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Staphylococci isolated from caprine and ovine mastitic milk: 
Virulence Factors and Antimicrobial and Antibiofilm 

effectiveness of Propolis Extracts 

 

Abstract 

Small ruminant mastitis is a major problem for milk producers and consumers causing 

economic losses and public health threats. This disease is mainly caused by Staphylococcus. 

The aim of this work was to study propolis for the control of small ruminant mastitis as an 

alternative to conventional antimicrobials. A total of 137 Staphylococcus belonging to 13 

species, recovered from the milk of goats and sheep, were studied. Phenotypic biofilm 

production and antimicrobial susceptibility were examined. Genes coding for virulence 

factors were studied: coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK and tetM. Propolis 

is a resinous substance produced by honeybees which has been used as a natural medicine 

for its antiseptic, antimicrobial, antioxidant, anti-inflammatory, and other 

immunomodulatory properties. Propolis ethanol extracts (PEE) were prepared using 

different propolis from both Brazil and Portugal. These PEE were chemically characterised 

and their antimicrobial and antibiofilm activities were assessed. Results showed an 

association between biofilm production and mastitis inflammatory response. Beta-lactam 

resistance was mainly detected and an association between animal species and resistance 

to some antibiotics was found. All isolates were susceptible to gentamicin and cefazolin. 

The nuc gene was detected in several coagulase negative staphylococci, highlighting its 

inadequacy for S. aureus identification. Regarding the use of propolis for mastitis control, 

most PEE showed inhibitory activity against all staphylococci isolates. Furthermore, PEE are 

bactericidal, which is a very important feature of propolis. Moreover, PEE are effective in 

inhibiting biofilm formation and in destroying the formed biofilm. The presence of 

individual phenolics enhanced bactericidal activity, whereas triterpenes negatively 

influenced both antimicrobial and antibiofilm activity. The results of the present study 

suggest that propolis should be considered for the control of small ruminant mastitis 

caused by staphylococci. Nevertheless, future studies are needed to identify the individual 

propolis compounds exhibiting both antimicrobial and antibiofilm activity. 

Keywords: mastitis, staphylococci, virulence factors, propolis, antimicrobial, antibiofilm. 
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Estafilococos isolados de leite mastítico caprino e ovino: Factores de 
Virulência e eficácia Antimicrobiana e Antibiofilme de Extratos de Própolis  

 

Resumo 

A mastite dos pequenos ruminantes é um problema para os produtores e 

consumidores de leite, causando perdas económicas e ameaças à saúde pública. Esta 

doença é principalmente causada por Staphylococcus. O objetivo deste trabalho foi estudar 

a própolis para o controlo da mastite dos pequenos ruminantes como alternativa aos 

antimicrobianos. Estudaram-se 137 Staphylococcus de 13 espécies, isolados do leite de 

cabras e ovelhas. Avaliou-se a produção de biofilme e a suscetibilidade aos 

antimicrobianos. Analisaram-se alguns genes de virulência: coa, nuc, bap, icaA, icaD, blaZ, 

mecA, mecC, tetK e tetM. A própolis é uma substância resinosa, produzida por abelhas, 

utilizada como medicamento natural pelas suas propriedades antissépticas, 

antimicrobianas, antioxidantes, anti-inflamatórias, entre outras. Os extratos etanólicos de 

própolis (PEE) foram preparados com diferentes própolis do Brasil e de Portugal. Estes PEE 

foram caraterizados quimicamente e as suas atividades antimicrobiana e antibiofilme 

avaliadas. Existe uma associação entre a produção de biofilme e a resposta inflamatória à 

mastite. A resistência aos beta-lactâmicos foi a mais frequente e encontrou-se uma 

associação entre espécie animal e resistência a alguns antimicrobianos. Todos os isolados 

foram suscetíveis à gentamicina e à cefazolina. O gene nuc foi detetado em estafilococos 

coagulase-negativos, mostrando-se inadequado para a identificação de S. aureus. Quanto 

ao uso de própolis no controlo da mastite, a maioria dos PEE mostrou atividade inibitória 

contra todos os estafilococos. Além disso, os PEE são bactericidas, uma importante 

característica do própolis. Adicionalmente, os PEE inibem eficazmente a formação e 

destroem o biofilme formado. A presença de determinados fenóis aumenta a atividade 

bactericida, enquanto que os triterpenos influenciam negativamente as atividades 

antimicrobiana e antibiofilme. Os resultados obtidos sugerem que a própolis seja usada no 

controlo da mastite de pequenos ruminantes causada por estafilococos. No entanto, são 

necessários mais estudos para identificar individualmente os compostos do própolis com 

atividade antimicrobiana e antibiofilme. 

Palavras chave: mastites, estafilococos, fatores de virulência, própolis, 
antimicrobiano, antibiofilme.
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Chapter1 

 

 

 

1. Introduction 

 

Small ruminants breeding is sustainably advantageous for its rusticity, adaptation to 

the environment, easy husbandry, and reproductive capacity. Goat and sheep milk 

production is a common activity in several countries, especially in developing countries 

(Viana et al., 2008; Rahmatalla et al., 2017). This activity is highly related to family farming, 

with a strong commitment to regional development, whose production is intended for 

home milk consumption and for manufacturing traditional cheeses (Peixoto et al., 2010a; 

Schröder et al., 2011). Small ruminants’ milk is known for its beneficial and therapeutic 

effects, suitable for individuals who are allergic to cow's milk and is beneficial for the 

nutrition and health of young and old people (Ribeiro and Ribeiro, 2010).  

In 2016, small ruminant milk production showed a global decline of 4.4% compared 

to the previous year, following the bovine sector, with a reduction of 4,5% (INE, 2017). The 

main drawback affecting the milk production is the mammary gland inflammatory process, 

a disease denominated mastitis, which is common in dairy farms. Besides the reduction in 
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milk yield and on animal performance, this affection increases mortality rate and 

consequently economic losses to the dairy producer (Blagitz et al., 2008; Peixoto et al., 

2010b). Mastitis negatively affects the composition and physical-chemical milk 

characteristics, leading to fat and lactose loss and a slightly higher milk-protein content 

(Gelasakis et al., 2018), impairing cheese manufacturing (Seegers et al., 2003; Halasa et al., 

2009). Moreover, mastitis pathogens may produce toxins responsible for food poisoning 

(Argudín et al., 2010; Vasconcellos and Ito, 2011). Therefore, this disease reflects both in 

animal health and welfare and in milk and dairy products production, as well as in 

consumers’ safety (Keefe, 2012). 

 

1.1 – Motivation 

Mastitis control, both prophylaxis and treatment, is currently mostly dependent on 

antimicrobial and antiseptics use. However, these exert selection pressure on resistant and 

multi-resistant bacterial strains (Contreras et al., 2007; Virdis et al., 2010; Martins et al., 

2017). Antibiotic resistant bacteria, other than impairing mastitis control, may transfer 

resistance genes to the indigenous microbiota in the consumer’s gut (Lee, 2003), consisting 

in a big threat to public health. 

Some antimicrobials that are critically important for human medicine are currently 

being used for mastitis control. Several antimicrobial resistance genes were already 

detected in milk isolates causing sheep (Jamali et al., 2015; Martins et al., 2017) and goats 

mastitis (Virdis et al., 2010). 

Resistant bacteria exist in humans, animals, food and the environment. 

Antimicrobials use, both in animal and human medicine, was responsible for the increase 

in resistance, leading to a threat to public health systems in the last 20 years (Queenan et 

al., 2016; Ferri et al., 2017). Antimicrobial resistance (AMR) is a global problem of complex 

epidemiology and should be considered in a broad and integrated “One Health” approach 

(Weese et al., 2013). 

Measures to avoid the dissemination of resistance genes and the selection pressure 

for resistant and multiresistant bacteria, must be implemented. To develop new 

alternatives to the use of antimicrobials and antiseptics for use in mastitis control is urgent, 
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to improve milk yield and milk quality without risk to public health. Some natural 

compounds derived from plants, which have already inhibited bacteria without causing 

microbial resistance, even after prolonged exposure (Ohno et al., 2003), may be addressed 

as alternatives. 

Propolis is a resinous mass produced by bees Apis mellifera. Honeybees collect 

selectively bioactive resin compounds from different plant parts that they manipulate with 

their salivary gland secretions forming this glue type mass which they use to close the small 

openings in the hive to protect it from invaders and providing a favourable environment 

(Drescher et al., 2019).  

Propolis biological properties are related to its chemical composition, which differs in 

its structure and concentration depending on sources availability for resin harvesting 

(Toreti et al., 2013). Propolis has been used to treat different pathologies, among others, 

due to its antibacterial activity (Wojtyczka et al., 2013). Its activity against bacterial biofilms 

has been reported lately (Wojtyczka et al., 2013; Veloz et al., 2015; Doganli, 2016; De Marco 

et al., 2017). 

 

1.2 – Objectives and thesis outline 

Considering propolis antimicrobial and antibiofilm activities, this work was designed 

to evaluate the use of propolis for small ruminant mastitis control. With that propose, ten 

propolis samples (seven from Brazil and three from Portugal) were used to produce 

propolis ethanol extracts (PEE), which were than analysed for their chemical composition 

and assayed for their antibacterial and antibiofilm performance against staphylococci 

isolated from milk samples from small ruminants with mastitis.  

Therefore, the specific objectives were: 

1 - To identify Staphylococcus species isolated from small ruminants’ milk samples 

and investigate the ability to produce biofilm and the antimicrobial susceptibility patterns, 

both phenotypically and genotypically. 

2 – To study propolis composition in order to evaluate the use of propolis ethanol 

extracts (PEE) for mastitis control purposes. 
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3 – To evaluate the in vitro activity of PEE against staphylococci isolated from the milk 

of sheep and goats with mastitis. 

4 – To investigate the in vitro antibiofilm activity of PEE against biofilm produced by 

staphylococci isolated from mastitis milk from sheep and goats, considering both inhibition 

of biofilm formation and the ability to disrupt established biofilm. 
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2. Literature review 

 

2.1 – Mastitis 

The word Mastitis (Greek “mastos”, breast; + “itis", inflammation) was defined in the 

mid-19th century as the inflammation reaction of the mammary gland. Mastitis occurs 

worldwide, being influenced by factors related to the animal and its environmental 

conditions (Menzies and Ramanoon, 2001; Bergonier et al., 2003; Mendonça et al., 2012). 

Mastitis cause may be of physical, chemical, or infectious origin, the latter being the 

most frequent (Markey et al., 2013). Intramammary infection (IMI) caused by bacteria is 

the most prevalent in dairy herds (Hussein et al 2020; Puggioni et al 2020), and 

staphylococci are the main pathogens found in small ruminants mastitis (Peixoto et al., 

2010; Queiroga, 2017a). 

Mastitis may be clinical (CM), when it involves visible changes in the milk and/or 

clinical signs, or subclinical if no changes may be observed. For the diagnosis of subclinical 

mastitis (SCM), it is necessary to assess milk features such as elevated somatic cell count 
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(SCC), chemical changes and/or bacteriological condition. For SCC in small ruminants, much 

caution is required not to lead to the wrong diagnosis, due to differences among species, 

age, breed, parity by number, lactation stage and number, prolificacy, seasonality, farming 

system and facilities (Jimenez-Granado et al., 2014; Kumar et al., 2016; Mishra et al., 2018). 

Milk yield and quality are decreased due to mastitis (Cuccuru et al., 2011). This 

condition was associated with a loss of 4.1 to 12% milk in sheep and 0.8 to 2.3% in goats 

(Leitner et al., 2008). Furthermore, milk fat, protein, casein and curd yield levels are also 

reduced (Silanikove et al., 2014). 

 

2.1.1 – Aetiology 

Bacteria of the genus Staphylococcus are the most isolated pathogens from mastitic 

milk samples from small ruminants (Contreras et al., 1999; Queiroga, 2017). Research has 

suggested that coagulase-negative staphylococci (CNS) are most commonly accountable 

for sheep (Queiroga et al., 2019) and goats mastitis (Peixoto et al., 2010). Coagulase 

negative staphylococci are also the most prevalent microorganisms found in goats and 

sheep udder skin and teat sphincter microbiota (Moroni et al., 2005).  

Coagulase negative Staphylococcus epidermidis is a pathogen that causes persistent 

infections in sheep mammary gland (Bergonier et al., 2003) and has been reported as the 

main SCM etiological agent in small ruminants (Contreras et al., 1999; Queiroga, 2017). 

Staphylococcus aureus has also been isolated from the milk of animals with SCM. However, 

it is one of the main pathogens found in milk samples from small ruminants with CM, where 

they cause severe symptoms in them (Constable et al., 2016). 

A wide variety of bacteria have been reported as mastitis pathogens in ewes as 

Escherichia coli, Streptococcus spp. and Mannheimia haemolytica, the latter being a 

peracute and gangrenous mastitis cause. In addition, mastitis in sheep may be associated 

with Clostridium perfringens A, Pseudomonas spp. or Corynebacterium pseudotuberculosis 

in a low percentage (Queiroga et al, 2019). In the inflammation of the goats mammary 

gland, bacteria such as Trueperella pyogenes, Bacillus coagulans, Bacillus licheniformis, 

Klebsiella pneumoniae and Actinobacillus equuli are found in a small percentage (Constable 

et al., 2016).  
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2.1.2 – Mastitis control 

Mammary gland health depends on careful management and on adequate facilities 

(Mota, 2008). Hygienic milking, for both hand and machine milking, is an extremely 

valuable issue since it can prevent or minimize the dissemination of microorganisms from 

one animal to another (Bergonier et al., 2003). The lack of hygiene in manual milking can 

lead to bacteria spread from infected animals to the healthy ones through the hand of the 

milker (Langoni et al., 2017). Failure to periodically review milking equipment can cause 

vacuum fluctuation and backflow in addition to bacterial contamination. Before milking, 

routine inspection of the udder and careful milk secretion observation must be performed 

to prevent milking equipment contamination and further infection dissemination (Mota, 

2008). 

Primiparous and/or young healthy animals should be milked first, followed by 

subclinical infections animals, and lastly, the ones showing udder changes and the ones 

under treatment, whose milk cannot be marketed (Bergonier et al., 2003; Mota, 2008).  

Post milking teat dipping procedure has been considered as an effective method to 

prevent further IMI cases (Contreras et al., 2007; Kamal and Bayoumi, 2015). The main 

dipping purpose is to eliminate pathogens of the external opening of the teat canal 

(Rainard, 2017). However, it should be used with caution because mastitis sporadic 

outbreaks have been related to disinfectants (Contreras and Rodríguez, 2011; Kelly and 

Wilson, 2016). Some solutions for teat dipping are not suitable for organic agriculture, such 

as iodine or chlorine-based (Contreras et al., 2007). However, new broad-spectrum 

antiseptic agents are being tested (Pedrini and Margatho, 2003; Reyes-Jara et al., 2016; 

Martins et al., 2017b). 

In many farms, small ruminants are raised to produce different products such as milk, 

meat, skin, and wool. Antimicrobials are administered to control different diseases. 

Antimicrobial use is also the main strategy for mastitis control, both for therapeutic and 

prophylactic purposes (Queiroga, 2007; Constable et al., 2016). However, licensed 

antibiotic preparations for intramammary application for sheep and goats are scarce and, 

occasionally, the estimated dosage and withdrawal time has not been established (Saad 

and Ahmed, 2018). These must be strictly followed because the incorrect use can lead to 

residues in the milk (Beltrán et al., 2015) and exert a selection pressure for resistant 



Chapter 2 – Literature review 
 

12 
 

bacteria that can cause problems in milk and dairy products consumers (Lee, 2003; Gomes 

and Henriques, 2016). Antimicrobial residues in milk, water, food and the environment, 

due to lack of good agriculture practices, lead to antimicrobial entry in the food chain (Lee, 

2003; Beltrán et al., 2015; Berruga et al., 2016). Adequate mastitis control at the dairy farm 

is considered a crucial process to ensure animal health and milk quality (Kamal and 

Bayoumi, 2015). Information on antimicrobial susceptibility of the most prevalent 

pathogens in a herd is essential to determine which drug can achieve the best clinical 

outcome and limit the resistant strain selection. 

To reduce the antimicrobial use for mastitis control is a goal for many researchers. 

Gomes and Henriques (2016) reviewed alternatives to antimicrobials for bovine mastitis 

control such as bacteriophage therapy, nanoparticles, vaccines, and natural compounds, 

among others. Regarding bacteriophages therapy, Mishra et al. (2014) provided 

information for lytic bacteriophages uses against multiresistant S. aureus isolated from 

goat mastitis. Silver nanoparticles were tested by Yuan et al. (2017) in S. aureus and 

Pseudomonas aeruginosa, isolated from goats milk samples, and their results showed 

antibacterial effects, depending on the dose and inhibition time. 

Studies on the natural substances used in veterinary medicine include essential oils 

and vegetables, such as Punica granatum, Hymenaea martiana and Ocimum sanctum, 

which showed effective results against intramammary inflammation in small ruminants, 

both in vitro and in vivo (Jassim and Abdullah, 2014; Peixoto et al., 2016; Kelly and Wilson, 

2016; Dash et al., 2016; Abdalhamed et al., 2018); Schinus terebinthifolius (Muhs et al., 

2017) and Mimosa tenuiflora, Stryphnodendron adstringens and Eugenia uniflora that 

inhibited the S. aureus development, CNS and Escherichia coli, among other species 

(Gonçalves et al., 2005).  

Honey and propolis have also been studied. Natural components such as terpenes 

and phenolic compounds, as tannins, flavonoids, and their pigments like anthocyanins, may 

potentiate the antimicrobial action of these products (Cisowska et al., 2011; Peixoto et al., 

2016; Abdalhamed et al., 2018). Propolis nanoparticles have also been tested against S. 

aureus showing a promising nanocarrier for propolis extract high concentrations in a stable 

aqueous medium, showing antimicrobial activity with moderate cytotoxicity for mammary 

alveolar cells in vitro (Pinheiro Machado et al., 2019). 
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The use of vaccines for mastitis prevention depends on their efficacy to the specific 

etiologic agents (Contreras and Rodríguez, 2011; Constable et al., 2016). For goats and 

sheep, autovaccines can be produced for the pathogens causing the intramammary 

infection (IMI) in the flock (Bergonier et al., 2003). Experiments showed that, after 

vaccination, the infection rate was lower, and the spontaneous cure rate was higher in 

comparison to the control groups in goats (Kautz et al., 2014) and dairy sheep (Tollersrud 

et al., 2002; Amorena et al., 1994). Although, vaccines for IMI prevention by S. aureus have 

existed for decades, their efficacy has been limited (Bannerman and Wall, 2005). 

Considering that there are different strains present in the herd, or even within a single 

animal, it is difficult to find a vaccine that is effective for the eradication of this disease 

(Bergonier et al., 2003; Bannerman and Wall, 2005). 

 

2.1.2.1 – Antimicrobial therapy 

As previously mentioned, mastitis control is highly dependent on antimicrobial 

therapy. Different classes of antimicrobials have been used for mastitis treatment and 

prevention. β-lactams and tetracyclines are the most suitable antimicrobials for the 

treatment of Staphylococcus mastitis and should be chosen over more modern molecules 

that should only be used in case of resistance, since they must be kept for use in human 

medicine. 

Penicillin and their derivatives are β-lactam antimicrobial acting on cell wall synthesis 

inhibition. Penicillin-binding proteins (PBPs) are an enzyme group required for bacterial cell 

wall biosynthesis, which catalyses transpeptidation for the peptidoglycan chain formation. 

β-lactams bind to PBPs and inhibit peptidoglycan crosslink formation, thus lysing the 

bacteria (Paterson et al., 2014). Penicillin G, produced by the Penicillium chrysogenum 

fermentation show bactericidal action and is available in drugs for intramammary 

application.  

Tetracyclines are broad-spectrum antibiotics and are also found as synthetic or semi-

synthetic form. These molecules inhibit the bacterial cells protein synthesis by preventing 

the association of aminoacyl-tRNA with the 30S subunit of the ribosome. This association 

is reversible, explaining its bacteriostatic effect. Most bacteria actively uptake tetracyclines, 
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so their intracellular concentration gets 50 times higher than the outside concentration 

ensuring its specific activity (Chopra and Roberts, 2001). 

 

2.2 – Staphylococcus 

2.2.1 – Identification 

Staphylococci belong to the family Staphylococcaceae, which comes from the Greek 

staphyle, which means cluster, and coccus, meaning grain. These are Gram-positive 

bacteria that grow in a characteristic pattern that resembles the grapes cluster. Most of 

these cocci have diameters of 0.5 to 1.5 μm. They are capable of growing under high 

osmotic pressure conditions and low humidity, under aerobic and anaerobic atmospheric 

conditions, even in the presence of 10% sodium chloride concentration, and temperature 

ranging between 18 °C and 40 °C (Murray et al., 2017; Tortora et al., 2017). 

Conventional methods are used for the phenotypic characters determination for 

staphylococci initial identification, through morphological, dyeing, and biochemical 

characteristics (Quinn et al., 2005). However, it may require days before the result and 

depend on several factors to be reliable. Other methods such as quick identification kits or 

automated systems require only a few hours to conclusion demonstrating between 70% 

and 90% accuracy (Schleifer and Bell, 2009; Fetsch et al., 2018). 

Nowadays, staphylococci may be identified through genotypic analysis, which show 

higher accuracy, comparing with conventional and automated methods (Schleifer and Bell, 

2009; Fetsch et al., 2018). 

According to the List of Prokaryotic names with Standing in Nomenclature (LPSN), the 

Staphylococcus genus currently includes 55 species (Parte et al., 2020). Some 

Staphylococcus produce the enzyme coagulase, and are called coagulase-positive 

Staphylococcus (CPS), while those that do not exhibit this feature are collectively referred 

to as coagulase-negative Staphylococcus (Murray et al., 2017; Tortora et al., 2017). 
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2.2.2 – Staphylococcus in small ruminant mastitis 

As stated above, bacteria of the genus Staphylococcus are the most frequently found 

as small ruminant mastitis aetiology. Coagulase negative staphylococci are more abundant 

and less virulent, causing mainly SCM (Murray et al., 2017; Tortora et al., 2017), than S. 

aureus, which causes most cases of CM and shows to be more virulent (Queiroga, 2007; 

Bergonier et al., 2014; Tortora et al., 2017). 

Staphylococcus aureus produces coagulase, thus being a CPS. Its name stands for its 

yellow-gold colonies, because of the carotenoid pigments expression (Liu and Nizet, 2009). 

This species can cause gangrenous mastitis in goats together with Clostridium perfringens 

and Escherichia coli (Ribeiro et al., 2007). Subclinical mastitis caused by S. aureus can also 

result in a 20% to 30% reduction in milk production. In addition, the sheep mortality rate 

with S. aureus CM varies between 25% and 50%, and the affected mammary glands of 

survivors generally become non-productive (Constable et al., 2016). 

Among CNS species, S. epidermidis is commonly cited in the literature, usually 

associated with the high SCC values in dairy ewes (Contreras and Rodríguez, 2011; 

Queiroga, 2017). This species together with S. simulans and S. warneri showed major 

occurrence in sheep, before and after antimicrobial treatment at drying-off for two 

consecutive milking seasons (Zafalon et al., 2017). 

In goat's milk samples, S. caprae species is commonly isolated (Bergonier and 

Berthelot, 2003; Peixoto et al., 2010), besides S. epidermidis, S. xylosus, S. chromogenes, S. 

simulans and S. haemolyticus species (Deinhofer and Pernthaner, 1995; Moroni et al., 2005; 

Vasiľ, 2007). However, S. caprae is also rarely isolated from sheep and cow milk 

(Vanderhaeghen et al., 2014; Condas et al., 2017).   

 

2.2.3 – Virulence factors  

Staphylococcus species hold several virulence factors conferring them the ability to 

damage the host tissues and to resist defence mechanisms, thus impairing mastitis control 

(Vasiľ, 2007; Contreras and Rodríguez, 2011; Ferreira et al., 2014a; Ferreira et al., 2014b; 

Bertelloni et al., 2015; Martins et al., 2017a). 
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Toxin production are considered the main virulence factors. Staphylocci produce 

thermostable enterotoxins through metabolic activity that can remain in milk, even after 

being pasteurized at 100 °C for 30 minutes. When produced by staphylococci causing 

mastitis in small ruminants, these may be responsible for food poisoning in contaminated 

milk and dairy products (Argudín et al., 2010; Vasconcellos and Ito, 2011). Moreover, 

staphylococcal enterotoxin genes have been detected in S. aureus isolated from cheeses 

and raw milk from goats and sheep (Carfora et al., 2015), as well as in S. aureus isolated 

from a human after consuming goat cheese (Johler et al., 2015). In milk and dairy products 

from small ruminants, the staphylococcal enterotoxins and toxic shock syndrome toxins are 

often commonly found in S. aureus strains and more seldom in CNS isolates (Scherrer et 

al., 2004; Salaberry et al., 2015; Azara et al., 2017; Martins et al., 2017a; Vitale et al., 2018). 

Other virulence factors are bacterial strategies to overcome host defence 

mechanisms and antimicrobial actions. The ability to produce biofilms and to get ways to 

resist antimicrobials are some of these strategies (Murray et al., 2017). 

Different virulence factors may play divergent roles in SCM caused by Staphylococcus 

(Salaberry et al., 2015). These factors increase the damage to the mammary gland and 

hinder the mastitis treatment (Azara et al., 2017). 

 

2.2.3.1 – Enzymes 

Staphylococci produce a wide variety of enzymes in order to invade the body and 

evade immune mechanisms. 

Coagulase reacts with prothrombin in the blood producing staphylothrombin, which 

then convert fibrinogen to fibrin, resulting in the formation of clots. These clots protect the 

bacterium from phagocytosis and other host defence elements (Constable et al., 2016). 

