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Can robots possess knowledge? Rethinking the
DIK(W) pyramid through the lens of employees
of an automotive factory
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Knowledge, information, and data are increasingly processed in human-robot collaboration.
This study tackles two requirements for revising the concepts of knowledge, information, and
data. First is developing robots' knowledge capabilities and transparency and ensuring
effective division of tasks between humans and robots to increase the productivity of
robotised factories. Employees’ interpretations of robots’ abilities to possess knowledge
reveal their assumptions of robots’ possibilities and limitations to create knowledge-based
products with humans. Second, the classic DIK(W) pyramid of data, information, knowledge,
and wisdom is a theoretical construct requiring additional empirical research. This empirical
exploratory study develops the DIK(W) further and applies it as a tool to understand
employees' perspectives of robots and knowledge. Do people believe robots possess
knowledge? What kind of knowledge can (or cannot) robots possess? A survey (n=269)
was collected from the most robotised factory in Finland, Valmet Automotive. Half of the
respondents think robots can possess knowledge, but only with humans. These respondents
were more likely to trust robots compared to those who think robots cannot possess
knowledge. As the key contribution, the DIK(W) pyramid is reconceived by (i) acknowledging
robots and humans, (ii) turning the pyramid upside down, and (iii) recognising knowledge as
a dividing concept.
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Introduction

oday, work across the world and across industrial fields is

being robotised because robots are becoming increasingly

independent and capable of performing demanding tasks
alongside people (Bauer, 2017; Bissell and Del Casino, 2017). The
production in robotised factories connects people and robots into
a co-creation process, where data and information are collected,
analysed, and transformed into a justified, novel, valuable, and
trustworthy knowledge that is required to build high-quality
products such as cars (Anthes, 2017). Developing robots that are
more independent and collaborative in factories requires atten-
tion to the robots’ cognitive abilities to process and utilise data,
information, and knowledge (Lobov, 2018; Mishra, 2018; Hentout
et al., 2019; Yao, 2020). However, data, information and knowl-
edge are concepts that originate from people, who are sig-
nificantly different from robots. Robots lack emotions and
consciousness. Yet, people who work with robots may still trust
them and see them as team members (Pohlt et al,, 2018; Cam-
panozzi et al., 2019; Larson and DeChurch, 2020; Panganiban
et al.,, 2020; Matthews et al., 2020).

There is a practical and scientific need to revise the concepts of
knowledge, information and data from the perspective of employees
who work with robots. In general, the topic of knowledge is lacking
in robot-related research (Jerman et al., 2020; Elprama et al., 2016).
Practical needs concern the robotised factories and developing
cognitive robots. Increasing the productivity in a factory is possible
by enhancing robots’ knowledge capabilities and transparency as
well as ensuring effective division of tasks between humans and
robots (Lee and Moray, 1992; Milliez et al., 2016; Hentout et al,,
2019; Matthews et al., 2020). The better robots can process data,
information, and knowledge, the more complex tasks they can
execute in factories. People can understand transparent robots’
functions, decisions, and information processing. From the per-
spective of a factory, transparency is crucial: To divide tasks
between people and robots and create high-quality products,
employees need to recognise robots’ faults, limitations, and possi-
bilities in the knowledge-based production process (Kahan et al.,
2009). In relation to robots, knowledge is a dividing concept—some
scholars think robots can possess knowledge (Das et al., 2007; Luo
et al., 2015; Miao et al., 2018) and others think they cannot (San-
zogni et al,, 2017; Sardar, 2020; Picca, 2020). Thus, challenging the
employees of a robotised factory to form their justified opinion
about robots’ ability to possess knowledge will reveal their
assumptions of robots’ abilities and limitations to create knowledge-
based products with humans.

The scientific motivation of this article concerns the classic
DIK(W) pyramid (Ackoff, 1989), where co-creation includes
transforming data (D) into information (I), knowledge (K), and
wisdom (W). The DIK(W) is a fundamental model for academic
knowledge-related disciplines, such as information science, com-
puter science, and knowledge management (Rowley, 2007; Yao,
2020). In this article, the DIK(W) is a tool to investigate the per-
spectives of the employees of an automotive factory regarding
robots’ ability to possess knowledge. Reconsidering knowledge is
specifically relevant in the wider context of robotising a knowledge-
based economy, where knowledge is increasingly ascribed to
machines, which may change the current human-centered under-
standing of knowledge (Rowley, 2007; Sanzogni et al., 2017; Sardar,
2020). Furthermore, the article further develops the DIK(W), which
has been criticised for lacking empirical analysis and not recog-
nising tacit knowledge or knowledge emerging outside of empirical
and measurable data (Frické, 2009, 2019).

This exploratory study aims to rethink the DIK(W) pyramid
through the lens of human-robot co-creation from the perspectives
of employees working on various tasks in a robotised factory. A
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survey (n=269) was conducted in 2019 with employees from the
most robotised factory in Finland, Valmet Automotive. In this factory
in the small city of Uusikaupunki, more than 1.5 million vehicles
have been manufactured. The aim of Valmet Automotive is to
produce high-quality, trustworthy, and safe cars (Valmet
Automotive, 2020). The questions explored here are as follow: (i) Do
the employees believe robots possess knowledge? (ii) What kind of
knowledge do the employees believe the robots can or cannot pos-
sess? (iii) Are the employees who believe robots possess knowledge
more likely to trust them and view them as teammates compared to
employees who do not consider robots able to possess knowledge?
The survey was analysed with content analysis, cross-tabulations, and
the y* test.

