been hypothesized to be a key factor in a so-called seed-and-soil 

theory of metastasis; the idea first proposed by Stephen Paget in 1889 that 

circulating cancer cells seeding from the primary tumor prefer the 

microenvironment of certain organs over others (Paget, 1889) This theory arose 

from the observation that certain types of cancers tend to metastasize into distinct 

areas in the body, for example, PrCa is known to primarily metastasize in the 

bone. More recently, it has been suggested that tumor cells may also able to 

remotely prime these target sites to be more receptive to the tumor cells prior to 

metastasis (Langley and Fidler, 2011). Since EVs are able to circulate into any 

part of the body via bloodstream, it has been suggested that they would be 

involved in this phenomenon by carrying signals to prime the target sites for 

cancer cell invasion. This hypothesis is backed by studies showing that tumor 

derived EVs 1) are selectively biodistributed into tissues matching the 

organotropic distribution of the originating cancer cell line (Hoshino et al., 2015), 

2) increase vascular permeability, potentially enabling the extravasation of cancer 

cells into new sites (Peinado et al., 2012) and 3) are able to condition the 

microenvironment of the premetastatic site to be more favorable for tumor cell 

growth via interactions with specific cell types (Hoshino et al., 2015; Peinado et 

al., 2012; Probert et al., 2018; Dai et al., 2019). 

PrCa derived exosomes have been shown to be able to promote bone metastasis 

both in vitro and in vivo; Probert et al. (2018) reported that treatment with PC3 

derived EVs significantly increased osteoblast viability and resulted in a 

supportive growth environment for subsequently cocultured PC3 cells. They 

further demonstrated the importance of tumor derived EV RNA cargo by showing 

that the transfer of RNA from PrCa cells to recipient osteoblasts via EVs was able 

to elicit the observed functional changes in osteoblast behavior. Dai et al. (2019) 

utilized EVs derived from metastatic PrCa cell lines PC3 and C4-2B to pretreat 

mice prior to inoculation of PrCa cells, and found that this pretreatment resulted 

in an increase in the number of metastatic sites and the total tumor burden 

compared with vehicle with both cell lines. The same pro-metastatic effect was 

obtained using EVs from serum of men with primary PrCa tumors but not with 

EVs obtained from healthy men. They further elucidated the pathway behind this 

effect and identified the EV mediated transfer of PrCa derived pyruvate kinase 

M2 (PKM2) protein in bone marrow cells and the subsequent upregulation of 
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stromal cell-derived factor 1 production in the target cells to be key mechanisms 

in supporting PrCa growth in the bone marrow, and demonstrated the clinical 

relevance of EV associated PKM2 by showing PKM2 expression in PrCa patient's 

serum EVs was associated with metastasis. These results implicate potential for 

EV PKM2 as a diagnostic marker of PrCa metastasis, but also as a potential drug 

target; consequently, it was demonstrated that inhibition of the stromal cell-

derived factor 1 receptor decreased the ability of PKM2 EVs to induce bone 

metastasis (Dai et al., 2018). 

1.3.1 EVs mediate signaling between the tumor and stromal cells 

The tumor microenvironment (TME) is a complex and highly dynamic 

environment consisting not only of cancerous cells, but also other resident cells, 

including fibroblasts, endothelial cells, adipocytes and immune cells (Shiao et al., 

2018). Cancer cells are capable of modulating this local environment and 

inducing a more tumor-favorable phenotype in the surrounding cells, and 

favorable tumor stroma is crucial in driving a more aggressive disease phenotype. 

EV mediated signaling has been proven to be an important mechanism in driving 

stromal differentiation to a tumor-promoting phenotype (Vlaeminck-Guillem, 

2018). 

One of the ways through which PrCa cells modify their microenvironment is by 

inducing transformation of stromal fibroblasts into cancer-associated fibroblasts. 

EVs present in the cancer cell secretome have been shown to be crucial factors 

driving this phenotype. Webber et al. (2015) found that EVs secreted from PrCa 

cell lines carry transforming growth factor beta 1 (TGFβ1), and these EVs were 

able to induce transformation of fibroblasts into myofibroblasts when fibroblasts 

were treated with PrCa cell conditioned, EV containing media. These 

myofibroblasts exhibited a pro-angiogenic and tumor growth -promoting 

phenotype distinct from that achieved by treatment with soluble TGFβ1. 

Furthermore, when EVs were eliminated from the conditioned media by 

centrifugation, this transformation was also abolished.  

Additionally, EVs have been shown to have a similar effect on the differentiation 

of bone-marrow mesenchymal stem cells (BM-MSCs) (Chowdhury et al., 2015). 

Treatment of BM-MSCs with PrCa EVs induced the cells differentiation to lean 

towards alpha-smooth muscle actin positive myofibroblastic cells. The resulting 
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myofibroblasts were found to secrete high levels of vascular endothelial growth 

factor (VEGF), hepatocyte growth factor and matrix regulating factors like MMP-

1, -3 and -13, they exhibited pro-angiogenic functions and were able to enhance 

tumor proliferation and invasiveness. As with the transformation of stromal 

fibroblast to cancer-associated fibroblasts, this observed BM-MSC differentiation 

to myofibroblasts was deemed dependent specifically on EV TGFβ1. Soluble 

TGFβ1 at matched dose did not generate a similarly tumor-promoting phenotype 

(Chowdhury et al., 2015). These findings indicate that EVs are key modulators of 

stroma in PrCa. 

1.3.4 EVs promote angiogenesis 

Tumor angiogenesis is pivotal for tumor survival and growth, and as such 

presents an important anticancer therapeutic target. Cancer cell derived EVS 

have been found to promote blood vessel formation within the tumor tissue by 

transporting pro-angiogenic cargo such as growth factors or MMPs, or by 

activating signaling cascades involved in angiogenesis (Aslan et al., 2019). VEGF 

is one of the best recognized mediators of angiogenesis. At least two distinct 

forms of tumor derived EV-associated VEGF have been found; a 189 amino acid 

isoform termed VEGF189 was determined to be bound to transmembrane 

heparin of small EVs derived from various cancer cell lines (Ko et al., 2019) and 

a ∼90 kDa crosslinked form of VEGF termed VEGF90K was found to be 

associated to the surface of breast cancer cell line derived, microvesicle -sized 

EVs via HSP90 (Feng et al., 2017). Both of these EV-associated isoforms of 

VEGF were shown to 1) be insensitive to VEGF inhibitor bevacizumab and  2) 

able promote angiogenesis independently of soluble VEGF, therefore potentially 

enabling tumor treatment resistance by providing an additional mechanism for 

cancer cells to maintain angiogenic signaling even in the presence of 

antiangiogenic therapeutics targeting soluble VEGF. Subsequently, Feng et al. 

(2017) showed that by combining VEGF inhibitor Bevacizumab with an EV 

biogenesis inhibitor 17AAG the tumor growth inhibitory and antiangiogenic effect 

was significantly increased. These findings suggest that cancer derived EVs have 

a crucial role in promoting tumor angiogenesis and should therefore considered 

as additional targets of antiangiogenic therapies.  
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Figure 2. Functions of EVs in PrCa. EVs derived from PrCa cells have many functions in 

promoting prostate cancer survival, invasiveness, and metastasis. 1) EVs help promote a 

favourable TME. EV associated TGFβ1 induces myofibroblastic differentiation of fibroblasts and 

mesenchymal stem cells, inducing a pro-tumor phenotype (1Webber et al., 2015; 2Chowdhury et 

al., 2015). EVs induce angiogenesis via EV associated VEGF signaling with vascular endothelial 

cells (3Feng et al., 2017; 4Ko et al., 2019). 2) EVs prepare metastatic niches. EVs can travel to 

distant sites in the body via circulation and increase the permeability of blood vessels, allowing 

for extravasation of circulating tumor cells (7*Peinado et al., 2012). EVs condition osteoblasts and 

BMCs to create a favorable growth environment for metastasizing cancer cells (5Probert et al., 

2018; 6Dai et al., 2019). 3) EVs mediate signaling between cancer cells and transfer pro-survival 

traits from cells with a more aggressive and invasive phenotype to others, with EV associated 

CD9 identified as one potential mediator (8Soekmadji et al., 2016). *this function was reported on 

melanoma EVs but could be a function of other tumor derived EVs as well. 

 

1.4 Hypoxia, a common feature of tumor microenvironment  

Hypoxia is a common feature of the TME, specifically in the case of solid tumors 

and it is acknowledged to be a key element of the TME involved in tumor 

aggressiveness and metastasis (Petrova et al., 2018). Tumor hypoxia is a 

dynamic and heterogeneous with the oxygen levels within a tumor varying both 

temporally and regionally, thus it is common to find areas of varying oxygen levels 

within the same tumor, with hypoxic regions surrounded by normal oxygen level 

tissue (Saxena and Jolly, 2019). 

Cellular hypoxia may be divided into three categories based on the origin and 

duration of oxygen deprivation, and these different types of hypoxia have distinct 

effects (Saxena and Jolly, 2019). Chronic hypoxia is characterized by extended 

periods of limited oxygen diffusion to the tumor tissue, caused by increasing 
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oxygen demand from rapidly proliferating cancer cells and lack of proper 

vasculature within the tumor mass. In acute hypoxia, also described as perfusion 

limited hypoxia, cells experience rapid episodes of hypoxia and reoxygenation 

caused by irregular flow of oxygen into the tumor tissue. This is due to the tumor 

induced angiogenesis often leading to structurally aberrant blood vessels with 

inefficient blood perfusion. Cyclic hypoxia is defined as the tumor cells 

experiencing intermittent hypoxic periods of varying duration, due to transient 

cessations in blood flow in the tumor vasculature. (Saxena and Jolly, 2019) 

The best recognized mediators of the cellular effects of hypoxia are hypoxia 

inducible factors (HIF) 1 and 2, the induction of which depends on the duration of 

the low oxygen level conditions (Schöning et al., 2017). HIFs are heterodimeric 

transcription factors, consisting of a constitutively expressed β-subunit and an 

O2-regulated α-subunit. Under normoxic conditions, the α-subunits undergo rapid 

degradation via hydroxylation by prolyl hydroxylases or factor inhibiting HIF (FIH-

1). In hypoxic conditions, beginning at approximately at below 5% oxygen 

conditions, prolyl hydroxylases and FIH-1 are inactivated, leading to the formation 

of HIF-α and HIF-β-complex and the subsequent induction of the transcription of 

HIF inducible genes, which include but are not limited to genes involved in the 

glycolysis pathway as well as stem cell regulating genes (Schöning et al., 2017).  

Tumor hypoxia is a clinical predictor of poorer treatment outcomes. In an 

extensive clinical study by Milosevic et al. (2012), low partial pressure of oxygen 

within PrCa tumors was found to correlate with early biochemical relapse and 

with local recurrence after radiotherapy alone, or radiotherapy in combination with 

hormonal therapy. In a separate retrospective analysis of two randomized 

radiotherapy trials and one surgical cohort study, increased staining of HIF-1α as 

well as VEGF were both significant predictors of biochemical failure after 

radiotherapy or surgery (Vergis et al., 2008). 