Coagulase can be present in the cell wall or be freely secreted by the bacterium (Babu et 

al., 2014). The detection of coagulase is performed on the laboratory to differentiate CPS 

from CNS, generally using a tube coagulase test. There are different methods to identify 

this enzyme, the molecular ones being the most effective. This enzyme is encoded by the 

coa gene, which can be detected by polymerase chain reaction (PCR) (Babu et al., 2014). 
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The thermostable nuclease enzyme is also a virulence factor present in some 

staphylococci, which hydrolyzes DNA and RNA in host cells, causing tissue destruction and 

spreading of staphylococci (Foster, 2005). It may promote their evasion from neutrophil 

extracellular traps (NETs), which are DNA strands networks with antimicrobial proteins 

which allow neutrophils to lyse the micro-organisms in the extracellular environment, 

without phagocytizing them (Berends et al., 2010; Kenny et al., 2017). This enzyme also 

degrades environmental DNA (eDNA) and has been associated with biofilm regulation 

(Mann et al., 2009; Kiedrowski et al., 2011). It is encoded by the nuc gene, which was 

considered the gold standard for the identification of S. aureus (Kateete et al., 2010) and is 

still used for that purpose, although it is present in other staphylococci species (Schleifer 

and Bell, 2009; Hirotaki et al., 2011) and some S. aureus not carrying this gene have been 

described (van Leeuwen et al., 2008; Xu et al., 2015).  

 

2.2.3.2 – Biofilm production 

Biofilms are bacterial multi-layered cluster embedded in an extracellular matrix 

composed by exopolysaccharide, proteins, and environmental DNA (eDNA) (Büttner et al., 

2015). Thereby, the sessile bacterium is protected against cellular and humoral defence 

mechanisms of the host, also getting higher resistance to antimicrobial agents used for the 

mastitis treatment (Barrio et al., 2000; Cucarella et al., 2004). According to Melchior et al. 

(2006), biofilm fixation and production are important factors also to emphasize other 

Staphylococcus virulence mechanisms. 

According to Cramton et al. (1999), two sequential steps are involved in biofilm 

formation, cells adhesion to a solid substrate followed by cell-cell adhesion. For the first 

step, a polysaccharide capsular adhesin (PS/A) and a polysaccharide intercellular adhesin 

(PIA) may be involved (Laverty et al., 2013). Bacterial cells aggregation is expressed by a 

cationic glucosamine-based lipopolysaccharide. In some cases, proteins may function as 

alternative aggregating substances. Surfactant peptides were recognized as key factors 

involved in generating the 3D structure of a staphylococcal biofilm between cell disruptive 

forces, which casually may lead to the detachment of entire cell clusters (Otto, 2008). Inside 

the biofilm, the quorum sensing (QS) is the process through which bacteria produce and 

detect signalling molecules and, thus, coordinate the population's behaviour in biofilm. This 
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phenomenon plays a crucial role using self-inducing signalling molecules, which when 

accumulate to a threshold concentration activate a transcriptional regulator, which in turn 

regulate various genes expression, affecting the bacterial virulence (Kong et al., 2006; 

Rutherford and Bassler, 2012). 

The PS/A and PIA are encoded by the icaADBC genes of the intercellular adhesion 

operon ica (Laverty et al., 2013). In Staphylococcus species, this operon is also suggested 

to participate in cell-cell adhesion (Cramton et al., 1999; O’Toole et al., 2000) and has been 

found in both S. aureus and S. epidermidis, suggesting that the initial stages in biofilm 

formation would be similar between these two species (Cramton et al., 1999). For S. 

epidermidis, the ability to produce an exopolysaccharide matrix has been considered the 

defining virulence factor (Fey and Olson, 2010). 

The icaA and icaD genes have a significant role in biofilm formation in S. aureus 

(Vasudevan et al., 2003). These genes have been considered essential factors for 

intercellular adhesion (Nourbakhsh and Namvar, 2016). However, in the absence of these 

genes a biofilm-associated protein (bap), encoded by bap gene, or biofilm homologous 

protein, encoded by bhp gene, may alternatively be responsible for biofilm production 

(Cucarella et al., 2004; Martins et al., 2017a). The bap gene was first identified in S. aureus 

isolated from mastitis (Cucarella et al., 2001). The biofilm-associated protein is a member 

of the surface proteins group that share several important structural and functional 

characteristics in the biofilm formation, besides having a role in bacterial infectious 

processes (Lasa and Penadés, 2006). 

According to Cucarella et al. (2004) S. aureus isolates, which showed stronger biofilm 

production, had ica operon together with the bap gene. However, Tormo et al. (2005) 

found only the bap gene in staphylococci with strong biofilm formation. Szweda et al. 

(2012) reported that S. aureus carried only icaA and icaD genes, but not the bap gene, while 

Martins et al. (2017a) detected only the bap gene in some CNS. however, the same authors 

described 61.6% CNS biofilm producers isolated from sheep milk harbouring any of the bap, 

bhp and ica operon genes. 
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2.2.3.3 – Antimicrobial resistance 

During bacterial growing, genetic mutations occur naturally in bacteria and some may 

develop strains resistant to antibiotics (Srivastava and Dutt, 2013). Bacteria may also get 

resistance genes though horizontal gene transfer: conjugation, when a bacterium carrying 

resistant genes transfer these genes to other bacteria; transformation, when a DNA 

fragment from the environment enters a recipient bacterium and transduction when a 

bacteriophage transfer a DNA fragment from one bacterium to another (Kaiser, 2020). 

In a bacterial population, different cells may have different resistance levels. When 

an antimicrobial is introduced in this population environment, those susceptible to the drug 

are inactivated and thus only resistant bacteria survive. So, the antimicrobial exerts a 

selection pressure for resistant strains (U.S. Congress, 1995). 

The product of genetic recombination can decrease antibiotic access to cell targets, 

modify antimicrobial targets or inactivate the molecule, a so inducing bacterial resistance 

to antimicrobials (Williams, 1999). 

β-lactam antimicrobials are inactivated by β-lactamase enzymes, which catalyse the 

hydrolysis of the β-lactam ring cutting the amide bond (Williams, 1999). In Gram-negative 

bacteria, these enzymes may be present mainly in periplasmic space and in Gram-positive 

in the extracellular environment (Bush, 1988). In staphylococci these enzymes are encoded 

by blaZ gene and when encoded from chromosomes, are transferred to the same species, 

but when encoded by plasmids they are transferable between different species of bacteria.  

MRSA resistance is due to the Penicillin-binding proteins mutant, additional PBPs 

(PBP2a), which encoded by mecA gene, as well as its mecB and mecC homolog (Paterson et 

al., 2014; Nasution et al., 2018). Recently, a study showed that the acquisition of methicillin 

resistance by the mecA gene was possible by transducing SCCmec type IV and SCCmec type 

I, by bacteriophages 80α and 29 for S. aureus receptor strains (Scharn et al., 2013).  

Many pathogenic bacteria are resistant to tetracyclines due to proteins associated 

with the membrane that favours efflux, thus taking tetracycline out of the cell. These 

proteins are encoding by tet genes. These genes can be transported for other bacteria by 

transformation or conjugation. TetM genes can be found on the bacterial chromosome and 
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carried mainly by conjugative transposons. The tetK gene is generally carried by small 

plasmids and can be inserted in SCCmec type III (Ito et al., 2003).  

Staphylococcal mastitis isolates from small ruminants have been reported to be 

resistant to β-lactams with prevalence between 41% and 88% (Agnol et al., 2013; Jamali et 

al., 2015; Kürekci, 2016; Salaberry et al., 2016; Chu et al., 2017; Ayis and Fadlalla, 2017; 

Obaidat et al., 2018; Hristov, 2018). Moreover, amoxicillin, a penicillin derivative, is more 

effective against β-lactamases-producing microorganisms, when used together with 

clavulanic acid, which inactivates β-lactamases (DGAV, 2013). Obaidat et al. (2018) showed 

better combined action because only 20% of the S. aureus, from small and large ruminants 

milk, resisted their joint action, while 50% were resistant to individual penicillin. Regarding 

tetracyclines, 26.3% to 73.7% of staphylococci isolated from small ruminant milk samples 

also showed resistance (Ayis and Fadlalla, 2017; Obaidat et al., 2018). 

 

2.3 – Propolis 

2.3.1 – Origin and properties 

The Greeks called propolis at the gates of a city, a word taken by the prefix ‘pro’ and 

‘polis’ for city (Ghisalberti, 1979). Propolis is a mass produced by honeybees with various 

resinous substances, from plant sources (Alvarez-Suarez, 2017). Resins are sticky and 

aromatic plants exudates, secreted in the initial flower development and leaf buds. After 

removing the resins with their jaws, Apis mellifera bees triturate and soften them with the 

aid of 10-hydroxydocenoic acid, a substance produced in their salivary glands, which they 

then mix with wax, pollen and microelements, resulting in a glue type, used to fill gaps, 

both in the breeding wells and in the hive wall, allowing better thermal insulation and 

preventing the entry of undesirable visitors (Ghisalberti, 1979; Costa and Oliveira, 2005). In 

addition, bees also use it to completely cover and immobilize small animals and invaders 

insects, embalming them and preventing their decomposition creating a sterile 

environment. Propolis was also used by Egyptians to embalm corpses due to its anti-

putrefactive properties (Ghisalberti, 1979; Bankova et al., 1996; Castaldo and Capasso, 

2002). 
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This resinous paste has been used for centuries to treat different human diseases. It 

was recognized for its medicinal properties by Greek and Roman physicians, such as 

Aristotle, Dioscorides, Pliny and Galen, by Arab doctors in the Middle Age, by the Incas of 

the Old-World civilizations, and by the London pharmacopeia in the 17th century, who 

listed propolis as official medicine. Between the 17th and 20th centuries, propolis became 

very popular in Europe due to its antibacterial activity (Castaldo and Capasso, 2002). 

Propolis compounds can exhibit different actions, such as antioxidant, anti-

inflammatory (Yildiz et al. 2014), antiulcerogenic (Barros et al., 2008), antitumoral (Frozza 

et al., 2013), antidiabetogenic (Pacheco et al., 2011), antiatherogenic and anti-angiogenic 

(Daleprane et al., 2011), immunomodulatory (Castaldo and Capasso, 2002), antifungal 

(Agüero et al., 2011; Mendonça et al., 2015), antiviral (Nolkemper et al., 2010) namely for 

human immunodeficiency virus (anti-HIV) (Gekker et al., 2005). Propolis also showed action 

versus some bacterial virulence factors, such as anti-biofilm (Wojtyczka et al., 2013; 

Doganli, 2016), anti-quorum sensing (Kasote et al., 2015) and antimotility (Mirzoeva et al., 

1997; Josenhans and Suerbaum, 2002). 

 

2.3.2 – Composition 

Propolis chemical composition and colour are variable and dependent on the 

vegetation around the hive (Ghisalberti, 1979; Koru et al., 2007). Moreover, chemical 

composition variation generates differences in their pharmacological properties (Bueno-

Silva et al., 2017; Afrouzan et al., 2018). 

Propolis generally consists of 30 to 40% waxes, 5 to 10% volatile oils and aromatic 

acids, 50 to 60% resins and balsams, and 5% pollen grains. These latter are a source of 

essential elements, such as magnesium, nickel, calcium, iron, zinc, aluminium, strontium, 

copper, manganese and small amounts of vitamins B1, B2, B6, C and E, and sugars such as 

arabinose, fructose, glucose, sucrose and maltose (Ghisalberti, 1979; Bonvehí et al., 1994; 

Castaldo and Capasso, 2002; Park et al., 2002). 

The main pharmacologically active compounds in propolis are: bioflavonoids and 

derivatives (pinocembrin, pinostrobin, galangin, isalpinine, pinobanksina, isosakuranetin, 

canferida, quercetin, naringenin, apigenin, chrysin, formononetin, vestitol, neovestitol, 
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isoliquiritigenin, anthocyanins and medicarpin); other phenolic compounds (terpenes, 

caffeine and its esters, artepillin C, and its derivatives, ferulic, trans-cinnamic, prenylated 

p-coumaric ); phenolic aldehydes; ketones (chalcone); tannins and fatty acids (Marcucci et 

al., 2001; Castaldo and Capasso, 2002; Koo et al., 2002; Uzel et al., 2005; Funari and Ferro, 

2006; Inui et al., 2014; Bueno-Silva et al., 2017; Afrouzan et al., 2018). Some authors 

reported that in propolis, phenolic acids are more abundant than flavonoids (Woisky and 

Salatino, 1998). Several compounds already identified are present in all samples, but other 

depends on the seasonality and flora where the samples are collected (Castaldo and 

Capasso, 2002; Vargas et al., 2004; Alencar et al., 2007). 

 

2.3.3 – Components extraction and pharmacological activity 

Several factors may affect the antimicrobial action of each propolis extract. Solvent 

type, propolis concentration and the methodology used for extraction determine the 

components to be extracted from the original sample (Park and Ikegaki, 1998; Pinto et al., 

2001; Castaldo and Capasso, 2002; Silva et al., 2003). 

Pinto et al. (2001) studied the Gram-positive bacteria susceptibility, isolated from 

milk, to propolis extracts produced with different methodologies and solvents, such as 

water, ethanol, methanol, ethyl acetate and chloroform at a concentration of 100 mg/ml. 

Ethanolic extract showed the best action followed by the methanolic extract. However, 

extracts produced with water, ethyl acetate and chloroform did not show any bacterial 

activity as the pure ethanol and methanol used as controls. 

Regarding ethanol extracts, although some antimicrobial activity was observed in 

extracts produced with 30% to 50% ethanol, the best performance was obtained with 

concentrations between 60% and 80%. In these highest ethanol concentrations occurs the 

extraction of the highest percentages of bioactive components, such as phenolics, that are 

less soluble in water (Park and Ikegaki, 1998; Pinto et al., 2001). However, a proper PEE is 

safe when its preparation is standardized (Castaldo and Capasso, 2002; Silva et al., 2003). 
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2.3.4 – Antimicrobial activity 

The antibacterial action of propolis is more marked against Gram-positive bacteria 

than for Gram-negative organisms (Campos et al., 2017). 

For Streptococcus agalactiae, Takaisi-kikuni and Schilcher (1994) described that 

propolis components caused cell lysis by disrupting the cell wall, cytoplasmic membrane 

and cytoplasm, and bacterial inhibition was caused by protein synthesis inhibition and DNA 

replication impairment. Scazzocchio et al. (2006) described S. aureus inhibition of lipase 

and coagulase enzymes by PEE activity. More recently, Campos et al. (2017) showed by 

atomic force microscopy that the components present in the propolis extract, interacted 

with S. aureus and E. coli, generating an increase in the cell volume, indicating that the 

action on the bacteria cell wall is the main mechanism that leads to bacterial inhibition. 

These authors reported that Gram-negative bacteria required a higher EEP concentration 

for cell wall disruption. Mirzoeva et al. (1997) stated that the caffeic acid component of the 

propolis extract inhibited motility and increased the membrane ionic permeability of 

Bacillus subtilis. 

The cell wall of Gram-negative bacteria is of greater chemical complexity, lower 

flexibility, and higher lipid content, conferring a higher resistance to propolis activity 

compared to Gram-positive (Vargas et al., 2004; Campos et al., 2017). Studies show that to 

overcome the structure of the Gram-negative bacteria membrane, a double propolis 

extract concentration must be used comparing to Gram-positive (Mirzoeva et al., 1997). 

 

2.3.5 – Propolis synergy with antibiotics 

Propolis extracts can be used alone or in combination with antibiotics (Afrouzan et 

al., 2018). This association produces synergy potentiating the antibiotics antimicrobial 

effect on various bacteria. 

Subinhibitory concentrations of propolis extracts together with antibiotics were 

analysed to observe their inhibitory action on multidrug resistant microorganisms. The 

synergistic action demonstrated the propolis potential to improve the action of certain 

antibiotics, which had been previously undetected (Stepanović et al., 2003). 
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Other authors also observed good results when PEE sub-inhibitory concentrations 

were added to ampicillin, gentamicin, and streptomycin against S. aureus (Scazzocchio et 

al., 2006). Ampicillin together with PEE was active against Listeria monocytogenes for the 

treatment of goats and sheep with listeriosis. Its synergy showed more efficiency than 

antibiotics combination (Ismael et al., 2009). However, in another study, this association 

showed no action against S. aureus (Król et al., 1993). 

When PEE was added to chloramphenicol, ceftriaxone and vancomycin showed 

moderate activity and when together with erythromycin did not show antimicrobial action 

(Scazzocchio et al., 2006). 

Differences in PEE composition could explain divergences in PEE synergies with the 

same antibiotic, for the same bacterial species, due to the activity of the different 

compounds present in each propolis sample. Fernandes et al. (2005) observed that the 

better synergistic results detected were for the PEE together with antibiotics that cause 

interference in bacterial protein synthesis. 

 

2.3.6 – Propolis components with antimicrobial action 

In 1994, Takaisi-Kikuni and Schilcher (1994) showed that propolis antimicrobial 

activity is due to the synergism between various components, such as phenolic acids, 

flavonoids, and sugars. Likewise, Mirzoeva et al. (1997), observed the efficacy of some 

propolis components, such as caffeic acid phenolic ester (CAPE), quercentin, naringerin and 

caffeic acid against Gram-positive and some Gram-negative bacteria. This synergy has the 

greatest effect on bacterial cells when they are actively growing. 

Other authors refer the main propolis compounds commonly found with potential 

antimicrobial action, both for Gram-positive and Gram-negative bacteria, are flavonoids 

(pinocembrin, pinostrobin chalcone, isalpinine, pinobanksina, quercetin, naringenin, 

galangin and chrysin), phenolic and terpene compounds (Castaldo and Capasso, 2002; Uzel 

et al., 2005; Afrouzan et al., 2018). 

Several studies show different compounds are characteristic of specific regions of 

resin collection by bees. Red coloured propolis has biologically active compounds that have 

not been reported in other propolis types (Trusheva et al., 2006; Alencar et al., 2007). 

Isoflavonoid medicarpin compound found in red propolis, by Inui et al. (2014), showed 
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better antimicrobial activity against S. aureus, B. subtilis and P. aeruginosa than other 

compounds. 

Green PEE displayed better antimicrobial activities against S. aureus resistant and 

sensitive to methicillin (MRSA and MSSA) compared to Baccharis dracuculifolia extracts 

(vegetable source for green propolis production) and artepillin C (compound found in 

Green propolis and B. dracunculifolia). The better EEP activity may be related to the synergy 

between these constituents or between these and others present in the sample (Veiga et 

al., 2017). This research confirms the results from the late 20th century by Król et al. (1993) 

and Bankova et al. (1996), which related a synergism among propolis constituents showing 

better antimicrobial activity altogether, when compared to the isolated compounds. This 

synergistic potential was also confirmed by Bittencourt et al. (2015). 

 

2.3.7 – Propolis components with antibiofilm action  

Glycosyltransferases (GTFs) are enzymes important for biofilm development (Islam 

et al., 2008). These enzymes are involved in the synthesis of the glucan polysaccharide, 

which can provide binding sites for bacteria (Schilling and Bowen, 1992). Potent inhibitors 

of GTF activity have been found in propolis extracts such as flavone and flavonol, with 

apigenin being the most effective constituent for this action (Koo et al., 2002). 

On the other hand, substances with QS inhibitory functions were proposed by 

Brackman and Coenye (2015), as promising antimicrobial agents. Quorum Sensing process 

develops following different systems such as autoinducing peptide (AIP) in Gram-positive 

bacteria, acyl-homoserine lactone (AHL) in Gram-negative bacteria and the autoinducer-2 

(AI-2) existing in both bacteria types. Savka et al. (2015) observed that the components 

found in propolis inhibited the QS system AHL of Gram-negative bacteria, emphasizing that 

the extracts that showed higher amounts of flavanones and dihydroflavonols, flavones and 

flavonols, cinnamic acid derivatives and fatty acids showed the best results in inhibiting this 

system and, consequently, inhibiting biofilm. 

Polyphenol tannins (condensed and hydrolysable), often found in propolis, are also 

denoted as possible antibiofilm compounds for Gram-negative bacteria, but in higher 

concentrations (Trentin et al., 2013) compared to Gram-positive bacteria for which a 
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concentration as low as 0.2 𝜇g / mL was effective to inhibit the biofilm formation. 

Antibiofilm activity may also be due to flavonoids (kaempferol, myricetin, pinocembrin, 

apigenin, genistein and quercetin), which were present in greater amount in the studied 

sample (Veloz et al., 2015). 

 

2.3.8 – In vitro antimicrobial activity of propolis against staphylococci from small 

ruminants milk 

Aqueous and ethanolic green propolis extracts were evaluated for staphylococci 

susceptibility on isolates from goat's milk. Both extracts were efficient, however, the 

ethanol extract showed greater activity (Santos Neto et al., 2009). Likewise, Silva et al. 

(2012), showed satisfactory antibacterial results of brown propolis extract for 

Staphylococcus sp. Propolis antimicrobial studies against goat and sheep mastitis 

pathogens are scarce. 

 

2.3.9 – In vivo antimicrobial activity of propolis in small ruminants 

Studies on the use of propolis to improve small ruminants performance are on the 

rise and showing positive results. In 1983, Havsteen (1983) described that flavonoids 

administered orally are metabolized and expelled in the urine. Thus, the propolis addition 

to sheep rations (Silva et al., 2015), goats (Lana et al., 2007) and cows (Aguiar et al., 2014) 

did not show a negative effect on the nutrients digestibility and could be used as a reliable 

antimicrobial compound as a food complement for ruminants not affecting normal rumen 

parameters. 

Selem (2012) described that red PEE added to a Tifton hay substrate base (50:50) 

significantly decreased SCC while increasing fat, protein and lactose together with milk 

production, improving sheep health during breeding season and performance of lambs. 

This author also stated that the isoflavonoids were the components responsible for the 

propolis biological activity. Morsy et al. (2016) administrated red propolis extracts, orally, 

(3g/sheep/day) for 21 days before the expected lambing date. These authors also observed 

that the isoflavonoids present in the propolis extract decreased SCC and significantly 

increased total protein and sheep energy status thus improving milk production. The 
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authors concluded that propolis extract prepartum administration was positively 

supported in the transition from pregnancy to lactation, with health benefits for the ewes 

and the lambs. 

A propolis based intramammary formulation was assessed for tolerance and efficacy 

on 100 goats in intensive milk production. Samples were analysed for milk composition, 

SCC, and microbiological culture. The formulation was applied three times and the 

antimicrobial, immunostimulatory and anti-inflammatory activity was observed in 1% to 

3% propolis concentrations. The authors suggest that the intramammary formulation has 

the potential to gradually replace antibiotics, with the advantage that propolis does not 

require a withdrawal period and repeated use does not cause antimicrobial resistance 

(Bačić et al., 2016). 
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Abstract 

Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. 

Different virulence factors affect mastitis pathogenesis. The aim of this study was to 

investigate virulence factors genes for biofilm production and antimicrobial resistance to 

β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). 

The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was 

investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-

negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 

out of 18 CNS harbored this gene. The icaA gene was detected in S. aureus and S. warneri, 

while icaD only in S. aureus. None of the isolates carrying the bap gene harbored the ica 

genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus and 

eight CNS). An association was found between Staphylococcus species and resistance to 

some antibiotics and between antimicrobial resistance and animal species. Nine penicillin-

susceptible isolates exhibited the blaZ gene, questioning the reliability of susceptibility 

testing. Most S. aureus isolates were susceptible to tetracycline, and no cefazolin or 

gentamycin resistance was detected. These should replace other currently used 

antimicrobials.  

Keywords: mastitis; staphylococci; virulence factors; genes; biofilm; antimicrobial 

resistance 
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1. Introduction  

Mastitis is the inflammation of the mammary gland, mainly due to intramammary 

infection (IMI). In small ruminants, this disease is considered a serious economic issue due 

to the mortality of lactating females, cost of treatment, reduced milk yield and quality [1,2], 

as well as a public health concern associated with risk of consumer food poisoning [3,4]. 

Several pathogens can cause mastitis in small ruminants; however, species of 

staphylococci are the most frequently isolated microorganisms from goat and sheep milk 

[2,5–8]. Staphylococcus aureus is one of the main pathogens associated with mastitis in 

small ruminants [9]. Incidence of clinical mastitis in sheep due to this bacterium may reach 

20% with a mortality rate between 25% and 50%, and the affected mammary halves in 

surviving animals are frequently destroyed. Chronic mastitis may cause a 25 to 30% 

reduction in milk yield from the affected udder [10].  

Coagulase negative staphylococci (CNS), although not as virulent as S. aureus, often 

cause subclinical mastitis in small ruminants [5,11–13]. This type of infection, most times 

not detected by the farmer, clearly reduces milk production, also changing milk 

composition, indirectly impairing the milk product’s properties [14]. CNS are the most 

prevalent pathogens of the mammary gland in goats and sheep with subclinical mastitis, 

affecting 60% to 80.7% in goats and 45% to 48% in sheep [1]. Other authors have reported 

as much as 70.1% of subclinical mastitis in sheep is caused by CNS [5].  

Virulence factors are bacterial molecules that enhance their capacity to establish and 

to survive within the host and, thus, contribute to bring damage to the host. Staphylococci 

possess a wide array of virulence factors [15]. Coagulase enzyme acts on plasma fibrinogen 

to form fibrin clots that protect the microorganisms from phagocytosis and shelter them 

from other cellular and soluble host defence mechanisms. This enzyme, encoded by the 

coa gene, is commonly used to distinguish coagulase positive staphylococci (CPS), namely 

S. aureus, S. intermedius, and S. pseudintermedius, from CNS species [16]. Nevertheless, 

this gene has been found also in species known as CNS such as S. epidermidis, S. 

chromogenes, and S. hominis [17]. The coa gene has also recently been associated with 

biofilm production [18].  
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The staphylococcal nuclease is a thermostable nuclease encoded by the nuc gene 

[19], which hydrolyzes DNA and RNA in host cells, causing tissue destruction and spreading 

of staphylococci [20], also promoting the escape of microorganisms when retained by 

neutrophil extracellular traps (NETs), allowing the bacteria to evade this host defence 

mechanism [21,22]. For decades, the nuc gene has been considered the golden standard 

for Staphylococcus aureus identification and is still used presently [23–25]. However, the 

nuc gene has been detected in staphylococci of animal origin other than S. aureus [26]. 

