
UPDATING A WEB-BASED CARD GAME TO TEACH PROGRAMMING,
CYBERSECURITY AND SOFTWARE DEVELOPMENT LIFE CYCLE

CONCEPTS

MD. HASAN TAREQUE
Bachelor of Science, Bangladesh University of Professionals (BUP), 2010

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Md. Hasan Tareque, 2021

UPDATING A WEB-BASED CARD GAME TO TEACH PROGRAMMING,
CYBERSECURITY AND SOFTWARE DEVELOPMENT LIFE CYCLE CONCEPTS

MD. HASAN TAREQUE

Date of Defence: August 12, 2021

Dr. J. Anvik Associate Professor Ph.D.
Thesis Supervisor

Dr. W. Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. L. Beaudin Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. J. Zhang Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

This thesis is dedicated to my family members

(My parents, Wife, Elder brother & sister)

iii

Abstract

Game-Based Learning (GBL) has been shown to be effective in teaching software engi-

neering practices and principles. This research updates Program Wars, a web-based card

game, to improve the support for learning concepts of various programming structures and

concepts (i.e. variables, loop, method). Additionally, the game’s support for learning cy-

bersecurity practices and concepts was refined. A user study evaluated this new version of

Program Wars, and it was found that the latest version performs better in terms of learning

various programming components along with cybersecurity concepts than the older version.

Finally, a new gaming mode was introduced to the newest version of the game to teach the

Software Development Life Cycle and the Iterative Software Development Methodology.

A separate user study is also proposed in this research work to evaluate this version of the

gameplay.

iv

Acknowledgments

Firstly, I would like to thank Almighty ALLAH for giving me the opportunity and strength

to complete this research and master’s program.

I would like to express my deepest gratitude to my supervisor Dr. John Anvik. Without

his guidance and encouragement, it would not be possible for me to finish the thesis work.

Dr. Anvik offered his valuable suggestions and recommendations throughout my master’s

program. Thank you, Dr. Anvik, for your continued support and encouragement towards

me.

I am very grateful to my M.Sc. supervisory committee members Dr. Wendy Osborn

and Dr. Lorraine Beaudin, for their valuable feedback and time. I want to extend my thanks

to my amazing ‘Sibyl Lab’ members for always being encouraging. Especially I would like

to thank Steve Deutekom for his support.

I am extremely grateful to my parents for their love, prayers, and sacrifices. I would

also like to thank my in-laws as well as my brother and sister for their continuous support.

I would like to express my love and gratitude to my wife (Neonta) for being with me

and support me. Neonta, without you, it would not be possible for me to go through this

journey.

I am grateful to the School of Graduate Studies for providing financial assistance for

my graduate study and research work.

I would also like to thank my friends and well-wishers, especially Ahmed Shoeb Al

Hasan, for the constant support.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Work 5
2.1 Game-Based Learning research in SE . 5
2.2 Games for Learning Computer Programming 8

2.2.1 Board Games . 8
2.2.2 Card Games . 11
2.2.3 Web-based Games . 12

2.3 Games for Learning Cybersecurity . 17
2.4 Games for Learning Software Development 19
2.5 Summary . 21

3 Program Wars 1.0 22
3.1 Overview of Program Wars 1.0 . 23
3.2 Analysis of Program Wars v.1.0 . 28

3.2.1 Strengths . 28
3.2.2 Weaknesses . 30

3.3 Summary . 31

4 Program Wars 2.0 32
4.1 Improvements to the User Interface (UI) 32
4.2 Gameplay Overview . 35

4.2.1 Gameplay Areas . 36
4.2.2 Player’s Hand . 37
4.2.3 Game History . 38
4.2.4 Program Editor . 38
4.2.5 Gameplay Goals . 39

4.3 Card Additions and Improvements . 40
4.3.1 Computer Programming . 41
4.3.2 Cybersecurity . 43

4.4 Summary . 49

vi

CONTENTS

5 User Study of Program Wars 2.0 51
5.1 Research Methodology . 51
5.2 Detail of User Study . 52

5.2.1 Participants . 52
5.2.2 Study Procedure Details . 53
5.2.3 Questions Asked . 54

5.3 Results and Analysis . 63
5.3.1 Demographic and Previous Experience 64
5.3.2 Change in Knowledge . 65
5.3.3 Cybersecurity Knowledge: . 70
5.3.4 Categorization of Learning Outcome 73
5.3.5 Answering R.Q.# 1 . 78
5.3.6 Result Comparison between v.1.0 and v.2.0 83
5.3.7 Threats to validity . 84
5.3.8 Participant Feedback . 84
5.3.9 Participant Comments . 86

5.4 Summary . 87

6 Program Wars v.3.0 88
6.1 Introducing SDLC and ISDM using Program Wars 90
6.2 Game Setup . 90

6.2.1 Requirement Phase . 92
6.2.2 Design Phase . 97
6.2.3 Implementation Phase . 98
6.2.4 Testing Phase . 98

6.3 Summary . 99

7 Conclusion 100
7.1 Future Work . 101

7.1.1 Gamplay and Card behaviour . 101
7.1.2 Program Wars v.3.0 User Study 102

Bibliography 104

A User Study Consent Form 108

B User Study Invitation Letter 110

C User Study Demographic Questions 111

D User Study Responses 112

vii

List of Tables

4.1 Game modes and Card sets in Program Wars v.2.0 34
4.2 Cards comparison in Program Wars v.2.0 vs Program Wars v.1.0 41
4.3 Features of the two versions of Program Wars with alignment of game ele-

ments to curriculum guidelines. 50

5.1 Post-game Computer programming related mapping 68
5.2 Cyberattack related knowledge . 72
5.3 Knowledge Change Categories . 74
5.4 Summary of Analysis for answering R.Q.# 1 80
5.5 Results of analysis for answering R.Q.# 1. 81
5.6 Result comparison between two version of Program Wars 83
5.7 Summary of post-game Feedback . 85

D.1 Demographic responses from the participants 112
D.2 Pre-game computer programming related responses 113
D.3 Post-game computer programming related responses 114
D.4 Pre and Post-game cybersecurity related responses 115
D.5 Post Game Feedback . 116
D.6 Post Game Comments . 117

viii

List of Figures

2.1 Robot Turtles gameplay . 9
2.2 Code Master gameplay . 10
2.3 Potato Pirates programming logic. 12
2.4 CodeCombat gameplay. 13
2.5 Blockly Maze gameplay. 14
2.6 Kodable gameplay. 15
2.7 CodinGame gameplay. 16
2.8 Cyber Threat Defender card details . 17
2.9 Potato Pirates 2: Enter The Spudnet gameplay 18
2.10 Scrum card game . 19
2.11 PlayScrum card game . 20

3.1 Play area of Program Wars v.1.0 . 23
3.2 Program Wars v.1.0 programming related cards 25
3.3 Different cyberattack related cards in Program Wars v.1.0 26
3.4 Different remedy related cards in Program Wars v.1.0 27
3.5 Different safety related cards in Program Wars v.1.0 27

4.1 Initial home-screen for Program Wars v.2.0 33
4.2 An annotated view of a Program Wars game in progress. 36
4.3 The Bonus tab for a player. 40
4.4 Program Wars v.2.0 Method card. 42
4.5 Program Wars v.2.0 Malware cards . 43
4.6 Program Wars v.2.0 Hacking cards. 45
4.7 Program Wars v.2.0 Cyberdefense cards. 47
4.8 Program Wars v.2.0 Algorithms cards. 49

5.1 Demographic and Previous Experience results 64
5.2 Correct answer of pre-game and post-game pair questions. 67
5.3 Post-game programming concept related mapping. 69
5.4 Correct answer of pre-game and post-game pair questions. 72
5.5 Categorization of Participants Knowledge Change (Programming Concepts) 75
5.6 Computer Programming knowledge after playing the game at least three

times. 76
5.7 Categorization of Participants Knowledge Change (Cyberattacks) 77
5.8 Cyberattack knowledge after playing the game at least three times. 78
5.9 Programming concept learning outcome 82
5.10 Learning outcome for Programming Concepts (Variable, Loop, Method) . . 83

ix

LIST OF FIGURES

5.11 Program Wars Rating. 86

6.1 Software Development Life Cycle (SDLC) 89
6.2 Iterative Software Development Methodology (ISDM) 89
6.3 Gameplay diagram of Program Wars v.3.0 91
6.4 Starting for Program Wars v.3.0 . 92
6.5 The Requirements Card of Sprint 1(Initial) 94
6.6 The Requirements Card of Sprint 2(Security) 95
6.7 The Requirements Card of Sprint 3(Penetration) 96
6.8 The Design Phase Page . 97

x

Chapter 1

Introduction

Successful software development projects depend a lot on software engineering (SE) edu-

cation as the participants rely on different areas of software engineering knowledge. How-

ever, designing a curriculum covering all of the software engineering knowledge expected

for industrial software development is cumbersome because it requires both knowledge and

practical skills. For example, software developers need to learn about the project environ-

ment, demands by the stakeholders, and new technologies. Most importantly, successful

software development depends on technical expertise along with applied conceptual SE

knowledge. As a result, software engineering education needs to be designed in such a way

that it will fulfill the changing requirements of the growing software development industry.

By introducing different SE knowledge areas and industry requirements into SE education,

students will be prepared for the future.

Experience-based software engineering education can play a vital role in terms of reach-

ing this goal. Learning through different activities that combine social and educational

aspects are more effective than standard curriculum-based education [1]. However, con-

straints such as time, proper tools and realistic environments introduce difficulties to a

learning model. Game-Based Learning (GBL) has been used as an effective way of teaching

concepts practically. The use of games for education can be divided into two techniques:

gamification and serious games.

Games that focus on the properties of GBL should consider some basic elements like

interaction. JP Gee mentioned in his research [2] that interaction is essential for a suc-

1

1. INTRODUCTION

cessful game design. The game should support the building of an interactive relationship

between the player and the real world. Also, the game should have challenging contexts

where a player can innovate various strategies to win against an opponent. J. Mcgonigal

mentioned the idea of an ‘epic’ win while playing a game [3], where a gamer shows con-

cern, optimism as well as surprise while competing against different opponents. N.Whitton

[4] mentioned GBL should also focus on the learning context and outcomes; otherwise,

there is no certainty that any engagement in the game will lead to subsequent engagement

in learning.

Gamification, refers to the implementation and use of game design elements, usually

in a non-game setting [5]. Gamification has been used for Knowledge-Based Learning

(KBL), edutainment1, corporate activities, administrative training, marketing research, and

real-world project management skills [6]. Around 70% of the top global organizations use

gamified applications for marketing and performance measures [7]. On the other hand,

Serious games focus on the usefulness of the entire gameplay in the context of learning.

For example, ProDec [8] uses the concept of the serious game, where participants can learn

more about different phases of software project management.

Although there are many areas of software engineering research, learning the funda-

mental software engineering principles through the use of gameplay is an area that needs

more attention. Introducing gameplay into a SE curriculum is not a new concept; rather, it

is known to be a very effective one [9]. Nevertheless, this model has some restrictions like

time constraints and lack of proper applications for demonstration.

This research work aims to explore further the effectiveness of teaching fundamental

software engineering concepts through game-based learning. Specifically, Program Wars,

a web-based card game for learning programming language and cybersecurity concepts, is

extended in two ways. First, the teaching of basic programming and cybersecurity concepts

are refined by introducing additional cards and modifying the User Interface (UI). Second,

1Learning through different activities and entertainment are known as “edutainment.”

2

1. INTRODUCTION

basic software engineering concepts are introduced into the game by adding an alternative

playing mode for the game.

The questions to be answered by this research are:

R.Q. # 1: Do the refinements to the UI and gameplay of Program Wars improve a player’s

understanding of basic computer programming concepts?

This Research Question (R.Q.) is divided into three (3) sub-questions to evaluate the

learning outcomes more precisely.

(a) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Variable concept?

(b) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Loop concept?

(c) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Method concept?

R.Q. # 2: Does the refinement of the cybersecurity aspects of Program Wars lead a player

to better understand real-life cybersecurity threats and how to combat them?

R.Q. # 3: How can Program Wars be modified to teach the basics of the Software Devel-

opment Life Cycle (SDLC) and the Iterative Software Development Methodology

(ISDM)?

The contributions of this thesis are:

i. A new version of Program Wars for teaching programming and cybersecurity

concepts. The latest version of the game (Program Wars v.2.0) has significant

changes to the User Interface (UI) and gameplay. In particular, the card and

gameplay for the programming concept of procedure/function/method were re-

vised. Also, the prior cybersecurity cards were refined to better teach about

specific cyberattacks.

3

1. INTRODUCTION

ii. A user study, of the latest version of the game. This user study corrected some

concerns with the prior user study. Also, the study assesses Program Wars abil-

ity to teach cybersecurity concepts, which was not part of the previous study.

iii. The latest version (Program Wars v.2.0) was expanded for teaching the Software

Development Life Cycle (SDLC). The expanded version of the game introduces

players to the Iterative Software Development Methodology (ISDM) by adding

dedicated sprints into the gameplay.

This thesis is organized in the following manner. The background and related works

are described in Chapter 2. A detailed description of the version of Program Wars that

was modified (v 1.0) is given in Chapter 3 before describing how the game was changed to

refine the teaching of basic programming language and cybersecurity concepts in Chapter

4. The user study used to answer R.Q.# 1 and R.Q.# 2, including the analysis of the results,

is described in Chapter 5. How Program Wars v.2.0 was modified to teach the SDLC and

ISDM (used to the answer R.Q.# 3) are described in Chapter 6. The thesis is then concluded

with some future research directions in Chapter 7.

4

Chapter 2

Related Work

Several research works have been conducted regarding the use of games to teach computer

programming and software engineering aspects.

This chapter begins with an overview of game-based learning research in software en-

gineering before discussing specific examples of the board, card, and web-based games for

teaching software engineering.

2.1 Game-Based Learning research in SE

The following is an overview of the previous work regarding Game-Based Learning in

the field of software engineering.

Mauricio et al. [10] identified a methodology that can be applied in different interactive

games for Software Engineering (SE) Game-Based Learning. Also, they explored various

primary studies related to SE education and identified the learning outcomes, and mapped

those outcomes to different stages of SE projects. They divided the SE knowledge into

eight (8) areas. Among those areas, Software Process (PRO) has thirty-two (32) relevant

research works that used the Game-Based Learning (GBL) process.

Pieper et al. [11] presented a case study of the Software Engineering Method and The-

ory (SEMAT) to identify the educational outcomes in Digital Game-Based Learning. SE-

MAT is a part of the emerging OMG2 standard [12]. The case study shows that evaluating

a software development integration scenario can provide an in-depth analysis of the result.

2The Object Management Group (OMG) is a computer industry standards consortium.

5

2.1. GAME-BASED LEARNING RESEARCH IN SE

Nevertheless, the data was not sufficient to reach a conclusive decision regarding the pattern

of learning. As a result, SEMAT was not recommended to be a standard. The researchers

state that if the study could be conducted in a broader spectrum (i.e. larger data-set), the

result of the case study might have a more conclusive outcome.

Tao et al. [13] emphasize learning software engineering through different gaming ap-

proaches. They created Pex4Fun to serve both the social aspects of Game-Based Learning

and the presentation of software engineering content. The learning outcome from the re-

search work is that gaming and entertainment can be a source of education and that inter-

active learning has excellent value. Another discovery is that learning while playing can be

effective in the industrial field.

Swapneel et al. [14] discussed how highly addictive socially optimized (HALO3) pro-

vides concentration through an adaptive environment. The game environment is developed

in such a way so that the player can enjoy their work in a gaming atmosphere. The game is

designed as a simple plugin to integrate with an IDE4, such as Eclipse or Microsoft Visual

Studio. Making the user comfortable with the working environment is one of the signifi-

cant contributions of HALO. HALO adopted a context-switching-free environment using

this technique. HALO is designed for the software industry, where the different projects

have different requirements. Along with that, it supports various social aspects like team-

work and project management. The initial stage of the game is known as ‘Quest’, which

is a preliminary introduction of the system. Here someone senior must work voluntarily or

can be assigned. If the quest is more challenging for a single player, it could be done in a

team, and then it is called a party. A simple task like use-cases or bug fixing can be part

of quests. Another essential aspect is context switching. If an employer works on different

modules, then it will require more time, but HALO groups the same type of coding envi-

ronment altogether so that less context switching is required. In this process, a balanced

3The author suggested that there were no connections between the proposal and the game name.
4Integrated Development Environment (IDE) is known as a software application that provides compre-

hensive facilities to computer programmers for software development.

6

2.1. GAME-BASED LEARNING RESEARCH IN SE

environment has been created where players progress through multiple difficulties. There

was no evaluation technique for the HALO, which is one of the drawbacks of this research.

This research work is a game-based approach in software engineering that is beneficial for

both academic and industrial fields.

Miljanovic et al. [15] discussed Robobug, a debugging technique through gaming. De-

bugging is an essential skill in software development. Many good programmers are strug-

gling to find the bugs in a code segment. This skill requires practice and patience, which

might be difficult for a new programmer to adopt. Many computer science students struggle

with debugging and feel left behind. Robobug presents different debugging techniques for

different levels. It also has hints, which are very helpful for learning.

Szabo [16] proposed GameDevTycoon for teaching software engineering. Based on

their work, there are six (6) major Software Quality Factors where GameDevTycoon per-

formance was measured. The researchers classified Software Engineering Games into thir-

teen segments, where GameDevTycoon covers most of the criteria. Gameplay analysis and

software process models are simultaneously in this game. Three primary stages of software

development are taught through the gameplay. The initial stage is known as the garage, the

second stage is called team management, and the final stage is known as world domination.

Each stage has separate responsibilities; for example, in the initial stage in software devel-

opment, one should focus on the quality and latest research. As the project grows, team

building is an additional responsibility that needs to be handled. When the project is in

the saturation stage, new research works should be promoted to cultivate new technology.

Again some small but significant issues regarding team bonding and employee workload

also need to be adequately addressed.

Uskov et al. [6] discussed the different classifications of gameplay and their impact

on several learning criteria. According to the researchers, gamification is a growing area

in the business industry. The researchers emphasized the SWOT (Strengths, Weaknesses,

Opportunities, Threats) framework [17] to find the learning criteria. However, they found

7

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

that creating a software engineering game-based engine is a challenging task, which pro-

grammers and industry should prioritize.

2.2 Games for Learning Computer Programming

Several games have been created to teach the basics of programming. However, most of

them are platform-oriented (i.e. only work on Windows) or target a specific programming

language (e.g. C++ or Java). For learning the basics regarding computer programming, it

is essential to understand the underlying logic and conceptual ideas. In this section, several

types of games used to teach programming basics, especially board games, card games,

desktop-based games and web-based games, are presented.

