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Abstract—This paper discusses an artificial neural inversion 

approach for non-destructive testing of the graphite moderator 

bricks that make up the cores of Advanced Gas-Cooled Reactors 

(AGR). The study employed fully connected feedforward neural 

networks consisting of four hidden layers and trained with 

backpropagation approach using Levenberg-Marquardt 

optimisation algorithm. The approach is based on multi-

frequency (MF) eddy current (EC) measurements, and 

combinations of simulated and measured datasets from a 

laboratory sample and one of the operating reactor core, along 

with different regularisation parameters were used to train and 

test the networks. Various types of artificially generated errors 

were added to the data during training procedures, which in turn 

allowed for error tolerance and improved the generalisation of 

the ANNs to unseen test datasets. First, the ANN was tested using 

unseen simulated data, followed by the measurements collected 

from laboratory sample and one of the operating reactor core. 

The first test from the unseen simulated data showed mean 

profile error ranging between 1.30% and 8.20%, whereas the 

profiles estimated from reactor core measurements showed mean 

profile error ranging between 1.84% and 17.80% when 

compared with the resistivity measurements from trepanned 

graphite sample taken out of the reactor core. Further 

comparison of the network outputs against the profiles estimated 

using traditional iterative inversion algorithm indicates 

reasonable agreement between the two approaches with the 

exception of one case, but the solution time for the ANN was 

found to be over three orders of magnitude faster than the 

iterative inversion algorithm. 

 

Index Terms—Graphite, Eddy Currents, Artificial Neural 

Networks, Resistivity Profile, Multi-frequency, Non-Destructive 

Testing 

I. INTRODUCTION 

he work in this paper aims to address an inspection 

problem relating to the civil nuclear industry. The civil 

nuclear reactors are built with significant complexity to 

achieve robust strictures, sustain the required chemical 

reaction, and most of all to meet the standards set out by the 

regulatory authorities.  Due to these complex strictures and  
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hostile environments within the cores of the civil nuclear 

reactors it is often challenging to assess the condition of the 

inner core structures even after the reactors are shutdown. 

Graphite is one of the materials used as a core component 

within some of reactor designs, particularly in Advanced Gas-

Cooled Reactors (AGR). The graphite core in an AGR design 

serves to moderate the fast-moving neutrons, facilitate thermal 

energy transfer to the coolant gas and maintain the lattice 

spacing between the fuel assemblies and control rods [1]. The 

parts of the graphite bricks in the AGR, which are in direct 

proximity to the fuel elements, are subject to the highest 

radiation flux.  As a result, they suffer most from irradiation 

and radiolytic oxidation [2]-[3].   

Radiolytic oxidation of the fuel channel bricks is mainly 

caused by decomposition of the carbon dioxide coolant into 

carbon monoxide and oxidizing species when exposed to 

gamma radiation, which then react with the graphite structure 

to increase the size of porosity, and hence leads to a reduction 

in graphite density or “weight loss” [2]-[3].  Consequently, 

oxidation could affect the core structural integrity margins and 

neutron moderating ability, and potentially reduce the 

operating lifetime of the reactor.  The fuel channel bricks in 

the reactor core are not able to be replaced; therefore, the 

normal operation and safety functions of the AGRs depend 

significantly upon the condition of these bricks. For this 

reason, the assessment of AGR graphite properties is 

important to support the safety case for continued operation of 

the reactors. 

Due to the conducting nature of the graphite, eddy current 

(EC) based non-destructive testing (NDT) has been used in the 

past to characterise its internal properties, particularly as the 

graphite density can be closely correlated with electrical 

resistivity [4], [5], hence giving insight into its strength and 

neutron moderating ability. 

EC-based NDT is very well established, and its use within 

the civil nuclear industry is increasing significantly in recent 

years [5]. One of the driving factors for the use of EC-NDT in 

the nuclear industry is its simplicity and robustness when 

deployed in radioactive environments, such as the core of an 

AGR. However, the amount of information that can be 

obtained from an EC system is limited if operated at a single 

frequency [6].  To overcome this limitation, multi-frequency 

(MF) excitation can be applied to excite the EC sensor. In this 

way full spectral information about the material of interest can 

be obtained [7]- [12].  In this context, with the application of 

the MF excitation technique, it is possible to probe the 

graphite fuel channel brick to different depths and collect 
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enough data to characterise its electrical properties through its 

wall thickness.  

However, one of the major challenges of material 

characterisation with EC measurements (particularly depth 

profiling) is that the measured data depends upon many factors 

including the material structure, sensor configuration, 

magnetic and electrical properties of the material under test. 

Assuming an optimised sensor configuration, non-magnetic 

material with unknown electrical properties (which is the case 

for the problem considered in this paper), complex material 

structures still pose difficulties for depth profiling. This is 

because the field distribution within complex structures are 

affected by the geometry of the object and requires robust 

inversion algorithms. Significant progress has been made 

concerning inverse EC problem theory, and it has been applied 

to several areas, including [8]-[15]. One of the first non-

uniform conductivity profiling and crack shape reconstruction 

approach was proposed by Norton et al [8], [9]. In [9] the 

authors presented a detailed theory of inverse EC methods for 

conductivity and crack shape reconstruction using forward and 

adjoint method to calculate the Jacobian matrix and used 

iterative least square algorithm for reconstruction. The work in 

[8] employed an iterative nonlinear least square approach to 

reconstruct radially varying conductivity profiles 

demonstrating the ability of the proposed method to recover 

the unknown electrical conductivity from MF EC 

measurements. The unknown electrical conductivity 

reconstruction was made by minimising the discrepancies 

between the computed impedance from the forward model and 

measured data in a least square sense.  Another inverse EC 

approach was proposed by Bowler et al [10]. In this work the 

authors proposed a method based on MF EC measurements 

and steepest descent algorithm to reconstruct the conductivity 

distributions and thickness of layered structure independently. 