1.4.1 Hypoxia selects for more aggressive cancer subtypes and contributes to 

drug resistance 

Hypoxia has been found to increase cancer cell motility as well as angiogenesis, 

and a high number of hypoxic cells in a tumor is associated with increased 

malignancy and metastasis potential (Zonneveld et al. 2019). This is due to the 

positive selection for cells exhibiting increased resistance to the apoptosis 
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pathways activated by hypoxia within the tumor. This acquired resistance to 

apoptosis within the tumor makes the cancer less susceptible to drug treatment 

and more aggressive. Butterworth et al. (2008) demonstrated the effect of 

hypoxia has on promoting tumorigenic properties by creating a hypoxia-induced 

subline of LNCaP PrCa cell line through exposure of the parental cell line to 

weekly cycles of severe 0.1% O2 hypoxia. The resulting subline, termed LNCaP-

H1, showed significant hypoxia tolerance and resistance to mitochondria-

mediated apoptosis. Though the parental cell line is androgen-dependent, 

LNCaP-H1 exhibited androgen independent growth both in vitro and in vivo. 

Additionally, these cells exhibited an altered genetic profile which made them 

more prone to metastasis in an in vitro invasion assay, as well as an in vivo 

metastasis study (Butterworth et al., 2008).  

Besides exacerbating tumor growth and metastatic potential via selection for 

more aggressive cancer phenotype, hypoxia is also a major cause of treatment 

resistance. While the exact pathways behind hypoxia induced resistance remain 

unclear, several potential mechanisms contributing to it have been proposed, as 

summarized by Wilson and Hay (2011): hypoxia is usually associated with poor 

vasculature of the tumor, which  translates to decreased distribution of circulating 

drugs into the tumor. Tumor cells adapt to hypoxia by reverting to glycolytic 

metabolism, which contributes to the acidification of the TME and may interfere 

with the function of certain anticancer therapeutics. Furthermore, hypoxia slows 

down the rate of cell proliferation and promotes a quiescent phenotype of cancer 

stem cells, an aggressive and poorly differentiated subtype of tumor cells, which 

renders the tumor less susceptible to therapies targeting rapidly proliferating cells 

(Schöning et al., 2017). It is worth noting that the effects of hypoxia in the drug 

response are dependent on the drug in question as well as the cell type, and in 

some cases, hypoxia may even increase chemosensitivity (Strese et al., 2013). 

While Strese et al. deemed docetaxel to work better under normoxic conditions 

in several other cancer cell lines, Forde et al (2012). found the docetaxel 

sensitivity of PrCa cells was not significantly decrease under hypoxia. 

A study on ADT resistance reported that exposure to hypoxia induced adaptive 

androgen independence in originally androgen-dependent cell lines (Geng et al., 

2018). LNCaP and LAPC4 cell lines acquired resistance to enzalutamide after 

repeated cycles of exposure to 1% hypoxia, while the same cell lines cultured in 
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normoxia remained sensitive to treatment. The molecular mechanism was 

identified to be mediated by activation of hypoxia-response genes, specifically 

glucose-6-phosphate isomerase. This gene is critical to cell survival under 

hypoxic stress, and it is normally attenuated by androgen signaling. 

Subsequently, the function of this gene and therefore cell adaptation and survival 

are restored by blocking androgen signaling during hypoxia. Furthermore, HIF-

1α signaling has been found to promote proliferation PrCa cells independently of 

androgen signaling, providing a way for PrCa tumors to continue growing under 

hypoxia even when androgen signaling is blocked using ADT (Tran et al., 2020). 

1.4.2 Exposure to hypoxia increases EV secretion from cells 

The role of EV mediated signaling is amplified in cellular stress conditions, and 

hypoxia has been observed to have an effect of increasing EV production in 

several cell types (King et al., 2012; Zhang et al., 2017; Panigrahi et al., 2018). 

In a landmark article, King et al. found that EV secretion from several breast 

cancer cell lines increased significantly when cells were incubated under severe 

(0.1% O2) or moderate hypoxia (1% O2), as compared to normoxic conditions. 

Additionally, they found this increase likely to be HIF-1α mediated, as similar 

increase in EV production could be induced by treatment with dimethyloxallyl 

glycine, a pharmacological inducer of HIF (King et al. 2012). Accordingly, cells 

treated with HIF-1α targeting siRNA failed to show significant increase in EV 

release under hypoxia. Results supporting these findings were presented by 

Zhang et al. (2017), It was shown that that hypoxia increased exosome secretion 

from renal tubular cells in a time-dependent manner, and that this effect was lost 

in cells where HIF-1α induction was suppressed. In certain PrCa cell lines, EV 

secretion may increase up to 35.5 –fold under hypoxia as compared to normoxia 

(Panigrahi et al. 2018). Panigrahi et al. (2018) exposed several PrCa cell lines to 

moderate hypoxia (1% O2) and found that all PrCa cell lines tested exhibited a 

significant increase in EV production, with 22Rv1 specifically showing a dramatic 

change of 27.5 –fold between hypoxia and normoxia. In a recent study using 

pancreatic cancer cell lines, the hypoxia was found to increase release of small 

EVs specifically, shifting the size distribution of the secreted EV population 

towards smaller average size (Patton et al., 2019). Furthermore, small EVs 

specifically were determined to be important in promoting survival of hypoxic 
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cancer cells and both the altered EV release and EV mediated cell survival under 

hypoxia were linked to HIF‐1α stabilization. 

1.4.3 EVs promote cancer cell survival under hypoxia 

Hypoxia-derived EVs (hEVs) have been shown to promote cell survival in low-

oxygen conditions. hEVs were shown to have an inhibitory effect on apoptosis 

following ATP-depletion of hypoxia-naïve cells, an effect which could not be 

replicated in HIF-1α knockdown cells (Zhang et al. 2017). Additionally, hEVs 

secreted from hypoxic PrCa cells have been found to contain higher amounts of 

lactic acid than their normoxic counterparts, prompting the idea that hEVs may 

increase cell survival partly via eliminating metabolic waste accumulating under 

hypoxic conditions, which would otherwise induce cell death in severely hypoxic 

cells (Panigrahi et al. 2018).  

The tumor-promoting effects of cancer derived EVs, including induction of 

angiogenesis and promotion of invasion and metastasis, are also prominent in 

hEVs. The hypoxia-induced aggressive phenotype may be transferred between 

cells via hEV signaling; Ramteke et al. (2015) found that co-culturing of hypoxia-

naïve LNCaP and PC3 cells with hEVs increased their invasiveness and motility 

more efficiently than normoxic EVs. They further determined these hEVs 

contained increased amounts of specific signaling molecules and had a higher 

MMP activity than EVs secreted under hypoxia. Later it was also shown that 

treatment with hypoxic PrCa cell derived EVs was shown to promote MMP activity 

in possible metastatic sites, including lungs, liver and kidney in nude mice (Deep 

et al., 2020). This hEV mediated preparation of the metastatic sites is in 

accordance with the seed-and-soil theory discussed previously. 

 

1.5 Potential applications of EVs in PrCa diagnostics and therapy 

1.5.1 Biomarker potential of circulating tumor derived EVs 

Liquid biopsy is a minimally invasive option for needle biopsies of tumor tissue as 

it is based on detecting circulating cancer biomarkers from biofluids such as 

blood, urine and seminal plasma (Pang et al., 2020). They avoid the 

complications associated with tissue biopsies and have the added benefit of 

providing a more comprehensive picture of the state of disease in the body. This 
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is because circulating biomarkers are homogeneously distributed in the biofluids, 

as opposed to tissue biomarkers which are heterogeneously localized within in 

the tumor tissue (Pang et al., 2020).  As previously discussed, EVs are known to 

be excreted in all biofluids and to contain molecular cargo specific to the 

originating cells. This makes EVs and EV associated biomarkers of cancer 

promising targets for discovery of circulating biomarkers for liquid biopsy 

approaches.  

Several methods have been approaches have been taken in the exploration of 

EVs for PrCa diagnostics; Pellegrini et al. (2017) analyzed RNA from urine EVs 

and determined them to be  a viable source of RNA enriched with prostate‐

specific transcripts and that the levels of urinary PrCa biomarkers PCA3 and 

ERG, were significantly higher in the urine EVs of PrCa patients than those 

without PrCa, indicating that urinary EVs reflect the disease status and could be 

a source for future PrCa biomarker discovery. Puhka et al. (2017) utilized ultra-

performance liquid chromatography-tandem mass spectrometry in a proof-of-

concept study to profile over 100 small molecule metabolites in the urine and 

platelet EVs isolated from PrCa patients and healthy controls. Through 

normalization of the metabolomics data to EV quantity or ratio of metabolites, 

they identified glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine as 

metabolites that were lower in pre-prostatectomy patient samples than post-

prostatectomy and healthy control samples. It was suggested that this method of 

EV metabolomics analysis could be used for further EV biomarker detection for 

PrCa diagnostics Puhka et al. (2017). Analysis of EV molecular composition via 

vibrational spectroscopy methods has been employed for PrCa diagnosis as well 

(Krafft et al. 2017; Lee et al. 2018; Zlotogorski-Hurvitz et al. 2019; Romanò et al. 

2020) and will be discussed in further detail in a following chapter (1.6.3 FTIR 

and Raman spectroscopy as promising tools for fast and easy characterization of 

EVs).  

 

Some examples of the utility of EV associated protein markers in cancer 

diagnosis are assays developed Duijvesz et al. (2015) and Yoshioka et al. (2014). 

Duijvesz et al. (2015) developed a time‐resolved fluorescence immunoassay for 

detection of CD9 or CD63 positive PrCa derived EVs directly in urine. They found 

that after correction for the relative amount of prostate fluid in the urine using 
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urinary PSA, the amount of both CD9 and CD63 positive EVs was significantly 

higher in men with PrCa, and that the CD63 based assay specifically had a higher 

diagnostic accuracy in detecting PrCa than traditional serum PSA assay. 

Yoshioka et al. (2014) developed the ExoScreen assay that detects CD147 and 

CD9 double-positive EVs in non-purified serum samples. CD147 had previously 

been identified as a potential colon cancer marker through proteomics analyses 

of EVs derived from colorectal cancer and normal colon fibroblast cell lines. This 

screening method was deemed sensitive enough to detect even early-stage 

colorectal cancers which would be difficult to diagnose using other existing 

methods, and it showed diagnostic advantage over other commonly used 

methods to detect colorectal cancer antigens (Yoshioka et al., 2014).  

Besides diagnostic applications, analysis of the EV secretome from blood 

samples could be used for personalized medicine approaches in predicting the 

patient’s treatment responses and therefore choosing the most suitable form of 

treatment for each patient. Several putative prognostic biomarkers of PrCa have 

been identified in EVs; Kharaziha et al. (2015) identified EV associated 

biomarkers predictive of docetaxel response through comparative proteomics 

analysis on EVs derived from docetaxel sensitive and resistance DU145 cells. 

They found major differences could be detected specifically in the amount of EVs 

secreted and the levels of EV associated CD82. Additionally, they identified a set 

of biomarkers, including multidrug resistance proteins 1 and 3, and 

polyadenylate-binding protein 4, which were enriched only in docetaxel resistant 

DU145 EVs. These results were further validated in a small cohort of docetaxel 

resistant and sensitive CRPC patients; in correlation with the in vitro data, 

proteins from the identified set of biomarkers were mainly detected in the EVs 

from docetaxel resistant CRPC patients.  

