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Abstract

In this thesis, we study the problem of representing integers by quadratic forms. The for-

mulas for the number of representations are obtained as a sum of an Eisenstein part and

a cusp part. We begin by solving the representation problem for binary quadratic forms

of discriminant −D < 0 where the number field Q(
√
−D) has class number 3. We obtain

formulas for the number of representations of an integer as a sum of k triangular numbers,

denoted by δk(n), for even values of k. As special cases, for k = 14,16 and 18, new for-

mulas are provided in which the cusp part is given as a linear combination of certain eta

products. At the end, for even values of k, we study the first and the second moments of

δk(n) and prove an analogue of the Wagon’s conjecture for the second moment of δk(n).
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Chapter 1

Introduction

1.1 The number of representations by quadratic forms

The study of binary quadratic forms dates back to the 7th century C.E. when Brah-

magupta, an Indian mathematician, found integer solutions to the Pell equation x2−92y2 =

1. The solution to the general Pell equation was given by Bhaskara, in the 11th century C.E.

using the chakravala method he developed upon the works of Brahmagupta. The name of

the method refers to the circular nature of the technique (chakra in Sanskrit means circle).

The problem of representing integers by some specific quadratic forms Q(x1,x2, · · · ,xn),

i.e., solving the equation

n = Q(x1,x2, · · · ,xn),

was considered by Fermat in the 17th century. He proposed several observations including

when a prime could be represented as a sum of two squares, proofs of which were later

provided by Euler. It marked the beginning and a general theory was not so far away.

Lagrange was the first to recognize the importance of the discriminant of a quadratic

form and defined the notion of equivalence. He found out that there were only finitely many

equivalence classes of binary quadratic forms of a given discriminant, i.e., the class number

was finite and hence the study of quadratic forms was reduced to the study of equivalent

forms.

Historically, one of the most extensively studied problem in the theory of quadratic

forms is finding the number of representations of an integer by a quadratic form. A well

known result in this area is Jacobi’s four square theorem which says that the number of

1



1.2. MODULAR FORMS

representations of an integer as a sum of four squares is given by

r4(n) = 8σ(n)−32σ(n/4),

where σ(n) is the sum of divisors of n. This thesis deals with a few problems in this area

which we will describe in Section 1.3. The next section builds up the necessary notations

and definitions needed to describe our work.

1.2 Modular forms

In this section, we give a brief description of the theory of modular forms. For more

information, see [5], [7] and [10]. There are different approaches to study the number of

representations of an integer by quadratic forms including combinatorial methods, elemen-

tary methods and the circle method of Hardy and Littlewood. In this thesis, we use the

theory of modular forms to investigate such problems.

The full modular group SL2(Z) acts on the complex upper half plane via fractional

linear transformations defined by

γ(z) =
az+b
cz+d

,

where γ =
(

a b
c d

)
∈ SL2(Z) and z belongs to the upper half plane H. We define γ(∞) = a/c.

This action partitions the upper half plane into equivalence classes. The action can be

restricted to certain subgroups. For a positive integer N, define

Γ(N) =


 a b

c d

 ∈ SL2(Z) :

 a b

c d

≡
 1 0

0 1

 (mod N)


to be the principal congruence subgroup of level N. A subgroup of the full modular group

is called a congruence subgroup if it contains Γ(N) for some N > 0. For a congruence

subgroup Γ, we define a cusp to be an equivalence class of Q∪{i∞} under the action of

Γ. A cusp can also refer to a representative of an equivalence class. For example, the full

2



1.2. MODULAR FORMS

modular group has only 1 inequivalent cusp i∞. Now we define what a modular form is.

Definition 1.1. A function f on the upper half plane H is said to be a modular form of

weight k, level N, and character χ if

(i) f is holomorphic on H.

(ii) f
(

az+b
cz+d

)
= χ(d)(cz+d)k f (z) for any γ =

 a b

c d

 ∈ Γ0(N) and for any z ∈H.

(iii) f is holomorphic at each cusp of Γ0(N), where

Γ0(N) =


 a b

c d

 ∈ Γ : c≡ 0 (mod N)

 .

For the notion of holomorphicity at a cusp, see [5, Section 5.5]. We denote by

Mk(Γ0(N),χ), the vector space of weight k modular forms on Γ0(N) with character χ.

When the character is trivial, we denote the space by Mk(Γ0(N)). A modular form f ∈

Mk(Γ0(N),χ) is said to be a cusp form if f vanishes at every cusp of Γ0(N). The space of

cusp forms in Mk(Γ0(N),χ) is a subspace of Mk(Γ0(N),χ) and is denoted by Sk(Γ0(N),χ).

Let γ =
(

a b
c d

)
be a matrix in SL2(Z). Then, for an integer k, the weight k operator [γ]k on

functions f : H→ C is defined as

( f [γ]k)(z) = (cz+d)−k f (γ(z)).

The space Mk(Γ0(N),χ) is a finite dimensional vector space over C and the dimension can

be computed explicitly. We can write Mk(Γ0(N),χ) as a direct sum

Mk(Γ0(N),χ) = Ek(Γ0(N),χ)
⊕

Sk(Γ0(N),χ),

where Sk(Γ0(N),χ) is the space of cusp forms and Ek(Γ0(N),χ) is called the space of Eisen-

stein forms. The Eisenstein space is the space generated by the Eisenstein series. The

Eisenstein series will be described in Chapter 3, Sections 3.1 and 3.2. As a consequence of

3



1.2. MODULAR FORMS

the above direct sum decomposition, every modular form f ∈Mk(Γ0(N),χ) can be written

as a sum of an Eisenstein form and a cusp forms for Γ0(N) and character χ. For more

details, see [5, Chapter 8]. An important function in the study of Eisenstein series is the

generalised divisor function given by

σt,χ1,χ2 (n) = ∑
d|n

χ1(d)χ2(n/d)dt ,

where χ1 and χ2 are two Dirichlet characters and t is a non-negative integer. When χ1 and

χ2 are both trivial, i.e., χ1(n) = χ2(n) = 1 for all integers n, this reduces to the normal

divisor function σt(n) = ∑d|n dt . When studying the space of cusp forms, it is important to

study Dedekind’s eta function. The Dedekind eta function is a holomorphic function on the

upper half plane defined by

η(z) = q
1
24

∞

∏
n=1

(1−qn), q = e2πiz.

An eta product is defined to be a finite product of eta functions given by

f (z) = ∏
m

η(mz)am

for positive integers m and integers am. The least common multiple N of all the m’s is called

the level of f . The product being finite ensures that the least common multiple N exists.

Since every such m divides N, we may also write,

f (z) = ∏
m|N

η(mz)am .

We next state a result due to Gordon, Hughes and Newman which describes the modular

transformation properties of the eta products.

Theorem 1.2. ([14, Theorem 1.64]) Let f (z) = ∏m|N η(mz)am be an eta quotient with k =

4



1.3. THIS THESIS

1
2 ∑m|N am ∈ Z, with the additional properties that

∑
m|N

mam ≡ 0 (mod 24)

and

∑
m|N

N
m

am ≡ 0 (mod 24),

Then

f (z) ∈Mk(Γ0(N),χ),

where, the character χ is defined by χ(d) =
(

(−1)k
∏m|N mam

d

)
.

1.3 This thesis

In this section, we briefly describe the contents of this thesis.

Let a(n,Q) be the number of representations of n by a quadratic form Q. Fred van der

Blij, in a 1952 paper [23], gives exact formulas for a(n,Q) for all three equivalence classes

of quadratic forms Q of discriminant -23. He proves that

a(n,Q1) =
2
3 ∑

d|n

(
d
23

)
+

4
3

t(n)

and

a(n,Q2) = a(n,Q3) =
2
3 ∑

d|n

(
d
23

)
− 2

3
t(n),

where
(

.
23

)
is the Legendre symbol mod 23, the quadratic forms Q′is are

Q1 = x2 + xy+6y2,

Q2 = 2x2 + xy+3y2,

Q3 = 2x2 + xy−3y2,

5



1.3. THIS THESIS

and the coefficients t(n) arise out of the cusp form given by

∞

∑
n=1

t(n)qn = q
∞

∏
n=1

(1−qn)(1−q23n). (1.1)

The cusp form on the right hand side of (1.1) is an eta product of weight 1, level 23 and

character χ =
(
−23
.

)
. The proof in [23] is based on combinatorial arguments. Observe that

Q(
√
−23) is one of the 16 imaginary quadratic fields of class number 3, where the class

number of Q(
√
−D) is the order of the class group of Q(

√
−D). We generalise the above

result to the case of binary quadratic forms with class number 3 and obtain the following.

Theorem 2.6. For D > 0, let K = Q(
√
−D) be an imaginary quadratic field with class

number 3. Let Q1,Q2,Q3 be the reduced binary quadratic forms, where Q1 represents the

principle form. Let a(n,Q) be the number of representations of n by the quadratic form Q.

For q = e2πiz with z ∈H, let

FD(z) =
1
2

(
∑

a,b∈Z
qQ1(a,b)− ∑

a,b∈Z
qQ2(a,b)

)
=

∞

∑
n=0

t(n)qn.

Then FD is a cusp form of weight 1, level D, character χ =
(−D

.

)
and t(1) = 1. Moreover,

a(n,Q1) =
2
3 ∑

d|n

(
d
D

)
+

4
3

t(n)

and

a(n,Q2) = a(n,Q3) =
2
3 ∑

d|n

(
d
D

)
− 2

3
t(n).

In the above theorem, a different feature compared to the result of Fred van der Blij

is that for values of D other than 23, we do not have an eta product representation for the

cusp form FD(z). A result of Eholzer and Skoruppa [8, Section 2] (See also Lemma 2.8)

6



1.3. THIS THESIS

guarantees that FD(z) has a representation as an infinite product given by

FD(z) = q
∞

∏
n=1

(1−qn)c(n), q = e2πiz,

for some integers c(n) and for sufficiently small q. Observe that for an eta product, the

exponents c(n)’s are bounded. We prove in Section 2.4 the following result, which, for

D 6= 23, implies that FD(z) does not have an eta product representation.

Theorem 2.15. Let D 6= 23 be such that Q
(√
−D
)

has class number 3. Let Q1,Q2,Q3 be

the three reduced forms of discriminant −D, where Q1 is the principal form. Let

FD(z) =
1
2

(
∑

a,b∈Z
qQ1(a,b)− ∑

a,b∈Z
qQ2(a,b)

)
.

Then the integers c(n) in the expansion

FD(z) = q
∞

∏
n=1

(1−qn)c(n)

are unbounded.

The proof of the above theorem relies on an analytic statement that we prove in Section

2.4 (See Lemma 2.9). It should be mentioned that the proof of Lemma 2.9 is inspired by

the exercise in Section 2.1.3 of Serre’s monograph [18].

In Chapter 3, we study the number of representations of an integer as a sum of triangular

numbers. This problem is intimately connected to the number of representations of integers

by quadratic forms. The number of representations of an integer as a sum of squares has

been extensively studied. The q-series of interest in the representation problem for squares

is the Jacobi’s theta function defined as

θ(q) = ∑
n∈Z

qn2
= ∑

n≥0
qn2

+ ∑
n<0

qn2
= 1+2q+2q4 +2q9 + · · · .

7



1.3. THIS THESIS

Let rk(n) be the number of representations of an integer n as a sum of k squares. Then rk(n)

is intrinsically connected to the Jacobi’s theta function by the identity

θ
k(q) = ∑

n≥0
rk(n)qn.

The theta function is a modular form of integral weight for even values of k. The kth

triangular number Tk is defined as the number of dots in a triangular arrangement of dots

with k dots on each side. Explicitly, the kth triangular number is given by Tk = k(k+1)/2.

Let δk(n) be the number of representations of n as a sum of k triangular numbers. To study

δk(n), we define the Psi function as

Ψ(q) =
∞

∑
n=0

qTn = 1+q+q3 +q6 + · · · .

The role of this function in studying δk(n) is analogous to the role of Jacobi’s theta function

θ(q) in studying rk(n). The Psi function is connected to δk(n) by

Ψ
k(q) =

∞

∑
n=0

δk(n)qn.

In [15], Ono, Robins, and Wahl employ the Psi function to describe formulas for δk(n)

for k = 4,6,8,10,12,24 (Also, formulas for k = 2,3 are given by elementary means). As

an example, for k = 4, they note that

qΨ
4(q2) =

∞

∑
n=0

δ4(n)q2n+1 ∈M2(Γ0(4))

and proceed by observing that it is the Eisenstein series given by

∞

∑
n=0

σ1(2n+1)q2n+1. (1.2)

Motivated by the work of Rankin [16] for the sums of squares, Atanasov et al. [1] obtain

8



1.3. THIS THESIS

formulas for δ4k(n) in terms of a divisor function and the coefficients of a cusp form. They

consider the modular form qkΨ4k(q2) ∈ M2k(Γ0(4)) and decompose it into an Eisenstein

series and a cusp form to get their result. Moreover, they also give a basis for the cusp

space S2k(Γ0(4)) in terms of Jacobi’s theta function and (1.2). In Chapter 3, we give a new

proof of the main result of [1] using a method due to Aygin employed in [2]. Let χ0 and χ1

be the principal Dirichlet characters mod 4 and mod 1 respectively.

Theorem 3.6. For any positive k, we have

δ4k(n) =
1
dk

σ2k−1,χ1,χ0(2n+ k)+ c(2n+ k),

where
∞

∑
n=1

c(n)qn ∈ S2k(Γ0(4))

is a cusp form and

dk =−
(−16)k (4k−1

)
B2k

8k

in which B2k is the 2kth Bernoulli number.

Next, we extend Theorem 3.6 to obtain formulas for δ4k+2(n). Our proof of Theorem 3.6

relies on the study of Eisenstein series of even integral weight for Γ0(4). For δ4k+2(n), we

observe that

q2k+1
Ψ

4k+2(q4) =
∞

∑
n=0

δ4k+2(n)q4n+2k+1 ∈M2k+1(Γ0(8),χ−4),

where χ−4 is the Dirichlet character mod 4 taking the values χ−4(1) = 1 and χ−4(3) =−1.

A study of the Eisenstein series of odd integral weight for Γ0(8) and character χ−4 enables

us to obtain our next result.

9



1.3. THIS THESIS

Theorem 3.12. For any positive k, we have

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+ t(4n+2k+1),

where
∞

∑
n=1

t(n)qn ∈ S2k+1(Γ0(8),χ−4)

is a cusp form and Bn,χ is the nth generalised Bernoulli number associated to χ.

It is worth noting that the terms involving the generalised divisor functions in Theorem

3.6 and Theorem 3.12 are asymptotically dominating terms in the formulas for δ4k(n) and

δ4k+2(n) respectively. Next, we shift our attention to the cusp part in the formulas for

δ4k(n) and δ4k+2(n). Towards the end of Chapter 3, we obtain bases for S2k(Γ0(4)) and

S2k+1(Γ0(8),χ−4) in terms of eta products employing the ideas of Aygin used in [3, Chapter

5].

Theorem 3.16. The collection

{
C(2k,v,4,z) ; 1≤ v≤ k−2

}
forms a basis of S2k(Γ0(4)), where

C(2k,v,4,z) =
(

η10(2z)
η4(z)η4(4z)

)2k(
η8(z)η16(4z)

η24(2z)

)v(
η16(z)η8(4z)

η24(2z)

)
.

