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Abstract—This paper presents a brief overview of a range of applications of stochastic differential equations (SDE) in describing the
growth of wildlife populations living in randomly varying environments and the associated risks of extinction, including profit optimization
issues in the particular case of fish or other populations subjected to harvesting. The same basic ideas apply also to the growth of individual
animals and how to optimize the profit of the farmers that raise such animals.
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Resumen— Este artículo presenta una breve descripción de una gama de aplicaciones de las ecuaciones diferenciales estocásticas (SDE)
para describir el crecimiento de poblaciones de vida silvestre que viven en condiciones ambientales que varían aleatoriamente y los riesgos
asociados de extinción, incluidos los problemas de optimización de ganancias en el caso particular de peces u otras poblaciones sometido
a recolección. Las mismas ideas básicas se aplican también al crecimiento de animales individuales y cómo optimizar las ganancias de los
granjeros que crían tales animales.

Palabras clave— Ecuaciones diferenciales estocásticas, ambientes aleatorios, modelos de crecimiento poblacional, extinción, pesquerías,
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INTRODUCTION

T he growth of a wildlife population over time or the
growth of an individual animal from birth to maturity

are often described by a deterministic growth curve, usually
the solution of an ordinary differential equation (ODE) that
describes the dynamics of the growth process. For example,
if we have Gompertz growth dynamics, the size X(t) of the
population at time t ≥ 0 or of an individual animal at age

t ≥ 0 would be described by the ODE

dX(t)
dt

= rX(t) ln
K

X(t)
,

where K > 0 is the asymptotic size and r > 0 is a speed of
growth parameter, the solution of which is the Gompertz
curve X(t) = K

( x0
K

)exp(−rt), where x0 = X(0) > 0 is the
initial size. Of course, X(t) → K when t → +∞ and K
is called the carrying capacity of the environment in the
population growth literature and it is the size at maturity for
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Figure 1: Time evolution of the population size (measured in
individuals per cm3) of a lab protozoan population (data from

(Gause, 1934)). The solid broken line represents the observed data
and the dashed smooth curve is the estimated Gompertz curve.

Figure 2: Age evolution of the size (in kg) of an individual cow of
the Mertolengo breed (data from (Filipe et al., 2007)). The solid
broken line represents the observed data and the dashed smooth

curve is the estimated Gompertz curve.

an individual animal growth.

However, when we look at the data, what we observe is
not this nice very smooth growth curve but rather a more
irregular curve somewhat fluctuating around it, accompan-
ying the effect of the random fluctuations that occur in
nature on the internal and external environmental conditions.
In Figures 1 and 2 we can see the observed irregular data
for the size (in individuals per cm3) of a lab population of
the protozoan Paramecium caudatum (data from (Gause,
1934)) and for the size (in kg) of a cow of the Mertolengo
breed raised in the Alentejo region of Portugal (data taken
from (Filipe et al., 2007)), respectively, together with the
estimated smooth Gompertz curve that would occur under
constant environmental conditions.

The usual literature on individual animal growth considers
a growth curve (the Gompertz curve or some other function
of age) and uses a regression model in which, typically,
the observed deviations from the curve are assumed to be

independent and identically distributed. That would be quite
appropriate if they were due to measurement errors, which
are negligible with our weighting apparatus. With such a
model, looking at a cow that has now a weight quite below
the growth curve, the prediction for its weight next week
will be the weight given by the growth curve, a miraculous
weight recovery in just a week. The deviations from the
growth curve are, in fact, due to fluctuations in the growth
rate induced by internal and external random environmental
conditions and so, a good prediction for the weight next
week should instead use today’s weight as a starting point
and project it to next week using the growth dynamics given
by the differential equation. But we have to take into account
that the growth rate is not exactly given by the deterministic
differential equation because it keeps suffering the influence
of the environmental conditions, which will introduce some
amount of uncertainty on the prediction.

To take into account the influence of the random envi-
ronmental fluctuations on the growth rate, that influence
should be included in the differential equation that drives the
growth process dynamics, making it a stochastic differential
equation (SDE). The same applies to population growth
dynamics.

There are many other dynamical phenomena in Biology
and in several other different areas of Science and Techno-
logy where the descriptive variable(s) change in time accor-
ding to some rules concerning its rate of change (i.e., its time
derivative), rules that are conveniently described by an ODE.
For simplicity of notation, we consider here the unidimensio-
nal case of a single variable X(t) following the ODE

dX(t)
dt

= F(t,X(t)) or dX(t) = F(t,X(t)) dt,

with initial condition X(0) = X0 (we consider for simplicity
0 as the starting time, but it can be replaced by some other
time t0). The extension to the multidimensional case is
relatively simple, working with the column vector of the
several descriptive variables involved.

Such dynamical phenomena are often influenced by
many other variables not considered in the model, either
for parsimonious reasons due to their less relevant effect or
for the simple reason that they are unknown or impossible
to measure and predict. But such factors have an effect on
the rate of change of X(t). So, it is quite natural to group
that effect in a single temporal variable having a necessarily
random behavior, i.e., a stochastic process, and include it as
an additional term in the equation. So, the original terms in
the equation describe the deterministic dynamics that result
from the variables explicitly considered in the model and the
additional term describes the perturbation caused on such
dynamics by other factors. That is similar to the probabilistic
treatment we use to describe the result of throwing a coin
instead of trying to model the gravity, air resistance and hand
movement forces involved.

Assuming that there are many such perturbating factors
that affect the rate of change of X(t), when grouping their
effect on a single stochastic process the central limit theorem
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would lead to an approximately Gaussian behavior, and so
we assume here that such stochastic process is Gaussian.