Moreover, the nuc encoded staphylococcal thermonuclease is a biofilm inhibitor that 

degrades the environmental DNA (eDNA) associated with biofilm [27,28].  

The production of biofilm is considered a major virulence factor that, besides 

protecting from host defence mechanisms, also shields bacteria against antimicrobial 

agents [29]. Furthermore, the persistence of biofilm-producing isolates in the dairy 

environment enhances the dispersal of virulence factors though the transfer of genetic 

material to other bacteria [30]. Biofilm major components are an exopolysaccharide matrix, 

proteins, and eDNA, along with the bacterial cells [31]. The exopolysaccharide, 

polysaccharide intercellular adhesin (PIA), is also a non-protein adhesin [32] assisting in 

bacterial adhesion to different surfaces, comprising the first critical event in the 

establishment of an infection [33]. Staphylococcal PIA is encoded by the ica operon [34], 

and biofilm-associated protein (Bap) is a surface protein connected to the cell wall encoded 

by the bap gene [35].  

Antimicrobial resistance (AMR) is a major problem hampering the treatment of an 

ever ncreasing range of infections caused by bacteria [36]. Staphylococci resistance has 

been reported for different antimicrobials used for mastitis control in small ruminants 

[7,36–38]. Genes often described in Staphylococcus spp. isolated from the milk of small 

ruminants are blaZ and mecA, responsible for β-lactam resistance and tetK and tetM, 

accounting for tetracycline resistance [39–41]. The presence of resistant bacteria in 

contaminated food products may lead to the transfer of resistance genes to the indigenous 

microbiota in the human gut [42].  

The aim of this study was to identify Staphylococcus species isolated from small 

ruminants’ milk samples and investigate the presence of genes encoding virulence factors 
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associated with both biofilm (coa, nuc, bap, icaA, and icaD) and antimicrobial resistance to 

β-lactams (blaZ, mecA, and mecC) and tetracyclines (tetK and tetM). 

 

2. Results and Discussion 

2.1. Bacteriological Results 

From the 646 milk samples collected from goats (508) and sheep (138), 

bacteriological cultures resulted positive in 191 samples: 131 goat milk and 60 sheep milk. 

A total of 137 staphylococcal isolates were recovered, of which 86 were isolated from goat 

and 51 from sheep milk samples. 

 

2.2. Staphylococci Identification  

Excellent (96 to 99% probability) and very good (93 to 95% probability) identification 

was observed for most Staphylococcus. Unidentified isolates and isolates with low 

discrimination results were confirmed by 16S rRNA gene sequencing. Concerning goat milk 

samples, four S. aureus, one Staphylococcus sp., and 12 different CNS species were found: 

S. caprae (25), S. chromogenes (10), S. epidermidis (11), S. simulans (8), S. warneri (7), S. 

capitis (4), S. lentus (4), S. hominis (4), S. hyicus (3), S. auricularis (2), S. haemolyticus (2), 

and S. equorum (1). On the other hand, 31 S. aureus and seven different CNS species were 

recovered from sheep milk samples: S. chromogenes (9), S. epidermidis (3), S. auricularis 

(2), S. haemolyticus (2), S. simulans (2), S. lentus (1), and S. rostri (1). Staphylococcus rostri 

has only been seldom isolated from the milk of a sheep with subclinical mastitis [43,44]. In 

the CNS group, S. caprae was the most found species and was isolated only from goat’s 

milk samples. It is a commensal organism that prevails in the skin of the goat udder [19] 

This species is most commonly found in cases of goat mastitis [37,45–47], but it was also 

isolated from sheep [5,48], buffalo [17], and cow’s milk [49]. In this study, other 

Staphylococcus species were only isolated from goats: S. warneri, S. capitis, S. hominis, S 

hyicus, and S. equorum. This was probably because the sheep sampling was smaller, since 

all these species have been isolated before from sheep milk by several other authors [44].  
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2.3. Biofilm Production  

Of the 137 Staphylococcus isolates analyzed, 103 were biofilm producers (75%). 

Biofilm forming isolates belong to the following species: S. aureus (29/35), S. caprae 

(22/25), S. chromogenes (12/19), S. epidermidis (11/14), S. warneri (7/7), S. simulans(6/10), 

S. auricularis (4/4), S. capitis (3/4), S. lentus (3/5), S. haemolyticus (2/4), S. hominis (2/4), S. 

equorum (1/1), and Staphylococcus sp. (1/1). All S. epidermidis goat isolates were found to 

produce biofilm in the present study, in accordance with the findings of others authors that 

reported S. epidermidis as the most commonly found species in biofilm-associated human 

infections [50]. However, none of the sheep S. epidermidis isolates were biofilm producers. 

In fact, other studies had already reported only 8% of biofilm-producing isolates among 

sheep mastitis S. epidermidis [51].  

 

2.4. Genes Associated to Biofilm  

We investigated the presence of coa and nuc genes in all 137 staphylococcal isolates, 

mainly for identification purposes and due to historical reasons. In fact, the ability of a 

strain to produce coagulase, encoded by the coa gene, is the basis of the primary 

classification of staphylococci in coagulase-positive or coagulase-negative [16]. All S. aureus 

isolates (35) harbored the coa gene, as well as isolate B200E1, not identified to the species 

level. Based on this result, this isolate was probable also S. aureus. Therefore, the 101 

Staphylococcus isolates not carrying the coa gene were confirmed as CNS. Furthermore, in 

the present study, different amplicons of the coa gene with band sizes ranging from 400 to 

900 bp were detected (Figure 3.1), as already reported by others [52–55]. In fact, the coa 

gene also has a discriminatory power between isolates because of the heterogeneity of its 

3’ variable region containing 81-bp tandem short sequence repeats (SSR) [56–58]. 
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Figure 3.1. Agarose gel electrophoresis of S.aureus coa gene PCR products. NZYDNA Ladder V (200-

1000 bp) (NZYTech, Lisbon, Portugal). 

 

The nuc gene was detected in 67 out of 137 isolates (48.9%), of which only 35 are S. 

aureus. The other nuc positive isolates include: S. chromogenes (8), S. warneri (4), S. 

auricularis (3), S. caprae (3), S. hyicus (3), S. lentus (3), S. epidermidis (2), S. simulans (2), S. 

capitis (1), S. haemolyticus (1), S. hominis (1), and Staphylococcus sp. (1). Furthermore, an 

association was found between the Staphylococcus species and the presence of the nuc 

gene (χ2=70.968, df=14, P<0.001). In fact, all S. aureus harbour the nuc gene, while most 

CNS (70/101) do not. However, the nuc gene was also detected in more than 50% of the 

isolates in some CNS species: S. warneri (4/7), S. lentus (3/5), S. auricularis (3/4), and S. 

hyicus (3/3). 

The presence of the nuc gene was used in the past to identify S. aureus [23,25]. The 

nuc gene is present in most S. aureus isolates, however some isolates not carrying this gene 

have been described [59,60]. Moreover, the nuc gene has also been detected in other 

species of Staphylococcus, both CPS and CNS [61,62].  

For the detection of the biofilm production genes, bap, icaA and icaD, the 44 nuc-

positive biofilm-producing isolates were selected. nuc-positive biofilm-producing 

staphylococci and biofilm-associated genes are shown in Table 3.1. 
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Table 3.1. nuc-positive biofilm-producing staphylococci isolates and biofilm-

associated genes. 

Isolate Origin Animal Bacterial species coa nuc bap icaA icaD 
1D PT goat S. aureus + + - + + 

13D1 PT goat S. warneri - + - - - 
17D1 PT goat S. aureus + + - - + 
44D PT goat S. aureus + + - + + 

47D2 PT goat S. chromogenes - + + - - 
50E1 PT goat S. aureus + + - + + 
54E1 PT goat S. warneri - + + - - 
54E2 PT goat S. warneri - + - + - 
55D1 PT goat S. capitis - + - - - 
60D2 PT goat S. chromogenes - + + - - 
65D PT goat S. caprae - + - - - 
70D PT sheep S. aureus + + - - + 
71E PT sheep S. aureus + + - - - 
72D PT sheep S. aureus + + - - + 
72E PT sheep S. aureus + + - - + 
83D PT sheep S. aureus + + - - - 
B51E BR goat S. chromogenes - + - - - 
B64 BR goat S. chromogenes - + - - - 

B76E BR goat S. chromogenes - + + - - 
B101 BR goat S. warneri - + - + - 

B159D BR goat S. chromogenes - + + - - 
B159E BR goat S. chromogenes - + + - - 
B190D BR goat S. auricularis - + - - - 

B209D2 BR goat S. simulans - + + - - 
B209E BR goat S. simulans - + - - - 

B219D3 BR sheep S. auricularis - + - - - 
B219D5 BR sheep S. aureus + + - - - 
B223D BR sheep S. aureus + + - - - 
B250D BR sheep S. auricularis - + + - - 

CQ152E1 PT sheep S. aureus + + - + + 
CQ185D1 PT sheep S. aureus + + - + + 
CQ196E PT sheep S. aureus + + - - + 
CQ201E PT sheep S. aureus + + - - + 

CQ268D1 PT sheep S. aureus + + - - + 
CQ270E1 PT sheep S. aureus + + - - - 
CQ285D PT sheep S. aureus + + - - + 
CQ286D PT sheep S. aureus + + - - + 

CQ290D1 PT sheep S. aureus + + - - + 
CQ290D2 PT sheep S. aureus + + - - + 
CQ296D PT sheep S. aureus + + - - + 
CQ335E PT sheep S. aureus + + - - - 

CQ336E2 PT sheep S. aureus + + - - + 
CQ349D PT sheep S. aureus + + - - - 
CQ354D PT sheep S. aureus + + - - + 
PT-Portugal; BR-Brazil. 
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The bap gene was amplified in eight isolates: S. chromogenes (5), S. auricularis (1), S. 

simulans (1), and S. warneri (1). None of the S. aureus nuc-positive biofilm-producing 

isolates carries the bap gene. In fact, the bap gene has been reported mainly in S. aureus 

strains isolated from cattle [24,63,64]. However, Martins et al. [65] have detected the bap 

gene in four sheep milk S. aureus isolates. In our study, 8 out of 18 CNS nuc-positive biofilm 

producing isolates harbored the bap gene. The bap gene encodes a cell wall associated 

protein named Bap (for biofilm associated protein), which enhances biofilm formation as it 

mediates bacterial primary attachment to abiotic surfaces and intercellular adherence [35]. 

Other studies have reported the presence of the bap gene in several CNS isolates [66].  

The presence of the icaA gene was detected in seven isolates: S. aureus (5) and S. 

warneri (2). On the other hand, the icaD gene was present in 19 S. aureus isolates. 

Furthermore, five S. aureus isolates carried both icaA and icaD genes simultaneously. Xu, 

Tan, Zhang, Xia, and Sun [59] detected the icaD gene in 20 out of 28 S. aureus bovine 

mastitis isolates, while it was not detected in any of the 76 CNS analyzed. The same authors 

reported the absence of the icaA gene in all analyzed staphylococcal isolates [59]. No 

isolate carrying the bap gene harbored the ica operon genes, as reported before by other 

authors [67]. However, Marques et al. [68] found one single bovine mastitis S. aureus 

isolate (out of 20) that simultaneously carried bap, icaA, and icaD. 

None of the three biofilm-associated genes were detected in 14 of the nuc-positive 

biofilm-producing isolates: S. aureus (6) and CNS (8). Other authors have also reported the 

absence of bap, icaA, and icaD genes in biofilm-producing S. aureus [24,69,70]. Despite no 

association being found between the presence of the nuc gene and biofilm production, 

most biofilm-producing isolates harbored the nuc gene (53.4%), while it was only detected 

in about 35% of the non-producers. Nevertheless, Kiedrowski, Kavanaugh, Malone, Mootz, 

Voyich, Smeltzer, Bayles, and Horswill [28] described an inverse correlation between Nuc 

thermonuclease activity and biofilm formation and confirmed the important role for eDNA 

in the S. aureus biofilm matrix.  

Apparently, CNS produce biofilm mainly via Bap, as already suggested by Zuniga et al. 

[71], who found the bap gene to be more frequently present in CNS when compared to 

CPS.  
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Meanwhile, most S. aureus seem to form biofilm through PIA since they harbor the 

icaA and icaD genes. Other authors have reported that a low prevalence of the bap gene in 

S. aureus indicates that the ica operon-dependent mechanism may be the main responsible 

for the adhesion and biofilm formation in this species [68]. Notwithstanding, it has been 

reported that biofilm synthesis in S. aureus can also be encoded by the bap gene [72].  

Other biofilm formation mechanisms in staphylococci not harboring the classical 

biofilm-production genes, bap, icaA, and icaD, need to be explored. Furthermore, some of 

the isolates not carrying bap, icaA, and icaD also did not harbor the coa gene, which has 

been reported as associated with biofilm formation [18]. However, the nuc gene might be 

an important factor to consider since all 44 isolates were biofilm producers and harbored 

the nuc gene, although Nuc has been referred to as a biofilm inhibitor [27,28].  

 

2.5. Antimicrobial Resistance  

Out of 137 staphylococcal isolates analyzed for antimicrobial susceptibility, 15 were 

multidrug resistant, 36 were non-susceptible to two antimicrobial categories, and 61 to one 

antimicrobial category, according to the classification proposed by Magiorakos et al. [73]. 

Moreover, no antimicrobial resistances were detected in 24 staphylococcal isolates. 

Staphylococci isolated from milk from small ruminants with mastitis are known for their 

multiresistance [74]. In this work, the multidrug resistant (MDR) isolates belonged to the 

following species: S. aureus (8), S. lentus (3), S. chromogenes (2), S. caprae (1), and S. 

warneri (1). Contrarily, Taponen and Pyorala [75] reported that multiresistance was more 

common in CNS than in S. aureus from bovine mastitis. Susceptibility patterns of CPS and 

CNS isolates are shown in Figure 3.2. For most antimicrobials tested, a higher percentage 

of resistant isolates was observed among CNS when compared to CPS. Vasileiou et al. [76] 

also reported more resistant CNS isolates than S. aureus. However, mastitis caused by CNS 

responds much better to antimicrobial treatment than S. aureus mastitis [75]. 

Staphylococcal isolates were mainly non-susceptible to streptomycin (50/137), penicillin 

(38/137), ampicillin (34/137), lincomycin (33/137), oxacillin (22/137), cloxacillin (21/137), 

and tetracycline (17/137), as previously reported [77] (Figure 3.2). Moreover, most CPS 

isolates were non-susceptible to streptomycin and lincomycin. On the other hand, CNS 

isolates were mostly non-susceptible to the β-lactams and tetracyclines. In addition, an 
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association was found between Staphylococcus species and antimicrobial resistance to 

penicillin (χ 2 = 45.981, df = 14, p < 0.001), ampicillin (χ 2 = 48.327, df = 14, p < 0.001), 

streptomycin (χ 2 = 137.705, df = 28, p < 0.001), lincomycin (χ 2 = 156.536, df = 28, p < 

0.001), cephalexin (χ 2 = 57.219, df = 28, p < 0.05), and tetracycline (χ 2 = 51.626, df = 28, p 

< 0.05).  

 

 

Figure 3.2. Susceptibility patterns of CPS (n=36) and CNS (n=101) isolates to antimicrobials. 

 

Regarding the results shown by the correspondence analysis, most S. caprae and S. 

capitis isolates were resistant to penicillin and ampicillin, while all other staphylococci were 

mostly susceptible to these antimicrobials (Figure 3.3). Most S. aureus isolates exhibited an 

intermediate susceptibility pattern to streptomycin and lincomycin [78]. Additionally, all S. 

hyicus isolates were resistant to streptomycin, while S. lentus and S. rostri were resistant 

to lincomycin (Figure 3.3). 
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Figure 3.3. CA biplots of the relationship between bacterial species and tolerance to the antimicrobials 

penicillin (P), ampicillin (AMP), streptomycin (S), and lincomycin (MY). 

 

No staphylococci resistant to cefazolin and gentamycin were identified. Moreover, 

no non-susceptible S. aureus isolates were found to amoxicillin + clavulanic acid. A number 

of CNS isolates, although resistant to penicillinase-labile penicillins, were susceptible to 

amoxicillin + clavulanic acid, which was expected due to the inhibitory action of clavulanic 

acid against β-lactamases [79]. Regarding CNS isolates, none were found to be resistant to 

neomycin. 

One S. aureus and one CPS Staphylococcus sp. were found to be resistant to oxacillin, 

while CNS oxacillin resistant isolates belonged to eight species: S. chromogenes (5), S. 

caprae (4), S. lentus (3), S. simulans (3), S. epidermidis (2), S. auricularis (1), S. hominis (1), 

and S. warneri (1). Other authors previously reported the presence of methicillin resistant 

coagulase-negative staphylococci (MR-CNS) [80,81]. 

Regarding tetracycline, most S. aureus isolates (32/35) were susceptible, while 

nonsusceptible isolates belonged to the following CNS species: S. caprae (4), S. 

haemolyticus (3), S. lentus (2), S. capitis (1), S. hominis (2), S. rostri (1), and S. warneri (1). 

Tetracycline has been widely used in veterinary medicine, and other studies have reported 

a higher percentage of resistant isolates: 42.8% [82] and 28.9% [45]. On the contrary, our 

results show a relatively low percentage of non-susceptible isolates (12.4%). In recent 
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years, there has been an abusive use of more recent antimicrobial molecules, such as 

cephalosporins and quinolones, that may justify the observed reversal in the patterns of 

resistance to tetracyclines. To avoid the use of critically important antimicrobials for human 

medicine, tetracyclines, gentamycin, or cefazolin, a first-generation cephalosporin, may be 

an option for the control of mastitis in small ruminants. However, there should be a tight 

control over the development of antimicrobial resistances. 

Interestingly, an association between resistance to some antibiotics and animal 

species was found: penicillin (_2 = 26.931, df = 1, p < 0.001), ampicillin (_2 = 26.818, df = 1, 

p < 0.001), oxacillin (_2 = 6.241, df = 1, p < 0.05), streptomycin (_2 = 26.231, df = 2, p < 

0.001), and lincomycin (_2 = 20.831, df = 2, p < 0.001). For example, isolates from goats (G) 

were more resistant than sheep (S) isolates to β-lactams, penicillin (G-43%; S-2%), 

ampicillin (G-39%; S- = 0%), and oxacillin (G-22%; S-6%). These differences might be due to 

different management systems, as suggested by Barrero-Domínguez et al. [45], who 

reported sheep and goat staphylococcal isolates with the same pulsotypes to exhibit 

distinct resistance patterns. 

 

2.6. Antimicrobial Resistance Genes 

The 44 biofilm producing isolates were selected for the detection of antimicrobial 

resistance genes involved in the resistance to β-lactams and tetracyclines, namely, blaZ, 

mecA, mecC, tetK, and tetM. Table 3.2 shows the antimicrobial genes detected in each 

isolate, along with its antimicrobial resistance profile. 

The blaZ gene was detected in 15 staphylococcal isolates belonging to the following 

species: S. chromogenes (7), S. aureus (3), S. warneri (2), S. auricularis (1), S. caprae (1), and 

S. simulans (1). Unexpectedly, nine penicillin-susceptible isolates harbor the blaZ gene, 

namely S. chromogenes (5), S. warneri (2), S. auricularis (1), and S. simulans (1). El Feghaly 

et al. [83] also reported penicillin-susceptible isolates harboring the blaZ gene and 

concluded that conventional methods for susceptibility testing such as Kirby-Bauer 

penicillin disk diffusion may not be reliable. According to CLSI [78], there may be rare 

isolates of staphylococci containing β-lactamase genes, which may result negative in 
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phenotypic β-lactamase detection. Additionally, all isolates resistant to penicillin must be 

considered resistant to all penicillinase-labile penicillins [78]. 

No staphylococcal isolates harboring the mecA or mecC genes were detected, 

although two isolates were found to be non-susceptible to oxacillin and cloxacillin 

simultaneously, one only to oxacillin and seven to cloxacillin alone. According to the CLSI 

(2016), oxacillin disk diffusion testing is not reliable for detecting methicillin resistance, at 

least in S. aureus, and cefoxitin should be used for disk diffusion testing. However, Barrero-

Domínguez, Luque, Galán-Relaño, Vega-Pla, Huerta, Román, and Astorga [45] also did not 

detect the mecA gene in a cefoxitin-resistant MRSA strain. Thus, other resistance 

mechanisms cannot be excluded, namely, overproduction of β-lactamase, modified 

penicillin-binding proteins, distinct SCCmec elements, as well as putative mecA mutations 

[84,85]. Furthermore, Becker et al. [86] have recently reported the presence of a mecB 

gene in a MRSA strain, negative for both mecA and mecC genes. However, concerning mecC 

detection in our study, we cannot conclude that the isolates with a negative PCR result did 

not harbor the mecC gene, since no positive control strain was available. 

An association was found between the resistance to penicillin (2 = 11.650, df = 1, p < 

0.05) and ampicillin (2 = 15.828, df = 1, p < 0.001) and the presence of the antimicrobial 

resistance gene blaZ. The association between resistance to penicillin and ampicillin and 

the presence of the antimicrobial resistance gene blaZ has been reported before by other 

authors [87,88]. However, no association was detected between the resistance to oxacillin 

and cloxacillin and the presence of the antimicrobial resistance gene mecA for this 

subgroup of 44 isolates. 

Only one S. aureus isolate carrying the tetK and another one carrying the tetM gene 

were identified. Both showed resistance to tetracycline. A S. warneri tetracycline-resistant 

isolate did not harbor either tetK or tetM (Table 3.3). El-Razik, Arafa, Hedia, and Ibrahim 

[82] found a S. intermedius isolate showing intermediate resistance to tetracycline, not 

harboring tetK, tetL, tetM, and tetO genes. 
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Table 3.2. nuc-positive biofilm-producing staphylococcal isolates, phenotypic 
resistance to selected antimicrobials and their associated antimicrobial resistance genes. 
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1D PT goat S. aureus R R R S S S + -  - - 
13D1 PT goat S. warneri S S S S S S - -  - - 
17D1 PT goat S. aureus R R R S S R + -  - + 
44D PT goat S. aureus R R S S S S + -  - - 

47D2 PT goat S. chromogenes R R R R R S + - - - - 
50E1 PT goat S. aureus S S S S S S - -  - - 
54E1 PT goat S. warneri S S R S S S + -  - - 
54E2 PT goat S. warneri S S R S R S - - - - - 
55D1 PT goat S. capitis S S S S S S - -  - - 
60D2 PT goat S. chromogenes R R S S S S + -  - - 
65D PT goat S. caprae R R S S S S + -  - - 
70D PT sheep S. aureus S S S S S S - -  - - 
71E PT sheep S. aureus S S R S S S - -  - - 
72D PT sheep S. aureus S S S S S S - -  - - 
72E PT sheep S. aureus S S S S S S - -  - - 
83D PT sheep S. aureus S S S S S S - -  - - 
B51E BR goat S. chromogenes S S S S S S + -  - - 
B64 BR goat S. chromogenes S S S S S S + -  - - 

B76E BR goat S. chromogenes S S S S S S + -  - - 
B101 BR goat S. warneri S S S S S R + -  - - 

B159D BR goat S. chromogenes S S S S S S + -  - - 
B159E BR goat S. chromogenes S S S S S S + -  - - 
B190D BR goat S. auricularis R S S S S S - -  - - 

B209D2 BR goat S. simulans S S S S S S - -  - - 
B209E BR goat S. simulans S S S S S S + -  - - 

B219D3 BR sheep S. auricularis S S S S S S - -  - - 
B219D5 BR sheep S. aureus S S S S S S - -  - - 
B223D BR sheep S. aureus S S S S R S - - - - - 
B250D BR sheep S. auricularis S S S S S S + -  - - 

CQ152E1 PT sheep S. aureus S S S S S S - -  - - 
CQ185D1 PT sheep S. aureus S S S S S S - -  - - 
CQ196E PT sheep S. aureus S S S S S S - -  - - 
CQ201E PT sheep S. aureus S S S S S S - -  - - 

CQ268D1 PT sheep S. aureus S S R S S S - -  - - 
CQ270E1 PT sheep S. aureus S S R S S S - -  - - 
CQ285D PT sheep S. aureus S S S S S S - -  - - 
CQ286D PT sheep S. aureus S S S S S S - -  - - 

CQ290D1 PT sheep S. aureus S S R S S S - -  - - 
CQ290D2 PT sheep S. aureus S S S S S S - -  - - 
CQ296D PT sheep S. aureus S S S S S R - -  + - 
CQ335E PT sheep S. aureus S S S S S S - -  - - 

CQ336E2 PT sheep S. aureus S S S S S S - -  - - 
CQ349D PT sheep S. aureus S S S S S S - -  - - 
CQ354D PT sheep S. aureus S S S S S S - -  - - 

Penicillin (P), ampicillin (AMP), cloxacillin (OB), amoxicillin + clavulanic acid (AMC), oxacillin (OXA), 
tetracyclines-tetracycline (TET). 
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3. Materials and Methods 

3.1. Milk Samples Collection and Bacteriological Analyses 

A total of 328 small ruminants (258 goats and 70 sheep), belonging to 23 both 

traditional and industrial dairy farms in Portugal and Brazil, were used to collect 646 half-

udder milk samples (508 from goats and 138 from sheep). 

Milk samples were aseptically collected in a sterile bottle after the teat was carefully 

disinfected with 70% ethanol and the first flush was rejected. The samples were kept 

refrigerated and transported to the laboratory. Ten microliters of each milk sample were 

plated onto MacConkey agar (Oxoid, Hampshire, UK, CM0007) and onto blood agar (BA) 

(Oxoid, Hampshire, UK; CM0271 with 5% sheep blood) and incubated at 37 ºC for 24 h to 

48 h. 

Colonies from BA were transferred to brain heart infusion agar (BHI) (Oxoid, 

Hampshire, UK, CM1136) and again incubated at 37 ºC for 24h for primary identification of 

the Staphylococcus genus through morphological and biochemical characteristics, namely, 

colony morphology, Gram staining, and catalase reaction, according to Markey et al. [89]. 