Theorem 3.17. The collection

{
C(2k+1,v,8,z) ; 1≤ v≤ 2k−2

}
forms a basis of S2k+1(Γ0(8),χ−4), where

C(2k+1,v,8,z) =
(

η4(z)
η2(2z)

)2k+1(
η2(2z)η4(8z)
η4(z)η2(4z)

)v(
η10(2z)η6(4z)
η12(z)η4(8z)

)
.

10



1.3. THIS THESIS

By employing the above results, at the end of Chapter 3, we provide new explicit for-

mulas for δk(n) for a few values of k.

Proposition 3.18. We have

δ14(n) =−
1

124928
(
σ6,χ−4,χ1(4n+7)− c(4n+7)

)
,

δ16(n) =
1

17408
(
σ7,χ1,χ0(2n+4)−d(2n+4)

)
,

δ18(n) =
1

45383680
(
σ8,χ−4,χ1(4n+9)− e(4n+9)

)
,

where

∞

∑
n=1

c(n)qn =728
(

η
4(z)η2(2z)η8(8z)+4

η4(2z)η12(8z)
η2(4z)

)
,

∞

∑
n=1

d(n)qn =128η
8(2z)η8(4z),

∞

∑
n=1

e(n)qn =
η20(z)η4(4z)

η6(2z)
+20

η16(z)η2(4z)η4(8z)
η4(2z)

+144
η12(z)η8(8z)

η2(2z)

+448
η8(z)η12(8z)

η2(4z)
+391168

η4(z)η2(2z)η16(8z)
η4(4z)

+1562624
η4(2z)η12(20z)

η6(4z)
.

In Chapter 4, we obtain asymptotic formulas for the first and the second moments of

δk(n) for even values of k using the explicit formulas obtained in Chapter 3. Let f (n) be an

arithmetic function and let

L f (s) =
∞

∑
n=0

f (n)
ns

be the formal Dirichlet series associated to f (n). In [4], Borwein and Choi study formulas

for the Dirichlet series associated to rk(n) and r2
k(n). Their motivation for considering these

explicit representations was to settle the Wagon’s conjecture (See [4, Page 97]), which says

that for N ≥ 3,

∑
n≤x

r2
N(n)∼WNxN−1, as x→ ∞,

11



1.3. THIS THESIS

where

WN =
πN

(1−2−N)(N−1)Γ2
(N

2

) ζ(N−1)
ζ(N)

.

Here ζ(.) is the Riemann zeta function and Γ(.) is the gamma function. By using the

explicit formulas for rN(n), the Wagon’s conjecture for N = 4,6,8 is settled in [4]. Inspired

by the above, we phrase an analogue of the Wagon’s conjecture for δN(n). For N ≥ 3, we

conjecture that

∑
n≤x

δ
2
N(n)∼ YNxN−1, as x→ ∞,

where

YN =
πN

2N(N−1)Γ2
(N

2

) L(N−1,χ0)

L(N,χ0)
,

where χ0 is the principal Dirichlet character mod 4 and L(s,χ0) is the Dirichlet series as-

sociated to χ0. Aiming to settle the conjecture for even values of N, we use the explicit

formulas obtained in Chapter 3 for δ4k(n) and δ4k+2(n) to study the twisted Dirichlet series

associated to δi
2k(n) for i = 1,2 and obtain the following results for the first and the second

moment.

Theorem 4.9. For an even value of N > 2 and any ε > 0, we have

∑
n≤x

δN(n) =
πN/2

2N/2Γ(N/2+1)
xN/2 +O

(
xN/2−1/2+ε

)
.

Theorem 4.10. For an even value of N > 2 and any ε > 0, we have

∑
n≤x

δ
2
N(n) = YNxN−1 +O

(
xN−1/2+ε

)
,

where

YN =
πN

2N(N−1)Γ2
(N

2

) L(N−1,χ0)

L(N,χ0)
.

Hence, the analogue of the Wagon’s conjecture δN(n) is true for even values of N. For

odd values of N, we cannot use the same method due to the lack of explicit formulas for

12



1.3. THIS THESIS

δN(n) for odd values of N.

At the end, we will devote Chapter 5 to list a few problems relevant to the works in this

thesis, which we plan to investigate in the near future.

13



Chapter 2

Explicit Formulas for Representation by
Binary Quadratic Forms

In this chapter, we generalise a result of Fred van der Blij [23] to the case of imaginary

quadratic fields with class number three using the theory of theta functions. Before we

proceed to our main results, we give a brief description of the theory of binary quadratic

forms and their associated theta functions.

2.1 Binary quadratic forms

An integral binary quadratic form is a homogenous quadratic polynomial in two vari-

ables given by

Q(x,y) = ax2 +bxy+ cy2,

where a,b and c are integers. Moreover, the form is said to be primitive if a,b and c are

relatively prime. From here onwards we only deal with primitive forms. The discriminant

of Q is defined to be D = b2−4ac. It can be shown that when the discriminant is negative,

Q represents either positive or negative integers depending on the sign of the leading coef-

ficient. So when D < 0 and a > 0, Q only represents positive integers and the form is said

to be a positive definite form. The following definition regarding the equivalence of forms

is due to Lagrange.

Definition 2.1. Two forms Q1(x,y) and Q2(x,y) are said to be equivalent if there exists

14
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integers p,q,r and s such that ps−qr =±1 and

Q1(x,y) = Q2(px+qy,rx+ sy).

Moreover, this equivalence is called proper if ps−qr = 1.

In the context of positive definite forms, we only talk about the proper equivalence and

going forward, we drop the word proper. From the definition, observe that two equivalent

forms are going to represent the same set of integers in Z. We want to know if there are

finitely many equivalent classes of positive definite quadratic forms and whether there is a

simple description for the representative of each class. To answer these questions, we first

define what a reduced form is.

Definition 2.2. A primitive positive definite form Q(x,y) = ax2 + bxy+ cy2 is said to be a

reduced form if

|b| ≤ a≤ c, and b≥ 0 if either |b|= a or a = c.

It can be shown that every equivalence class of positive definite binary quadratic forms

contains a unique reduced form (see [6, Theorem 2.8]). For D < 0, let h(D) be the class

number associated to D which is defined to be the number of equivalence classes of primi-

tive positive definite forms of discriminant D. Then h(D) is equal to the number of solutions

of b2−4ac = D satisfying the condition in the above definition. Hence, the class number is

finite.

Proposition 2.3. Let Q= ax2+bxy+cy2 be a reduced form. Then, the least positive integer

represented by the reduced form is equal to a.

Proof. Observe that

Q(x,y)≥ (a−|b|+ c)min(x2,y2).

15
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Since Q is a reduced form, c−|b|> 0, hence

Q(x,y)≥ amin(x2,y2).

Thus, Q(x,y)≥ a when (x,y) 6= (0,0). The value a is achieved by Q at the point (1,0) and

hence we are done.

For a detailed description of the theory of binary quadratic forms, see [6, Chapter 1,

Section 2].

Let a(n,Q) be the number of representations of n by the quadratic form Q. The theta

series which is informally the generating function for these coefficients has a special be-

haviour on the complex upper half plane. We discuss the theta functions in detail in the

next section.

2.2 Theta functions

To every positive definite binary quadratic form Q(x,y) = ax2+bxy+cy2, we associate

a theta function θQ : H→ C, given by

θQ(z) = ∑
m,n∈Z

qQ(m,n),

where

q = e2πiz.

As it turns out, these theta functions are actually modular forms. To describe the level

and the character associated to a theta function, let

A =

2a b

b 2c

 .

Set N to be the smallest positive integer such that the matrix NA−1 is integral and has even

16
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diagonal entries, and let χ be the Kronecker symbol

(
−detA

.

)
.

Theorem 2.4. ([24, Theorem 10.1]) For a positive definite binary quadratic form Q, the

theta function given by θQ(z) is a modular form of weight 1, level N and character χ de-

scribed above.

In the next section, we obtain a generalisation of the main result of [23].

2.3 A generalisation of a theorem of Fred van der Blij

Let a(n,Q) be the number of representations of an integer n by a quadratic form Q =

ax2 +bxy+ cy2 and
(

.
D

)
be the Legendre symbol.

Proposition 2.5. The total number of representations of a positive integer n by the three

reduced forms Qi’s of discriminant −D such that Q(
√
−D) has class number 3 is given by

a(n,Q1)+a(n,Q2)+a(n,Q3) = 2∑
d|n

(
d
D

)
.

Proof. Observe that there is a one to one correspondence between the ideal classes of the

number field K = Q(
√
−D) and the classes of positive definite quadratic forms of dis-

criminant −D (See [6, Theorem 5.30]). Let C1,C2,C3 be the three ideal classes of K and

let Q1,Q2,Q3 be the corresponding quadratic forms. The Dedekind zeta function of K is

defined by

ζ(K,s) = ∑
a⊂OK

1
N(a)s ,

where a denotes an ideal in OK and N(a) denotes the norm of a. We can split this sum into

three different sums as we have three ideal classes in K. We get,

ζ(K,s) = ∑
a⊂C1

1
N(a)s + ∑

a⊂C2

1
N(a)s + ∑

a⊂C3

1
N(a)s (2.1)

17
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By using [19, Lemma 27], we get

ζ(K,s) =
1
2 ∑

n

(
a(n,Q1)

ns +
a(n,Q2)

ns +
a(n,Q3)

ns

)
. (2.2)

On the other hand, for Re(s)> 1, we have

ζ(K,s) = ∏
p

(
1− 1

N(p)s

)−1

=

(
1− 1

Ds

)−1

∏(
−D

p

)
=−1

(
1− 1

p2s

)−1

∏(
−D

p

)
=1

(
1− 1

ps

)−2

= ∏
p

(
1− 1

ps

)−1

∏
p

1−

(
−D

p

)
ps

−1

.

(2.3)

Here we used the fact that when
(
−D

p

)
=−1, pOK stays a prime and has norm p2 and when(

−D
p

)
= 1, pOK splits into two prime ideals of norm p (See [6, Proposition 5.16]). Using

the law of quadratic reciprocity,

(
D
p

)
= (−1)

p−1
2

(
p
D

)

since D≡ 3 mod 4 (See the list of imaginary quadratic fields of class number 3 in Table 2.1).

So we get (
−D

p

)
=

(
p
D

)
.

Substituting this back in (2.3) gives

ζ(K,s) = ∏
p

(
1− 1

ps

)−1

·∏
p

1−

(
p
D

)
ps

−1

= ∑
k∈Z

1
ks ·∑

l∈Z

(
l
D

)
ls = ∑

n

∑d|n

(
d
D

)
nS .

(2.4)

18
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Combining (2.2) and (2.4) and using the fact that a function can have at most one represen-

tation as a Dirichlet series (See [21, Section 9.6]), we have our result.

Now, we state the main result of this section.

Theorem 2.6. For D > 0, let K = Q(
√
−D) be an imaginary quadratic field with class

number 3. Let Q1,Q2,Q3 be the reduced binary quadratic forms, where Q1 represents the

principle form. Let a(n,Q) be the number of representations of n by the quadratic form Q.

For q = e2πiz with z ∈H, let

FD(z) =
1
2

(
∑

a,b∈Z
qQ1(a,b)− ∑

a,b∈Z
qQ2(a,b)

)
=

∞

∑
n=0

t(n)qn.

Then FD is a cusp form of weight 1, level D, character χ =
(−D

.

)
and t(1) = 1. Moreover,

a(n,Q1) =
2
3 ∑

d|n

(
d
D

)
+

4
3

t(n) (2.5)

and

a(n,Q2) = a(n,Q3) =
2
3 ∑

d|n

(
d
D

)
− 2

3
t(n). (2.6)

Proof. First, we will give a description of the three binary quadratic forms of discriminant

−D. Recall from Section 2.1 that each class of positive definite binary quadratic forms

contains a unique form, called the reduced form, such that

|b| ≤ a≤ c, b≥ 0 if |b|= a or a = c. (2.7)

Observe that there are only 16 values of squarefree D for which Q(
√
−D) has class number

3 (see Table 2.1) and all these values are primes congruent to−1 mod 4. The computations

are done using SAGE [20]. Since the class number is 3, the equation b2− 4ac = −D is

going to have 3 solutions that satisfy (2.7). As the values of D are congruent to -1 modulo

4, one of the solutions of the ordered pair (a,b,c) is (1,1,(1+D)/4), which gives rise to
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the principal form

Q1 = x2 + xy+
(1+D)

4
y2.

Table 2.1: Imaginary quadratic fields Q
(√
−D
)

with class number three and reduced forms
Q1, Q2, Q3.

D Q1 Q2 Q3 dim(M1(Γ0(D),χ)) dim(S1(Γ0(D),χ))

23 x2 + xy+6y2 2x2 + xy+3y2 2x2− xy+3y2 2 1
31 x2 + xy+8y2 2x2 + xy+4y2 2x2− xy+4y2 2 1
59 x2 + xy+15y2 3x2 + xy+5y2 3x2− xy+5y2 2 1
83 x2 + xy+21y2 3x2 + xy+7y2 3x2− xy+7y2 2 1
107 x2 + xy+27y2 3x2 + xy+9y2 3x2− xy+9y2 2 1
139 x2 + xy+35y2 5x2 + xy+7y2 5x2− xy+7y2 2 1
211 x2 + xy+53y2 5x2 +3xy+11y2 5x2−3xy+11y2 2 1
283 x2 + xy+71y2 7x2 +5xy+11y2 7x2−5xy+11y2 4 3
307 x2 + xy+77y2 7x2 + xy+11y2 7x2− xy+11y2 2 1
331 x2 + xy+83y2 5x2 +3xy+17y2 5x2−3xy+17y2 4 3
379 x2 + xy+95y2 5x2 + xy+19y2 5x2− xy+19y2 2 1
499 x2 + xy+125y2 5x2 + xy+25y2 5x2− xy+25y2 2 1
547 x2 + xy+137y2 11x2 +5xy+13y2 11x2−5xy+13y2 2 1
643 x2 + xy+161y2 7x2 + xy+23y2 7x2− xy+23y2 4 3
883 x2 + xy+221y2 13x2 + xy+17y2 13x2− xy+17y2 2 1
907 x2 + xy+227y2 13x2 +9xy+19y2 13x2−9xy+19y2 2 1

Now suppose (a0,b0,c0) is a solution of b2−4ac =−D that satisfies (2.7) with a0 > 1,

giving rise to Q2 = a0x2 +b0xy+ c0y2. Then by (2.7), (a0,−b0,c0) is going to be another

solution given that a0 6= |b0| and a0 6= c0. Hence, the last form will be given by Q3 =

a0x2−b0xy+c0y2. We will prove a0 6= |b0| and a0 6= c0 by contradiction. First let us prove

a0 6= |b0|. Suppose a0 = |b0|, then

a2
0−4a0c0 =−D.

Since a0 divides the left hand side, a0 divides D. Therefore a0 = D since a0 > 1 and D is

prime, which contradicts the upper bound
(√

D
3

)
of a0 for a reduced form (See [6, Page
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29]). Now let us prove a0 6= c0. Suppose a0 = c0. Then

b2
0−4a2

0 =−D,

i.e.,

D = (2a0−b0)(2a0 +b0),

contradicting the fact that D is prime. Here we also used the fact that |b0| ≤ a0 and a0 > 1

to guarantee that the factors (2a0±b0) are non trivial. So we have

Q1 = x2 + xy+
(1+D)

4
y2,

Q2 = a0x2 +b0xy+ c0y2,

and

Q3 = a0x2−b0xy+ c0y2.