The article has three key sections. First, after identifying the
gap in the topic of knowledge concerning robot-related research,
the previous research applying the DIK(W) pyramid is reviewed.
This review specifies the ways in which the categories of data,
information, and knowledge are currently defined. Second, the
survey results are analysed in close reflection with the previous
understandings of the DIK(W) pyramid. Third, based on the
results and previous research, the DIK(W) pyramid is developed
and adjusted to the human-robot co-creation process.

According to the key results, 54% of employees believe robots
possess knowledge, but most of them mentioned this is possible
only with humans. These respondents trust robots statistically more
often than the 46% who think robots do not possess knowledge.
Employees who believe robots cannot possess the knowledge to
relate this ability to a particular kind of actor that is independent
and can use knowledge in justified, novel, and creative ways, as well
as in changing situations. As the key contribution of this paper, the
DIK(W) pyramid is rethought in three ways: first, by acknowl-
edging differences in robots and people as knowledge-related actors;
second, by turning the pyramid upside down and reorganising the
relations of data, information, and knowledge; and third, by
recognising knowledge as a concept that divides employees via the
independency of the actor who can possess knowledge.

Robot-related research tackles knowledge indirectly
Research specifically on attitudes towards robots that have been
conducted within the past 10 years offers important findings for
this article (Ray and Mondada, 2008; Rantanen et al, 2018;
Campanozzi et al., 2019; MCBride et al., 2019; Matthews et al.,
2020; Biswas et al., 2020). The next review helps with identifying
two important gaps. First, empirical research has covered topics
related to knowledge only indirectly. Very few researchers have
attempted to find out whether people working with robots believe
they possess knowledge, and likewise, little research has explored
the kinds of knowledge involved. Second, current research is
focused on a rather limited set of sectors, especially the healthcare
(e.g., Rantanen et al., 2018; MCBride et al., 2019) and military
(e.g., Matthews et al., 2020) sectors. Even though automotive
factories are among the most robotised workplaces in the world
(International Federation of Robotics, 2017), very few studies
have surveyed the general views of their employees (excluding
Matthias et al., 2011; Hippertt et al., 2019).

An important topic covered by current research concerns teams
(ie, basic units of interactive knowledge creation). Recently,
researchers have started to investigate whether people working with
robots consider them team members or peers. Empirical studies
have confirmed this notion (e.g., Pohlt et al, 2018; Larson and
DeChurch, 2020; Panganiban et al., 2020). This is due to the ability
of robots to “receive information” as well as “process and plan, and
interact” with people (Panganiban et al., 2020, p. 1); in other words,
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perform knowledge-related tasks. A robot as a team member fulfils
“a distinct role that directly contributes to team performance”
(Matthews et al,, 2020, p. 4). In theory, this would be the case in a
robotised automotive factory. The manufacturing process of new
cars in the Valmet Automotive (2020) in Finland has been organised
according to human-robot collaboration. The process is divided into
sequences operated by robots and people. In fact, cars would be very
difficult to build in a factory without robots. However, in practice,
some employees may see robots as team members, whereas others
might not.

To work on human-robot teams, people need to trust a robot
will fulfil its role in the process of co-creating high-quality, safe cars.
Trusted robots become actors: They are “‘more’ than mere tools”
(Coeckelbergh, 2012, p. 57). From an instrumental perspective,
people may trust robots directly “to do what it is meant to do as an
instrument to attain goals set by humans,” or indirectly by trusting
the person who designed and uses the robot (Coeckelbergh, 2012,
p. 54). Deeper psychological forms of trust can also develop.
Humans create beliefs about robots, and based on these beliefs, they
decide to trust a robot in particular interactions (Taddeo, 2010, p.
244). People may consider robots actors and social beings similar to
animals, which creates a social relationship in which people default
to trusting them (Coeckelbergh, 2012, p. 58).

Research has found that trust in robots depends on situations.
For example, young people are willing to trust robots in tasks such
as cleaning and driving a taxi, but they are less willing to trust
robots to provide safety, care for elderly people, or teach (Campa-
nozzi et al,, 2019, p. 49). People learn to trust machines gradually
(Lee and Moray, 1992) and can rebuild their trust in robots that
have failed to perform as expected (Pynadath et al, 2019). The
connection between trust and knowledge implicitly exists: Trust has
been found to increase people’s perceptions of robots as “trans-
parent” (Lee and Moray, 1992; Matthews et al., 2020). Transparency
means people understand the robots’ decision-making processes.
Experts in robotics and engineering have sufficient knowledge to
form accurate mental models of robots’ activities (Matthews et al.,
2020, p. 3), which suggests they can see robots as transparent and
trust them more easily than non-experts can.

Data, information, and knowledge—the DIKW pyramid

The DIKW model is visualised as a pyramid (Fig. 1). This model
describes the quantity, hierarchy, and process from the bottom
(data) to the top (wisdom). A large amount of data and infor-
mation are needed to build a foundation that supports smaller
pieces of knowledge and wisdom at the top. In other words, we
need cognitive machines that can handle big data to create a little
knowledge (e.g., Batra, 2014; Jifa and Lingling, 2014). The com-
pression of data and information is sometimes visualised as a
funnel—a pyramid upside-down (Fig. 1) (Rowley, 2007, p. 177).