Identification of the species level of all isolates was performed by automated 

compact system VITEK 2 (bioMérieux, Marcy l’Etoile, France) using GP ID cards following 

the manufacturer’s instructions. Biochemical identification was confirmed by 16S rRNA 

gene sequencing whenever necessary, using the primers described previously [90]. 

 

3.2. Phenotypic Characterisation of Staphylococcal Isolates 

3.2.1. Biofilm Detection 

Biofilm production was evaluated following the procedures described by Merino et 

al. [91] with some modifications. In brief, isolates were grown overnight in trypticase soy 

broth (TSB) at 37 ºC. This overnight culture was diluted 1:40 in TSB supplemented with 

0.25% glucose, and 200 mL of this cell suspension was used to inoculate microplates. After 

24 h of incubation at 37 ºC, the microplates were washed three times with 200 µL H2O, 

dried in an inverted position, and stained with 100 µL of 0.25% crystal violet for 2 to 3 min 

at room temperature. Afterwards, the microplates were rinsed again three times with H2O, 
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dried, the dye dissolved in 200 µL ethanol-acetone (80:20), and the absorbance measured 

at 620 nm. Each assay was performed in triplicate and repeated three times. 

Staphylococcus epidermidis ATCC 12,228 and ATCC 35,984 were used as negative and 

positive controls, respectively. A blank control was also used. 

 

3.2.2. Antimicrobial Sensitivity Test 

The antimicrobial sensitivity test (AST) was performed as described before [77] 

following the performance standard M02-A11 [92]. Resistance to 16 antimicrobials, 

belonging to six antimicrobial categories, according to Magiorakos et al. [73], was 

evaluated: (1)  β-lactams-penicillin (P), ampicillin (AMP), cloxacillin (OB), amoxicillin + 

clavulanic acid (AMC), oxacillin (OXA), cephalexin (CL), cefazolin (KZ), ceftriaxone (CRO), 

cefoperazone (CFP); (2) aminoglycosides-streptomycin (S), gentamycin (CN), neomycin (N); 

(3) lincosamides-lincomycin (MY); (4) tetracyclines-tetracycline (TET); (5) fluoroquinolones-

ciprofloxacin (CIP); and (6) folate pathway inhibitors-cotrimoxazole (sulfamides + 

trimethoprim) (STX). 

For the interpretation of AST results, the CLSI clinical breakpoints M100-S25 were 

used [78]. Isolates showing intermediate resistance, now called “susceptible increased 

exposure” [93], were considered non-susceptible. Moreover, isolates resistant to three or 

more antimicrobial categories were considered multidrug resistant [73]. 

 

3.3. Molecular Characterisation of Staphylococcal Isolates 

The presence of coa and nuc genes was investigated in all staphylococcal isolates. 

Nuc-positive biofilm-producing isolates were selected for the detection of the biofilm 

production genes, bap, icaA, and icaD, and the antimicrobial resistance genes blaZ, mecA, 

tetK, and tetM. The presence of the mecC gene was investigated only for nuc-positive 

biofilm-producing isolates, which were simultaneously resistant to oxacillin and cloxacillin 

and did not harbor the mecA gene. 
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3.3.1. Rapid DNA Extraction 

Total DNA was extracted as described previously [94]. Bacterial cultures were grown 

for 24 h in BHI (Oxoid, Hampshire, UK, CM1136). After this period, they were transferred 

to microtubes with 200 µL of ultrapure water and centrifuged at 12,000x g for two minutes. 

Two hundred microliters of sterile saline solution (8.5%) were added to the pellet and 

centrifuged again at 12,000x g for two minutes. Subsequently, 100 µL of 0.05 M NaOH was 

added to the pellet and boiled for four minutes, then placed immediately on ice. 

Afterwards, 600 µL of ultrapure water was added to the microtubes and centrifuged at 

4000x g for three minutes. Subsequently, 400 µL were transferred to a new microtube and 

stored at -20 ºC until use. 

 

3.3.2. PCR Amplification 

All amplifications were done in a PTC1148C-MJ Mini thermocycler (BioRad, Hercules, 

CA, USA). 

Amplified DNA fragments were stained with 1X Red Gel (Biotium, Fremont, CA, USA) 

and run on 1.5% (w/v) agarose gels with 0.5X TBE (Tris-borate-EDTA) buffer. Different 

NZYDNA Ladders (NZYtech, Lisbon, Portugal) were used as molecular weight markers, 

depending on the size of the PCR products. 

Agarose gels were photographed under ultraviolet light using the Gel Doc XR+ Gel 

Documentation System (BioRad Universal Hood II, Philadelphia, PA, USA). 

For all PCR amplifications, 50 µL PCR reactions were prepared with 5 µL of DNA 

template, 1 U GoTaq DNA polymerase (Promega, Madison, WI, USA), 1X Green Go Taq Flexi 

buffer (Promega, WI, USA), 1.5 mM MgCl2 (Promega, WI, USA), 0.2 mM each dNTP (VWR, 

part of Avantor, Radnor, PA, USA), and 15 pmol each primer (STAB VIDA, Caparica, 

Portugal). Specific and individual modifications or optimizations were done whenever 

necessary. 

The primers used for amplification of the different genes are listed in Table 3.3. 
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Table 3.3. Primer sequences for amplification of the different genes. 

Gene Primer Sequence Reference 

coa 
coa-F 5’ - ATA GAG ATG CTG GTA CAG G - 3’ 

[55] 
coa-R 5’ - GCT TCC GAT TGT TCG ATG C - 3’ 

coa 
coa2-F 5’ – ATA CTC AAC CGA CGA CAC CG - 3’ 

[54] 
coa2-R 5’ – GAT TTT GGA TGA AGC GGA TT - 3’ 

nuc 
nuc-F 5’ – GCG ATT GAT GGT GAT ACG GTT - 3’ 

[95] 
nuc-R 5’ – AGC CAA GCC TTG ACG AAC TAA AGC - 3’ 

bap 
bap-F 5’ – CCC TAT ATC GAA GGT GTA GAA TTG CAC - 3’ 

[35] 
bap-R 5’ – GCT GTT GAA GTT AAT ACT GTA CCT GC - 3’ 

icaA 
icaA-F 5’ – CCT AAC TAA CGA AAG GTA G - 3’ 

[96] 
icaA-R 5’ – AAG ATA TAG CGA TAA GTG C - 3’ 

icaD 
icaD-F 5’ – AAA CGT AAG AGA GGT GG - 3’ 

[96] 
icaD-R 5’ – GGC AAT ATG ATC AAG ATA C - 3’ 

blaZ 
blaZ-F 5’ – AAG AGA TTT GCC TAT GCT TC - 3’ 

[97] 
blaZ-R 5’ – GCT TGA CCA CTT TTA TCA GC - 3’ 

mecA 
mecA-F 5’ – AAA ATC GAT GGT AAA GGT TGG C - 3’ 

[98] 
mecA-R 5’ – AGT TCT GCA GTA CCG GAT TTG C - 3’ 

mecC 
mecC-F 5’ – GAA AAA AAG GCT TAG AAC GCC TC – 3’ 

[99] 
mecC-R 5’ – GAA GAT CTT TTC CGT TTT CAG C – 3’ 

tetK 
tetK-F 5’GTAGCGACAATAGGTAATAGT3’ 

[59] 
tetK-R 5’ GTAGTGACAATAAACCTCCTA 3’ 

tetM 
tetM-F 5’AGTGGAGCGATTACAGAA3’ 

[59] 
tetM-R 5’CATATGTCCTGGCGTGTCTA3’ 

 

For the detection of the coa gene, different primer sequences were used. 

Staphylococcus aureus ATCC 25923 was used as positive control. The first pair of primers, 

coa-F and coa-R, amplified a 676 bp fragment [55]. The amplification program was as 

follows: 3 min at 95 ºC, and 35 cycles of 30 s at 94 ºC, 30 s at 55 ºC, 30 s at 72 ºC, and finally, 

5 min at 72 ºC. The second pair of primers, coa2-F and coa2-R, amplified a fragment of 1517 

bp [54]. The amplification program comprised an initial denaturation of 45 s at 94 ºC, 

followed by 29 cycles at 94 ºC for 20 s, 55 ºC for 1 min, and 72 ºC for 90 s, and a final 

extension step of 2 min at 72 ºC. 

For the amplification of the nuc gene, primers nuc-F and nuc-R, amplifying a 267 bp 

DNA fragment, were used [95]. S. aureus ATCC 25923 was used as positive control and S. 

epidermidis ATCC 12228 as negative control. The amplification program was the following: 

5 min at 94 ºC, followed by 37 cycles, consisting of 94 ºC for 1 min, 55 ºC for 30 s, and 72 

ºC for 30 s, ending with a final extension step at 72 ºC for 7 min. 
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For detecting the bap gene, primers bap-F and bap-R were used for the amplification 

of a 971 bp fragment [35]. No positive control strain was available. The amplification 

program was as follows: 94 ºC for 2 min, followed by 35 cycles of 94 ºC for 45 s, 56.5 ºC for 

45 s, and 72 ºC for 50 s, and finally, 72 ºC for 5 min. 

Primers icaA-F and icaA-R were used for the amplification of a 1315 bp fragment of 

the icaA gene [96]. S. epidermidis ATCC 35984 was used as positive control. The following 

amplification program was used: 92  ºC for 5 min, followed by 30 cycles of 92 ºC for 45 s, 

49 ºC for 45 s, and 72 ºC for 1 min, and a final extension step of 7 min at 72 ºC. 

For the icaD gene, primers icaD-F and icaD-R were used to amplify a 381 bp fragment 

[96]. S. epidermidis ATCC 35984 was used as positive control. The same amplification 

program as for icaA was used, except for the extension step within the cycles, which was 

72 ºC for 30 s. 

The presence of the blaZ gene was detected using primers blaZ-F and blaZ-R, which 

amplified a 517 bp fragment [97]. Staphylococcus aureus ATCC 29213 was used as positive 

control and S. aureus ATCC 25923 as negative control [100]. The amplification program was 

as follows: 94 ºC for 4 min, followed by 37 cycles of 94 ºC for 1 min, 50.5 ºC for 30 s, and 

72 ºC for 30 s, and finally, 72 ºC for 5 min [97]. 

To detect the mecA gene, primers mecA-F and mecA-R were used to amplify a 

fragment of 532 bp [98]. Staphylococcus epidermidis ATCC 35984 was used as positive 

control [101] and S. aureus ATCC 25923 as negative control [102]. The following 

amplification program was used: 94 ºC for 2 min, followed by 29 cycles of 94 ºC for 30 s, 55 

ºC for 30 s, and 72 ºC for 30 s, and a final extension of 5 min at 72 ºC. 

Primers mecC-F and mecC-R were used to amplify a 138 bp fragment [99]. No positive 

control strain was available. The following amplification program was used: 95 ºC for 2 min, 

followed by 30 cycles of 94 ºC for 30 s, 50 ºC for 30 s, and 72 ºC for 30 s, and a final extension 

of 10 min at 72 ºC. 

Primers tetK-F and tetK-R were used to amplify a 360 bp fragment of the tetK gene 

[59]. No positive control strain was available. For the amplification of the tetM gene, tetM-

F and tetM-R were used to amplify a fragment of 158 bp [59]. No positive control strain 

was available. The amplification program for both tet genes was: 94 ºC for 2 min, followed 
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by 29 cycles of 94 ºC for 30 s, 55 ºC for 30 s, and 72 ºC for 30 s, with a final step of 5 min at 

72 ºC. 

 

3.4. Data Analysis 

The chi-square test of association was used: to assess the relationship between the 

presence of the nuc gene with Staphylococcus species; to investigate if the presence of the 

nuc gene was associated with biofilm production; to check if the resistance to 

antimicrobials was associated with bacterial species and with the animal species from 

which these were isolated. For the abovementioned analyses, all 137 isolates were 

considered. 

For the subgroup of 44 nuc-positive biofilm-producing isolates, the chi-square test of 

association was performed to evaluate the putative relationship between phenotypic 

resistance to antimicrobials and the presence of four resistance genes. 

Multiple correspondence analysis (MCA) was used as an exploratory data analysis 

technique to detect a structure in the relationships between bacterial species and 

resistance to selected antimicrobials, divided either into two (susceptible and resistant) or 

three classes (susceptible, intermediate, and resistant), depending on the antimicrobial. 

All statistical analyses were performed using the software STATISTICA Version 12 

(StatSoft, Inc., Tulsa, OK, USA). 

 

4. Conclusions 

Mastitis aetiology showed to be diverse in the two small ruminant species studied. 

The most abundant species was S. caprae, which, however, was only present in goats. 

The nuc gene was detected in 67 isolates, of which only 35 were S. aureus. Most CNS 

did not harbor this gene; however, it was detected in more than 50% of S. warneri, S. lentus, 

S. auricularis, and S. hyicus. Although many studies still consider the nuc gene as the sole 

character to identify S. aureus, our results have clearly demonstrated that this gene is 

insufficient, because it is present in numerous staphylococcal isolates other than S. aureus. 
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Most staphylococci were biofilm producers. The bap gene was only detected in CNS, 

while ica operon genes were mainly detected in S. aureus isolates, suggesting that CNS 

produce biofilm mainly via Bap, and most S. aureus form biofilm through PIA. Furthermore, 

biofilm-producing staphylococcal isolates not harboring the classical biofilm-production 

genes bap, icaA, and icaD carry the nuc gene. Therefore, the role of the Nuc 

thermonuclease in staphylococci biofilm formation needs to be further investigated. 

Antimicrobial resistance seems to be a growing concern in the treatment of sheep 

and goat mastitis, with only a low number of isolates (18%) not showing any antimicrobial 

resistances. Furthermore, CNS were generally more resistant to antimicrobials than CPS. 

Additionally, an association between animal species and resistance to some antimicrobials 

was found, suggesting different managing systems for the two species. 

All staphylococcal isolates were susceptible to cefazolin and gentamycin. 

Furthermore, all S. aureus isolates were shown to be susceptible to amoxicillin + clavulanic 

acid and most (32/35) to tetracycline. The use of these antimicrobials to control mastitis 

may be encouraged to avoid the use of others critically important for human medicine that 

are currently being used, such as third generation cephalosporins and quinolones. 

Nevertheless, antimicrobial susceptibility tests cannot be neglected, as the development 

of resistant strains is always a problem. 

Regarding antimicrobial resistance genes, nine penicillin-susceptible isolates 

exhibited the blaZ gene, highlighting the poor reliability of conventional methods for 

susceptibility testing. Moreover, no staphylococcal isolates harboring the mecA or mecC 

genes were detected among those found to be non-susceptible to oxacillin. Hence, other 

methicillin resistance mechanisms need to be explored. 
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Abstract 

Propolis is a resinous mass produced by honeybees for the protection of the 

honeycomb. Propolis has become very popular in Europe due to its antibacterial activity. 

Recently propolis activity against bacterial biofilms was reported. Mastitis control greatly 

depends on the use of antimicrobials. Antimicrobial resistance and bacterial ability to 

produce biofilm increase microbial survival and contribute to pathogens’ persistence in the 

farm. Furthermore, the transfer of resistance genes from mastitis causing pathogens to 

bacteria belonging to the human natural microbiota fully justifies the search for alternative 

products with antimicrobial activity. The aim of this study was to assess propolis 

components accountable for bactericidal and antibiofilm activities against Staphylococcus 

spp. isolated from the milk of sheep and goats with mastitis. Ten propolis batches (seven 

from Brazil and three from Portugal) were collected in different regions and were used to 

produce 30% propolis ethanol extracts (PEE). Total phenolics, flavonoids, anthocyanins and 

condensed tannins contents were assessed. Thirty-five Staphylococcus aureus and 104 

coagulase-negative staphylococci (CNS) were analysed for in vitro susceptibility to PEE and 

minimum bactericidal concentration (MBC) was performed with a 96-pins microplate 

replicator. These PEE were also assessed for biofilm formation inhibition and biofilm 

disruption on 44 biofilm producing Staphylococcus isolates. To identify the propolis 

components, which are probably associated with antimicrobial and antibiofilm activities, 
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statistical analyses were performed. Total phenolics content varied from 67.6 to 365.4 mg 

GAE/g extract, flavonoids content from 54.8 to 141.2 mg QE/g extract, anthocyanins 

content between not detected and 47.6 mg/g extract, and condensed tannins content 

between 36.9 and 395.6 mg ECC/g extract. All 139 staphylococci analysed (100%) showed 

to be susceptible to all PEEs, except Brown4, with concentrations varying between 0.026 

and 13.37 mg/mL. Concerning antibiofilm activity, nine PEE inhibited biofilm formation in 

most of the 44 biofilm-forming isolates. The mean inhibition percentage for each PEE, 

varied between 33.5 and 80.2%. Regarding biofilm disruption, all ten PEEs partially or 

totally destroyed the biofilm produced by all 44 staphylococci isolates. The mean PEE 

activity on biofilm disruption varied between 28.4 and 79.5%. According to these results, 

propolis deserves to be considered for the control of mastitis. 

Keywords: antibiofilm, antimicrobial, mastitis, propolis 

 

1. Introduction 

Propolis is a resinous mass produced by honeybees Apis mellifera for the protection 

of the honeycomb. The word propolis derives from the Greek pro (at the entrance to) and 

polis (community) and refers to a substance for the defense of the hive. Propolis is made 

of materials collected by worker bees from the leaf buds of numerous plant species and 

substances actively secreted by plants, or exuded from plant wounds, enriched with bee 

salivary and enzymatic secretions (Castaldo and Capasso 2002). 

Plant secondary metabolites can be divided into three groups: (i) flavonoids and other 

phenolic and polyphenolic compounds, (ii) terpenoids and (iii) nitrogen-containing 

alkaloids and sulphur-containing compounds (Crozier et al., 2007). They seem to have a key 

role in protecting plants from herbivores and microbial infection, among other functions. 

Secondary metabolites are use for dyes, fibres, glues, oils, waxes, flavouring agents, drugs 

and perfumes, and they are viewed as potential sources of new natural drugs, antibiotics, 

insecticides and herbicides (Croteau et al., 2000).  
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Propolis is rich in flavonoids and other phenolic compounds and may also contain 

terpenoids (Huang et al., 2014). It has been used around the world in the preparation of 

medicines to treat different pathologies and more recently became very popular in Europe 

due to its antibacterial activity (Wojtyczka et al., 2013; Santana et al., 2012; Lu et al., 2005). 

Recently propolis activity against bacterial biofilms was reported (De Marco et al., 2017; 

Veloz et al., 2015; Wojtyczka et al., 2013; Doganli, 2016). 

Mastitis in small ruminants is responsible for decreased milk yield (Gelasakis et al., 

2016; Oravcová et al., 2018), and changed milk composition, which affects cheese-making 

aptitude and quality of the products (Rovai et al., 2015a; Rovai et al. 2015b ; Raynal-

Ljutovac et al., 2007; Paschino et al., 2018). Mastitis control is based on hygienic 

management of animals, but also greatly depends on the use of antimicrobials. However, 

some researchers report high rates of antimicrobial resistance (AMR) in pathogens isolated 

from ewes and goats with subclinical mastitis (Onni et al., 2011; Šiugždaitė et al., 2016; 

Virdis et al. 2010). Furthermore, the transfer of resistance genes from mastitis causing 

pathogens to bacteria belonging to the human natural microbiota (Woolhouse et al. 2015) 

fully justifies the search for alternative products with antimicrobial activity. 

Brackman and Coenye (2015) estimated that biofilms are associated with 80% of 

microbial infections. Biofilm major components are an exopolysaccharide matrix (slime), 

proteins and environmental DNA (eDNA) along with the bacterial cells (Buttner, Dietrich, 

and Rohde 2015). Regarding mastitis pathology, bacterial ability to produce biofilm 

increases microbial survival and contribute to pathogens’ persistence in the farm (Gomes 

et al., 2016). Although some studies showed that S. aureus isolated from cows with 

persistent and non-persistent intramammary infection did not differ in biofilm-forming 

ability in vitro (Pereyra et al., 2016), other reports state that  S. aureus strains persisting in 

the bovine mammary gland through the dry period produced significantly more biofilm in 

vitro than strains that do not persist after calving (Veh et al., 2015). Moreover a strong 

biofilm forming S. aureus isolated from bovine mastitis produced significantly more acute 

mastitic lesions in mammary glands of mice inoculated than a weak biofilm-forming S. 
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aureus strain (Gogoi-Tiwari et al., 2017). In sheep, Vasileiou et al., (2018) reported 80.4% 

of all cases of staphylococcal subclinical mastitis due to slime producing strains. 

The need to control biofilm associated with mammary infection seems to be of major 

importance. As revised by Melchior and co-workers (2006) several researchers have shown 

that bacteria growing in a biofilm can become 10–1 000 times more resistant to 

antimicrobials than the same strain planktonic growing bacteria. Likewise, Costerton (1999) 

refers to biofilm-forming bacteria as resisting to host defence mechanisms and surviving in 

the presence of disinfectants and/or antibiotics at concentrations 1000 to 1500 times 

higher than concentrations that kill planktonic cells of the same species. 

In previous studies we showed that propolis ethanol extracts may have a strong 

bactericidal activity against Staphylococcus aureus and coagulase-negative staphylococci 

(CNS) isolated from sheep and goats with mastitis (Queiroga et al., 2018). We also showed 

propolis ethanol extracts (PEE) inhibitory action on biofilm formation and PEE ability to 

eliminate established biofilms (Laranjo et al., 2018). A key aspect to keep in mind, 

considering mastitis treatment, is that the disruption of biofilm must be associated with 

bacterial inhibition, since the disassemble of biofilm would be responsible for the release 

of living bacteria that would colonize additional body sites (Buttner et al., 2015). 

The aim of this study was to assess propolis components accountable for bactericidal 

and antibiofilm activities against Staphylococcus spp. isolated from the milk of sheep and 

goats with mastitis.  

 

2. Methods 

2.1. Propolis Collection and Origin 

Seven batches of raw propolis (one Green, two Red and four Brown) were collected 

in apiaries of four Brazilian (BR) States with different climates and vegetation (Table 4.1, 

Figure 4.1A).  
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Table 4.1. Propolis collection and origin information 

Propolis Country Location Latitude Longitude Production Vegetation 

Green BR 
Minas Gerais 

SE 
-20,2752 -45,2535 

propolis 
honey 

Baccharis 
dracunculifolia 
Eucalyptus sp. 

Red1 BR 
Alagoas 

NE 
-9,4237 -35,5342 propolis 

Schinus terebinthifolius 
Rhizophora mangle 
Dalbergia 
ecastophyllum 

Red2 BR 
Alagoas 

NE 
-9,4237 -35,5342 propolis 

Schinus terebinthifolius 
Rhizophora mangle 
Dalbergia 
ecastophyllum 

Brown1 BR 
Ceará 

NE 
-5.74312 -39,6285 honey 

Schinus terebinthifolius 
Ziziphus joazeiro 
Mimosa hostilis 
Macrosiphonia velame 
Scoparia dulcis 

Brown2 BR 
Ceará 

NE 
-5.74312 -39,6285 honey 

Schinus terebinthifolius 
Ziziphus joazeiro 
Mimosa hostilis 
Macrosiphonia velame 
Scoparia dulcis 

Brown3 BR 
Minas Gerais 

SE 
-21,0137 -46,7439 

propolis 
honey 

Eucalyptus sp. 
Copaifera langsdorffii 
Pinus pinea 
Vernonia polysphaera 
Baccharis 
dracunculifolia 

Brown4 BR 
Pernambuco 

NE 
-9,2189 -40,4530 honey 

Schinus terebinthifolius 
Schinopsis brasiliensis 
Anadenanthera 
macrocarpa 
Spondias tuberosa 
Prosopis juliflora 
Tamarindus indica 

Brown5 PT 
Alentejo 

S 
38,5774 -7,8614 honey 

Quercus suber 
Baccharis 
dracunculifolia 

Brown6 PT 
Norte 

N 
41,5153 -6,87799 honey 

Lavandula stoechas 
among others 

Brown7 PT 
Algarve 

S 
37,2859 -8,55594 honey 

Cistus ladanifer 
Arbutus unedo 
Lavandula stoechas 
Thymus serpyllum 
Eucalyptus sp. 
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The Green propolis and Brown3 were collected in the cities of Formiga and Jacuí-MG 

in southeastern Brazil (SE), respectively. The Brown1 and Brown2 propolis were obtained 

in the city of Mombaça-CE in the northeast of Brazil (NE), in two apiaries 7 Km apart. The 

apiary where Brown2 propolis was collected was near a stream and the apiary where 

Brown1 propolis was collected had only a water box 600 m away. Brown4 propolis was 

collected in the city of Petrolina, PE backcountry (NE) and Red1 and Red2 propolis were 

obtained in the same apiary in Marechal Deodoro-AL (NE), with a two years gap between 

harvests (Red1 in 2014 and Red2 in 2012) and were kept at -20°C until extract preparation. 

Three batches of raw propolis were collected in apiaries from diverse Portugal (PT) 

regions (NUTS 2), with different climates and vegetation (Table 4.1, Figure 4.1B). Brown5 

was collected in Évora city in the Alentejo region (S), Brown6 was collected near the 

Macedo de Cavaleiros city in the North (N) and Brown7 near Monchique, district of Faro in 

the South (S). 

 

Figure 4.1. Maps showing the collection sites of propolis samples: A-map of Portugal showing three 
propolis collection sites; B-map of Brazil showing the collection sites of seven propolis samples. 
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According to Abou-Shaara (2014), bees harvest resins in an area of about 2 km around 

the hive. Location of collection and vegetation around the apiary, as by beekeepers 

information, are shown in the Table 4.1. 

 

2.2. Propolis Ethanol Extracts Preparation 

Propolis ethanol extracts were prepared according to the official standards for 

extracts production in Normative Instruction No 3, 19/01/2001, published by the 

Department of Inspection of Animal Products of the Ministry of Agriculture, Livestock and 

Food Supply, Brazil (Brazil, 2001). Cold maceration of 300 g of raw propolis in 700 mL of 70° 

ethanol was performed, resulting in 30% PEE. The preparations were kept at room 

temperature, protected from light, for 45 days. After this period, extracts were filtered with 

a sterile funnel and filter paper and kept refrigerated at 4°C, in amber bottles, until use.  