Now that we have a description of the quadratic forms, we prove that FD(z) is a cusp form

of weight 1, level D and character χ =
(
−D
.

)
. Recall that M1(Γ0(D),χ) is the vector space

of modular forms of weight 1, level D and character χ =
(−D

.

)
. Then by Theorem 2.4,

θQ1(z),θQ2(z),θQ3(z) ∈M1(Γ0(D),χ)

and

FD(z) =
1
2
(θQ1(z)−θQ2(z)) ∈M1(Γ0(D),χ)

is a modular form. To prove that it is in fact a cusp form, we have to prove that FD(z)

vanishes at all the inequivalent cusps of Γ0(D). Since D is prime, Γ0(D) will have 2 in-

equivalent cusps namely 1 and i∞ (See [7, Page 103]). Hence we first find out the Fourier

expansions of the theta functions θQ1(z) and θQ2(z) at both cusps. At the cusp i∞, the Fourier
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expansions of the theta functions are given by

θQ1(z) =
∞

∑
n=0

a(n,Q1)qn = 1+2q+O
(
q2) ,

and

θQ2(z) =
∞

∑
n=0

a(n,Q2)qn = 1+O
(
q2) .

Here we have used the fact that the least positive integer represented by a reduced form is

equal to the coefficient of x2 in the reduced form (See Proposition 2.3). Hence, FD(z) has

the expansion given by

FD(z) = q+O
(
q2) . (2.8)

Therefore FD(z) vanishes at the cusp i∞. Now we find out the Fourier expansions of the

theta functions at the cusp 1. For Q1, we set

A =

2 1

1 (1+D)/2


and

ρ =

1 0

1 1

 .

Note that ρ(∞) = 1/1. Using the formula for the Fourier expansion of theta functions in the

proof of [24, Theorem 10.1], we get

(z+1)−1
θQ1(ρz) =

−i√
D ∑

(x,y)∈Z2

q
1
D(

1+D
4 x2−xy+y2)e

2πi
D ( 1+D

4 x2−xy+y2).

Changing x to y and y to −x yields

θQ1 [ρ]1(z) =
−i√

D ∑
(x,y)∈Z2

q
Q1(x,y)

D e
2πiQ1(x,y)

D .
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Hence,

θQ1 [ρ]1(z) =
−i√

D

(
1+ c1q

1
D + · · ·

)
. (2.9)

Similarly for the quadratic form Q2 = a0x2 +b0xy+ c0y2,

θQ2[ρ]1(z) =
−i√

D

(
1+ c2q

a0
D + · · ·

)
. (2.10)

Thus, from (2.9) and (2.10),

FD[ρ]1(z) =
1
2
(θQ1[ρ]1(z)−θQ2[ρ]1(z)) =

−ic1

2
√

D
qD +O

(
q2

D
)
, (2.11)

where qD = q
1
D . Therefore FD(z) vanishes at the cusp 1.

At last, we prove the identities (2.5) and (2.6). Since

FD(z) =
1
2

(
∑

p,q∈Z
qQ1(p,q)− ∑

p,q∈Z
qQ2(p,q)

)
=

∞

∑
n=1

t(n)qn.

We have

a(n,Q1)−a(n,Q2) = 2t(n). (2.12)

Also, observe that

Q2(x0,y0) = Q2(−x0,−y0) = Q3(x0,−y0) = Q3(−x0,y0).

Hence,

a(n,Q2) = a(n,Q3). (2.13)

Thus, Proposition 2.5 together with (2.12) and (2.13) yield the result.

Now, we also give a new modular proof of the second part of [23, Theorem 1] which

describes the cusp part F23(z).
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Proposition 2.7. The cusp form F23(z) is given by

F23(z) = η(q)η(q23).

Proof. The 3 reduced binary quadratic forms of discriminant -23 are given by

F1 = x2 + xy+6y2,

F2 = 2x2 + xy+3y2,

F3 = 2x2− xy+3y2.

Let

F23(z) =
1
2

(
∑

p,q∈Z
qF1(p,q)− ∑

p,q∈Z
qF2(p,q)

)
=

∞

∑
n=0

t(n)qn.

Then, by Theorem 2.6,

F23(z) =
∞

∑
n=0

t(n)qn ∈ S1

(
Γ0(23),

(
−23
.

))

and the number of representations by the reduced forms F1,F2 and F3 are given by

a(n,F1) =
2
3 ∑

d|n

(
d
23

)
+

4
3

t(n) (2.14)

and

a(n,F2) = a(n,F3) =
2
3 ∑

d|n

(
d
23

)
− 2

3
t(n). (2.15)

Note that by Theorem 1.2,

η(q)η(q23) ∈ S1

(
Γ0(23),

(
−23

d

))
.
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The cusp space S1

(
Γ0(23),

(
−23

d

))
is one dimensional (see Table 2.1). Hence,

∞

∑
n=0

t(n)qn = kη(q)η(q23)

for some k ∈ C. Comparing the first coefficients, we see that k = 1 and hence we are

done.

2.4 Infinite product representation of FD(z)

We saw in the last section that the cusp form F23(z) has a closed form representation as

an eta product. In this section, we investigate whether FD(z) enjoys similar representations

for other values of D in Table 2.1. We first describe a proposition due to Eholzer and

Skoruppa on the infinite product expansions of periodic holomorphic functions on the upper

half plane.

Lemma 2.8. ([8, Section 2]) Let f (q) = ∑
∞
n=0 a f (n)qn be a holomorphic function on the

upper half plane and a f (0) = 1. Then there exists a unique sequence of complex numbers

c(n) such that

f (q) =
∞

∏
n=1

(1−qn)c(n) (2.16)

for sufficiently small q. The c(n)’s are integral if f has integral Fourier coefficients.

We will use Lemma 2.8 to investigate the possibility of representing FD(z) as an eta

product. We will prove that for none of the values of D listed in Table 2.1 other than 23,

FD(z) can be written as an eta product. The important thing to observe here is that the

exponents c(n) in (2.16) are not necessarily bounded. We next prove an analytic result

which reveals the nature of these exponents depending on whether or not the modular form

has a zero on the upper half plane.

Lemma 2.9. Let f (q) = ∑
∞
n=0 a f (n)qn be a holomorphic function on the upper half plane
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and a f (0) = 1. Then the complex numbers c(n) in the expansion

f (q) =
∞

∏
n=1

(1−qn)c(n)

are unbounded if f has a zero on the upper half plane.

Proof. We know by Lemma 2.8 that f (q) has an expansion given by

f (q) = ∏
n≥1

(1−qn)c(n) (2.17)

for some complex numbers c(n). We are given that f has a zero in H. Since f is holomor-

phic, the zeroes of f are discrete and hence there exists a neighborhood N(i∞) of i∞ such

that f has no zeroes in N(i∞)∩H. Therefore, there exists a T > 0 such that for every z with

Im(z)> T , f (z) 6= 0 on H. Let z0 be the zero with the largest imaginary part. We claim that

the radius of convergence of the power series

L(q) = log( f (q))

around q = 0 is e−2πIm(z0). To prove this claim, we set q0 = e2πiz0. Then the point q0 is a

point of singularity for L(q). For the convergence of the power series L(q), the function

f (q) should stay away from zero. We observe that whenever Im(z) > Im(z0) for z ∈ H,

f (q) stays away from 0. Lastly, we see that

Im(z)> Im(z0) iff |q|< |q0|

for q = e2πiz. Hence, whenever |q| < |q0|, then the power series L(q) has a convergent

expansion and our claim holds. Thus, e−2πIm(z0) is the radius of convergence of L(q).
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Next, by (2.17), we have

L(q) =
∞

∑
n=1

c(n) log(1−qn)

=
∞

∑
n=1
−c(n)

(
qn +

q2n

2
+

q3n

3
· · ·
)

=−
∞

∑
n=1

1
n ∑

d|n
dc(d)qn.

Using the limsup formula for the radius of convergence R of the power series L(q), we have

R =

limsup

 n

√√√√∣∣∣∣∣1n ∑
d|n

dc(d)

∣∣∣∣∣
−1

.

We have already proved that the radius of convergence of L(q) is e−2πIm(z0). Hence,

limsup

 n

√√√√∣∣∣∣∣1n ∑
d|n

dc(d)

∣∣∣∣∣
= e2πIm(z0).

If c(n)’s are bounded, ∑d|n dc(d) = O(σ(D)) = O(nε) for some ε > 0. Hence,

limsup

 n

√√√√∣∣∣∣∣1n ∑
d|n

dc(d)

∣∣∣∣∣
≤ 1,

which is a contradiction since Im(z0) > 0. Therefore c(n)’s must be unbounded. Thus,

we have proved that the existence of a zero in H implies that the exponents c(n)’s are

unbounded.

Before we consider Lemma 2.9 for our case regarding FD(z), let us describe the notion

of the width of a cusp and the order of vanishing νz( f ) of a modular form f at a point z∈H.

Definition 2.10. Let f be a modular form of weight k for a subgroup Γ of SL2(Z). The

width of the cusp i∞ is defined to be the least positive integer such that ±
(

1 w
1 0

)
∈ Γ for a

suitable sign. In the first case, when
(

1 w
1 0

)
∈ Γ, it follows that f is periodic with period w.
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In the second case, when −
(

1 w
1 0

)
∈ Γ,

f (z) = (−1)k f (z+w)

and f is periodic with period 2w when k is odd and periodic with period w when k is even.

If a/c is a cusp of Γ such that γ(i∞) = a/c for some γ ∈ SL2(Z), then the width of the cusp

a/c for Γ is defined to be the width of the cusp i∞ for γ−1Γγ.

Definition 2.11. Suppose f is a modular form for a subgroup Γ of SL2(Z) on the upper half

plane. For z0 ∈H, νz0( f ) is defined to be the order of f at z0. If f has width w at i∞, write

f (z) = g(e2πiz/w) and define νi∞( f ) = ν0(g), where ν0(g) is the least positive exponent of

e2πiz/w in the expansion. For a cusp z0 ∈ Q, there exists γ ∈ SL2(Z), such that z0 = γ(i∞)

and we set νz0( f ) = νi∞( f [γ]k).

For more information on Definition 2.11, see [5, Page184]. Using the above definition,

we compute the order of vanishing of FD(z) at the inequivalent cusps of Γ0(D). Since

D is prime, Γ0(D) has 2 inequivalent cusps namely i∞ and 1/1. We have the following

proposition about the order of vanishing at these two cusps.

Proposition 2.12. The order of vanishing νz(Fd) in Γ1(D) at the cusps i∞ and 1/1 are

νi∞(FD) = 1

and

ν1/1(FD) = 1.

Proof. For a prime D in Table 2.1, we know from (2.8) and (2.11) that

FD(z) = q+O
(
q2)
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and

FD[ρz]1(z) =
−ic1

2
√

D
qD +O

(
q2

D
)
,

where ρ is a matrix in SL2(Z) such that ρ∞ = 1/1 and qD = e2πiz/D. Using [5, Proposition

6.3.20], the width of the cusps i∞ and 1/1 in Γ1(D) is equal to 1 and D respectively. Hence

by Definition 2.11, the order of vanishing in Γ1(D) at each cusp is 1.

We next state the valence formula for modular forms for a finite index subgroup of

SL2(Z).

Theorem 2.13. ([5, Theorem 5.6.11]) Let Γ be a subgroup of SL2(Z) of finite index and let

f 6= 0 be a modular form of weight k for Γ. We have

∑
z∈Γ\H

νz( f )
ez

=
k

12
[SL2(Z) : Γ],

where ez = 2 or 3 if z is SL2(Z) equivalent to i or e2πi/3 respectively, and ez = 1 otherwise.

Here SL2(Z) = SL2(Z)/{±1} and Γ = Γ/Γ∩{±1}.

The theorem mentioned above works for modular forms on a finite index subgroup with

the trivial character. Although we have that FD(z) ∈ M1

(
Γ0(D),

(
−D
d

))
, we can still use

the valence formula on FD(z) by considering it as a modular form on Γ1(N). To do so, we

will have to look at the order of vanishing of FD(z) at all the cusps of Γ1(D). For D prime,

Γ1(D) has D− 1 inequivalent cusps (See [7, Page 102]). The next lemma describes the

order of vanishing of FD(z) at these cusps.

Lemma 2.14. The order of vanishing of FD(z) at every cusps of Γ1(D) is 1.

Proof. The Group Γ1(D) has D− 1 inequivalent cusps. Using the computation as in [7,

Page 102]), a set of representatives for the inequivalent cusps can be given by S1 ∪ S2,

where

S1 =

{
i∞,

2
D
,

3
D
, · · · , (D−1)/2

D

}
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and

S2 =

{
1
1
,
1
2
,
1
3
, · · · , 1

(D−1)/2

}
.

Observe that any two cusps in S1 or S2 are Γ0(D) equivalent. This is true as you can find

a matrix in Γ0(D) which takes one cusp to the other. Next, using [5, Proposition 6.3.20]

to compute the widths of the cusps in Γ1(D), we see that any cusp in S1 has width 1 and

any cusp in S2 has width D. Hence, two cusps equivalent over Γ0(D) have the same width

in Γ1(D). Now suppose x1 and x2 are two inequivaent cusps of Γ1(D) that are Γ0(D)

equivalent. Let w be their width. Then, from the proof of [10, Proposition 16], the smallest

exponents in the qD expansion of FD(z) at the cusps x1 and x2 are the same. Since the widths

of x1 and x2 are the same and equal to w, the smallest exponent with non-zero coefficients

in qw expansion of FD(z) at the cusps x1 and x2 are the same. Hence FD(z) has the same

order of vanishing in Γ1(D) at the cusps x1 and x2. Now from Proposition 2.12, the order

of vanishing of i∞ and 1/1 in Γ1(D) is equal to 1. Since every cusp of Γ1(D) is Γ0(D)

equivalent to either i∞ or 1/1, we are done.

Now we are ready to state the main result of the section.

Theorem 2.15. Let D 6= 23 be such that Q
(√
−D
)

has class number 3. Let Q1,Q2,Q3 be

the three reduced forms of discriminant −D, where Q1 is the principal form. Let

FD(z) =
1
2

(
∑

a,b∈Z
qQ1(a,b)− ∑

a,b∈Z
qQ2(a,b)

)
.

Then the integers c(n)’s in the expansion

FD(z) = q
∞

∏
n=1

(1−qn)c(n)

are unbounded.
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Proof. Considering FD(z) as a modular form on Γ1(N), by Theorem 2.13, we have

∑
z∈Γ\H

νz(FD)

ez
=

1
12

[SL2(Z) : Γ1(D)].

By [5, Corollary 6.2.13], we have

[SL2(Z) : Γ1(D)] =
D2−1

2
.

Hence, we have

∑
z∈Γ\H

νz(FD)

ez
=

D2−1
24

.

From Lemma 2.14, νz(FD) = 1 for each of the D−1 cusps of Γ1(D). Hence,

1
D−1 ∑

z∈Γ\H

νz(FD)

ez
=

D−23
24

.