Let us look at the integral of such stochastic process, i.e.
the stochastic process of the accumulated perturbations bet-
ween time 0 and time t ≥ 0. It is likely that the effect of the
perturbations acting on a given time interval is approxima-
tely independent of the effect of the perturbations on another
non-overlapping time interval, so we will assume that this
stochastic process, besides being Gaussian, has independent
increments. If the many perturbations have approximately in-
dependent additive effects and occur with a relatively uni-
form frequency, the number of perturbations occurring in a
time interval is approximately proportional to the interval’s
length and so their accumulated effect on that time interval
has a variance also approximately proportional to the length
of the interval. Even if such proportionality is not correct and
the “constant” of proportionality is in fact variable with time
and X(t), we can incorporate such variability in a multiplica-
tive factor G(t,X(t)) that modifies an underlying perturbing
process truly proportional and for which we can choose the
constant of proportionality to be = 1. From all of the above,
and assuming time continuity of the perturbations, we can
assume that the underlying process behind the accumulated
perturbations in the time interval [0, t] is a Wiener process,
the only continuous Gaussian processes with independent in-
crements and variance of the increment over a time interval
exactly proportional to the interval’s length. Since obviously
the accumulated effect of perturbations on the time interval
[0,0] should be = 0 and we can choose the constant of pro-
portionality to be = 1 (so that the increment on a time interval
has variance equal to the length of the interval), we can take
as underlying process the standard Wiener process W (t), also
known in the literature as Brownian motion (since it was used
as a model of the Brownian motion of a particle suspended
in a fluid). The square of the multiplicative factor G2(t,X(t))
should take care of the variance of the perturbations per unit
time and it may be constant or may depend on t and X(t).

In an infinitesimal time interval dt, the effect of the per-
turbations will then be given by the effect of the underlying
perturbations, i.e. the increment dW (t) of the cumulative un-
derlying process on that time interval, multiplied by the mul-
tiplicative factor G(t,X(t)). So, our general initial ODE be-
comes the general stochastic differential equation

dX(t) = F(t,X(t)) dt +G(t,X(t)) dW (t), (1)

with the same initial condition X(0) = X0; since the initial
value X0 may in some cases be unknown, nothing prevents
X0 from being a random variable, as long as it is independent
of the Wiener process W (t).

All this can be generalized to the multidimensional case
(with also multidimensional Wiener processes) and also
to non-continuous underlying processes (processes with
jumps).

The randomness of the perturbations is associated to a
probability space (Ω,F ,P), where Ω can be considered
the set of all possible environmental “states”, from which
an observed state ω ∈ Ω is “chosen by chance” according
to the probability law P, which is defined for the sets of
states belonging to the σ -algebra F . Notice that a state

ω describes a concrete whole history of environmental
conditions over the full time span for which we are using
the SDE. The stochastic process W (t) depends also on
“chance”, i.e. on ω , so W (t) is an abbreviation of W (t,ω).
For a fixed ω , W (t,ω) is a function of time (called a
trajectory, realization or sample path) that describes the
evolution over time of the underlying cumulative effect of
the perturbations between time 0 and time t when the state
of the environment is ω . Different states will in general
have different trajectories. Of course, a solution (when it
exists) of the SDE is also a stochastic process and so, when
we write X(t), that should be taken as an abbreviation of
X(t,ω). When we make predictions about a future fixed time
t, we should remember that they must assume a probabilistic
nature since X(t) = X(t,ω) is a random variable.

One may think that there are always perturbing factors not
explicitly considered in a ODE deterministic model and so
one should always use SDE models to take the uncertainty
they cause in due consideration. Indeed, there are cases
(sometimes even with relatively small G values) where the
results obtained using the SDE model are quantitatively,
and sometimes qualitatively, quite different from the results
obtained using the ODE model with mean values of the
variables or of the parameters, making the ODE models
useless. That is certainly the case in many biological phe-
nomena, in epidemiology, in seismology, in finance (stocks,
futures, options, etc.) or in telecommunications. However,
considering the added complexity of SDE models, it is not
worth using them if the perturbing factors are relatively
irrelevant.

In the next section we give a brief introduction to the
treatment of stochastic differential equations following the
steps of (Braumann, 2018). Of course, the reader interested in
using SDE should follow up using a textbook like, for exam-
ple, (Braumann, 2019), (Arnold, 1974) or (Øksendal, 2003).

Among the many areas of application, we are here just
illustrating some biological applications related to popula-
tion growth and individual animal growth. We start by loo-
king at the modeling of population growth in a randomly var-
ying environment and the associated extinction issues. The
particular case of populations subject to harvesting, like it
is the case in fisheries and forestry, is treated next, focusing
on how to optimize the profit from the harvesting activity.
After that, we deal with individual growth models for farm
animals and some issues on profit optimization for farmers
raising those animals. Finally, we present some conclusions
and suggest further reading on related issues.

BRIEF INTRODUCTION TO STOCHASTIC DIF-
FERENTIAL EQUATIONS

The solution of the SDE (1) with the initial condition
X(0) = X0 is the solution of the corresponding integral equa-
tion

X(t) = X0 +
∫ t

0
F(s,X(s)) ds+

∫ t

0
G(s,X(s)) dW (s). (2)

Please keep in mind that W and X both depend also on ω ,
although we use the common convention of not writing
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that dependence explicitly. But, if we fix the trajectory ω ,
we will only have functions of time and, under sufficient
regularity conditions, the first integral in (2) can be in-
terpreted as an ordinary Riemann integral. However, the
second integral cannot be interpreted as a Riemann-Stieltjes
integral since the integrator W (t) has unbounded variation
for almost all trajectories. For that reason, when we ap-
proximate the second integral (the stochastic integral) by
Riemann-Stieltjes sums for a sequence of tagged partitions
0 = tn,0 < tn,1 < .. . < tn,n−1 < tn,n = t (n = 1,2, . . . ) of the
[0, t] interval with mesh δn = máxk=1,...,n(tn,k − tn,k−1) con-
verging to zero, the limit of such sums depends on the choice
of the tags (i.e. the intermediate points τn,k ∈ [tn,k−1, tn,k])
where the integrand function G(s,X(s)) is computed. Diffe-
rent choices lead to different stochastic integrals.