Related work describing a method for estimating the thickness 

and conductivity of layer conductors by comparing the 

measured data with Dodd and Deeds [16] theoretical solution 

was presented by Moulder et al [11] and Uzal et al [12]. Yin et 

al [13], [14], [15] proposed analytical solution for solving 

forward problem for air cored coil placed above layered 

conductor and employed a modified Newton Rapson method 

to reconstruct both smoothly varying and step changing 

electrical conductivity and magnetic permeability profiles of a 

sample as a function of depth. Although these works lay the 

foundations for inverse EC problems, these methods are 

usually computationally expensive when solving large and 

complex problems, and applications are therefore limited to 

post-measurement processing.  

Another model based inversion approach to reconstruct the 

reactor brick conductivity/resistivity profiles were studied by 

[17], [18], [19], [20], [21]. These studies have demonstrated 

the practical feasibility of the iterative inversion approach for 

reconstructing the properties of the graphite moderator brick 

from MF EC measurements however, as before they are 

limited to post measurement processing. 

One of the major limitations of these approaches is that they 

all tend to be computationally expensive, and could not be 

used for real time reconstruction of the graphite moderator 

brick properties, unless significant simplifications are made on 

the reconstruction procedures, which could compromise the 

accuracy of the solution.  

A direct conductivity measurement such as four-point 

potential drop techniques [22] and the MF EC measurement 

phase response [23] has been used in the past to measure the 

resistivity of a conducting material and the porosity of metal 

foams. However, these approaches are only limited to bulk 

conductivity measurements, and electrical contacts also have 

practical problems for deployment in reactor core as the 

approach in [22] requires attaching the probe to the sample. 

A computationally efficient inverse EC method for 

reconstructing defect shapes within conducting material was 

reported by Tamburrino et al [24]. In this approach the authors 

used monotonicity imaging method avoiding the need to solve 

the inverse problem iteratively, hence increasing the speed by 

which the inverse solution is attained. Further modification of 

this approach could allow efficient way of reconstructing the 

resistivity profiles as a function of depth.  However, the 

problem considered in this paper involved complex structure 

with relatively smooth radial resistivity variation within 

cylindrical moderator brick that has  ≈ 100 𝑚𝑚 through-wall 

thickness. In addition, the presence of methane holes and key-

way slots within the graphite bricks may pose additional 

difficulties when adopting the above approach. 

An approach based on an artificial neural network (ANN) 

has the potential for depth profiling, and have been employed 

by many researchers for NDT applications, particularly for 

material defect identification, classification and 

characterization of conducting and composite materials [25] 

[26], [27], [28], [29]. A well-trained ANN is capable of 

mapping non-linear relationships between the measured 

responses and defects within the material of interest, whilst 

improving the solution speed by a significant amount.  

In this paper, we extend our studies in [21] with the aim of 

increasing the reconstruction speed by employing an artificial 

neural inversion to estimate the reactor brick resistivity profile 

from MF EC data. A simple feedforward neural network 

consisting of four-hidden layers was used for this study. The 

ANN was trained using a backpropagation approach along 

with a Levenberg-Marquardt optimisation algorithm. We used 

combinations of simulated and measured datasets to train, test 

and validate the ANNs. The test procedures of the trained 

ANN models first started with a simplified case using unseen 

simulated data. This was then followed by tests using the MF 

EC experimental data from laboratory samples and the 

measurements collected from one of operating reactor core. 

The estimated profiles from neural inversions were then 

compared with the solution from an iterative inversion and the 

measurements from trepanned graphite sample taken out of 

the reactor core. 

II. BACKGROUND 

A. Measurement system and operational principle  

EC based NDT exploits the principle of electromagnetic 

induction. A coil carrying an alternating current generates a 

time-harmonic primary field around the coil that induces 

closed-loop eddy currents flowing inside a conducting 

material placed within the field. The induced ECs in turn 

generate a secondary field, which can be detected by a pick-up 
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coil. Small changes in the electrical properties of the material 

of interest would alter the ECs flow, and hence the detected 

signal. Therefore, this information could be used to estimate 

the electrical properties of the material using appropriate 

signal and data processing techniques. 

NDT of the graphite core in the AGRs is carried out from 

the brick bores using a specialized in-core inspection tool (Fig. 

1). This tool is deployed from the top of the pile cap, and is 

fitted with gradiometer sensors equally separated 

circumferentially round the tool. The EC sensors in the tool 

are arranged to inspect the graphite brick over its radial cross 

section as well as to measure the density variation around the 

brick bore axially and circumferentially [5].  

The tool has a rotating head enclosed by a cylindrical 

stainless steel casing, and uses non-conducting mechanical 

scissor-type arms to deploy the EC sensors towards the fuel 

channel bore. The inspections are made during outages of the 

reactors while the fuel elements are removed.  During the 

inspection, the tool is lowered by a hoist into the bore of the 

fuel channel bricks using chains and an umbilical cable. The 

measurement speed, location and other inspection functions of 

the tool are set from a control console on the pile cap. 