Therefore for all values of D in Table 2.1 except 23, the right hand side will be positive and

the formula above will guarantee the existence of a zero in H. Now applying Lemma 2.9

on FD(z)/q finishes the proof.

31



Chapter 3

Formulas for Sums of Triangular
Numbers

In this chapter, we study the number of representations of an integer as a sum of triangular

numbers. First, we provide another proof of the main result in [1] to get formulas for δ4k(n).

Then, we extend the result to obtain formulas for δ4k+2(n). We end the chapter by obtaining

a basis for S2k(Γ0(4)) and S2k+1(Γ0(8),χ−4) and provide new explicit formulas for δk(n)

for k = 14,16 and 18.

3.1 An explicit formula for δ4k(n)

We start this section by some definitions. The kth Bernoulli number Bk is defined to be

k! times the kth coefficient in the Laurent expansion of t/(et−1). That is,

∞

∑
k=0

Bk ·
tk

k!
=

t
et−1

= 1− 1
2

t +
1

12
t2−·· · .

For k > 1, the Eisenstein series of weight 2k for Γ0(1) is given by

E2k(z) = 1− 4k
B2k

∞

∑
n=1

σ2k−1(n)qn. (3.1)

Let ε∞ (Γ0(N)) be the number of inequivalent cusps of Γ0(N). We denote the weight 2k

Eisenstein space for Γ0(N) with the trivial character by E2k(Γ0(N)). Then, for k ≥ 2, the
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dimension of the Eisenstein space E2k(Γ0(N)) is given by

dim(E2k(Γ0(N))) = ε∞ (Γ0(N)) = ∑
d|N

φ(gcd(d,N/d)) (3.2)

(See [7, Page 103 and Page 111, equation (4.3)] for a proof). As a consequence, Γ0(4) has 3

inequivalent cusps. The complete set of inequivalent cusps is given by {1, 1
2 , i∞}. By look-

ing at the expansions of E2k(z),E2k(2z) and E2k(4z) using (3.1), we see that E2k(z),E2k(2z)

and E2k(4z) are linearly independent vectors in E2k(Γ0(4)). Since the dimension of

E2k(Γ0(4)) is 3, the Eisenstein space E2k(Γ0(4)) has the basis

B= {E2k(z),E2k(2z),E2k(4z)}. (3.3)

Next we are interested in finding the constants associated to the Fourier expansions of

the Eisenstein series at each cusp. Recall that for any γ =
(

a b
c d

)
∈ SL2(Z) and an integer k,

the weight k operator [γ]k on functions f : H→ C is defined as

( f [γ]k)(z) = (cz+d)−k f (γ(z)).

Suppose that f is a modular form of weight k. Pick a cusp α and a matrix γ =
(

a b
c d

)
∈

SL2(Z) such that γα = ∞. Then, the Fourier expansion of f at the cusp α is given by the

Fourier expansion of

f [γ−1]k(z)

at i∞. Let [0]c( f ) be the constant in the Fourier expansion of f (z) at the cusp 1/c. We

will denote the constant in the Fourier expansion of f at i∞ by [0]0( f ). Then, we have the

following proposition.
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Proposition 3.1. For k > 1, the values in the following table are established to be true.

cusp [0]c (E2k(z)) [0]c (E2k(2z)) [0]c (E2k(4z))

1 1
(1

2

)2k (1
4

)2k

1
2 1 1

(1
2

)2k

i∞ 1 1 1

Proof. We use [3, Theorem 6.2.1] to get

[0]c (E2k(dz)) =
[

gcd(d,c)
d

]2k

,

where gcd(d,c) is the greatest common divisor of d and c. Plugging in different values of

c and d, we get the table (Note that for the cusp i∞, c = 0).

Now we describe first the multiplier system for the eta function and then a proposition

[11, Proposition 2.1] that gives the Fourier expansion of η(mz) at different cusps. The eta

product f (z) = ∏m|N η(mz)am behaves like a modular form of weight k = (∑am)/2 with

some multiplier system on Γ0(N). That is, for every L ∈ Γ0(N),we have

f (Lz) = f
(

az+b
cz+d

)
= v f (L)(cz+d)k f (z),

where v f (L) is a 24th root of unity. See [11, Chapter 1] for more details. The next proposi-

tion gives the values of the multiplier system explicitly.

Proposition 3.2. ([11, Theorem 1.7]) For L =
(

a b
c d

)
∈ SL2(Z), the multiplier system for the

eta function is given by

vη(L) =
(

d
c

)∗
e
(

1
24
(
(a+d)c−bd

(
c2−1

)
−3c

))
if c is odd,

vη(L) =
( c

d

)
∗

e
(

1
24
(
(a+d)c−bd

(
c2−1

)
+3d−3−3cd

))
if c is even ,
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where (
d
c

)∗
=

(
d
|c|

)
and ( c

d

)
∗
=

(
c
|d|

)
· (−1)

1
4 (sgn(c)−1)(sgn(d)−1)

for sgn(x) = x
|x| ,
(a

b

)
being the Kronecker symbol and e(z) = e2πiz.

Proposition 3.3. ([11, Proposition 2.1]) Let fm(z) = η(mz) with m∈N, and let r = −d
c ∈Q

be a reduced fraction with c 6= 0. Let a,b be chosen such that A =
(

a b
c d

)
∈ SL2(Z). Then

fm
(
A−1z

)
=vη(L)

(
gcd(c,m)

m
(−cz+a)

)1/2

×
∞

∑
n=1

(
12
n

)
e
(

n2

24m

(
(gcd(c,m))2z+νgcd(c,m)

))
,

where L =
( x y

u v
)
∈ SL2(Z), x = md

gcd(c,m) , u = −c
gcd(c,m) , and ν =−mbv− ya.

We use the transformation formula for the eta function to find the constants in the

Fourier expansion of

F = qΨ
4(q2) =

η8(4τ)

η4(2τ)
(3.4)

at different cusps.

Proposition 3.4. We have

[0]1 (F) =− 1
64 ,

[0]2 (F) = 1
16 ,

[0]0 (F) = 0.

Proof. The idea of the proof comes from [3, Section 6.1]. From (3.4), we see that the con-

stant coefficient of F at the cusp i∞ is 0. For the other two constants, we use Proposition 3.3

to find the Fourier expansions of the eta functions ηt(z) = η(tz) for t = 2,4 at the cusps 1

and 1/2.
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For c ∈ Z, define

Ac =

−1 0

c −1

 .

Then the matrix A−1
c takes the cusp i∞ to the cusp 1/c.

Consider the cusp 1/1. Taking

L2 =

−2 1

−1 0

 and L4 =

−4 1

−1 0

 ,

Proposition 3.2 yields vη(L2) = e5πi/12 and vη(L4) = e7πi/12. Observe that for L2 and L4,

ν = 1. Using Proposition 3.3, we get

η2

(
A−1

1 z
)
=

e5πi/12

21/2 (−z−1)1/2
∑
n≥1

(
12
n

)
e
(

n2

48
(z+1)

)

and

η4

(
A−1

1 z
)
=

e7πi/12

2
(−z−1)1/2

∑
n≥1

(
12
n

)
e
(

n2

96
(z+1)

)
.

Hence, we have

η
4
2

(
A−1

1 z
)
=

e5πi/3

22 (z+1)2

(
∑
n≥1

(
12
n

)
e
(

n2

48
(z+1)

))4

and

η
8
4

(
A−1

1 z
)
=

e2πi/3

28 (z+1)4

(
∑
n≥1

(
12
n

)
e
(

n2

96
(z+1)

))8

.

Thus,

F
(

A−1
1 z
)
=

η8
4

(
A−1

1 z
)

η4
2

(
A−1

1 z
) =

−1
64

(z+1)2

(
∑n≥1

(12
n

)
e
(

n2

96(z+1)
))8

(
∑n≥1

(12
n

)
e
(

n2

48(z+1)
))4 ,
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i.e.,

(F [A−1
1 ]2)(z) = (z+1)−2

η8
4

(
A−1

1 z
)

η4
2

(
A−1

1 z
) =

−1
64

(
∑n≥1

(12
n

)
e
(

n2

96(z+1)
))8

(
∑n≥1

(12
n

)
e
(

n2

48(z+1)
))4 . (3.5)

Next consider the cusp 1/2. Taking

L2 =

−1 1

−1 0

 and L4 =

−2 1

−1 0

 ,

Proposition 3.2 yields vη(L2) = eπi/3 and vη(L4) = e5πi/12. Also ν = 1 for L2 and L4. Using

Proposition 3.3, we get

η2

(
A−1

2 z
)
= eπi/3(−2z−1)1/2

∑
n≥1

(
12
n

)
e
(

n2

48
(4z+2)

)

and

η4

(
A−1

2 z
)
=

e5πi/12

21/2 (−2z−1)1/2
∑
n≥1

(
12
n

)
e
(

n2

96
(4z+2)

)
.

Hence, we have

η
4
2

(
A−1

2 z
)
= e4πi/3(2z+1)2

(
∑
n≥1

(
12
n

)
e
(

n2

48
(4z+2)

))4

and

η
8
4

(
A−1

2 z
)
=

e4πi/3

24 (2z+1)4

(
∑
n≥1

(
12
n

)
e
(

n2

96
(4z+2)

))8

.

Thus,

F
(

A−1
2 z
)
=

η8
4

(
A−1

2 z
)

η4
2

(
A−1

2 z
) =

1
16

(2z+1)2

(
∑n≥1

(12
n

)
e
(

n2

96(4z+2)
))8

(
∑n≥1

(12
n

)
e
(

n2

48(4z+2)
))4 ,
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i.e.,

(F [A−1
2 ]2)(z) = (2z+1)−2

η8
4

(
A−1

2 z
)

η4
2

(
A−1

2 z
) =

1
16

(
∑n≥1

(12
n

)
e
(

n2

96(4z+2)
))8

(
∑n≥1

(12
n

)
e
(

n2

48(4z+2)
))4 . (3.6)

Looking at the constant coefficients in the Fourier expansions (3.5) and (3.6), we are done.

The following is an immediate corollary of Proposition 3.4.

Corollary 3.5. The constants in the Fourier expansion of Fk = qkΨ4k(q2) at the 3 inequiv-

alent cusps of Γ0(4) are

[0]1
(
Fk)= (− 1

64

)k
,

[0]2
(
Fk)= ( 1

16

)k
,

[0]0
(
Fk)= 0.

Before we give our alternate proof of [1, Theorem 2.5], recall that χ0 and χ1 are princi-

pal Dirichlet characters mod 4 and mod 1 respectively and the generalised divisor function

for Dirichlet characters ψ1 and ψ2 is given by

σk,ψ1,ψ2 (n) = ∑
d|n,d>0

ψ1(d)ψ2(n/d)dk.

Theorem 3.6 and Theorem 3.12 can be considered as special cases of [2, Theorem 1.1].

Here we give detailed proofs using ideas from [2].

Theorem 3.6. For any integer k ≥ 2, we have

δ4k(n) =
1
dk

σ2k−1,χ1,χ0(2n+ k)+ c(2n+ k), (3.7)

where
∞

∑
n=1

c(n)qn ∈ S2k(Γ0(4))
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is a cusp form and

dk =−
(−16)k (4k−1

)
B2k

8k
(3.8)

in which B2k is the 2kth Bernoulli number.

Proof. Using Theorem 1.2, we have that

Fk(z) = qk
Ψ

4k(q2) ∈M2k(Γ0(4)).

So we can write Fk(z) as

Fk(z) = E(z)+S(z),

where E(z) ∈ E2k(Γ0(4)) and S(z) ∈ S2k(Γ0(4)). The Eisenstein form E(z) can be written

as a linear combination of the Eisenstein basis (3.3). Hence,

Fk(z) = aE2k(z)+bE2k(2z)+ cE2k(4z)+S(z) (3.9)

for some complex numbers a,b,c. Observing that the cusp form S(z) vanishes at every

cusp of Γ0(4), we compare the constants in the Fourier expansions of the LHS and the RHS

of (3.9) at different cusps. Using Proposition 3.1 and Corollary 3.5, we get the following

system of equations. 
a+
(1

2

)2k
b+
(1

4

)2k
c =

(
− 1

64

)k
,

a+b+
(1

2

)2k
c =

( 1
16

)k
,

a+b+ c = 0.

For k even, this system solves to

a = 0, b =
1

(22k−1)22k , and c =
−1

(22k−1)22k .
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For k odd, this system solves to

a =
−2

(4k−1)24k , b =
22k +1

(22k−1)24k , and c =
−1

(22k−1)22k .

For even k, we get

Fk(z) =
1

(22k−1)22k E2k(2z)+
−1

(22k−1)22k E2k(4z)+S(z).

Substituting the Fourier expansion of the Eisenstein series E2k(z) from (3.1), we get

qk
Ψ

4k(q2) =
−4k

Bk
(
22k−1

)
22k

(
∞

∑
n=1

σ2k−1(n)q2n−
∞

∑
n=1

σ2k−1(n)q4n

)
+S(z).

Next, we compare the coefficients of q2n+k. If 4|2n+ k,

δ4k(n) =
−4k

Bk
(
22k−1

)
22k

(
σ2k−1

(
2n+ k

2

)
−σ2k−1

(
2n+ k

4

))
+ c(2n+ k).

Now, when 4 | 2n+ k,

σ2k−1

(
2n+ k

2

)
−σ2k−1

(
2n+ k

4

)
= σ2k−1,χ1,χ0

(
2n+ k

2

)
=

1
22k−1 σ2k−1,χ1,χ0(2n+ k).

Hence substituting this back gives

δ4k(n) =
−4k

Bk
(
22k−1

)
24k−1 σ2k−1,χ1,χ0(2n+ k)+ c(2n+ k).

If 4 - 2n+ k, but 2 | 2n+ k,

δ4k(n) =
−4k

Bk
(
22k−1

)
22k

σ2k−1

(
2n+ k

2

)
+ c(2n+ k)

=
−4k

Bk
(
22k−1

)
24k−1 σ2k−1,χ1,χ0(2n+ k)+ c(2n+ k).
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For odd k, we get

Fk(z) =
−2

(4k−1)24k E2k(z)+
22k +1

(22k−1)24k E2k(2z)+
−1

(22k−1)22k E2k(4z)+S(z).

Substituting the Fourier expansion of the Eisenstein series E2k(z) from (3.1), we get

qk
Ψ

4k(q2) =
4k

Bk(4k−1)24k +
8k

Bk(4k−1)24k

∞

∑
n=1

σ2k−1(n)qn

− 4k(22k +1)
Bk(4k−1)24k

∞

∑
n=1

σ2k−1(n)q2n +
4k

Bk(4k−1)22k

∞

∑
n=1

σ2k−1(n)q4n +S(z).

Comparing the Fourier coefficients of q2n+k, we are done.

3.2 An explicit formula for δ4k+2(n)

We next use the approach employed in the previous section to derive a formula for

δ4k+2(n). The main difference is that our generating function is a modular form of odd

weight with a quadratic character. We start with a description of the generating function of

δ4k+2(n).

We saw that the Psi function has the product expression given by

Ψ(q) = q
−1
8

η2(q2)

η(q)
.