2.2.1 Board Games

Board games are a part of tabletop games where different components of the game

can be moved on an adjacent surface or board according to some predefined rules [18].

The following are a couple of board games, which teach different aspects of computer

programming.

Battle Bots v2 [19] was inspired by the Robo Rally [20] game. The required number

of players for the game is between two and twenty. In the middle of the board, there is a

repair center. Each player will start the game with twenty-two cards. Each move is divided

into two groups: the programming round and the action round. In the programming round,

players have to play the movement cards. In this stage, no action card can be played.

There are five phases where different action cards can be played in action round, along with

movement cards. The player who survives the match wins the game. The main advantage of

the game is that the players have to plan about the moves; as in programming, it is essential

to set the goal. A player can design their game plan depending on the other players’ moves

or personal requirements. As a result, a fair amount of calculation is needed, which is

very important for the logical aspect of computer programming. The game has no actual

8

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

programming interface, which is one of the drawbacks of the game.

Robot Turtles [21] is a game to teach kids to code by using simple direction cards to

move a specific coloured turtle. The game’s main focus is to get the coloured turtle to the

same coloured jewel piece on the board. There are three instructions: forwards, rotate 90

degrees left and rotate 90 degrees right. There are also some obstacles where players might

have to use different techniques to overcome the situation. Some unique cards are also

introduced, like fire cards for shooting. The higher the level, the more complex cards need

to be used. A game setup of Robot Turtles is presented in Figure 2.1.5

Figure 2.1: Robot Turtles gameplay

Regarding programming, the jump card is the most crucial one. The idea of jump cards

is to replace a set of instruction cards that can then be used repeatedly. There is also a bug

card that can undo the immediate move the player has made. Robot Turtles is designed

for kids’ initial steps in programming, like single statement compilation, which is well
5Image downloaded from: https://www.ultraboardgames.com/robot-turtles/game-rules.php in July 2021

9

https://www.ultraboardgames.com/robot-turtles/game-rules.php

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

executed through a single card movement. The introduction of a jump card is an excellent

initial concept of function calls. Bug cards introduce the idea of mistakes in programs.

Code Master [22] is a single-person puzzle game that teaches logical problem-solving.

There are sixty levels in the game with several challenging levels. The game consists of

a map with six different levels ranging from easy (green) to expert (red). There is also a

guide scroll that indicates the order in which the program statements should run. Also, the

guide has places for conditional tokens. There are three colours for paths: green, blue and

red. For each path, there is a specific token related to the colours. Numerical numbers are

represented in the map nodes. The goal is to get to a portal and collect crystals using a

limited path and number of moves. A game setup of Code Master is presented in Figure

2.2.6

Figure 2.2: Code Master gameplay

6Image downloaded from: https://www.bnamodelworld.com/educational-toys-thinkfun-tn1950 in July
2021

10

https://www.bnamodelworld.com/educational-toys-thinkfun-tn1950

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

The game focuses on the programming construct of conditional statements (i.e. if-else).

Some nodes have a self-loop, which illustrates the concept of a repeat statement. Finally,

the shortest path selection is also a focus point. The game requires critical thinking before

each move, which is vital for developing logical thinking. Unidirectional and bi-directional

edges in a graph can be learned by playing the game.

2.2.2 Card Games

A card game can be defined as a game that involves different playing cards as the main

components with which the game can be played [23].

Potato Pirates [24] was the only physical card game found that intends to teach pro-

gramming concepts. The game’s main objective is to make the user familiar with different

programming concepts through social interactions. The game’s final goal is to collect seven

specific cards, named Potato King, through different logical actions performed through dif-

ferent cards. The game’s programming logic is presented in Figure 2.3.7

A player acquires all seven Potato Kings by drawing them from the deck or by eliminat-

ing other players’ ships and seizing their cards to win the game. Players can power up their

attacks with programming concepts cards such as loops and conditionals. The game covers

the concepts of programmings such as variables, functions, while-loops, if-else condition-

als and nested-loops. Some surprise cards serve the purpose of interrupts and control flow.

The game illustrates the branching condition very nicely, which is equivalent to the if-else

statement. The use of variables is well defined. Different repeat structures are also pre-

sented reasonably. The game covers the loop structure of programming languages. There

is also an option for creating a loop inside a loop known as a nested loop. The game also

covers the case structure (switch case or nested if-else).
7Image downloaded from: https://www.toytag.com/products/potato-pirates in July 2021

11

https://www.toytag.com/products/potato-pirates

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

Figure 2.3: Potato Pirates programming logic.

2.2.3 Web-based Games

Games that can be played on the World Wide Web are known as web-based games.

These games use standard web technologies or browser plugins [25].

CodeCombat [26] is a web-based game focusing on learning JavaScript, Python, and

other programming languages. The game is built upon concepts of swords-and-sorcery,

12

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

where the player has to role-play as a warrior. The game’s main objective is to learn neces-

sary programming skills by overcoming different challenges like clearing the maze, picking

up gems, and avoiding any spikes or attacking ogres. The gameplay is split between a code

editor on the right and a simulation effect on the left. Figure 2.48 shows the interface of the

game. The avatar is controlled by using a set of commands. At each level, the player has

to accomplish a set of tasks. As the game progresses, the player is gradually introduced to

new concepts like loops, conditionals, and variables. If a person does not have program-

ming experience, CodeCombat is very suitable. As the game progresses, the tasks involve

more complex programming concepts. Most importantly, the levels themselves become

more complicated due to possible interactions with the objects in the game world.

Figure 2.4: CodeCombat gameplay.

Blocky maze [27] is a game that introduces the concept of programming loops and con-

ditions in Javascript without writing any Javascript code. The game is a combination of

levels that teach programming. It is designed for children who have not had prior expe-

rience with computer programming. The game uses a graphical programming language

8Image downloaded from: https://www.pcmag.com/reviews/codecombat in July 2021

13

https://www.pcmag.com/reviews/codecombat

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

implemented in JavaScript, which can compile to JavaScript, Dart or Python. In the game,

programming is done by dragging and dropping code blocks onto a design surface. Figure

2.59 shows the interface of the game. The main objective of the game is to take the avatar

from a starting point to the endpoint. There are a total of ten levels, and the complexity

increases as the game progress. Some goals are set to solve the maze in a particular number

of steps, which is also challenging. The game interface is similar to a Google Map, which

might help users adopt the game.

Figure 2.5: Blockly Maze gameplay.

Kodable [28] is a game developed for kids that focuses on introducing logic and the

decisions (i.e. if-then-else) in computer programming. Kodable’s programming language

introduces players to step-by-step statements with different instructions used in the pro-

gramming language. The primary programming concepts of conditional statements and

loop structure are well defined in the game. The game’s social aspect is presented in a par-

9Image downloaded from: https://s4scoding.com/images/google-blockly.jpg in July 2021

14

https://s4scoding.com/images/google-blockly.jpg

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

ents section with written teaching instructions that assist the parent in unlocking different

levels for kids and extending logic skills into real life. The game is comprised of many

features that are appropriate for children. The game’s activities help the player think like a

programmer, solve different problems, and eventually write real code using the game’s cus-

tom coding interface. Figure 2.610 shows the interface of the game. For logic development,

the game focus on learning the importance of statement sequence. The game introduces

kids to different data types, such as integers and strings, and data structures, such as arrays.

Finally, object-oriented programming concepts are also introduced by the game.

Figure 2.6: Kodable gameplay.

CodinGame [29] supports many programming languages. The game’s main objective

is to improve players’ coding skills by solving different problems, applying new strategies,

and getting inspired by other strong opponents. The game can be played in single and
10Image downloaded from: https://www.kodable.com/ in July 2021

15

https://www.kodable.com/

2.2. GAMES FOR LEARNING COMPUTER PROGRAMMING

multiplayer mode, which gives it the feeling of fun rather than learning. A player can

choose any programming language among more than twenty, such as Python, Ruby, Java,

and Scala. The targeted group for the game is the people who have basic programming

knowledge and expert developers. In the game, users create a profile, which is used for

challenges and contests. There are opportunities for players to make their profile public so

that employers can find them to offer them a job. Also, the game has a forum for members

to chat about languages, questions and share information. The game is not for beginners

because it requires some basic knowledge of programming. Figure 2.711 shows the interface

of the game.

Figure 2.7: CodinGame gameplay.

Program Wars is a web-based card game. The game focuses on learning programming

and cybersecurity concepts. The player’s objective is to achieve a specific number of points

through different cards. The game is programming language-independent, which means

that it is not focused on any single programming language. Instead, the game helps to

develop an understanding of the underlying logic of programming. Here the players do not

have to be concerned about syntax errors, and programming terms are described using an

elementary vocabulary. In Chapter 3, a more detailed analysis regarding Program Wars is
11Image downloaded from: https://www.codingame.com/start in July 2021

16

https://www.codingame.com/start

2.3. GAMES FOR LEARNING CYBERSECURITY

presented.

2.3 Games for Learning Cybersecurity

There are a couple of games that teach the basics of cybersecurity concepts. In this

section, such games are described.

Cyber Threat Defender [30] is a collectable cybersecurity card game. The game’s goal

is to build a network as quickly as possible so that it can do more business and gain more

points. While doing so, a player has to remember to defend their network because the

opponent is going to try and disrupt other player’s systems and networks. Figure 2.812

shows an example card from the game.

Figure 2.8: Cyber Threat Defender card details

There is a defence for every attack, and for every defence, there is a corresponding attack

to get around it. The player with the complete set of security defences will be the one who is

able to protect the critical systems and emerge victoriously. For example, adding a wireless

router without encryption will make the network vulnerable to attackers in the gameplay.

For a player to successfully defeat their opponent, they must develop and implement a

strategy for expanding and protecting their network. The main objective of the game is to

make players familiar with basic and complex cybersecurity concepts.

12Image downloaded from: https://cias.utsa.edu/ctd card list.php in August 2021

17

https://cias.utsa.edu/ctd_card_list.php

2.4. GAMES FOR LEARNING SOFTWARE DEVELOPMENT

Potato Pirates 2: Enter The Spudnet [31] is a serious game that various concepts of

cybersecurity. In the game, a player needs to play across a network of shipping ports.

Players must fulfill their five potato orders while playing ability cards to benefit themselves

or harm others’ shipments or structures. The board provides an analogy of a network map.

The map is organized into interconnected, coloured networks (shipping lanes) of nodes

(ports), each with its own IP address. The map is immediately recognizable as a network

diagram with a wink to its pirating theme. Players can place firewalls, blocking travel to

others, and play cards like Trojans, Ransomware, and so many more. There are 40 of these

ability cards, with a cyber explanation for each in the clear and concise manual. Figure

2.913 shows the basic networking concepts into the game.

Figure 2.9: Potato Pirates 2: Enter The Spudnet gameplay

The gameplay can be competitive or cooperative, with each game style giving rise

to its own strategies and approaches. As players move their potatoes (i.e. data packets)

across the shipping network, they will face various network hindrances such as navigating

inconvenient firewalls and frustrating connection slowdowns when warehouse nodes get

overloaded. The game illustrates the concepts and introduces various cybersecurity-related

concepts.

13Image downloaded from: https://potatopirates.game/products/enter-the-spudnet-board-game in August
2021

18

https://potatopirates.game/products/enter-the-spudnet-board-game

2.4. GAMES FOR LEARNING SOFTWARE DEVELOPMENT

2.4 Games for Learning Software Development

There are a couple of games that teach the basics of the software development process.

In this section, such games are described.

The Scrum Card Game [32] supports learners of the agile framework. Players act in a

collaborative team environment during gameplay. Multiple teams play against each other.

The game’s objective is that a team of players plan and work on a product’s abstract working

packages aiming to complete as many working packages as possible.

Figure 2.10: Scrum card game

The card deck of the Scrum Card Game consists of four types of cards: Story, Event,

Problem and Solution. The Story cards describe features that the team wants to create for

a product. Event cards deal with a positive, neutral, or negative impact on gameplay and

progress. Problem cards describe permanent obstacles on planned Stories. Finally, Solution

19

2.4. GAMES FOR LEARNING SOFTWARE DEVELOPMENT

cards help players with Problems that occur. Figure 2.1014 shows the setup of the game. A

player starts the game by rolling two dice, indicating the working hours per day spent on a

working package. Every three simulated days (which is called a Scrum Sprint), the players

re-plan their work in an agile way. The game ends after three Scrum Sprints. The game

is used for player to experience work in a simulated SCRUM sprint scenario. It allows

reflection of many aspects and topics that happen in real life while using Scrum as a team.

The card game PlayScrum [33] covers learning the Scrum agile method. The game

represents a first attempt at using a physical card game to teach students about the Scrum

agile method. PlayScrum addresses many of the weaknesses of more traditional learning

approaches and brings additional benefits in the form of face-to-face learning and enjoyable

play. It claims to be the successor of Problems and Programmers[34]. Instead, each player

slips into the role of a Scrum Master following the practices of Scrum. A die is used to

determine the number of cards drawn from a card pile on a player’s turn. The team working

on open tasks from a Backlog is represented abstractly by so-called developer cards the

Scrum Master controls. This means that the team experience different roles while working

in collaboration.

Figure 2.11: PlayScrum card game

The results of the research show that some PlayScrum cards can be improved. Problem

14Image downloaded from: https://agilelean.pro/en/scrum-card-game/ in August 2021

20

https://agilelean.pro/en/scrum-card-game/

2.5. SUMMARY

and concept cards can be more explicit in their scope. Also, there is a couple of areas where

the game does not cover Scrum’s features. Figure 2.1115 shows an example of the game

setup.

2.5 Summary

Based on the related research works examined, practical implementation (i.e. learning

an actual programming language) and visualization of program results are essential in soft-

ware engineering education. Also, learning through gameplay has more sustainable effects

[35]. The main challenge of Game-Based Learning for software engineering is to maintain

a balance between learning and engagement [36]. The gameplay should be presented in a

structured way such that the user can relate the outcome to real-world programming. Most

of the research deals with a specific part of software engineering like debugging, the user

interface, and project management.

15Image downloaded from: https://slideplayer.com/slide/4429957/ in August 2021

21

https://slideplayer.com/slide/4429957/

Chapter 3

Program Wars 1.0

Among the games studied, Program Wars [37] was chosen as the most suitable for inte-

grating software engineering concepts as it is an ongoing research project focused on the

learning of the basics of computer programming. Learning basic computer programming

has two main obstacles. First, the associated syntax issues can frustrate novice learners.

For example, in a programming language like C, a programmer needs to declare a data type

before the variable name (e.g. int varname). Different programming languages have dis-

tinct notations and methods for representing the computer program. As a result, a beginner

might find it challenging to understand all the notations and feel less motivated to continue

learning. Second, logical understanding is an essential factor in learning. Yet, different log-

ical concepts are represented differently in various programming languages. This can make

it hard for a novice programmer to understand. For example, the if-else statement has a

different notation for programming languages C and Python. Finally, sometimes it is diffi-

cult to relate the programming language terminology with real-world software development

scenarios.

Program Wars is a programming-language independent game. So the understanding of

programming concepts a player develops by playing the game can be transferred to any

programming language. The game is designed in such a way that the players need not be

worried about syntactical issues. It does this by adopting a card-game modality, meaning

that a player can not play a card unless it is valid. This ensures the ‘program’ created by the

player is free from syntax errors. The game has straightforward rules. However, the user

22

3. OVERVIEW OF PROGRAM WARS 1.0

study for v.1.0 showed that some of the users found it complex.

3.1 Overview of Program Wars 1.0

The game can be played as a “hot-seat” (i.e. two human players taking turns at a same

computer), or the player can choose to play against a simple AI. The player who reaches

the target score first wins the game. The target points range from 35 to 105, which changes

the duration of the gameplay.

The game starts with each player having six cards in their hand. On every turn, the

player receives a new card randomly from the deck. Each player builds stacks of instruction

cards and possibly cards that multiply the value of the instruction card (i.e. repetition cards)

to obtain points. The total points are calculated by the cumulative sum of the number of

instructions that all of the player’s stacks have.

Figure 3.1: Play area of Program Wars v.1.0

Figure 3.1 shows the interface for Program Wars with additional coloured squares to

highlight the different areas of the game. The black outlines show where the player’s

progress towards the target score is given. The white outline shows the ‘Redraw’ and ‘Dis-

card Hand’ buttons which can be used during a player’s turn. The green outline presents the

23

3. OVERVIEW OF PROGRAM WARS 1.0

current hand of the player, which consists of six cards. The yellow outline shows where the

current player can create instruction stacks. The player can gain bonus points by complet-

ing objectives that are outlined in the blue frame. In addition to instructions cards, there are

cards used to hinder an opponent’s progress. These represent cyberattacks on the player’s

program. Finally, there are active effect cards, which can boost the total of the player’s

stacks or protect a player’s stacks from attack. The red outline highlights the area where

these will appear.

During a player’s turn, each player builds their stacks using different Instruction

cards, Group cards, Repeat cards and Variable cards. The player can also launch a cy-

berattack at an opponent or prepare a defence against a cyberattack. The following items

describe the card types in the game and how they relate to computer programming. Figure

3.2 shows different programming related cards in Program Wars v.1.0 .

• Instruction cards – In the game, the Instruction cards have fixed values (1, 2, or

3). Each player will develop their stacks using the Instruction cards. The values

of the Instruction card are added to the total points of the player.

Relation to computer programming: Instruction statements are the most funda-

mental concept of a programming language. To execute any instruction, a program-

mer has to write a statement.

• Variable cards – Variable cards represent the concept of a variable in a program-

ming language. Placing a Variable card on a Repeat-X card increases its multi-

plicative power. The Variable cards have values of 3 through 6 inclusive.

Relation to computer programming: In a programming language, a variable’s

value can be changed.

• Repeat cards – This card increases the value of the instruction by multiplying its

effect. There are three sizes of Repeat cards: 2, 3, and 4. A loop inside a loop (i.e.

nested loop) can be created if one Repeat card is placed on top of another. There is

24

3. OVERVIEW OF PROGRAM WARS 1.0

Figure 3.2: Program Wars v.1.0 programming related cards

also a concept of variable-sized loops using a special Repeat card (called Repeat-X

). A Repeat-X card does not affect an Instruction card until it combines with a

Variable card.

Relation to computer programming: Repeat cards symbolize the loop concept in

computer programming. If a statement or group of statements needs to be repeated

in a programming language, a loop structure is used.