Data consist of “symbols that [...] are products of observation
and [...] that represent the properties of objects, events and their
environment” (Ackoff, 1989, cited in Rowley, 2007, p. 166). Data are
adequate with respect to a conceptual model of reference. When
observations are not adequate, they should be corrected (Frické,
2009). Applying real-time big data in analyses risks including
observations that are not adequate, which means inadequate data
will be increasingly used in knowledge creation processes (Sardar,
2020). Data have no meaning because a datum “resides outside of
the human mind” (Baskarada and Koronios, 2013, p. 13). Thus, data
are accessible to machines. For example, robots collect data with
sensors (e.g., temperature and location; Ardolino et al., 2018).

The next three pieces of the pyramid are more difficult to define
(Rowley, 2007). Originally, information was defined as descriptions
of the data that “answer to questions [...] who, what, when, and how
many” (Ackoff, 1989, cited in Rowley, 2007, p. 166). According to

D
W
K |
| K
D W
W = wisdom | = information
K = knowledge D = data

Fig. 1 The DIKW model. Two basic visualisations: pyramid (left) and funnel
(right). D = Data, | = Information, K = Knowledge, W = Wisdom.

Frické (2009), information should also include the question “why?”
In terms of this study, the key debate in defining information
concerns meaning. Some scholars conclude information bears
meaning, but some conclude that meaning is added only when
information is interpreted as knowledge. In this article, information
and knowledge are considered according to the latter option.
Information is “signs bearing data” (Picca, 2020, p. 34). Information
can be completely controlled and formalised via codification
methods (e.g., text, a coded programme, or a mathematical model;
Nonaka and Takeuchi, 1995). For example, the p value of 0.001 is a
sign: It is a result of a statistical analysis of a data set. However, it
does not bear meaning until a person interprets the sign (e.g,
attaches meaning to it). The p value may verify a hypothesis and
bring new knowledge to a research field. If information is defined in
this way (without meaning), then it is accessible for machines. For
example, the robot’s activity is determined by its software and
algorithms that define the type of data the robot collects and the way
it processes the data (e.g., applies location data to move; Ardolino
et al, 2018).

In general, DIKW applications describe knowledge from a
human-centric view with terms such as “learning,” “understanding,”
“expert views,” and “perception” (Rowley, 2007, p. 172). According
to Rowley (2007, p. 166), Ackoff (1989) defined knowledge as know-
how that enables “transformation of information into instructions”
(Ackoff, 1989, cited in Rowley, 2007, p. 166). The ability to interpret
(make information meaningful) is crucial for creating knowledge,
such as outcomes that are justified, trustworthy, new, and valuable.
Understood in this way, knowledge is not a separable category of a
pyramid but rather a process and activity. Moreover, it is more than
what Ackoff (1989) suggests: formulating explicit instructions
(algorithms) from data and information. In this article, knowledge
cannot be separated from wisdom, which according to Ackoft (1989,
cited in Rowley, 2007, p. 166) is the “ability to increase effectiveness”
and add value via judgement, ethics, and aesthetics. Therefore, the
model is referred to in this article as DIK(W): data, information, and
knowledge (wisdom).

Knowledge is interestingly connected to creativity and repeti-
tion. On the one hand, knowledge should be repeatable or
otherwise, it can be contested: repetition demonstrates the dif-
ference between success and failure (Green, 2012, p. 107).
Repetition requires complete data and information (Hogarth,
2001). In technology and manufacturing, routines and repetition
are embodied in standardisation that is designed for guaranteeing
high-quality production (Shalley and Gilson, 2017, p. 609). Thus,
repetition offers a stable structure required to generate new
knowledge (Slutskaya, 2006, p. 151). Robots include software
(programmes) that enable their tireless, accurate, and rigid
repetition, and thus a stable structure for new knowledge.
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On the other hand, knowledge is often defined as “new,” which
connects knowledge with creativity, freedom, and intuition (Picca
2020). Creativity is the generation of original (new) and effective
ideas or products (Pereira, 2007; Runco and Jaeger, 2012).
Creating something new often requires intuition, which means
making decisions based on combining incomplete data and
information with feelings (Hogarth, 2001). However, creativity
and intuition are also connected with repetition. For example,
creativity can also help in effectively managing “routine tasks
required to make commodity products” (Shalley and Gilson,
2017, p. 605), while intuition requires learning from experience
(Epstein, 2010, p. 299). For the individual, the creative process is
an enjoyable experience of flow, where time feels as though it
disappears as a person challenges his or her high-level skills to
make a discovery (Csikszentmihalyi, 1997).

Frické (2009, pp. 133-134) brings out an important notion about
the pyramid: It is assumed that all knowledge and wisdom are based
on data, but only explicit and measurable observations can be
turned into data. Thus, the pyramid can describe only knowledge
that is created from explicit data that can be coded into text and
models (Nonaka and Takeuchi, 1995). This relates to a positivist
tradition and a rational approach to knowledge, which is common
for engineers who consider machines able to possess knowledge
(Forsythe, 1993). For example, proponents of the rationalist
approach cannot recognise its tacit and embodied dimensions
(Frické 2009; Hautala and Hoyssé, 2017). Our knowledge is based
on tacit knowledge that we cannot express directly (Polanyi, 1983).
Such tacit knowledge is embodied in communities, interactions, and
individual behaviour, and it is very important for any knowledge
creation process (Collins, 2010).