Hence,

q2k+1
Ψ

4k+2(q4) =
η8k+4(q8)

η4k+2(q4)
. (3.10)

Let J(q) = qψ2(q4). Then

J2k+1(q) = q2k+1
Ψ

4k+2(q4) = ∑δ4k+2(n)q4n+2k+1. (3.11)
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Using Theorem 1.2 we see that

J2k+1(q) ∈M2k+1(Γ0(8),χ−4),

where χ−4 is the character mod 4 taking the values χ−4(1) = 1, and χ−4(3) =−1.

Next, we find out the constants in the Fourier expansion of J2k+1(q) at different cusps.

We obtain these values by using Proposition 3.3. From (3.2), we see that Γ0(8) has 4

inequivalent cusps. A complete set is given by CΓ0(8) = {i∞,1, 1
2 ,

1
4}.

Proposition 3.7. The constants in the Fourier expansion of J2k+1(q) are

[0]1
(
J2k+1)= i(−1)k+1

28k+4 ,

[0]2
(
J2k+1)= i(−1)k

26k+3 ,

[0]4
(
J2k+1)= 1

24k+2 ,

[0]0
(
J2k+1)= 0.

Proof. From (3.11), we see that the constant coefficient at the cusp i∞ is 0. For the other

three constants, we find the Fourier expansions of ηt(z) = η(tz) for t = 4 and 8 at the cusps

1, 1/2 and 1/4 using the same methodology as in Proposition 3.4. For c ∈ Z, define

Ac =

−1 0

c −1

 .

At the cusp 1/1, we get

η8

(
A−1

1 z
)
=

e11πi/12

81/2 (−z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(z+1)

))

and

η4

(
A−1

1 z
)
=

e7πi/12

2
(−z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

96
(z+1)

))
.
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Hence, we have

η
8k+4
8

(
A−1

1 z
)
=

e11πi(8k+4)/12

84k+2 (z+1)4k+2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(z+1)

))8k+4

,

η
4k+2
4

(
A−1

1 z
)
=

e7πi(4k+2)/12

24k+2 (−1)(z+1)2k+1

(
∑
n≥1

(
12
n

)
e
(

n2

96
(z+1)

))4k+2

,

and

J2k+1
(

A−1
1 z
)
=

η
8k+4
8

(
A−1

1 z
)

η
4k+2
4

(
A−1

1 z
) =

i(−1)k+1

28k+4 (z+1)2k+1

(
∑n≥1

(12
n

)
e
(

n2

192(z+1)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(z+1)
))4k+2 ,

i.e.,

(J2k+1[A−1
1 ]2k+1)(z)= (z+1)−2k−1

η
8k+4
8

(
A−1

1 z
)

η
4k+2
4

(
A−1

1 z
) =

i(−1)k+1

28k+4

(
∑n≥1

(12
n

)
e
(

n2

192(z+1)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(z+1)
))4k+2 .

(3.12)

At the cusp 1/2, we get

η8

(
A−1

2 z
)
=

e7πi/12

41/2 (−2z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(4z+2)

))

and

η4

(
A−1

2 z
)
=

e5πi/12

21/2 (−2z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

96
(4z+2)

))
.

Hence, we have

η
8k+4
8

(
A−1

2 z
)
=

e7πi(8k+4)/12

28k+4 (2z+1)4k+2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(4z+2)

))8k+4

,

η
4k+2
4

(
A−1

2 z
)
=

e5πi(4k+2)/12

22k+1 (−1)(2z+1)2k+1

(
∑
n≥1

(
12
n

)
e
(

n2

96
(4z+2)

))4k+2

,
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and

J2k+1
(

A−1
2 z
)
=

η
8k+4
8

(
A−1

2 z
)

η
4k+2
4

(
A−1

2 z
) =

i(−1)k

26k+3 (2z+1)2k+1

(
∑n≥1

(12
n

)
e
(

n2

192(4z+2)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(4z+2)
))4k+2 ,

i.e.,

(J2k+1[A−1
2 ]2k+1)(z)= (2z+1)−2k−1

η
8k+4
8

(
A−1

2 z
)

η
4k+2
4

(
A−1

2 z
) =

i(−1)k

26k+3

(
∑n≥1

(12
n

)
e
(

n2

192(4z+2)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(4z+2)
))4k+2 .

(3.13)

At the cusp 1/4, we get

η8

(
A−1

4 z
)
=

e5πi/12

21/2 (−4z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(16z+4)

))

and

η4

(
A−1

4 z
)
= e4πi/12(−4z−1)1/2

(
∑
n≥1

(
12
n

)
e
(

n2

96
(16z+4)

))
.

Hence, we have

η
8k+4
8

(
A−1

4 z
)
=

e5πi(8k+4)/12

24k+2 (4z+1)4k+2

(
∑
n≥1

(
12
n

)
e
(

n2

192
(16z+4)

))8k+4

,

η
4k+2
4

(
A−1

4 z
)
=−e4πi(4k+2)/12(4z+1)2k+1

(
∑
n≥1

(
12
n

)
e
(

n2

96
(16z+4)

))4k+2

,

and

J2k+1
(

A−1
4 z
)
=

η
8k+4
8

(
A−1

4 z
)

η
4k+2
4

(
A−1

4 z
) =

1
24k+2 (4z+1)2k+1

(
∑n≥1

(12
n

)
e
(

n2

192(16z+4)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(16z+4)
))4k+2 ,
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i.e.,

(J2k+1[A−1
4 ]2k+1)(z)= (4z+1)−2k−1

η
8k+4
8

(
A−1

4 z
)

η
4k+2
4

(
A−1

4 z
) =

1
24k+2

(
∑n≥1

(12
n

)
e
(

n2

192(16z+4)
))8k+4

(
∑n≥1

(12
n

)
e
(

n2

96(16z+4)
))4k+2 .

(3.14)

Looking at the constant coefficients in the Fourier expansions (3.12), (3.13) and (3.14), we

get the result.

We next need a basis for the Eisenstein space E2k+1(Γ0(8),χ−4). We follow the con-

struction given in [5, Section 8.5]. Let ψ1 and ψ2 be Dirichlet characters mod N1 and N2

respectively. set ψ = ψ1ψ2 viewed as a character mod N, where N = N1N2. For an integer

k > 2, define

Gk,ψ1,ψ2(z) =
1
2 ∑

N1|c
(c,d)6=(0,0)

ψ1(d)ψ2(c/N1)

(cz+d)k .

From [5, Corollary 8.5.5], we see that when ψ1 is primitive, Gk,ψ1,ψ2(z) ∈ Mk(Γ0(N),ψ)

and has the Fourier expansion given by

Gk,ψ1,ψ2(z) = δN2,1L(k,ψ1)+

(
−2πi

N1

)k g(ψ1)

(k−1)! ∑
n≥1

σk−1,ψ1,ψ2 (n)qn, (3.15)

where g is the Gauss sum g(ψ1) = ∑r mod N1 ψ1(r)e2πir/N1 , σt,ψ1,ψ2 (n) is the generalised

divisor function, δa,b = 1 if a = b and 0 otherwise, and L(k,ψ1) is the value of the Dirichlet

L-function associated with ψ1 at integer k. A basis for Ek(Γ0(N),ψ) can be constructed

with the help of the following Theorem.

Theorem 3.8. ([5, Theorem 8.5.17]) Let k > 2 and ψ be a character modulo N such that

ψ(−1) = (−1)k. A basis for the subspace Ek(Γ0(N),ψ) is given by the Eisenstein Series

Gk,ψ1,(ψψ
−1
1 ) f

(dz), where ψ1 ranges through all primitive characters and d through positive

integers such that df(ψ1)f((ψψ
−1
1 ) f ) | N. Here, f(ψ) is the conductor of ψ and (ψ) f is the

primitive character equivalent to ψ.
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Using Theorem 3.8, we see that the set

B= {G2k+1,χ1,χ−4(z),G2k+1,χ−4,χ1(z),G2k+1,χ1,χ−4(2z),G2k+1,χ−4,χ1(2z)}

forms a basis for E2k+1(Γ0(8),χ−4), where χ1 is the trivial Dirichlet character of conductor

1. Also, given a Dirichlet character χ of modulus M, the generalised Bernoulli number Bn,χ

is defined by the relation
M

∑
a=1

χ(a)teat

eMt−1
=

∞

∑
n=0

Bn,χ

n!
tn. (3.16)

Now, computing the Fourier expansions of the functions in B at i∞ using (3.15) yields,

G2k+1,χ1,χ−4(z) =
(−2πi)2k+1

(2k)! ∑
n≥1

σ2k,χ1,χ−4(n)q
n,

G2k+1,χ1,χ−4(z) =
(−2πi)2k+1

(2k)! ∑
n≥1

σ2k,χ1,χ−4(n)q
2n,

G2k+1,χ−4,χ1(z) = L(2k+1,χ−4)+

(
−2πi

4

)2k+1 2i
(2k)! ∑

n≥1
σ2k,χ−4,χ1(n)q

n,

and

G2k+1,χ−4,χ1(z) = L(2k+1,χ−4)+

(
−2πi

4

)2k+1 2i
(2k)! ∑

n≥1
σ2k,χ−4,χ1(n)q

n,

where the value of the Dirichlet L-function L(2k+1,χ−4) can be computed, using [5, The-

orem 3.4.14] as

L(2k+1,χ−4) =
(−1)k−1(2π)2k+1B2k+1,χ−4

24k+2(2k+1)!
. (3.17)

Next, define the normalised Eisenstein series E2k+1,ψ1,ψ2(z) by

E2k+1,ψ1,ψ2(z) =
1

L(2k+1,χ−4)
G2k+1,ψ1,ψ2(z).
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Then, as a corollary of Theorem 3.8, we have a basis for E2k+1(Γ0(8),χ−4) given by

B1 = {E2k+1,χ1,χ−4(z),E2k+1,χ−4,χ1(z),E2k+1,χ1,χ−4(2z),E2k+1,χ−4,χ1(2z)}. (3.18)

We now describe a result given in [5] that will be used to compute the constants associ-

ated to the Fourier expansions of the functions in B1 at different cusps of Γ0(8).

Theorem 3.9. ([5, Proposition 8.5.6]) Let k≥ 3, and let ψ1,ψ2 be two primitive characters

such that ψ = ψ1ψ2 satisfies ψ(−1) = (−1)k. The value V (A/C) of Gk,ψ1,ψ2(ez) at a cusp

A/C with gcd(A,C) = 1 is given by

V (A/C) =

 0 if N1 -C,

(e/h)−kψ1((e/h)A)ψ2 (−(C/N1)/h)L(k,ψ1ψ2) if N1 |C,

where h = gcd(e,C/N1).

As a direct corollary of this theorem, we have

Corollary 3.10. The value V (A/C) of Ek,ψ1,ψ2(ez) at a cusp A/C with gcd(A,C) = 1 is

given by

V (A/C) =
1

L(2k+1,χ−4)


0 if N1 -C,

(e/h)−kψ1((e/h)A)ψ2 (−(C/N1)/h)L(k,ψ1ψ2) if N1 |C.

Using the corollary stated above, we have the following proposition.

Proposition 3.11. The values in the following table are valid.

cusp 1
c [0]c

(
E2k+1,χ1,χ−4(z)

)
[0]c
(
E2k+1,χ1,χ−4(2z)

)
[0]c
(
E2k+1,χ−4,χ1(z)

)
[0]c
(
E2k+1,χ−4,χ1(2z)

)
1 −1 −

( 1
2

)2k+1
0 0

1
2 0 −1 0 0

1
4 0 0 1 0

i∞ 0 0 1 1
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We are now ready to state the main result of this section.

Theorem 3.12. For any positive k, we have

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+ t(4n+2k+1),

where
∞

∑
n=1

t(n)qn ∈ S2k+1(Γ0(8),χ−4)

is a cusp form and Bn,χ is the nth generalised Bernoulli number associated to χ.

Proof. Using Theorem 1.2, we have that

J2k+1(z) = q2k+1
Ψ

4k+2(q4) ∈M2k+1(Γ0(8),χ−4).

So we can write J2k+1(z) as

J2k+1(z) = E(z)+S(z),

where E(z) ∈ E2k+1(Γ0(8),χ−4) and S(z) ∈ S2k+1(Γ0(8),χ−4). The Eisenstein form E(z)

can be written as a linear combination of the Eisenstein basis B1 given in (3.18). Thus, we

have

J2k+1(z) = aE2k+1,χ1,χ−4(z)+bE2k+1,χ1,χ−4(2z)+

cE2k+1,χ−4,χ1(z)+dE2k+1χ−4,χ1(2z)+S(z) (3.19)

for some complex numbers a,b,c, and d.

Next we observe that S(z) vanishes at each cusp of Γ0(8). Using Proposition 3.7 and

Proposition 3.11, we compare the constants in the Fourier expansions of the LHS and the
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RHS of (3.19) at different cusps to get the following system of equations:



c+d = 0,

−a−
(1

2

)2k+1
b = i(−1)k+1

28k+4 ,

−b = i(−1)k

26k+3 ,

c = 1
24k+2 .

The system has the solution a = 2i(−1)k/28k+4,b = i(−1)k+1/26k+3,c = 1/24k+2, and d =

−1/24k+2. Comparing the coefficient of q4n+2k+1 on both sides of (3.19), we have

δ4k+2(n) = a
i24k+2(2k+1)χ−4(4n+2k+1)

B2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)

+ c
(−1)2.(2k+1)

B2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+ t(4n+2k+1), (3.20)

where we also used the fact that

σ2k,χ1,χ−4(4n+2k+1) = χ−4(4n+2k+1)σ2k,χ−4,χ1(4n+2k+1).

Substituting the values of a and c in the above equation and employing the fact that

χ−4(4n+2k+1) = (−1)k, we deduce

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+ t(4n+2k+1).

3.3 Bases for S2k+1(Γ0(8),χ−4) and S2k(Γ0(4))

In this section, inspired by the work of Aygin [3, Chapter 5], we obtain bases consisting

of eta products for S2k+1(Γ0(8),χ−4) and S2k(Γ0(4)). We start by obtaining a basis for

S2k+1(Γ0(8),χ−4). To do this, we first compute the dimension of the above mentioned
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space using the following result.

Proposition 3.13. ([5, Theorem 7.4.1]) Let N and k be positive integers and let χ be a

Dirichlet character modulo N with conductor f(χ) such that χ(−1) = (−1)k. For k ≥ 2 set

A1 =
k−1

12
N ∏

p|N

(
1+

1
p

)
,

A2 =

(
k−1

3
−
⌊

k
3

⌋)
∑

x mod N
x2+x+1≡0 mod N

χ(x)+
(

k−1
4
−
⌊

k
4

⌋)
∑

x mod N
x2+1≡0 mod N

χ(x),

A3 =
1
2 ∑

0<d|N
gcd(d,N/d)|N/f(χ)

φ(gcd(d,N/d)),

and A4 = 1 if k = 2 and χ is trivial, otherwise A4 = 0. Then

dim(Sk(Γ0(N))) = A1−A2−A3 +A4.

As a consequence of the above theorem, we have the following assertion.

Corollary 3.14. The cusp space S2k+1(Γ0(8),χ−4) has dimension 2k−2.

Since S2k+1(Γ0(8),χ−4) is 2k−2 dimensional, we obtain a basis by constructing 2k−

2 eta quotients with distinct orders of vanishing at the cusp i∞. The distinct orders of

vanishing at i∞ will force the linear independence of the eta products. If for each v, we can

find an eta product with the order of vanishing equal to v for all 1≤ v≤ 2k−2, we would

be done.