Both have Del Re et al. (2017) and Joncas et al. (2019) reported that AR splice 

variant AR‐V7 mRNA detected in plasma EV samples of CRPC patients is a 

potential biomarker of resistance to ADT. Del Re et al. (2017) reported that both 

median progression-free survival and overall survival were significantly longer in 

AR-V7 negative versus positive patients (20 vs 3 months and not reached vs 8 

months, respectively). Joncas et al. (2019) found that AR‐V7 positive status was 

associated with a shorter time to disease progression (16 vs 28 months) and 

correlated with low castrate androgen levels below the limit of quantification. Park 
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et al. (2016) collected plasma EVs from PrCa patients who had received surgical 

intervention and patients with benign prostatic hyperplasia and found that 

prostate-specific membrane antigen (PSMA)-positive EV concentration in the 

plasma could be used to differentiate between PrCa and benign prostate 

hyperplasia, as lower plasma PSMA-positive EV concentration was positively 

correlated with greater prostate volume, lower pathologic Gleason score and 

lower risk of biochemical failure in an 18-month follow-up period. Huang et al. 

(2015) screened plasma EV miRNAs from a cohort of 23 CRPC patients and 

found that higher levels of miR-1290 and -375 were significantly associated with 

poor overall survival; patients with high levels in both indicated miRNAs had a 

mortality rate of about 80% at 20-months of follow-up whereas the mortality rate 

of patients with low levels of both miRNAs was about 10% at the same timepoint. 

The results obtained by these studies exemplify the vast potential for using 

circulating EV associated molecules as diagnostic and prognostic biomarkers for 

PrCa. 

1.5.2 EVs as vehicles for drug delivery  

Optimizing drug delivery is crucial in improving safety and efficacy of cancer 

therapeutics. Many of the systemic side effects of current anticancer drugs could 

be avoided by the use of a targeted drug carrier. EVs possess many properties 

which make them interesting options to consider for vehicle for  targeted delivery; 

1) due to the mechanism of EV biogenesis, EVs naturally contain molecular 

signatures  from their host cells, which are able to target these vesicles accurately 

to receiving cells, 2) EVs are not toxic or likely to elicit an immune response, 3) 

the structure of EVs allows for inclusion of both water and lipid soluble drug 

molecules, as the hydrophilic core is excellent for water transporting water soluble 

drugs, and lipid bilayer works to bind lipid soluble molecules (Li et al., 2019).  EVs 

have also been reported to be able to pass through the blood brain barrier in 

danio rerio, although the exact mechanism is unclear (Yang et al. 2015). This 

property would allow for EV carriers to be used also in implications such as brain 

cancer and neurological diseases.  

Anticancer drugs, most prominently paclitaxel and doxorubicin, have been 

successfully loaded into EVs in several experiments (Tian et a. 2013, Kim et al. 

2015, Saari et al. 2015). In all these studies, encapsulation of the drug within EVs 

provided enhanced uptake and cytotoxicity compared to administration of free 
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drug. Kim et al. (2015) reported that EV-encapsulation provided a 50-fold 

increase in paclitaxel cytotoxicity in a multidrug resistant cell line in vitro as 

compared to administration of paclitaxel alone, suggesting that EVs may be an 

effective weapon in fighting multiple drug resistant cancers. The effectiveness of 

EVs against drug resistance was hypothesized to be due to the method of cell 

uptake; EVs may be taken up by endocytosis or via fusion with the plasma 

membrane, allowing the drug encapsulated in the EV to bypass the P-

glycoprotein drug efflux system (Kim et al. 2015). Certain EVs seem to exhibit a 

natural preference for tumor tissue as further demonstrated by Kim et al. (2015); 

murine macrophage derived EVs administered in vivo via airway showed 

significant co-localization with pulmonary cancer metastases in a mouse model 

of Lewis lung carcinoma, and both EV-encapsulated paclitaxel and doxorubicin 

were found to mainly accumulate in cancer cells. Finally, it was shown that EV 

encapsulated paclitaxel produced a more effective antitumor effect than free 

paclitaxel in mice in vivo. EV target selectivity may be further enhanced by 

surface modifications, as did Tian et al. (2013) by engineering the EV producing 

mouse immature dendritic cells to express Lamp2b, a known exosomal 

membrane protein, fused with an iRDG peptide targeting alpha-v integrin. These 

modified EVs were shown to be highly specific in targeting alpha-v integrin 

overexpressing breast cancer cell lines in vitro, and when injected intravenously 

in xenografted mice these targeted EVs were able to deliver doxorubicin 

specifically to tumor tissue and induce inhibition of tumor growth. 

EV mediated drug delivery may also enable the use of novel anticancer therapies. 

This was demonstrated by Usman et al. (2018), who described a red blood cell 

EV -based strategy for delivery of RNA drugs. They hypothesized that red blood 

cell derived EVs could overcome the drawbacks of currently available delivery 

vehicles such as viruses and lipid transfection reagents, which limit the usability 

of RNA based therapies due to problems such as low uptake efficiency and 

cytotoxicity. Consequently, it was shown that red blood cell derived EVs loaded 

with antisense oligonucleotides antagonizing miR-125b (an oncogenic microRNA 

upregulated in leukemia and breast cancer cells as well as in PrCa) were able to 

achieve an efficient, dose-dependent inhibition of miR-125b and the subtype miR-

125a in myeloid leukemia cells in vitro, as well as suppressed breast cancer and 

acute myeloid leukemia xenograft growth in vivo following intratumoral 
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administrations, with no observed off-target cytotoxicity. The same delivery 

strategy was further validated for gRNA-mediated genome editing with CRISPR–

Cas9 in vitro using myeloid leukemia cells (Usman et al., 2018). 

While immunogenicity or toxicity have not presented as  major problems with the 

use of EVs in in vivo and in vitro studies (Zhu et al., 2017; Saleh et al., 2019), 

concern may arise when taking into account the natural cancer-enhancing 

property that most cancer cell originated EVs possess and the possibility of 

horizontal gene transfer via EVs. While no reliable method of emptying EVs of 

their original contents has been reported, the option exists to utilize empty, red 

blood cell originated EVs or synthetic EV mimetics with surface modifications 

instead of autologous cancer EVs. However, when utilizing autologous EVs 

produced by PrCa cell lines to study EV mediated Paclitaxel drug delivery, Saari 

et al. (2015) found the EV mediated increase in paclitaxel cytotoxicity to be more 

prominent than the natural cancer-enhancing property of unmodified cancer EVs, 

providing an effective anticancer net effect. 

A major hurdle in the way of efficient use of EVs in therapeutics is that EVs are 

difficult to produce in large quantities. Hypoxia has been found to increase EV 

production (King et al., 2010; Panigrahi et al.,) and this makes utilizing hypoxic 

conditions an interesting approach to enhancing EV production. However, as 

discussed previously, hypoxia also has the unwanted effect of providing the EVs 

loaded with aggressively cancer enhancing properties. Therefore, careful 

profiling of hypoxic EVs and thorough investigation into their efficacy and safety 

features are needed. 

1.6 Challenges and future prospects in characterization and quality control of EV 

preparations 

1.6.1 Methods for efficient EV production  

A major challenge for EV research is their efficient production. EVs intended for 

therapeutic applications are typically extracted from cell culture conditioned 

media of cell lines, and large volumes of media is needed for extracting EVs in 

sufficient concentrations for most downstream analyses (Patel et al., 2018). This 

makes EV production in cell culture a laborious and time-consuming task. The 

use of bioreactor systems has gained traction as an option for traditional cell 

culture methods. These bioreactors are able to house 20 times more cells than a 
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T175 flask, and subsequently have been reported to be able to yield 100-fold 

more EVs (Palviainen et al., 2018). Although still not widely adopted for EV 

production, most commonly referenced commercially available bioreactors in EV 

publications are CELLine (Wheaton) and FiberCell (FiberCell Systems Inc.). The 

basic principle of both these bioreactor models is the same; both contain a matrix 

in which the cells grow, and a semi-permeable permitting nutrient and waste 

exchange with the surrounding media, but enclosing the cell product into a 

smaller volume, resulting in highly concentrated conditioned media. Both systems 

eliminate the need to passage cells after inoculation of the reactor. These factors 

greatly reduce the time spent on cell culture maintenance during EV production; 

a study on the efficacy of the CELLine bioreactor estimated that as many as ten 

traditional T175 flasks would have to be used each week to achieve the same EV 

yield. Other cell culture conditions also play a notable role in EV yield, and 

optimization of culture collection and purification protocols have been found to 

have amplifying effects on the EV yield already in classic T-flask cell cultures 

(Patel et al., 2017).  

The FiberCell culture system is a more refined system and is claimed by the 

manufacturer to model the mammalian circulatory system and provide in vivo-like 

conditions (Fibercell System Inc, 2020). This is achieved through the use of a 

hollow fiber system mimicking capillaries, and via a pump that circulates medium 

through the system, mimicking heart and blood, as well as an oxygenator for re-

oxygenating the circulating media. The cells grow in a porous matrix permeated 

by the hollow fiber “capillaries”  coated with a semi-permeable membrane, 

allowing for metabolic waste and the nutrients and oxygen in the circulating media 

to pass through, but containing the cellular product, in this case EVs, within the 

restricted cell space to be harvested in highly concentrated fractions (Fibercell 

System Inc, 2020). In comparison, the CELLine system is relatively simple, 

consisting of a large cell culture flask with two compartments separated by a 

semi-permeable membrane. In the model for adherent cells, the cell compartment 

contains a polyethylene terephthalate matrix which allow cells to grow in high 

density, 3D like formation (Guerreiro et al., 2018). Both of these systems have 

been utilised in EV production with good results.  Watson et al. utilized the 

FiberCell system for production of EVs from a HEK293 cell culture and reported 

a 40-fold increase in EV particles per volume of conditioned medium as opposed 
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to conventional cell culture (Watson et al., 2016). Studies evaluating the efficacy 

of the CELLine bioreactor in EV production have reported 10-12 fold increases in 

EVs yield per ml of conditioned medium (Guerreiro et al., 2018; Mitchell et al., 

2008), with Palviainen et al. (2018) reporting a more than 100 fold increase in 

yield measured as the total particles/ml isolated in one isolation round from a 

single T175 vs from the CELLine bioreactor.  

When comparing the metabolic signatures of EVs from 2D and 3D cultures, 

Palviainen et al. (2018) identified some cell culture system dependent differences 

between the resulting EVs; while the bioreactor cultured EVs exhibited all the 

same metabolic pathways as their 2D cultured counterparts, the total number of 

identified metabolites in the bioreactor derived EVs was lower. Other factors 

considered to influence this difference were medium composition and the 

frequency of culture maintenance. Their finding not only highlights the necessity 

of carefully optimising and reporting the culture conditions, but also suggests that 

EVs may be customised for the desired downstream applications by modifying 

the culture conditions, e.g. metabolite poor EVs could be desirable for drug 

delivery applications (Palviainen et al., 2018).  