From the perspective of robotics, knowledge is a dividing
concept. Some researchers state that the “robot knows”. For
example, a robot might know its position, the environment, its
velocity, and the states of other objects, as well as understand
human messages, or it might possess a knowledge base that it uses
to communicate with humans (Das et al., 2007; Luo et al., 2015;
Miao et al., 2018). Other researchers have stated that based on the
human-centric perspective of knowledge, even the most devel-
oped robots are not yet conscious beings (Lake et al., 2017) and
thus cannot “know.” The research review demonstrated that
robots might be able to possess knowledge if knowledge is defined
from the rational and positivist approach. However, if knowledge
is considered connected with the tacit and embodied dimension,
creativity, and intuition, then robots are limited in possessing
knowledge because they lack feelings, embodied experiences, and
awareness of self and meaning (Sanzogni et al., 2017; Sardar,
2020; Picca, 2020). In this article, both tacit and explicit elements
co-constitute knowledge (Sanzogni et al., 2017, p. 38).

DIKW in robot engineering. The DIKW pyramid is applied to
developing robots that could possess the knowledge and create
knowledge with people. Mishra (2018, p. 285) suggested the
DIKW model is an “architecture for cognitive engineering”. The
benefit of this model is its clear structure (data, information,
knowledge, and wisdom), which is possible to code—at least to
some extent. According to Lobov (2018), the pyramid allows for
the “division of a problem into subproblems and solving those in
turn, focusing on each [...] separately”.

The key challenge is to build the hierarchy (e.g., to connect data to
information, information to knowledge, and knowledge to wisdom).
In general, and beyond engineering science, this transformation is
not understood well (Rowley, 2007, p. 168). It is often mixed with
the geographical dimension of a transfer (Heino and Hautala, 2020).
Data and information can be transferred “as is,” or unchanged, from
one actor to another—and between people and machines
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(Panganiban et al, 2020, p. 2). Despite this, robots can process
information rapidly and transfer altered information to humans
(Panganiban et al., 2020, p. 2). In general, interpretation is required
to transform information into knowledge. Along these lines,
knowledge (as interpreted and meaningful) cannot be transferred
(unchanged) because each time it moves, it is reinterpreted, and
thus, knowledge changes (Heino and Hautala, 2020).

In robotics, transparency is an important term behind the
transformation. Transparency allows humans to understand a robot’s
functions (Matthews et al,, 2020). It is the ability of the robot “to
effectively communicate information to the human in order to enable
an accurate understanding of the agent’s current goals, reasoning,
and future states” (Guznov et al,, 2020, p. 2). Therefore, transparency
allows for trust in robots (Matthews et al., 2020; Guznov et al., 2020).

Yao (2020) and Mishra (2018) answer the challenge of
transformation via the activities of a robot. In Yao’s (2020)
application, information equals knowledge. The robot needs to

1. Collect (data)

2. Analyse (transform data into information and knowledge)

3. Make a decision (based on information and knowledge, i.e.,
wisdom).

Thus, for Yao (2020), a robot can possess wisdom, but for Mishra
(2018), robots can only possess data, information, and knowledge.
Mishra (2018, p. 287) identifies the transformations of the DIKW
pyramid in both ways; for example, from data to information, and
from information to data. Robots can conduct some transforma-
tions independently (in Steps 1, 5-6, below), and some with people
(Steps 2-4). The steps are as follows (Mishra, 2018, p. 288):

1. Analyse: A robot organises (labels) data. Data are
transformed into information.

2. Synthesise: A robot connects labels together, but this
activity requires human help for a few more years.
Information is transformed into knowledge.

3. Be intuitive and apply emotions. It will take at least a
decade to develop machines with such skills. Knowledge is
transformed into wisdom.

4. Plan and desire: It will take at least a decade to develop
machines with such skills. Wisdom is transformed into
knowledge.

5. Break the plan into executable steps (ie., commands):
Knowledge is transformed into information.

6. Break the steps into executable signals “that can be
understood by the actuators” (e.g. “hands” of the robot).
Information is transformed into data.

Survey in the Valmet Automotive Factory in Finland.
According to Valmet Automotive (2020), the company was
founded in 1968 and today it is the only manufacturer of cars in
Finland. Moreover, it is the most robotised factory of Finland,
according to the firm. The factory is located in Uusikaupunki, a
city of about 16,000 inhabitants along the coast of the Baltic Sea
in Southwest Finland. Valmet Automotive focuses on producing
expensive, high-quality cars and was awarded the most valuable
collaboration partner of Mercedes-Benz in 2016. The company is
organised into various sections. The manufacturing process,
where the robots are located, includes the following subdepart-
ments: body shop, paint shop, general assembly, testing, and
finishing. In the background of the manufacturing process exists
the subdepartments of logistics, research and development,
financial administration, and human resources.

In general, Finland is a technologically advanced country and was
one of the first countries to launch a strategy to enter the era of
artificial intelligence (“Finland’s Age of Artificial Intelligence,” 2017).
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Table 1 Arguments were proposed in the following order.

Answer the following arguments concerning the Valmet Automotive

(1) Today, high-quality cars cannot be produced without robots

(2) | like to work with robots

(3) | can build a car without robots

(4) | trust the robots of the factory

(5) Humans make mistakes more often than robots in the factory do
(6) In the future, the ability to work with robots is a necessary skill

Answers were analysed through three categories: | disagree, | neither disagree nor agree, and | agree.

Table 2 Survey respondents.
Variables Groups n (%)
Gender (n=269) Male 167 (60)
Female 102 (40)
Age (years; n=269) 19-25 44 (16)
26-35 88 (33)
36-45 55 (20)
46-55 64 (24)
56-65 18 (7)
Years worked at Valmet Automotive 0-1 36 (13)
(h=269) 2-6 160 (60)
over 6 73 (27)
Years worked in a section (n=257) Manufacturing 185 (72)
Other 72 (28)

In this strategy, Finland aimed to become a global leader in applying
robotics and artificial intelligence widely in society, particularly in
industry. To place Finland within the wider context of European
robotics, it is compared to Germany. Germany is Europe’s leading
country with a strong automotive industry and has 309 robots per
10,000 industry employees. Globally, Germany ranks third, whereas
Finland ranks 16th with 138 industrial robots per 10,000 industry
employees (International Federation of Robotics, 2017). Finland’s
context is similar to those of many other non-leading countries and
industries worldwide whose strategic aims are to work increasingly
with robots.

