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Simple Summary: Hibiscus sabdariffa (HS) calyxes are widely used as nutraceutical supplements in
humans; however, stalks, leaves, and seeds are considered as agriculture by-products. Including HS
by-products in animal feeding could reduce economic costs and environmental problems, and due to
their bioactive compounds, could even improve the quality of meat and milk. However, although
HS antioxidants have not been tested enough in ruminants, comparison with other by-products rich
in polyphenols allows for hypothesizing on the potential effects of including HS by-products and
calyxes in nutrition, animal performance, and meat and milk quality. Antioxidants of HS might affect
ruminal fiber degradability, fermentation patterns, fatty acids biohydrogenation (BH), and reduce
the methane emissions. After antioxidants cross into the bloodstream and deposit into ruminants’
milk and meat, they increase the quality of fatty acids, the antioxidant activity, and the shelf-life
stability of dairy products and meat, which leads to positive effects in consumers” health. In other
animals, the specific anthocyanins of HS have improved blood pressure, which leads to positive
clinical and chemicals effects, and those could affect some productive variables in ruminants. The HS
by-products rich in polyphenols and anthocyanins can improve fatty acid quality and reduce the
oxidative effects on the color, odor, and flavor of milk products and meat.

Abstract: The objective was to review the potential effects of adding anthocyanin delphinidin-3-O-
sambubioside (DOS) and cyanidin-3-O-sambubioside (COS) of HS in animal diets. One hundred
and four scientific articles published before 2021 in clinics, pharmacology, nutrition, and animal
production were included. The grains/concentrate, metabolic exigency, and caloric stress contribute
to increasing the reactive oxygen species (ROS). COS and DOS have antioxidant, antibacterial,
antiviral, and anthelmintic activities. In the rumen, anthocyanin might obtain interactions and/or

synergisms with substrates, microorganisms, and enzymes which could affect the fiber degradability
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and decrease potential methane (CHy) emissions; since anthocyanin interferes with ruminal fatty
acids biohydrogenation (BH), they can increase the n-3 and n-6 polyunsaturated fatty acids (PUFA),
linoleic acid (LA), and conjugated linoleic acid (CLA) in milk and meat, as well as improving their
quality. Anthocyanins reduce plasma oxidation and can be deposited in milk and meat, increasing
antioxidant activities. Therefore, the reduction of the oxidation of fats and proteins improves shelf-
life. Although studies in ruminants are required, COS and DOS act as inhibitors of the angiotensin-
converting enzyme (ACEi) and rennin expression, regulating the homeostatic control and possibly
the milk yield and body weight. By-products of HS contain polyphenols as calyces with positive
effects on the average daily gain and fat meat quality.

Keywords: anthocyanins; cyanidin-3-O-sambubioside; delphinidin-3-O-sambubioside;
Hibiscus sabdariffa L.; fat milk and meat quality; milk and meat production; ruminant nutrition

1. Introduction

Hibiscus sabdariffa L. (HS) is a type of shrub of Malvaceae family from India [1,2],
adapted to spring-summer and subtropical or tropical environments (Aw/As—Koppen
climate classification) [2—4]. In Mexico, HS production has increased 10.54% from 2003 to
2018 [5,6] of shrubs of the Malvaceae family from India [1,2], adapted to spring-summer
and subtropical or tropical environments (Aw/As—Koppen climate classification) [2—4].

According to FAO [7], the HS calyxes are one of the most demanded products by
industry for human feeding [8,9]. Due to fatty acids, HS contents and proportions [10,11],
antioxidants [12-14], antimicrobial (Gramm negative bacteria) [15], antiviral [16], and
anthelmintic properties [17], might lead to improvements in human health [12,18,19].

Calyxes of HS contain 15.76-0.04% of a linoleic fatty acid (n-3) [10,11] and flavonoids
classified as anthocyanins [20]. Factors such as the HS type variety, crop management,
processing, storage, extraction of extracts, and cell contents affect the antioxidant con-
tents [21-23]. However, the highest proportions of HS flavonoids are the anthocyanins
cyanidid-3-O-sambubioside (COS) (25.9 to 46.2%) and delphinidin-3-O-sambubioside
(DOS) (48.4 to 59.2%) [13,15,23,24], whose clinical effects on humans are different from
other kinds of flavonoids supplements such as green teas (Camelia sinensis), which mainly
contain epigalocathechin-3-gallate (EGCG), epigallocatechin (EGC), epicahechin-3-gallate
(ECG), and epicatechin (EC) [25].

The leaves, stalks, and seeds of HS, as well as other agro-industrial residues, can be
used to feed livestock and reduce environmental impact and production costs. Moreover,
their phytochemicals such as polyphenols and vitamins could improve the meat and milk
quality as well as their shelf-life stability [17,26,27].