In conclusion, bioreactor cell culture approaches help overcome the challenge of 

sufficient sample material production, and they should be combined with suitable 

media modifications to achieve optimal efficacy. It is worth noting that even with 

these high yield approaches, EV production remains to be a bottleneck for larger 

scale in vivo studies for example, and to fully realise EV’s therapeutic potential, 

methods to scale up this production towards industrial magnitude of EV 

manufacturing will need to be looked further into (Patel et al., 2018).  

1.6.2 Current methods and guidelines for separation, purification and 

characterization of EV preparations 

There is a lack of standardization regarding methods of EV isolation and 

characterization which hinders the translation of EV-based diagnostics into 

clinical use. ISEV is currently the major proponent for harmonizing EV research, 

and they have published position statements regarding best practices of EV 

research, most recently Minimal information for studies of extracellular vesicles 

2018 (MISEV 2018), in which recommendations are made about EV isolation, 
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purification and characterization, as well as on the best practices on reporting EV 

studies, based on current expert consensus (Théry et al., 2018) 

EV separation and purification 

Currently there is no golden standard on the methods of EV collection, and 

several different methods are employed, with differential ultracentrifugation as the 

currently most commonly used technique for primary EV separation and 

concentration (Gardiner et al., 2016). Other techniques such as density gradients, 

ultrafiltration, SEC or ion exchange chromatography, and immunoisolation are 

also being employed to varying degrees. It is also increasingly common to use a 

combination of these methods when seeking to achieve optimal purity or separate 

EV subtypes.  

Each of these methods have their advantages and disadvantages regarding EV 

yield and the possible impact of the isolation method on the EV integrity. For 

example, it has been suggested that the popular isolation technique, 

ultracentrifugation, does induce aggregation of the EV particles (Linares et al., 

2015). Comparison of the different purification methods has been difficult as EVs 

from several different origins have been purified using different methods. 

However a comprehensive study of several purification methods, including 

differential centrifugation, ultra-filtration, density gradients, precipitation methods, 

SEC as well as combinations of these methods, and in which all the EVs studied 

were of the same cellular origin was recently conducted by Zini et al. (Data 

presented in ISEV annual meeting, Barcelona 2018). Based on that data by Zini 

et al., the combination of differential centrifugation with size-exclusion 

chromatography was found to be one of the most effective methods of EV 

separation and purification, prompting the approach to be employed also in this 

thesis.  

Characterisation 

MISEV2018 recommends utilizing multiple methods for comprehensive 

characterisation of EVs, and highlights three key features of EV preparations 

considered to be necessary to report for all studies (Théry et al., 2018). Firstly, 

the source from which the vesicles have originated, should be quantitatively 

defined, by using measures such as the number of cells in a culture, the volume 
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of a biofluid or mass of tissue. It is recognised that this is not feasible for all 

studies, due to restrictions arising from the cell culture methods, pointing for 

example to continuous bioreactor-based cultures, which was the culture method 

in this thesis as well. For these instances MISEV2018 recommends reporting 

instead the number of cells at initiation of culture, expected doubling time, and 

frequency of collection, which this thesis complies with. (Théry et al., 2018) 

Secondly, the vesicles themselves should be characterised using methods that 

provide information on the quantity of EVs extracted (Théry et al., 2018). Methods 

which provide direct information of particle number in suspension include for 

example nanoparticle tracking analysis (NTA), flow cytometry and dynamic light 

scattering. Although these are the most effective methods currently used for 

particle counting, such methods based on light scattering have their 

disadvantages, mainly the fact that they are not EV specific but count any 

particles in the suspension, and the tendency of these methods to be biased 

towards detecting smaller vesicles (Théry et al., 2018). NTA estimates the 

concentration and size of particles based on the Brownian motion of a small 

aliquot of the particles over a definite period of time, thus the results may be 

analyzed statistically but may not be predicted precisely. Moreover, NTA is quite 

user-dependent and heterogeneous suspension of particles in size and 

composition can make the analysis difficult (Gardiner et al., 2013)  

Methods which determine the total lipid or protein content of a sample may be 

used as substitute for particle number analyses, however this is not preferred as 

these measures may not be directly correlated with the particle number. For 

example, total protein quantification could result in overestimation of EV 

abundance due to co-isolated protein contaminants from the culture media or 

biofluid. While lacking as sole measures of particle number, MISEV2018 notes 

that total protein and lipid measures, and specifically the ratio of these 

components, could be utilized as an additional measure of purity of the EV 

preparation. (Théry et al., 2018) 

The third necessary means of characterisation is the detection of EV associated, 

as well as EV negative biomarker proteins, using for example Western blot. If a 

publication seeks to ascribe findings to certain EV subtypes (e.g. exosomes vs 

microvesicles), biomarkers associated with the specific method of biogenesis 
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should be detected. The current recommendation for selection of biomarker 

proteins calls for biomarkers from at least three distinct categories to be detected; 

1) at least one transmembrane or glycosylphosphatidylinositol anchored protein 

(e.g. tetraspanins, integrins) 2) at least one cytosolic protein with ability to bind to 

lipid membranes or transmembrane proteins (e.g. TSG101, ALIX) and optionally 

other proteins with more promiscuous incorporation in EVs (e.g. HSP70, tubulin) 

3) negative purity control of possible source related contaminants (e.g. 

apolipoproteins, urine) (Théry et al., 2018). Additionally, two more categories of 

proteins have been listed in MISEV2018 for further characterisation of the EV 

subpopulation and functions; 4) EV subtype-specific proteins and 5) soluble 

extracellular proteins with functional activities and their mode of binding to EV 

associated receptors. 

1.6.3 FTIR and Raman spectroscopy as promising tools for fast and easy 

characterization of EVs 

In order for EV based preparations or diagnostic methods to be translated into 

clinical use, it is necessary to establish reproducible and efficient methods of 

characterization and quality control of EV preparations. ISEV has suggested 

using the protein/lipid ratio of the vesicle components as a possible measure of 

purity for the sample. Spectroscopic methods such as Fourier-transform infrared 

spectroscopy (FTIR) and Raman spectroscopy have recently been raised as 

promising options for characterization of the vesicles’ biomolecular properties 

(Mihaly et al. 2017; Gualerzi et al.,2017). The main advantages of these 

spectroscopic techniques is that they provide reproducible results in a label-free 

manner, are relatively simple with minimal sample preparation and short 

acquisition times, and require only small amounts of material (micrograms to 

nanograms), a considerable advantage recalling that one of the major challenges 

in EV research is efficient production of sample material (Movasaghi et al., 2008). 

Vibrational spectroscopic techniques like FTIR and Raman are based on exciting 

the sample material at specific light wavelengths and recording the absorption or 

Raman scattering, respectively, of the light by the molecules in the sample. Both 

FTIR and Raman spectra result from changes in vibration modes of the molecule. 

Changes in the dipole moment of a molecule are IR active, while vibrations that 

affect the dipole moment are Raman active. Raman and FTIR are complementary 

techniques due to the rule of mutual exclusion: in molecules that present a center 
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of symmetry, Raman active vibrations are IR inactive and vice versa (Campanella 

et al., 2021). FTIR and Raman spectra are graphed with the frequency 

(wavenumber) on the X axis and the intensity on the Y axis. The intensity is 

proportional to the vibration of the electric or magnetic dipole, IR and RS 

respectively. The spectral peak positions have further been attributed to 

molecular conformations, bonds and functional groups (Table 1, Table 2), thus a 

FTIR or Raman spectrum is able to provide detailed information of the 

biomolecular constitution of the sample (Movasaghi et al., 2008). While still a 

novel application, EV component characterization using these methods is 

increasingly gaining the attention of the scientific community. A new concept of 

spectroscopic protein/lipid ratio, calculated from IR or Raman spectra based on 

the areas of peaks with known protein or lipid attributions, as measure of EV 

sample quality was first proposed and validated for FTIR by Mihaly et al. (2017) 

and since then has been demonstrated also with Raman (Gualerzi et al., 2019). 

Table 1. FTIR peak assignments. Literature assignments of common spectral features of EV 

(Drozdz et al., 2020; Movasaghi et al., 2008). 

Position (cm-1) Functional Group, Assignment 

990 C‐O of ribose 

1050 
C‐O‐C stretching of DNA and RNA, C‐O stretching coupled 

with C‐O bending of carbohydrate C‐OH bonds, phosphate  

1230 
C-N stretching of proteins (amide III) and nucleic acid 

phosphate vibration 

1400 CH3 bending of lipids and proteins 

1450 CH2 scissoring of lipid acyl 

1545 N-H bending of peptide groups (amide II) 

1650 C=O stretching of peptide backbone (amide I) 

2800-2900 CH2 asymmetric and symmetric stretching of lipids 

2900-3000 CH3 asymmetric stretching of lipids 

3300 N-H, O-H stretching, water 
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Table 2. Raman peak assignments. Literature assignments of common spectral features of EV 
Raman spectra (Smith et al., 2015 and Gualerzi et al., 2017). 

Position (cm-1) Functional Group, Assignment 

700 Cholesterol ester 

720-820 Nucleic acids backbone 

880 Tryptophan side-chain in proteins 

1003 Phenylalanine 

1065-1095 C-C strectching in lipids and carbohydrates 

1200-1300 C-N stretching, Amide III 

1450 CH2/CH3 scissoring in lipids and proteins 

1558 Tryptophan aromatic ring 

1661 C=O stretching, Amide I 

 

FTIR 

Among the first to comprehensively characterize EVs using FTIR were Mihaly et 

al (2017). In this study, EVs were separated from Jurkat T-cell line as well as red 

blood cells using ultracentrifugation and analyzed using attenuated total reflection 

(ATR)-FTIR. It was found that the amide I (1650 cm-1) and C-H stretching peak 

(2800-3000 cm-1) intensity ratios, corresponding to protein and lipid components 

of the spectra respectively (Table 1) were specific to the EV subpopulation 

studied. They were also the ones to initially suggest the spectroscopic protein to 

lipid ratio as a tool to measure EV purity. Zini et al. utilized this spectroscopic ratio 

in a study comparing EV purification methods using both FTIR and Raman with 

results confirming the applicability of this method (2018).  

Paolini et al. (2020) studied different subpopulations of EVs secreted from two 

murine prostate and melanoma (TRAMP and B16) cell lines and separated by 

size by utilizing differential centrifugation. It was found that through principal 

component analysis (PCA) (Ringnér, 2008) of the obtained IR spectra, it was 

possible to distinguish among the different subpopulations and discriminate 

between large, medium, and small EVs of same cell line. It is theorised here that 

through establishing spectral fingerprints, FTIR spectroscopy could be used to 

quickly fingerprint EV subpopulations and could potentially be considered as a 
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means of characterisation in lieu of attempting to establish specific protein 

biomarkers for the inherently heterogenous EV subpopulations.  

The ability of FTIR based characterization to distinguish between EV 

subpopulations further holds potential to be used in cancer diagnosis; 

Zlotogorski-Hurvitz et al. (2019) studied EVs for early diagnosis of oral cancer 

using EVs isolated from saliva samples of healthy donors and oral cancer 

patients. They utilised ATR-FTIR spectroscopy for characterisation of the EVs 

and machine learning techniques to distinguish EVs from healthy and cancerous 

origins. The FTIR spectra were found to have significant differences between the 

EV populations and based on this a highly sensitive (100%) specific (89%) and 

accurate (95%) classification method for the samples could be developed. 