The survey method was selected for collecting empirical
material because it allows obtaining the general perspectives of
the employees of a robotised workplace. The survey included
seven questions concerning robots: the task of the respondent
(Questions 1-3), understanding of team (humans; humans and
robots; other; Question 4), set of arguments (Question 5; Table 1),
and skills and knowledge (Questions 6 and 7). Existing research
concerning trust and teams, as well as results of a substudy of the
same research project, was applied in the construction of the
arguments. In general, arguments are a useful method to collect
opinions with a survey (Eyvindson et al., 2015). However, because
respondents tend to agree with the arguments (Schuman and
Presser, 1996), the core questions of the survey regarding
knowledge were not included as arguments.

Electronic survey results were collected in May 2019. The
survey is part of the project “Second Machine Age Knowledge
Co-Creation in Space and Time” (2018-2023, funded by the
Academy of Finland) that has been approved by the University
of Turku Ethics Committee. The survey respondents were able
to read the privacy notice and gave their consent. At the time,
the factory included about 4500 employees (Valmet
Automotive, 2020). The survey, along with one reminder,
was sent to the e-mail list and Facebook group of the Valmet

Automotive staff. A total of 269 respondents completed the
section of the survey reported in this article, which means the
response rate was low (6%). This limits the possibility of
generalising the results of the article. Along these lines, I do not
state that the attitudes of the respondents towards robots apply
to the whole factory. I consider the low response rate
specifically when answering Research Question 3. However,
the survey is conducted with good scientific quality, and the
survey is valuable and relevant for publishing the results for
two reasons. First, this exploratory study concentrates on an
issue that has seldom been studied empirically (see Introduc-
tion). Second, the focus of this article is on understanding the
reactions of the employees towards robots as knowledgeable
beings. A total of 251 responses to the question “In your
opinion, can robots possess knowledge? If yes, what kind of
knowledge? If no, why not?” generate a very interesting basis
for rethinking the DIK(W) pyramid. Table 2 shows the basic
information of the respondents.

The survey was analysed with statistical and qualitative
methods. IBM SPSS software for statistical analysis was applied
to answer Research Questions 1 and 3. Frequencies were enough
to answer Question 1. Crosstabs and the related X2 test were
applied to answer Question 3. The 2 test is suitable for
recognising differences between groups; for example, whether a
difference exists between Group A (those who think robots can
possess knowledge) and Group B (those who think robots cannot
possess knowledge) in their answers to other questions (e.g.,
whether they agree with “I trust robots”). The p values of the y2-
test were considered to be very significant (p < 0.001), significant
(0.001 < p<0.01), or almost significant (0.01 < p <0.05).

The second research question was answered with data-driven
conventional content analysis (Hsieh and Shannon, 2005). In the
survey, the respondents were asked to explain in their own words
the kinds of knowledge robots can possess or the reasons robots
cannot possess knowledge. After the first round of analysis, the
actor (not mentioned, robot, human, or robot and human) was
recognised as the key factor by which to group the explanations.
Thus, groups were accordingly formed. Through a visual
presentation and key quotes, the results were analysed in the
light of the DIK(W) model.

Results

Can robots possess knowledge? The 251 answers to the question
“Can robots possess knowledge?” are divided: about 54%
(n=135) say yes and about 46% (n=116) say no. The respon-
dents who believe robots possess knowledge include men and
women, are in all age groups, work in all subdepartments of the
factory, work more directly with robots or apart from the robots,
and are more and less experienced with working at Valmet
Automotive. No statistically significant differences exist among
these groups. However, a difference is identified (p=10.017)
between experts and workers: The experts (60%) thought robots
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Fig. 2 What kind of categories of knowledge can robots possess?
Answers form three categories based on the actor possessing knowledge
(no actor, robot, or robot and human together). 1= Data, 2 = Information,
3 =Knowledge.

possess knowledge more often than workers (52%) did. The 130
experts especially include people with the job titles of leaders (55
persons, 42%), engineers (32 persons, 25%), and designers (14
persons, 11%). The job titles of 97 workers are more versatile and
include, for example, 23 mechanics (24%), 16 measurers of
quality (16%), 10 substitutes (10%), and seven repairers (7%).

What kind of knowledge can robots possess or not possess?
Thus, an in-depth analysis is required to understand what the
respondents mean by “knowledge.” An explanation of the ques-
tion “Can robots possess knowledge?” was requested in a
respondent’s own words after either the “If yes, then what kind of
knowledge?” or “If no, then why not?” prompts. Altogether, 149
respondents provided useful explanations (excluding, e.g., “I do
not know”). The useful descriptions of knowledge robots can
possess (n=95) form three categories, which differ in terms of
the activity and actor: not mentioned, robot, or robot and human
together (Fig. 2).

In the first category, knowledge was described without
connection to any actor (n=20); for example “10101010,”
“codes,” “parameters,” “location data,” and “documents and logs”.
Considered via the DIK(W) model, these examples represent
data: explicit and codified data sets related to positions of robots,
documents, logs, and error reports. Some robots can collect data
via their sensors (Ardolino et al., 2018; Yao, 2020), but other data,

such as software code, require human activity although it is not
mentioned.