Overall, polyphenols and other kinds of antioxidants such as selenium and a-tocopherol
reduce the free radicals and chelate pro-oxidant metals [9,14,28-30] and can affect the ruminal
digestibility and fermentation kinetics [31-33], as well as in animal productive behavior [33],
reducing the effects of the oxidative stress in ruminants [34-36] caused by the high grain and
concentrate proportions on diets [25,37,38], the metabolic exigency, and the heat stress [38],
and therefore also improve the oxide-reductive potential of products derived for human
feed [39].

The objective of the present study was to conduct a critical review about the potential
effects of HS anthocyanins, COS and DOS, on ruminant diets, meat and milk quality, and
their shelf-life stability.

2. Hibiscus sabdariffa L. By-Products

Figure 1 summarizes how the agricultural wastes and by-products of HS such as
seeds, stalks, and leaves can reduce the economic and environmental livestock costs [40,41].
Additionally, optimal inclusion of by-products and wastes of HS in balanced ruminant
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diets should not have negative effects on animal productive behavior [42-45] but rather
improve the meat and milk quality.

Hibiscus sabdariffa L. ,
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o ~ i
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Figure 1. Overall economic, environmental, and productive effects of including Hibsicus sabdariffa L. calyxes and by-products

in ruminant diets.

The phenolic and antioxidant activities of HS seeds have been previously assayed,
and results were similar or better than those in calyxes [46]. However, the comparison of
the potential effects of seeds with calyxes should be assayed in ruminal liquid, including
a test to interpret the ruminal microorganisms, fibrolytic enzymes, with the feedstuff’s
cell walls.

Table 1 shows the chemical composition of HS seeds reported by different authors,
and on average, HS seeds contain: crude protein (CP), 27.9 &+ 10 g/100 g of dry matter
(DM); fat, 18.8 & 8.6 g/100 g DM; crude fiber (CF), 16.8 + 11.1 g/100 DM; and ashes,
5.86 £ 3.2 g/100 DM [43,47].

Table 1. Hibiscus sabdariffa L. chemical composition.

Authors DM CP EE CF Ashes
g/100 g g/100 DM
Fagbrnhro [2] 92.6 394 6.1 17.7 114
Maffo et al. [43] 90.0 22.0 22.0 20.0 6.1
Wang et al. [48] NR NR 18.0 NR NR
Ismail et al. [49] 90.0 33.5 221 18.3 NR
Shaheen and El-Nakhlawy [50] * NR 314 23.2 4.29 5.5
Udayasekhara [51] ** 924 20.6 21.0 41.1 5.4
Beshir and Babikier [52] 96.6 30.3 11.1 5.1 5.6
Jinez et al. [53] 92.5 20.6 18.0 23.7 6.7
Kwari et al. [54] NR 38.6 NR 13.5 NR
Mukhtar [55] 91.8 214 17.4 12.0 53
Soriano y Tejeda [56] 92.7 24.8 17.8 229 1.6
Anhwange et al. [57] 94.0 19.8 28.0 6.3 5.6
Tounkara et al. [58] 91.8 27.3 20.8 NR 4.5

DM, dry matter; CP, crude protein; EE, ether; CF, crude fiber; NR, not reported; * Average from three varieties;
** Average from two varieties.

The CP content of HS seeds is comparable to soybean and canola seeds [59], as
their fatty acids are primarily oleic and linoleic acids (LA) (n-9 and n-6 polyunsaturated
fatty acids (PUFA)) (37.68 £ 1.10% and 34.14 &+ 1.25%); however, calyxes contains similar
contents of LA and more «-linoleic acids than seeds (LA: 34.14% vs. 32.65%, and «-linoleic:



Animals 2021, 11, 2827

4 of 14

1.77% vs. 15.76%, seeds vs. calyxes) (Table 2) [10,58,60], and its DM and CP in situ
degradability had been similar to sunflower and peanut seeds [61].

Table 2. Proportion of fatty acids in Hibiscus sabdariffa L. seeds and calyxes.

Seeds Calyxes
Tounkara et al. [58] Mahmoud et al. [60] Jabeur et al. [11]
Saturated fatty acids (%)
Myristic (C14:0) 0.21 0.26 1.24 +0.01
Palmitic (C16:0) 19.21 20.52 27.73 + 0.02
Stearic (C18:0) 5.13 5.79 446 +0.01
Arachidonic (C20:0) 0.67 1.02 £ 0.05
Polyunsaturated fatty acids (%)

Palmitoleic (C16:1) 0.36 1.32 £ 0.04
Oleic (C18:1) 36.9 38.46 91+01
Linoleic (C18:2) 35.02 33.25 32.65 + 0.07
a-linoleic (C18:3) 1.85 1.69 15.76 + 0.04

3. Oxidative Stress in Ruminants

Inflammatory and environmental processes increase the endogenous reactive oxygen
species (ROS). Unbalance between pro-oxidants and antioxidants might promote oxidative
stress and molecular damage [38].