 

B. Artificial neural network  

Artificial Neural Networks (ANN) are simply mathematical 

models that generate functions to map the input data with a 

desired output target [32]. Although ANNs are being widely 

used for other applications such as image recognition and 

classification [33] [34], their use for NDT applications was 

limited until recent years, particularly for defect identification 

and characterization of conducting and composite materials 

[25], [26], [27], [28], [29], [31], [35], [36], [37]. ANNs are 

capable of mapping the non-linear relationships between the 

measured responses and defects within the material of interest. 

In addition, the solution time for ANNs, particularly for the 

problem considered in this paper are much faster than 

conventional iterative inversion methods, which may also 

mean that they could be used for real-time application. 

However, one of the main drawbacks of ANN is that they 

usually require large amount of training datasets covering 

many scenarios of a particular NDT problem, and tend to be 

application specific [29], [30], [38]. 

 Although there are wide range of machine learning 

methods, they are normally categorised in to four groups:  

supervised learning, unsupervised learning, semi-supervised 

learning and reinforcement learning.  The ANN approach 

considered in this paper lies within the supervised learning 

categories, meaning that the model learns when presented with 

an input and target datasets, and able to predict the output 

when presented with a new dataset. 

One of the most commonly used type of ANNs is a 

feedforward neural network. In this type of neural network, 

the neurones are arranged in different layers connected to one 

another between the input and output layers through the 

weight and bias. The weights connected to each neurone 

determine the importance of the previous neurone input and 

usually updated during the training process until the optimum 

values are found. Activation functions (transfer functions) are 

used to pass the weighted sum of the neurones, this essentially 

means multiplying the weighted sum of the neurones with an 

activation function that determines the output value of the 

neurones. Mathematically, a simple single layer feedforward 

neural network can be described as follows. Given an input 𝑥𝑖, 

weight 𝑤𝑖𝑗  and bias 𝑏 of a simple single layer feedforward 

neural network (where 𝑖 is the index for the number of input 

neurones and 𝑖𝑗 is the  associated weight between the input 

and the output layers), the ANN output can be represented as 

(1) 

 

𝑦𝑖 = 𝜎(∑ 𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑖 )               (1) 

 

where 𝜎 is the activation  function that limits the output  from 

reaching vary large value, and also introduce a non-linearity in 

this case. 

There exist various activation functions that can be used 

within ANNs, each with their own distinct advantages for 

different applications. For the application considered in this 

paper, we decided to use a combinations of non-linear 

activation functions (hyperbolic tangent and sigmoid) in the 

hidden layers to allow the model to learn complex functions. 

The output layer activation function is chosen as a linear 

function because the problem considered here is regression 

problem.  

 For the hyperbolic tangent activation function the output 

(𝑦𝑖) is given by (2), whereas for  sigmoid and linear functions 

the output (𝑦𝑖) is given as in (3) and (4) respectively. 

 

𝑦𝑖 =
2

1+𝑒
(−2 ∑ 𝑥𝑖𝑤𝑖𝑗−𝑏)𝑖

− 1              (2) 

 

𝑦𝑖 =
1

1+𝑒
(− ∑ 𝑥𝑖𝑤𝑖𝑗−𝑏)𝑖

                (3) 

 

𝑦𝑖 = ∑ 𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑖                 (4) 

 

The network weight (𝑤𝑖) and bias (𝑏) values are updated 

through the backpropagation training technique. A 

backpropagation training algorithm is a form of optimisation 

 
 

Fig. 1. Eddy current based AGR core inspection system along with illustration of 

the main core components and inspection procedures, Reproduced from [5]. 
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algorithm that determines suitable weight and bias to minimise 

the errors 𝑒 between the network outputs (𝑦𝑖) and target values 

(𝑡𝑖). To illustrate this, consider a Levenberg-Marquardt (LM) 

optimisation algorithm for updating the weights and bias of 

the ANN. 

Given the Jacobian 𝐉𝑘 =
𝜕𝑒𝑘

𝜕𝑝𝑘
, where 𝑒𝑘 is the errors between 

the network output 𝑦𝑘  and  𝑡𝑘 at  the 𝑘th iteration (𝑒𝑘 = 𝑡𝑘 −
𝑦𝑘) , and the 𝑝𝑘 is the weight (𝑤𝑘 ) and bias (𝑏𝑘) variables , the 

Gradient and the Hessian are given by (5) and (6) respectively. 

 

𝑮 = 𝐉𝑘(𝑝𝑘)𝑇𝑒𝑘                 (5) 

 

𝐇 ≈ 𝐉𝑘(𝑝𝑘)𝑇𝐉𝑘(𝑝𝑘)                (6) 

 

It should be noted that the Hessian in (6) is approximated 

using the Gauss Newton method. The backpropagation 

training update is then given by (7). 

 

𝑝𝑘+1 = 𝑝𝑘 − (𝐉𝑘(𝑝𝑘)𝑇𝐉𝑘(𝑝𝑘) + 𝜇𝑘𝐼)−1𝐉𝑘(𝑝𝑘)𝑇𝑒𝑘    (7) 

 

The cost function 𝐶 of the feedforward ANN  at 𝑛𝑡ℎ  epoch is 

normally given by the squared sum of the errors  between the 

network outputs and target values (8). 

 

𝐶𝑛  =
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖                   (8)  

 

here  𝑁 is the number of  complete training datasets that the 

network has seen. 

  

To regularise the weights of individual neurons, the cost 

function can be further modified as (9) 

 

𝐶𝑛  =
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖 −
𝜆

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖 +
𝜆

𝑁
∑ (𝑤𝑖)2𝑁

𝑖    (9) 

 

where 𝜆 is the regularisation parameter, a term that can be 

added to improve the generalisation of the network. It should 

be noted when 𝜆 = 0 the 𝐶𝑛 in (9) is equal to (8). Fig. 2 shows 

a graphical illustrations of the feedforward neural network 

with a backpropagation training algorithm.  