• Group cards – The player can use a Group card to group a collection of instructions

(i.e. multiple cards) or a single instruction. The cards have fixed values of 2 through

6. These cards protect a portion of the player’s program from a Hack card, which is a

cyberattack.

Relation to computer programming: By their use, players are indirectly introduced

to the software engineering practice of modular decomposition and/or source code

refactoring [38].

• Cyberattack cards – Cyberattack cards provide a social aspect to the game between

players. In Program Wars v.1.0 , three Cyberattack cards are introduced: Hack, Power

Outage and Malware. The Hack card allows a player to remove a stack of their oppo-

nent’s cards that are not contained in a Group card. The Power Outage card prevents

an opponent from playing cards until they can “restore power,” and the Malware card

25

3. OVERVIEW OF PROGRAM WARS 1.0

reduces the efficiency of the opponent by reducing total score 25%. Figure 3.3 shows

different cyberattack related cards in Program Wars v.1.0 .

Figure 3.3: Different cyberattack related cards in Program Wars v.1.0

Relation to real-world Cyberattack: Increasingly, cybersecurity plays a vital role

in software engineering. In the real world, malware reduces the efficiency of the

affected machine by slowing computer or web browser speeds. Hacking is an attack

on a computer program that changes the program in some way. A power outage

disrupts the running of software as the computer is not able to function.

• Remedy cards – To counteract cyberattacks, there are two types of cards. One is the

Battery Backup card, and another is the Overclock card. Battery Backup cards

counter the Power Outage card effect by representing the power to the player’s CPU.

For a performance increase, a player can play the Overclock card, which simulates

increasing a CPU’s computational efficiency by increasing total score 25%. This card

is used to counteract the Malware card. Also, by playing these cards, the player can

receive some end-of-game bonus points. Figure 3.4 shows the two different remedy

cards in Program Wars v.1.0 .

Relation to real-world performance: CPU overclocking can be performed when

more efficiency is required from the CPU. The Battery Backup cards represent the

26

3. OVERVIEW OF PROGRAM WARS 1.0

Figure 3.4: Different remedy related cards in Program Wars v.1.0

idea of an uninterruptible power supply (a.k.a. UPS) in the real world.

• Safety cards – There are three cards in this category. A Generator card is used

by a player to prevent or stop an opponent from playing a Power Outage card. The

Antivirus card protects against a malware attack, and the Firewall card prevents

a player’s program from being ‘hacked.’ Figure 3.5 shows the different safety cards

in Program Wars v.1.0 .

Figure 3.5: Different safety related cards in Program Wars v.1.0

Relation to cyberdefense: In the real world, an antivirus program protects a user

from malware attacks represented in the game by an Antivirus card. Either a hard-

27

3. STRENGTHS AND WEAKNESSES OF PROGRAM WARS

ware or software firewall is used to protect against a computer hacking attack. The

generator is usually used to prevent power failure.

3.2 Analysis of Program Wars v.1.0

The following is an assessment of the strengths and weaknesses of Program Wars.

3.2.1 Strengths

In many ways, Program Wars is better than many previous games for teaching program-

ming. The following are the identified strengths of the game.

Conditional Statements Conditional statements are decision points in a program that con-

trol the flow of execution. Examples of conditional statements include if-then,

if-then-else and switch-case. In Program Wars, conditional statements are rep-

resented as goals (the items in the blue box of Figure 3.1). A player can relate

conditional statements in a programming language with this game element.

Repeat Statements Repeat statements occur when a program executes a certain set of in-

structions multiple times, which is also known as a loop-structure. Examples

of repeat statements in programming languages includes for, while, do-while and

jump. In Program Wars, repeat statements are implemented with a Repeat card where

the repetition depends on the card, or in the case of Repeat-X , a Variable card. In

Program Wars the Repeat card multiplies the score of an Instruction card, giving

the player an idea of how loops work in real programs.

Method/Function structure In a programming language, a method (function) is a block

of organized, reusable code that is used to perform a single, related action. The

concept of the Method/Function structure in a programming language is to reduce

the redundancy of statements of a program. Usually, the body of the function (i.e.

the statements of a function) needs to be defined in a separate portion of a program,

28

3. STRENGTHS AND WEAKNESSES OF PROGRAM WARS

and the specific function needs to be called from the main program. Program Wars

represents the function structure with Group cards. By using a Group card, multiple

statements (i.e. Instruction cards) can be presented as a function. Moreover, if a

Group card has been applied, the sequence of instructions is protected from various

cyberattacks. Like in a real-word function/method, the details (i.e. Instructions) are

hidden by the card and only the cumulative effect is presented.

Variables concept In programming languages, a variable is used to store values in the

computer’s memory. There are different types of variable like int, float, char, etc.

In the game, the Variable card is associated with the Repeat-X card. The combined

effect of Repeat-X and Variable cards depends on the value of the variable. This

gives the player a fundamental idea about variables in real programming.

Syntax−error free One of the significant barriers to learning programming is a syntax

error. A programmer has to follow strict syntax rules for the programming language

so that the program can be successfully compiled and translated into machine code.

However, in Program Wars, a player does not directly write a program. As long as a

player plays a valid card, the game will go on. Also, because it is a card game, the

player cannot make typographical errors, which is a common problem when novice

programmers enter text into an editor. Along with that the semantic error will not

possible during the gameplay.

Programming language independence There are many different programming tools (i.e.

Codeblocks, Visual Studio) and programming languages (i.e. Java, C++) for coding.

For a beginner to become competent with such tools and all the syntax of a program-

ming language might be difficult. Program Wars presents an language-independent

platform where the player does not need to be concerned about the specifics of a

programming language’s syntax or peculiarities of a software development tool.

29

3. STRENGTHS AND WEAKNESSES OF PROGRAM WARS

Competitive elements Program Wars has competitive elements that are important for en-

gaging gameplay. Two players can play against each other, or a single player can play

the game against an AI. Also, the game allows the player to score in various ways,

which leads to multiple ways to win the game.

Attributes for engaging the player Program Wars has various cyberattack and cyberdefense-

related cards, which make the gameplay more exciting and challenging. By intro-

ducing these cards, the game ensures players engage properly towards the gaming

components.

Basic cybersecurity concepts Program Wars has some basic cards to introduce cyberat-

tacks, like Malware attack cards that can be played to “infect”. Again, cybersecurity

is increasingly becoming an important part of the development of software systems

as more and more of these are being built for the online environment where there is

more risk of attack. Most games and SE curriculum either do not include this as-

pect, or it is taught late in the program. Program Wars reinforces the importance of

considering system security from the very beginning of software creation.

3.2.2 Weaknesses

Program Wars has some areas where the game can be improved, some of which were

identified by the previous user study [37]. The identified weaknesses of the game are de-

scribed below.

Complex gameplay Although the game was intended to be easy to understand, for a per-

son with a non-programming background, initially, the gameplay might be challeng-

ing to understand.

Limited use of functional concepts Although Program Wars has the Group card to cre-

ate the concept of method/function calling, the idea of a general method is not

reflected well through the Group card. In a real-world programming scenario, the

30

3.3. SUMMARY

method concept is not only binding a set of instructions together but rather is also

used to hide specific details and redundancy in the program. As a result, the full

understanding of the use of function calls is not reflected in the gameplay.

Elimination of Semantic error As the gameplay is designed to be played with error free

environment which also eliminate the probability for semantic error.

3.3 Summary

Program Wars v.1.0 introduces several basic programming concepts via a card game.

The game introduced a player to the programming concepts of instructions, loop, functions,

and variables. It also introduces some concepts of cybersecurity like hacking, malware,

antivirus and firewall. The use study of version 1.0 showed that maximum participant has

intermediate knowledge regarding computer programming. Also the result analysis provide

a indication that the gameplay had improved the knowledge of the participants regarding

computer programming. Participants found Group card concept more complex. Again there

was no evaluation regarding participants cybersecurity knowledge. However, there are sev-

eral areas where the game can be improved, including the refinement of method concepts.

The gameplay can be more interesting and challenging by adding various cyberattacks and

cyberdefense-related cards.

31

Chapter 4

Program Wars 2.0

As previously discussed, one of the objectives of this research is to improve the educational

aspects of Program Wars. This was done by making modifications to the User Interface

(UI) and the gameplay. The introduction to the concept of algorithms was also a part of the

modification.

There are two different play modes that have been introduced into the gameplay of Pro-

gram Wars v.2.0 [39]. The different modes provide various combinations of cyberattack and

cyberdefense cards. Also, the playing area for a player was divided into two parts which

present the concepts of main program and method. The Method card is a new edition to this

version, replacing the previous Group card. More specific cyberattack and cyberdefense

cards are also introduced in this version of Program Wars. The details about the cards are

described in Section 4.3. The concept of a library function containing an algorithm is also

introduced via Sorting and Searching cards. Adding specific Cyberattack and Cyberdefense

related cards along with the Algorithm cards makes Program Wars v.2.0 gameplay more ex-

citing and challenging to the players. By introducing these cards, players get more engaged

towards the gameplay. Also, the game score sheet is updated to match the modifications.

This chapter provides details for all of these modifications.

4.1 Improvements to the User Interface (UI)

The User Interface (UI) for Program Wars was updated in the following manner.

32

4.1. IMPROVEMENTS TO THE USER INTERFACE (UI)

• Introduction of Beginner and Advanced Modes

Program Wars v.2.0 expands the original game with two modes of gameplay: Be-

ginner and Standard. For each gameplay mode, the player can choose to play with

one of four different sets of cyberattack and cyberdefense cards, adding them to the

game’s basic deck.16 Figure 4.1 shows the initial home screen menu for Program

Wars v.2.0 . In the figure, both the ‘Game Type’ and ‘Level’ use the drop-down

menu. The available options (for both ‘Game Type’ and ‘Level’) are displayed in the

black area indicated by an arrow.

Figure 4.1: Initial home-screen for Program Wars v.2.0

In each mode, there are different combination sets for cyberattacks. A player can
16A basic Program Wars deck is comprised of only Instruction , Method , Repeat , Variable , Search

, Sort , and Computer Scan cards.

33

4.1. IMPROVEMENTS TO THE USER INTERFACE (UI)

Table 4.1: Game modes and Card sets in Program Wars v.2.0 .

Beginner Standard
Type Card Malware

1
Hack
1

Malware
2

Hack
2

Malware Hack Combined
1

Combined
2

Safety
AntiVirus X X X X X
Firewall X X X X X

Malware

Spyware X X X
Ransomware X X X
Virus X X X
Trojan X X X

Hack

Buffer Over-
flow

X X X X

Cross-site
Scripting

X X

DoS Attack X X X
SQL Injec-
tion

X X X

choose any combination based on the mode of the game. A detailed description of

the combinations of cyberattack cards that are present in the various modes is given

in Table 4.1.

• Indicating playable cards

The user interface provides a view of the player’s hand. Among those cards, all are

not eligible for playing at all times. This feature provides feedback for the players

as to what cards can currently be played by toggling or glowing. For example, as

mentioned in Section 3.2.2, Program Wars has a restriction of using the Variable

card. Unless the Repeat-X card has been played, the variable can not be applied. For

this reason, if Variable cards appear in the player’s hand, it remains disabled until a

Repeat-X card is played.

• Separating functions from the ‘main program’

In Program Wars v.1.0 there is only one playing area for cards. One of the gameplay

modifications is to facilitate the introduction of a new card for representing when

a method/function is called in a program. To support the action, the play area was

34

4.2. GAMEPLAY OVERVIEW

separated into two areas (Figure 4.2). Now, the main part of the program is played in

the main stack, and the Instruction cards for a Method card is played in a separate

area.

4.2 Gameplay Overview

At the start of the game, a player can choose to play against another human on the same

computer (i.e. hot-seat play) or against provided computer opponents for up to a total of

4 players. Program Wars v.2.0 expands the original game with two modes of gameplay:

Beginner and Standard. The two gameplay modes were created in response to feedback

from the user study [37], where participants commented that “once I got the hang of the

basics, there wasn’t much room to improve”.

In Beginner mode, only one of the two types of cyberattack cards are added to the

deck - either two malware cards or two hack cards. In Standard mode, the player can

choose to play with either all of the malware cards, all of the hack cards, or two different

combinations of two malware and two hack cards. Each card set includes the corresponding

cybersecurity cards that block the attacks. These card sets change the gameplay difficulty

through the different combinations of cybersecurity and cyberattack cards. The game uses

these card sets to progressively introduce cards representing more complicated concepts.

The game starts with each player being dealt five cards, with players receiving another

card from the deck at the start of each turn. Program Wars is played in a series of rounds

where each player takes a turn to either play or discard a card from their hand or draw a

new hand. The goal is to create a program that reaches a specific number of points. The

points represent the total number of instructions that would be executed by the computer

based on the playing cards.

If either player has reached or exceeded the goal number of points, the game will finish

at the end of the current round. This makes it possible for both players to reach the goal

number of points in a game. In Beginner mode, the player’s instruction score is used to

35

4.2. GAMEPLAY OVERVIEW

determine the winner, and players can tie. In Standard mode, bonus points are awarded

for reaching specific objectives, such as the use of Repeat and Variable cards or ending

the game without being under the influence of cyberattacks. If both players have the same

total score, these bonus points are used to break ties (e.g. the player who used the most

Variable cards wins). If this method cannot determine a winner, the game is declared a

tie.

4.2.1 Gameplay Areas

Figure 4.2: An annotated view of a Program Wars game in progress.

Figure 4.2 shows part of the way through a two-player game. The top right and left

corners of the screen show the status of each player. The player’s name is shown along with

a unique image that is highlighted with green on their turn (Areas 1a and 1b). It is currently

abc’s turn. Under each player’s image are that player’s score and a progress bar showing

their progress towards the goal number of points (Areas 2b and 2c).17 Below the player’s

score, the player’s current status effects are displayed (Areas 3a and 3b) represented by

small icons, usually a smaller version of the image from the card that caused the effect.

17The bar is red if the player is below 50% of the goal number of points, yellow if below 75%, and green
above 75%.

36

4.2. GAMEPLAY OVERVIEW

The Threat Prevention section shows the current cyberdefense effects active for the player.

Area 3a shows that abc has a Computer Scan and Antivirus effect active. Area 3b shows

where xyz has been attacked by Ransomware and Spyware. The effects that last for a

specific number of turns are shown with the number of turns remaining over the top right

corner. In Area 3b, the Spyware’s effect on xyz has only two turns until it expires. The

status effects are added and removed as cyberattack and cybersecurity cards are played.

Each of the gameplay play areas contains an Information icon (an i within a circle) that,

when clicked on, provides a short explanation of that play area.

4.2.2 Player’s Hand

Area 5 of Figure 4.2 shows the current player’s hand for the player whose image card is

highlighted in green. When a card is selected, a small trash can icon appears in the upper

lefthand corner of the card to allow the player to discard it. Above the cards is a button to

enable the player to redraw their hand. If a player redraws their hand, they must wait for

three (3) turns to do so again. Area 6 shows the Redraw button is inactive and that there are

three turns until abc can use it again.

Most cards are played by dragging the card from the hand and dropping the card where

it is to be added - either the Main or Method Stack areas of the Program Editor (see Section

4.2.4). The Algorithm, cybersecurity, and cyberattack cards (excluding Virus) are played

by clicking on them. When these cards are selected, a small overlay appears over the card

allowing the player to make a choice. For algorithm cards, the overlay has a single button

to activate the card. Safety cards have the same Activate button when the card can be

activated. However, if the same effect is already applied to the player, then the overlay will

indicate that the effect is already active, and the card will not be playable. For cyberattack

cards, the overlay will give a set of buttons for valid targets of the attack. The overlay will

display “No Targets” if there are no valid targets for the attack. Some cyberattack effects

will not allow certain cards to be played. Cards that cannot be played will be highlighted

37

4.2. GAMEPLAY OVERVIEW

red while in the player’s hand and will not be draggable or show an overlay when selected.

4.2.3 Game History

Area 4 of Figure 4.2, shows a visual representation where the last eight turns history is

reflected. Each icon represents a card that was played. In the top right corner of each of

these icons is the image of the player that played that particular card. The leftmost icon

appears in a separate box to reinforce that it was the most recent card played; it can also be

seen that xyz played a Method card last turn. If a card had a target player, the target’s image

is placed on the card icon’s bottom right corner. This can be seen on the rightmost icon in

the turn history, where it shows that abc played a Spyware card on xyz. Some cards may

include another card or effect, such as Computer Scan when it removes an impact. In this

case, a small icon for the card or effect will be placed on the bottom left corner of the card

image.

4.2.4 Program Editor

The bottom half of the screen contains representations of a source code editor where

the player builds their program (Figure 4.2 Areas 7 and 8). Programs are built by creating

stacks of Instruction, Method, Repeat and Variable cards. Each stack of cards repre-

sents a portion of the player’s program. Stacks are created by dragging an Instruction or

Method card onto the Program Editor. Repeat and Variable cards are played by dropping

them onto an existing stack. A stack with a highlight around the top card indicates that

the currently selected card can be played on that stack. If the valid stack is in the current

player’s Program Editor, the highlight will be yellow. For cyberattack cards, such as Virus,

the proper stack will be in an opponent’s Program Editor and the highlight will be red. In

Area 8a, the currently selected Repeat card from abc’s hand can be played on one of the

two highlighted stacks.

Each stack shows its score above it, telling the player how many points that stack is

contributing to the player’s score. The Method Stack (Areas 7a and 7b) is surrounded by a

38

4.2. GAMEPLAY OVERVIEW

white border and is a special stack that only accepts Instruction cards. The Method Stack

score is used as the value of the Method card. The Method Stack score is capped at nine

(9) points, and the stack can hold a maximum of six (6) Instruction cards. Placing too

many low values Instruction cards in a Method Stack can leave a player unable to reach

the stack’s maximum score. As the Method cards total value is multiplied with each added

Instruction card’s value, a player’s score can get a sudden boost. By setting up a limit on

Instruction cards, the game has been balanced. A player’s total score is the sum of all of

their stack scores, excluding the Method Stack. Stacks with green scores indicate that the

stack is complete18 and no more cards can be added to it. A stack with a red score indicates

that the stack does not contribute its full value to the total score. For example, in Area 8b

of Figure 4.2, the stack in xyz’s play area should contribute 21 points (7 for the Method

card times 3 for the Repeat-3). However, with the use of the Virus card, the stack’s value

reduces by half (10).

4.2.5 Gameplay Goals

In Standard mode, a player can achieve bonus points by reaching certain sub-goals

during a game. Their current bonus points can be seen by selecting the Bonus tab. The tabs

are in the center of the screen attached to the Program Editor of each player (Area 8a of

Figure 4.2). This tab is not shown for a computer opponent to prevent human players from

seeing a computer opponent’s bonus progress. The Bonus area, shown in Figure 4.3, has a

set of conditional statements written in a C-like pseudocode.