To define an eta quotient of weight 2k+ 1 and order of vanishing v at i∞, we define it

as a product of three factors. The first factor ensures its weight, the second factor ensures

its order of vanishing at i∞ and the third factor ensures that it is a cusp form. Let C(2k+

1,v,8,z) be defined as

C(2k+1,v,8,z) = (C(1,0)(z))
2k+1(C(0,1)(z))

vC(0,0)(z),
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where C(a,b)(z) is an eta quotient of weight a and order of vanishing b at i∞. Let us look at

the available options for C(a,b)(z). Suppose

C(a,b)(z) = η
j(z)ηk(2z)ηl(4z)ηm(8z).

Then, by [14, Theorem 1.64], for C(a,b) to be in Sa(Γ0(8),χ−4) and have order of vanishing

b, we must have

j+ k+ l +m = 2a, (3.21a)

j+2k+4l +8m = 24b, (3.21b)

24|(8 j+4k+2l +m), (3.21c)

where the first condition is for the weight, the second for the order of vanishing, and the

third condition is a necessary condition to make it an eta quotient. Some of the available

options for C(1,0)(z) and C(0,1)(z) are listed in the first columns of Table 3.1 and Table 3.2

below. We now investigate when

C(2k+1,v,8,z) = (C(1,0)(z))
2k+1(C(0,1)(z))

vC(0,0)(z),

where

C(1,0)(z) = η
j1(z)ηk1(2z)ηl1(4z)ηm1(8z), (3.22)

C(0,1)(z) = η
j2(z)ηk2(2z)ηl2(4z)ηm2(8z), (3.23)

C(0,0)(z) = η
j3(z)ηk3(2z)ηl3(4z)ηm3(8z), (3.24)

is a holomorphic cusp form. We state a result due to Kohler to aid us in the investigation.

Theorem 3.15 ([11], Corollary 2.3). An eta product f (z) = ∏m|N η(mz)am is holomorphic
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if and only if the inequalities

∑
m|N

(gcd(c,m))2

m
am ≥ 0

holds for all positive divisors c of N. It is a cusp form if and only if all the inequalities hold

strictly.

Using the theorem stated above, we have the following four conditions in order to make

C(2k+1,v,8,z) a cusp form.

(2k+1)(8 j1 +4k1 +2l1 +m1)+ v(8 j2 +4k2 +2l2 +m2)+(8 j3 +4k3 +2l3 +m3)> 0,

(3.25a)

(2k+1)(2 j1 +4k1 +2l1 +m1)+ v(2 j2 +4k2 +2l2 +m2)+(2 j3 +4k3 +2l3 +m3)> 0,

(3.25b)

(2k+1)( j1 +2k1 +4l1 +2m1)+ v( j2 +2k2 +4l2 +2m2)+( j3 +2k3 +4l3 +2m3)> 0,

(3.25c)

(2k+1)( j1 +2k1 +4l1 +8m1)+ v( j2 +2k2 +4l2 +8m2)+( j3 +2k3 +4l3 +8m3)> 0.

(3.25d)

These conditions should hold irrespective of the values of k and v. The fact that 1 ≤ v ≤

2k− 2 helps us in deciding what the eta products C(1,0)(z) and C(0,1)(z) should be. Using

(3.21), we record a few options available to us for C(1,0)(z) and C(0,1)(z) in Table 3.1 and

Table 3.2 respectively.

For the last product C(0,0)(z), (3.21) gives the system of linear equations

j3 + k3 + l3 +m3 = 0,

j3 +2k3 +4l3 +8m3 = 0,

and 8 j3 +4k3 +2l3 +m3 = 24t,
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Table 3.1: Options for C(1,0)(z)

( j1,k1, l1,m1) 8 j1 +4k1 +2l1 +m1 2 j1 +4k1 +2l1 +m1 j1 +2k1 +4l1 +2m1 j1 +2k1 +4l1 +8m1

(2,-11,17,-6) 0 -12 36 0
(0,-4,10,-4) 0 0 24 0
(-2,3,3,-2) 0 12 12 0

(-4,10,-4,0) 0 24 0 0
(-6,17,-11,2) 0 36 -12 0

(6,-9,7,-2) 24 -12 12 0
(4,-2,0,0) 24 0 0 0
(2,5,-7,2) 24 12 -12 0

(0,12,-14,4) 24 24 -24 0

Table 3.2: Options for C(0,1)(z)

( j2,k2, l2,m2) 8 j2 +4k2 +2l2 +m2 2 j2 +4k2 +2l2 +m2 j2 +2k2 +4l2 +2m2 j2 +2k2 +4l2 +8m2

(0,4,-12,8) 0 0 -24 24
(4,2,-10,4) 24 0 -24 0
(-4,2,-2,4) -24 0 0 24
(-2,-5,5,2) -24 -12 12 24

for some integer t, which solves to j3 = (32t− 2k3)/7, k3 = k3, l3 = −8t− k3, and m3 =

(24t+2k3)/7. Using the tuples ( j1,k1, l1,m1)= (4,−2,0,0) and ( j2,k2, l2,m2)= (−4,2,−2,4),

the conditions (3.25) for making C(2k+1,v,z) a cusp form imply

24(2k+1)−24v+168t/7 > 0, k3 > 2t, and k3 +12t < 0.

We can verify that the above inequalities hold for t = −2 and k3 = 10 for all values

1≤ ν≤ 2k−2. Hence, we get the eta product

C(2k+1,v,8,z) =
(

η4(z)
η2(2z)

)2k+1(
η2(2z)η4(8z)
η4(z)η2(4z)

)v(
η10(2z)η6(4z)
η12(z)η4(8z)

)

which is a holomorphic cusp form of weight 2k+1 and order of vanishing v at the cusp i∞

for all values of 1≤ v≤ 2k−2. Therefore, we have the following theorem.
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Theorem 3.16. The collection

{
C(2k+1,v,8,z) ; 1≤ v≤ 2k−2

}
forms a basis of S2k+1(Γ0(8),χ−4), where

C(2k+1,v,8,z) =
(

η4(z)
η2(2z)

)2k+1(
η2(2z)η4(8z)
η4(z)η2(4z)

)v(
η10(2z)η6(4z)
η12(z)η4(8z)

)
.

We next obtain a basis for S2k(Γ0(4)) using the same ideas. By Theorem 3.13 we see

that the cusp space S2k(Γ0(4)) is k−2 dimensional. Let C(2k,v,4,z) be defined as

C(2k,v,4,z) = (D(1,0)(z))
2k(D(0,1)(z))

vD(0,0)(z),

where D(a,b)(z) is an eta product of weight a and order of vanishing b at i∞ on Γ0(4). Then,

employing [14, Theorem 1.64] and Theorem 3.15, and considering the available options for

D(a,b)(z) similar to the case of S2k+1(Γ0(8),χ−4), we get the following result.

Theorem 3.17. The collection

{
C(2k,v,4,z) ; 1≤ v≤ k−2

}
forms a basis of S2k(Γ0(4)), where

C(2k,v,4,z) =
(

η10(2z)
η4(z)η4(4z)

)2k(
η8(z)η16(4z)

η24(2z)

)v(
η16(z)η8(4z)

η24(2z)

)
.

3.4 Special cases

In [15], Ono, Robins and Wahl find formulas for δk(n) for some values of k including

k = 6,8,10,12. The first three sections in this chapter offers another way of computing

these formulas. As a consequence of Theorem 3.6, Theorem 3.12, Proposition 3.16 and
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Proposition 3.17, We have

δ6(n) =−
1
8

σ2,χ−4,χ1(4n+3),

δ8(n) =
1
8

σ3,χ1,χ0(2n+2),

δ10(n) =
1

640
(
σ4,χ−4,χ1(4n+5)−a(4n+5)

)
,

δ12(n) =
1

256
(
σ5,χ1,χ0(2n+3)−b(2n+3)

)
,

where

∞

∑
n=1

a(n)qn =η
4(z)η2(2z)η4(4z)+4η

4(2z)η2(4z)η4(8z),

∞

∑
n=1

b(n)qn =η
12(2z).

In addition to the above, we also obtain formulas for δk(n) for k = 14,16 and 18. To our

knowledge, these cases are new and have not been studied before.

Proposition 3.18. We have

δ14(n) =−
1

124928
(
σ6,χ−4,χ1(4n+7)− c(4n+7)

)
,

δ16(n) =
1

17408
(
σ7,χ1,χ0(2n+4)−d(2n+4)

)
,

δ18(n) =
1

45383680
(
σ8,χ−4,χ1(4n+9)− e(4n+9)

)
,

where

∞

∑
n=1

c(n)qn =728
(

η
4(z)η2(2z)η8(8z)+4

η4(2z)η12(8z)
η2(4z)

)
,

∞

∑
n=1

d(n)qn =128η
8(2z)η8(4z),
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∞

∑
n=1

e(n)qn =
η20(z)η4(4z)

η6(2z)
+20

η16(z)η2(4z)η4(8z)
η4(2z)

+144
η12(z)η8(8z)

η2(2z)

+448
η8(z)η12(8z)

η2(4z)
+391168

η4(z)η2(2z)η16(8z)
η4(4z)

+1562624
η4(2z)η12(20z)

η6(4z)
.

Proof. We explain the proof for δ18(n). By the proof of Theorem 3.12, we have

∞

∑
n=0

δ18(n)q4n+9 =
1

45383680

(
∞

∑
n=0

σ8,χ−4,χ1(4n+1)q4n+1−
∞

∑
n=1

e(n)qn

)
, (3.27)

where
∞

∑
n=1

e(n)qn ∈ S9(Γ0(8),χ−4).

Employing Proposition 3.16, a basis for S9(Γ0(8),χ−4) is given by the set

B2 = {b1,b2,b3,b4,b5,b6},

where

b1 = η
20(z)η4(4z)/η

6(2z), b2 = η
16(z)η2(4z)η4(8z)/η

4(2z),

b3 = η
12(z)η8(8z)/η

2(2z), b4 = η
8(z)η12(8z)/η

2(4z),

b5 = η
4(z)η2(2z)η16(8z)/η

4(4z) b6 = η
4(2z)η12(20z)/η

6(4z).

By (3.27), we see that e(2) = e(3) = e(4) = e(6) = 0, e(1) = 1 and e(5) = 58+1. Suppose

∞

∑
n=1

e(n)qn = a1b1 +a2b2 +a3b3 +a4b4 +a5b5 +a6b6.

Then considering the q-expansions of the basis elements in Appendix A, we get the follow-
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ing system of equations:

a1 = 1,

−20a1 +a2 = 0,

176a1−16a2 +a3 = 0,

−880a1 +108a2−12a3 +a4 = 0,

2658a1−384a2 +56a3−8a4 +a5 = 58 +1,

−4544a1 +688a2−112a3 +20a4−4a5 +a6 = 0.

Solving the system of equations leads to the result. Formulas for the other cases can be ob-

tained similarly by obtaining suitable bases and consulting their q-expansions in Appendix

A.

Theoretically there is no obstacle in extending the results of Proposition 3.18 for higher

values of k. The difficulty lies in computing the Fourier expansions of eta quotients and

solving a system of equations to write the cusp form as a linear combination of the basis

elements. Note that our results do not cover the cases δ2(n) and δ4(n) as our method leads

to working with Eisenstein series of weight 1 and weight 2 in these cases. The formulas for

k = 2 and 4 can be computed using other means (see [15] for details).
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Chapter 4

Moments of Sums of Triangular
Numbers

Let f (n) be an arithmetic function. The Dirichlet series associated with f is defined by

L f (s) =
∞

∑
n=1

f (n)
ns .

The Dirichlet series for the divisor function σk(n) has the formula

∞

∑
n=1

σk(n)
ns = ζ(s)ζ(s− k) for ℜ(s)> max(1,k+1),

in terms of the Riemann zeta function, which one can verify by looking at the coefficients

of ns on both sides. We can also prove the following identity due to Ramanujan

∞

∑
n=1

σa(n)σb(n)
ns =

ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)
ζ(2s−a−b)

, (4.1)

for ℜ(s) > max(1,a+1,b+1,a+b+1) (See [9, Chapter 17]). In [4], Borwein and Choi

investigated other arithmetic functions whose Dirichlet series have explicit representations

in terms of the Riemann zeta function and Dirichlet L-functions. They generalised (4.1)

and proved the following result.
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Theorem 4.1. ([4, Theorem 2.1]) Suppose f1, f2,g1, and g2 are completely multiplicative

arithmetic functions. Then for ℜ(s)≥max(σ( fi),σ(gi)), we have

∞

∑
n=1

( f1 ∗g1)(n).( f2 ∗g2)(n)
ns =

L f1 f2(s)Lg1g2(s)L f1g2(s)Lg1 f2(s)
L f1 f2g1g2(2s)

,

where ( f ∗g)(n) = ∑d|n f (d)g( n
d ) is the convolution of f and g and σ( f ) is the abscissa of

absolute convergence of f .

Let rk(n) be the number of representations of n as a sum of k squares and let

Lk(s) =
∞

∑
n=1

rk(n)
ns and Rk(s) =

∞

∑
n=1

r2
k(n)
ns

be the Dirichlet series associated to rk(n) and r2
k(n). Formulas for Lk(s) in terms of better

understood L-functions can be obtained for specific even values of k by the explicit formulas

known for rk(n). For example, we have

L2(s) = 4ζ(s)L(s,χ−4), (4.2)

L4(s) = 8(1−41−s)ζ(s)ζ(s−1), (4.3)

L6(s) = 16ζ(s−2)L(s,χ−4)−4ζ(s)L(s−2,χ−4), (4.4)

L8(s) = 16(1−21−s +42−s)ζ(s)ζ(s−3). (4.5)

Using the results for Lk(s) and Theorem 4.1, in [4], Formulas are obtained for Rk(n) for

N = 2,4,6,8. They found

R2(s) =
(4ζ(s)L(s,χ−4))

2

(1+2−s)ζ(2s)
, (4.6)

R4(s) = 64
(8.23−3s−10.22−2s +21−s +1)ζ(s−2)ζ2(s−1)ζ(s)

(1+21−s)ζ(2s−2)
, (4.7)
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R6(s) = 16
(17−32.2−s)ζ(s−4)L2(s−2,χ−4)ζ(s)

(1−16.2−2s)ζ(2s−4)
(4.8)

− 128L(s−4,χ−4)ζ
2(s−2)L(s,χ−4)

(1+4.2−s)ζ(2s−4)
,

R8(s) = 256

(
32 ·26−2s−3 ·23−s +1

)
ζ(s−6)ζ2(s−3)ζ(s)

(1+23−s)ζ(2s−6)
. (4.9)

See [4, Section 3] for proofs of (4.2)-(4.9). The motivation for considering these explicit

representations was to settle the Wagon’s conjecture (see [4, Page 97]), which says that for

N ≥ 3,

∑
n≤x

r2
N(n)∼WNxN−1, as x→ ∞,

where

WN =
1

(N−1)(1−2−N)

πN

Γ2
(1

2N
) ζ(N−1)

ζ(N)
.