 

III. METHODOLOGY 

A. Network architecture  

As mentioned earlier, a simple feedforward ANN consisting 

four-hidden layers is used for this study. The first three hidden 

layers contain twenty-eight neurones, whereas the last hidden 

layer contains ten neurones. The four hidden-layers and the 

number of neurones stated here were selected based on trial 

and error test. Generally, the larger the number of neurones 

and hidden layers means the network will contain sufficient 

weights to allow it learn small features of the training data, 

and hence improve the non-linear mapping between the input 

and target datasets. However, there is also a trade-off between 

having large number of hidden layers or number of neurones 

and the time required for training. In other words, the larger 

the number of hidden layers and number of neurones the 

longer it takes to train and the more complex the network 

becomes. Another problem with large number of neurones and 

hidden layers is that the network could potentially memorise 

the training data resulting in overfitting. There exist several 

methods that could be used to reduce the overfitting of the 

network such as adding noise or errors in the training data, and 

applying regularisation to the network during the training 

procedures. For the problem considered in this paper 

combination of both regularisation approaches were used to 

improve network generalisation. 

The input data consists of inductance spectra with fourteen 

frequency points ranging between 10 Hz and 4 kHz and 

arranged in a logarithmic scale with 5 points per decade, and 

output datasets are a conductivity vector with seven unknowns 

as illustrated in Fig.3. Three different types activation 

functions were used during the implementation of the ANN. 

Hyperbolic tangent activation function (2) for the neurones 

between the first and second hidden layers (HL1 and HL2 in 

Fig.3), whereas for the third (HL3) and fourth (HL4) hidden 

layers sigmoid (3) and linear activation function (4) were 

used. The hyperbolic tangent and sigmoid activation functions 

were mainly used to allow the model to learn complex 

functions. Extensive training experiments also shows that the 

combinations of hyperbolic tangent, sigmoid and linear 

 
Fig. 2: Illustrations of the feedforward neural network with Levenberg-
Marquardt backpropagation training algorithm. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 3:  Illustrations of the feedforward ANN employed for this study 
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activation functions for the ANNs considered in this paper 

produced better performance than other cases. 

The ANN was trained using a backpropagation training 

approach with a Levenberg-Marquardt (7) optimisation 

algorithm to update the weights of each neurone in every layer 

during the training procedure.  

 

B. Forward modelling 

One of the major challenges in machine learning and ANN 

for NDT applications is obtaining sufficient training datasets 

to allow the network to learn various scenarios of the 

inspection problem.  In practice it is not always possible to 

obtain many experimental datasets for training the ANN, 

particularly for the problem considered in this paper. For this 

reason, a large amounts of training data were generated using 

a finite element forward model. The forward model was 

implemented such that it best represents the physical and 

electromagnetic properties of the fuel channel graphite brick 

and measurement system.  

The forward model inputs were determined by initially 

gathering the resistivity profiles from some of the historically 

measured physical properties of fuel channel graphite bricks 

which covers over 100 profiles. The profiles were then 

extrapolated further based on the ranges of the known 

resistivity values to generate additional profiles and was used 

as an input to our forward model to obtain the corresponding 

inductance responses. In total we generated 1058 original 

datasets and these data was further extended by adding 

gaussian and smoothly varying errors making up a total of 

10583 MF data. Fig.5 illustrates range of the conductivity 

distributions of the samples used to generate the inductance 

responses. 
 In addition, test sample were prepared, replicating a 

potential radial resistivity variations of the graphite fuel 

channel brick (Fig. 6) to train, test and validate the ANN.  

Further model calibration procedures were applied to the test 

datasets using the measurements from a graphite brick with 

known bulk electrical conductivity such that: 𝑫𝑐𝑎𝑙 = 𝑫𝑢𝑛 ×

(
𝑫𝝈𝑏𝑢𝑙𝑘_𝑠𝑖𝑚

𝑫𝝈𝑏𝑢𝑙𝑘_𝑚𝑒𝑠

), where 𝑫𝑐𝑎𝑙 is the calibrated test data, 𝑫𝑢𝑛 is the 

test data prior to calibration, 𝑫𝝈𝑏𝑢𝑙𝑘_𝑠𝑖𝑚
 is the simulated data 

from a model with known bulk electrical conductivity and 

𝑫𝝈𝑏𝑢𝑙𝑘_𝑚𝑒𝑠
 is the measurement collected from a sample with 

identical bulk electrical conductivity. The full details of the 

implementation of the fuel channel brick forward model can 

be found in our previous work related to graphite moderator 

bricks [21].   

 

C. Training datasets 

Two different ANNs were trained to estimate the resistivity 

profiles of the laboratory sample and reactor bricks. The main 

reason for implementing two different ANNs is due to the 

 

 
 

Fig. 4: Illustration of the training and testing procedures of the ANN trained to estimate the reactor bricks resistivity profiles as a function of depth from the bore 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig. 5: Illustrations of the range of conductivity distributions of the samples 

used to generate inductance response  
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difference in brick geometries (such as key-way slots and 

methane holes) between the laboratory sample and reactor 

bricks, which could lead to different EC responses even if they 

have similarities in electrical properties. For this reason, two 

forward models were also implemented each replicating the 

physical and electromagnetic properties and the measurement 

systems of the reactor and laboratory bricks to extract datasets 

and to train the ANNs. 

During the training of the ANN for reactor bricks, the 

simulated datasets were extracted from a forward model 

replicating historically measured physical and electromagnetic 

properties of the graphite bricks and the measurement system. 