The conditional portion of the statement identifies the bonus that is awarded. Some

bonuses are for playing cards (i.e. True when playing a Repeat card), and others are for

maintaining a certain status (i.e. not being affected by cyberattacks). The body of the

condition shows the number of points a player will receive to satisfy the requirement. If

the text is red, it means the condition is not met, and the text will turn green when the

18A stack is considered complete when it has two (2) Repeat cards played on it. Repeat-X cards only
count towards completing a stack if they are paired with a Variable card.

39

4.3. CARD ADDITIONS AND IMPROVEMENTS

player satisfies the condition. Some conditions, such as the (no malware && no hacks)

condition, may be gained or lost during the game.

At the end of each turn, the player’s bonuses are re-calculated, and the total bonus score

is updated and shown at the top of the Bonus tab. Bonus scores are only added to the

player’s instruction score once the game has finished and do not apply to reaching the goal

score during the game. These bonuses are intended to help reinforce certain concepts and

motivate the player towards what can be considered good programming practices.

Figure 4.3: The Bonus tab for a player.

4.3 Card Additions and Improvements

To improve the representation of programming and cybersecurity concepts in Program

Wars, several new cards have been introduced in Program Wars v.2.0. Also, some of the

effects of cards have been modified to enhance gameplay. Table 4.2 provides a comparison

among the cards between Program Wars v.2.0 and Program Wars v.1.0 .

The player builds their program using the basic building blocks of instructions, methods

and repetition. Also, in their turn, a player can launch a cyberattack at an opponent or

prepare their defence. This section describes each of the new cards that are introduced for

computer programming, cyberattack and cybersecurity-related concepts.

40

4.3. CARD ADDITIONS AND IMPROVEMENTS

Table 4.2: Cards comparison in Program Wars v.2.0 vs Program Wars v.1.0

Type Card Name v.2.0 v.1.0

Basic Programming Card

Instruction X X
Repetition X X
Variables X X

Group × X
Method X ×

Cyberdefense/Safety Card

Computer Scan X ×
AntiVirus X X
Firewall X X

Generator × X

Attack Card

Spyware X ×
Ransomware X ×

Virus X ×
Trojan X ×

Malware (Basic) × X
Power Outage × X

Hack

Buffer Overflow X ×
Cross-site Scripting X ×

DDoS Attack X ×
SQL Injection X ×

Hacking (Basic) × X

Backup Cards
Battery Backup × X
Overclocking × X

Algorithms / Library Functions
Sorting X ×

Searching X ×

4.3.1 Computer Programming

The cards in Program Wars v.1.0 primarily focused on computer programming, and

many of these cards carry over into Program Wars v.2.0. The Instruction, Repeat and

Variable cards remain unchanged in their effect and working procedure in Program Wars v.2.0 game-

play. In Figure 4.2, the example where an Instruction card, Repeat card and Variable

card are used is shown. For computer programming, the Method card replaced the Group

card in the new version of the game.

41

4.3. CARD ADDITIONS AND IMPROVEMENTS

Method : In Program Wars v.1.0 , the Group card represented the concept of a procedure,

function or method in a programming language. However, from the user study of Program

Wars v.1.0, participants had some confusion related to the concept of a method and game’s

Group card. Program Wars v.2.0 replaces the Group card with the Method card in an effort

to address this issue.

The Method card acts as a proxy for the contents of the Method Stack area, with the

player’s total score being adjusted accordingly. If a new card is added to the Method Stack

area, the player’s score will be adjusted according to the number of Method cards in the

Main area. As with Instruction cards, the player can use Repeat and Variable cards to

increase the effect of a Method card.

In Program Wars v.2.0 , the player can add a Method card to the play-field, and the card

reflects the total scores of the method stack. Figure 4.4 shows the new Method card.

Figure 4.4: Program Wars v.2.0 Method card.

Relation to computer programming: Computer programs are commonly broken up

into functions, methods or procedures. All of these names mean the same thing – a group

of instructions. This card also introduces the software engineering principle of refactoring.

Refactoring is restructuring code without changing what it does. Refactoring code into

small chunks that can be reused makes software easier to change or maintain.

42

4.3. CARD ADDITIONS AND IMPROVEMENTS

4.3.2 Cybersecurity

In Program Wars v.1.0 , there are two cybersecurity concepts. As cybersecurity is an

important aspect of modern-day software development, Program Wars v.2.0 includes more

expanded cybersecurity concepts. Also, these cards provide for an interactive experience

between the players. This section presents the cards that teach about two types of cyberat-

tacks, malware and system attacks, and their corresponding cyberdefenses.

4.3.2.1 Malware

Program Wars v.1.0 represented the cyberthreat of malware with a single card – the

Malware card. In Program Wars v.2.0 , the Malware card was replaced with cards that more

directly represent four of the most common types of malware: spyware, ransomware, virus,

and trojan. Figure 4.5 shows these new cards.

Figure 4.5: Program Wars v.2.0 Malware cards

Spyware : Spyware is used to gather and send information to another party without the

target’s consent. The Spyware card represents this same situation in the context of the

game. When a player plays a Spyware card against their opponent, a ‘spy’ button will

appear beside the opponent’s name for the next three turns. It will allow the attacker to

view an opponent’s hand. Affected players can remove the effect by playing Computer

Scan or Antivirus card (see in Section 4.3.2.3).

43

4.3. CARD ADDITIONS AND IMPROVEMENTS

Ransomware : This card’s effect reflects the real-world concept of ransomware, where

an attacker blocks access to a target’s files, such as encrypting them, and threatens to publish

or delete them unless a ransom is paid. When a player plays a Ransomware card on an

opponent, the targeted player loses 10 points from their total score and the points added to

the attacker scores. This can result in an opponent’s score becoming negative. Unlike real-

world ransomware, recovering from this attack is simple, as an affected player can recover

their points by either using a Computer Scan or Antivirus card.

Virus : A computer virus is a computer program that replicates itself by modifying

other programs. The Virus card is used to reduce the effect of a stack of cards in the Main

area by reducing the points of a card stack by 50%19. This card is the most similar to the

Malware card from Program Wars v.1.0 , where the Malware card reduced a player’s total

score by 25%. The attacking player can play viruses on an opponent’s stacks. If the Virus

card is played on a stack that starts with an Instruction card, it reduces a stack score to

0 and prevents any more cards from being played until an Antivirus card is played. If the

stack starts with a Method card, the reduction is by 50% instead.

Trojan Horse : In the real world, a Trojan Horse is a computer program that misleads

users as to its real intent. When a Trojan Horse card is played against an opponent, a

random card in the opponent’s hand is replaced with one that mimics it. The actual effect

of the mimic card depends on what card is replaced. If the replaced card is either the

Method, or the Instruction card, then when the opponent plays the mimicked card, it

has the same effect as if a Ransomware card was played on the opponent. If the replaced

card is a cyberattack card, the opponent will receive a Spyware effect when the card is

played. Cards that are only added to stacks in the Main area (i.e. Repeat and Variable

) become a Virus card. Human players can tell which cards are being mimicked when

playing against a computer opponent, as they will have a horse head logo on top of the card

19For reduction the floor is taken if the points of the card stack is odd.

44

4.3. CARD ADDITIONS AND IMPROVEMENTS

when active.

4.3.2.2 Hacking

Program Wars v.1.0 contained a single Hack card that represented an intrusion into a

computer system. The effect of the Hack card was to remove one of the stacks of cards on

an opponent’s playfield. Program Wars v.2.0 refines this idea by adding specific cards to

represent common ways whereby computer systems are intruded or affected by an intrusion.

These four cards provide representations of the effects of four types of system attacks:

causing a buffer overflow, cross-site scripting, a denial of service attack (DoS), and injection

of malicious SQL code. Figure 4.6 shows these cards.

Figure 4.6: Program Wars v.2.0 Hacking cards.

Buffer Overflow : A common system attack is to send data to a program such that

a memory buffer overflows and causes program instructions to be overwritten by malicious

code, which in turn are executed. In Program Wars v.2.0 , the Buffer Overflow card

prevents an opponent from playing any Instruction, Repeat, Variable or Method cards

for two turns. The concept behind this card’s effect is that if a program tries to utilize

more space than is available, then the call stack overflows, and the system protects itself

by allowing no more code to be run. This is similar to real-world solutions where a system

checks that the stack has not been altered when a function returns and exits the program

45

4.3. CARD ADDITIONS AND IMPROVEMENTS

with a segmentation fault [40, 41].

Cross-site Scripting (CSS): Cross-site scripting is a code injection attack. The

attack happens when the victim visits a web page or web application that administers the

harmful code [42]. The visited web page or service acts as a carrier to deliver the malicious

code to the affected browser. In Program Wars v.2.0 , the Cross-site Scripting card

stops a player from playing any algorithm or cyberattack cards. The concept behind this

card is to make a player familiar with this type of attack by preventing the advantages given

by certain cards, including attacking an opponent. When affected by a CSS card, a player

can only play a firewall and scan card. If a player cannot play any card from their hand,

there is a “pass” button beside the Redraw button that can pass the turn to the next player.

Denial of Service (DoS): A Denial of Service (DoS) attack occurs when a com-

puter system connected to a network is intentionally flooded with requests so that the system

can no longer handle legitimate requests. In Program Wars v.2.0 , the Denial of Service

card prevents a player from redrawing new cards at the end of their turn and changes the

Redraw button to a Pass button. This effect lasts for three turns resulting in the player hav-

ing fewer cards to choose from their hand in subsequent turns. In the worst-case scenario,

the player has no playable cards for three turns and has to pass.

SQL Injection : In an SQL injection attack, malicious SQL code is entered into a

data field such that the code is run on a back-end database. The result of such an attack

is to obtain information that was not intended to be disclosed or delete and/or corrupt the

data in the database. In Program Wars v.2.0 , the SQL Injection card can be used to slow

down the progress of an opponent by reducing the total of the Method Stack area by two

points. This deduction from the method stack affects all of the Method cards in the play-

field. Cyberdefense-related cards remove the effect of a SQL injection. The concept behind

this card is that of infiltration of a program’s method by malicious code.

46

4.3. CARD ADDITIONS AND IMPROVEMENTS

4.3.2.3 Cyberdefense

Program Wars v.1.0 provided three cards for cyberdefense. Two of the cards were “per-

manent” cards, meaning that they remained on a player’s playfield when played. These two

cyberdefense cards were referred to as Safeties. The first of these cards was the Antivirus

card that prevented the Malware card from being played on a player. The second of these

cards was the Firewall card which protected against the Hack card. The third card was the

Overclock card, which combated the Malware card by increasing the player’s total score

by 25%. However, it was observed that the gameplay effect of the Overclock card did not

match well with real-world cybersecurity concepts. Program Wars v.2.0 continues the use

of the two safety cards and adds a new one-time-use cyberdefense card: Computer Scan .

Figure 4.7 shows Program Wars v.2.0’s cyberdefense cards.

Figure 4.7: Program Wars v.2.0 Cyberdefense cards.

Computer Scan : The Computer Scan card represents the action of a user explicitly

scanning all of their files to find any infected items using an antivirus tool. If the player is

under the influence of multiple malware and/or hack cards, then the Computer Scan card

allows the players to choose which card effect to remove. If the player is not under the

influence of a cyberattack card, the effect is saved until the player is attacked, at which time

the cyberattack is neutralized.

47

4.3. CARD ADDITIONS AND IMPROVEMENTS

Antivirus : An antivirus program is a program or set of programs designed to prevent,

search for, detect, and remove malware from a computer system. The Antivirus card

reflects this real-world tool by protecting a player from the effect of any of the malware

attack cards. If the player is already under the effect of one or more malware cards, all

of the effects are removed when this card is played. Unlike the Computer Scan card, the

effect of this card is permanent once it is played, thereby protecting the player from any

future malware card attacks.

Firewall : A firewall is a network security device that controls incoming and outgoing

network traffic and grants or prevents data packets based on a set of security rules, thereby

protecting a computer system from various intrusion attacks. Like the Antivirus card, the

Firewall card reflects this real-world tool by preventing hack cards from being played on

the player. Similar to the Antivirus card, if the player is affected by any hack cards, these

effects are removed, and the effect of this card is permanent once played.

4.3.2.4 Algorithms / Library Functions:

The use of algorithms, often from libraries, is an essential part of computer program-

ming. Two key categories of algorithms are searching and sorting, and both of these are

introduced in Program Wars v.2.0 . Figure 4.8 shows the two new sorting and searching

cards.

Sort : Sorting is the arrangement of items into an ordered sequence. In Program Wars v.2.0 ,

the Sort card allows a player to rearrange the top five (5) cards of the deck into whatever

order they choose. This can allow a player to control what cards they will draw for their

next turns. 20 When the card is played, an overlay is opened showing the top five cards, and

the player can drag a card onto another card to cause them to swap places.

Relation to computer programming: Sorting is important for optimizing the effi-

20A minimum of 2 turns in a 4 player game and a maximum of 3 turns in a 2 player game

48

4.4. SUMMARY

Figure 4.8: Program Wars v.2.0 Algorithms cards.

ciency of other algorithms (such as the merge algorithm [43]) that require input data to be

in sorted lists.

Search : Searching is the process of locating a particular element present in a given set

of elements. In Program Wars v.2.0 , the Search card allows a player to search for a specific

card within the top ten (10) cards of the deck. Playing the card results in an overlay being

opened that shows these cards, and the player selects one to immediately put into their hand

for their next turn.

Relation to computer programming: A search algorithm prevents a user from having

to look through lots of data to find the specific information.

4.4 Summary

Program Wars v.2.0 is a modification of Program Wars v.1.0 in such a way that it bet-

ter serves the user for learning different programming and cybersecurity concepts. With

respect to the programming aspect, a Method card was introduced to represent the method

49

4.4. SUMMARY

concept. For cybersecurity concepts, several new cards have been introduced to make play-

ers familiar with real-world cybersecurity scenarios. Also, the new version introduced the

algorithm/library function concept with Algorithm cards. There are several concepts that

have been changed in the new version of the game. Table 4.3 provides a summary of

the changes made between Program Wars v.1.0 and Program Wars v.2.0 . Also, the table

presents how various game elements align with The Curriculum Guidelines for Undergrad-

uate Degree Programs in Software Engineering [44], specifically in the knowledge areas of

Computing Essentials and Security.

Table 4.3: Features of the two versions of Program Wars with alignment of game elements
to curriculum guidelines.

Concepts v.2.0 v.1.0 Curriculum
Guidelines

Programming language
basics

Instruction, Repeat
cards

Instruction, Repeat
cards

CMP.cf.8

Control Flow Bonus goals Division of play-field
into two section with
one section randomly
chosen as playable.

CMP.cf.1

Method concept Method card Group card CMP.cf.4
Cyberdefense/Safety Added Computer Scan

card
Antivirus & Firewall
cards

SEC.net.3

Cyberattack Virus,Ransomware,
Spyware,Trojan Horse
cards

Malware card SEC.net.1

Hacking Buffer Overflow,
Cross-site
Scripting, SQL
Injection & Denial
of Service cards

Hack card SEC.net.1

Algorithms / Library
Functions

Search & Sort cards Not present CMP.cf.2

Gameplay Versatility Two modes (Beginner &
Standard)

Not present N/A

50

Chapter 5

User Study of Program Wars 2.0

This chapter presents the detailed results of a user study of Program Wars v.2.0 . First, the

experimental procedures for the user study are described. After that, the results of the study

are presented. A detailed analysis of the results and findings has given later in this chapter.

5.1 Research Methodology

The contributions of Program Wars v.2.0 for learning programming and cybersecu-

rity are measured based on the results of a user study. A similar user study of Program

Wars v.1.0 contained questions that had programs written in one of four different program-

ming languages (C, Pascal, Python, and FORTRAN). The Program Wars v.2.0 user study

used a C-like pseudo-code. Also, the previous study did not evaluate the participants learn-

ing outcomes for cybersecurity concepts. The Program Wars v.2.0 user study participants

are particularly chosen from non-CS major areas, so their learning outcomes can be mea-

sured more accurately, whereas the Program Wars v.1.0 participants had already had some

exposure to programming concepts. In the Program Wars v.2.0 user study, the programming

questions sought to measure the same knowledge, but were not the same as those used in

the previous study. Otherwise, the two studies procedures for assessing the knowledge

outcome remains similar. For measuring the cybersecurity concepts, several real-world

scenarios were presented to the participants. Participant’s knowledge change is calculated

based on the responses they provided for the specific topics.

51

5.2. DETAIL OF USER STUDY

5.2 Detail of User Study

To assess if Program Wars v.2.0 improves a player’s knowledge of programming and

cybersecurity concepts, a user study was conducted. The user study was conducted follow-

ing the policy21 and guidelines provided by the University of Lethbridge Human Participant

Research Committee (HPRC). The HPRC committee analyzed all the material of the user

study, including all the questions and approved the study22. The user study was conducted

using Qualtrics23. There were three (3) stages in the user study,

• Pre-game (Stage # 1) – In the pre-game questionnaire, the participant was asked for

their consent regarding the study and some demographic questions. Along with that,

some multiple-choice questions were asked related to computer programming and cy-

bersecurity concepts to assess the participant’s previous knowledge of programming

and cybersecurity.

• Play Program Wars v.2.0 (Stage # 2) – After completing the pre-game question-

naire, the participant was asked to play Program Wars v.2.0 against the AI at least

three (3) times.

• Post-game (Stage # 3) – In this stage, participants were asked to complete a post-

game questionnaire. They were asked some knowledge questions similar to those

from the pre-game questionnaire related to computer programming and cybersecurity

to identify the learning outcomes. Also, participants were asked questions to assess

if they could map the game mechanics (e.g. cards) to real-world scenarios, such as a

computer program or a cybersecurity situation.

5.2.1 Participants

As Program Wars v.2.0 focuses on teaching cybersecurity and programming concepts,

the target demographic for participants was those with very little to no programming or
21https://ethics.gc.ca/eng/home.html
22HPRC Protocol Number: 2020-113
23https://uleth.qualtrics.com

52

https://ethics.gc.ca/eng/home.html
https://uleth.qualtrics.com

5.2. DETAIL OF USER STUDY

cybersecurity background (i.e., non-CS majors). To participate in the user study, a partici-

pant must be 18 years of age or older.24 The primary approach to recruit participants was

via electronic communication. An invitation (Appendix B) was sent via e-mail to the ad-

ministrative assistants of the Department of Biological Sciences, Kinesiology & Physical

Education, Geography Environment, Anthropology and Psychology25 at the University of

Lethbridge to be distributed among the respective department students, alumni, faculties,

and staff. No contact between the participant and the researcher(s) was made after the

invitation unless it was initiated by the participant.