Romanò et al. (2020) utilised FTIR and set up an automated method for 

classification of cancer cell derived EVs. They studied the effects of starvation on 

EV composition by analysing vesicles released from human colorectal 

adenocarcinoma cancer cells cultured in two different media compositions and 

found statistically significant differences between the starvation and well-fed 

conditions in the shape of the Amide I and II peaks. Using PCA, they were able 

to establish a highly accurate automated classification of EVs derived from the 

different conditions.  

 

Raman  

 

Raman spectroscopy has recently gained interest as a promising method for two 

distinct EV related applications; quality control of EV preparations as well as in 

disease screening by identifying Raman fingerprints of EV subpopulations. 

Raman spectroscopy has already been applied to EV characterization with both 

quality control and diagnostic purposes, and promising results have been 

obtained from these studies, reviewed below. 

 

The capability of Raman to differentiate between EVs based on their tissue and 

cellular origin has been demonstrated in several studies: Gualerzi et al. (2017) 

utilized this method in their study comparing the Raman spectra of spectra of the 

EVs of differentiated fibroblasts and MSCs derived from bone marrow and 

adipose tissue. By applying PCA of the Raman spectra, this method was found 
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to be able to distinguish not only EVs from two different cell types (fibroblasts and 

MSCs) but also between MSCs from different tissue origins, with the reported 

accuracy of 93.7%. In another study by them, it was demonstrated that besides 

being able to discriminate between EVs from different cell types Raman 

spectroscopy could also be used to differentiate EV preparations based on the 

isolation procedure and level of purity (Gualerzi et al. 2019). This was achieved 

by applying the spectroscopic P/L proposed by Mihaly et al. (2017) on Raman 

spectra. Similarly promising results were obtained by Zini et al. (2018) in a study 

comparing the efficacy of different EV purification methods, further verifying the 

applicability of Raman spectrometry and spectroscopic P/L ratio as an additional 

tool for EV preparation characterization and quality control. 

 

Raman spectroscopy -based characterization of EVs could also provide a new 

method for cancer screening. Lee et al. (2018) employed single-EV 

characterization using Raman optical tweezers to detect differences in EV 

samples from four different cell types. The Raman spectra of red blood cell and 

platelet derived EVs, as well as EVs from PC3 and LNCaP PrCa cell lines were 

analyzed using PCA, and found that this method was able to discriminate the EVs 

in distinct groups based on the cellular origins (blood vs PrCa) (Lee et al., 2018). 

Krafft et al. (2017) utilized both IR and Raman spectroscopy in a comprehensive 

comparative analysis of cancer versus non-cancer EV and patient screening.  

EVs were separated from the blood and plasma of healthy donors and cancer 

patients by differential ultracentrifugation. They detected the reduction of alpha-

helix-rich proteins and enhancement of beta-sheet-rich proteins to be a specific 

feature of EVs from the blood of cancer patients and determined this as a 

prospective cancer-specific EV signature.  

 

A major challenge with Raman spectroscopy, especially when analyzing 

biological samples, has been the low Raman signal as compared to background. 

Sensitivity of Raman spectroscopy may be enhanced by utilizing surface 

enhanced Raman scattering (SERS). With the use of specific plasmonic surface 

substrates, such as noble metal nanoparticles or other nanostructures, 

enhancement of the Raman signal may be achieved at up to 1010 -1011 factor 

(Sharma et al., 2012). Park et al. (2017) utilized SERS in combination with  PCA 

and found that this method allowed for exosomes derived from lung cancer cell 
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lines to be distinguished from normal alveolar cell derived exosomes with 95.3% 

sensitivity and 97.3% specificity, highlighting the potential of extracellular vesicles 

as diagnostic markers for cancer. 

 

While state-of-art Raman spectrometers are still expensive and large pieces of 

equipment that require thorough training to use, portable Raman spectrometers 

are continually being developed to be better and more accurate (Sharma et al., 

2012). More basic research and robust and reproducible protocols still need to 

be developed for EV characterization. However, in the future it could be enough 

that after optimization of the production and purification protocol of an EV 

preparation, the Raman fingerprint could be characterized and future batches 

could be compared to the control sample using a quick, easy to operate handheld 

Raman device. Additionally, once comprehensive libraries of specific EV 

fingerprints have been created, the same method could potentially be applied in 

the clinical setting for screening of diseases. 

 

1.7 Aims of the study 

The aims for this study were to 1) establish a bioreactor cell culture protocol for 

22Rv1 and RWPE-1 cell lines, 2) characterize the EVs obtained from these cell 

lines using Raman and FTIR spectroscopy and subsequently obtain the 

spectroscopic protein/lipid ratio, and 3) to analyze this spectroscopic P/L ratio as 

a function on time as weeks since bioreactor inoculation to find possible changes 

in EV composition over time. This was done both in order to assess the 

spectroscopic P/L ratio as a way to measure of EV purity and to evaluate the 

stability of the EV production in the established cell culture conditions. An 

additional aim was to investigate the potential of utilizing hypoxic conditions to 

increase EV production by establishing hypoxic 22Rv1 and RWPE-1 cell cultures. 

The PrCa cell line 22Rv1 was used due to its unique AR properties and relevance 

as a CRPC model, and RWPE-1 was used as normal prostate cell line control.  

 

Efficient production of sufficient amounts of sample material is currently a 

technical bottleneck in EV research, however the CELLine bioreactor system has 

been utilized by a few research groups with significantly improved EV yields as 

compared to traditional culture flasks (Palviainen et al., 2018; Guerreiro et al., 
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2018; Mitchell et al., 2008) In this study, the first aim was to achieve efficient EV 

production via the use of a CELLine bioreactor combined with media optimization. 

The EVs obtained were separated using a two-step approach of DC and SEC for 

enhanced purity, and according to MISEV2018 the EVs were characterized 

quantitatively using NTA and screened for enrichment of EV specific biomarkers 

proteins using Western blot. 

  

Raman and FTIR spectroscopy are increasingly studied for applications in the EV 

field, and promising results have been obtained, with these methods being able 

to distinguish between EVs based on both cellular origins and separation method 

used to obtain them. Recently, a spectroscopic protein/lipid ratio was proposed 

as a measure of EV purity (Mihaly et al., 2017). Using this method, studies have 

been able to identify cellular origin and purity -based differences in EV 

preparations with both FTIR and Raman spectroscopy. Here, 22Rv1 and RWPE-

1 cell line derived EVs are characterized using these methods for the first time, 

and the spectroscopic P/L ratio is calculated from the obtained spectra. Finally, 

the spectroscopic P/L ratios obtained from different weeks are compared and the 

EV composition is analyzed as a function of time since bioreactor culture 

initiation.  
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2. Results 

2.1 Bioreactor cell culture and hypoxic conditioning  

Effective production of EVs is currently a bottleneck for EV research and 

application. As one of the main aims of this study, CELLine bioreactor cultures 

were established for 22Rv1 and RWPE-1 cell lines. These cell lines have not 

been previously cultured in bioreactors, therefore a suitable culture method 

needed to be established. After careful optimization of the media composition, 

the average EV yield from one weekly harvest ranged between 1011 and 1012 

particles/ml (Figure 3). The bioreactors continued to produce a stable yield for 12 

weeks, at which point a bacterial contamination of the nutrition compartment was 

detected in the RWPE-1 bioreactor and both bioreactors were subsequently run 

down. 

 

Figure 3. Particle concentrations measured with NTA  (particles/ml in log10 scale, note that scale 
starts at 1E+10 instead of 0) of the EV samples derived from 22Rv1, RWPE-1 (new cultures, 1-5 
weeks from inoculation), PC-3 and PNT2 cell cultures (stable cultures, 3+ months from 
inoculation). 

An attempt was made to culture 22Rv1 and RWPE-1 cell lines long term in 

hypoxic conditions, in order to characterize differences in chronic hypoxia versus 

normoxia derived EVs. The cells were cultured in 0.1%, 1% and 4% O2 

conditions. Unfortunately, the cells were unable to reach confluency in any of the 

abovementioned oxygen conditions within two weeks after the first passage, and 

therefore no hypoxic EV samples were obtained 
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2.2 Size-exclusion chromatography and NTA 

EVs collected from the bioreactor cell cultures were purified using differential 

centrifugation at 20K and 110K g, and subsequent size-exclusion 

chromatography (SEC) using Superdex 200 column. The SEC fractions were 

collected 1ml/min, and the elution took place over 25 minutes. Most particles 

eluted at fractions 7 and 8, corresponding to the 7th and 8th ml of elute collected, 

as verified by NTA in Figure 3. The size of the particles collected from these main 

fractions of the SEC elute matches the typical small EV size with the particle 

diameter mean at 140 nm and mode at 145 nm (Figure 4A). SEC yield was 

analyzed by measuring the particle concentration of the sample both before and 

after SEC purification. The SEC method used had a yield of 21-25% (Figure 4B). 

The size distribution of the particles in the final sample of the concentrated SEC 

fractions was also analyzed with the NTA. For all samples analyzed the main 

peak of the size distribution is located at about 125-150 nm and remains mainly 

unchanged between different cell lines and different timepoints (Figure 4C). 

However, slightly more variation in the shape of the peak and the number of minor 

peaks at larger nm sizes can be seen between the EV samples of the 22Rv1 and 

RWPE-1 cell lines than with the PC3 an PNT2 cell lines derived EV samples, 

indicating greater heterogeneity of size distribution in the 22Rv1 and RWPE-1 EV 

populations, although for RWPE-1 this heterogeneity seems to be reducing over 

time (Figure 4C) . 
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Figure 4. A) Normalised particle concentration (black line) and particle size mean (red diamonds) 
and mode (blue diamonds) of SEC fractions 5-20 measured using NTA show that most EVs eluted 
at fractions 7 and 8, and that the size of these particles was 145 nm on average. EVs were 
collected from bioreactor cultured 22Rv1 cell line, and purified using differential centrifugation and 
subsequent SEC. B) Particle concentration measured using NTA before and after SEC. The SEC 
purification method had yield of 21-25%. EVs were collected from bioreactor cultured PC3 and 
PNT2 cell line and purified using differential centrifugation and subsequent SEC. C) 
Representative size distributions obtained using NTA on EV samples of bioreactor cultures 
22Rv1, RWPE-1, PC3 and PNT2 cell lines collected at different timepoints. 
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2.3 Western blot 

For detection of EV biomarker proteins Hsp70, TSG101 and CD9, 10 µg of 22Rv1 

and RWPE-1 derived EV samples and corresponding cell lysates were used for 

a Western blot analysis. Tubulin was used as loading control, and Golgi matrix 

protein GM130 was used as a negative control for EVs. Antibodies were chosen 

according to the guidelines presented in MISEV2018. The PC3 and PNT2 were 

obtained from Biopharmaceutics research group at Helsinki University and had 

already previously been characterized using the same antibodies (Zini et al., 

2018), thus this analysis was not repeated for PC3 and PNT2 in this thesis. The 

tetraspanin CD9 could be detected in all of the EV samples, however it was 

absent in the cell lysates (Figure 5). Additionally, Hsp70 and TSG101 expression 

was detected in the 22Rv1 EV samples as well as both of the cell lysates, and 

TSG101 was faintly detected in one of the RWPE-1 EV samples, however Hsp70 

was completely absent in the RWPE-1 EV samples. Tubulin, Tsg101 and GM130 

bands could be detected in samples treated with reducing conditions, while CD9 

and Hsp70 were visible only in non-denatured samples. 