If, for each subinterval k of the partition, we choose as tag
τn,k = tn,k−1 the initial point of the subinterval, that has the
advantage of being non-anticipative (the present dynamics is
not affected by the future random fluctuations) and we ob-
tain, assuming appropriate regularity conditions, the Itô inte-
gral∫ t

0
G(s,X(s)) dW (s)

= l.i.m.
n→∞

n

∑
k=1

G(tn,k−1,X(tn,k−1))(W (tn,k)−W (tn,k−1)), (3)

where we have used the mean square limit (L2 conver-
gence with respect to ω), represented by l.i.m., of the
Riemann-Stieltjes sums. Under appropriate regularity con-
ditions on G, the Itô integral has excellent probabilistic
properties, like having a null mathematical expectation
E
[∫ t

0 G(s,X(s))dW (s)
]
= 0, having variance equal to∫ t

0 E[G2(s,X(s))]ds and being a martingale as a function of t.
However, it does not follow the ordinary calculus rules and
we need a new calculus, the Itô stochastic calculus, which is
characterized by the following differentiation chain rule:

Itô formula (or Itô theorem). Let h(t,x) be C1,2 (have a
continuous partial derivative in t and first and second or-
der continuous partial derivatives in x), assume F and G sa-
tisfy appropriate regularity conditions, let X(t) be unique so-
lution of the SDE (1) and consider the stochastic process
Y (t) = h(t,X(t)). Its differential, contrary to ordinary cal-
culus rules (based on first order expansions), is based on
the second order expansion in x, dY (t) = ∂h

∂ t dt + ∂h
∂x dX(t)+

1
2

∂ 2h
∂x2 (dX(t))2. Note that the second order term (dX(t))2

would be of lower order than dt in ordinary calculus and, the-
refore, would not appear, but, due to the irregularity of the
trajectories of the Wiener process W (t), this is not true he-
re (note that E

[
(W (t +∆t)−W (t))2 ]= ∆t). Therefore, now

(dX(t))2 = (Fdt +GdW (t))2 = F2(dt)2 + 2FGdtdW (t) +
G2(dW (t))2 = 0+0+G2dt (since the first two terms are of
lower order that dt but the third term is of the same order as
dt). Replacing dX(t) and (dX(t))2 by their expressions and
collecting terms, we obtain the Itô chain rule (with F , G and
h and their derivatives computed at the point (t,X(t))):

dY (t) =
(

∂h
∂ t

+
∂h
∂x

F +
1
2

∂ 2h
∂x2 G2

)
dt +

∂h
∂x

GdW (t). (4)

There are other stochastic integrals corresponding to other
(anticipative) choices or combinations of choices of the tag
points used in the Riemann-Stieltjes sums. The most popular
of them is the Stratonovich integral

(S)
∫ t

0
G(s,X(s)) dW (s)

= l.i.m.
n→∞

n

∑
k=1

G
(

tn,k−1,
X(tn,k−1)+X(tn,k)

2

)
(W (tn,k)−W (tn,k−1)).

(5)

Since this expression contains a trajectory smoothing, the
Stratonovich integral follows the ordinary rules of calculus,
but in general lacks the nice probabilistic properties of
the Itô integral. Also, for the same functions F and G,
the solution of the Stratonovich SDE (i.e. the solution of
the SDE one obtains by using Stratonovich integrals) is in
general different from the Itô SDE solution. Using (3) and
(5), it is easy to show that the Itô SDE dX = Fdt +GdW
is equivalent to (has the same solution as) the Stratonovich
SDE (S) dX = F∗dt +GdW with F∗ = F− 1

2 G ∂G
∂x .

Whether one uses Itô calculus or Stratanovich (ordinary
rule) calculus, existence and uniqueness of the correspon-
ding SDE requires some regularity conditions on F and
G and, with appropriate conditions, the solution is even a
Markov process and a diffusion process, satisfying therefore
the Kolmogorov equations. In the particular case of auto-
nomous SDE, i.e., when F(t,x) ≡ F(x) and G(t,x) ≡ G(x),
the solution is even a homogeneous diffusion process. For
these issues, the reader can consult, for instance (Braumann,
2019).

The two calculi, Itô or Stratonovich, can give apparently
different results, leading even to qualitative different con-
clusions. For example, in population growth models in
a random environment, one calculus may predict, under
certain conditions, the extinction of the population with
probability one, while the other, under apparently the same
conditions, may predict a zero probability of population
extinction. Therefore, there has been some controversy in the
literature on applications concerning which calculus is more
appropriate to certain type of applications. Illustrating with
population growth models (with and without harvesting), the
controversy is solved in (Braumann, 2007a,b,c) by showing
that the apparent discrepancy in results is due to the incorrect
implicit assumption that F(t,x) (“average” population
growth rate) has the same meaning under both calculi. That
is not true since F always represents the arithmetic average
when one uses Itô calculus but (except when the function
G does not depend on x) it usually represents a different
average under the Stratonovich calculus; in the illustrative
models, it represented the geometric average when Stratono-
vich calculus was used. When one attends to the difference
between the averages represented by F in the two calculi,
the results of the two calculi completely coincide. The moral
of the story is that one can use either calculus indifferently
but should be careful when choosing the expression of F ; it
should be the correct expression for the arithmetic mean of
the rate of change if one uses Itô calculus and it should be the
correct expression for the appropriate mean (the geometric
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mean in the illustrative models) of the rate of change if one
uses Stratonovich calculus. More on that can be seen on
(Braumann, 2019). Here we will use Itô calculus.

Let us now focus on Itô unidimensional autonomous SDE
models

dX(t) = F(X(t)) dt +G(X(t)) dW (t), (6)

with known initial condition X(0) = x0 and with functions
F(x) and G(x) of class C1. It can be proved that the solution
exists and is unique up to a possible explosion time and, if we
can show that the probability of explosion is zero, then, with
probability one, the solution exists and is unique for all t ≥ 0
and is a homogeneous diffusion process with drift coefficient
a(x) = F(x) and diffusion coefficient b(x) = G2(x) (so the
process satisfies the Kolmogorov equations). If the state spa-
ce, i.e. the space where X(t) takes values, has boundaries r1
and r2 with−∞≤ r1 < r2 ≤+∞ and G(x)> 0 for x ∈]r1,r2[,
we can define, for x ∈]r1,r2[, the scale density s(x) and the
speed density m(x) given by

s(x) = exp
(
−
∫ x

z

2a(u)
b(u)

du
)

m(x) =
1

b(x)m(x)
, (7)

where z is a fixed but arbitrarily chosen point in the interior of
the state space. A necessary and sufficient condition for the
boundary r1 to be non-attractive is that

∫ c1
r1

s(x)dx =+∞ for
some c1 ∈]r1,r2[ (it is enough to check for one such c1, be-
cause, if its true for some c1, it is true for all). Similarly, the
boundary r2 is non-attractive iff

∫ r2
c2

s(x)dx = +∞ for some
c2 ∈]r1,r2[. When both boundaries are non-attractive, whe-
never the process approaches a boundary, it is pushed away
towards the interior of the state space and so it is possible
that the transient probability distribution of X(t) may reach
a stochastic equilibrium as t → +∞ in the sense of conver-
ging in distribution to a stationary distribution. If so, the pdf
of such distribution is called the stationary density p(x) and
is a time-invariant solution of the forward Kolmogorov equa-
tion. Indeed, it can be proved that, if both boundaries are non-
attractive and the speed density is integrable, then the process
is ergodic and such stochastic equilibrium occurs and has a
stationary density given by

p(x) =
m(x)∫ r2

r1
m(z)dz

(r1 < x < r2). (8)

More details can be seen, for example, in (Braumann, 2019).