5.2.2 Study Procedure Details

Initially, all of the participants were invited via e-mail. In that invitation, the user study

URL was provided. Before starting the questionnaire, participants were presented an in-

formed consent web form (Appendix A). In order to continue with the questionnaire, a

participant needed to click on the ‘Agree’ button. If they (the participant) agreed to partic-

ipate in the study, they were directed to another web page where separate links were pro-

vided for the three (3) stages of the study. In the Pre-game questionnaire (Stage # 1), there

were two (2) Demographic Questions, two (2) Experience Questions, four (4) Knowledge

Questions regarding computer programming and two (2) Knowledge Questions related to

cybersecurity. To complete this stage required approximately 15 minutes.

After completing the pre-game questionnaire, the participant was redirected to Stage #

2, where they played Program Wars v.2.0 several times until the participant was comfort-

able and felt they understood the game’s concepts well enough to answer the post-game

questions. It was recommended that participants play the game a minimum of three (3)

and a maximum of ten (10) times. The average time required to complete this stage was

approximately 30 minutes.

24For PSYC1000, some of the participants may be 17-year-old because the study does not contain any
explicit or graphic content that is unsuitable for a minor.

25For Psychology department the study was held in a separate platform ‘SONA’, which was also approved
by the similar department.

53

5.2. DETAIL OF USER STUDY

After completing Stage # 2, the participants were asked to complete a post-game ques-

tionnaire (Stage # 3) comparable to the pre-game questionnaire. There were three (3) ques-

tions related to the game elements mapping with programming concepts, two (2) program-

ming comprehension questions, two (2) cyberattack questions, and associated with these

two cyberattack questions, two (2) cyber defence questions were asked. After that, six (6)

feedback questions were asked. The participants were also given an opportunity to provide

comments regarding the game. Finally, the study concluded by asking users about their

rating of Program Wars v.2.0 . To complete this stage required approximately 15 minutes.

Participation in the study was expected to take 60 ∼ 90 minutes, depending on the

number of times a participant played the game. Participants were identified by a unique

study id, which replaced the requested e-mail address. The unique study id was used to

link up the pre-game and post-game responses of the participant. As a result, there was no

personal identifying information kept after the data from the questionnaire was downloaded.

If a participant did not complete either of the pre-game or post-game questionnaires, it

was decided that the participant did not complete the whole user study, and the data was

incomplete. The incomplete responses were not taken into consideration in the final study

results. After all the filtering, there were twenty-six (26) participants who completed all the

stages of the study.

5.2.3 Questions Asked

Throughout the user study, there were several questions asked in both the pre-game and

post-game questionnaires. The details about the questions are discussed below.

5.2.3.1 Demographic and Previous Experience Questions:

The participants were asked two (2) demographic questions related to their age range

and level of education. Also, participants were asked two (2) experience questions related

to their prior programming and cybersecurity knowledge. One of the experience questions

is presented below, and the rest of the questions are presented in Appendix C.

54

5.2. DETAIL OF USER STUDY

5.2.3.2 Programming Comprehension:

The participants were asked several computer programming questions both in the pre-

game and post-game questionnaire. They were given some pseudo code and asked ques-

tions about the outcomes. Each question was designed to test one or two areas of computer

programming knowledge. The questions testing specific knowledge areas are now pre-

sented.

Variable Concept: To understand a participant’s knowledge about variables in computer

programming, participants were asked questions in both pre-game and post-game ques-

tionnaires. They were given some pseudo code and asked questions that require them to

understand the use of variables. Below, an example of the questions from the pre-game and

post-game questionnaires is presented.

55

5.2. DETAIL OF USER STUDY

• Pre-game Programming Question #3:

• Post-game Programming Question #5:

Loop Concept: To understand a participant’s knowledge about loops in computer pro-

gramming, participants were asked questions in both the pre-game and post-game ques-

56

5.2. DETAIL OF USER STUDY

tionnaire. They were given some pseudo code and asked questions that require them to

understand the use of loops. Below, an example of the questions from the pre-game and

post-game questionnaires is presented.

• Pre-game Programming Question #2:

57

5.2. DETAIL OF USER STUDY

• Post-game Programming Question #4:

Method Concept: To understand a participant’s knowledge about method in computer

programming, participants were asked questions in both pre-game and post-game question-

naires. They were given some pseudo code and asked questions that require them to under-

stand the use of methods. Below, the detailed questions from the pre-game and post-game

questionnaires are presented.

• Pre-game Programming Question #1: Pre-game Pseudo code # 3, was given and

the question was:

58

5.2. DETAIL OF USER STUDY

• Post-game Programming Question #5: was used and already discussed above.

Combined Knowledge: To understand how variables and loops are used in combination

in computer programming, participants were asked questions in the pre-game questionnaire.

They were given a pseudo code and asked questions that required both variable and loop

structure knowledge. The question is presented below.

• Pre-game Programming Question #4:

5.2.3.3 Conceptual Mapping of Programming Constructs:

The participants were asked several computer programming-related questions in the

post-game questionnaire that are related to Program Wars v.2.0 gameplay. The main ob-

jective of these questionnaires is to find out whether participants could make connections

with game cards and real-world programming. Post-game pseudo code # 5 was provided

to answer post-game programming questions # 1 to # 3, and similar options are given for

each question. The details of the conceptual mapping questions are given in the following

section.

59

5.2. DETAIL OF USER STUDY

Variable Mapping: To understand whether a player could make the connection between

a real world variable and the game’s Variable card, the following question was asked in

the post-game questionnaire.

• Post-game Programming Question #2: In the above pseudo code (Post-game Pseudo

Code# 5), which box represents the Variable card from the game?

Loop Mapping: To understand whether a player could make the connection between a

real world loop structure and the game’s Repeat card, the following question was asked in

the post-game questionnaire.

• Post-game Programming Question #3: In the above pseudo code (Post-game Pseudo

Code# 5), which box represents the Repeat card from the game?

60

5.2. DETAIL OF USER STUDY

Method Mapping: To understand whether a player could make the connection between a

real world method structure and the game’s Method card, the following question was asked

in the post-game questionnaire.

• Post-game Programming Question #1: In the above pseudo code (Post-game Pseudo

Code# 5), which box represents the Method card from the game?

5.2.3.4 Cybersecurity Knowledge:

The participants were asked several cybersecurity questions both in the pre-game and

post-game questionnaire. They were given some real-world scenarios and asked questions

about the outcomes. Below, the questions related to cybersecurity are described.

Cybersecurity Scenario # 1:

• Pre-game Cybersecurity Question # 1: Suppose you received an email from some-

one you know and click on what looks like a legitimate attachment. After download-

ing and opening the file, you can not access your files. Every time you click on your

folder, it shows an error message mentioning $100 needs to be paid to access all your

files. What type of cyberattack is that?

• Post-game Cybersecurity Question # 1: Suppose you download a small game from

a website that you found through Google. After downloading and installing the game,

your computer locks up with a message that has a link to a webpage. When you go

61

5.2. DETAIL OF USER STUDY

to the web page, it asks for your credit card information in order to unlock your

computer. What type of cyberattack happened to you? 26

Also, in the post-game questionnaire, participants were asked about the cyber defence

technique related to the post-game Cybersecurity Question # 1.

• Post-game Cybersecurity Question # 2: Which cyberdefense tools could you have

used to prevent the attack mentioned in Post-game Cybersecurity Question # 1?

Cybersecurity Scenario # 2:

• Pre-game Cybersecurity Question # 2: Suppose you want to open an online ac-

count on a website. After providing your personal information, it requires your bank

account number and password for background verification. After providing that in-

formation, you lose $500 of money from your account. What type of cyberattack is

that?26

• Post-game Cybersecurity Question # 3: Suppose you want to purchase a book from

an unauthorized website. After providing your personal information, it requires your

credit card information to confirm the order. After providing that information, you

lose a certain amount of money from your account. What type of cyberattack is

that?26

26Similar choices are given that has been provided for Pre-game Cybersecurity Question # 1.

62

5.3. RESULTS AND ANALYSIS

Also, in the post-game questionnaire, participants were asked about the cyber defence

technique related to the Post-game Cybersecurity Question # 3.

• Post-game Cybersecurity Question # 4: Which cyberdefense tools could you have

used to prevent the attack mentioned in post-game Cybersecurity Question # 3?27

5.3 Results and Analysis

In this section, the results from the user study are discussed. The results are used to

provide the answers to the following research questions:

R.Q. # 1: Do the refinements to the UI and gameplay of Program Wars improve a player’s

understanding of basic computer programming concepts?

This Research Question (R.Q.) is divided into three (3) sub-questions to evaluate the

learning outcomes more precisely.

(a) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Variable concept?

(b) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Loop concept?

(c) Do the refinements to the UI and gameplay of Program Wars improve a player’s

knowledge of the Method concept?

R.Q. # 2: Does the refinement of the cybersecurity aspects of Program Wars lead a player

to better understand real-life cybersecurity threats and how to combat them?

As earlier mentioned, a total of twenty-six (26) participants participated in the user

study. In this section, the results of the user study, along with an in-depth analysis of the

results, are presented. First, demographic information about the participants is discussed.

27Similar choices are given that has been provided for Post-game Cybersecurity Question # 2.

63

5.3. RESULTS AND ANALYSIS

After that, knowledge regarding programming and cybersecurity is discussed. Then concept

mapping results for programming knowledge are presented. Finally, the in-depth analysis

regarding the programming knowledge is presented. The response of all the questionnaires

is presented in Appendix D.

5.3.1 Demographic and Previous Experience

From the results, out of the 26 participants, 23 (88%) were from the 17 to 24 age group,

and only 3 (12%) belonged to the age group 25 to 34. Participants were also asked about

their education, and 22 (85%) reported completing their high school degree, 2 (8%) have

their bachelor’s degree, 1 (4%) had a graduate level of education, and 1 (4%) had an asso-

ciates (2-years) degree.

Figure 5.1: Demographic and Previous Experience results

Also, the results show that 17 (65%) have no experience with computer programming,

8 (31%) have little experience (experience with small computer programming files), and 1

participant had advanced programming knowledge (experience with a medium-size com-

puter program using multiple files). In other words, almost all of the participants (95%) did

not have any knowledge about computer programming or knew very little about it.

Regarding cybersecurity experience, 14 (54%) participants did not have any experience

with cybersecurity, and 12 (46%) were novices (i.e. know little about cybersecurity). So,

according to the data, no participant has a moderate or advanced level of knowledge in

cybersecurity. Figure 5.1 showed the overall result for demographic analysis among the

participants.

64

5.3. RESULTS AND ANALYSIS

5.3.2 Change in Knowledge

The results regarding knowledge accumulation are divide into two categories. First

is Programming Comprehension where paired programming questions from the pre-game

and post-game questionnaire are analyzed. Second is Cybersecurity knowledge, where

cybersecurity-related pre-game and post-game questions pairs are analyzed.

5.3.2.1 Programming Comprehension

To identify changes in the participant’s programming knowledge, three fundamental

concepts of programming have been focused on in this study. They are the variable con-

cept, the loop concept and the method structure. One (1) subject reported advanced pro-

gramming knowledge and was removed from the Programming Comprehension part, so the

total participants for this part were twenty-five (25).

Variable Knowledge: As previously discussed in section 5.2.3.2, to identify variable

knowledge among the participants Pre-game Programming Question # 3 and Post-game

Programming Question # 5 were paired. Results show that in pre-game programming ques-

tions, out of 25 participants, a total of 9 (36%) participants were able to answer correctly.

Observation: Almost one-third of the participants showed pre-game knowledge of vari-

ables.

Also, the data shows that for the post-game programming question, out of 25 participants,

a total of 16 (64%) participants gave the correct answer.

Outcome: It was observed that at least 7 (28%) participants have gained knowledge re-

garding variable concepts after playing Program Wars v.2.0 .

Loop Knowledge: As previously discussed in section 5.2.3.2, to identify loop structure

knowledge among the participants Pre-game Programming Question # 2 and Post-game

Programming Question # 4 were paired. Results show that in the pre-game programming

questions, a total of 4 (16%) participants were able to correctly answer the question.

65

5.3. RESULTS AND ANALYSIS

Observation: Very few participants showed prior knowledge about loops.

Also, the data shows that for the post-game programming question, a total of 5 (20%)

participants gave the correct answer.

Outcome: From the result, it was observed that 1 (4%) participant had gained knowledge

regarding loop concepts after playing Program Wars v.2.0 . However, after re-examining

the questions asked regarding loops in the pre-and post-questionnaire, the questions may

have been too challenging to understand for those with little prior programming experience

(i.e. those who may not have seen a loop structure before).

Method Knowledge: As previously discussed in section 5.2.3.2, to identify method struc-

ture knowledge among the participants Pre-game Programming Question # 1 and Post-

game Programming Question # 5 were paired. Results show that in pre-game programming

questions, no one was able to correctly answer the question.

Observation: No participants showed prior knowledge about method concept. After re-

examining the questions asked regarding the method in the pre-questionnaire, participants

required an understanding of logical operator concepts, which may have been too chal-

lenging to understand for those with little prior programming experience.

Also, the data shows that for the post-game programming question, a total of 16 (64%)

participants gave the correct answer.

Outcome: From the result, it was observed that 16 (64%) participants had gained knowl-

edge regarding method structure after playing Program Wars v.2.0 .

Combined Knowledge: To understand the combined concept of variable and loop struc-

ture, participants were asked question Pre-game Programming Question # 4. A total of 3

(12%) participants could answer this correctly.

Observation: Most of the participants found the question challenging because a significant

portion of participants did not have prior knowledge about programming.

66

5.3. RESULTS AND ANALYSIS

Summary

Figure 5.2 shows the changes in the correct answers between the pre-game and post-game

questionnaire for various programming knowledge areas. From the diagram, it is observed

that 28% of the participants improved in their knowledge of the variable concept. Also, the

improvement in knowledge for the loop concept is 4%, and in the area of method concept,

the improvement in knowledge is 62% among the participants. To answer R.Q.# 1 it can

be said that by playing Program Wars v.2.0 participants certainly gained knowledge about

method structure. For the variable concept is not clear, and for loop structure, it is hard to

tell whether the game did help or not.

Figure 5.2: Correct answer of pre-game and post-game pair questions.

5.3.2.2 Programming Concept Mapping:

As previously mentioned, the three fundamental concepts of programming languages

taught in Program Wars are the variable concept, the loop concept and the method struc-

ture. After participants completed Stage # 2 (playing Program Wars v.2.0 several times) of

the user study, in Stage # 3 (Post-game questionnaire), they were asked questions related to

the game’s cards. These questions were asked to determine whether participants could con-

nect their gameplay knowledge to real-world scenarios. The conceptual mapping between

the gameplay experience and real-world knowledge is discussed in this section. Recall that

three post-game programming questions (#1 to #3, details in Section 5.2.3.3) were based

on their gameplay experience. In all of the three questions, the same pseudo code was used,

67

5.3. RESULTS AND ANALYSIS

with different colour rectangles used to highlight different areas of the pseudo code. Partic-

ipants would have to use their gameplay knowledge to identify the appropriate concept (i.e.

loop, variable or method structure) in the pseudo code section; each highlighted rectangle

was a similar colour as the game’s card that represents the corresponding concept.

Variable Concept Mapping [R.Q.#1(a)]: Post-game programming question # 2 was

about the variable concept. A total of 15 participants were able to correctly connect the

Variable card with the real-world programming structure.

Loop Concept Mapping [R.Q.#1(b)]: Post-game programming question # 3 was about

the loop concept. A total of 14 participants were able to correctly connect the Repeat card

with the real-world programming structure.

Method Concept Mapping[R.Q.#1(c)]: Post-game programming question # 1 was about

the method concept. A total of 11 participants were able to correctly connect the Method

card with the real-world programming structure.

Figure 5.3 shows the conceptual mapping outcomes from the post-game questions # 1

to # 3. Based on the participants’ responses, Table 5.1 shows the total number of concepts

that participants were able to correctly map between the game and a real-world scenario.

Table 5.1: Post-game Computer programming related mapping

Relation Count Correct %

Could relate all concept (Variable, Loop, Method) (100%) 8 32%

Could relate two-third concept (66%) 6 24%

Could relate one-third concept (33%) 4 16%

Could not relate any concept (0%) 7 28%

Total 25

Out of 25 participants, 8 participants were able to relate all three (variable, loop and

method) concepts with the gameplay, 6 participants were able to relate two concepts from

68

5.3. RESULTS AND ANALYSIS

Figure 5.3: Post-game programming concept related mapping.

the gameplay, 4 participants were able to relate one concept from the gameplay. Finally,

there were 7 participants who could not relate any concept with real-world programming

after playing the game.

Summary

After analyzing the data, it was observed that among the three concepts, the highest

number of participants, 15 (60%), missed out on the concept of method structure. Also,

the participants who were able to make two connections maximum (4 participants out of

6) missed the method concept. Again 50% (2 participants out of 4) of the participants who

could connect one concept successfully were able to identify the variable structure. By

further examining the post-game programming questions, some of the pseudo code might

have been challenging for the participants who had little knowledge about programming,

considering that almost 30% of the participants could not connect a programming structure

69

5.3. RESULTS AND ANALYSIS

correctly with the gameplay.

5.3.3 Cybersecurity Knowledge:

To identify the cybersecurity knowledge of the participants, two (2) different real-world

scenarios were given to the participants in both the pre-game and post-game questionnaire.

The following section discusses the results of the cybersecurity knowledge among the par-

ticipants.

Cybersecurity Scenario # 1: As previously discussed in Section 5.2.3.4, cybersecurity

knowledge related questions Pre-game Cybersecurity Question # 1 and Post-game Cyber-

security Question # 1 were paired. Both of the scenarios represent the concept of Ran-

somware. The results show that for the pre-game cybersecurity question, a total of 6 (23%)

participants were able to give the right answer.

Observation: The demographic result shows, most of the participants had very little concept

regarding cybersecurity, which was demonstrated in the pre-game cybersecurity question

where a large number of participants could not provide a correct answer.

In the corresponding post-game cybersecurity question, a total of 18 (69%) participants

gave the correct answers.

Outcome: It is observed that at least 12 (46%) participants gained knowledge regarding

the cyberattack (Ransomware) concepts after playing Program Wars v.2.0 .

Also, in Post-game Cybersecurity Question # 2, participants were asked about the cyber

defence technique regarding the cyberattack scenario presented in Post-game Cybersecurity

Question # 1. A total of 14 (54%) participants were able to identify the cyberdefense

technique correctly for this cyberattack after playing the game.