In the next sections, we will obtain closed forms similar to (4.2)-(4.9) for the twisted

Dirichlet series related to δk(n) and δ2
k(n) for even values of k and prove an analogue

of the Wagon’s conjecture for the sums of triangular numbers for even values of N. We

will start by studying the twisted Dirichlet series for the sums of triangular numbers. The

Ramanujan-Peterson conjecture gives an estimate O(n(k−1)/2+ε), for any ε > 0, for the

Fourier coefficients a(n) of a holomorphic cusp form on a congruence subgroup. Using

the Ramanujan-Peterson bound [5, Section 9.2.3] for the cusp parts in Theorem 3.6 and

Theorem 3.12, we get

δ4k(n) =
−8k

(−16)k(4k−1)B2k
σ2k−1,χ1,χ0(2n+ k)+O

(
n

2k−1
2 +ε

)
(4.10)

and

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+O
(

nk+ε

)
(4.11)

for any ε > 0.
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Let χ ∈ {χ0,χ−4} and ψ ∈ {χ0,χ1} be Dirichlet characters. Then, for i = 1 and 2, set

Fi,a(x) = ∑
n≤x

n≡a(4)

σ
i
2k,χ−4,χ1

(n),

Fi(x;χ) = ∑
n≤x

χ(n)σi
2k,χ−4,χ1

(n),

Gi,a(x) = ∑
n≤x

n≡a(2)

σ
i
2k−1,χ1,χ0

(n),

and

Gi(x;ψ) = ∑
n≤x

ψ(n)σi
2k−1,χ1,χ0

(n).

Let χ0 be the principal character mod 4. By employing the orthogonality of characters

(See [13, Page 122]), we deduce, for i = 1,2 and odd a,

Fi,a(x) =
1
2
(χ0(a)Fi(x;χ0)+χ−4(a)Fi(x;χ−4)) . (4.12)

Also, by examining the cases for even and odd values of a, we see that

Gi,a(x) =

 Gi(x;χo) if a is odd,

Gi(x;χ1)−Gi(x,χ0) if a is even.
(4.13)

In the next section, we will determine closed expressions for the Dirichlet series associ-

ated to the twisted sums Fi(x;χ) and Gi(x;ψ) which will later be used to obtain asymptotic

formulas for the twisted sums.
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4.1 Twisted Dirichlet Series

Let the Dirichlet series associated to the twisted sums Fi(x;χ) and Gi(x;ψ) for Dirichlet

characters χ ∈ {χ0,χ−4} and ψ ∈ {χ0,χ1}, for i = 1,2 be defined as

L4k+2,χ(s) =
∞

∑
n=1

χ(n)σ2k,χ−4,χ1(n)
ns ,

R4k+2,χ(s) =
∞

∑
n=1

χ(n)σ2
2k,χ−4,χ1

(n)

ns ,

S4k,ψ(s) =
∞

∑
n=1

ψ(n)σ2k−1,χ1,χ0(n)
ns ,

and

T4k,ψ(s) =
∞

∑
n=1

ψ(n)σ2
2k−1,χ1,χ0

(n)

ns .

Then the following assertions holds.

Theorem 4.2. The formal Dirichlet series associated to the twisted sums Fi(x;χ), for i =

1,2 and χ ∈ {χ−4,χ0}, are given by

L4k+2,χ0(s) = L(s−2k,χ−4)L(s,χ0),

L4k+2,χ−4(s) = L(s−2k,χ0)L(s,χ−4),

R4k+2,χ0(s) =
L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)

L(2s−4k,χ0)
,

R4k+2,χ−4(s) =
L(s−4k,χ−4)L(s,χ−4)L2(s−2k,χ0)

L(2s−4k,χ0)
.

Proof. We use Theorem 4.1 to prove the above expressions.

• For L4k+2,χ0(s), consider

f1(n) = χ−4(n)n2k, g1(n) = 1, f2(n) = χ0(n), g2(n) = δ(n) (4.14)

to get L f1 f2(s) = L(s−2k,χ−4), Lg1g2(s) = 1, L f1g2(s) = 1, Lg1 f2(s) = L(s,χ0), and
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L f1 f2g1g2(2s) = 1, where δ(n) is given by

δ(n) =

 0, n 6= 1,

1, n = 1.

Hence,

L4k+2,χ0(s) = L(s−2k,χ−4)L(s,χ0).

• For L4k+2,χ−4(s), consider

f1(n) = χ−4(n)n2k, g1(n) = 1, f2(n) = χ−4(n), g2(n) = δ(n)

to get L f1 f2(s) = L(s−2k,χ0), Lg1g2(s) = 1, L f1g2(s) = 1, Lg1 f2(s) = L(s,χ−4), and

L f1 f2g1g2(2s) = 1. Hence,

L4k+2,χ−4(s) = L(s−2k,χ0)L(s,χ−4).

• For R4k+2,χ0(s), consider

f1(n) = n2k
χ−4(n)χ0(n), g1(n) = χ0(n), f2(n) = n2k

χ−4(n), g2(n) = 1

to get L f1 f2(s)=L(s−4k,χ0), Lg1g2(s)=L(s,χ0), L f1g2(s)=L(s−2k,χ−4), Lg1 f2(s)=

L(s−2k,χ−4), and L f1 f2g1g2(2s) = L(2s−4k,χ0). Hence,

R4k+2,χ0(s) =
L(s−4k,χ2)L(s,χ0)L2(s−2k,χ−4)

L(2s−4k,χ0)
.

• For R4k+2,χ−4(s), consider

f1(n) = n2k
χ−4(n)χ−4(n), g1(n) = χ−4(n), f2(n) = n2k

χ−4(n), g2(n) = 1
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to get L f1 f2(s)=L(s−4k,χ−4), Lg1g2(s)=L(s,χ−4), L f1g2(s)=L(s−2k,χ0), Lg1 f2(s)=

L(s−2k,χ0), and L f1 f2g1g2(2s) = L(2s−4k,χ0). Hence,

R4k+2,χ−4(s) =
L(s−4k,χ−4)L(s,χ−4)L2(s−2k,χ0)

L(2s−4k,χ0)
.

Similarly, the following identities hold.

Theorem 4.3. The formal Dirichlet series associated to the twisted sums Gi(x;ψ), for i =

1,2 and ψ ∈ {χ0,χ1}, are given by

S4k,χ0(s) = L(s+1−2k,χ0)L(s,χ0),

S4k,χ1(s) = L(s+1−2k,χ1)L(s,χ0),

T4k,χ0(s) =
L(s+2−4k,χ0)L2(s+1−2k,χ0)L(s,χ0)

L(2s+2−4k,χ0)
,

T4k,χ1(s) =
L(s+2−4k,χ1)L2(s+1−2k,χ0)L(s,χ0)

L(2s+2−4k,χ0)
.

4.2 Asymptotic formulas for the twisted sums

The formulas for L4k+2,χ(s) and R4k+2,χ(s) obtained in Theorem 4.2 allow us to obtain

asymptotic formulas for the first and the second moments of δ4k+2(n). In this Section, we

first use Perron’s formula to write each of the twisted sums Fi(x;4k + 2,χ) in terms of a

contour integral and then estimate the integral using Cauchy’s residue theorem. For this

purpose, we will need the following results, which we state with a reference to their proofs.

Theorem 4.4. ([22, Lemma 3.19]) Let

f (s) =
∞

∑
n=1

an

ns (s > 1),
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where an = O{ρ(n)}, ρ(n) being non-decreasing and

∞

∑
n=1

|an|
nσ

= O
(

1
(σ−1)α

)
,

as σ→ 1. Then if c > 0, c+σ > 1, x is not an integer and N is the integer nearest to x,

∑
n6x

an

nw =
1

2πi

∫ c+iT

c−iT
f (w+ s)

xs

s
ds+O

{
xc

T (σ+ c−1)α

}
+O

{
ρ(2x)x1−σ logx

T

}
+O

{
ρ(N)x−σ min

(
x

T |x−N|
,1
)}

.

Next, we state Rademacher’s version of the Phragmén-Lindelöf theorem which provides

estimates using the convexity argument for L-functions satisfying certain properties. It

is worth stating that better estimates breaking this convexity bounds have been obtained

for the Riemann zeta function and Dirichlet L-functions, but for the purpose of our study

Rademacher’s results are more than enough.

Let

L(s) =
∞

∑
n=1

an

ns

be a Dirichlet series absolutely convergent for ℜ(s)> 1 such that it admits an Euler product

L(s) = ∏
p

Lp(s),

where, Lp(s) is the inverse of a polynomial of degree dp in p−s given by

Lp(s) =
dp

∏
i=1

(
1−αi p−s)−1

,

where |αi|= 1. Suppose there exists a positive integer d such that dp ≤ d for all p and the

equality holds for all but finitely many p. We will call such a d the degree of the L-function.
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Set

L∗(s) = ∏
p

L∗p(s)

for

L∗p(s) =
dp

∏
i=1

(
1−αi p−s)−1

.

Assume that the function L(s) can be analytically continued to an entire function and has a

functional equation of the form

Λ(s) = wΛ
∗(1− s),

where w ∈ C, |w|= 1, and

Λ(s) = As/2
m

∏
i=1

Γ(αis+ ri)L(s)

and

Λ
∗(s) = As/2

m

∏
i=1

Γ(αis+ ri)L∗(s)

be such that A > 0, αi,ri ∈R, m is a positive integer and Γ is the Gamma function given by

Γ(z) =
∫

∞

0
xz−1e−xdx.

Then for such an L-function, the following assertion holds.

Proposition 4.5. ([12, Page 336]) For 0≤ σ≤ 1,

|L(σ+ it)| �
(

A(|t|+2)d
)(1−σ)/2(

log
(

A(|t|+2)d
))d

.

As an immediate corollary for the Dirichlet character χ0, we have
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Corollary 4.6. Let χ0 be the principal Dirichlet character mod 4. Then, for 0≤ σ≤ 1,

L(σ+ it,χ0) = O(|t|1/2 log(|t|+2)).

Proof. The Dirichlet L-function L(s,χ0) has the Euler product

L(s,χ0) = ∏
p

1

1− χ0(p)
ps

.

We can see that the degree dp of all the local factors Lp(s) =
(

1− χ0(p)
ps

)−1
is 1 except L2(s)

which has degree 0. Hence, the degree d of L(s,χ0) is 1. We also know from [13, Corollary

10.8] that the Dirichlet L-function L(s,χ0) satisfies the functional equation

ξ(s,χ0) = ε(χ0)ξ(1− s,χ0),

where

ξ(s,χ0) = (2/π)s/2L(s,χ0)Γ(s/2)

and ε(χ0) is a root of unity. Hence, by taking A = 2/π in Theorem 4.5, we have our

result.

Now, we use Perron’s formula (Theorem 4.4) and the estimates given by the Phragmén-

Lindelöf theorem (Corollary 4.6) to obtain asymptotic formulas for the twisted sums Fi(x;χ).

Proposition 4.7. For the twisted sums Fi(x;χ) for Dirichlet characters χ ∈ {χ0,χ−4} and

i = 1,2. We have, for any ε > 0, the following estimates:

(i) F1(4x+2k+1;χ0) = O
(

x2k+ε

)
.

(ii) F1(4x+2k+1;χ−4) =
L(2k+1,χ−4)(4x+2k+1)2k+1

2(2k+1)
+O

(
x2k+1/2+ε

)
.
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(iii) F2(4x+2k+1;χ0) =
L2(2k+1,χ−4)L(4k+1,χ0)(4x+2k+1)4k+1

2(4k+1)L(4k+2,χ0)
+O

(
x4k+1/2+ε

)
.

(iv) F2(4x+2k+1;χ−4) = O
(

x4k+ε

)
.

Proof. We work out the proof for F2(4x+2k+1;4k+2,χ0). The other statements follow

similarly. From Theorem 4.2 and Theorem 4.4 for c > 4k+1, we have

F2(4x+2k+1;χ0) =
1

2πi

∫ c+iT

c−iT

L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds

+O
(

xc

T

)
. (4.15)

Now, the integrand in the above integral has a pole of order 1 at s = 4k+1, so by Cauchy’s

residue theorem

1
2πi

∫ c+iT

c−iT

L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds

is equal to

L2(2k+1,χ−4)L(4k+1,χ0)(4x+2k+1)4k+1

2(4k+1)L(4k+2,χ0)

− 1
2πi

(∫ b+iT

c+iT
+
∫ b−iT

b+iT
+
∫ c−iT

b−iT

)
L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds, (4.16)

where b is chosen to be equal to 4k.

Let us estimate the integrals in (4.16). For

H+ :=
1

2πi

∫ b+iT

c+iT

L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds,

by substituting s = σ+ iT , we get

H+ =
1

2πi

∫ b

c

L(σ+ iT −4k,χ0)L(σ+ iT,χ0)L2(σ+ iT −2k,χ−4)(4x+2k+1)σ+iT

(σ+ iT )L(2σ+2iT −4k,χ0)
dσ.
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Using the fact that |σ+ iT | ≥ T and Corollary 4.6, we have

H+ = O

(∫ c

b

T
1
2 logT

T
xσdσ

)
= O

(
xc logT

T 1/2 logx

)
. (4.17)

The integral

H− :=
1

2πi

∫ c−iT

b−iT

L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds

has a similar estimate.

For the vertical integral,

V :=
1

2πi

∫ b−iT

b+iT

L(s−4k,χ0)L(s,χ0)L2(s−2k,χ−4)(4x+2k+1)s

sL(2s−4k,χ0)
ds,

by substituting s = b+ it, we get

V =− 1
2πi

∫ T

−T

L(b+ it−4k,χ0)L(b+ it,χ0)L2(b+ it−2k,χ−4)(4x+2k+1)b+it

(b+ it)L(2b+2it−4k,χ0)
idt.

Using the fact that |b+ it| ≥ t, |b+ it| ≥ b and Corollary 4.6, we have

V = O

(∫ −1

−T

|t| 12 log(|t|+2)
t

xbdt

)
+O

(∫ 1

−1

|t| 12 log(|t|+2)
b

xbdt

)

+O

(∫ T

1

|t| 12 log(|t|+2)
t

xbdt

)
.

We see that

O

(∫ 1

−1

|t| 12 log(|t|+2)
b

xbdt

)
= O(xb).

So we have

V = O
(

T 1/2xb logT
)
. (4.18)
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Combining (4.16), (4.17) and (4.18), we have

F2(4x+2k+1;χ0) =
L2(2k+1,χ−4)L(4k+1,χ0)(4x+2k+1)4k+1

2(4k+1)L(4k+2,χ0)

+O
(

xc

T
+

xc logT
T 1/2 +T 1/2xb logT

)
. (4.19)

Say logx = O(xε2) for some ε2 > 0 and set b = 4k, c = 4k+1+ ε1, T = x and ε = ε1 + ε2

to get

F2(4x+2k+1;χ0) =
L2(2k+1,χ−4)L(4k+1,χ0)(4x+2k+1)4k+1

2(4k+1)L(4k+2,χ0)
+O

(
x4k+1/2+ε

)
.

The proofs of the estimates (i),(ii) and (iv) follow similarly.

For the twisted sums Gi(x,ψ), we have the following estimates.

Proposition 4.8. For the twisted sums Gi(x;ψ) for Dirichlet characters ψ ∈ {χ0,χ1} and

i = 1,2. We have, for any ε > 0, the following estimates:

(i) G1(2x+ k;χ0) =
L(2k,χ0)(2x+ k)2k

4k
+O

(
x2k+1/2+ε

)
.