POPULATION GROWTH AND EXTINCTION IN
RANDOMLY VARYING ENVIRONMENTS

Let X(t) be the size (number of individuals, biomass,
density) of a wildlife population (of animals, plants or
bacteria) at time t with known initial size X(0) = x0. In the
deterministic case, the contribution of an individual to the
growth of the population is given by the per capita growth
rate (abbreviately, growth rate, difference between the birth
rate and the death rate) R = dX(t)/dt

X(t) , which expression may
depend on the time t and the population size x at that time,

i.e. R = R(t,x). So, we have the deterministic ODE model
dX(t)/dt

X(t) = R(t,X(t)) or dX(t)
X(t) = R(t,X(t))dt.

Assuming from now on a stable environment, we can
assume an R = R(x) and obtain the autonomous ODE
dX(t)
X(t) = R(X(t))dt. The function R may be constant if resour-

ces are unlimited but, since usually the available resources
are limited, the amount of resources available per individual
(per capita) tends to decrease when the population size x
increases and, therefore, R(x) should be a strictly decreasing
function. Several models satisfying this property have been
proposed like the logistic R(x) = r(1−x/K) or the Gompertz
R(x) = r ln(K/x) (considered at the beginning of this paper),
in which r > 0 is a speed of growth parameter and K > 0
is the carrying capacity of the environment, i.e. the stable
equilibrium size towards which the population size X(t)
converges when t→+∞.

If the environment has random fluctuations that affect the
per capita growth rate, their cumulative effect in a time inter-
val [0, t] can be described by an underlying standard Wiener
process W (t) multiplied by an intensity factor σ(x) ≥ 0. So
we obtain the general SDE population growth model

dX(t)
X(t)

= R(X(t)) dt +σ(X(t)) dW (t)

or, written in the traditional format,

dX(t) = R(X(t)) X(t) dt +σ(X(t)) X(t) dW (t). (9)

We will assume the initial population size X(0) = x0 known.
Many specific models, i.e. models with specific forms of the
functions R(x) (logistic, Gompertz, generalized logistic, etc.)
and σ(x) (constant or proportional to R(x)), have been pro-
posed in the literature, starting with the pioneering works of
(Levins, 1969; May, 1973; Capocelli and Ricciardi, 1974;
Goel and Richter-Dyn, 1974; Kiester and Barakat, 1974;
Tuckwell, 1974; Roughgarden, 1975).

Let us illustrate (see (Braumann, 2008)) with the Gom-
pertz SDE model R(x) = r ln(K/x) with constant noise in-
tensity σ(x)≡ σ > 0:

dX(t) = r
(

ln
K

X(t)

)
X(t) dt +σX(t) dW (t) (10)

with known initial condition X(0) = x0 > 0. Let us make the
change of variable Y (t) = ln(X(t)/K) and use Itô formula to
obtain, after simplifying,

dY (t) =
(
−rY (t)+

σ2

2

)
dt +σdW (t).

Another change of variable Z(t) = ertY (t) and Itô formula
lead to

dZ(t) =
σ2

2
ertdt +σertdW (t)

and, by direct integration, to Z(t) = ln x0
K + σ2

2 (ert −1) +
σ
∫ t

0 ersdW (s), from which we get

Y (t)=
(
ln

x0

K

)
e−rt+

σ2

2
(
1−e−rt)+σe−rt

∫ t

0
ersdW (s)

(11)
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X(t)=K
(x0

K

)exp(−rt)
exp
(

σ2

2
(
1−e−rt)+σe−rt

∫ t

0
ersdW(s)

)
.

(12)
When σ = 0, we retrieve the solution X(t) = K

( x0
K

)exp(−rt)

of the deterministic Gompertz curve, but, while in the deter-
ministic case, X(t)→ K as t → +∞ (a stable deterministic
equilibrium population size), this is not happening in the sto-
chastic case. To see that, it is easier to work with Y (t) be-
cause it has a Gaussian distribution with mean

( x0
K

)
e−rt +

σ2

2 (1− e−rt) and variance σ2

2r

(
1− e−2rt

)
. This comes from

(11) and the fact that the stochastic integral
∫ t

0 ersdW (s) is
Gaussian (because the integrand is deterministic) and has va-
riance

∫ t
0 e2rsds= 1

2

(
e2rt −1

)
. Of course, X(t)=K exp(Y (t))

has a lognormal distribution. In this case, Y (t) has a sta-
tionary distribution towards which it converges as t → +∞,
which is Gaussian with mean σ2

2 and variance σ2

2r . The statio-
nary distribution in terms of the X process is lognormal and
its pdf, called stationary density, is therefore

p(x) =
1

x
√

2π
σ2

2r

exp

−
(

ln x
K −

σ2

2

)2

2 σ2

2r

 (x > 0). (13)

So, for the Gompertz model, while in the deterministic
case the population size X(t) settles down for large t at the
deterministic equilibrium K, in the stochastic case the envi-
ronmental fluctuations will keep the population fluctuating
randomly somewhat around K. It is rather a stochastic equili-
brium, where what settles down is not X(t) but its probability
distribution, which settles down to the stationary distribution.