Cybersecurity Scenario # 2: As previously discussed in Section 5.2.3.4, cybersecurity

knowledge related Pre-game Cybersecurity Question # 2 and Post-game Cybersecurity

Question # 3 were paired. Both the scenarios represent the concept of Spyware. The result

70

5.3. RESULTS AND ANALYSIS

shows that in the pre-game cybersecurity question, a total of 5 (19%) participants were able

to give the right answer.

Observation: As most of the participants had very little concept regarding cybersecurity, in

the second scenario, a large number of participants could not provide the right answer.

In the post-game cybersecurity question, a total of 16 (62%) participants gave the correct

answers.

Outcome: It is observed that at least 11 (42%) participants have gained knowledge

regarding cyberattack (Spyware) concepts after playing Program Wars v.2.0 .

Post-game Cybersecurity Question # 4, participants were asked about the cyber defence

technique regarding the cyberattack scenario presented in Post-game Cybersecurity Ques-

tion # 3. A total of 16 (62%) participants were able to identify the cyberdefense technique

for this cyberattack correctly after playing the game.

Summary

Figure 5.4 shows the changes in the correct answers between the pre-game and post-game

questionnaire for the two cybersecurity-related knowledge questions. From the diagram, it

is observed that 46% of participants improve in their knowledge of the Ransomware cy-

berattack. Also, the improvement in knowledge for the Spyware cyberattack among the

participants is 43%. It is also observed that after playing the game, more than 60% of

participants were able to provide correct answers to the post-game questionnaire for pre-

venting specific cyberattacks. To answer R.Q. # 2, it can be said that playing Program

Wars v.2.0 improved the player’s cybersecurity knowledge.

5.3.3.1 Cyberattack Concept Mapping:

The post-game cybersecurity questions (#1 to #4) were based on common real-world

cyberattack (i.e. Trojan, Ransomware, Virus) and cyber defence (i.e. Computer Scan,

Firewall) scenarios.

Program Wars v.2.0 was designed in a manner so that if the participant played the game

71

5.3. RESULTS AND ANALYSIS

Figure 5.4: Correct answer of pre-game and post-game pair questions.

Table 5.2: Cyberattack related knowledge

Count Correct %

Correctly identified both cyberattacks 10 38%

Correctly identified one cyberattack 7 27%

Could not Correctly identified any cyberattacks 9 35%

Total 26

several times, then he/she will be able to understand the basic concept of cybersecurity,

which can be later used in a real-world scenario. Based on the participant’s responses, a

total of 10 participants were able to identify both cyberattacks accurately, 7 participants

were able to identify at least one cyberattack accurately, and 9 participants were not able

to identify any cyberattack correctly. Table 5.2 shows the overall statics of identifying

different cyberattack.

Summary

The data for cybersecurity knowledge shows that 38% of participants successfully iden-

tified the cyberattacks in both of the scenarios, and 27% could identify at least one cyber-

attack successfully. So, the data shows that 65% of participants were able to relate the

gameplay to a real-world cyberattack scenario.

72

5.3. RESULTS AND ANALYSIS

5.3.4 Categorization of Learning Outcome

Based on the pre-game and post-game question responses participants knowledge change

can be categorized into one of four states of learning according to the following formula.

Knowledge Change (X) = Pre-game Question (X)∩ Post-game Question (X)

Where,X = variable, loop, method, cyberattack, cyberdefense

(a) Previous Knowledge: If the paired pre-game response and the post-game response are

both ‘Correct’, then it will be assumed that the participant has previously known about

the concept, and it will be marked as ‘Previous Knowledge’.

(b) Unclear: If the pre-game response from a participant is ‘Correct’ and the paired post-

game response is ‘Incorrect’ then it is unclear why the participant got the answer ‘Cor-

rect’ in pre-game questionnaire but then ‘Incorrect’ after playing the game. So, the

knowledge change is marked as ‘Unclear’.

(c) Improved: If the pre-game response from a participant is ‘Incorrect’ and the paired

post-game response is ‘Correct’ then it is assumed that after playing the game their

knowledge is updated. As a result, the knowledge change is marked as ‘Improved’.

(d) No Change: If the pre-game response from a participant is ‘Incorrect’ and the paired

post-game response is also ‘Incorrect’ then it is assumed that the player knowledge did

not change by playing the game. As a result, the knowledge change is marked as ‘No

Change’.

A general overview of this categorization are presented in Table 5.3

5.3.4.1 Knowledge Change: Programming Concepts

Based on the Table 5.3 knowledge change detailed findings are discussed below.

73

5.3. RESULTS AND ANALYSIS

Table 5.3: Knowledge Change Categories

Input # 1
(Pre-Game Question)

Input # 2
(Post-game Question)

Knowledge
Change

Correct Correct Previous Knowledge

Correct Incorrect Unclear

Incorrect Correct Improved

Incorrect Incorrect No Change

Variable Concept: Based on the analysis, a total of 9 participants were considered to

have ‘Previous Knowledge’ about the variable concept, and none of the participants was

categorized as ‘Unclear’. A total of 7 participants were categorized as ‘Improved’. Finally,

there were 9 participants whose knowledge regarding the variable concept did not improve

after playing Program Wars v.2.0 . As a result, they were categorized as ‘No Change’.

Loop Concept: Based on the analysis, a total of 2 participants were considered to have

the ‘Previous Knowledge’ concept about the loop concept and 2 participants were catego-

rized as‘Unclear’. A total of 3 participants were categorized as ‘Improved’. Finally, there

were 18 participants whose knowledge regarding the loop did not improve after playing

Program Wars v.2.0 . As a result, they were categorized as ‘No Change’.

Method Concept: From analyzing the data, no participants were categorized as ‘Pre-

vious Knowledge’ or ‘Unclear’ about the method concept. Among the total participants,

16 participants were categorized as ‘Improved’. Finally, there were 9 participants whose

knowledge regarding the method did not improve after playing Program Wars v.2.0 . As a

result, they were categorized as ‘No Change’.

By analyzing the categorization of participants, 62% participants improved their knowl-

edge about the method concept after playing Program Wars v.2.0 . A total of 28% partici-

pants improved their knowledge about the variable concept. Finally, 12% of the participants

improved their knowledge about the loop concept. The overall statistics for each learning

74

5.3. RESULTS AND ANALYSIS

Figure 5.5: Categorization of Participants Knowledge Change (Programming Concepts)

outcome are presented in Figure 5.5.

As the gameplay might not be familiar to the participants and most of them were not

familiar with programming logic, it was recommended that players should play the game

at least three times. A total of 2 participants who played the game more than three times

showed improvements in their computer programming knowledge for all three concepts

(Variable, Loop and Method). A total of 7 participants played the game more than three

times and improved their computer programming knowledge for at least two concepts. Five

(5) of the participants played the game more than three times and improved their computer

programming knowledge for at least one concept. Only 1 participant who played the game

at least three times could not connect any of the programming concepts with a real-world

scenario.

75

5.3. RESULTS AND ANALYSIS

These results are shown in Figure 5.6. In all but one case, participants who played Pro-

gram Wars at least three times saw some improvements in terms of programming knowl-

edge. This would seem to indicate that if participants continued to play the game, they

might see further improvements in their knowledge about programming.

Figure 5.6: Computer Programming knowledge after playing the game at least three times.

5.3.4.2 Knowledge Change: Cybersecurity

In Program Wars v.2.0, two (2) cyberattack scenarios were presented. Based on the

Table 5.3 knowledge change categorizations, the results are discussed below.

Cyberattack Scenario#1 (Ransomware): Based on the analysis, out of 26 participants,

4 participants were considered to have ‘Previous Knowledge’ about the Ransomware attack,

and 3 participants were categorized as ‘Unclear’. A total of 14 participants were categorized

as ‘Improved. Finally, there were 5 participants whose knowledge did not improve after

playing Program Wars v.2.0 . As a result, they were categorized as ‘No Change’.

Cyberattack Scenario#2 (Spyware): Based on the analysis, 1 participant was consid-

ered to have ‘Previous Knowledge’ about the Spyware attack, and 4 participants were

76

5.3. RESULTS AND ANALYSIS

categorized as ‘Unclear’. A total of 15 participants were categorized as ‘Improved’. Fi-

nally, there were 6 participants whose knowledge did not improve after playing Program

Wars v.2.0 . As a result, they were categorized as ‘No Change’.

Figure 5.7: Categorization of Participants Knowledge Change (Cyberattacks)

By analyzing the categorization of participant knowledge changes, 54% of partici-

pants improved their knowledge about the Ransomware cyberattack after playing Program

Wars v.2.0 , and 58% of participants improved their knowledge about the Spyware cyber-

attack. An overall statistics for each learning outcome is presented in Figure 5.7. As each

participant showed improvement in knowledge about at least one cyberattack. This further

confirms the findings from previous section and answered R.Q. # 2 as “Program Wars does

improve player’s knowledge of cybersecurity”.

As the gameplay might not be familiar to the participants and most of them were not

77

5.3. RESULTS AND ANALYSIS

familiar with various cyberattacks, it was recommended that players should play the game

at least three times. A total of 6 participants who played the game more than three times

showed improvements in their cyberattack knowledge for the two scenarios. Twelve (12)

of the participants played the game more than three times and improved their cyberattack

knowledge for at least one scenario. Eight (8) participants who played the game at least

three times could not connect any of the cyberattack knowledge with a real-world scenario.

These results are shown in Figure 5.8. Most of all who played Program Wars at least three

times saw some improvements in terms of cyberattack knowledge. This would seem to

indicate that if participants continued to play the game, they might see further improvements

in their knowledge about the cyberattack.

Figure 5.8: Cyberattack knowledge after playing the game at least three times.

5.3.5 Answering R.Q.# 1

To answer R.Q.# 1: “Do the refinements to the UI and gameplay of Program Wars im-

prove a player’s understanding of basic computer programming concepts?” – as completely

as possible, The following analysis was done.

(a) Playing Program Wars helped:

If a participant was able to conceptually map a Program Wars concept to a real-world

programming structure and the same participant’s knowledge of that concept was cate-

78

5.3. RESULTS AND ANALYSIS

gorized as ‘Improved’, then it is considered as evidence that Program Wars does help in

learning that concept and can be referred to ‘True Positive (TP)”. Similarly, if a partic-

ipant was able to conceptually map a Program Wars concept to a real-world program-

ming structure and the same participant’s knowledge of that concept was categorized

as ‘Previous Knowledge’, then it is considered as evidence that the participant under-

stood the game, but their knowledge may not have improved. This situation can also be

referred to as a “True Positive (TP)”. These results are taken to answer R.Q.# 1 in the

positive.

(b) Understood Program Wars

If a participant was able to conceptually map a Program Wars concept to a real-world

programming structure, but the same participant’s knowledge of that concept was cate-

gorized as ‘Unclear’, then it is considered as evidence that participants understood the

game, but their knowledge improvement is unclear. This also refer that participants can

understand the gameplay with the real world scenario and in pre-game questionnaire

related to the subject they did answer correctly and somehow could not answer cor-

rectly in post game questionnaire related to the subject. As result it can be conclude

that the participant’s did understand the concept of Program Wars and can be referred

to as a “False Negative (FN)”. Similarly, if a participant was able to conceptually map

a Program Wars concept to a real-world programming structure and the same partici-

pant’s knowledge of that concept was categorized as ‘No Change’, then it is considered

as evidence that the participant knowledge is contradictory about Program Wars. This

scenario occurred when in both pre and post game questionnaire’s participants failed

to answer correctly related to the subject. But they did understand the game logic and

connect the concept with real world scenario which can also be considered as a “False

Negative (FN)”. These results are taken to answer R.Q.# 1 in the positive.

(c) Unclear Outcome

If a participant was unable to conceptually map a Program Wars concept to a real-

79

5.3. RESULTS AND ANALYSIS

world programming structure and the same participant’s knowledge of that concept

was categorized as ‘Improved’, then it is considered as contradictory evidence and

can be referred to as a “False Positive (FP)”. Similarly, if a participant was unable

to conceptually map a Program Wars concept to a real-world programming structure

and the same participant’s knowledge of that concept was categorized as ‘Previous

Knowledge’, then it is considered as evidence that the participant’s knowledge about

Program Wars is confusing. This state can also be referred to as a “False Positive (FP)”.

These results are taken to answer R.Q.# 1 in the negative.

(d) Program Wars did not help

If a participant was unable to conceptually map a Program Wars concept to a real-

world programming structure and the same participant’s knowledge of that concept

was categorized as ‘Unclear’, then it is considered as that Program Wars was not helpful

and is referred to as a “True Negative (TN)”. Similarly, if a participant was unable to

conceptually map a Program Wars concept to a real-world programming structure and

the same participant’s knowledge of that concept was categorized as ‘No Change’, then

it is considered as evidence of no knowledge change. This state can also be referred to

as a “True Negative (TN)”. These results are taken to answer R.Q.# 1 in the negative.

Table 5.4 summarises this analysis methodology.

Table 5.4: Summary of Analysis for answering R.Q.# 1

80

5.3. RESULTS AND ANALYSIS

R.Q. #1 (a): Variable Concept

According to the analysis, Program Wars helped a total of 10 participants in learning

about the variable concepts, and 5 participants understood the variable concepts from play-

ing Program Wars.

R.Q. #1 (b): Loop Concept

According to the analysis, Program Wars helped a total of 2 participants in learning about

the loop concepts, and 12 participants understood the loop concepts from playing Program

Wars.

R.Q. #1 (c): Method Concept

According to the analysis, Program Wars helped a total of 7 participants in learning

about the method concepts, and 4 participants understood the method concepts from playing

Program Wars.

Table 5.5: Results of analysis for answering R.Q.# 1.

Decision Variable Concept Loop Concept Method Concept

Playing Program Wars helped (TP) 10 2 7

Understood Program Wars (FN) 5 12 4

Unclear Outcome (FP) 4 8 5

Program Wars did not help (TN) 6 3 9

The overall statistics for each programming concept (i.e. variable, loop, method) are

shown in Table 5.5. Figure 5.9 shows a different view of these results.

To answer R.Q. # 1, the following equations were used:

T P+FN = Program Wars helped in improving knowledge

T N +FP = Program Wars did not help in improving knowledge

81

5.3. RESULTS AND ANALYSIS

Figure 5.9: Programming concept learning outcome

From Table 5.5, it can be stated that Program Wars helped 15 participants to understand

the Variable concept and Program Wars did not help 10 participants. Also, Program Wars

helped 14 participants to understand the Loop concept, and Program Wars did not help

11 participants. Finally, Program Wars helped 11 participants to understand the Method

concept and Program Wars did not 14 participants. Figure 5.10 shows the statics about how

Program Wars helped to learn the three programming concepts.

Summary

From the results, it is observed that for 60% of the participants, Program Wars helped

to understand the Variable concepts. Therefore, to answer R.Q.# 1(a) it is most likely

true that Program Wars helped to understand the Variable concept. Similarly, for 56%

of the participants, Program Wars helped to understand the Loop concepts. Therefore, to

answer R.Q.# 1(b) that it is most likely true that Program Wars helps to understand the Loop

concept. Finally, it was found that for 44% of the participants, Program Wars helped to

understand the Method concepts. This means that the answer to R.Q.# 1(c) is that Program

Wars may not have helped to understand the Method concept.

82

5.3. RESULTS AND ANALYSIS

Figure 5.10: Learning outcome for Programming Concepts (Variable, Loop, Method)

5.3.6 Result Comparison between v.1.0 and v.2.0

In Program Wars v.1.0 [37] there was a user study similar to Program Wars v.2.0 . In

this section two user study results are compared.

Table 5.6: Result comparison between two version of Program Wars

Programming Concept v 1.0 v 2.0

Variable 67% 60%

Loop 47% 56%

Method/Group 31% 44%

Table 5.6 presents the detailed comparison between Program Wars v.1.0 and Program

Wars v.2.0 in terms of three programming concepts (i.e. variable, loop, method). Based on

this comparison, Program Wars v.1.0 was performed better for learning the variable con-

cept. But after analyzing the participant’s demographic responses for v.1.0, it is observed

that most of the participants had some experience with programming concepts. On the

83

5.3. RESULTS AND ANALYSIS

other hand v.2.0 participants’ knowledge about programming was very limited or almost

none. So, in terms of numerical value v.1.0 might looks better but v.2.0 improvement is

also significant. Also, Program Wars v.2.0 performed better for learning about loops and

methods.

5.3.7 Threats to validity

In answering R.Q. #1, it should be noted that the ‘False Negative’ and ‘False Positive’

results could be considered to fall into a “weak support” category. This means that Program

Wars may be more effective at teaching the programming concepts than the analysis shows.

Similarly, Program Wars may be less effective than the analysis shows. Examining the

results for each concept, it is observed that for the variable concept, 16% of participants fall

into the “weak support” category, 32% of participants fall into the “weak support” category

for the loop concept, and 20% of participants fall into this category for the method concept.

In answering R.Q. #2, participants may not choose the Ransomware and Spyware cy-

berattack cards at the beginning of the game (the game setting was set to independent to

ensure the unsupervised concept of the user study). As a result, participants might not be

familiar with the above-mentioned cyberattack.

5.3.8 Participant Feedback

In the post-game questionnaire, participants were asked several feedback questions re-

garding their experience playing Program Wars.

It is found out that 88% of participants liked Program Wars, and 65% agreed that they

would suggest playing Program Wars to their friends. Regarding self-assessment in the area

of computer programming and cybersecurity, a large portion was not sure that playing Pro-

gram Wars improved their understanding. A possible reason is that they were not provided

immediate feedback on answered questions, whether they got questions answers correct or

not after they completed the questionnaire. However, judging by the results in Section 5.3,

a lot of the participants showed improvements in their knowledge.