The test datasets were directly measured from one of the 

operating reactor core at the locations where trepanning 

samples were extracted and measured. It should be noted that 

the trepanning sample is a cylindrical sample extracted from 

the reactor core with Ø=19 mm approximately 75 mm long, 

and measured in a laboratory condition. 

To allow for error tolerance and improve the generalisation 

of the network to unseen test data we added two types of 

artificial errors into the input training datasets. The first type 

of error is randomly distributed gaussian noise with SNR of 

40dB, 35dB and 30dB, whereas the second type is smoothly 

varying errors with the amplitudes ranging between of 0.5% 

and 3% of the mean MF inductance data. In both cases 

maintaining identical target profiles between the error-free and 

the data with added error such that [𝐷𝐼𝑁  (𝐷𝐼𝑁 + 𝜀)]
⇒ [𝐷𝑇   𝐷𝑇] for the training and target datasets, where 𝐷𝐼𝑁 is 

the original simulated error-free  training dataset, 𝜀 is the error 

added to the original training  dataset and 𝐷𝑇  is the target 

dataset. The total training dataset used for reactor ANN was 

148162 data points or 10583 MF datasets. We used hold-out 

approach to split the data into 90 % of training and 10 % for 

validation and test set. Preliminary test results suggest that the 

network reasonably generalises to unseen datasets therefore, 

further cross validation of the model was not carried out. 

In principle, the above method of generating training datasets 

allows the network to maintain some levels of error tolerance 

when tested with measured datasets.  Fig. 4 illustrates the 

training and testing procedures of the ANN trained to estimate 

the reactor brick radial resistivity profile as a function of depth 

from the graphite bore. 

The effect of the regularisation parameter (𝜆) on the ANN 

output was tested during the training procedure. The 

regularisation parameter was varied between 𝜆=0 and 𝜆 = 0.2 

for both the reactor and laboratory brick ANNs, whilst 

maintaining identical datasets and network structure. The 

variation of 𝜆 during the training process allowed us to select 

the parameter that gives the least error between the target and 

estimated profile during the training, validation and testing 

phase. 

 

D. Testing 

The preliminary test of the trained ANN was based on 

unseen simulated data. The unseen simulated data in this case 

refers to those extracted from the forward model, but that has 

not been used at any point to train, test or validate the 

network. 

Secondly, measurements were collected from a laboratory 

sample, which replicated different weight-loss profiles across 

its radial thickness (see Fig. 6) to further test the trained ANN. 

The laboratory sample has a total height≈ 900 𝑚𝑚 equivalent 

to those in a single layer of the actual reactor core. The entire 

900 mm graphite brick was divided into four sections each 

with 180 ° radial span and 300 mm height. Two different 

patterns replicating different weight-loss scenarios were 

generated and a multi-frequency inductance response due to 

each pattern was measured.  

During the measurements in both laboratory and reactor 

conditions, we injected the exciter coil with a signal consisting 

of frequencies ranging between 10 Hz and 4 kHz with 5 point 

per decade in a logarithmic-scale, and measured the response 

due to the graphite being inspected. Further multi-frequency 

measurements from a brick with known bulk electrical 

conductivities were carried out. The measurements from the 

brick with known bulk electrical conductivity was mainly used 

to calibrate our model with the measurement system to 

compensate for any residual errors, and to test how well the 

ANN generalises to measured data. 

Once the ANN was tested for the laboratory sample, the 

training procedure was extended to train and test the reactor 

brick ANN using the measurements collected from one of the 

operating AGR cores. 

IV. RESULTS AND DISCUSSION 

Fig. 7 and Table I show the test results from the unseen 

simulated dataset when using the ANN trained with different 

regularisation parameters. As can be seen in Table I the ANN 

estimated the unknown resistivity profiles with reasonable 

degree of accuracy with the error ranging between 1.30 % to 

8.20 %.  However, closer examination of the estimated profile 

errors reveals that the ANNs trained with 𝜆 = 10−7and 𝜆 =
10−5 produced the smallest error compared to other cases 

suggesting that the ANNs trained with these parameters 

should be used for estimating brick resistivity profiles from 

the reactor measurements. 

Fig. 8 shows the estimated resistivity profiles of the 

laboratory graphite brick with different patterns of radial 

drilled holes. As mentioned in Section III.D the ANN for this 

particular laboratory sample was trained using different 

datasets extracted from another forward model created to 

replicate the drilled brick physical and electromagnetic 

 

 
 

       (a)                                                      (b) 

 
 

Fig. 6: Cross-sectional illustrations of the different patterns of the laboratory 

sample brick used to replicate different density loss of an AGR brick. It 
should be noted that in reality each of the above 2D images represents semi-

cylinder brick with 92 mm through-wall thickness and 300 mm height, and the 

lines represents the drilled hole patterns (Ø=4mm), which are created to 
represents different weight loss scenarios.  
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properties and the measurement system. As in the previous 

case different weight regularisation parameters were 

incorporated into the ANN to improve the generalisation of 

the network to unseen experimental data. As can be seen in 

Fig. 8, the ANNs trained with different regularisation 

parameters more or less reproduced the expected profile trends 

from the brick with two different radially drilled hole patterns. 

However, the exact resistivity profiles generated by each 

drilled hole pattern is unknown at the moment due to 

difficulties in determining a bulk equivalent resistivity profile 

from a course pattern of drill holes. The only known resistivity 

profile is the bulk  sample profile which is  a homogeneous 

resistivity of 1075 𝜇Ω. 𝑐𝑚 and the measurements from the this 

brick was used to calibrate the model data.  