 

2.3. Propolis Ethanol Extracts Major Chemical Groups 

Total phenolic, flavonoids, condensed tannins and anthocyanins contents of PEE 

were determined by spectrophotometric methods. For total phenolic assessment each PEE 

was diluted to 1mg/mL solution and the determination was performed by the 

spectrophotometric method of Folin-Ciocalteau (Slinkard and Singleton 1977) with 

modifications, using gallic acid as standard phenolic compound. Fifty µL of each ethanolic 

solution was added to 20 µL of de Folin-Ciocalteau and 870 µL distilled water and stirred 

for 1 min.  Sixty µL of Na2CO3 (15%) were added and the mixture stirred for 30 seconds, 

resulting in a final concentration of 50 µg/mL for each sample.  

After two hours rest in the absence of light, 300 µL of each solution were transferred 

to 96-well microtiter plates and readings were recorded at 760 nm. The analyses were 

performed in triplicate and total phenolic content was determined by interpolating the 

absorbance of the samples against a calibration curve constructed with gallic acid standards 

(5.0 to 30.0 µg/mL) and expressed as milligrams of equivalent acid gallic for gram of extract 

(mg GAE/g), considering the mean standard error. The equation of gallic acid calibration 
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curve was y = 0.054x + 0.192, with the correlation coefficient r2= 0.995, where x is the 

concentration of gallic acid and y is the absorbance at 760 nm. 

Total flavonoid content was determined using the method of Vermerris and 

Nicholson (2006) with modifications. Briefly, 500 µL of 5% methanol aluminium chloride 

(AlCl3) were mixed with suitable volumes of samples and the volume was made up to 1,000 

µL with distilled water. After 10 minutes, absorbance was measured in UV-Vis ELISA 

spectrophotometer at 425 nm in 96-well microtiter plates. The analyses were performed 

in triplicate and total flavonoid content was determined by interpolating the absorbance 

of the samples against a calibration curve constructed with standard solutions of quercetin 

(from 2.5 to 30.0 µg/mL) and expressed as equivalent milligrams of quercetin per gram of 

PEE (mg QE/g), considering mean standard error. The equation of quercetin calibration 

curve was y = 0.0625x – 0.0023, with the correlation coefficient r2= 0.997, where x is the 

concentration of quercetin and y is the absorbance at 425nm. 

Condensed tannins content determination was performed using colorimetric method 

based on the reaction of vanillin with tannins in acidic medium (Vermerris and Nicholson, 

2006). Briefly 300 μL of a vanillin solution in 70% sulfuric acid (1% w/v, freshly prepared) 

was added to the samples, diluted in ethanol and incubated at 20°C in a water bath for 15 

minutes. The absorbance was measured in 96-well plates on an Elisa UV-Vis 

spectrophotometer at 500 nm. Analyses were performed in triplicate and the content of 

condensed tannins (proanthocyanidins) was determined by interpolating the absorbance 

of the samples against a calibration curve constructed with solutions of the catechin 

standard at various concentrations (5.0 to 40.0 μg/mL) and expressed as milligram 

epicatechin content per gram of extract (mg ECC/g), considering the standard error of the 

mean (SEM). The equation of the catechin calibration curve was: y = 0.0133x + 0.2241, with 

the correlation coefficient r2 = 0.989, where x is the catechin concentration and y is the 

absorbance at 500 nm. 

Determination of the anthocyanin content was performed by the differential pH 

method (Giusti and Wrolstad, 2001). Anthocyanin pigments undergo reversible structural 

transformations with a change in pH manifested by strikingly different absorbance spectra. 
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The pH-differential method is based on this reaction and permits accurate and rapid 

measurement of the total anthocyanins by differences in spectrophotometer absorbance 

values.  

Dilutions of the samples were prepared in triplicate, one with 0.025M potassium 

chloride buffer pH 1, and the other with 0.4M sodium acetate buffer pH 4.5. The pH was 

adjusted with concentrated hydrochloric acid using a pH meter. Dilutions were allowed to 

equilibrate for 15 minutes and samples were read in a 510 nm and 700 nm in glass cuvettes 

in a UV-visible spectrophotometer (LAMBDA 45, Perkin Elmer). The absorbances of the 

dilutions were calculated using the following equation:  

A = (A 510nm – A700nm) pH1.0 - (A 510nm - A700nm) 

Monomeric anthocyanins concentration of the original sample was calculated by the 

following formula:  

Monomeric anthocyanins (mg/L) = (A x WM x FD x 1000) / (ɛ x 1) 

Where WM is the molecular weight, FD is the dilution factor and ɛ is the molar 

absorptivity of cyanidin-3-glycoside. (MW = 449g, ɛ = 26,900). 

 

2.4. Propolis Ethanol Extracts Chemical Profile 

The ultra-high-pressure liquid chromatography along with quadrupole time of flight 

mass spectrometry (UPLC-QTOF MSE) experiments were performed to identify some 

individual compounds from PEE. The UPLC-Photo Diode Array (PDA) phenolic profile of PEE 

was recorded at 290 nm and the compounds were tentatively identified by UPLC-QTOF-

MS/MS as flavonoids (flavonol/flavone, isoflavone, flavanone and chalcones), non-

flavonoids phenolics and triterpenes, based on their characteristic UV-vis spectra peaks and 

mass detection as well as the accurate mass measurement of the precursor and product 

ions.  

Chromatographic analyses were carried out as follows. One hundred mg of each 

propolis sample were solubilized in 0,5 mL of HPLC grade methanol and 0.5 mL of MilliQ 
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water pH 2.0 (adjusted with HCl). This solution was eluted in a Strata SPE-C18 cartridge (San 

Diego, CA, USA) previously activated. After washing with MilliQ water, 2.0 mL of methanol 

were used three times to elute the compounds of interest and evaporated. Five mg of each 

extract was solubilized in the mobile phase, filtered through a 0.45 μm Millipore 

membrane. 

The XEVO-G2XSQTOF mass spectrometer (Waters, USA) was connected to the 

Acquity UPLC system (Waters, USA) via an electrospray ionization interface (ESI). The 

chromatographic separation of compounds was performed on the ACQUITY UPLC with a 

conditioned autosampler at 4 °C using a Waters Acquity UPLC BEH C18 (2.1 mm × 50 mm, 

1.7 μm) (Waters, USA).  

The mobile phase consisting of water with 0.1% formic acid (Sigma, USA) in water 

(solvent A) and acetonitrile (Sigma, USA) 0.1% formic acid (solvent B) was pumped at a flow 

rate of 0.4 mL min-1.  

The gradient elution program was as follows: 0-5 min, 5-10% B; 5-9 min, 10-95% B. 

The injection volume was 5-10 μL. MS analysis was performed on the Xevo G2 QTOF, a 

quadrupole time-of-flight tandem mass spectrometer coupled with an electrospray 

ionization source in negative ion mode. The scan range was from 50 to 1200 m/z for data 

acquisition.  

In addition, MSE experiments were carried which allows both precursor and product 

ion data to be acquired in one injection. Source conditions as follows: capillary voltage, 3.0 

kV; sample cone, source temperature, 120 °C; desolvation temperature 250 °C; cone gas 

flow rate 50 Lh-1; desolvation gas (N2) flow rate 800 Lh-1. All analyses were performed using 

the lockspray, which ensured accuracy and reproducibility.  

Leucine-enkephalin (5 ng·mL-1) was used as a standard or reference compound to 

calibrate mass spectrometers during analysis. All the acquisition and analysis of data were 

controlled using Waters MassLynx v 4.1 software.  
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2.5. Bacterial Isolates 

Milk samples were aseptically collected from different mammary glands of sheep and 

goats, belonging to different flocks, with clinical and subclinical mastitis. Clinical mastitis 

was recognized based on udder and/or milk changes and subclinical mastitis was assessed 

according to milk somatic cell discharge using California mastitis test (CMT), which results 

were recorded as negative, “traces” (T), 1+, 2+ and 3 +. Clinical mastitis (CM) was 

considered the highest grade of mammary inflammation. 

Milk samples were immediately refrigerated until processed, within no more than 12 

hours. Bacteriological analyses were undertaken according to the National Mastitis Council 

methodology (2004) and isolates were identified to the species level using API-Staph 

(Biomérieux) or Vitek 2 Compac (Biomérieux). 

A total of 139 staphylococci field isolates, 35 Staphylococcus aureus, 104 coagulase-

negative staphylococci (CNS) and seven reference strains: five S. aureus (ATCC 25923, ATCC 

29213, COL, FRI 472, and FRI 913) and two S. epidermidis (ATCC 12228, and ATCC 35984) 

were used to assess antimicrobial activity of PEE. 

For PEE antibiofilm activity assessment, 44 biofilm producing Staphylococcus field 

isolates (26 S. aureus, seven S. chromogenes, four S. warneri, three S. auricularis, two S. 

simulans, one S. caprae, one S. capitis), and one biofilm-producing reference S. epidermidis 

strain (ATCC 35984) were included in this study. Biofilm production was evaluated 

according to Merino et al. (2009) with some modifications, as previously described (Laranjo 

et al., 2018). 

 

2.6. Antimicrobial and Antibiofilm Assessment 

In vitro antimicrobial activity of propolis ethanol extracts was performed according 

to the CLSI protocol M07-A9 (2012), as described by Queiroga and co-workers (2018). 

Minimum bactericidal concentration (MBC) was determined with a 96-pin microplate 

replicator (Boekel Scientific) which inoculates approximately 10 μl of each dilution onto a 

150 mm diameter Petri dish with Mueller-Hinton Agar (Queiroga et al., 2018). 
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To investigate the in vitro activity of PEE against biofilms produced by staphylococci 

isolates, the inhibitory action on biofilm formation and the PEE ability to eliminate 

established biofilms were evaluated in terms of % of affected isolates and mean % of 

inhibition and disruption, respectively. The inhibitory effect on biofilm formation was 

assessed by growing isolates’ suspensions with half minimum bactericidal concentration 

(1/2 MBC) from each PEE, as previously described (Laranjo et al., 2018). To evaluate the 

PEE ability to eliminate established biofilms, the same isolates were grown to produce 

biofilms, which were, then, exposed to the action of the corresponding 1/2 MBC of PEE 

(Laranjo et al., 2018). 

 

2.7. Data Analysis 

These analyses were performed in order to tentatively answer the following 

questions: (1) Does the ability of a Staphylococcus isolate to produce biofilm affect 

mammary inflammation? (2) Is the ability of a Staphylococcus isolate to produce biofilm 

important for its resistance to PEE? (3) Which PEE has shown the best bactericidal activity, 

biofilm inhibition and biofilm disruption performances? (4) Which PEE components are 

associated with their antimicrobial action? (5) Which PEE components are associated with 

their ability to inhibit or to disrupt biofilm? 

Data for PEE major components were submitted to analysis of variance (ANOVA). 

Significant differences (P<0.05) were determined according to Tukey’s Honest Significant 

Difference (HSD) test. Chi-square test of association was used to assess the association 

between bacterial species and biofilm production ability and the association between 

mammary gland inflammatory intensity and biofilm production. An ANOVA was performed 

to evaluate the effect of biofilm production on minimal bactericidal concentration. 

In order to assess the best PEE activities, namely minimal bactericidal concentration, 

percentage of biofilm inhibition and percentage of biofilm disruption, an ANOVA was 

performed, with significant differences (P<0.05) determined according to Tukey’s HSD test. 
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In addition, Box-whisker plots were performed to represent the distribution of the different 

PEE activities. 

Data for antimicrobial and antibiofilm actions of PEE were analysed by Spearmann’s 

correlations for a significance level of P=0.05. Data for antimicrobial and antibiofilm 

activities of each PEE were submitted to an ANOVA to assess PEE individual compounds 

accountable for those activities. Significant differences (P<0.05) were determined 

according to Tukey’s HSD test. 

The software StatisticaTM v.12.0 software (StatSoft Inc, Tulsa, OK, USA, 1984–2014) 

was used for all statistical analyses. 

 

3. Results 

3.1. Propolis Ethanol Extracts Major Chemical Groups 

Table 4.2. Propolis ethanol extracts (PEE) major chemical groups concentration. 

PEE 
Total phenolics 

(mg GAE/g) 
Flavonoids 
(mg QE/g) 

Anthocyanins 
(mg/g) 

Tannins 
(mg ECC/g) 

Green 283.6c ± 7.5 64.9a ± 1.6 7.1a ± 0.5 287.9e ± 5.7 

Red1 232.1b ± 3.7 55.5a ± 1.4 22.6ab ± 13.4 256.2d ± 1.1 

Red2 312.1c ± 95.3 96.1bc ± 0.9 47.6b ± 8.0 216.1c ± 1.0 

Brown1 232.9b ± 6.7 109.1d ± 1.7 11.8a ± 2.1 188.6b ± 2.7 

Brown2 216.2b ± 4.3 124.5e ± 1.2 11.8a ± 1.7 395.6f ± 7.7 

Brown3 305.9c ± 9.2 141.2f ± 3.8 5.8a ± 0.7 247.2d ± 5.0 

Brown4 246.6b ± 11.3 103.7cd ± 5.0 9.4a ± 0.3 199.2bc ± 2.2 

Brown5 345.5d ± 1.2 86.3b ± 1.3 ND 48.5a ± 0.1 

Brown6 365.4d ± 0.5 92.3bc ± 1.5 ND 50.9a ± 0.2 

Brown7 67.6a ± 2.8 54.8a ± 1.7 ND 36.9a ± 0.4 

SEM - standard error of the mean; ND – not detected; Values are expressed as means ± SEM. Different 
letters in each column mean significant differences for P<0.05.  

 

Chemical composition of the propolis ethanol extracts (PEE) was determined for the 

10 PEE. Total phenolics content varied from 67.6 to 365.4 mg GAE/g, flavonoids content 

ranged from 54.8 to 141.2 mg QE/g, anthocyanins content varied between not detected, in 
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the Portuguese PEE (Brown5, Brown6, and Brown7), to 47.6 mg/g, and condensed tannins 

content ranged from 36.9 to 395.6 mg ECC/g (Table 4.2). 

 

Figure 4.2. Propolis ethanol extracts (PEE) major components. 

 

There are significant differences between the total phenolics, flavonoids, 

anthocyanins, and condensed tannins contents of the studied PEE (P<0.001). A positive 

correlation was found between anthocyanins and tannins (P<0.05). Moreover, significant 

differences in the content of flavonoids and anthocyanins were found for distinct propolis 

colour. Red propolis PEE have a significantly higher content in anthocyanins compared to 

green and brown propolis PEE (P<0.05) (Figure 4.2). 

 

3.2. Propolis Ethanol Extracts Chemical Profile 

The chemical profile of the 10 PEE was assessed by UPLC-QTOF-MS/MS as 

exemplified in Figure 4.3 for Green PEE. The peaks not cited are from unidentified 

compounds. The identification of individual compounds in the different PEE allowed their 

grouping into six (I-VI) groups as shown in Table 4.3: I-Green; II-Red1 and Red2; III-Brown1 

and Brown2; IV-Brown3 and Brown 4; V-Brown5 and Brown 6; and VI-Brown7. 
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All individual compounds that were identified are flavonoids (chalcones, flavanones, 

flavanonols, flavones, flavonols, isodihydroflavones, isoflavans), non-flavonoid phenolics 

and triterpenes. 

Green propolis PEE (group I) has two flavonoids and eight non-flavonoid phenolics 

(among which seven phenolic acids). Red propolis PEE (group II) has nine flavonoids. Brown 

propolis PEE are divided into four groups: group III (Brown1 and Brown2) PEE has 25 

flavonoids; group IV (Brown3 and Brown4) PEE has one flavonoid and four triterpenes; 

group V (Brown5 and Brown6) PEE has 12 flavonoids and four non-flavonoids phenolics 

(among which one phenolic acid); and group VI (Brown7) has six flavonoids. 

The most widespread individual compounds across the PEE are naringenin (Red1, 

Red2, Brown1 and Brown2), kaempferol methyl ether and quercetin dimethyl ether 

(Brown1, Brown2, Brown5 and Brown6), all flavonoids, which were detected in four out of 

10 PEE, followed by pinobanksin, chrysin and acacetin, found only in the three Portuguese 

brown propolis. All other individual compounds are found in two PEE, with the exception 

all Green PEE compounds, which are exclusive. 

 

3.3. Staphylococcus Species and Biofilm Production 

Regarding biofilm production ability, according to the Chi-square test of association, 

an association was found between bacterial species and biofilm production ability (χ2 = 

60.671, df = 13, P<0.001) (Table 4.4).  
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Figure 4.3. UPLC-QTOF-MS/MS profile of Green PEE. 
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 Table 4.3. Identification of some propolis individual compounds 

max (nm) 
[M-H]- 
(m/z) 

[M-H]- (m/z) 
calculated 

Compound Green Red1 Red2 Brown1 Brown2 Brown3 Brown4 Brown5 Brown6 Brown7 

308 163.0419 163.0400 Coumaric acid x          

326 515.1196 515.1195 Dicaffeoylquinic acid (1) x          

325 515.1227 515.1195 Dicaffeoylquinic acid (2) x          

325 529.1359 529.1352 Caffeoylferuloylquinic acid (1) x          

328 529.1356 529.1352 Caffeoylferuloylquinic acid (2) x          

290 301.0771 301.0717 Methoxy-trihidroxy-flavanone x          

314 231.1026 231.1026 Hydroxy-prenylcinnamic acid x          

312 315.1601 315.1601 
3-Prenyl-4-(2-methylpropionyloxy)-
cinnamic acid methyl ester 

x          

364 299.0782 299.0924 Methyl licochalcone x          

313 299.1658 299.1652 
Hydroxy-diprenylcinnamic acid 
(artepillin C) 

x          

274, 314 255.0662 255.0661 Liquiritigenin  x x        

283 283.0692 283.0611 2´-Hydroxyformononetin  x x        

284 285.0863 285.0768 Pinobanksin methyl ether  x x        

372 255.0627 255.0640 Isoliquiritigenin  x x        

297 267.0792 267.0662 Formononetin/Isoformononetin  x x        

280 271.0950 271.0611 Vestitol  x x        

277, 339 283.0793 283.0611 Biochanin A  x x        

280 271.0943 271.0611 Naringenin *  x x x x      

279 285.1091 285.0768 Vestitone  x x        

283 285.0757 285.0768 Trimethoxy flavanone    x x      

373 301.0356 301.0354 Quercetin *    x x      
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max (nm) 
[M-H]- 
(m/z) 

[M-H]- (m/z) 
calculated 

Compound Green Red1 Red2 Brown1 Brown2 Brown3 Brown4 Brown5 Brown6 Brown7 

246 315.0500 315.0510 Quercetin methyl ether    x x      

287 301.0342 301.0717 Trihydroxy-methoxy-flavanonol    x x      

356 315.0500 315.0510 3-O-Methyl-quercetin    x x      

356 345.0602 345.0616 Myricetin dimethyl-ether    x x      

364 285.0405 285.0404 Herbacetin    x x      

343 299.0541 299.0561 Kaempferol methyl ether (1)    x x      

361 315.0504 315.0510 Isorhamnetin *    x x      

346 299.0545 299.0561 Kaempferol methyl ether (2)    x x   x x  

287 315.0500 315.0874 Aromadendrin dimethyl ether    x x      

345 329.0654 329.0667 Quercetin dimethyl ether (1)    x x      

361 329.0657 329.0667 Quercetin dimethyl ether (2)    x x      

369 285.0742 285.0404 Hydroxy-methoxy-chalcone    x x      

296 301.0700 301.0717 Trihydroxy-methoxy-flavanone    x x      

275 269.0800 269.0819 Hydroxy-methoxy-flavanone    x x      

333 313.0703 313.0718 Kaempferol dimethyl ether (1)    x x      

358 329.0642 329.0667 Quercetin dimethyl ether    x x   x x  

341 343.0805 343.0823 Quercetin trimethyl ether    x x      

287 285.0741 285.0768 7-O-methyl naringenin (sakuranetin) *    x x      

339 283.0605 283.0612 Dihydroxy methoxy flavone    x x      

346 313.0703 313.0718 Kaempferol dimethyl ether (2)    x x      

364 269.0814 269.0819 Dihydroxy methoxy chalcone    x x      

286 299.0914 299.0925 Naringenin dimethyl ether    x x      

ND 339.1237 339.1238 Trihydroxy-phenyl-flavonone      x x    
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max (nm) 
[M-H]- 
(m/z) 

[M-H]- (m/z) 
calculated 

Compound Green Red1 Red2 Brown1 Brown2 Brown3 Brown4 Brown5 Brown6 Brown7 

ND 767.4587 767.4587 Triterpene hexoside derivative      x x    

ND 373.2704 373.2748 Steroid derivative      x x    

ND 471.3481 471.3480 Triterpene acid derivative (1)      x x    

ND 469.3313 469.3329 Triterpene acid derivative (2)      x x    

322 179.0623 179.0349 Caffeic acid        x x  

289 285.0654 285.0768 Pinocembrin-methyl ether        x x  

357 315.0721 315.0510 Quercetin-methyl ether        x x  

290 271.0662 271.0611 Pinobanksin        x x x 

294, 325 247.0379 247.0975 Caffeic acid isoprenyl ester        x x  

266, 313 253.0756 253.0506 Chrysin        x x x 

325 283.0845 283.0975 Caffeic acid phenylethyl ester        x x  

354 269.0668 269.0455 Galangin        x x  

292 313.0817 313.0717 Pinobanksin-O-acetate        x x  

326 283.0817 283.0617 Acacetin        x x x 

325 295.0832 295.0975 Caffeic acid cinnamyl ester        x x  

292 341.1254 341.1394 Pinobanksin-O-butyrate or isobutyrate        x x  

290 355.1385 355.1550 
Pinobanksin-3-O-pentanoate or-2-
methylbutyrate 

       x x  

290 403.1329 403.1550 Pinobanksin-O-phenylpropionate        x x  

339 269.0714 269.0455 Apigenin          x 

289 255.0926 255.0662 Pinocembrin          x 

345 313.0936 313.0717 Kaempferol-dimethyl-ether (3)          x 

Compared with references (Almeida et al., 2017; Carvalho et al., 2011; Daugsch et al., 2008; Falcão, Tomás, et al., 2013; Falcão, Vale, et al., 2013; Ferreira et al., 2017). 
* Compared with standard samples.



Chapter 4 – The use of propolis for mastitis control 
 

86 
 

Table 4.4. Staphylococcus species and biofilm production ability. 

Staphylococcus species 
Biofilm production 

Total 
positive negative 

S. aureus 26 9 35 

S. warneri 4 3 7 

S. caprae 1 23 24 

S. simulans 2 10 12 

S. auricularis 3 1 4 

S. epidermidis 0 14 14 

S. capitis 1 3 4 

Staphylococcus sp. 0 2 2 

S. lentus 0 5 5 

S. chromogenes 7 12 19 

S. hominis 0 4 4 

S. hyicus 0 3 3 

S. equorum 0 1 1 

S. haemolyticus 0 5 5 

Total 44 95 139 

 

Most (74%) S. aureus isolates (26/35) have the ability to produce biofilm, while all S. 

epidermidis (14/14), S. simulans (12/12), S. lentus (5/5), S. haemolyticus (5/5), S. hominis 

(4/4), S. hyicus (3/3) and S. equorum (1/1) are non-producers. S. caprae isolates are mostly 

non-producers (23/24) and 37% S. chromogenes isolates (7/19) produce biofilm. 

 

3.4. Biofilm Effect on Mammary Inflammation and on In vitro Susceptibility to PEE 

Regarding biofilm production effect on mammary inflammation, for a group of 139 

staphylococci field isolates (Table 4.5), there is an association between mammary gland 

inflammatory intensity, according to CM/CMT, and biofilm production (χ2 = 24.042, df = 5, 

P<0.001). The most exuberant inflammatory reactions (CM and 3+) as assessed by CMT 

seem to have been caused by biofilm-producing pathogens. The ability of a Staphylococcus 

isolate to produce biofilm does not seem to influence its susceptibility to PEE (P>0.05). 
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Table 4.5. Biofilm production effect on mammary inflammation 

Biofilm production 
Mammary inflammation intensity 

Total 
CM 3+ 2+ 1+ T neg 

positive 8 13 10 7 3 3 44 

negative 4 8 20 39 17 7 95 

Total 12 21 30 46 20 10 139 

 

 

3.5. PEE/PEE Components and Bactericidal Activity 

The PEE with the worst bactericidal activity is Brown4, which significantly different 

from all other PEE (P<0.05). Although not significantly different from all PEE, except 

Brown4, Brown7 is the PEE with the best bactericidal action. This PEE has six flavonoids: 

apigenin, pinobanksin, chrysin, pinocembrin, acacetin, kaempferol-dimethyl-ether (Table 

4.3). The bactericidal activity of the different PEE is shown on Figure 4.4 with a box-whisker 

distribution plot. 

 

Figure 4.4. Box-whisker plot of PEE antimicrobial activity. 

 

For the 139 staphylococci field isolates studied there is a positive correlation between 

the content in flavonoids, anthocyanins and condensed tannins and the minimal 

bactericidal concentration (MBC) (P<0.05). The concentration of these major chemical 
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groups is directly proportional to the MBC, meaning that the less flavonoids, anthocyanins 

and condensed tannins, lower the MBC and the more effective the PEE. 

Nevertheless, when considering the PEE chemical profiles, the presence of individual 

compounds showed to positively influence the antibacterial activity, for all identified 

phenolic compounds (n=61), from which 49 are flavonoids. On the other hand, the 

presence of triterpenes negatively influences the antimicrobial activity (P>0.05). 