(ii) G1(2x+ k;χ1) =
L(2k,χ0)(2x+ k)2k

2k
+O

(
x2k+1/2+ε

)
.

(iii) G2(2x+ k;χ0) =
L2(2k,χ0)L(4k−1,χ0)(2x+ k)4k−1

2(4k−1)L(4k,χ0)
+O

(
x4k+1/2+ε

)
.

(iv) G2(2x+ k;χ1) =
L2(2k,χ0)L(4k−1,χ0)(2x+ k)4k−1

(4k−1)L(4k,χ0)
+O

(
x4k+1/2+ε

)
.

4.3 The first moment

In this section, we use the asymptotic formulas obtained in the previous section to esti-

mate the first moments of δ4k(n) and δ4k+2(n).

Theorem 4.9. For an even value of N > 2 and any ε > 0, we have

∑
n≤x

δN(n) =
πN/2

2N/2Γ(N/2+1)
xN/2 +O

(
x(N−1)/2+ε

)
.
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Proof. We split the proof in two cases depending on whether N is of the form 4k or 4k+2.

Suppose N = 4k and 0 < ε1 < 1. Then using (4.10) we have,

∑
n≤x

δ4k(n) =
1
dk

∑
n≤x

σ2k−1,χ1,χ0(2n+ k)+O
(

xk+1/2+ε1
)
,

where dk is defined in (3.8). Thus, from the definition of Gi,a(x), we have

∑
n≤x

δ4k(n) =
1
dk

G1,k(2x+ k)+O
(

xk+1/2+ε1
)
. (4.20)

From (4.13), recall that

G1,k(2x+ k) =

 G1(2x+ k;χo) if k is odd,

G1(2x+ k;χ1)−G1(2x+ k,χ0) if k is even.
(4.21)

Employing Proposition 4.8 and (4.21) in (4.20), we get

∑
n≤x

δ4k(n) =
L(2k,χ0)(2x+ k)2k

4kdk
+O

(
x2k+1/2+ε

)

for any ε > 0, irrespective of whether k is even or odd. By [5, Theorem 3.3.15], we have

L(2k,χ0) = (−1)k+1 (4
k−1)π2kB2k

2(2k)!
. (4.22)

Substituting the values of dk and L(2k,χ0), we get our result when N is of the form 4k.

Now suppose, N = 4k+2 and 0 < ε1 < 1. Then by (4.11), we have

∑
n≤x

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4
∑
n≤x

σ2k,χ−4,χ1(4n+2k+1)+O
(

xk+1+ε1
)
.
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From the definition of Fi,a(x), we deduce

∑
n≤x

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

F1,2k+1(4x+2k+1)+O
(

xk+1+ε1
)
.

Using (4.12) and Proposition 4.7 yields

F1,2k+1(4x+2k+1) =
χ−4(2k+1)L(2k+1,χ−4)24kx2k+1

2k+1
+O

(
x2k+1/2+ε

)

for any ε > 0. Hence,

∑
n≤x

δ4k+2(n) =
(−1)k+1L(2k+1,χ−4)x2k+1

B2k+1,χ−4

+O
(

x2k+1/2+ε

)
.

Substituting the value of L(2k+1,χ−4) from (3.17) in the above formula yields our result.

4.4 The second moment

Theorem 4.10. For an even value of N > 2 and any ε > 0, we have

∑
n≤x

δ
2
N(n) = YNxN−1 +O

(
xN−1/2+ε

)
,

where

YN =
πN

2N(N−1)Γ2
(N

2

) L(N−1,χ0)

L(N,χ0)
.

Proof. We start by considering the case N = 4k. Let 0 < ε1 < 1. Then from (4.10), we have

δ4k(n) =
1
dk

σ2k−1,χ1,χ0(2n+ k)+O
(

nk−1/2+ε1
)
,
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where dk is given in (3.8). Squaring both sides and summing over n yields

∑
n≤x

δ
2
4k(n) =

1
d2

k
∑
n≤x

σ
2
2k−1,χ1,χ0

(2n+ k)+O
(

x2k+2ε1
)

+O

(
xk−1/2+ε1 ∑

n≤x
σ2k−1,χ1,χ0(2n+ k)

)
.

(Here, we used that fact that σ2k−1,χ1,χ0(2n+ k) is always positive.) From the estimate for

the first moment obtained in Theorem 4.9, we have

∑
n≤x

δ
2
4k(n) =

1
d2

k
∑
n≤x

σ
2
2k−1,χ1,χ0

(2n+ k)+O
(

x3k−1/2+ε1
)
.

By employing the definition of Gi,a(x), the above formula can be written as

∑
n≤x

δ
2
4k(n) =

1
d2

k
G2,k(2x+ k)+O

(
x3k−1/2+ε1

)
. (4.23)

From (4.13), recall that

G2,k(2x+ k) =

 G2(2x+ k;χo) if k is odd,

G2(2x+ k;χ1)−G2(2x+ k,χ0) if k is even.

By Proposition 4.8, we have that for any ε > 0,

G2,k(2x+ k) =
L2(2k,χ0)L(4k−1,χ0)(2x+ k)4k−1

2(4k−1)L(4k,χ0)
+O

(
x4k+1/2+ε

)
.

Applying this formula in (4.23), we get

∑
n≤x

δ
2
4k(n) =

L2(2k,χ0)L(4k−1,χ0)(2x+ k)4k−1

2(4k−1)d2
k L(4k,χ0)

+O
(

x4k+1/2+ε

)
.

Substituting the values of dk and L(2k,χ0) from (3.8) and (4.22), we get the desired result

for N = 4k.
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Next Suppose N = 4k+2. Then, by Theorem 3.12, we have

δ4k+2(n) =
−(2k+1)

24kB2k+1,χ−4

σ2k,χ−4,χ1(4n+2k+1)+ t(4n+2k+1),

where
∞

∑
n=0

t(n)qn is a cusp form of weight 2k+1, level 8 and character χ−4. Squaring both

sides, we get

δ
2
4k+2(n) =

(2k+1)2

28kB2
2k+1,χ−4

σ
2
2k,χ−4,χ1

(4n+2k+1)

− (2k+1)
24k−1B2k+1,χ−4

t(4n+2k+1)σ2k,χ−4,χ1(4n+2k+1)+ t2(4n+2k+1).

Hence,

∑
n≤x

δ
2
4k+2(n) =

(2k+1)2

28kB2
2k+1,χ−4

∑
n≤x

σ
2
2k,χ−4,χ1

(4n+2k+1)

− (2k+1)
24k−1B2k+1,χ−4

∑
n≤x

t(4n+2k+1)σ2k,χ−4,χ1(4n+2k+1)+ ∑
n≤x

t2(4n+2k+1). (4.24)

Using Cauchy-Schwarz inequality

∑
n≤x

t(4n+2k+1)σ2k,χ−4,χ1(4n+2k+1)

≤

(
∑
n≤x

t2(4n+2k+1)

)1/2(
∑
n≤x

σ
2
2k,χ−4,χ1

(4n+2k+1)

)1/2

. (4.25)

We know from the Ramanujan-Peterson conjecture [5, Section 9.2.3] that t(4n+2k+1) =

O
(
nk+ε1

)
for any 0 < ε1 < 1. Hence,

(
∑
n≤x

t2(4n+2k+1)

)1/2

= O
(

x
2k+1

2 +ε1
)
. (4.26)
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Using (4.12) and Proposition 4.7, we have

F2,2k+1(4x+2k+1) =
28kL2(2k+1,χ−4)L(4k+1,χ0)x4k+1

(4k+1)L(4k+2,χ0)
+O

(
x4k+1/2+ε

)
(4.27)

for any ε > 0. Hence,

(
∑
n≤x

σ
2
2k,χ−4,χ1

(4n+2k+1)

)1/2

= O
(
F2,2k+1(4x+2k+1)

)1/2
= O(x2k+1/2). (4.28)

Substituting (4.26) and (4.28) in (4.25) yields

∑
n≤x

t(4n+2k+1)σ2k,χ−4,χ1(4n+2k+1) = O
(

x3k+3/4+ε1
)
. (4.29)

We then apply (4.26) and (4.29) in (4.24) to obtain

∑
n≤x

δ
2
4k+2(n) =

(2k+1)2

28kB2
2k+1,χ−4

∑
n≤x

σ
2
2k,χ−4,χ1

(4n+2k+1)+O
(

x3k+3/4+ε1
)
. (4.30)

Observe that for a fixed k,

∑
n≤x

σ
2
2k,χ−4,χ1

(4n+2k+1) = F2,2k+1(4x+2k+1)+O(1). (4.31)

Then, an application of (4.31) and (4.27) in (4.30) yields

∑
n≤x

δ
2
4k+2(n) =

(2k+1)2L2(2k+1,χ−4)L(4k+1,χ0)x4k+1

(4k+1)B2
2k+1,χ−4

L(4k+2,χ0)
+O

(
x4k+1/2+ε

)
.

Finally, by substituting the value of L(2k+ 1,χ−4) from (3.17), we get the claimed result.
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Chapter 5

Future Works

Here we list a few possible continuations of the results of this thesis.

1. In Chapter 2, we studied the representation problem for binary quadratic forms of

discriminant −D where Q(
√
−D) has class number 3. It is natural to study an anal-

ogous result for imaginary quadratic fields with class number 2. There are 18 such

fields. It would be interesting to investigate whether the cusp part in any of these 18

cases has an eta product representation.

2. In Lemma 2.9 of Chapter 2, we showed that if a modular form f has a zero on the

upper half plane, then c(n)’s in the expansion

f (q) =
∞

∏
n=1

(1−qn)c(n)

are unbounded. It would be worthwhile to investigate the converse of this Lemma.

More specifically, if c(n)’s in the above expression are unbounded, then what can be

said about the zeroes of f . A result in this direction is proved in [17].

3. In Chapter 3, we proved formulas for δk(n) for even values of k using the theory

of integral weight modular forms. It is natural to investigate whether formulas for

odd values of k can be obtained by studying modular forms of half integral weight.

Another approach towards this investigation would be by using the Singular series

obtained from the circle method of Hardy and Littlewood.
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5. FUTURE WORKS

4. In Chapter 4, we proved asymptotic formulas for the first and the second moments of

δk(n) for even values of k. The formulas for the second moment gives an analogue

of the Wagon’s conjecture for δk(n). One can also study the second moment of δk(n)

for odd values of k. In particular, for odd k, we can investigate on the truth of the

asymptotic formula

∑
n≤x

δ
2
k(n) = Ykxk−1 +O

(
xk−1/2+ε

)
,

where ε > 0 and

Yk =
πk

2k(k−1)Γ2
( k

2

) L(k−1,χ0)

L(k,χ0)
.

We can also study whether the error term for the first and the second moment can be

improved.
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[5] Henri Cohen and Fredrik Strömberg. Modular forms, volume 179 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2017. A classical
approach.

[6] David A. Cox. Primes of the form x2+ny2. Pure and Applied Mathematics (Hoboken).
John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2013. Fermat, class field
theory, and complex multiplication.

[7] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.

[8] Wolfgang Eholzer and Nils-Peter Skoruppa. Product expansions of conformal char-
acters. Phys. Lett. B, 388(1):82–89, 1996.

[9] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford
University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J.
H. Silverman, With a foreword by Andrew Wiles.

[10] Neal Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.
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Appendix A

q-expansions of some eta products

Here we record the q-expansions of some eta products that were used in the proof of Theo-
rem 3.18. The computations are done using the Maple package q-series in
https://qseries.org/fgarvan/qmaple/qseries/index.html.

In S5(Γ0(8),χ−4)

(i) η
4(z)η2(2z)η4(4z) = q−4q2 +16q4−14q5−64q8 +81q9 +56q10−238q13

+256q16 +322q17−324q18−224q20 +O
(
q21)

(ii) η
4(2z)η2(4z)η4(8z) = q2−4q4 +16q8−14q10−64q16 +81q18 +56q20 +O

(
q21)

In S6(Γ0(4))

(iii) η
12(2z) = q−12q3 +54q5−88q7−99q9 +540q11−418q13−648q15 +594q17

+836q19 +O
(
q21)

In S7(Γ0(8),χ−4)

(iv)
η12(z)η4(4z)

η2(2z)
= q−12q2 +56q3−112q4 +10q5 +352q6−560q7 +320q8−231q9

−120q10 +1736q11−2176q12 +1466q133520q14 +560q15 +8448q16−4766q17

+2772q18−13608q19−1120q20 +O
(
q21)

(v) η
8(z)η2(4z)η4(8z) = q2−8q3 +20q4−72q6 +80q7 +16q8 +10q10−248q11

+96q12 +720q14−80q15−1216q16−231q18−1944q19 +200q20 +O
(
q21)

(vi) η
4(z)η2(2z)η8(8z) = q3−4q4 +16q6−10q7−16q8 +31q11 +32q12−160q14

+10q15 +192q16−243q19−40q20 +O
(
q21)

(vii)
η4(2z)η12(8z)

η2(4z)
= q4−4q6 +4q8−8q12 +40q14−48q16 +10q20 +O

(
q21)
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In S8(Γ0(4))

(viii)
η32(2z)

η8(z)η8(4z)
= q+8q2 +12q3−64q4−210q5 +96q6 +1016q7 +512q8

−2043q9−1680q10 +1092q11−768q12 +1382q13 +8128q14−2520q15

−4096q16 +14706q17−16344q18−39940q19 +13440q20 +O
(
q21)

(ix) η
8(2z)η8(4z) = q2−8q4 +12q6 +64q8−210q10−96q12 +1016q14−512q16

−2043q18 +1680q20 +O
(
q21)

In S9(Γ0(8),χ−4)

(x)
η20(z)η4(4z)

η6(2z)
= q−20q2 +176q3−880q4 +2658q5−4544q6 +2464q7 +6336q8

−15711q9 +20568q10−32560q11 +45824q12−11614q13−63616q14 +107360q15

−163584q16 +241026q17−128148q18−34320q19−12512q20 +O
(
q21)

(xi)
η16(z)η2(4z)η4(8z)

η4(2z)
= q2−16q3 +108q4−384q5 +688q6−224q7−1392q8

+2304q9−1438q10 +2960q11−6592q12 +1152q13 +9632q14−9760q15

+16576q16−31488q17 +8865q18 +3120q19 +33112q20 +O
(
q21)

(xii)
η12(z)η8(8z)

η2(2z)
= q3−12q4 +56q5−112q6 +14q7 +304q8−336q9−128q10−185q11

+1216q12−168q13−1568q14 +610q15−1984q16 +4592q17 +768q18−195q19

−9368q20 +O
(
q21)

(xiii)
η8(z)η12(8z)

η2(4z)
= q4−8q5 +20q6−68q8 +48q9 +96q10−272q12 +24q13 +280q14

+336q16−656q17−576q18 +2146q20 +O
(
q21)

(xiv)
η4(z)η2(2z)η16(8z)

η4(4z)
= q5−4q6 +16q8−6q9−32q10 +64q12−3q13−56q14−64q16

+82q17 +192q18−512q20 +O
(
q21)

(xv)
η4(2z)η12(20z)

η6(4z)
= q6−4q8 +8q10−16q12 +14q14 +16q16−48q18 +128q20 +O

(
q21)
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