Using the techniques at the end of the previous section
and noting that a(x) = r

(
ln K

x

)
x and b(x) = σ2x2, one can

easily show that the boundaries r1 = 0 and r2 =+∞ are both
non-attractive and that the speed density is integrable. So,
without solving the equation, we could have concluded that
the solution exists and is unique always (because we have
C1 functions and the non-attractiveness of the +∞ boundary
prevents explosions), that “mathematical” extinction of the
population (in the sense of population size converging to
zero) has zero probability of occurring and that there is a
stochastic equilibrium with a stationary density. For large t,
the pdf of the X(t) distribution can be approximated by the
stationary density.

This observation is particularly important since, like
for ODE, we are often unable to determine the explicit
solution of an SDE model. We can also, like in ODE, use
numerical methods. In the SDE case, we recur to Monte
Carlo techniques (taking advantage of the Markov property)
to simulate trajectories. That technique, or the numerical
solution of the forward Kolmogorov equation, can be used
to approximate the transient probability distribution of X(t)
when t is not large enough to use the stationary distribution
as an approximation.

The specific models considered in the literature are
certainly useful. However, one would like to have model
robust properties that do not depend on the specific model
considered but rather on the biological properties and so it
is better to use general functions R(x) and σ(x) (defined

for x ∈]0,+∞[) satisfying only assumptions dictated by
biological considerations and mild technical assumptions.
From now on, we use the general model (9) and assume R(x)
to be of class C1, strictly decreasing, with limit R(+∞) < 0
(since, due to limited resources, a very large population must
have a negative growth rate) and with lı́mx→0+ R(x)x = 0
(closed to immigration). We assume σ(x) > 0 and of class
C1. In (Braumann, 1999), using the techniques described
at the end of last Section, we studied the properties of this
general SDE model (also in the case of harvested popula-
tions) for the particular case of constant σ(x) ≡ σ > 0 and
in (Braumann, 2002, 2008) we have extended to general C1

functions σ(x) > 0 satisfying an additional mild technical
assumption (which all bounded functions automatically
satisfy). Now the drift coefficient is a(x) = R(x)x and the
diffusion coefficient is b(x) = σ2(x)x2.

We have shown first that the solution exists and is unique.
Notice that the per capita growth rate is affected by the
random environmental fluctuations and so we should look
at some appropriate average. What matters for the fate
of the population in terms of “mathematical” extinction
is its average in the limit when population size → 0+,
when the population grows at the fastest rate per capita
since resource limitations have almost no effect. But, being
growth a multiplicative process, we should not look at the
arithmetic average R(0+) (implied in the Itô calculus we
are using here), but rather to the geometric average given
by R(0+)− σ2(0+)

2 . If this quantity is negative, it means
that even the fastest growth is negative on the appropriate
average and “mathematical” extinction will occur with pro-
bability one. If that quantity is positive, then “mathematical”
extinction has zero probability of occurring, the process is
ergodic and there is a stochastic equilibrium with stationary
density, which we can compute using (7) and (8).

There is always some approximation involved when one
uses continuous state models, like ODE or SDE, for the po-
pulation size X(t). For large populations sizes, having a non-
integer number of individuals is, in relative terms, a negli-
gible error and so we can use these models as excellent ap-
proximations. But that is not the case when the population is
very small, particularly so when we are talking about extin-
ction. We have spoken about “mathematical” extinction (po-
pulation size converging to zero) and, under certain condi-
tions, we saw that it does not happen, but, since the process is
ergodic under those conditions, the solution X(t) of the SDE
will sooner or later take values like 0.4 individuals before co-
ming back to higher numbers. When that happens, although
not “mathematically” extinct, the population is extinct in rea-
listic terms. If we set up a small extinction threshold a with
0 < a < x0 and consider realistic extinction happens when
the population crosses the threshold, then all populations will
become realistically extinct, even those that have a zero pro-
bability of becoming ‘mathematically” extinct.

So, the real issue is not whether realistic extinction will
occur (it will), but rather how long does it take, i.e., we are
interested in the extinction time Ta, the first passage time of
X(t) through the extinction threshold a. We can also study
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Figure 3: Plot of rE[Ta] as a function of z = x0/a for the SDE
Gompertz model (10) and two parameter combinations. Notice that
the vertical axis in the bottom plot is not in the natural scale, so the

mean number of ideal generations to extinction is of the order of
1090. Figure taken from (Carlos and Braumann, 2006).

Tb when b is a high threshold b > x0, as well as Ta,b, the
first passage time through either threshold. Expressions for
the moments and the study of the behavior of the expected
value and the variance of such passage times for these type
of models and its applications can be seen in (Carlos and
Braumann, 2005, 2006; Carlos et al., 2013; Braumann, 2008;
Filipe et al., 2015; Braumann, 2019). As a function of x0, the
mean extinction time is very low when x0 is close to a but, as
x0 increases, it rapidly reaches a plateau and becomes almost
insensitive to the initial population size. Depending on the
specific models and parameters, that plateau can range from
a few generations to times far larger than the age of the
universe. For the SDE Gompertz model (10), Fig. 3 plots
rE[Ta] (expected value of Ta measured in number of “ideal”
generations, since 1/r is a proxy of generation time) as a
function of z = x0/a (so values of z close to one correspond
to x0 close to a) for two parameter combinations.

Some populations, however, are subjected to Allee effects
(see (Allee et al., 1949)), in which small population sizes,
instead of having the highest per capita growth rates as
would be expected since resource limitations barely affect
them, have on the contrary depressed growth rates. That
may be due to individuals having difficulty in finding
mating partners (being few they might be very dispersed
geographically) or requiring a minimum population size
to mount an effective group defense from predators or, the
other way around, requiring a minimum size to effectively

group hunt their prey. With Allee effects, R(x) will only be
strictly decreasing due to resource limitations for population
sizes above a certain threshold size L but, for sizes lower
than L, Allee effects will prevail and R(x) will be an
increasing function (since Allee effects will become weaker,
and so the growth rate less depressed, as the population size
increases). Specific models were studied, for instance, by
(Dennis, 2002; Engen et al., 2003). The study of Allee effect
models with a general R(x) function was held in (Carlos and
Braumann, 2017).