 

 

Figure 5. Western blot analysis of 22Rv1 and RWPE-1 EVs, verifying the presence of EV 
biomarker proteins CD9, TSG101 and HSP70 in the samples. Tubulin was used as loading control 
and GM130, a Golgi matrix protein, was used as negative EV control. 
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2.4 FTIR spectra 

FTIR spectra were obtained using an IR- spectrophotometer, from a 5 µl droplet 

of EV suspension, air dried on top of an ATR crystal. Representative FTIR spectra 

were averaged from 4-5 EV samples of each cell line and three independent 

measurements of each sample (Appendix 1, Figures 1-4). Accumulation of 64 

scans and nominal resolution of 4 cm-1 were used to acquire the spectra. All of 

the EV samples exhibit features common for most biological sample spectra 

(Figure 4.) From left to right, the strong peak at 1040 cm-1  is due to phosphate 

vibrations from PBS buffer (Mihaly et al., 2017; Movasaghi et al., 2008), the peaks 

at 1650 cm-1  and 1545 cm-1  are assigned as amide I and II respectively, with 

amide I arising from C=O stretching vibrations of the polypeptide backbone of 

proteins, and amide II from N-H bending vibrations of the peptide groups (Table 

1). The small peak at around 1738 cm-1 originates from the C=O stretching of 

ester groups, arising e.g. from cholesterols and phospholipids. The peaks 

between 2800 and 3000 cm-1 are associated with the antisymmetric and 

symmetric stretching vibrations of lipid acyl CH2 groups. The broad peak at 3300 

is due to OH stretching vibrations of water molecules. For determination of the 

protein/lipid ratio the area of the amide I peak (centered at 1656 cm−1) was 

determined by peak deconvolution using curve fitting with Lorentz-function. The 

area of the CH2/CH3 stretching vibration (2700 to 3000 cm−1) representative of 

the lipid component was integrated (Figure 7.). 
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Figure 6. Representative FTIR spectra averaged from 4-5 EV samples from prostate cell lines 
22Rv1 and PC3, and normal prostate cell lines RWPE-1 and PNT2 cultured in bioreactor cell 
culture and purified using differential ultracentrifugation and size-exclusion chromatography, 
presented as average (solid line)+-1 standard deviation(gray area) of 3 independent 
measurements. 

Figure 7. For determination of protein/lipid ratio from the ATR-FTIR spectra A) The area of 
the amide I peak centered at 1656 cm−1 (green line) was determined by peak deconvolution 
using curve fitting with Lorentz-function (red line) B) the area of the CH2/CH3 stretching 
vibration (2700 to 3000 cm−1) representative of the lipid component was integrated.  
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2.5 Raman spectra 

 

Raman spectroscopy is another spectroscopic method capable of quickly 

providing information of the molecular composition of a sample. In this study, 

Raman spectra of the EV samples were obtained from a 2 µl air dried droplet of 

EV suspension placed on top of a CaF2 substrate slide and imaged with confocal 

Raman microscope (Figure 8.). Representative Raman spectra were averaged 

from 4-5 EV samples and three independent measurement (Appendix B, Figures 

1-4). For determination of the protein/lipid ratio, the area of CH2/CH3 scissoring 

region (yellow 1416-1490 cm-1, Figure 8) representing the lipid component and 

C=O peak (cyan, 1630-1710 cm-1, Figure 8) chosen as representing the protein 

component were integrated. PC3 and PNT2 Raman spectra were obtained 

through collaboration with Jacopo Zini at University of Helsinki. 

Figure 8. Representative Raman spectra, averaged from 4-5 EV samples from prostate cell lines 
22Rv1 and PC3, and normal prostate cell lines RWPE-1 and PNT2 cultured in bioreactor cell 
culture and purified using differential ultracentrifugation and size-exclusion chromatography, 
presented as average (solid line) +/- 1 standard deviation (gray area) of 3 independent 
measurements. Integrated area of CH2/CH3 scissoring region (yellow 1416-1490 cm-1) represents 
lipid component and C=O peak (cyan, 1630-1710 cm-1) represents protein component. 
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2.6 Protein to lipid ratio as function of time 

Recently proposed as a prospective additional measure of EV purity, the 

spectroscopic protein to lipid ratio was calculated from the EV FTIR and Raman 

spectra by dividing the area of the representative protein peak (P) with the area 

of the representative lipid peak (L). The P/L ratios calculated both from Raman 

and FTIR spectra of 22Rv1 and RWPE-1 derived EVs exhibit higher sample-to-

sample variation than those of the EVs from PNT2 and PC3 cell lines. (Figure 9.) 

Data for independent spectra and determination of protein and lipid peak areas 

for each sample are included in the appendices.  

 

 
Figure 9. Protein-Lipid ratios for the FTIR were obtained by comparing the integrated peak areas 
of the amide II component centered at 1656 cm−1 for the protein component and the CH2/CH3 
stretching vibration (2700 to 3000 cm−1) representative of the lipid component from the FTIR 
spectra. Lipid-Protein Raman, the integrated areas of CH2/CH3 scissoring region (1416-1490 cm-

1) representing lipid component and C=O peak (1630-1710 cm-1) representing protein component 
of the Raman spectra were compared.  
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3. Discussion 

 

EVs play significant roles in both physiological and pathological states and the 

intrinsic properties of EVs make them potential for diverse array of uses in 

diagnostic and targeted drug delivery for diseases such as PrCa. In order to be 

able to utilize EVs in clinical settings, more research on EV subpopulations and 

their functions is needed. Important technical restraints for EV utilization lie in the 

need to establish robust methods for effective production and reliable 

characterization of the EV preparations. Currently, the EV research field is 

somewhat disorganized, and consensus and standardization are needed in 

methods for EV isolation and characterization. MISEV2018 outlines the current 

expert consensus and gives recommendations regarding the “best practices” of 

EV research.  

 

The first aim of this study was to establish bioreactor cell cultures of 22Rv1 and 

RWPE-1 cell lines. The key advantages provided by the CELLine bioreactor as 

compared to conventional cell culture flasks are the increased yield and the 

reduced time needed for maintaining the culture. The CELLline bioreactor culture 

has been reported to increase EV yield up to 100-fold compared to a traditional 

T175 flask (Palviainen et al., 2018). Additionally, the cells in the CELLine do not 

need to be passaged after inoculation, which reduces the time it takes to handle 

the cells and to harvest the EVs compared to having to keep up several T175 

flasks. After careful optimization of the growth medium, the EV yield achieved 

with the 22Rv1 and RWPE-1 cell lines was comparable to that achieved with 

other cell lines cultured in CELLine (Palviainen et al., 2018; Guerreiro et al., 2018)  

with weekly yield between  1011 to 1012 particles/ml EVs obtained once a week, 

after purification using DC and SEC. 

 

The obtained vesicles were separated from the culture media by differential 

ultracentrifugation and purified further by using SEC as an additional separation 

method. A previously published protocol using Superdex 200 GL 10/300 SEC 

column was followed (Watson et al., 2018), and this method was analyzed with 

NTA to achieve a yield of 21-25%. Further sample analyses with NTA showed 

that compared to PC3 and PNT2 samples, the particle concentrations obtained 
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from 22Rv1 and RWPE-1 cell lines varied greatly on a week-to-week basis, and 

that while the size distribution main peak remained fairly consistently at 125-150 

nm across different cell lines and different timepoints, slightly more variation in 

the shape of the peak and the amount of minor peaks at larger nm sizes can be 

seen between the EV samples of the 22Rv1 and RWPE-1 cell lines than with the 

PC3 an PNT2 derived samples. This sample-to-sample variation in the secreted 

vesicle properties could be linked to the duration that the cells have been cultured 

in the bioreactors, which will be discussed in further detail below.  

 

EV biomarkers were detected using Western blotting. The biomarker proteins 

chosen included Tsg101, CD9 and Hsp70. The choice of these biomarkers 

reflects the older recommendations of MISEV2014 (Lötvall et al., 2014) and 

therefore the markers do not completely align with the newer, MISEV2018 

recommendations (Théry et al., 2018). This is because the WB biomarker panel 

used had been optimized earlier by Zini et al., (2018) with markers chosen 

according to the previous recommendations. The MISEV2014 recommendations 

called for three classes of proteins to be detected; transmembrane proteins and 

cytosolic proteins with membrane-binding capacity, as well as proteins of 

endosomal origin not commonly enriched in EVs as a negative control (Lötvall et 

al., 2014). Tubulin was used as a loading control, and Golgi membrane protein 

GM130 was chosen as a negative control due to proteins from Golgi membrane 

and other cellular organelles not being prominent in EVs. Faint bands for TSG101 

may be detected for RWPE-1 cell lysate and one EV lysate, however it is unclear 

as to why Hsp70 and TSG101 did not show up on RWPE-1 EVs. While studies 

have shown that biomarkers commonly attributed as universal EV markers are 

actually not constitutively enriched in EVs from all cell types (Hurwitz et al., 2016; 

Yoshioka et al., 2013), RWPE-1 EVs have been previously described to express 

Hsp70 (Hosseini-Beheshti et al., 2012). This difference could be due to the 

different cell culture and EV separation methods used in this thesis. However, on 

the basis of consistent CD9 expression (a biomarker strongly attributed to EVs 

and PrCa EVs specifically) in all EV samples analyzed, the particles obtained 

using the production and purification methods above may be identified as EVs  

 

The second aim of this study was to characterize the obtained EVs using bio-

photonic methods Raman and FTIR and to apply the method proposed by Mihály 
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et al. (2017) for determining the spectroscopic protein/lipid ratio as an additional 

measure of EV purity. These spectroscopic methods have recently gained 

interest as promising tools for efficient EV characterization, both of these methods 

have been applied to this purpose with promising results. According to 

MISEV2018, the protein to lipid ratio of an EV sample could serve as an additional 

measure of sample purity (Théry et al., 2018). The advantage of both FTIR and 

Raman spectroscopy is that they are able to quickly provide information on 

several biomolecular characteristics of the sample, including the protein and lipid 

component at once, which allows for the spectroscopic P/L ratio to be determined 

with just one measurement.  

 

To our knowledge, the 22Rv1 and RWPE-1 cell line derived EVs have not been 

previously characterized using these methods. The spectra obtained from both 

methods were comparable to those obtained for prostate cell lines EVs in 

previous studies (Paolini et al.,2020; Lee et al.,2018; Krafft et al.,2017) and 

exhibited the characteristic peaks prominent in EV samples. The P/L ratios were 

calculated from both FTIR and Raman spectra by dividing the areas of the protein 

peak with the lipid peak of the spectra. The peaks chosen to represent protein 

and lipid components of the FTIR spectra are the amide I peak at 1656 cm−1 and 

the CH2/CH3 stretching vibration at 2700-3000 cm−1, respectively. For Raman 

spectra, the C=O peak at 1630 -1710 cm-1 and the CH2/CH3 scissoring region at 

1416-1490 cm-1 were chosen as representative of proteins and lipids, 

respectively. When analyzing the P/L ratios as function of time as weeks since 

initiation of the CELLine cell culture, it appears that new/fresh  CELLine cultures 

exhibit greater week to week variation in the EV P/L as compared to 3+ months 

old bioreactors. This is hypothesized to be due to the cells needing more time 

than previously thought to fully adjust to the bioreactor conditions and for the EV 

production and composition to equilibrate. It is known that cells respond to stress 

via EV signaling, and that changes cell culture conditions effect EV production. 