The second category (n =15) consists of examples of robot’s
activity without mentioning the human:

Memory that traces their activities

Robot is a pile of sensors that observe the robot
Knowledge of what it is supposed to do at a particular point
Knowledge of locations that enables them to move exactly
as they are supposed to

e (Ability to) work in their own areas without colliding

e Expressing errors and observing deficiencies

These examples can be formalised and controlled with
methods of codification (Nonaka and Takeuchi, 1995). This
category resembles information or “signs bearing data” (Picca,
2020, p. 34); that is, data that are applied in commands (signs)
telling the robot to move (see also Mishra, 2018, for this
interpretation of robot’s information). With the underlying
assumption that information is related to human actors, Ackoff
(1989; cited in Rowley, 2007, p. 166) and Fricke (2009)
suggested information should answer questions relating to
who, what, when, how many, and why. This list of questions
needs revising because when information is related to a robot
actor, “where” is necessary, but “why” can be questioned.
Location is critical information for a robot to move (its
actuators) and deliver its tasks (Rusu et al., 2009; Cruz et al.,
2019). However, answering “why” is difficult for a robot. As
one respondent stated, “Robots possess knowledge mainly
about their own task, not about the production more widely”.
Understanding the production process—the “why” of each
robot’s activity—belongs to the people in Valmet Automotive.

In the examples of the third category (n = 62), robot activities
that require people (i.e., an operator) are presented.

e They are programmed, so they possess knowledge of what
they should do.

e Programmable knowledge, but the robot does not
recognise without limit values (whether something is) ok
or nok (not ok). Programming is the key adding
“knowledge”.

e A simple robot does not possess (knowledge), but it
possesses programmed memory (software) that enables it
to move as we want it to.

e “Knowledge” is needed to fill the commands of the
operator.

In the DIK(W) model, knowledge is human-centered
(Rowley, 2007) and connected to praxis (Picca, 2020). The
most common expressions in this category involve humans
“programming” robots (n=38). This creates a hierarchical
relationship between humans and robots: the programmer
(creates) and the programmed (executes), which transforms
human knowledge into robot information. People connect
robots to their praxis and the production process of the factory.
Thus, robots cannot possess all dimensions of knowledge
without people—specifically the dimensions that are tacit and
related to the overall production process.

Of those who considered robots to be unable to possess
knowledge (n = 116), 98 justified why they believed this. Experts
provided these explanations more often than workers did
(p =0.042). Nevertheless, it is very interesting to understand
what employees working with robots think about the limitations
of robots and the abilities of people in the knowledge co-creation
process. Half (49%) of the justifications are related to the human-
centric view of knowledge (Rowley, 2007; Picca, 2020).
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The shortest justifications sum it up: “Robot is not a human” and
“expert has the knowledge”. Longer justifications reveal three
more detailed lines of argumentation. The first draws attention to
the human-robot hierarchical relation, where humans control the
robots, humans use programming as the medium of control, and
robots are only tools—unable to perform a “free act” (Picca, 2020,
p- 35). Although programming transfers explicit elements of
human knowledge to a robot, something crucial in knowledge is
lost during the transfer, which is why it can no longer be
considered “knowledge”:

e There is only knowledge that humans have programmed.

e They are only machines that have been programmed with
our know-how.

e A robot is only a tool that does exactly as it is
programmed to do.

e They are machines programmed by humans. Humans
possess knowledge.

The second line of argumentation draws attention to the
novelty and process aspects of knowledge. The respondents
connect activity, applicability, and reactivity to knowledge. For
the respondents, to possess knowledge means to use it in justified,
novel, and creative ways in changing situations. Although robots
are best in accurate and tireless repetition, the respondents
contest the connection between repetition and knowledge
(Slutskaya, 2006; Shalley and Gilson, 2017). Instead, they connect
knowledge with creativity, which requires emotions and the
ability to experience and understand social relations and specific
contexts of fields, organisations, and cultures, which current
robots lack (Csikszentmihalyi, 1997; Epstein, 2010; Green, 2012;
Mishra, 2018).

Human feeds the code to robots, and robots only repeat it.

Taught “blind” repetitions.

Robot is only a machine that repeats its programme.

Everything is just transferred to the robot; it does not learn

anything.

e Robot is a machine that does what it has been programmed
to do. One can save knowledge to the robot’s memory, but
the robot cannot use that knowledge in a creative way.

e They just repeat; they do not develop anything new.

In the future, ability to work with robots is a necessary skill
(N=268)

Today, high-quality cars cannot be produced without
robots (N=269)

Humans make mistakes more often than robots in the
factory do (N=266)

0%

M | agree

| trust the robots of the factory (N=266) _

| do not agree or disagree

e Robots possess only the programmed parameters and
cannot apply these in problematic situations.

e Robots only follow programmed instructions and report
what they are told to report; they do not possess or
generate knowledge.

The third line of argumentation draws attention to self-
awareness and the processes of cognition, which are human traits,
not yet robot features. “Robots act according to how they are
programmed to act and use the data collected through their
sensors. Robots ‘possess knowledge,” but they do not ‘think
independently’””. Thus, even if a robot makes “just a small
mistake, the robot cannot understand it” or “know it,” which may
lead to problems for the factory. This argumentation supports the
notions that machines cannot access knowledge because it is tacit
and embodied (Sanzogni et al., 2017; Sardar, 2020; Picca, 2020).