 

3.6. PEE/PEE Components and Antibiofilm Activity 

3.6.1. Biofilm inhibition 

Table4. 6. Mean biofilm inhibition percentage of different PEE 

PEE Mean biofilm inhibition percentage 

Brown2 80.2a 

Brown3 77.4a 

Brown1 72.9ab 

Red2 72.2ab 

Red1 67.8ab 

Green 65.2ab 

Brown5 58.6ab 

Brown7 53.4bc 

Brown6 33.5c 

Brown4 0.0d 

Different letters denote significantly different means (P<0.05). 

 

Regarding PEE inhibition activity, Brown2 PEE showed to be the best PEE, although 

not significantly different from Brown3, Brown1, Red2, Red1, Green and Brown5. Brown4 

showed to be the worst PEE significantly different from all other PEE (Table 4.6). 
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Figure 4.5. Box-whisker plot of PEE biofilm inhibition. 

 

PEE biofilm inhibition percentage is shown on Figure 4.5 with a box-whisker 

distribution plot. For the 44 biofilm producing Staphylococcus field isolates, biofilm mean 

% of inhibition is positively correlated with the content in major chemical groups 

flavonoids, anthocyanins and condensed tannins (P<0.05). Regarding the PEE chemical 

profiles, the presence of different individual compounds showed different influence on 

biofilm inhibition (Table 4.7). 

Considering the 65 individual compounds identified on the studied PEE, 31, all 

flavonoids, showed to be associated with inhibitory effect on biofilm formation. All 

triterpenes identified, four non-flavonoid phenolics and 11 flavonoids are associated with 

a decrease in biofilm inhibition, when present on PEE. No influence on this ability was 

shown by eight non-flavonoid phenolics and seven flavonoids.  

 

Table 4.7. Effect of the presence of individual compounds on the inhibition of biofilm 
formation 

Increase in inhibition % Decrease in inhibition % No influence 

Liquiritigenin Trihydroxy-phenyl-flavanone Coumaric acid 

2´-Hydroxyformononetin Triterpene hexoside derivative Dicaffeoylquinic acid (1) 

Pinobanksin methyl ether Steroid derivative Dicaffeoylquinic acid (2) 

Isoliquiritigenin Triterpene acid derivative (1) Caffeoylferuloylquinic acid (1) 

Formononetin/Isoformononetin Triterpene acid derivative (2) Caffeoylferuloylquinic acid (2) 

Vestitol Caffeic acid Methoxy-trihidroxy-flavanone 

Biochanin A Pinocembrin-methyl ether Hydroxy-prenylcinnamic acid 
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Naringenin Quercetin-methyl ether 
3-Prenyl-4-(2-
methylpropionyloxy)-cinnamic 
acid methyl ester 

Vestitone Pinobanksin Methyl licochalcone 

Trimethoxy flavanone Caffeic acid isoprenyl ester 
Hydroxy-diprenylcinnamic acid 
(artepillin C) 

Quercetin  Chrysin Kaempferol methyl ether (2) 

Quercetin methyl ether Caffeic acid phenylethyl ester Quercetin dimethyl ether 

Trihydroxy-methoxy-flavanonol Galangin Apigenin 

3-O-Methyl-quercetin Pinobanksin-O-acetate Pinocembrin 

Myricetin dimethyl-ether Acacetin Kaempferol-dimethyl-ether (3) 

Herbacetin Caffeic acid cinnamyl ester  

Kaempferol methyl ether (1) 
Pinobanksin-O-butyrate or 
isobutyrate 

 

Isorhamnetin 
Pinobanksin-3-O-pentanoate or-
2-methylbutyrate 

 

Aromadendrin dimethyl ether Pinobanksin-O-phenylpropionate  

Quercetin dimethyl ether (1)   

Quercetin dimethyl ether (2)   

Hydroxy-methoxy-chalcone   

Trihydroxy-methoxy-flavanone   

Hydroxy-methoxy-flavanone   

Kaempferol dimethyl ether (1)   

Quercetin trimethyl ether   

7-O-methyl naringenin 
(sakuranetin) 

  

Dihydroxy methoxy flavone   

Kaempferol dimethyl ether (2)   

Dihydroxy methoxy chalcone   

Naringenin dimethyl ether   

 

3.6.2. Biofilm Disruption 

Concerning PEE disruption activity, Brown2 PEE showed to be the best PEE, although 

not significantly different from Brown7, Green, Red2, Red1 and Brown6. Brown1 showed 

to be the worst PEE also not significantly different from Brown3, Brown5, Brown4, Brown6 

and Red1 (Table 4.8). PEE biofilm disruption percentage is shown on Figure 4.6 with a box-

whisker distribution plot. Biofilm mean % of disruption is positively correlated with the 

content in condensed tannins and negatively correlated with total phenolics and flavonoids 

(P<0.05). The presence of different individual compounds showed different influence on 

biofilm disruption (Table 4.9). 
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Table 4.8. Mean biofilm disruption percentage of different PEE 

PEE Mean biofilm disruption percentage 

Brown2 79.5a 

Brown7 72.4ab 

Green 67.8abc 

Red2 56.0abcd 

Red1 55.5abcde 

Brown6 54.4abcde 

Brown4 45.4bcde 

Brown5 44.4cde 

Brown3 37.6de 

Brown1 28.4e 

Different letters denote significantly different means (P<0.05). 

 

Figure 4.6.  Box-whisker plot of PEE biofilm disruption. 

 

Table 4.9. Effect of the presence of individual compounds on the biofilm disruption 

Increase in disruption % Decrease in disruption % No influence 

Coumaric acid Trihydroxy-phenyl-flavanone Liquiritigenin 

Dicaffeoylquinic acid (1) Triterpene hexoside derivative 2´-Hydroxyformononetin 

Dicaffeoylquinic acid (2) Steroid derivative Pinobanksin methyl ether 

Caffeoylferuloylquinic acid (1) Triterpene acid derivative (1) Isoliquiritigenin 

Caffeoylferuloylquinic acid (2) Triterpene acid derivative (2) Formononetin/Isoformononetin 

Methoxy-trihidroxy-flavanone  Vestitol 

Hydroxy-prenylcinnamic acid  Biochanin A 

3-Prenyl-4-(2-methylpropionyloxy)-
cinnamic acid methyl ester 

 Naringenin 

Methyl licochalcone  Vestitone 

Hydroxy-diprenylcinnamic acid 
(artepillin C) 

 Trimethoxy flavanone 

Apigenin  Quercetin 

Pinocembrin  Quercetin methyl ether 

Kaempferol-dimethyl-ether (3)  Trihydroxy-methoxy-flavanonol 

  3-O-Methyl-quercetin 
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  Myricetin dimethyl-ether 

  Herbacetin 

  Kaempferol methyl ether (1) 

  Isorhamnetin 

  Kaempferol methyl ether (2) 

  Aromadendrin dimethyl ether 

  Quercetin dimethyl ether (1) 

  Quercetin dimethyl ether (2) 

  Hydroxy-methoxy-chalcone 

  Trihydroxy-methoxy-flavanone 

  Hydroxy-methoxy-flavanone 

  Kaempferol dimethyl ether (1) 

  Quercetin dimethyl ether 

  Quercetin trimethyl ether 

  7-O-methyl naringenin (sakuranetin) 

  Dihydroxy methoxy flavone 

  Kaempferol dimethyl ether (2) 

  Dihydroxy methoxy chalcone 

  Naringenin dimethyl ether 

  Caffeic acid 

  Pinocembrin-methyl ether 

  Quercetin-methyl ether 

  Pinobanksin 

  Caffeic acid isoprenyl ester 

  Chrysin 

  Caffeic acid phenylethyl ester 

  Galangin 

  Pinobanksin-O-acetate 

  Acacetin 

  Caffeic acid cinnamyl ester 

  
Pinobanksin-O-butyrate or 
isobutyrate 

  
Pinobanksin-3-O-pentanoate or-2-
methylbutyrate 

  Pinobanksin-O-phenylpropionate 

 

From all individual compounds identified, eight non-flavonoid phenolics and five 

flavonoids showed to be associated with biofilm disruption effect. All triterpenes identified 

and one flavonoid are associated with a decrease in biofilm disruption activity. No influence 

on this ability was shown by 43 flavonoids and four non-flavonoid phenolics. 

 

4. Discussion 

The present study evaluated 10 propolis ethanol extracts (PEE) with the purpose of 

assessing the influence of their composition on bactericidal, biofilm inhibition and biofilm 
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disruption activities against Staphylococcus species isolated from the milk of sheep and 

goats with mastitis. 

Regarding PEE chemical composition, a positive correlation was found between 

anthocyanins and condensed tannins (P<0.05). A strong relationship between tannin and 

anthocyanin was also demonstrated in wine (Kilmister et al., 2014). According to the same 

authors, the fruit anthocyanin concentration correlates with wine tannin concentration and 

wine colour (Kilmister et al., 2014). According to the same authors, the fruit anthocyanin 

concentration correlates with wine tannin concentration and wine colour. Similarly, a 

correlation was found in the present study between anthocyanin content and propolis 

colour with significantly higher values for red propolis samples. 

Total phenolics, flavonoids and condensed tannins contents for Red1 and Red2 PEE 

were significantly different (P<0.05). These two propolis batches were collected in the same 

apiary with a two years gap between harvests. Other authors report total polyphenols and 

flavonoids variations depending on the month of collection (Isla et al., 2009; Montenegro 

et al., 2001) and quantitative and qualitative variations in the composition of the 

polyphenol-rich extracts from propolis collected in the same month along three different 

years (Veloz et al., 2015). As mentioned by Costa et al., (2013), propolis composition and 

quality depends on the region vegetation and on other environmental factors. 

Individual compounds identified in the studied PEE are mostly flavonoids and other 

phenolics compounds. Naringenin, kaempferol methyl ether and quercetin dimethyl ether 

were detected in four out of 10 PEE, pinobanksin, chrysin and acacetin were found in the 

three Portuguese brown propolis. These three compounds were found only in the 

Portuguese propolis. Apigenin, acacetin, and kaempferol derivatives were found before in 

Portuguese propolis sample (Falcão, Vale, et al., 2013). 

Several authors have reported that Asian, African, and European PEE predominantly 

contain phenolics and flavonoids, such as naringenin, galangin, pinocembrin, apigenin, 

quercetin, cinnamic acid and its esters, kaempferol, chrysin, cinnamyl caffeate, 

cinnamylidene acetic acid, caffeic acid, p-coumaric acid, aromatic acids and their esters, 

among others (Huang et al., 2014; AL-Ani et al., 2018). 
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In this work, Green PEE Individual compounds are mainly non-flavonoid phenolics. 

The composition of Brazilian Green propolis includes flavonoids and cinnamic acid 

derivatives (Park, Alencar, and Aguiar 2002). In fact, in green propolis, p-coumaric acid and 

artepillin C are reported to be typical components of green Brazilian propolis (Machado et 

al., 2016). Green propolis are very typical and significantly differ from other types of 

propolis, as also confirmed by the results obtained for our Green PEE. 

The typical Brazilian Red propolis composition (Daugsch et al., 2008) includes 

liquiritigenin, daidzein, dalbergin, isoliquiritigenin, formononetin and biochanin A. This 

composition is similar to that of our Red1 and Red2 PEE. 

According to Zaccaria et al., (2017), flavonoids are the major components of 

European brown propolis, with flavones (chrysin and apigenin), flavanones (pinocembrin) 

and flavonols (galangin) being the most common individual compounds (Volpi and 

Bergonzini 2006), which is in agreement with the composition of our Portuguese brown 

PEE. 

Concerning bacterial species and biofilm production ability, most S. aureus isolates 

produce biofilm, while most coagulase-negative staphylococci are non-biofilm producers. 

Similarly, only 8% S. epidermidis isolates expressed the capacity to produce biofilm, using 

tissue culture plate (TCP) method, in a study comprising 109 S. epidermidis isolates from 

milk samples collected from 90 sheep belonging to 14 different flocks (Queiroga, Duarte, 

and Laranjo 2018). Nevertheless, studies on bovine mastitis isolates, using the same 

methodology for biofilm assessment, report different results, with higher percentage of 

biofilm producer CNS, namely 37.5% biofilm producing S. epidermidis to 18.8% biofilm 

producing S. aureus (Oliveira et al., 2006), 31.3% biofilm producing CNS (Simojoki et al., 

2012), and 85.1% biofilm producing CNS (Tremblay et al., 2013). 

Considering the effect of biofilm on mammary inflammation, the results showed a 

significant association between mammary gland inflammatory intensity, according to 

CM/CMT, and biofilm production. These results are in agreement with other studies in 

bovine mastitis caused by S. aureus (Cucarella et al., 2004; Zuniga et al., 2015) and in the 

mouse model mammary gland inoculated with S. aureus (Gogoi-Tiwari et al., 2017). 

However, also in bovine mastitis causing CNS, biofilm production was not associated with 

the intensity of inflammation (Simojoki et al., 2012) and in a study on sheep mastitis S. 
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epidermidis biofilm effects on inflammatory changes, this association was not detected 

(Queiroga et al., 2018). 

According to our results, Brown7 PEE shows the lowest content in flavonoids, 

anthocyanins and condensed tannins. This is the PEE with best antimicrobial activity, while 

the one with less antimicrobial action is Brown4 (Queiroga, Andrade, and Laranjo 2018), 

which exhibited high values for those components in this work. Moura (2000) found greater 

antimicrobial activity in extracts of propolis collected in NE Brazil, with lower flavonoid 

contents. Similar results were mentioned for propolis, also from NE Brazil, with low levels 

of flavonoids and phenolic compounds, which showed highly efficient bacteriostatic and 

bactericidal activity in comparison to propolis found in the Southeast (SE) of Brazil (Cabral 

et al., 2012). Nonetheless, Bonvehí and Gutiérrez (2012) reported a strong correlation 

between the total phenolic and flavonoids content and antimicrobial activity in propolis 

from Spain. Also Uzel et al., (2005) refer high flavonoids content propolis and significant 

antimicrobial action on Gram-positive bacteria. Silva et al., (2006) found a strong linear 

relationship between total phenol contents and the growth inhibition of S. aureus in one 

group of extracts, but in the other group this relationship was weaker. Additionally, no 

direct correlation between the content in total phenolics and flavonoids and MIC was 

reported in propolis from Brazil (Silva et al., 2006) and Greece and Cyprus (Kalogeropoulos 

et al., 2009). 

The propolis flavonoid contents has been related with its antimicrobial activity 

(Cushnie and Lamb 2005; Marcucci, Ferreres, and Garcı 2001; Yong Kun Park and Ikegaki 

1998), namely due to inhibition of nucleic acid synthesis, inhibition of cytoplasmic 

membrane function and inhibition of energy metabolism (Cushnie and Lamb 2005). 

Nevertheless, other propolis components may as well cause bacterial inhibition, some are 

also phenolic compounds (Bankova 2009; Bogdanov 2017). 

Our results have shown that higher contents in total phenolics and flavonoids 

(including anthocyanins and condensed tannins) are related to a lower bactericidal activity. 

Nevertheless, all flavonoids and other phenolics identified in this work are associated with 

a higher bactericidal activity. In fact, the concentration in total phenolics and flavonoids 

does not directly reflect all biological activities, antimicrobial activity included, of PEE 

(Cabral et al., 2012). The methods used for the determination of total phenolics and 
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flavonoids are not accurate and may under- or overestimate their content depending on 

the PEE composition in individual compounds (Cabral et al., 2012). This may justify the fact 

that in the present study, although total flavonoid content is associated with a lower 

bactericidal activity, the presence of each individual flavonoid (n=49) positively influences 

antimicrobial activity. Manner et al., (2013) studied the anti-S. aureus biofilm activity of 

500 natural and synthetic flavonoids and stated that they had different degrees of activity, 

some highly active although more than 80% (443) were declared inactive. Furthermore, the 

synergism of propolis components regarding antimicrobial activity, compared to isolated 

compounds, has been reported before (Król et al., 1993; Vassya Bankova 2009), and could 

also be partly responsible for this apparent discrepancy. 

The antimicrobial activity of propolis is generally attributed to to flavonoids and 

phenolic acids and their esters. In particular, the antimicrobial activity of Iranian propolis 

may be due to the presence of the most effective flavonoid agents, including pinocembrin 

(Afrouzan et al., 2018). In Croatian PEE, apigenin, chrysin, pinocembrin, and kaempferol 

were found to be significantly correlated with antimicrobial activity. Additionally, it has 

been shown that flavonoids, and particularly kaempferide, and pinocembrin, interfere with 

bacterial RNA polymerase and cause its inhibition (Gajger et al., 2017). Similarly, Uzel et al., 

(2005) refer that pinocembrin is among the most potent microbicidal compounds in 

propolis. In the present work, Brown7 PEE, which showed the best bactericidal activity, is 

the only one where pinocembrin was detected. 

Bankova et al., (1995) suggested that the biological activities of Brazilian propolis 

could be due to the high levels of phenolic acids, whereas flavonoids might be responsible 

for the activity of European propolis extracts (Hegazi et al., 2000).  

Regarding the antibiofilm role of PEE, the present results have shown a remarkable 

inhibitory effect on staphylococcal biofilm formation. Other authors have reported an 

effect on biofilm inhibition from Poland PEE, which were efficient against all 10 

Staphylococcus epidermidis isolates Wojtyczka et al., (2013). Brown2 is the best PEE for its 

ability to inhibit the formation of biofilm, while Brown4 is the worst, as reported in a 

previous study (Laranjo et al, 2018). 

On the other hand, regarding the ability of PEE to disrupt the newly formed biofilm, 

a positive association was found between condensed tannins and biofilm mean percentage 
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of disruption, and a negative association between total phenolics and flavonoids and 

biofilm mean % of disruption. Brown2 PEE exhibited the higher content on condensed 

tannins and in a previous study had shown the best performance in terms of mean % of 

disruption (Laranjo et al., 2018). 

PEE Brown4 showed the lowest performance of all studied PEE: antimicrobial and in 

biofilm production (Laranjo, Andrade, and Queiroga 2018; M.C. Queiroga, Andrade, and 

Laranjo 2018). This might be related to the different chemical composition of the Brown4 

PEE, composed mainly of triterpenes. According to the ANOVA performed, triterpenes 

negatively influence bactericidal activity, biofilm inhibition and biofilm disruption for 

Staphylococcus spp. Nevertheless, tannins (condensed and hydrolysable) are capable of 

inhibiting the formation of biofilms in Gram-negative bacteria, rupturing the bacterial 

membrane and making it difficult to produce exopolysaccharide matrix (Trentin et al., 

2013). 

In this study, biofilm mean % of inhibition is positively correlated with the content in 

flavonoids, anthocyanins and condensed tannins. On the other hand, biofilm mean % of 

disruption is positively correlated with the content in condensed tannins and negatively 

correlated with total phenolics and flavonoids. Moreover, all individual compounds which 

presence is related to biofilm formation inhibition do not influence biofilm disruption and 

all individual compounds which presence is related to biofilm disruption do not influence 

biofilm formation. 

Inhibition of biofilm formation by propolis extracts has been attributed to flavonoids 

and total phenolic contents, regarding S. aureus biofilm (Doganli 2016) and Streptococcus 

mutans biofilm (Veloz et al., 2015). Doganli (2016) studied the antibiofilm activity of three 

different propolis extract, both inhibitory and disruption activities and reported that 

extracts with the higher amount of phenolic contents were the ones that revealed the best 

biofilm reduction rates, stating that there is a notable consistency between the phenolic 

content and the biofilm inhibition rate/antibiofilm activity. However, an anti-S. aureus 

biofilm screening comprising 500 flavonoids, including both the inhibitory and disruption 

abilities, based on viability results, showed that in general, many flavonoids had strain-

specific effects, and their biofilm disruption percentages were lower than inhibition 

percentages (Manner et al., 2013). 
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Our results strongly suggest that propolis is a promising product for mastitis control 

which also addresses One Health protection. The treatment of mastitis with antimicrobial 

alternatives is a priority to reduce the growing trend towards antimicrobial resistance 

(AMR) and its harmful repercussions on animal health and public health. The use of propolis 

for mastitis treatment and prevention has been addressed by other researchers. In 1980, 

Mirolyubov and Barskov described a propolis based intramammary preparation that 

improved the degree of restoration of milk yield and reduced bacterial counts in mammary 

secretion. More recently, one other intramammary propolis formulation has been 

developed, which reduced intramammary infection  prevalence from 28.6% to 4.8% after 

two applications (Bačić et al., 2016a; Bačić et al., 2016b; Mačešić et al., 2016). Wang et al. 

(2016) studied the effect of Chinese propolis in a cell culture of bovine mammary epithelial 

cells and described that the treatment of the cells, prior to infection with mastitis 

pathogens, enhanced expressions of antioxidant genes and decreases in expressions of 

proinflammatory cytokines compared to non-treated challenged cells. Additionally, 

synergism between propolis extracts and antimicrobials, such as gentamicin, and those 

acting on cell wall synthesis, like vancomycin and oxacillin, has been reported (AL-Ani et al., 

2018; Runyoro et a l., 2017). 

 

5. Conclusions 

The ability of a Staphylococcus isolate to produce biofilm seems to affect mammary 

inflammation, as evaluated by CMT/CM. However, the ability of a Staphylococcus isolate to 

produce biofilm does not seem to be important for its resistance to PEE. 

Brown7 is the PEE with the best bactericidal activity, while Brown2 is the PEE that 

showed the best antibiofilm activity, both inhibiting the formation and disrupting the 

preformed biofilm. 

The antibiofilm activity is probably important for a good efficiency in the treatment 

and prevention of intramammary infections, but it will be absolutely necessary that the PEE 

also has antimicrobial action; otherwise there is a risk of releasing viable bacteria that could 

spread the infection. 
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The presence of all PEE individual phenolics identified in the present study enhanced 

bactericidal activity, whereas triterpenes negatively influenced the antimicrobial activity.  

As to antibiofilm activities, triterpenes also showed to be related with decreased 

activity, while diverse effects are associated with different flavonoids and other phenolic 

compounds. 

Further studies to determine the concentration of each individual PEE compound are 

needed to better correlate these with the biological activities of propolis. 
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Abstract 

One Health is a worldwide strategy of healthcare for humans, animals, and the 

environment. Antimicrobial resistance is a serious global problem, recently recognised by 

the World Health Organization. Prudent, responsible use of antimicrobials should be a 

concern for both human and veterinary doctors. Concerning animal health and its 

repercussion in human health, antimicrobials and disinfectants have been widely used for 

the control of mastitis. This practice induces a selective pressure for resistant bacterial 

strains, which is deleterious for public health associated with milk consumption. 

Antimicrobial resistance genes have been detected in pathogens associated to small 

ruminants’ mastitis. These genes may be transferred to the indigenous microbiota of 

humans. The presence of disinfectant resistance genes has also been reported in 

staphylococci from both ovine and caprine milk. Propolis is a resinous substance produced 

by honeybees using different types of plants. It is used to seals holes and cracks in the 

beehive, contributes to an aseptic internal environment, maintains the hive’s internal 

temperature, and prevents predators from entering the beehive. Propolis has been used 

as a natural medicine for its antiseptic, antimicrobial, antioxidant, anti-inflammatory, and 

other immunomodulatory properties. The aim of the present study was to investigate the 

in vitro activity of propolis ethanol extracts (PEE) against staphylococci isolated from 

mastitic milk of sheep and goats. Antimicrobial susceptibility was assessed for 16 

antimicrobials (ampicillin, gentamicin, lincomycin, trimethoprim/sulfamethoxazole, 

penicillin, streptomycin, tetracycline, cloxacillin, neomycin, cefazolin, cefoperazone, 

cephalexin, amoxicillin+clavulanic acid, oxacillin, ceftriaxone, and ciprofloxacin) by the disk 
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diffusion method. Ten PEE from propolis samples collected both in Portugal (three brown), 

and Brazil (one green, two red, and four brown) were evaluated for their antimicrobial 

action against 146 staphylococci: 35 S. aureus, and 104 coagulase-negative staphylococci 

isolates, together with seven reference strains. Antimicrobial activity of PEE was assessed 

on polystyrene flatbottomed microtiter plates in triplicate by the microdilutions 

methodology for concentrations between 0.0065  and 214 mg/mL. All staphylococci 

isolates revealed susceptibility to all but one of the studied PEE. Minimal bactericidal 

concentration for most isolates was 3.34 mg/mL. According to our results, propolis may be 

an important alternative to the use of antimicrobials, with remarkable advantages for 

public health.  

Keywords: Staphylococcus; antimicrobial resistance; One Health  

 

1. Introduction  

One Health is a worldwide strategy of healthcare for humans, animals, and the 

environment, shared by the World Health Organization (WHO), the Food and Agriculture 

Organization of the United Nations (FAO), and the World Organisation for Animal Health 

(OIE). Addressing the rising threat of antimicrobial resistance (AMR) requires a holistic and 

multisectoral approach, because antimicrobials used to treat various infectious diseases in 

animals may be the same or similar to those used for humans. Resistant bacteria arising in 

humans, animals or the environment may spread from one to the other, and from one 

country to another. According to the WHO, antimicrobial resistance is the ability of a 

microorganism (like bacteria, viruses, and some parasites) to stop an antimicrobial (such as 

antibiotics, antivirals, and antimalarials) from working against it. As a result, standard 

treatments become ineffective, infections persist, and may spread to others.  

Antimicrobials and disinfectants have been widely used for the control of mastitis in 

small ruminants, a practice with severe consequences for human health. The massive use 

of antimicrobials induces a selective pressure for resistant bacterial strains, which is 

deleterious for public health associated with milk consumption.  

Mastitis, the inflammation of the mammary gland, which is mostly caused by 

bacteria, is highly prevalent in dairy herds [1]. Staphylococcus spp. are the main aetiological 
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agents of mastitis in small ruminants [2, 3]. The prophylaxis and treatment of mastitis is 

currently mostly dependent on the use of antimicrobials, which exert pressure selection 

over resistant and multi-resistant strains [4-6]. A recent study showed a noticeable increase 

in antimicrobial resistance, over a period of ten years, in Staphylococcus aureus isolates 

from goats and sheep milk [7].  