84

5.3. RESULTS AND ANALYSIS

Table 5.7: Summary of post-game Feedback

Strongly
Agree

Agree Unsure Disagree Strongly
Disagree

Enjoyed playing Program Wars 11 12 1 1 1
Percentage (%) 42% 46% 4% 4% 4%

Would recommend playing Program Wars to
friends

5 12 4 3 2

Percentage (%) 19% 46% 15% 12% 8%

Playing Program Wars improved individual
knowledge of computer programming

1 3 13 7 2

Percentage (%) 4% 12% 50% 27% 8%

Playing Program Wars improved individual
knowledge of cybersecurity

1 10 7 7 1

Percentage (%) 4% 38% 27% 27% 4%

After playing Program Wars, I am more con-
fident in my programming knowledge

0 3 8 10 5

Percentage (%) 0% 12% 31% 38% 19%

I would continue to play Program Wars to
improve my programming and cybersecurity
knowledge

2 9 7 5 3

Percentage (%) 8% 35% 27% 19% 12%

Table 5.7 shows the overall feedback from the participants. A total of 11 participants

strongly agreed that they enjoyed playing Program Wars and 12 participants also agreed

with the statement. Only 1 participant did not like Program Wars. In response to rec-

ommending Program Wars to friends, a total of 17 participants agreed with the statement,

and 2 participants said they would not recommend it to their friends. Responses regarding

how participants felt that Program Wars improved their individual knowledge of computer

programming showed a total of 4 participants agreed it improves their skills in program-

ming and 13 participants were not sure about it. A total of 2 participants did not think

the game improved their programming knowledge. Regarding improvements of individual

knowledge to cybersecurity, responses show that 11 participants felt that their knowledge

improved, and 1 participant felt strongly that his/her knowledge did not improve. Regard-

85

5.3. RESULTS AND ANALYSIS

ing feeling confident in programming knowledge after playing Program Wars, 3 participants

felt more confident in their programming knowledge after playing Program Wars, and 8 par-

ticipants were not sure after playing Program Wars. Participants were asked whether they

will play Program Wars in future, with a total of 11 participants providing positive feedback

that they will play Program Wars in future to improve their knowledge in programming and

cybersecurity concepts and a total of 3 participants stating that they will not play Program

Wars in the future.

Finally, participants were asked to rate Program Wars. Out of 26 participants, 5 partici-

pants gave 5 Star to Program Wars, eleven (11) participants gave 4 Star, 8 participants gave

3 Star. And the game got 2 Star and 1 Star from 1 participant each. Figure 5.11 shows the

overall rating of Program Wars among those provide by the participants.

Figure 5.11: Program Wars Rating.

5.3.9 Participant Comments

When asked for any additional comments, a couple of participants indicated it was a

‘good game,’ and they had fun while playing the game. A couple of the participants found

86

5.4. SUMMARY

the User Interface (UI) to be complex, along with the game rules. However, it should be

noted that for any new card game, the initial couple of rounds are typically a challenge

as players learn the rules of that game. One of the participants remarked that the game

has “A very good concept to teach programming & cybersecurity basics and ideas, The

game is really enjoyable, and it enhanced my knowledge regarding basic programming and

cybersecurity.”

5.4 Summary

The results of the user study showed, after playing Program Wars v.2.0 , participant’s

knowledge about variables, loops and methods improved. Overall it can be said that Pro-

gram Wars v.2.0 helps the participants to improve their knowledge about programming

(R.Q.# 1). A comparison also showed that Program Wars v.2.0 performed better than Pro-

gram Wars v.1.0 for both in loop and method concepts. In terms of cybersecurity concepts

(R.Q.# 2), participants knowledge improved after playing Program Wars v.2.0 . Finally,

feedback showed that more than 80% of the participants liked Program Wars v.2.0 and 61%

of the participants gave the game 4 or more stars.

87

Chapter 6

Program Wars 3.0

The objective of Program Wars v.3.0 is to explore further the effectiveness of teaching fun-

damental software engineering concepts using GBL. Specifically, Program Wars v.2.0 was

augmented to introduce the fundamental concepts of the Software Development Life Cy-

cle (SDLC) and the Iterative Software Development Methodology (ISDM) (a.k.a. Agile

software development), thus creating Program Wars v.3.0 . Although there have been other

card-based games that concentrated on teaching ISDM, these efforts focus either on a spe-

cific Agile methodology, such as Scrum, teamwork aspects, or both [32, 33, 45]. But Pro-

gram Wars v.3.0 is different in allowing the user to practice the ISDM by implementing a

representation of a computer program, thereby making it independent of any specific agile

methodology.

Software Development Life Cycle (SDLC): This can be referred to as a method that

produces software with the essential quality in the least amount of time. With the help of

SDLC, an institution can build a quality output that is well-tested and ready for production

use. SDLC is a process followed for a software project within a software organization.

It consists of a detailed plan describing how to develop, maintain, replace, or enhance

specific software. The life cycle defines a methodology for improving the quality of soft-

ware and the overall development process. Figure 6.1 shows the phases of SDLC.

Iterative Software Development Methodology (ISDM): In the Iterative model, the it-

erative process starts with a simple implementation of a small set of software requirements.

88

6. PROGRAM WARS 3.0

Figure 6.1: Software Development Life Cycle (SDLC)

After that, it iteratively enhances the evolving versions until the complete system is imple-

mented and ready to be deployed. An iterative life cycle model does not attempt to start

with a complete specification of requirements. Instead, development begins by specifying

and implementing just part of the software, which is then reviewed to identify further needs.

This process is then repeated, producing a new version of the software at the end of each

iteration. Figure 6.2 shows a general concept of ISDM model.

Figure 6.2: Iterative Software Development Methodology (ISDM)

89

6.2. GAME SETUP

The question to be answered by this research is:

R.Q. # 3 How can Program Wars be modified to teach the basics of the SDLC and ISDM?

The answer to R.Q. # 3 is discussed in the rest of this chapter.

6.1 Introducing SDLC and ISDM using Program Wars

Program Wars v.3.0 provides experiential learning of the SDLC and ISDM concepts.

In Program Wars v.3.0 , the gameplay has been changed, and a new mode is added, which

is called the ISDM mode. The new mode breaks the game into four phases. The phases

are: Requirement, Design, Implementation and Testing. ISDM is introduced by the overall

gameplay (i.e. the sprints). Each sprint is composed of the phases from the SDLC. In

the new mode, players still need to compete for points, but the game is broken into three

rounds called sprints28. The game ends when all three sprints have been completed. In

ISDM mode, players still need to build programs to get points, but previous objectives are

replaced by individual requirements with one objective for each sprint. Completing these

objectives awards additional points to a player. Each player is given a specific requirement

in each sprint to complete and builds their own customized deck to help them complete

those requirements. A key focus of the ISDM mode is to familiarize the player with the

SDLC. As a result, Program Wars v.3.0 , does not end immediately after one round rather,

it gives the player several chances to improve their coding concepts by setting up various

objectives. Figure 6.3 shows a flow diagram of the Program Wars v.3.0 gameplay. The

additional elements and modified concepts are described in the appropriate section below.

6.2 Game Setup

In Program Wars v.3.0 , the mode drop-down has an additional entry for ISDM mode.

Unlike Program Wars v.2.0 where players immediately start building their program, players

28In Agile product development, a sprint is a set period of time during which specific work has to be
completed and made ready for review [46]

90

6.2. GAME SETUP

Figure 6.3: Gameplay diagram of Program Wars v.3.0

will be advanced to the Requirement phase. Figure 6.4 shows the initial game setup screen

for Program Wars v.3.0 .

The phases make up each sprint. Initially, players will be presented Sprint 1, where

they focus on the requirements for the Initial stage. In the Design phase, players have

to design their deck based on the requirements that have been provided by the Initial

stage. In this phase, players will select cards from the main deck that they believe will

help them to achieve their sprint goals. After completing the Design, phase player will be

directed to the Implementation phase, where all players will have the same number of turns

to either achieve the sprint goal or get as close as they can. This phase is similar to the

game of Program Wars v.2.0 , except that the game will not end when the players reach

a certain score. After Sprint 1 is completed, the player will be directed to Testing phase,

where sprint objectives will be tested, and sprint points (i.e. including bonus points) will

be calculated and added to the player score. After the Testing phase, the player’s progress

will be saved, and players will be returned to the Requirement phase for Sprint 2. In this

91

6.2. GAME SETUP

Figure 6.4: Starting for Program Wars v.3.0

sprint, in the Requirement phase player will be presented with Security objectives. The

same workflow that has been maintained in Sprint 1 will be followed in Sprint 2. After

Sprint 2, players again returned to the requirements phase for the final sprint. In this sprint

Penetration objectives are given as requirements. After the Design and Implementation

phases, the player will be directed to the final Testing phase where bonus points will be

calculated.

6.2.1 Requirement Phase

In each requirement phase, players are given requirements based on the sprint goal.

These requirements are sets of individual objectives that award points and other bonuses

to the player when completed. They represent the requirements that would be given to

92

6.2. GAME SETUP

a developer or team by a customer for a new software project or as a part of an existing

software project. Each requirement has three objectives to complete during the game. The

given objectives in each sprint are checked in the Testing phase to record a player’s progress.

If a player completes an objective before the end of the sprint it is associated with, the

player receives an additional bonus. These bonuses are not points but instead give the

player a useful card or status effect. Some sprint bonuses are awarded immediately upon

completing the objective, and others are awarded at the end of the sprint, based on how they

might help the player. When players start the Requirements phase, they are taken to a new

page that has the requirements presented as a card. The card appears on the top portion of

the screen and can be scrolled through and selected to see the specific objectives for the

sprint and bonuses granted for their completion. Each sprint has its own requirements. The

details of the three sprints requirements are discussed below.

6.2.1.1 Sprint 1 - “Initial”

In the ‘Initial’ sprint, the requirement for the players is to use the method card so that

redundant code can be reduced. This teaches the SE design principle of ‘Do Not Repeat

Yourself’ (a.k.a. “D.R.Y.”).

Figure 6.5 shows the requirement card for this phase, which explains the overall objec-

tive of the sprint. The main objective, game plan and bonus for Initial are:

• Objective: The main objective of this sprint is to encourage a player to create a pro-

gram that is modular by creating methods. Also introduces the loop concept into the

program.

• Game plan: For achieving the goals of Sprint 1, the player has to use Method and

Repeat cards several times. So, the player has to concentrate on these cards in the

Design phase.

• Bonus: If a player maximizes the method stack, then they can play with an extra

card only for the current sprint, and 10 points will be added to their total. Also,

93

6.2. GAME SETUP

Figure 6.5: The Requirements Card of Sprint 1(Initial)

if the player can create a method stack with two Repeat cards, then they receive a

Computer Scan card as a bonus.

6.2.1.2 Sprint 2 - “Security”

In the ‘Security’ sprint, the requirement for the players is to use the cyberdefense cards

so that the system can be secured from various cyberattacks. This teaches the SE design

principle of ‘System Security’.

Figure 6.6 shows the requirement card for this phase, which explains the overall objec-

tive of the sprint. The main objective, game plan and bonus for Security are:

• Objective: The main objective of this sprint is to encourage a player to keep their

system safe from different hacks and malware attacks.

• Game plan: For achieving the goals of Sprint 2, the player has to use various cyber

defence cards.

94

6.2. GAME SETUP

Figure 6.6: The Requirements Card of Sprint 2(Security)

• Bonus: There are several bonus criteria in this sprint. If player could play 1 Cyberdefense

cards they will be awarded with Variable [6] card29 and bonus 10 points. If a player

could play 2 safety-related cards (i.e. Computer Scan, Firewall and Antivirus cards),

they will have the chance to redraw30 along with 10 bonus points. At the end of the

sprint, if they are immune (a.k.a. played both Firewall and Antivirus cards) from

Malware or Hacking, they receive 30 bonus points.

6.2.1.3 Sprint 3 - “Penetration”

In the ‘Penetration’ sprint, the requirement for the players is to use the cyberattack cards

so that the opponent’s system can be tested against various cyberattacks. This teaches the

testing practice of ‘Penetration Testing’.

Figure 6.7 shows the requirement card for this phase, which explains the overall objec-

tive of the sprint. The main objective, game plan and bonus for Penetration are:

29Player can use this in the Implementation phase
30Player get the chance to discard and redraw cards from their hand in the Implementation phase

95

6.2. GAME SETUP

Figure 6.7: The Requirements Card of Sprint 3(Penetration)

• Objective: The main objective of this sprint is to encourage a player to play different

cyberattack cards so that they can exploit the vulnerability of the opponent’s system.

• Game plan: For achieving the goals of sprint 3, a player has to use various cyberattack

cards.

• Bonus: There are several bonus criteria in this sprint. If the player could play 1 attack

card, they will be awarded Sort card29 and bonus 10 points. If a player could play 3

cyberattack cards, they will have the chance to redraw30 along with 10 bonus points.

At the end of the sprint, if they were able to make 5 cyberattacks, they receive 30

bonus points.

96

6.2. GAME SETUP

6.2.2 Design Phase

After a player receives the requirements for each sprint, they move to the next phase

of the game, where a player develops a customized deck based on the sprint requirements.

Since each of the sprints has different objectives, it is necessary for players to make some

choices about how they can best complete these objectives. The Design phase represents

the part of a software project where developers make decisions about how the software will

be built and what tools they should use. In the Design phase, players get a base set of cards

for their deck. These cards are those that are essential for playing Program Wars, such as

Instruction and Repeat cards.

Figure 6.8: The Design Phase Page

In this phase, players are given a pool of cards, from where they have to choose a number

of cards to meet the requirements. The card pool is unique to each of the requirements

so that players can have access to certain cards that are most useful for that requirement.

However, there are also some cards that may not be essential, but a player can still have

those cards as a part of their strategy. More powerful cards are limited in number and do

not appear in the card pools for all requirements.

When players start the Design phase, they are taken to a screen where they can build

97

6.2. GAME SETUP

their own deck. On the left side of the screen (in Figure 6.8), there is a vertical list of

card types. Each type has a pile showing how many cards of that type, and their value, if

applicable, which are included in the deck automatically. This way, the player knows what

cards are already in their deck and can act accordingly. The rest of the screen is split into

two horizontal lists of cards. The cards are on the top of the screen are those they have

selected, and on the bottom of the screen is the pool of cards the player can pick from.

Cards can be dragged between these two lists to move them around. The upper list has an

indicator of how many cards have been added and how many can be added in total. Once a

player has added the maximum number of cards to this list, they are able to advance to the

Implementation phase.

6.2.3 Implementation Phase

The Implementation phase, for the most part, is played the same as Program Wars v.2.0 .

The major change is that the game no longer ends when a player reaches a specific point.

Instead, the players each get 10 turns. The other major change to the gameplay is that

a player is trying to complete the set of requirements for an ongoing sprint. In Program

Wars v.2.0 , it was possible to ignore the bonus objectives and win as the player that reaches

the point total first wins. In Program Wars v.3.0 , the player needs to complete at least

two (2) of their requirements in order to win the game. This allows beginner players an

opportunity to get used to the format of the game without excelling immediately. The

sprint bonuses are useful in making it easier to get more points or to complete subsequent

objectives before the end of the game.

6.2.4 Testing Phase

The Testing phase is a replacement for the score modal that is displayed at the end of

the Program Wars v.2.0 game. This phase represents the sprint acceptance testing phase for

the program the player built. The player has requirements to fulfill for the sprint, so they

are judged on their progress. This is where the bonus points for requirements are added to

98

6.3. SUMMARY

a player’s current score. The detailed progress for each player toward their requirements is

compared in this phase. The player with the most points after three sprints will be declared

the winner. Tiebreaks will favour the player that completed more requirements in total or

by the end of the appropriate sprint. The points given for requirements are intended to be

balanced to allow strategies that do not focus as much on the total instruction score.

6.3 Summary

This chapter has provided a possible answer to R.Q. # 3. In Program Wars v.3.0 ,

the concepts of the SDLC and ISDM are integrated into the modified version of Program

Wars v.2.0 . By introducing several sprints, Program Wars v.3.0 allows the player to ex-

perience the SDLC and ISDM. This knowledge is for those who seek to become software

developers. Also, by introducing different phases of SDLC, players are habituated with

different phases in Software Development which is really important in the real world. For

future research work, a user study can be proposed to measure the performance for Program

Wars v.3.0 to teach the SDLC and ISDM.

99

Chapter 7

Conclusion

Various activities, such as gaming that integrates both social and educational engagement,

have been found to be an effective way of learning. Among these, Game-Based Learning

(GBL) is one of the popular methods for teaching conceptual knowledge in a practical way.

Learning computer programming can be monotonous. Moreover, a novice who wants to

learn programming may find the learning procedure really hard as most of the computer

programming tools use specific syntax. For a beginner, it is really hard to memorize all the

appropriate syntax of a required compiler. As a result, a certain amount of students may

find computer programming hard to learn.

Again, it is observed that in the software industry, a successful project largely depends

on a developer’s software engineering (SE) education. A person’s knowledge about the

software development process often depends on his/her adequate knowledge of computer

programming.

This research work aims to explore further the effectiveness of teaching fundamental

software engineering concepts through GBL. Specifically, Program Wars, a web-based card

game for learning programming language and cybersecurity concepts, was extended into

two versions.

Program Wars v.2.0 presented an evolution of the game elements and concepts intro-

duced by Program Wars v.1.0 . Regarding programming concepts, the Group card was

changed to the Method card to better represent procedures/functions/methods in programs.

Also, the conditional statement concept was made more explicit with the use of gameplay

100

7.1. FUTURE WORK

goals. Similarly, the general cybersecurity concepts in Program Wars v.1.0 were specialized

in Program Wars v.2.0 . Finally, Program Wars v.2.0 introduced the concepts of algorithms

and library function concepts through the addition of the Search and Sort cards. Regard-

ing gameplay, two modes of play (Beginner and Standard) were introduced to provide a

learning path for players, and the user interface was revised to provide more player and

game information. To evaluate Program Wars v.2.0, a user study was conducted. After ana-

lyzing the data from the user study, it was found that in terms of programming knowledge,

participant’s understanding of variables improved. For the loop (repeat) structure, more

than fifty percent of participants showed knowledge improvement after playing Program

Wars v.2.0 , and for the method structure, more than forty percent of participants showed

their knowledge was improved. In cybersecurity concepts, more than sixty percent of par-

ticipants showed knowledge gains regarding various cyberattacks and cyberdefense.

Regarding Program Wars v.3.0 , both the concept of ISDM and SDLC are integrated to

provide knowledge about software development. The game is comprised of several sprints,

which allow the users to refine their knowledge of several programming concepts. Also,

the game has different phases of the SDLC, which match with the different phases in soft-

ware development. It is believed that the gameplay of Program Wars v.3.0 helps a user to

understand the workflow of a real-world software development project. To evaluate the per-

formance of Program Wars v.3.0 , a user study is also proposed in the future work section.

7.1 Future Work

A few ideas and directions regarding future work are presented in this section.

7.1.1 Gamplay and Card behaviour

In Program Wars, the Variable card cannot be played independently of the Repeat-X

card. In future, this card should be examined to see if it can be made more independent and

demonstrate other uses of variables in programming.

101

7.1. FUTURE WORK

The notion of a semantic error is not integrated into the current version of the game. In

the future, integrating this type of error into the game could make the game more challeng-

ing.