HARVESTING AND HARVESTING OPTIMIZA-
TION

If the population (say a population of fish, but it could be
a population of trees or of wild birds) is being harvested, we
can use the general model

dX(t)=
(
R(X(t))−qE(t,X(t)

)
X(t) dt+σ(X(t))X(t) dW (t),

(14)
where qE(t,x) is, at time t when the population has size x,
the additional per capita mortality rate of the population
caused by the harvesting activity. It is assumed proportional
to the harvesting effort E(t,x) ≥ 0 (measured, in the case
of fishing effort, by the number of fishing vessels adjusted
by their efficiency and fraction of time they are in use). The
constant of proportionality q > 0 is called the catchability in
the fishing literature. Now, the arithmetic average of the per
capita growth rate is the arithmetic average of the net growth
rate R(x)− qE(t,x), the difference between the arithmetic
average natural growth rate R(x) and the additional mortality
rate qE(t,x) caused by fishing. The amount of fish caught
per unit time is H(t,x) = qE(t,x)x and is called the yield in
the harvesting literature.

The pioneer works (Beddington and May, 1977; Gleit,
1978; May, 1973; Braumann, 1985) were on specific models
assuming specific functions R(x) and σ(x). They also
assumed the fishing efforts to depend only on the size of the
population, i.e. E(t,X(t)) ≡ E(X(t)), so that the SDE (14)
would become autonomous and we could determine con-
ditions on the effort to avoid “mathematical” extinction of
the fish population and to allow for a stochastic equilibrium
with a stationarity density.

The study of general autonomous models with arbitrary
R(x) and σ(x) satisfying the assumptions mentioned in the
previous Section and arbitrary C1 autonomous effort E(x)
can be seen in (Braumann, 1999) for the case of constant
noise intensity σ ) and in (Braumann, 2002) for the most
general case. The conclusions are similar to the general
SDE population growth models, except that now one should
use, instead of the natural growth rate of the population, its
net growth rate (natural growth rate minus the additional
mortality rate caused by fishing).

If, for vanishing population sizes, the geometric average
net growth rate R(0+) − σ2(0+)

2 − qE(0+) is negative,
“mathematical extinction” of the population will occur with
probability one. That happens if we are overfishing, i.e. if,
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when the population size is small, the fishing effort E(0+) is
so high that the additional mortality rate caused by fishing
qE(0+) exceeds the geometric average natural growth rate

R(0+)− σ2(0+)
2 .

If we are not overfishing, i.e. if the geometric average net
growth rate at small population sizes is positive, “mathema-
tical” extinction has zero probability of occurring and the
process is ergodic with a stochastic equilibrium and a statio-
nary density p(x) (pdf of the limiting probability distribution
as t → +∞). Let X(+∞) denote the equilibrium random
variable having pdf p(x). One can then study the effect at
the stochastic equilibrium of the fishing effort E(x) on the
expected yield E[H(+∞,X(+∞))] =

∫ +∞

0 qE(x)x p(x)dx
or on the expected profit. Usually, one takes a sim-
ple profit structure in which the profit per unit time is
Π(t,x) = p1H(t,x) − c0 − c1E(x) (where p1 > 0 is the
unit price, for example the price per kg, at which the
fish is sold, c0 ≥ 0 are the fixed costs and c1 > 0 is the
cost per unit effort) and looks at E[Π(+∞,X(+∞))] =∫ +∞

0 (p1qE(x)x− c0− c1E(x)) p(x)dx.

Another approach tries to keep adjusting the effort E(t,x)
over time according to the evolution of the population size
in order to maximize the overall expected profit (with a
discount rate δ > 0 that takes care of depreciation costs
such as the cost of opportunity of the investment) over some
time horizon [0,T ] (where T can be finite or infinite). So, it
tries to optimize E

[∫ T
0 e−δ tΠ(t,X(t)) dt

]
, called the present

value, not caring if the optimal policy leads or not to the
extinction of the population. We can cite pioneering works
of (Lungu and Øksendal, 1997; Alvarez and Shepp, 1997;
Alvarez, 2000).

One of the techniques, considering that we can control
the effort E(t,x) and so can use it as a control, is based
on stochastic optimal control theory and the use of the
Hamilton-Jacobi-Bellman (HJB) equation. In (Brites and
Braumann, 2017) and (Brites and Braumann, 2019b) that
technique was used, together with Monte Carlo simulations
of the SDE and a Crank-Nicholson discretization of the
HJB equation, for the case of constant noise intensity
σ(x) ≡ σ and a more complex profit struture Π(t,x) =
(p1− p2H(t,x))H(t,x)− c0 − (c1 + c2E(t,x))E(t,x) (with
p2 ≥ 0 and c2 > 0). Those papers consider the application to
specific real fisheries using, respectively, the logistic model
R(x) = r

(
1− x

K

)
and the Gompertz model R(x) = r ln

(K
x

)
.

The growth parameters r and K and the cost and price pa-
rameters of those specific fisheries came from (Hanson and
Ryan, 1998) and (Kar and Chakraborty, 2011), respectively.

In those papers, one can see in the optimal variable effort
policy (the one obtained from stochastic optimal control
theory that maximizes the present value, i.e. the expected
discounted profit over a time horizon) a serious applicability
problem not found when using optimal control theory in de-
terministic models. Namely, the optimal effort E∗(t,x) keeps
changing all the time accompanying the random fluctuations
of population size induced by the effect of environmental
fluctuation on the natural growth rate. Those changes include

frequent periods with zero or low effort (where the fishery
stops or has very little activity) and periods of fishing at
the highest possible effort. Therefore, since in practice it
is operationally not possible to keep changing the fishing
effort all the time and so abruptly, this optimal fishing policy
is not applicable. Also, in the periods of no or low fishing,
fishermen unemployment occurs, with the corresponding
social problems (or hidden unemployment compensation
costs not taken into account in the used profit structure).
Furthermore, at every time, we need to know the population
size of fish since we need it to compute the optimal fishing
effort to apply at that time. But estimating the population
size cannot be done all the time because it is a difficult and
costly process (another hidden cost not contemplated in the
profit structure); also, the estimates are innaccurate, so we
may compute an innaccurate value for the fishing effort to
apply.