These resistant bacteria may worsen the problem of mastitis, but in addition, they 

may be threatening for human health. Their access to the consumer through milk and dairy 

products may be responsible for the transfer of resistance genes to the microorganisms of 

the indigenous microbiota in the gut of humans [8].  

The search for control measures and antimicrobial alternatives to decrease 

intramammary infections are needed to reduce losses in the dairy sector; to increase the 

motivation and profitability of farmers and, last, but not least, to protect public health.  

One possible alternative is propolis, a natural antimicrobial. Propolis is a resinous 

mass produced by Apis mellifera bees by manipulating resins harvested in several plants 

with their salivary gland secretions, which they use to close the hive to difficult the access 

of invaders. Its biological properties are related to the chemical composition, which differs 

in its structure and concentration depending on the region of production, availability of 

sources for resin harvesting, genetic variability of the queen bee and technique used for 

production [9].  

The biological activity of propolis has been used in traditional medicine since ancient 

times. Different solvents have already been tested for extracting propolis components and 

to produce extracts [10, 11]. Propolis has been shown to possess several properties, such 

as: antioxidant action, anti-inflammatory [12], antiulcerogenic [13], antitumoral [14], 

antidiabetogenic [15], antiatherogenic and anti-angiogenic [16], immunomodulatory [17], 

antifungal [18, 19], antiviral [20], namely for human immunodeficiency virus (anti-HIV) [21], 

anti-bacterial [22, 23] and acting versus some virulence factors, such as antibiofilm [24, 25] 

and antimotility [26, 27].  

The aim of the present study was to evaluate the in vitro activity of propolis ethanol 

extracts (PEE) against staphylococci isolated from mastitic milk of sheep and goats.  
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2. Materials and methods  

2.1   Staphylococci isolates  

Thirty-five Staphylococcus aureus and 104 coagulase-negative staphylococci (CNS) 

were isolated from small ruminant milk samples. Seven references strains were also used: 

five S. aureus (ATCC 25923, ATCC 29213, COL, FRI 472, and FRI 913) and two S. epidermidis 

(ATCC 12228, and ATCC 35984).  

 

2.2   Antimicrobial Sensitivity Test (AST) - disk diffusion method  

The AST followed the performance standard M02-A11 CLSI [28] using the Kirby Bauer 

diffusion method. Bacterial cultures were suspended in sterile saline solution whose 

turbidity was adjusted at 0.5 of the MacFarland scale (1x108 cfu/mL) and confirmed in 

turbidimeter (DensiChek, bioMérieux). The suspension was inoculated onto the surface of 

Muller-Hinton agar (MHA) plates (Oxoid, CM0337) and after 5 minutes at room 

temperature, antimicrobial disks were applied with the aid of a disk dispenser (Oxoid, ST 

6090). The plates were incubated at 37 ºC for approximately 24 hours and the inhibition 

zone diameter was measured. The list of 16 antimicrobials studied, used in intramammary 

antibiotics preparations, are grouped according to their chemical structure and their mode 

of action in Table 5.1.  

Table 5.1. Antibacterial agents, their classes, and their corresponding mode of action.  
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2.3   Propolis Ethanol Extracts (PEE)  

Ten propolis samples, seven from Brazil (Green, Red1, Red2, Brown1, Brown2, 

Brown3, and Brown4), and three from Portugal (Brown5, Brown6, and Brown7) were 

collected from apiaries located in different regions.  

Propolis ethanol extracts were prepared according to the official standards for 

extracts production in Normative Instruction Nº 3, 19/01/2001, published by the 

Department of Inspection of Animal Products of the Ministry of Agriculture, Livestock and 

Food Supply, Brazil [29]. Cold maceration of 300 g of raw propolis in 700 mL of 70% ethanol 

was performed, resulting in a 30% PEE. The preparations were kept at room temperature, 

protected from light, for 45 days. After this period, extracts were filtered with a sterile 

funnel and filter paper. Extracts were kept under refrigeration at 4 °C, in amber bottles, 

until use [46].  

 

2.4 In vitro antimicrobial activity of propolis extracts  

In vitro antimicrobial activity of propolis ethanol extracts was performed according 

to the CLSI protocol M07-A9 [30]. A total of 150 μL of 30% PEE were added to 150 µL of 

Mueller-Hinton Broth (MHB) (Oxoid, CM0405), in polystyrene flat-bottomed 96-well 

microtiter plates, in triplicate, by the microdilutions methodology for concentrations 

between 0.0065 and 214 mg/mL. Ethanol (70%) was used as a control, to ensure that the 

resulting antimicrobial action was not due to the ethanol used for extract production.  

A suspension with a turbidity equivalent to a 0.5 McFarland standard (1x108 cfu/mL) 

was made for each bacterial culture using a turbidimeter (DensiChek, bioMérieux), and was 

further diluted to reach a concentration of 5x105 cfu/mL after added to extract. Microplates 

were incubated at 37°C for approximately 24 hours. In order to determine the minimum 

bactericidal concentration (MBC), a 96-pin microplate replicator (Boekel Scientific) was 

used to inoculate approximately 10 μl of each dilution onto a 150 mm diameter Petri dish 

with Mueller-Hinton Agar (MHA) (Fig. 1). Analyses were performed in triplicate, and Petri 

dishes incubated for 24 hours at 37 ºC. The MBC is defined as the lowest dilution that 

inactivated the inoculum visibly.  
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Figure 5.1.  Minimum Bactericidal Concentration (MBC) methodology: polystyrene flat-bottomed 96-

well microtiter plates, 96-pin microplate replicator; and 150 mm diameter Petri dish.  

 

3. Results  

3.1 Antimicrobial susceptibility test of staphylococci  

Staphylococci isolates and reference strains have shown distinct resistance rates to 

the tested antimicrobials. Thirty eight percent of all 146 staphylococci were non-

susceptible to streptomycin, 30% to penicillin, 27% to ampicillin and lincomycin, 16% to 

cloxacillin and oxacillin and 13% to tetracycline. Less than 10% of all staphylococci were 

found to be resistant to all other antimicrobials (Fig. 2). Nevertheless, at least one resistant 

Staphylococcus to each antimicrobial was found.  

 

 

Figure 5.2.  Antimicrobial resistance of 146 staphylococci isolates and reference strains. 
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3.2 Antimicrobial activity of PEE against staphylococci   

Bacterial activity is shown in Fig. 3. Identifications per column are shown from left to 

right: 1st, 2nd and 3rd are triplicates of dilutions of Brown1 extract; 4th, 5th and 6th are 

triplicates of dilutions of the Red2 extract; 7th, 8th and 9th are triplicates of Brown3 

dilutions; 10th is ethanol control (70% ethanol dilutions with inoculum); 11th negative 

control (MHB culture medium only) and 12th positive control (culture medium with 

inoculum). Different dilutions of each PEE are positioned in different rows.   

 

 

 

 

 

 
 
Fig. 5.3  Minimum Bactericidal Concentration (MBC): Petri dish showing the growth of a bacterial 

isolate in the presence of Brown1, Red2 and Brown3 PEE.  

  

 All 139 staphylococci isolates revealed susceptibility to all but one of the studied PEE, 

in concentrations ranging between 0.026 and 13.37 mg/mL. Furthermore, the inhibitory 

activity was bactericidal. Most PEE minimal bactericidal concentration for most isolates was 
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3.34 mg/mL. Brown4 was the only PEE that showed less antimicrobial activity against the 

studied isolates (Figure 5.4). 

Figure 5.4.  Minimum inhibitory concentration of 10 PEE against 139 staphylococci isolates.  

  

 All but one isolate were inhibited with concentrations between 0.208 and 13.37 

mg/mL of the nine PEE. The concentration of 13.37 mg/mL, of these nine PEE, is adequate 

to inhibit Staphylococcus isolates. Red1 and Brown7 PEE were bactericidal to all isolates at 

the concentration of 6.68 mg/mL. Red1, Brown5, 6 and 7 extracts showed bactericidal 

activity with the lowest concentrations. This last one, Brown7, collected in PT, showed to 

inhibit more isolates at all concentrations (Figure 5.5), showing the best performance. 

Following best performance was for Brown6, then Red1 followed by Brown5. Brown1 and 

Brown2 PEE showed quite similar antimicrobial activity. Green PEE showed an inhibitory 

activity not much different from Brown1, Brown2 and Brown3 PEE.  
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Figure 5.5.  Antimicrobial activity of 10 PEE against 139 staphylococci isolates. 

 

Regarding the antimicrobial activity of the PEE against the studied reference strains 

(Figure 5.6), all strains showed sensitivity to the same nine PEE, in concentrations between 

0.1 and 13.37 mg/mL, and 5 S. aureus (71.4%) revealed sensitivity to Brown4 extract, 

between 107 and 214 mg/mL concentrations. Two reference strains (S. epidermidis ATCC 

12228 and 35984) showed Brown4 resistance, which was the one that showed less 

antimicrobial activity against all the strains tested. PEE Brown6 and 7 showed antimicrobial 

activity at lower concentrations.  

 
Figure 5.6.  Minimum inhibitory concentration of 10 PEE against reference strains.  
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4. Discussion  

In this study, resistance rate was higher to streptomycin (38%), followed by penicillin 

(30%), ampicillin and lincomycin (27%). Although antimicrobial resistance is not particularly 

high for all tested antimicrobials, it is noteworthy that resistant isolates were found to all 

antimicrobials and that 16% isolates showed resistance to cloxacillin and oxacillin, which is 

mostly relevant, as methicillin resistant staphylococci are a real scourge for public health. 

Staphylococci isolated from the milk of small ruminant with mastitis with low resistance 

patterns have been mentioned by other researchers [4, 31]. Nevertheless, some reports 

indicate S. aureus from ewes’ subclinical mastitis with a high rate of resistance to ampicillin, 

cefalotin, cephalexin, gentamicin, streptomycin, erythromycin, oxytetracycline and 

sulphonamide with a percentage from 50.0 to 100.0 [32]. Additionally, Onni et al. [33] 

reported 38% S. epidermidis associated with ovine mastitis (n = 50) resistant to penicillin.  

Except for Brown4 PEE, all the other PEE showed inhibitory activity against all 

staphylococci isolates. Furthermore, all ten PEE are bactericidal, which is a very important 

feature of propolis. For example, essentials oils (EO) of Aromatic and Medicinal Plants 

(AMP) have been tested for their antimicrobial effect against staphylococci, and they were 

found to be only bacteriostatic [34].  

Due to bacterial resistance to antimicrobials, researchers are exploring the natural 

components of propolis for their antimicrobial properties [35]. Plant compounds have been 

shown not to be prone to develop acquired bacterial resistance even after prolonged 

exposure [36].  

The antimicrobial activity of propolis has been addressed before by other authors 

[22-24, 37-39]. The antibacterial activity of PEE over the bacterial cell wall was confirmed 

through atomic force microscopy (AFM) images. Furthermore, it is possible to differentiate 

the degenerative ability of propolis against Gram-negative and Gram-positive bacteria. In 

fact, PEE were found to be more effective against the Gram-positive S. aureus [40].  

Propolis extracts can be used alone or in combination with antimicrobials [35]. This 

mixture represents a synergy that potentiates the antimicrobial power of antibiotics 

against various microorganisms. Minimal inhibitory concentrations (MIC) of penicillin G, 

doxycycline, streptomycin, cloxacillin, chloramphenicol, cephradine, ampicillin, and 
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polymyxin B were established, in the absence of PEE, against S. aureus. When PEE was 

added at concentrations of up to 600 μg/ml to antimicrobial solutions, a high synergistic 

effect was observed in the anti-bacterial activity of streptomycin and cloxacillin, and a 

moderate synergistic effect with other antibiotics, but no action was noticed when at the 

junction with ampicillin [41]. On the contrary, the good performance of a mixture of 

propolis with ampicillin, was observed by Ismael et al. [42], in vivo, when treating sheep 

and goats affected with Listeria monocytogenes. The animals treated with this mixture 

showed the best result, compared to the mixture of cefotaxime antibiotics, cefotaxime 

alternative with gentamicin and trimethoprim-sulfadimethoxine combination. The author 

also noted that treatments with combinations of propolis and antibiotics were more 

effective than those treatments with only antibiotics. Better synergistic results between 

PEE and antimicrobials were observed with chloramphenicol, gentamicin, netilmicin, 

tetracycline and clindamycin, antibiotics (causers interference in protein synthesis of 

bacteria), than those antibiotics that show other forms of action in the inactivation of the 

bacterium [43].  

Resistant and multi-resistant microorganisms to antibiotics were submitted to 

analysis with sub-inhibitory concentrations of PEE together with antimicrobials. The results 

of the synergistic action demonstrated the potential of propolis to improve the action of 

certain antimicrobials, which had been previously undetected [44]. Scazzocchio et al. [45] 

also evaluated sub-inhibitory concentrations of PEE added to different antimicrobials. 

These showed divergent activities against S. aureus. When sub-inhibitory concentrations 

were added to ampicillin, gentamicin and streptomycin showed high antimicrobial potency 

against this strain, when added to chloramphenicol, ceftriaxone and vancomycin showed 

moderate activity and when added to erythromycin did not show antimicrobial action.  

Our results have clearly demonstrated that propolis may be highly efficient as 

antimicrobial for staphylococci. Its use alone or in combination with antimicrobials may be 

an important alternative for the control of small ruminant mastitis, with remarkable 

advantages for public health.  
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Abstract 

Propolis is a resinous substance produced by honeybees with plant ingredients, 

which is used to fill gaps in the hive to prevent the entry of undesirable visitors and to 

provide better thermal insulation. It has been used for centuries to treat different 

pathologies and more recently became very popular in Europe due to its antibacterial 

activity. Biofilm is a multi-layered cluster of bacteria embedded in an extracellular 

polysaccharide matrix, which is known to increase bacterial ability to colonise inert 

materials and to protect bacteria from body defence mechanisms and antimicrobials, 

contributing to the establishment of persistent infections. Bacteria of the genus 

Staphylococcus are responsible for a plethora of infections in humans and animals and 

are the main etiological agents of mastitis in ruminants. The production of biofilm by 

these bacteria increases their resistance to antimicrobials, greatly hindering the 

treatment of infections. This study aims to investigate the in vitro activity of propolis 

ethanol extracts (PEE) against biofilms produced by staphylococci isolated from the milk 

of small ruminants with mastitis. The inhibitory action on biofilm formation and the PEE 

ability to eliminate established biofilms were evaluated. Ten PEE were produced from 

seven samples of propolis harvested in several regions in Brazil (one green, two red and 

four brown) and three samples collected in different regions in Portugal (all brown). These 

PEE were assessed for biofilm formation inhibition and biofilm disruption ability on 45 

biofilm producing Staphylococcus isolates (26 S. aureus, seven S. chromogenes, four S. 

warneri, three S. auricularis, two S. simulans, one S. caprae, one S. capitis, and one S. 
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epidermidis) on polystyrene flat-bottom microtiter plates. All PEE showed antibiofilm 

activity against some Staphylococcus isolates. Generally, PEE are more effective in 

inhibiting biofilm formation, than in destroying the formed biofilm. According to these 

results, propolis deserves to be considered for the control of infections caused by biofilm 

producing staphylococci.  

Keywords: Staphylococcus; propolis; biofilm; mastitis.  

 

1. Introduction  

Propolis is a resinous mass, rich in flavonoids and other phenolic compounds, 

produced by honeybees Apis mellifera for the protection of the honeycomb. Propolis may 

display different colours due to the biodiversity of plants used for its production. It has 

earned the attention of many researchers due to its antimicrobial action (1–3), but also 

due to its synergistic effect in combination with antibiotics (4). Besides antimicrobial 

activity, propolis has other biological properties, like antiviral, antifungal, antitumor, anti-

inflammatory and antioxidant ones, and is used in traditional medicine since Antiquity (5–

7). Recently antibiofilm activity of propolis has been described (3,8) and anti-quorum 

sensing was also stated (9).  

 Inflammation of the mammary gland, known as mastitis, is a serious problem for 

milk producers, both bovine and small ruminant, as it is responsible for lowering milk yield 

and quality (10). Staphylococcus spp. are recognized worldwide as a frequent cause of 

intramammary infections in small ruminants (11–19). Some of these bacteria also 

produce enterotoxins accountable for public health threats (20–22). Treatment and 

control of mastitis due to Staphylococcus spp. is challenging due to antimicrobial 

resistance (22–24) and bacterial ability to produce biofilm (26,27). Biofilm hampers 

mastitis control as it increases microbial survival and contribute to pathogens’ persistence 

in the farm (25). Biofilm production has been considered responsible for antimicrobial 

resistance and for persistent mastitis (28–33). Its major components are an 

exopolysaccharide matrix (slime), proteins and environmental DNA (eDNA) along with the 

bacterial cells (34).  

 Propolis may replace or reduce the use of antibiotics in veterinary medicine due to 

its antimicrobial action, but also due to its antibiofilm activity. This study aims at 

investigating the in vitro antibiofilm activity of propolis ethanol extracts (PEE) against 
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biofilm produced by staphylococci isolated from the milk of small ruminants with mastitis. 

The study includes the assessment of PEE inhibitory action on biofilm formation and PEE 

ability to eliminate established biofilms.  

 

2. Materials and methods  

 2.1  Propolis ethanol extracts  

Ten different batches of raw propolis, seven from Brazil (Green, Red1, Red2, 

Brown1, Brown2, Brown3 and Brown4) and three from Portugal (Brown5, Brown6 and 

Brown7) were collected in apiaries located in different regions with different climates and 

vegetation (data not shown). Propolis ethanol extracts were prepared as follows (35). 

Cold maceration of 300 g of raw propolis in 700 mL of 70% ethanol was performed, 

resulting in 30% PEE. The preparations were kept at room temperature, protected from 

light, for 45 days. After this period, extracts were filtered through a sterile funnel and 

filter paper. Extracts were kept refrigerated at 4°C, in amber bottles, until use.  

 

 2.2 Bacterial isolates    

Forty-four biofilm producing Staphylococcus field isolates (26 S. aureus, seven S. 

chromogenes, four S. warneri, three S. auricularis, two S. simulans, one S. caprae, one S. 

capitis) collected from different mammary glands of sheep and goats, belonging to 

different flocks, with clinical and subclinical mastitis, were included in this study. Milk 

samples were aseptically collected and immediately refrigerated until processed, within 

no more than 12 hours. Bacteriological analyses were undertaken according to the 

National Mastitis Council methodology (36) and isolates were identified to the species 

level using Vitek 2 Compac (Biomérieux).  

 

2.3 Biofilm production  

Biofilm production was assessed according to Merino et al. (37) with some 

modifications. Bacteria were grown overnight in Trypticase Soy Broth (Oxoid, CM0129) 

with 1% glucose (TSBg) at 37°C. Bacterial cultures were diluted in sterile TSBg until the 

turbidity reached 0.5 of the MacFarland scale (approximately 1 x 108 CFU/mL), according 

to the turbidimeter reading (DensiChek, bioMérieux), and again diluted 1:20 to reach 5 x 

106 CFU/mL (38). One hundred microliters of these suspensions were added to 100 μL of 



Chapter 6 – Antibiofilm activity of propolis extracts   

 

124 
 

sterile TSBg in flat bottom sterile 96-well polystyrene microtiter plates. A non-biofilm 

producer Staphylococcus epidermidis ATCC 12228 was used as negative control, S. 

epidermidis ATCC 35984 as positive control and non-inoculated TSBg as sterility control. 

Plates were incubated overnight at 37°C. The wells were gently washed three times with 

200 µL of distilled water, dried in an inverted position, and stained with 100 µL 0.25% 

gentian violet for 3 min at room temperature. Wells were rinsed again, 200 µL of alcohol-

acetone (80:20) were added and the optical density was read at 620 nm in an ELISA plate 

reader (BioRad). Each assay was performed in triplicate and repeated three times. Results 

were recorded as follows: optical readings (OR) average value of the triplicates, 

subtracting the average value for the negative control (NC) in the same microplate 

according to the following formula:  OD = (∑ OR1, OR2, OR3)/3 - (∑ NC1, NC2, NC3)/3)  

 No production of biofilm (isolate OD ≤ negative control OD), weak biofilm 

formation (negative control OD < isolate OD ≤ 2 X negative control OD), moderate biofilm 

formation (2 X negative control OD < isolate OD ≤ 4 X negative control OD) and strong 

biofilm formation (isolate OD > 4 X negative control OD).  

 

2.4 Effect on biofilm formation  

Isolates were grown overnight at 37°C in 3 ml TSBg and 5 x 106 CFU/mL suspensions 

were prepared. One hundred microliters of these suspensions were added to 100 μL of 

half minimum bactericidal concentration (1/2 MBC) from each PEE (diluted in Mueller 

Hinton broth) into each well of 96- well polystyrene flat-bottomed microtiter plates. The 

bactericidal activity of the extracts towards the different isolates was previously 

determined (see Chapter “Antimicrobial action of propolis extracts against staphylococci” 

in this book) and half MBC was used in this assay, so that bacteria wouldn’t be inactivated. 

TSBg along with 0.5 CBM of each extract, previously determined for each isolate, were 

used as a sterility control. After incubation for 24 h at 37°C, plates were washed and 

stained as for the biofilm production assay. Absorbance was settled at 620 nm and the 

biofilm density was determined as described previously. Each assay was performed in 

triplicate and repeated three times. These results were compared with the results of the 

biofilm formation assay and the PEE inhibitory action on the biofilm formation was 

established as a percentage of inhibition.  
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2.5 Effect on established biofilms  

To evaluate the PEE ability to eliminate established biofilms, the same isolates were 

grown as biofilms using polystyrene flat-bottomed microtiter plates. After 24 h of 

incubation at 37°C, the wells were washed three times with distilled water and 200 µL of 

the corresponding half MBC of PEE were added. Non-inoculated MBC of each PEE for each 

isolate and TSBg were used as sterility controls. After incubation on the regular 

conditions, microplates were again washed and stained following the described 

procedure. Absorbance was determined at 620 nm and the formation of biofilm was 

determined as described previously. Each assay was performed in triplicate and repeated 

three times. These results were compared with the results of the biofilm formation assay 

and the PEE activity on the biofilm disruption was established as a percentage.  

 

3. Results  

3.1 PEE effect on biofilm formation  

Nine PEE showed the ability to inhibit or stop biofilm-formation in 74.4% of the 

isolates analysed. The mean inhibition for each PEE, varied between 52.6 and 86.1%. 

Brown1, 2 and 3 Brazilian PEE showed higher activity compared to the Brown5, 6 and 7 

Portuguese PEE, but Brown4 Brazilian PEE showed no activity against any of the tested 

isolates (Figure 6.1).   

 

Figure 6.1.  Mean inhibition percentage for each propolis ethanol extract.  
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  Twenty-six S. aureus isolates were biofilm producers and only Brown2 PEE showed 

to inhibit biofilm formation of all isolates. The percentage of biofilm inhibition for each S. 

aureus isolate ranged from 54.4 to 88.8%. Biofilm of S. epidermidis ATCC 35984, used as 

a positive control, was susceptible to eight PEE and its percentage of inhibition varied 

between 62 and 96.3% (Table 6.1).   

 

Table 6.1.  PEE effect on biofilm formation: number of isolates, and respective 
percentage, and mean inhibition percentage by species for each PEE. 
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N 26 3 1 1 7 1 2 4 45 

Inhibited by PEE Green (N) 20 3 1 0 5 1 2 3 35 

Inhibited isolates (%) 76.9 100.0 100.0 0.0 71.4 100.0 100.0 75.0 80.6 

% of Inhibition 88.8 73.6 100.0 0.0 85.4 65.1 56.9 76.4 83.8 

Inhibited by PEE Red1 (N) 24 3 1 0 5 1 2 4 40 

Inhibited isolates (%) 92.3 100.0 100.0 0.0 71.4 100.0 100.0 100.0 91.8 

% of Inhibition 85.7 59.3 80.3 0.0 56.8 62.0 85.5 54.0 76.2 

Inhibited by PEE Red2 (N) 23 2 1 1 6 1 1 3 38 

Inhibited isolates (%) 88.5 66.7 100.0 100.0 85.7 100.0 50.0 75.0 85.7 

% of Inhibition 85.8 92.1 81.0 80.3 91.0 95.1 98.5 71.7 86.1 

Inhibited by PEE Brown1 (N) 24 3 1 0 7 1 2 3 41 

Inhibited isolates (%) 92.3 100.0 100.0 0.0 100.0 100.0 100.0 75.0 93.7 

% of Inhibition 82.6 97.1 98.9 0.0 72.9 96.3 68.2 62.8 80.5 

Inhibited by PEE Brown2 (N) 26 2 1 0 7 1 2 3 42 

Inhibited isolates (%) 100.0 66.7 100.0 0.0 100.0 100.0 100.0 75.0 96.6 

% of Inhibition 88.6 86.4 79.9 0.0 85.9 79.0 91.6 62.1 85.9 

Inhibited by PEE Brown3 (N) 25 3 1 1 7 1 2 3 43 

Inhibited isolates (%) 96.2 100.0 100.0 100.0 100.0 100.0 100.0 75.0 96.0 

% of Inhibition 78.5 91.5 99.5 82.9 83.3 69.9 83.8 77.8 80.8 

Inhibited by PEE Brown4 (N) 0 0 0 0 0 0 0 0 0 

Inhibited isolates (%) 0 0 0 0 0 0 0 0 0.0 

% of Inhibition 0 0 0 0 0 0 0 0 0.0 

Inhibited by PEE Brown5 (N) 23 1 1 0 7 1 0 1 34 

Inhibited isolates (%) 88.5 33.3 100.0 0.0 100.0 100.0 0.0 25.0 88.1 

% of Inhibition 84.2 48.0 90.7 0.0 64.5 89.8 0.0 50.5 78.5 

Inhibited by PEE Brown6 (N) 16 1 1 0 5 0 2 3 28 

Inhibited isolates (%) 61.5 33.3 100.0 0.0 71.4 0.0 100.0 75.0 67.8 

% of Inhibition 54.4 85.2 81.1 0.0 47.2 0.0 40.0 40.6 52.6 

Inhibited by PEE Brown7 (N) 21 1 1 0 6 1 2 2 34 

Inhibited isolates (%) 80.8 33.3 100.0 0.0 85.7 100.0 100.0 50.0 80.7 

% of Inhibition 78.4 34.5 61.2 0.0 53.9 63.5 75.9 67.2 71.0 
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 3.2  PEE effect on established biofilms  

All ten PEE showed to partially or totally destroy the biofilm produced by 45 

staphylococci isolates. The mean PEE activity percentage on biofilm disruption varied 

between 51.4 and 92.0% (Figure 6.2).  