Therefore, it would seem likely that when placed into a new environment the cells 

would respond by altering the EV production and composition before “settling in”, 

and once EV production has stabilized the sample-to-sample variation would be 

reduced over time. It was determined that this finding should be studied further 

to verify, as this phenomenon could have implications regarding the results of 

studies on EVs produced in bioreactor conditions. However, preliminary data of 
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EVs from newly established PNT2 and PC3 reactors obtained at University of 

Helsinki did not seem to exhibit as drastic weekly variation as the 22Rv1 and 

RWPE-1 EVs in this thesis, suggesting the phenomenon may also be cell line 

specific.  Altogether this data highlights the importance of carefully reporting cell 

culture conditions including the age of the originating cell culture in EV 

publications. Although recommended also by ISEV (Thery et al., 2018) this 

practice seems to not yet have been widely adopted in publications. 

 

It is worth noting, especially in the context of EV research, that the 22Rv1 cell line 

has been reported to produce high titers of a virus related to the human retrovirus 

xenotropic murine leukemia virus, and that these presumed viral particles were 

described to look similar to EVs at an approximated 100-nm size (Knouf et al., 

2009). This virus was first described in 2006 from PrCa tissue samples by 

Urisman et al. but has been since been identified to most likely be a laboratory 

artifact and present in the 22Rv1 probably due to infection during the propagation 

of the cell line in mice (Sfanos et al., 2012). After learning of the virus, detection 

of extracellular biomarkers was deemed to be especially important when studying 

particles presumed to be EVs secreted by this cell line. However, the possibility 

of contamination of the EV samples derived from 22Rv1 cell lines by viral particles 

of the same size range cannot fully be ruled out with the characterization methods 

used, and therefore potential contribution of the viral proteins to the variation of 

the spectroscopic P/L ratio of the 22Rv1 derived EV samples is to be taken into 

account. A further avenue for EV studies using 22Rv1 cell lines could be to 

determine the extent of the contribution of viral particles versus EVs in the cell 

line’s secretome. 

Hypoxic EVs were an additional area of interest for this study. Cancer cells 

exposed to hypoxia have been shown to increase EV secretion, and that these 

EVs are involved in mediating many of the cells’ hypoxia responses as described 

in section 1.4.3. This prompts the idea of hypoxic EVs being especially suitable 

as drug targets or diagnostic biomarkers. It is also worth noting that hypoxic cell 

culture conditions are more physiologically relevant, and the ambient 20% O2 

conditions cell are usually grown in are actually hyperoxic in comparison; in 

normal tissues, oxygen levels range between approximately 5% and 10% O2, 

whereas in solid tumors, hypoxic conditions below 2% O2 are often present 
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(Saxena and Jolly, 2019). For this study, it was ultimately not feasible to set up a 

comparable bioreactor cell culture in hypoxic conditions to study the effects of 

chronic hypoxia on EVs. Most current studies on hypoxic EVs have been 

conducted  by exposing cells to a short period of hypoxia (up to 72h) (King et al., 

2012; Zhang et al., 2017; Panigrahi et al., 2019), or to repeated cycles of 

exposure to hypoxic conditions (Butterworth et al., 2008), however it is worth 

noting that using this method, reperfusion will also effect the results and therefore 

this is more of a model of acute or cyclic hypoxia. Few studies exist modeling 

truly long-term exposure of cells to hypoxia, and in these studies the cell lines 

have been meticulously conditioned by gradual lowering of oxygen levels, until a 

hypoxia resistant subpopulation remains (Kato et al., 2010). Such method was 

not, however, possible to attain within the timespan of this thesis. Another option 

utilized more often in hypoxic EV literature (King et al., 2012; Zhang et al., 2017; 

Panigrahi et al., 2019) would have been to expose the cells to a short periods of 

hypoxia, typically 24 to 72h, after which hypoxic EVs are collected and the cells 

are collected and lysed. However, this approach was not compatible with the 

CELLine bioreactor culture conditions utilized, where the cells are kept long term 

in a single culture vessel. 

 

In conclusion, extracellular vesicles have great potential for future applications in 

targeted therapy and diagnostics. To achieve translation of this potential into 

clinic, robust and reproducible protocols for EV production, separation and 

characterization need to be established. This study presents a method for 22Rv1 

and RWPE-1 bioreactor culture as an efficient method of producing EVs and is 

the first one to characterize EVs from these cell lines using both Raman and 

FTIR, spectroscopic methods that have gained popularity as potential tools for 

EV quality control. The spectroscopic protein/lipid ratio proposed by Mihaly et al.  

was explored as a measure of EV purity, and the results indicate a higher weekly 

variation of the protein and lipid components of EVs derived from newly 

established bioreactor cell cultures (Figure). This highlights the volatility of 

biological samples such as EVs to cell culture changes and the need to carefully 

report the culture conditions, preferably also culture age, a parameter that is 

rarely reported in EV publications despite recommendations in MISEV2018. 
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Figure 10. Overview of the study. In this study 1) a bioreactor cell culture protocol for 22Rv1 and 
RWPE-1 cell lines was established 2) the EVs obtained from these cell lines were purified using 
differential ultracentrifugation and SEC, characterised using Raman and FTIR spectroscopy, and 
subsequently the spectroscopic P/L ratio was calculated 3) the spectroscopic P/L ratio was 
analyzed as a measure of EV composition and purity over time in cell culture. The results indicate 
a higher weekly variation of the protein and lipid components of EVs derived from newly 
established bioreactor cell cultures as compared to long term, stabilised cultures, highlighting the 
volatility of biological samples such as EVs composition to cell culture changes. 
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4. Materials and methods  

 

4.1 Cell culture 

Cell lines, cell culture media and materials: RWPE-1, ATCC® CRL-11609™, 

American Type Culture Collection; 22Rv1, ATCC® CRL-2505™, American Type 

Culture Collection; RPMI 1640 Medium, GlutaMAX™ Supplement, Cat: 

61870010, Gibco; Advanced RPMI 1640 Medium, Cat: 12633012, Gibco; Fetal 

Bovine Serum, exosome-depleted, One Shot™ format, Cat: A2720803; 

Keratinocyte-SFM Medium (Kit) with L-glutamine, EGF, and BPE, Cat: 17005075, 

Gibco; GlutaMAX™ Supplement, Cat: 35050038, Gibco D-(+)-Glucose solution, 

Cat: G8644, Sigma-Aldrich; DWK Life Sciences Wheaton™ CELLine™ 

Bioreactor Flask, Cat: 12811803, Thermo Fisher Scientific. 

 

22Rv1 and RWPE-1 cell lines (American Type Culture Collection, ATCC) were 

cultured in bioreactor flasks at 37 °C and 5% of CO2. Conventional 2D cell culture 

flasks were maintained alongside the bioreactor cell culture in corresponding 

conditions and passaged twice a week. For conventional 2D cell cultures, the 

media compositions recommended for each cell line by ATCC were used. RPMI-

1640 with 10% FBS was used for 22Rv1 and for RWPE-1, Keratinocyte Serum 

Free Medium supplemented with 0.05 mg/ml bovine pituitary extract and 5 ng/ml 

epidermal growth factor was used. For bioreactor cell culture, the media 

compositions were optimized for both high density cell culture and EV production 

purposes. The CELLine bioreactors consist of two compartments separated by a 

10 kDa Nominal Molecular Weight Limit regenerated cellulose membrane. The 

cell compartment contains a polyethylene terephthalate matrix in which the cells 

grow in 3D like formation and allows for the cells to reach high numbers, whereas 

the nutrient compartment is able to house a large volume of nutrient rich medium. 

 

 For 22Rv1 cells, 750 ml of RPMI-1640 supplemented with 10ml glucose and 

10% sterile-filtered FBS was used in the nutrition compartment, and 15 ml of 

advanced RPMI-1640 with 4 g/ml D-glucose, 4mM GlutaMAX and 1% 

commercial exosome-depleted FBS was used in the cell compartment. For 

RWPE-1 cells, 750 ml of Keratinocyte Serum Free Media supplemented with the 

included EGF+BPE and 10ml D-glucose was used in the medium compartment, 
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and 15 ml of KSFM+EGF+BPE, 4 g/ml D-glucose, 2 mM GlutaMAX was used in 

the cell compartment. No antibiotics were used in any of the culture media.

  

The nutrition compartment media was renewed once a week alongside EV 

collection. Conditioned media (CM) was collected from the cell compartment once 

weekly, and the compartment was subsequently washed twice with 15 ml of 

DPBS and added to collected CM to ensure optimal recovery of EV particles. The 

CM was then immediately centrifuged at 4°C, 2500 g for 25 min to remove cell 

debris. The supernatant was collected and stored at 4°C and proceeded to 

purification with differential centrifugation within the next 24 hours.  

 

EV samples from PC3 and PNT2 cell lines were obtained from Biopharmaceutics 

research group at Helsinki University. These cells were cultured in corresponding 

bioreactor cell culture conditions (Zini et al., 2018) and the EV samples were 

collected and purified using the same methods described here. 

 

Hypoxic cell culture 

 

For hypoxic cell culture, T-75 flasks of 80% confluence were placed in hypoxia 

(SCI-tive Hypoxia Workstation, Baker Ruskinn) at 0.1%, 1% or 4% oxygen 

conditions with 5% CO2, 37°C. The cells were passaged 1:2-1:3 within the 

hypoxic workstation 24-48 hours after introduction to hypoxic conditions. All 

media and solutions were stored in 50 ml falcon tubes and placed in the hypoxic 

chamber to equilibrate for at least 20 minutes before passaging the cells. The 

media was renewed twice weekly after passaging. 

 

4.2 EV separation and purification  

Differential centrifugation 

 

The CM supernatant was transferred into 38.5 ml polyallomer tubes (Beckman 

Coulter) and centrifuged using a swinging bucket rotor (SW 28 Ti, Beckman 

Coulter) at 4°C, 20 000 g for 1 h (Optima L-90K ultracentrifuge, Beckman 

Coulter). The resulting pellet was resuspended in 250 µl DPBS, and the 

supernatant was collected and centrifuged again at 4°C, 110 000 g for 2 h. The 
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110K pellet was resuspended in 250 µl DPBS, combined with the 20K pellet and 

stored at -80°C until SEC purification. 