For this reason, two different criteria have been used in order 

to allow us select a suitable regularisation parameter for the 

laboratory sample ANN.  The first criterion is based on the 

estimated solution that gives the smallest error with respect to 

the homogeneous profile, that is the ANN that gives the least 

error when estimating the homogeneous profile will fulfil the 

first criteria. The second criterion is based on the drilled hole 

patterns, which are expected to be proportional to the 

resistivity profiles i.e. the closer the drilled holes the higher 

the resistivity value and vice versa. In addition, we used a 

Parallel model (10) volume fraction calculation method, 

(which was originally formulated to determine the effective 

properties of two-phase materials [39]) to estimate the 

resistivity of the brick with different drilled hole patterns and 

compare it with those estimated using the ANN.   

 

𝜎𝑒𝑓𝑓 = (1 − 𝑓)𝜎𝑏𝑢𝑙𝑘 + 𝑓𝜎ℎ𝑜𝑙𝑒            (10) 

 

where 𝜎𝑒𝑓𝑓is the effective conductivity of the brick, 𝑓 is the 

volume fraction, 𝜎𝑏𝑢𝑙𝑘 is the conductivity of undrilled region 

and 𝜎ℎ𝑜𝑙𝑒  is the conductivity of the drilled holes. 

 Fig. 9 and Fig. 10 show a flowchart of the optimum 

regularisation parameter selection procedure and the profile 

error with respect to homogeneous profile (1075 μΩ. cm) 

 

 
 

       
Fig. 7: Estimated verses exact profiles using simulated unseen datasets extracted 
from the one of the reactor brick model (a to d) and the corresponding errors 

related to each of the estimated profiles (e to h). 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

TABLE I 

MEAN RESISTIVITY PROFILE ERRORS OF THE ESTIMATED SOLUTIONS IN FIG 6A 

TO 6D 

 

Reg pram Mean error 

for (a)  

Mean error 

for (b) 

Mean error 

for (c) 

Mean error 

for (d) 

𝜆 = 0 5.90 %  7.57 % 3.70 % 1.37 % 

𝜆 = 10−7 6.00 %  6.98 % 2.85 % 1.26 % 

𝜆 = 10−6 6.46 %  8.17 % 2.52 % 1.51 % 

𝜆 = 10−5 6.04 %  6.85 % 3.17% 1.39 % 

 

 

 

 
 

Fig. 8: Estimated resistivity profiles of the graphite brick consisting two 

different redial drilled hole patterns. Note the labels (a and b) in the above 

plots corresponds to the drilled patters shown in Fig. 6a and 6b. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 
Fig. 9: A flowchart illustrating regularisation parameter selection criteria. 

Note: The Calibration brick data (Cal Brick data) and the unseen test data are 

independent datasets and the error norm from each is used to select suitable 
regularisation parameter for the ANN. 
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when estimated using the ANNs trained with different 

regularisation parameters (𝜆). Although the difference in the 

errors are not very significant, it is clear to see that the ANN 

trained with 𝜆 = 0 and 𝜆 = 10−2give the smallest error. 

In principle, the network should give near zero error as the 

measurement from a brick with known homogenous 

conductivity profile is already seen by the network. However, 

the addition different percentage errors on the training data 

means that the network has to compromise between the 

different training data that has identical target profiles, leading 

to small error on the estimated profiles. Similar results can 

also be seen in Table II (A) and (B) where the estimated bore 

and periphery conductivity values are shown along with the 

drilled holes spacing for each pattern. According to the 

radially drilled hole spacing in the brick bore and periphery 

(Table II) and the estimated profiles using different values of 𝜆 

(Fig.8 and Fig. 10),  the most representative profile trends was 

obtained when the ANN is trained with 𝜆 = 0 and 𝜆 = 10−2. 

As 𝜆 increases beyond 10−2   the  profile errors tend to 

increase. The reason that we see the smallest errors from the 

ANN trained with the two smallest regularisation parameters 

in this case 𝜆 = 0 and 𝜆 = 10−2 could be that the errors added 

on the training data already acted to regularise  the ANN, 

allowing for some level of error tolerance in the measured 

data, therefore adding higher value of 𝜆 resulted in additional 

regularisation being introduced during the training and hence 

 

 
 
Fig. 10: Laboratory sample brick ANN regularisation parameter verses profile 

errors with respect to the brick with known bulk conductivity 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE II 

THE BORE AND PERIPHERY RESISTIVITY VALUES OF A GRAPHITE BRICK WITH TWO 

DIFFERENT HOLE PATTERNS (A AND B) WHEN ESTIMATED USING THE ANN 

TRAINED WITH 𝜆 = 0 , 𝜆 = 10−2
 ,VOLUME FRACTION MODEL  AND ITERATIVE 

INVERSION 

 

Pattern 1 

Method 

 

Bore + 4.6 mm Periphery - 4.6 mm 

Hole distance 
(mm) 

Value 

(𝜇Ω. 𝑐𝑚) 

Hole distance 
(mm) 

Value 

(𝜇Ω. 𝑐𝑚) 

Post-Cal 𝜆 = 0 14.62  1165.00 11.67 1061.00 

Post-Cal 

𝜆 = 10−2 

14.62  1158.00 11.67 1137.00 

Pre-Cal 𝜆 = 0 14.62 1116.00 11.67 1107.00 

Pre-Cal 𝜆 = 10−2 14.62 1152.00 11.67 991.90 

Vol- fraction 14.62 1291.00 11.67 1363.00 
Iterative-inv  14.62 1296.00 11.67 1344.00 