In those papers, it was also determined what would
happen if one applies a constant effort fishing policy with
E(t,x) ≡ E. This is operationally extremely easy to apply
because the fishing effort is the same all the time and does
not change with the changes in the population size. So, there
are no periods of zero or low effort and so there are no social
problems or hidden costs. There is also no need to estimate
the population size all the time since it is not required
in the computation of the effort. We chose the optimal
sustainable effort, i.e. the value E∗∗ of the constant effort E
that maximizes the expected profit at the stochastic equili-
brium E[Π(+∞,X(+∞))] =

∫ +∞

0
(
(p1 − p2 qEx) qEx− c0

− (c1 + c2E) E
)

p(x)dx, which can be easily obtained.
Then we compare this sustainable policy with the previous
optimal variable effort policy in terms of their present
values in a T = 50 years horizon. Of course, the previous
optimal variable effort policy, if it could be applied in
practice, would maximize the present value and so it gives
a better present value than the optimal sustainable policy.
The question is: how worse is the present value of the
sustainable constant effort policy (which is easily applicable
and free of social problems) compared to the present value
of the (inapplicable) optimal variable effort policy? It is only
4,1% worse for the logistic model and 1,5% worse for the
Gompertz model! For lack of information, those papers did
not take into account the hidden costs of the inapplicable
policy, but it is possible that, if they did, it might turn out
that the sustainable constant effort policy would be better
even in terms of profit.

Fig. 4, taken from (Brites and Braumann, 2017), shows
the comparison for the logistic model of the two policies in
terms of population size, effort and profit per unit time dyna-
mics. The thin lines correspond to one simulated trajectory
chosen at random and correspond to what the fishermen will
typically experience (maybe they will experience a different
trajectory but with a similar typical behavior). The solid li-
nes are the average over 1000 simulated trajectories, which
is a good approximation of the expected values. Looking at
the effort, one can see the problems with the optimal variable
effort policy. Looking at the profit per unit time, although the
optimal effort policy has usually a better expected value (as
seen looking at the solid lines), if we look at the thin lines
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to see what the fishermen will typically experience, it is ob-
vious that the profit is very unsteady over time in the optimal
variable effort policy. On the contrary, although not having a
constant profit (even though the effort is constant, the popu-
lation size fluctuates and so does the profit), one can see that
the constant effort policy provides a much steadier profit.

Other fishing policies, somewhere in between the constant
effort and the optimal variable effort, could be used to try
to improve the profit in comparison with the constant effort
policies while attenuating the problems of the optimal varia-
ble effort policy we have mentioned. Their study can be seen
in (Brites and Braumann, 2019a,b,c). The treatment of fish
populations having Allee effects can be seen in (Brites and
Braumann, 2020).

INDIVIDUAL ANIMAL GROWTH MODELS IN
RANDOM ENVIRONMENTS

In the Introduction we have mentioned that the traditional
use of regression models based on growth curves to study
the individual growth of animals (or, for that matter, of
plants, particularly trees) is inappropriate because it ignores
the dynamics of the growth process and the influence on the
growth rate of random variations in internal and external
environmental conditions. We have even given as example
of a typical deterministic growth curve used in the literature,
the Gompertz curve and showed on Fig. 2 that the observed
evolution of the size of a cow indicates the existence of
such fluctuations. The Gompertz growth curve in fact results
from growth dynamics governed by a Gompertz ODE model
dX(t)

dt = rX(t) ln K
X(t) , where X(t) is the size of the animal,

K > 0 is the size at maturity and r > 0 is a parameter that
characterizes the speed of approach to maturity. So, if one
takes into account the effect of random fluctuations, one
should use an SDE model. This was proposed by (Garcia,
1983) and applied to the growth of trees.

But the Gompertz curve is just one of the several determi-
nistic models proposed in the literature for individual growth.
However, as also shown in (Garcia, 1983), the classical most
used deterministic growth curves can be described as the re-
sult of growth dynamics driven by a common ODE model
dY (t)

dt = r(A−Y (t)) with r > 0, where Y (t) is not the actual
size of the individual at age t but rather a modified size by
some strictly increasing C1 function h, i.e. Y (t) = h(X(t)),
where X(t) is the actual size. When h(x) = x we get the mo-
nomolecular growth curve, when h(x) = xc (c > 0) we get
the Bertalanffy-Richards curve, when h(x) = lnx we get the
Gompertz curve (which can be considered a limiting case
of the Bertalanffy-Richards curve when c→ 0+), and when
h(x) = −1/x we get the logistic curve. Of course, the mo-
dified size at maturity is A = h(K), where K > 0 is the ac-
tual size at maturity. Then, one can consider also a common
SDE model that takes into account the effect of environmen-
tal fluctuations on the growth process, namely

dY (t) = r(A−Y (t)) dt +σ dW (t) (t ≥ t0,Y (t0) = y0),
(15)

where σ > 0 measures the intensity of the effect on Y of the
environmental fluctuations, t0 is the age of the initial (assu-

med known) size observation X(t0) = x0 and y0 = h(x0). The
solution of (15) is, for t > t0,

Y (t) = A+e−r(t−t0)(y0−A)+σe−r(t−t0)
∫ t

t0
ersdW (s). (16)

Notice that Y (t) is Gaussian with mean A+ e−r(t−t0)(y0−A)

and variance σ2

2r

(
1− e−2r(t−t0)

)
. Likewise, since Y (t) is a

homogeneous diffusion process, the transition distribution
between two ages s and t > s (both ≥ t0), given the value of
Y (s) = ys, is also Gaussian with mean A+ e−r(t−s)(ys−A)

and variance σ2

2r

(
1− e−2r(t−s)

)
. The stationary distribution

of Y , obtained by letting t→+∞, is also Gaussian with mean
A and variance σ2

2r . Of, course, using the transformation
h, one can easily obtain from the transient, transition and
stationary distributions of the Y process the corresponding
distributions of the actual size process X .

Modifications of this model have been proposed. We
might have two (or more) growth phases (as may happen in
cows before and after weaning due to different food diets)
with two different growth parameters, r1 for ages t ≤ u
and r2 for t > u; these biphasic models were studied in
(Filipe et al., 2012). It is also possible that, due to genetic
differences for instance, different animals have different
parameter values, say different maturity sizes K; so, when
we study a certain animal breed, we may need to take that
into account and assume, for example that the modified
maturity size A varies randomly among the individual
animals of the breed, with a Gaussian distribution. These
are mixed models that have been studied and applied to the
Mertolengo breed of cows (data provided by the producer’s
association ACBM, Associação de Criadores de Bovinos
Mertolengos) in (Braumann et al., 2009).