Are those who believe robots possess knowledge more likely to
trust robots and consider robots teammates? Questions about
trusting robots were asked via statements to which the respon-
dents were asked to agree or disagree (Fig. 3). More than half of
the respondents (153; 55%) trusted robots and thought humans
make more mistakes in the factory than robots do. Only 35 (13%)
respondents did not trust robots (disagree or fully disagree) and
23 respondents (8%) thought robots make more mistakes than
humans do. The ability to work with robots was considered an
important future skill by 203 (73% agree or fully agree) respon-
dents, and 60% (168) related the knowledge-related factor of the
quality of cars to robots (“Today, high-quality cars cannot be
made without robots”). Most respondents (185; 66%) considered
the factory teams as only consisting of people, and 76 (27%) saw
robots and humans forming teams together. Two chose the
option “other” and explained that the teams consist of only
robots, or they explained that there are no teams and that the
work is conducted in the form of projects.

The connections among knowledge, trust, and teams were
analysed with cross-tabulation and y? tests (Table 3). A few
statistical significances between the groups are evident. Those who
consider robots to possess knowledge trust robots more often
(p =0.002). No differences exist between those who consider robots
to be teammates and those who consider only humans to be

10% 20% 30% 40% 50% 60% 70% 80 % 90 % 100 %

W | disagree

Fig. 3 Working with robots. Employees agreeing and disagreeing with statements.

Table 3 Results of the 2 tests.

Arguments

Can robots possess knowledge? (yes/no)

Teams of the factory consist of.... (Humans/ Humans and robots/Other)

| trust the robots of the Valmet Automotive (I disagree/| neither disagree nor agree/| agree)

0.0022
0.070

aStatistically significant differences between groups.
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Fig. 4 The DIK(W) rethought. The DIK(W) pyramid via human-robot
knowledge co-creation.

teammates. In other words, those who do not see robots as
teammates may still think that they can possess knowledge.

Discussion: Rethinking DIK(W) through human-robot
knowledge co-creation
The results suggest three points for developing the DIK(W)
pyramid in human-robot collaboration (Fig. 4). First, the pyr-
amid needs to recognise actors—specifically, people and robots—
and their different abilities in knowledge co-creation processes.
The original pyramid is based on a human-centric understanding
of knowledge. However, according to the results of this survey, in
a robotised automotive factory, every second employee trusts
robots and considers them able to possess knowledge. For 60% of
them, creating high-quality outcomes (i.e., cars) requires robots.
About every third employee considers robots to be members of
teams.

The “reality” concerning data, information, and knowledge for
a person and a robot is different. A robot fits well into the
positivist thinking behind the DIKW model, which several
engineering scientists apply to develop cognitive robots (e.g.,
Mishra, 2018; Yao, 2020). The survey results show the employees
of the automotive factory recognise robots as collecting and
applying data (e.g., location and position), as well as transforming
data into information; that is, robots use “were” as a key question,
but without understanding “why” (Ackoft, 1989, cited in Rowley,
2007, p. 166; Frické 2009). Here, data are processed with software
programmes to commit acts, such as painting a car. In Fig. 4, the
robot is positioned in the D and I sections, although its ability to
create knowledge is dependent on people. The robot can inform a
person using a sign, but the person must attach meaning to the
sign; for instance, the person must understand whether the
quality and timing of painting is justified to reach the desired
outcome (a high-quality car). A robot is designed to repeat
actions in a sequential order determined by a programme. A
robot is an actor that creates knowledge in the positivistic realm
of the DIK(W) pyramid. However, following Fricke’s (2009)
critique, positivism is problematic from the human perspective
because recognising tacit embodied knowledge is challenging.
Emotions, intuition, experiences, previous knowledge, and con-
text (space) all affect people’s sense of the environment and
interpretation of data or information (Sato and Huang, 2015, p.
615; Picca, 2020). Many robot developers tackle the challenge of
tacit knowledge, for example, by developing context-aware sys-
tems (Perera et al., 2014).

The data, information, and knowledge categories are not in
sequential order but rather become mixed. In Fig. 4, a person is

8

positioned in a place that a robot cannot access—also beyond
the pyramid. For example, if the robot lacks data and infor-
mation, it has no overall knowledge by which to make a guess.
This form takes into account Frické’s (2009) important notion
that not all knowledge is based on codified and explicit data.

Second, the pyramid is upside-down, but the order of the data,
information, and knowledge differs from the original funnel
visualisation (Fig. 1). The difference is based on the observation
from the survey that “programming” is a key term for expressing
the knowledge that robots can possess or justifying why robots
cannot possess knowledge. When human-robot interactions are
included, it becomes visible that the transformations among data,
information, and knowledge go both ways (Mishra, 2018). Thus,
the core question involves transforming (simplifying and fun-
nelling) knowledge into programmes (from K to I) so that pro-
grammes can be transferred from people (K) to robots (I, D) in
such a way that a robot can then co-create knowledge with
humans by transforming and transferring from robot I and D to
human K? What is lost when knowledge is funnelled to pro-
grammes (I) that control the collection and application of data
(Rowley, 2007)? Some engineers think that through the devel-
opment of technology, all knowledge will be able to be extracted
from the people and transferred to robots “as is” (Forsythe,
1993). However, this would be against the tacit and embodied
understanding of knowledge that some engineers recognise and
aim to use to develop machines that can engage in increasingly
deep interaction with humans—and thus know with and through
humans.