(A) 

 

Pattern 2 
Method 

 

Bore + 4.6 mm Periphery - 4.6 mm 

Hole 

distance 
(mm) 

Value 

(𝜇Ω. 𝑐𝑚) 

Hole distance 

(mm) 

Value 

(𝜇Ω. 𝑐𝑚) 

Post-Cal 𝜆 = 0 10.96 1142.00 17.51 1034.00 

Post-Cal 

𝜆 = 10−2 

10.96 1119.00 17.51 1089.00 

Pre-Cal 𝜆 = 0 10.96 1101.00 17.51 1109.00 

Pre-Cal 

𝜆 = 10−2 

10.96 1113.00 17.51 1020.00 

Vol- fraction 10.96 1379.00 17.51 1250.00 

Iterative-inv  10.96 1466.00 17.51 1395.00 

(B) 

 

 
 

 

 

 

 
 

Fig. 11: Comparisons between selected profiles of the ANN from Fig. 8, iterative 
inversion and volume fraction calculations.  (a) and (b) Profiles estimated using 

ANN with post-calibration data, (c) and (d) Profiles estimated using ANN with 

pre-calibration data (e) and (f) Profiles estimated using post-calibration data 
verses pre-calibration data. Note for comparison purpose the evaluation points on 

the x-axis is reduced to four points. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE III 
ERROR NORM BETWEEN THE ANN OUTPUT AND ITERATIVE INVERSION 

SOLUTION AGAINST VOLUME FRACTION MODEL ESTIMATE FOR PATTERN (A) 

AND (B) SHOWN IN FIG.11  
 

ANN 

Reg-pram 

Error norm w.r.t parallel model estimate  

Pattern (a) Pattern (b) 

Post-Cal 𝜆 = 0 14.35 % 13.32 % 

Post-Cal 𝜆 = 10−2 11.82 % 13.94 % 

Pre-Cal 𝜆 = 0 15.53% 13.75 % 

Pre-Cal 𝜆 = 10−2 20.72 % 16.49 % 

Iterative 3.33 % 5.12 % 
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leading to less accurate solution. A comparisons between the 

estimated resistivity values from the   ANN trained with 𝜆 = 0 

and 𝜆 = 10−2 before and after calibrating the test data, the 

volume fraction estimate  and the solution from iterative 

inversion are also shown in Table II, Table III and Fig. 11. A 

detailed look into the estimated bore and periphery   profiles in 

Table II and Fig. 11 reveals that the change between the bore 

and periphery resistivity profiles are proportional, but the 

resistivity profiles predicted using the volume fraction formula 

and iterative inversion tend to agree reasonably well and 

generally larger than the profiles estimated using the ANNs. 

 The resistivity values estimated using the calibrated data for 

pattern (a) between the bore and periphery (for the ANN 

trained with 𝜆 = 0  and 𝜆 = 10−2) have 104 μΩ. cm  and 

21 μΩ. cm  difference whereas values estimated using a data 

prior to calibration shows  9 μΩ. cm  and 160 μΩ. cm, both  in 

a reversed direction relative to the hole spacing. In contrast   
the profiles estimated from iterative inversion shows 

47 μΩ. cm  differences in the correct direction relative to the 

hole spacing.   These suggest that the 2.95 mm difference in 

hole spacing between the bore and periphery was not captured 

by the ANN. This could be due to the reduced amount of 

training data used to produce the ANN for this particular 

laboratory sample, which in this case is 912 multi-frequency 

datasets compared to reactor brick ANN datasets (10583).  

The error norms between the ANN outputs and iterative 

inversion solution against the predicted resistivity values from 

the volume fraction model (Fig. 11 (a) to 11 (f)) are shown in 

Table III. The results indicate that each of the ANN perform 

slightly better than one another when estimating the two 

profiles. However, when considering the accumulated mean 

error between the two ANN models, it can be clearly seen that 

the ANN trained with 𝜆 = 10−2 perform better with calibrated 

test data and become less accurate when using un-calibrated 

test data. In contrast the ANN trained with 𝜆 = 0 perform 

better with uncalibrated data and vice versa. The reason we 

see these, particularly for the un-calibrated data may be due to 

the added errors into the training data, which allows the model 

to tolerate some amount of errors in the test data without 

having additional regularisation into the model. The solution 

from the iterative inversion clearly performs better than the 

two ANN models, however one of the drawbacks with 

iterative approach is that it lacks the speed that can be 

achieved from ANN models. 

Fig. 13, 14 and 15 show the estimated profiles of reactor 

fuel channel bricks. The actual resistivity profiles for the 

reactor bricks at the location where the EC data collected was 

first assumed unknown. Therefore, as in the previous case we 

used two different criteria for selecting a suitable 

regularisation parameter in order to achieve an accurate 

solution.  The first criteria was based on the results from the 

unseen datasets presented in Fig. 7 and Table I, which 

indicated that the smallest profile errors are achieved when the 

ANN is trained with 𝜆 = 10−7and 𝜆 = 10−5, whereas the 

second criteria is based on the estimated solution that gives the 

least error with respect to the homogeneous profile from the 

calibration brick. 

Fig. 12 shows a plot of regularisation parameters verses 

profile errors with respect to the known bulk resistivity value 

of the calibration brick used during the reactor brick 

measurement. The results in Fig. 12 clearly indicated that the 

smallest profile error with respect to the homogenous 

resistivity profile is achieved when the ANN is trained with 

and 𝜆 ≤ 10−5 which is in accord with the results from unseen 

simulated data shown in Fig. 7 and Table I. As the values of 𝜆 

increases beyond 10−5, the error between the estimated and 

target profiles increased rapidly.  