 

Size-exclusion Chromatography  

 

SEC purification was conducted following a previously published protocol 

(Watson et al., 2018). The combined 500 µl sample was injected using a 1ml loop 

into a commercial, pre-packed Superdex 200 Increase 10/300 GL column 

connected to an Äkta Pure chromatography system (GE Healthcare) The volume 

of this column is 24 ml with 1.0 cm diameter and height of 24.0 cm, and the 

exclusion limit is 1.3 × 10⁶ Da. For sample elution the mobile phase was PBS and 

a constant flow rate of 1ml/min was used. During the sample run, UV-absorbance 

at 215, 260 and 280 nm was monitored. Between each sample run, the column 

was washed with one column volume of 500 mM NaOH and one column volume 

of mQ water and equilibrated with two column volumes of PBS before application 

of the next sample. The 7th and 8th fractions, identified with NTA to contain the 

highest particle concentration, were pooled together and concentrated to a 

volume of 200-500 µl using Amicon Ultra 4 mL, 100 kDa MWL Centrifugal Filters 

(Millipore) at 4°C, 5000 g for 5x 5 min. 

 

4.3 Nanoparticle tracking analysis 

NTA was used to screen the SEC fractions to verify the fractions with the highest 

concentration of particles, as well as to determine the final concentration and size 

distribution of particles in the final, concentrated EV samples. NanoSight LM10 

instrument and LM14C viewing unit equipped with a 405 nm blue laser were used 

with NTA 3.4 software (Malvern Panalytical). The samples were diluted in PBS to 

obtain a particle concentration suitable for detection. Three 60 s videos were 

recorded of each sample, using camera level of 15 and screen gain of 1. The 

videos were analyzedland particle concentration and size distribution data were 

obtained using NTA 3.4 software with detection threshold set at 5 and screen 

gain at 10. 
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4.4 Western blot analysis 

To obtain the total protein content, duplicates of each EV sample and cell lysate 

(C.L.) were analyzed using Pierce BCA protein assay kit (Thermo scientific) 

according to manufacturer's instructions. The fluorescence signal was detected 

at 562 nm using Varioskan Flash multi-reader (v.2.4.3) (Thermo Scientific). For 

biomarker detection with Western blot, EV samples and C.L.  were prepared by 

incubating them under reducing and non-reducing conditions at 95°C for at least 

10 minutes. 10 µg of protein of each sample were loaded onto 4-20% Mini-

PROTEAN TGX™ gels (Bio-Rad) for electrophoresis (80-120V). Following the 

SDS-page run the proteins were transferred onto polyvinylidene difluoride  

transfer membranes (Trans-Blot Turbo Mini 0.2 µg PVDF Transfer Pack, Bio-

Rad), and the membranes were subsequently blocked with 3% (w/v) BSA in Tris-

buffered saline Tween 20 (TBS-T) for 1 hr at RT.  

 

All primary antibodies were diluted in 3% BSA in TBS-T and the primary antibody 

incubation took place at RT overnight. Primary antibodies used as EV positive 

markers were anti-Hsp70 (1:1000 Clone: 7/Hsp70, Isotype Mouse IgG1 Cat: 

610607 BD Transduction Laboratories), anti-TSG101 (1:250 Clone: 51/TSG101, 

Isotype Mouse IgG1 Cat: 612697 BD Transduction Laboratories) and anti CD9 

(1:1000, Clone: ALB 6  Isotype Mouse IgG1 Cat: HBM-CD9 Hansa Bio Med). For 

a negative EV marker, mouse monoclonal anti-GM130 (1:200, Clone: 35/GM130 

Isotype Mouse IgG1 Cat: 610823  BD Transduction Laboratories) was used, and 

anti α-Tubulin (1:500, Clone: 6A204, Isotype Mouse IgG1, Cat: T9026 Sigma-

Aldrich) was used as loading control. The membranes were washed five times in 

TBS-T and subsequently incubated for 1h at RT with secondary antibody, goat 

anti-mouse IgG-HRP (1:4000, Polyclonal Isotype: Goat IgG Cat Code: PA1-

74421 ThermoFisher Scientific). The ECL+ system (Bio-Rad) was used to 

visualize the obtained protein bands.  

 

4.5 ATR- FTIR 

The ATR-FTIR spectra of each EV sample were obtained using an IR- 

spectrophotometer (Spectrum One spectrophotometer, Perkin Elmer Inc., 

Massachusetts, USA) equipped with a universal ATR sampling accessory 
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(Spectrum One spectrophotometer, Perkin Elmer Inc., Massachusetts, USA). A 

5µl drop of the sample solution was placed over the ATR crystal and dried with a 

hairdryer to form a thin film on top of the crystal. The measurements were 

performed at RT, with accumulation of 64 scans and nominal resolution of 4cm-1. 

Triplicate measurements of each sample were obtained. The results were 

analyzed using OriginPro 2020. 

 

4.6 Raman spectroscopy 

To measure the Raman spectra of 22Rv1 and RWPE-1 EVs, confocal Raman 

microscope (NT-MDT Ntegra, Russia) equipped with a 532 nm laser with an 

output power of ~ 20mW and a 100× objective (Leica) was used. Following a 

previously established protocol (Zini et al., 2018), the system was first calibrated 

using the Raman peak of silicon at 520.7 cm-1 by measuring the full width at half 

maximum of the peak. Spectral resolution of ~4.4 cm-1 was achieved with a 

grating of 1800/500. A 2 µl droplet of EV solution was placed on a CaF2 substrate 

slide (LaserOptex) and let dry in ambient conditions. Raman spectra were 

measured on the edge of the dried sample droplet using exposure time of 6 s with 

the accumulation of 2 for the acquisition of one spectrum. Three measurement of 

each sample droplet were acquired. Due to time restrictions, Raman spectra 

could not be obtained for the PC3 and PNT2 samples. However, previously 

acquired Raman spectra for these same cell lines were kindly provided as a 

reference points by Jacopo Zini at Helsinki University. 
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6. Abbreviations 

ADT androgen deprivation therapy  

AR androgen receptors 

ATCC American Type Culture Collection 

ATR attenuated total reflection 

BM-MSCs bone-marrow mesenchymal stem cells 

CD cluster of differentiation 

CM conditioned media  

CRPC castration resistant prostate cancer  

EMA European Medicines Agency 

ESCRT endosomal sorting complexes required for 

 transport  

EV extracellular vesicles  

FBS fetal bovine serum 

FDA The United States Food and Drug Administration 

FIH-1 factor inhibiting HIF 

FTIR  Fourier-transform infrared spectroscopy 

HIF hypoxia inducible factor 

HSP heat shock protein 

ISEV International Society for Extracellular Vesicles  

LHRH luteinizing hormone-releasing hormone 

MISEV 2018 Minimal information for studies of extracellular  

 vesicles 2018  

MMP matrix metalloproteinase 

NTA nanoparticle tracking analysis 

PKM2 pyruvate kinase M2 

PrCa prostate cancer  

PSA  prostate-specific antigen  

PSMA prostate-specific membrane antigen 

SEC size exclusion chromatography 

TBS-T tris-buffered saline tween 20 

TGFβ1 transforming growth factor beta 1 

TME tumor microenvironment 

TSG101 tumor susceptibility gene 101 

VEGF vascular endothelial growth factor 
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8. Appendices 

Appendix A Supplementary FTIR spectra 

 
Figure 1 Apx A. FTIR spectra of EVs isolated from 22Rv1 cells cultured in bioreactor cell culture,  
purified using differential ultracentrifugation and size-exclusion chromatography, 1-5 weeks after 
bioreactor inoculation, presented as average (solid line)+-1 standard deviation(gray area) of 3 
independent measurements (left). The area of the amide I peak centered at 1656 cm−1 (green 
line) was determined by peak deconvolution using curve fitting with Lorentz-function (red line) 
(middle). The area of the CH2/CH3 stretching vibration (2700 to 3000 cm−1) representative of the 
lipid component was integrated (right). 
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Figure 2 Apx A. FTIR spectra of EVs isolated from RWPE-1 cells cultured in bioreactor cell 
culture,  purified using differential ultracentrifugation and size-exclusion chromatography, 1-5 
weeks after bioreactor inoculation, presented as average (solid line)+-1 standard deviation(gray 
area) of 3 independent measurements (left). The area of the amide I peak centered at 1656 cm−1 
(green line) was determined by peak deconvolution using curve fitting with Lorentz-function (red 
line) (middle). The area of the CH2/CH3 stretching vibration (2700 to 3000 cm−1) representative of 
the lipid component was integrated (right). 
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Figure 3 Apx A. FTIR spectra of three independent samples of EVs isolated from PC3 cells 
cultured in stable (3+ months since inoculation) bioreactor cell culture,  purified using differential 
ultracentrifugation and size-exclusion chromatography presented as average (solid line)+-1 
standard deviation(gray area) of 3 independent measurements (left). The area of the amide I peak 
centered at 1656 cm−1 (green line) was determined by peak deconvolution using curve fitting with 
Lorentz-function (red line) (middle). The area of the CH2/CH3 stretching vibration (2700 to 3000 
cm−1) representative of the lipid component was integrated (right). 
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Figure 4 Apx A. FTIR spectra of three independent samples of EVs isolated from PNT2 cells 
cultured in stable (3+ months since inoculation) bioreactor cell culture,  purified using differential 
ultracentrifugation and size-exclusion chromatography presented as average (solid line)+-1 
standard deviation(gray area) of 3 independent measurements (left). The area of the amide I peak 
centered at 1656 cm−1 (green line) was determined by peak deconvolution using curve fitting with 
Lorentz-function (red line) (middle). The area of the CH2/CH3 stretching vibration (2700 to 3000 
cm−1) representative of the lipid component was integrated (right). 
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Appendix B Supplementary Raman spectra 

 
Figure 1 Apx B Raman spectra of EVs from 22Rv1 cells in bioreactor cell culture and purified 
using differential ultracentrifugation and size-exclusion chromatography, weeks 1-5 after 
bioreactor inoculation, presented as average (solid line) +/- 1 standard deviation (gray area) of 3 
independent measurements (left). Integrated area of CH2/CH3 scissoring region (yellow 1416-
1490 cm-1) represents lipid component and C=O peak (cyan, 1630-1710 cm-1) represents protein 
component (right). 
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Figure 2 Apx B Raman spectra of EVs from RWPE-1 cells in bioreactor cell culture and purified 
using differential ultracentrifugation and size-exclusion chromatography, weeks 1-5 after 
bioreactor inoculation, presented as average (solid line) +/- 1 standard deviation (gray area) of 3 
independent measurements (left). Integrated area of CH2/CH3 scissoring region (yellow 1416-
1490 cm-1) represents lipid component and C=O peak (cyan, 1630-1710 cm-1) represents protein 
component (right). 
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Figure 3 Apx B Raman spectra of four independent samples EVs from PC3 cells in stable (3+ 
months since inoculation) bioreactor culture and purified using differential ultracentrifugation and 
size-exclusion chromatography, as average (solid line) +/- 1 standard deviation (gray area) of 3 
independent measurements (left). Integrated area of CH2/CH3 scissoring region (yellow 1416-
1490 cm-1) represents lipid component and C=O peak (cyan, 1630-1710 cm-1) represents protein 
component (right). 
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Figure 4 Apx B Raman spectra of four independent samples EVs from PNT2 cells in stable (3+ 
months since inoculation) bioreactor culture and purified using differential ultracentrifugation and 
size-exclusion chromatography, as average (solid line) +/- 1 standard deviation (gray area) of 3 
independent measurements (left). Integrated area of CH2/CH3 scissoring region (yellow 1416-
1490 cm-1) represents lipid component and C=O peak (cyan, 1630-1710 cm-1) represents protein 
component (right). 
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