  

 

Figure 6.2.  Mean activity percentage on biofilm disruption for each propolis ethanol extract.  

  

 The percentage of biofilm disruption ranged from 0 to 100% (Table 6.2). Propolis 

Ethanol Extract Brown 2 showed biofilm disruption activity against 88.4% of S. aureus 

isolates but did not affect biofilm from S. epidermidis and S. capitis.  

Generally, PEE are more effective in inhibiting biofilm formation, than in destroying 

the formed biofilm, with the exception of Green, Brown4, Brown6, and Brown 7. PEE 

Brown1, Brown2 and Brown3 were able to inhibit more than 40 out of 45 isolates (88.9%). 

However, these were not the best PEE in disrupting the established biofilm. Brown7, 

Green and Red were the most effective PEE in destroying biofilm. Brown4, while 

completely unable to inhibit biofilm formation, was still able to disrupt the established 

biofilm in more than 50% of the isolates. Antibiofilm activity is summarised in Figure 6.3. 
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Table 6.2.  PEE effect on established biofilms: number of isolates, and respective 
percentage, and mean activity percentage on biofilm disruption by species for each PEE. 

Isolates/Species 
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N 26 3 1 1 7 1 2 4 45 

Affected by PEE Green (N) 19 3 1 1 6 1 2 3 36 

Affected isolates (%) 73.0 100.0 100.0 100.0 85.7 100.0 100.0 75.0 81.3 

% of Disruption 93.4 23.3 58.6 100.0 95.5 100.0 100.0 68.9 85.6 

Affected by PEE Red1 (N) 20 1 1 0 5 1 1 3 32 

Affected isolates (%) 76.9 33.3 100.0 0.0 71.4 100.0 50.0 75.0 75.1 

% of Disruption 70.7 54.9 98.0 0.0 97.1 79.3 100.0 96.3 78.7 

Affected by PEE Red2 (N) 19 3 1 1 5 1 2 4 36 

Affected isolates (%) 73.0 100.0 100.0 100.0 71.4 100.0 100.0 100.0 81.8 

% of Disruption 62.8 74.2 85.6 73.1 66.9 100.0 98.7 90.1 71.3 

Affected by PEE Brown1 (N) 12 2 1 0 6 1 2 2 26 

Affected isolates (%) 46.1 66.6 100.0 0.0 85.7 100.0 100.0 50.0 65.4 

% of Disruption 32.0 86.2 83.6 0.0 65.9 87.2 70.3 36.8 51.4 

Affected by PEE Brown2 (N) 23 2 1 0 7 0 2 3 38 

Affected isolates (%) 88.4 66.6 100.0 0.0 100.0 0.0 100.0 75.0 89.2 

% of Disruption 94.4 52.2 81.3 0.0 91.5 0.0 100.0 100.0 92.0 

Affected by PEE Brown3 (N) 16 2 1 1 6 1 2 3 32 

Affected isolates (%) 61.5 66.6 100.0 100.0 85.7 100.0 100.0 75.0 73.6 

% of Disruption 40.9 81.4 75.9 29.1 71.0 62.4 84.3 45.6 53.6 

Affected by PEE Brown4 (N) 17 1 0 0 3 1 1 1 24 

Affected isolates (%) 65.3 33.3 0.0 0.0 42.8 100.0 50.0 25.0 60.3 

% of Disruption 84.1 100.0 0.0 0.0 100.0 100.0 73.6 95.9 87.5 

Affected by PEE Brown5 (N) 14 1 1 0 7 0 2 3 28 

Affected isolates (%) 53.8 33.3 100.0 0.0 100.0 0.0 100.0 75.0 71.8 

% of Disruption 52.7 43.2 97.7 0.0 98.2 0.0 98.9 64.0 69.8 

Affected by PEE Brown6 (N) 14 1 1 0 7 0 2 4 29 

Affected isolates (%) 53.8 33.3 100.0 0.0 100.0 0.0 100.0 100.0 75.4 

% of Disruption 70.8 41.3 99.8 0.0 99.1 0.0 100.0 91.5 82.5 

Affected by PEE Brown7 (N) 20 2 1 1 6 0 2 4 36 

Affected isolates (%) 76.9 66.6 100.0 100.0 85.7 0.0 100.0 100.0 82.9 

% of Disruption 88.3 69.2 100.0 76.8 92.5 0.0 100.0 87.4 88.5 
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Figure 6.3.  PEE effect on biofilm formation and on established biofilms: number of isolates affected 

by each PEE.  

  

 4. Discussion  

Nine PEE showed ability to prevent biofilm formation and all the tested PEE revealed 

biofilm disruption aptitude. It should be noted that the concentration of PEE used in these 

trials was half the minimum bactericidal concentration for each bacterial isolate. The 

dosage of PEE to be used in clinical situations should be at least the MBC, therefore twice 

the amount used here, hence the antibiofilm activity should be better than the one here 

presented.  

The need to control biofilm associated with mammary infection seems to be of 

major importance. As revised by Melchior et al. (30) several researchers have shown that 

bacteria growing in a biofilm can become 10 to 1000 times more resistant to 

antimicrobials than planktonic growing bacteria of the same strain. Concerning the 

pathology of the mammary gland, although some authors refer that the in vitro biofilm-

forming ability of a given strain was not related to its clinical origin, considering cows with 

persistent and non-persistent intramammary infection (39), others mention that S. aureus 

strains persisting in the bovine mammary gland through the dry period produced 

significantly more biofilm in vitro than strains that do not persist after calving (33). 

Furthermore, mice inoculated with a bovine mastitis strong biofilm forming S. aureus 
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isolate produced marked acute mastitis lesions while the damage was significantly less 

severe in mammary glands of mice infected with a weak biofilm-forming S. aureus strain 

(40). Results from a study on staphylococci causing subclinical mastitis in sheep confirmed 

the significance of slime producing strains in the aetiology of this affection, with 80.4% of 

all cases of staphylococcal subclinical mastitis caused by slime producing strains (26).   

A key aspect to keep in mind is to ensure that the PEE has antimicrobial activity. 

Since an action on the disassemble of biofilm without the concomitant bacterial inhibition 

would be responsible for the release of living bacteria that would colonise additional body 

parts (34). All ten PEE are bactericidal in appropriate concentrations (see Chapter 

“Antimicrobial action of propolis extracts against staphylococci” in this book).  

Other studies have shown that propolis extracts were able to inhibit Pseudomonas 

aeruginosa biofilm formation (41) and stated an inhibitory effect of propolis extracts on 

biofilm formation by Streptococcus mutans (42) with some propolis components 

displaying a potent inhibition of glucosyltransferase activity, which is an enzyme that 

catalyses the formation of biofilm (43). Biofilm formation ability by Staphylococcus 

epidermidis strains in the presence of PEE was significantly inhibited by incubation time 

and was observed after 12 and 24 hours of incubation (3).  

Furthermore, some investigators showed quorum sensing inhibitory activity of 

distinct propolis samples (9,44). Quorum sensing is the phenomenon through which 

bacteria, within a biofilm, use signalling molecules, autoinducers, that when accumulate 

to a threshold concentration activate a transcriptional regulator, which in turn regulates 

the expression of various genes, including virulence factors and thus is one of the essential 

factors that regulate bacterial virulence and pathogenicity (45,46). This plays an 

important role in biofilm development, resistance, and virulence. Therefore, the 

interruption of QS can be an effective strategy to control disease-causing pathogens.  

Biofilm formation is accompanied by significant genetic and subsequent 

physiological changes in the microorganisms resulting in a loss of sensitivity to virtually all 

classes of antibiotics (30). As mostly studied in S. aureus and to some degree in S. 

epidermidis, quorum sensing is achieved by activating the accessory gene regulator (agr) 

that results in the production of a regulatory mRNA molecule termed RNAIII, which 

activates multiple toxin genes (47).  
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Biofilm production ability can greatly hinder conventional antimicrobial therapy 

suggesting the need of alternative control approaches such as the use of propolis. 

According to our results some PEE have antibiofilm activity against small ruminants’ 

mastitis causing Staphylococcus spp. biofilm and might, therefore, be a promising 

approach for disease control either as alternative to antibiotics or in combination with 

antibiotics taking advance of synergistic effect (48).  

Studies to isolate and identify the specific propolis compounds responsible for the 

bioactivity are needed.  
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7. General discussion and future 
perspectives 

 

 

7.1 – General discussion  

7.1.1 – Staphylococcus identification 

With the aim of assessing propolis as an alternative to traditional antimicrobials for 

the control of small ruminant mastitis, we collected milk samples from 70 sheep and 258 

goats with mastitis. Our collection of 137 staphylococci isolates included S. aureus and 13 

CNS species, 12 identified in goats and seven in sheep milk samples. Six Staphylococcus 

species were isolated from both animal species. Staphylococcus caprae, S. warneri, S. 

capitis, S. hominis, S hyicus and S. equorum were found only in goat's milk. S. caprae was 

mostly found in goat's milk, as was reported by other authors (Bergonier and Berthelot, 

2003; Peixoto et al., 2010; Gosselin et al., 2018), despite having also been isolated from 

sheep's milk (Martins et al., 2017). The other species, on the other hand, are commonly 

found in sheep's milk (Zafalon et al., 2018; Vasileiou et al., 2018). An isolate of the species 

S. rostri was found in sheep's milk in this work. As far as we know, this species had only 
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been once isolated from the milk of a sheep with mastitis (Persson et al., 2017). No data 

were found in the literature related to goat's mastitis, S.rostri being more commonly found 

in cow's milk (Jenkins et al., 2019; Wuytack et al., 2020). 

The difference in the number of isolates in the different chapters, as in chapters 4, 5 

and 6, is due to the fact of some isolates had not been sequenced in the year of publication 

of the articles. In chapter 3 there is the correct quantity of all isolates analyzed in this study. 

Biochemical identification with the automated compact system VITEK 2 (bioMérieux, 

F) showed excellent to very good results for most isolates and 16S rRNA gene sequencing 

was only necessary for four isolates. Nevertheless, the presence of coa and nuc genes was 

investigated in all staphylococci isolates, as these are genes frequently assessed to 

differentiate S. aureus from CNS. Our isolates were found to be polymorphic regarding the 

coa gene, showing fragments between 400 and 900 bp in length. Likewise, this gene was 

also amplified from S. aureus of small ruminants and humans isolates with variations from 

300 to 800 bp (Vimercati et al., 2006; Mahmoudi et al., 2017). Soltan Dallal et al. (2016), 

found polymorphism between 500 and 1000 bp of S. aureus isolated from food samples. 

The coa gene had been reported as polymorphic before and these polymorphisms are 

known to be strain-specific (Soltan Dallal et al., 2016). 

The nuc gene was detected in 48.9% of the analysed staphylococci isolates. All 35 S. 

aureus carried the nuc gene (100%). However, this gene was also detected in 22.6% of CNS. 

Although this gene is often used to identify S.aureus, this is not a reliable technique 

according to our results. These findings agree with those of other authors which detected 

this gene in other species of Staphylococcus, both CPS and CNS (Hirotaki et al., 2011; Silva 

et al., 2003). Moreover, Leeuwen et al. (2008) did not detect it in MRSA. 

The nuc gene is an important virulence factor for bacterial survival (Olson et al., 

2013), as it defeats the host defences (Berends et al., 2010) and it is an indicator of biofilm 

dispersion (Mann et al., 2009). In the present study we found an association between 

Staphylococcus species and the presence of the nuc gene. This gene was detected in more 

than 50% of S. warneri (4/7), S. lentus (3/5), S. auricularis (3/4), and S. hyicus (3/3) isolates. 

This feature may eventually affect the pathogenesis of mastitis due to those pathogens. 
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7.1.2 – Biofilm production and biofilm-associated genes 

To detect whether the isolates were capable of forming biofilm, the polystyrene 

microtiter plates method was used, according to Merino et al. (2009). This is considered 

one of the most effective phenotypic methods (Stiefel et al., 2016; Salina et al., 2020), 

showing a 96.7% agreement with molecular methods (Melo et al., 2012). Of the biofilm-

forming isolates, 59% were S aureus and 41% CNS. Ebrahimi et al. (2014) also found a higher 

percentage of phenotypic biofilm formation to S. aureus than CNS in sheep isolates. 

Considering biofilm as a relevant virulence factor for mastitis, our studies disclosed 

an association between mammary gland inflammatory intensity and biofilm formation. 

However, no association was found between this feature and bacterial susceptibility to PEE 

(Chapter 4). Other authors  have mentioned S. aureus ability to produce biofilm as a 

virulence factor affecting mastitis pathogenesis (Felipe et al., 2017). 

Regarding biofilm associated genes, the bap gene was only present in CNS, while icaA 

and icaD genes were mainly detected in S. aureus. Other studies showed that the bap gene 

is more often detected in CNS species than CPS (Salaberry et al., 2015; Martins et al., 2017). 

In the present study the isolates carrying the bap gene did not harbour the ica operon 

genes. Likewise, Szweda et al. (2012) reported no isolate carrying both the bap and ica 

operon genes. However, in bovine mastitis, 56% of CPS harboured icaA, icaD and bap genes 

together, unlike CNS (Salina et al., 2020).  

Some isolates studied, including S. aureus and CNS, did not evidence any of the three 

biofilm-associated genes. The same absence of bap, icaA and icaD genes in biofilm-

producing S. aureus was reported (Khoramian et al., 2015; Vitale et al., 2019; Torres et al., 

2019). The nuc gene was detected in 53.4% biofilm-producing isolates, while in only about 

35% of the non-producers, although we did not find any association between the presence 

of this gene and biofilm production. We might wonder about the role of the Nuc 

thermonuclease in staphylococci biofilm formation. Nevertheless Mann et al. (2009) 

suggested its role as a promoter of biofilm dispersal. Investigating biofilm formation 

mechanisms in strains that do not harbour bap or ica genes is important to have a better 

understanding of the resources used by bacteria in the production of this virulence factor. 
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7.1.3 – Antimicrobial susceptibility and resistance genes 

The detection of staphylococci susceptibility profile to antimicrobials available for 

mastitis control was evaluated. Some staphylococci isolates were multidrug resistant. This 

constitutes a potential risk for consumers (Omoshaba et al., 2020). Antimicrobials 

resistance acquired by staphylococci is a reality, as well as its transfer to human microbiota. 

In addition, these microorganisms can reach the human population through a variety of 

routes, including though food of animal origin (Kuile et al., 2016). Staphylococcus isolated 

from bovine milk samples, carrying the mecA gene and phenotypic resistant were 

transmitted to humans (Lee, 2003). BlaZ gene was found in Staphylococcus isolated from 

goat cheese (Aragão et al., 2019), as well as mecA gene was detected in Staphylococcus 

isolated from Kurd cheeses samples (Hachiya et al., 2017). 

Non-susceptibility of the isolates to β-lactam antimicrobials was mostly observed. 

Other studies describe less efficacy of these antimicrobials over the years (Virdis et al., 

2010; França et al., 2012; Santos et al., 2020), highlighting the possibility of resistance 

acquisition by this genus. The resistance is individual and develops through mutations and 

rearrangements in the staphylococcal genome or also through the acquisition of resistance 

determinants. The increased antibiotic pressure, together with genetic variants, 

contributes to this virulence factor (Vasileiou et al., 2019). Accordingly, blaZ was the 

antimicrobial resistance gene mostly detected in this work. Some of these isolates showed 

susceptibility to some or all β-lactam antimicrobial analysed, however one must be aware 

that caring the blaZ gene demands to consider the isolate resistant to all penicillins and 

semi-synthetic penicillins. Similar results were found by Ferreira et al. (2017). The most 

reliable way to detect if the isolate produces β-lactamase is through the detection of blaZ 

gene (Pitkälä et al., 2007). In the present study some penicillin-susceptible isolates 

harboured the blaZ gene. Some Staphylococcus may present this gene and not show 

resistance phenotypically (CLSI, 2016). El Feghaly et al. (2012) also stated that commonly 

used phenotypic sensitivity methods may not be reliable. 

The presence of the mecA and mecC genes was not confirmed in isolates non-

susceptible to oxacillin. Although in most studies all mecA-positive isolates showed oxacillin 

resistance (Obaidat et al., 2017), some reports mention oxacillin-resistant isolates not 

carrying the mecA gene Shah et al. (2017). Other resistance mechanisms are possible, as 
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the presence of the recently described mecB gene (Becker et al., 2018) or overproduction 

of β-lactamase, modified penicillin-binding proteins, distinct SCCmec elements, as well as 

putative mecA mutations (Xu et al., 2008; Paterson et al., 2014). 

Curiously, mecA-positive S. aureus showing susceptibility to oxacillin, which were 

classified as oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) was 

mentioned by Pu et al. (2014). Goering et al. (2019), demonstrated that oxacillin 

susceptibility was associated with mutations in the mecA gene and that subinhibitory 

exposure of the isolate to oxacillin restored its resistance. 

Regarding tetracycline resistance, the few S. aureus isolates assessed harboured 

either the tetK or the tetM gene. However, conclusions cannot be drawn due to the few 

samples genotypically analysed. Liu et al. (2017), observed correlations between S. aureus 

resistant phenotypes and genotypes for tetracycline. In the present study one CNS isolate 

phenotypically resistant to this antimicrobial did no carry either tetK or tetM gene. Other 

authors reported non-susceptible S. intermedius not carrying tetK, tetL, tetM, and tetO 

genes (El-Razik et al., 2017). However, Mama et al. (2019), found these genes in 

tetracycline-resistant CNS. 

Gentamicin and cefazolin inhibited the growth of all tested isolates. Gentamicin is an 

aminoglycoside, generally used for Gram negative bacteria, however it showed an excellent 

performance against different species of Staphylococcus in this study. Other authors 

reported very good results with staphylococci isolates from buffalo, goat and sheep 

mastitis (Santos et al., 2020). Cefazolin is a first generation cephalosporin, although it is not 

reserved for human use, such as those of third and higher generations, it should not be a 

molecule of first choice. Kumari et al. (2020) referred 10% of cefazoline-resistant S. aureus. 

 

7.1.4 – Antimicrobial and antibiofilm activity of Propolis 

Seven propolis batches from Brazil and three from Portugal were used to produce 

propolis ethanol extracts, which were characterized by UPLC-QTOF MSE. We used UPLC-

Photo Diode Array (PDA) to detect phenolic profile and UPLC-QTOF-MS / MS to identify 

different compounds. As expected, diverse PEE showed differences in composition. This is 

due to the vegetable biodiversity (Tolêdo et al., 2011) found in each country, also resulting 
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in the propolis differences colour. The variety of individual compounds found allowed to 

separate the PEE into 6 groups in this work, green (Group I), red (Group II) and brown 

(Group III, IV from Brazil and Group V and VI from Portugal). Flavonoids (chalcones, 

flavanones, flavanonols, flavones, flavonols, isodhydroflavones, isoflavans), non-flavonoid 

phenolics and triterpenes were the constituents identified. 

Green propolis is known, in different countries, for diverse activities due to its 

peculiar components (Machado et al., 2012; Szliszka et al., 2012; Chen et al., 2018). All 

Green PEE individual components were exclusive, in this study. This may be due to the 

components of its main botanical source, Asteraceae Baccharis dracunculifolia (Park et al., 

2002), which were also found in this PEE. 

Red coloured propolis is found in several states from Brazil, but its constituents are 

not always the same as those found in its probable botanical source Dalbergia 

ecastophyllum, according to López et al. (2013). The constituents found in this vegetable 

by Silva et al. (2007), in the same Brazilian state, differ from those detected in this study as 

well as from other supposed sources Schinus terebinthifolius (Kassem et al., 2004) and 

Rhizophora mangle (Kandil et al., 2004). The compounds detected in our Red PEE possibly 

come from sources not yet known. 

Substantial differences were found in different groups of Brown PEE. The of group III 

had a greater number of constituents and showed none in common with group IV, which 

had fewer compounds. This may be due to the biodiversity found in Brazil. On the other 

hand, groups V and VI PEE, produced with propolis from Portugal, showed three similar 

components (pinobanksin, chrysin and acacetin). Interestingly, no work was found 

mentioning these three compounds in the botanical source indicated here by beekeepers 

as the vegetable sources surrounding the apiaries. However, pinobanksin and chrysin are 

found in species of the genus Pinus (Nisula, 2018), a plant commonly found in Portugal 

(Ratola et al., 2010), which may be the main botanical source of these components. 

Regarding the antimicrobial activity, all 10 PEE showed actions against the analysed 

staphylococci. Green and red PEE inhibited most bacteria at a concentration of 3.34 mg/mL. 

Similar results were also found for MRSA and MSSA by Veiga et al. (2017) and Bueno-Silva 

et al. (2017) for the same types and sources of PEE, respectively. 
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Among the Brown coloured PEE, Brown7 (PT) inhibited the isolates in the lowest 

concentrations (0.026 mg/mL), whereas PEE Brown4 (BR) was not inhibitory or only in 

much higher concentrations. Brown7 propolis was harvested in the South of Portugal and 

the PEE contains the flavonoids pinobanksin, chrysin, acacetin, apigenin, pinocembrin and 

kaempferol-dimethyl-ether in its composition. According to Falcão et al. (2013), the 

propolis from this region are rich in kaempferol derivatives similar to Cistus ladanifer 

exudates, a shrub commonly found in the Mediterranean area. Velikova et al. (2000) also 

found pinobanksin, chrysin and pinocembrin in propolis samples from Mediterranean 

region and these showed better action on bacteria than on fungi. Kasote et al. (2015) 

referred pinobanksin, detected in South African propolis, active against Gram-positive 

bacteria. 

Pinobanksin derivatives are components presents in propolis that keeps the hive free 

from intruders (Alotaibi et al., 2019). This bioflavonoid was also detected in group V (PT) 

and II (BR) PEE, which showed antimicrobial activities similar to Brown7. Castaldo and 

Capasso (2002) believe that pinobanksin is one of the main propolis compounds with 

antimicrobial properties, in addition to pinocembrin and galangin. Boisard et al. (2015), on 

the other hand, observed antimicrobial effect against MRSA and MSSA due to the 

synergism of some French propolis compounds, including pinobanksin. 

Concerning antibiofilm activity, Brown2, from Brazil, showed to inhibit biofilm 

formation with the lowest PEE concentration. Regarding Brown4 PEE, chapter4 and 

chapter6 denote slight discrepancies in results because chapter6 shows percentage 

averages and chapter4 shows results of statistical analyses. 

Brown4 PEE did not show any inhibitory effect on the biofilm formation, but 

presented compounds similar to Brown3, mostly triterpenes derivates. Silva et al., (2019) 

refers that triterpenes and some derivatives show antibiofilm activity against S. aureus and 

S. epidermidis, stating that the ideal antibiofilm compound must lack antimicrobial activity. 

In the present study, the presence of triterpenes negatively influences the antimicrobial 

activity, however Catteau et al. (2018) summarizes the activity of some triterpenoid 

derivatives as anti-staphylococcal and as modifiers of resistance agents when combined 

with antibiotics. 
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Brown7 (PT) inhibited biofilm formation even though significantly different from the 

PEE that showed the best action. This PEE components act more in growth inhibition of the 

of the bacteria than in the antibiofilm action, however it showed the two activities. Meto 

et al. (2020), also found the antimicrobial and antibiofilm actions, only for Gram-negative 

bacteria, of a sample of propolis from Albania containing several components similar to 

those found in Brown7, such as pinocembrin, apigenin, chrysin and pinobanksin. 

Regarding the PEE disruption of the formed biofilm, Brown2 (BR) and Brown7 (PT) 

showed the best results, although not owning common components.  

In our study, all flavonoids, detected in any PEE, positively influenced bactericidal 

activity, however some (apigenin, pinocembrin and kaempferol-dimethyl-ether) did not 

influence the inhibition of biofilm formation, while others (pinobanksin, chrysin, acacetin) 

contributed to decreased biofilm inhibition. Apigenin, pinocembrin and kaempferol-

dimethyl-ether, on the other hand, increased the disruption of the formed biofilm and 

pinobanksin, chrysin, acacetin did not influence either actions. Thus, suggesting that the 

antibiofilm action is given to the synergy of several compounds. 

We confirm that each PEE can have different components and that it is probably their 

synergy that causes the two activities antimicrobial and antibiofilm, as generally each 

component is not able to achieve both activities.  

With this work we demonstrated the antimicrobial and antibiofilm activity of PEE 

against Staphylococcus spp., showing a promising contribution for the control of mastitis in 

goats and sheep. The use of PEE, in replace or combined with antimicrobials, may help to 

decrease the selection pressure for resistant and multi-resistant staphylococci while 

fighting small ruminant mastitis. 

 

7.2 – Perspectives for future studies 

Finding antimicrobials to control mastitis is a challenge difficult to overcome. Bacteria 

are able to acquire antimicrobial resistance genes at every opportunity. Natural alternative 

products with antimicrobial and antibiofilm activity such as propolis may be an interesting 

and promising option to consider. 
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The present study has provided useful insights on the potential of propolis against 

mastitis pathogens. The individual antimicrobial and antibiofilm activity against 

staphylococci must be evaluated for the different propolis components. Furthermore, 

more studies to determine the concentration of individual PEE compound are needed to 

better correlate these with the biological activities of propolis. Moreover, propolis extracts 

were found to be efficient bactericides and contribute to biofilm inhibition or destruction 

that may be helpful in the control of mastitis. 

The use of propolis alone or in combination with antimicrobials may be an important 

alternative for the control of small ruminant mastitis, with remarkable advantages for 

public health and contributing to the reduction of antimicrobial residues in the 

environment. These results should however be complemented with in vivo studies.
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