For the applications, one needs to deal with statistical
issues of estimation, model choice and prediction, which
pose more complex issues for modified models (like the
biphasic or the mixed models), but can be easily handled
for the basic model (15) if we have (as we do) a reasonable
number and age range of observed sizes for many different
animals (Filipe et al., 2010; Braumann et al., 2009). We
may assume different animals correspond to independent
realizations of the stochastic process so that the likelihood
function of the observations is just the product of the like-
lihoods of the individual animals. By the Markov property
of the Y process, the likelihood function for one animal
is just the product of the transition densities between the
consecutive observations made on that animal, and such
transition densities are, as we have seen, Gaussian. So, one
easily obtains the likelihood function and can maximize it to
obtain the maximum likelihood estimates of the parameters
r, A and σ ; their approximate confidence intervals can be
obtained by the traditional method, using the inverse of the
empirical Fisher information matrix. For example, from
the data on 16201 bovine Mertolengo males provided by
ACBM and using the Gompertz model, the 95% confidence
intervals were 630.1±6.4 kg for K = eA, 1.422±0.012 per
year for r and 0.340± 0.002 per year1/2 for σ , as can be
seen in (Filipe, 2018).
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Figure 4: On the left is the optimal variable effort policy and on the right the optimal sustainable constant effort policy. Thin lines
correspond to one randomly chosen simulated trajectory (representing what fishermen typically experience) and solid lines to the average

of a 1000 simulated trajectories (an approximation of the expected values). The Figure is taken from Brites and Braumann (2017) and
shows, using the application of an SDE logistic model with fishing, the evolution with time (in years) of the population size (on top, in

kg), of the fishing effort (in the middle, in standardized fishing units) and of the profit per unit time (at the bottom, in US dollars per year).

If we have enough data and no assumptions on the growth
dynamics, we may wish to use a general model dY (t) =
f (Y (t))dt +σ(Y (t))dW (t) and estimate the drift coefficient
f (y) and the diffusion coefficient σ2(y) by nonparametric
methods; this was done in (Filipe et al., 2010), where it tur-
ned out that the estimated coefficients were relatively close
to the coefficients of the Gompertz model and also of the
Bertalanffy-Richards model with c = 1/3, so that this speci-
fic models were somewhat “validated” as reasonable models.
Actually, comparisons of several specific models using AIC
show that these two models have the best performances.

Prediction issues were discussed in (Filipe et al., 2013).

In (Filipe et al., 2015), a farmer optimization issue was
studied. Suppose a farmer buys an animal having weight x0
at age t0 (usually right after weaning) in order to raise (fi-
nishing phase) and sell it to the meat market at a later age
t > t0 with weight X(t) yet unknown. In the process, the far-
mer makes a profit Π(t) = p1X(t)− c0− c1(t − t0), where
p1 is the selling price per kg of live weight, c0 are the fixed
costs (like, for example, the price the farmer paid for the ani-
mal at age t0, transportation costs, veterinary costs, certain
licenses and taxes) and c1 are the variable costs per unit time
of raising the animal (such as feeding and handling costs).
The paper shows how to determine the optimal selling age
t in order to maximize the expected profit E[Π(t)] and ap-
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plies the results to the Mertolengo breed using information
on typical costs and market meat prices. Instead of choosing
a fixed age t (preferably the optimal one) to sell the animal,
one could alternatively choose a fixed weight M and sell the
animal when it reaches that weight (irrespective of its age).
To choose the optimal M, one needs to maximize the expec-
ted profit E[P(M)] where P(M)= p1M−c0−c1(TM−t0) and
TM is the first age at which the animal reaches the weight M.
That problem was also solved in (Filipe et al., 2015) using the
study made on first passage times TM in (Carlos et al., 2013).
Curiously, this second approach turns out to give a slightly
better average profit that the first approach, but it has the in-
convenience of having to keep weighting the animal until it
reaches the target optimal weight.

CONCLUSIONS

We have given a general birds eye view on how to model
the growth of a wildlife population living in a randomly
varying environment by using stochastic differential equa-
tions, and use the models to study important issues such
as the risk of extinction. Since we are dealing with similar
models, the paper also presents the modeling of the growth
of individual animals (or plants like trees). These models
have many important applications, for which we gave two
examples concerning profit optimization in fisheries and in
animal production farming.

Many other biological applications could be given, in
ecosystems management, in epidemiology, in physiology,
in medical applications, in demography and in many
other areas traditionally handled by ordinary differential
equation models but for which random fluctuations in
non-directly modelled internal and external environmental
factors do require a stochastic differential equation approach.

On the technical side, here we have just treated unidi-
mensional models where the “underlying environmental
noise” can be handled (in its cumulative form over time)
by a Wiener process, which is characterized by the conti-
nuity of its trajectories and by its independent increments.
There are, however, extensions to multidimensional models
(for instance, if we have to consider different interacting
populations). There are also extensions to “noises” with
jumps or with correlated increments, although for most
practical applications, the approach taken here of using a
Wiener process approximation, besides being much simpler,
is sufficiently accurate.

Also the statistical issues were just briefly mentioned and
only for an ideal situation in which we can explicitly obtain
the likelihood function, which involves the exact knowledge
of the transition densities. But, in most cases, one cannot
solve explicitly the SDE and needs to use approximate
expressions for the transition densities or recur to Monte
Carlo simulation techniques, issues that are out of the scope
of this paper.

Of course, in order to give the reader a flavor on SDE,
we have also given here a quick and dirty introduction to its
theory, but, for those interested in pursuing work on mode-

ling with SDE, we recommend further consolidating reading,
like, for example, (Braumann, 2019), (Arnold, 1974) or
(Øksendal, 2003). The reading of a few papers from the ones
recommended in the References or others in application sub-
jects that might interest the reader will be also recommended.

I am sure the reader understands that my main purpose
is not to give a comprehensive treatment, nor that would be
feasible in a short dissemination paper. Rather, the aim is to
introduce the subject, using mostly material that I have wor-
ked with, to give a rough idea of its usefulness and potential
range of applications to the reader not yet acquainted with
it. If this managed to attract a few readers to the subject and
maybe drive some to develop further ideas and new areas of
application, all the better.
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