Control flow is only introduced using the bonus objectives. Consideration should be

given into integrating control flow more directly into the game play.

7.1.2 Program Wars v.3.0 User Study

Similar to Program Wars v.2.0 , to assess whether Program Wars v.3.0 improved par-

ticipant’s knowledge about the SDLC and ISDM, a separate user study can be performed.

There will be three stages in the proposed user study,

• Pre-game (Stage # 1) – In the pre-game questionnaire, the participant will be asked

some demographic questions. Participants will also be asked about their previous

experience related to software development. After that, some multiple-choice ques-

tions will be asked related to the SDLC and ISDM concepts to assess the participant’s

previous knowledge about the subjects.

• Play Program Wars v.3.0 (Stage # 2) – After completing the pre-game question-

naire, the participant will be asked to play Program Wars v.3.0 at least five (5) times.

• Post-game (Stage # 3) – In this stage, participants will be asked to complete a

post-game questionnaire. They will be asked some knowledge questions similar to

those from the pre-game questionnaire related to the SDLC and ISDM to identify the

knowledge gains. Also, participants will be asked questions to assess if they could

co-relate the game mechanics to the real-life software development process.

7.1.2.1 Participants

To participate in the Program Wars v.3.0 user study, participants must have an under-

standing of the basic programming concepts. Also, Someone who is interested in software

102

7.1. FUTURE WORK

development could also be part of the user study. University undergraduates who have ex-

perience with basic computer programming-related courses will also be a part of this user

study. For recruiting participants, different communication will be made, like posters (both

on-campus and digital), email or invitations in social media.

7.1.2.2 Questions Type

Throughout the user study, there will be several questions asked in both the pre-game

and post-game questionnaires. An overview of the questions is given below.

• Demographic Questions: These will be some basic demographic questions (i.e. age,

gender).

• Previous Experience Questions: The participant will be asked questions related to

their experience with software development and programming experience.

• Knowledge questions: The participant will be asked questions related to the SDLC

and ISDM in both pre-game and post-game questionnaires.

• Mapping questions: In the post-game questionnaire, participants will be asked some

questions to identify if they could map the knowledge of the game with real-world

software development processes.

• Feedback questions: Participants will be asked to provide feedback regarding Pro-

gram Wars v.3.0 .

7.1.2.3 Privacy

Anonymity will be partially provided because the participant’s background (i.e. soft-

ware development skills) is vital regarding the feedback they provide.

Consents: Before completing the pre-game questionnaire, participants will be presented

with an informed consent web form.

103

Bibliography

[1] M. S. L. A. S.-R. W. Jacqueline E. Maloney, A Mindfulness-Based Social and Emo-
tional Learning Curriculum for School-Aged Children: The MindUP Program. New
York, NY: Springer, 2016.

[2] J. P. Gee, What Video Games Have to Teach Us About Learning and Literacy. Palgrave
Macmillan, 2004.

[3] J. McGonigal, “Gaming can make a better world,” 2010.

[4] N. Whitton, “Motivation and computer game based learning,” 01 2007.

[5] S. Deterding, R. Khaled, L. Nacke, and D. Dixon, “Gamification: Toward a defini-
tion,” Proceedings of CHI 2011 Workshop Gamification: Using Game Design Ele-
ments in Non-Game Contexts, pp. 6–9, 2011.

[6] V. Uskov and B. Sekar, “Gamification of software engineering curriculum,” 2014
IEEE Frontiers in Education Conference (FIE) Proceedings, Madrid, pp. 1–8, 2014.

[7] C. Pettey, “Gartner predicts over 70 percent of global 2000 organisations will have
at least one gamified application by 2014.” http://www.gartner.com/newsroom/id/
1844115, 2011. [Online; accessed 05-July-2021].

[8] A. Calderón, M. Ruiz, and E. Orta, “Integrating serious games as learning resources in
a software project management course: The case of prodec,” in 2017 IEEE/ACM 1st
International Workshop on Software Engineering Curricula for Millennials (SECM),
pp. 21–27, 2017.

[9] A. Baker, E. Oh Navarro, and A. van der Hoek, “An experimental card game for
teaching software engineering processes,” Journal of Systems and Software, vol. 75,
no. 1, pp. 3–16, 2005. Software Engineering Education and Training.

[10] M. R. De Almeida Souza, L. Furtini Veado, R. Teles Moreira, E. Magno Lages
Figueiredo, and H. A. X. Costa, “Games for learning: bridging game-related edu-
cation methods to software engineering knowledge areas,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering Education
and Training Track (ICSE-SEET), pp. 170–179, May 2017.

[11] J. Pieper, O. Lueth, M. Goedicke, and P. Forbrig, “A case study of software engineer-
ing methods education supported by digital game-based learning: Applying the semat
essence kernel in games and course projects,” in 2017 IEEE Global Engineering Ed-
ucation Conference (EDUCON), pp. 1689–1699, April 2017.

104

http://www.gartner.com/newsroom/id/1844115
http://www.gartner.com/newsroom/id/1844115

BIBLIOGRAPHY

[12] L. H. B. Jacobson, Ivar, P.-W. Ng, P. E. McMahon, and M. Goedicke, The Essen-
tials of Modern Software Engineering: Free the Practices from the Method Prisons.
Association for Computing Machinery and Morgan and Claypool, 2019.

[13] N. T. T. Xie and J. de Halleux, “Educational software engineering: Where software en-
gineering, education, and gaming meet,” 2013 3rd International Workshop on Games
and Software Engineering: Engineering Computer Games to Enable Positive, Pro-
gressive Change (GAS), San Francisco, CA, pp. 36–39, 2013.

[14] J. B. Swapneel Sheth and G. Kaiser, “Halo (highly addictive socially optimized) soft-
ware engineering,” In Proceedings of the 1st International Workshop on Games and
Software Engineering (GAS ’11). Association for Computing Machinery, New York,
NY, USA, pp. 29–32, 2011.

[15] M. A. Miljanovic and J. S. Bradbury, “Robobug: A serious game for learning de-
bugging techniques,” in Proceedings of the 2017 ACM Conference on International
Computing Education Research, ICER ’17, (New York, NY, USA), p. 93–100, Asso-
ciation for Computing Machinery, 2017.

[16] C. Szabo, “Evaluating gamedevtycoon for teaching software engineering,” in Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, (New York, NY, USA), p. 403–408, Association for Computing Ma-
chinery, 2014.

[17] D. Pickton and S. Wright, “What’s swot in strategic analysis?,” Strategic Change,
vol. 7, pp. 101–109, 03 1998.

[18] Y. Khazaal, A. Chatton, R. Prezzemolo, F. Zebouni, Y. Edel, J. Jacquet, O. Ruggeri,
E. Burnens, G. Monney, A.-S. Protti, J.-F. Etter, R. Khan, J. Cornuz, and D. Zullino,
“Impact of a board-game approach on current smokers: A randomized controlled
trial,” Substance abuse treatment, prevention, and policy, vol. 8, p. 3, 01 2013.

[19] “Battle bots v2.” https://www.curufea.com/doku.php?id=games:board:battlebots.
[Online; accessed 05-July-2021].

[20] I. J. Timm, T. Bogon, A. D. Lattner, and R. Schumann, “Teaching distributed arti-
ficial intelligence with roborally,” in Multiagent System Technologies (R. Bergmann,
G. Lindemann, S. Kirn, and M. Pěchouček, eds.), (Berlin, Heidelberg), pp. 171–182,
Springer Berlin Heidelberg, 2008.

[21] “Robot turtles.” http://www.robotturtles.com. [Online; accessed 05-July-2021].

[22] “Code master.” https://www.thinkfun.com/products/code-master. [Online; accessed
05-July-2021].

[23] P. Chen, R. Kuo, M. Chang, and J.-S. Heh, “Designing a trading card game as edu-
cational reward system to improve students’ learning motivations,” T. Edutainment,
vol. 3, pp. 116–128, 08 2009.

105

https://www.curufea.com/doku.php?id=games:board:battlebots
 http://www.robotturtles.com
 https://www.thinkfun.com/products/code-master

BIBLIOGRAPHY

[24] “Potato pirates.” https://potatopirates.game/. [Online; accessed 05-July-2021].

[25] R. Wetzel, L. Blum, and L. Oppermann, “Tidy city: A location-based game supported
by in-situ and web-based authoring tools to enable user-created content,” in Proceed-
ings of the International Conference on the Foundations of Digital Games, FDG ’12,
(New York, NY, USA), p. 238–241, Association for Computing Machinery, 2012.

[26] “Codecombat.” https://codecombat.com. [Online; accessed 05-July-2021].

[27] “Blockly maze.” https://www.brainpop.com/games/blocklymaze. [Online; accessed
05-July-2021].

[28] “Kodable.” https://www.kodable.com/. [Online; accessed 05-July-2021].

[29] “Codingame.” https://www.codingame.com/start. [Online; accessed 05-July-2021].

[30] “Cyber threat defender.” https://cias.utsa.edu/ctd.php. [Online; accessed 17-August-
2021].

[31] “Potato pirates 2: Enter the spudnet.” https://potatopirates.game/products/
enter-the-spudnet-board-game. [Online; accessed 17-August-2021].

[32] “Scrum card game.” https://www.tastycupcakes.org/2016/06/scrum-card-game/. [On-
line; accessed 25-June-2021].

[33] J. M. Fernandes and S. M. Sousa, “Playscrum - a card game to learn the scrum agile
method,” in 2010 Second International Conference on Games and Virtual Worlds for
Serious Applications, pp. 52–59, 2010.

[34] A. Baker, E. Navarro, and A. van der Hoek, “Problems and programmers: An educa-
tional software engineering card game,” pp. 614– 619, 06 2003.

[35] J. M. Randel, B. A. Morris, C. D. Wetzel, and B. V. Whitehill, “The effectiveness of
games for educational purposes: A review of recent research,” Simulation & Gaming,
vol. 23, no. 3, pp. 261–276, 1992.

[36] P. Moreno-Ger, D. Burgos, I. Martı́nez-Ortiz, J. L. Sierra, and B. Fernández-Manjón,
“Educational game design for online education,” Computers in Human Behavior,
vol. 24, no. 6, pp. 2530 – 2540, 2008. Including the Special Issue: Electronic Games
and Personalized eLearning Processes.

[37] J. Anvik, V. Cote, and J. Riehl, “Program wars: A card game for learning pro-
gramming and cybersecurity concepts,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, (New York, NY, USA),
p. 393–399, Association for Computing Machinery, 2019.

[38] Refactoring: Improving the Design of Existing Code. USA: Addison-Wesley Long-
man Publishing Co., Inc., 1999.

106

https://potatopirates.game/
https://codecombat.com
https://www.brainpop.com/games/blocklymaze
https://www.kodable.com/
https://www.codingame.com/start
https://cias.utsa.edu/ctd.php
https://potatopirates.game/products/enter-the-spudnet-board-game
https://potatopirates.game/products/enter-the-spudnet-board-game
https://www.tastycupcakes.org/2016/06/scrum-card-game/

BIBLIOGRAPHY

[39] “Program wars.” https://program-wars.firebaseapp.com/. [Online; accessed 05-July-
2021].

[40] T. Nooning, “Lock it down: Use libsafe to secure linux
from buffer overflows.” https://www.techrepublic.com/article/
lock-it-down-use-libsafe-to-secure-linux-from-buffer-overflows/, 2002. [Online;
accessed 13-August-2020].

[41] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks,” in Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, SSYM’98, (USA), p. 5, USENIX Association, 1998.

[42] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic creation of sql
injection and cross-site scripting attacks,” in 2009 IEEE 31st International Conference
on Software Engineering, pp. 199–209, 2009.

[43] S. Paira, S. Chandra, and S. S. Alam, “Enhanced merge sort- a new approach to the
merging process,” Procedia Computer Science, vol. 93, pp. 982–987, 2016. Proceed-
ings of the 6th International Conference on Advances in Computing and Communica-
tions.

[44] I. C. S. . A. f. C. M. Joint Task Force on Computing Curricula, “Software engineer-
ing 2014: Curriculum guidelines for undergraduate degree programs in software en-
gineering.” https://www.acm.org/binaries/content/assets/education/se2014.pdf, 2015.
[Online; accessed 16-Oct-2020].

[45] G. Rodriguez, Soria, and M. Campo, “Virtual scrum: A teaching aid to introduce un-
dergraduate software engineering students to scrum,” Computer Applications in Engi-
neering Education, vol. 23, no. 1, pp. 147–156, 2015.

[46] M. A. Boschetti, M. Golfarelli, S. Rizzi, and E. Turricchia, “A lagrangian heuristic
for sprint planning in agile software development,” Computers Operations Research,
vol. 43, pp. 116–128, 2014.

107

https://program-wars.firebaseapp.com/
https://www.techrepublic.com/article/lock-it-down-use-libsafe-to-secure-linux-from-buffer-overflows/
https://www.techrepublic.com/article/lock-it-down-use-libsafe-to-secure-linux-from-buffer-overflows/
https://www.acm.org/binaries/content/assets/education/se2014.pdf

Appendix A

User Study Consent Form

108

A. USER STUDY CONSENT FORM

109

Appendix B

User Study Invitation Letter

110

Appendix C

User Study Demographic Questions

111

Appendix D

User Study Responses

Table D.1: Demographic responses from the participants

User ID Age Range Education Experience with computer programming Experience with cybersecurity

1001 17 - 24 High School Novice (small programs in a single file) Novice (know a few concepts)
1006 17 - 24 High School Advanced (medium-sized programs using mul-

tiple files)
Novice (know a few concepts)

1008 17 - 24 High School No Experience Novice (know a few concepts)
1009 17 - 24 High School No Experience No Experience
1010 17 - 24 High School No Experience No Experience
1011 17 - 24 High School No Experience No Experience
1012 17 - 24 High School No Experience No Experience
1013 17 - 24 High School Novice (small programs in a single file) Novice (know a few concepts)
1014 17 - 24 High School No Experience Novice (know a few concepts)
1015 17 - 24 High School No Experience No Experience
1016 17 - 24 High School Novice (small programs in a single file) No Experience
1017 17 - 24 High School Novice (small programs in a single file) Novice (know a few concepts)
1020 17 - 24 High School Novice (small programs in a single file) No Experience
1021 17 - 24 Bachelor’s

degree (4-
year)

Novice (small programs in a single file) Novice (know a few concepts)

1023 17 - 24 High School No Experience No Experience
1025 25 - 34 High School No Experience Novice (know a few concepts)
1027 17 - 24 High School No Experience Novice (know a few concepts)
1029 17 - 24 High School Novice (small programs in a single file) No Experience
1030 17 - 24 High School No Experience No Experience
1031 17 - 24 High School No Experience No Experience
1032 17 - 24 Graduate

(Masters or
Doctorate)

No Experience Novice (know a few concepts)

1033 17 - 24 Bachelor’s
degree (4-
year)

Novice (small programs in a single file) No Experience

1034 17 - 24 High School No Experience Novice (know a few concepts)
1035 25 - 34 High School No Experience No Experience
1036 25 - 34 High School No Experience No Experience
1037 17 - 24 Associate de-

gree (2-year)
No Experience Novice (know a few concepts)

112

D. USER STUDY RESPONSES

Table D.2: Pre-game computer programming related responses

113

D. USER STUDY RESPONSES

Table D.3: Post-game computer programming related responses

114

D. USER STUDY RESPONSES

Table D.4: Pre and Post-game cybersecurity related responses

115

D. USER STUDY RESPONSES

Table D.5: Post Game Feedback

116

D. USER STUDY RESPONSES

Table D.6: Post Game Comments

User ID Comments

1001 Images in instructions do not all match game images

1009 Very good game

1011 Provide more of an explanation to what the cards do.

1017 I had started the survey once and when I clicked on a ”search” card, no
selection came up and I had to refresh the page (which restarted my survey)
in order to exit the selection window.

1020 Although it is a fun card game within itself, it is very easy to look past any
coding aspect and see it as purely a game and not give coding a second
thought. I’m not sure how to improve this besides by being more explicit
without being more blunt about coding.

1023 Could be fun and the game has potential but, the in game UI is awkward
and would be confusing for people who have never played a turn based card
game. Also there was a couple times I would play one of the red cards and
the bot would just not play its turn. Like I said, it has potential but by a game
standards, not beginner friendly. Although most things with the word ”cyber
security” are not very beginner friendly I guess.

1027 I feel the video should have a small list of cards and their meanings at the
side.

1031 There was no rules to start the game and it was very confusing on what
exactly each card does as well as just knowing what the purpose to win

1035 You only know what the cards are and how you are suppose to play when
you go over to the rules. The link puts you straight into the game without
explaining anything so I was very lost at first. The connection of the different
viruses and what not need to be more distinctly obvious or else what is the
point other than just playing a game. Thanks a ton, I had a lot of fun!

1036 A very good concept to teach programming & cyber security basics and
ideas, The game is really enjoyable and It enhanced my knowledge regarding
basic programming and cyber security.

1037 Program Wars 2.0 seemed like a random game to me and I did not learn
much of anything. I believe videos, one on cyber security threats and how
to spot them, and one on basic programming, would be a better educational
tool. I appreciate you trying to educate us.

117

	Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Game-Based Learning research in SE
	Games for Learning Computer Programming
	Board Games
	Card Games
	Web-based Games

	Games for Learning Cybersecurity
	Games for Learning Software Development
	Summary

	Program Wars 1.0
	Overview of Program Wars 1.0
	Analysis of Program Wars v.1.0
	Strengths
	Weaknesses

	Summary

	Program Wars 2.0
	Improvements to the User Interface (UI)
	Gameplay Overview
	Gameplay Areas
	Player's Hand
	Game History
	Program Editor
	Gameplay Goals

	Card Additions and Improvements
	Computer Programming
	Cybersecurity

	Summary

	User Study of Program Wars 2.0
	Research Methodology
	Detail of User Study
	Participants
	Study Procedure Details
	Questions Asked

	Results and Analysis
	Demographic and Previous Experience
	Change in Knowledge
	Cybersecurity Knowledge:
	Categorization of Learning Outcome
	Answering R.Q.# 1
	Result Comparison between v.1.0 and v.2.0
	Threats to validity
	Participant Feedback
	Participant Comments

	Summary

	Program Wars v.3.0
	Introducing SDLC and ISDM using Program Wars
	Game Setup
	Requirement Phase
	Design Phase
	Implementation Phase
	Testing Phase

	Summary

	Conclusion
	Future Work
	Gamplay and Card behaviour
	Program Wars v.3.0 User Study

	Bibliography
	User Study Consent Form
	User Study Invitation Letter
	User Study Demographic Questions
	User Study Responses