Third, knowledge is a dividing term. The review of existing
research demonstrated some researchers consider robots able
to possess knowledge (Das et al., 2007; Luo et al., 2015; Miao
et al., 2018), but others think they cannot (Sanzogni et al,
2017; Sardar, 2020; Picca, 2020). This exploratory study sug-
gests the factory employees hold similarly divided views. Half
of the respondents said robots could possess knowledge, and
the other half said they could not. When justifying their
answers (yes or no), most respondents mentioned the role of
people. Summing up the survey responses, knowledge in a
human-robot collaboration stems from people programming
robots to collect data and then processing data into informa-
tion (an activity of the robot), which is a key part of the process
(of producing new cars). The dividing factor in respondents’
understanding of knowledge is the independency of the
knowing actor. Those who said that robots could possess
knowledge thought robots could possess knowledge together
with humans. This resembles a post-human constructionist
understanding of knowledge (Wenger, 1998; Hayles, 2017).
Those who said robots could not possess knowledge believe
robots should possess it independently for that to occur. On
the one hand, the roots are in an anthropocentric and
technology-assisted understanding of knowledge: It is the
independent human who knows. The responses reveal the
factory’s robots lack central features of knowledge: the ability
to learn, create something new, be creative, and apply knowl-
edge in changing situations. On the other hand, many of the
respondents expressed that robots are not “yet” developed
enough, which suggests they believe robots may possess
knowledge in the future despite not being human. Perhaps a
novel understanding of knowledge is starting to form alongside
the anthropocentric view, both in the worlds of science and
practical work. In general, improving the understanding of the
human-robot co-creation process of knowledge and the ways
the different “realities” of people and robots come together is
important (Fig. 4). For this, the presented exploratory study is
an interesting start, but the subject needs empirical case studies
and detailed ethnographic research.
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Conclusions

This article was aimed at rethinking the DIK(W) pyramid
through human--robot co-creation and from the perspective of
the employees of the most robotised factory in Finland, Valmet
Automotive. The specific interest was in analysing whether the
employees consider robots to possess knowledge, what kind of
knowledge, or why robots cannot possess knowledge. The key
contributions of the article are practical and theoretical.

From a theoretical perspective of developing the DIK(W)
model, two contributions are central. First, DIK(W) is a theore-
tical model that lacks empirical studies. This exploratory study
provides a relevant empirical starting point for revising the
concepts of knowledge, information and data in the human-robot
co-creation process. According to the results, robots can possess
data and information. However, the question ‘where’ is critical for
the information of robots, whereas the question of ‘why’ belongs
to the information of humans. The results also show that
knowledge is a concept that divides not only researchers but also
employees who work with robots. Every second employee con-
siders robots to possess knowledge—together with humans
(Ardolino et al., 2018; Panganiban et al., 2020). They also trust
robots more compared with those who do not think that robots
can possess knowledge. The results suggest that the basic
understanding of knowledge both for the survey respondents and
the DIK(W) pyramid is anthropocentric and bound to being
human. Those who consider robots to possess the knowledge to
explain knowledge through a constructionist and technology-
assisted understanding. The constructionist perspective empha-
sises that knowledge is created in interactions between humans
(Wenger, 1998), but in the case of this article, it is also created
between humans and robots. However, those who do not think
that robots can possess knowledge to add “for now.” Although
robots will not become humans, they see robots as potentially
possessing knowledge as technology develops. This may mean
that a non-anthropocentric, novel understanding of knowledge is
beginning to emerge in the robotising knowledge work.

Second, the DIK(W) pyramid is re-constructed in a way that
takes criticism into account. Although the pyramid is classic and
widely applied, this is the first study to acknowledge both humans
and robots as actors—but with different abilities when it comes to
processing data, information, and knowledge. The respondents
who mentioned that robots cannot possess knowledge brought up
that robots follow the programmes and lack the freedom, crea-
tivity, and ability to act independently, learn, and adjust what
they have learned. These are components related to the knowl-
edge that are less frequently discussed in the research applying the
DIK(W) pyramid, but they become visible as robots are
acknowledged as knowledge-creating actors. The robot exists in
the positivistic realm of the original pyramid, whereas the
human’s realm widens the pyramid with tacit, embodied
knowledge, as well as knowledge created outside of empirical and
measurable data.

From the practical perspective of factories and the develop-
ment of robots, this study presents interesting findings. The aim
in factories and the development of robots should be to ensure
effective and critical human-robot collaboration in the
knowledge-based production process. The core task for engineers
is to understand the different realities of humans and robots in
terms of knowledge. Robots can assist humans in co-creating
knowledge, but the employees need to be aware of the limitations
of robots in terms of knowledge. Only humans can “know” when
robots make mistakes. This supports the aim of developing
transparent robots but also provides proper education for the
employees to understand and programme robots. Respondents
brought up programming from human’s knowledge to robot’s
information as a key practice connecting humans and robots to

co-create knowledge. Interestingly, among the respondents, it was
the experts more often than the workers who justified why robots
cannot possess knowledge. In sum, the revised DIK(W) pyramid
offers potential for engineering cognitive and collaborative robots
(Fig. 4). Focus here is on the transformations among knowledge,
information, and data, and the different roles of humans and
robots concerning each.

This exploratory study is based on a survey that is suitable for
considering the contents that the respondents relate to knowl-
edge, information, and data. However, further empirical, quali-
tative, and ethnographical research is required for understanding
the practices of knowledge co-creation in human-robot colla-
boration. Specifically, looking at the moments in human-robot
interaction where knowledge is either accepted or refused would
provide important insights into how DIK(W) components are
applied, neglected, and further created. Moreover, repeating this
survey in various robotised factories in different parts of the
world would offer valuable and comparable results across
cultures.

Data availability

The datasets generated during and/or analysed during the current
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