As previously mentioned, the training data for this 

particular study consists of various types of artificial errors 

replicating the physical measurements to allow for some level 

of error tolerance, and to generalise the network to unseen test 

data. Therefore, the training data itself in this case could be 

considered as a form of regularisation to map the unseen input 

data to the predicted output. This is mainly due to the fact that 

the errors were only distributed on the input datasets while 

maintaining identical output datasets during the training 

procedure allowing for some levels of measurement error 

tolerance, and hence this could be the reasons why the ANN 

works best with small values of 𝜆 than larger values.  

Comparison of selected regularisation parameters between 

the laboratory and the reactor brick shows significant 

difference. The reason that the regularisation parameter for 

laboratory brick (𝜆 = 10−2) is larger than the reactor brick 

(𝜆 ≤ 10−5 ) could lie in the artificial errors added to the 

training dataset. Since the artificial errors are generated as 

[𝐷𝐼𝑁   (𝐷𝐼𝑁 + 𝜀)] ⇒ [𝐷𝑇    𝐷𝑇] where 𝐷𝐼𝑁 is the original 

simulated error-free data, 𝜀 is the errors added on the original 

training  datasets and 𝐷𝑇  is the target datasets, the more 

original training datasets are available  the highest the number 

of datasets with  added artificial errors incorporated into 

training datasets and vice versa. This means that the more 

added error in the training dataset act as some form of 

regularisation. Therefore, due to the large amount of training 

datasets used to train the reactor brick ANN (10583 multi-

frequency datasets) compared with the 912 multi-frequency 

datasets used for the laboratory brick ANN, it is reasonable to 

expect that the regularisation parameter that gives the least 

error for laboratory brick ANN to be larger than the ANN for 

the reactor brick. 

 

 

 

 

 
 

Fig. 12:  Reactor brick ANN regularisation parameter verses profile errors 
with respect to the brick with known bulk conductivity 
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The results in Fig.13, Fig. 14 and Fig. 15 show the resistivity 

profiles estimated using the measurements collected from one 

of operating reactor fuel channel at twelve different locations, 

(a1) to (f1) and (a2) to (f2). In Fig.13 and Fig. 14 each of the 

plots show three different curves of the estimated profiles 

from the ANNs trained with three different regularisation 

parameters, whereas Fig 15 shows the estimated profiles for 

the ANN trained with 𝜆 = 10−5 and the iterative inverse 

solution along with the measurements of the trepanned sample 

taken out of the reactor core. The plots in Fig.13 and Fig. 14 

 

 
 

Fig.13: Estimated resistivity profiles of reactor brick using the 
measurement collected from one of the operating reactor core from channel 

X at the top of each brick. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig.14: Estimated resistivity profiles of reactor brick using the measurement 
collected from one of the operating reactor core from channel X at the bottom 

of each brick. 

 
 

 

 
 

 

 

 

 
 

 

 

 
 

Fig. 15: Comparisons of the estimated profiles from the ANN and iterative 

inversion against the measurement collected from trepanned sample taken out 
of the reactor core. 
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shows close estimate of the bore resistivity values for all three 

cases. However, as the distance from the bore increases the 

difference between the estimated profiles tend to increase. 

This suggest that the EC probe response to a change in 

graphite resistivity near the bore (the high frequency 

component of the inductance spectra) is much stronger than 

the low frequency component allowing the network to map the 

relationship between the input and the output accurately 

regardless of the tested regularisation parameter. 

Comparison between the ANN output and the iterative 

inverse solution based on the algorithm in [21] against the 

trepanned sample measurements taken out of the reactor core 

at the locations where the EC measurements collected are 

shown in Fig. 15 and Table IV.  The mean profile differences 

in Table IV indicates smaller difference between the ANN 

mean estimate and trepanning measurement for the positions 

a1 and f2. However, this type of comparisons gives only a 

partial insight into the performance of the selected approaches 

as a constant profile with some fixed value could also give 

much less mean difference than the profiles that shows the 

actual trend of the true profile. Nevertheless, the combinations 

of the profile plots in Fig. 15 and the profile differences in 

Table IV gives a complete picture of the performance between 

the two approaches.  From these two results we can see that 

the ANN performs as good as the iterative inversion algorithm 

except for position a1, where the ANN output shows almost 

linear profile.  

 

V. CONCLUSION 

The use of machine learning and artificial neural networks 

within the non-destructive testing applications are still an 

emerging approach. One of the main advantages of this 

approach, particularly in the context of resistivity profiling 

from the eddy current measurement is that its speed compared 

with traditional iterative inversion algorithms, although the 

accuracy of the solution largely dependent up on the amount 

of training datasets covering multiple scenarios of the test 

condition. In this paper, we presented a method based on 

artificial neural network for estimating the reactor brick 

resistivity profiles as a function depth from multi-frequency 

eddy current measurements.  A combination simulated data, 

laboratory measurements and the measurement collected from 

the one of operating reactor core were used to test the artificial 

neural network models. The estimated profiles from laboratory 

sample and the reactor measurements were compared against 

the solutions from the iterative inversion algorithm and 

showed reasonable agreement between one another suggesting 

that the artificial neural network could in principle perform as 

good as traditional iterative inversion algorithms provided 

sufficient datasets are used for training.  Further comparison 

of the estimated profiles from the reactor measurements 

against the trepanned sample measurements taken out of the 

reactor core at the locations where the eddy current data is 

collected show a profile difference ranging between 1.84 % 

and 17.80 %. 
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