In dairy cows and beef cattle, the environmental pollution and the high metabolic
exigency during pregnancy, milk production, heat stress, respiratory diseases, inflammatory
process, and parasites promote ROS releasing (O,, OH, RO,, RO, HO,, H,O,, HOCI, O3,
etc.); meanwhile, the adipose mobilization increases the pro-inflammatory cytokines [38].
The potential negative effects on animal wealth would also worsen in the future because of
the population increment and therefore the milk and meat demand [28].

The ROS contribute to inflammatory processes through necroptosis activation (NF-«kf3)
via phosphorylation interleukin (I-«(3) and because of the production of pro-inflammatory
cytokines such as tumoral factors (TNF-«). In addition, protein carbonylation is mediated
by the ROS and metals (Fe?*, Cu*, etc.), producing oxidative by-products and advanced
oxidative protein products (AOPP): (1) carbohydrates and lipids have reactive compounds
to carbonyl from glycoxidation and lipoperoxidation that might bond to protein residues;
(2) oxidized proteins are degraded by proteases, but chemically modified proteins (by di-
tyrosine and disulfide cross linkages) might not be substrates to proteolysis, contributing
to deposits in tissues and organ damages [62-67].

High grain and concentrate proportions in ruminant diets increases lipoperoxidation,
decreasing the x-tocopherol and the ferric reductive availability in blood plasma [22] and
increasing the amount of AOPP, which is negatively related with milk yield because of
the oxide-reductive unbalance. Including high-grain diets and therefore the reduction of
forage proportion rises the abnormal amount and types of metabolites in rumen [38].

In viral, bacterial, and fungal infections, phagocytes and neutrophils are sources of
ROS that interfere in a chain of chemical reactions which increase the hypochlorous oxidant
potential and which might be useful to combat the photogenes, but while also damaging
tissues. Besides this, parasites induce inflammation followed by an increase in eosinophils,
which also contribute to tissue damage. Lactation and heat stress are potential sources
of AOPP and thereby of TNF-« expression and potential mammal glandule diseases,
increasing the milk and meat contents of ROS [68,69].

Oxidized milk and meat contribute to a higher ROS content in blood plasma which
would be a threat to human health [39].

4. Potential Clinic Effects of Antioxidants

Polyphenols are a wide variety of secondary plant metabolites with at least one -OH
that can be structurally simple (egallic and gallic acids) or complex (dimers, oligomeric,
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and polymeric with high molecular weight). Antioxidants can be classified as flavonoids or
non-flavonoids. Thus, flavonoids can be flavones, flavanones, isoflavones, flavonols, flavan-
3-ols; on the other hand, anthocyanins (from flavan-3-ols derived the condensed tannins
(non-hydrolysable)), phenolic acids, hydrolysable tannins, and stilbenes are clustered as
non-flavonoids [17].

Because of the structural differences among complexes, total phenolic compounds
cannot directly be related with total antioxidant availability [21,22]. EGCG, primarily
found in green tea, was found to have a galloyl group in the third position and an o-
trihydroxy in the 3-ring which protects cells from ROS damage [64,70]; by the regulation the
overexpression of genes, EGCG has anti-inflammatory and antioxidant effects in reduction
of apoptosis, cell fibrosis, and tumoral growing via regulation and reduction of kinases,
signal transduction, and transcription activation [66,71]. EGCG can [72]:

(1) Promote the cytotoxicity to increase the antitumoral activities by producing H,O,
with its pyrogallol moiety or the reduction of Fe(Ill) to Fe(Il), generating -OH ROS
(although cysteine N-acetyl protect cells from cytotoxicity of HyO,, it does not avoid
cell death process).

(2) Promote apoptosis through mitochondrial damage, membrane depolarization, and
cytochrome c release, and protects against mitochondrial damage-related cell death
without changes in superoxide dismutase (SOD), glutathione peroxidase, Nrf2, Bcl2,
and oxidative stress. Modulates gene expression by inhibiting various transcription
factors (including Sp1, NF-«B, AP-1, STAT1, STAT3, and FOXO1) and the expres-
sion of NF-kB and AP-1. EGCG inhibits STAT1 to mediate protective effects on
myocardial injury.

(3) Increase second messengers, such as Ca%*, cAMP, and cGMP. EGCG elevates cytosolic
Ca?* without electrical stimulation by inhibition of sarcoplasmic/endoplasmic retic-
ulum Ca2*-ATPase activity (SERCA), which affects the activities of Ca?*-requiring
enzymes, such as calmodulin (CAM)-dependent protein kinase II and CAMKKSf
(CAMKKS is an upstream regulator of AMP-dependent kinase (AMPK), which
plays crucial roles in energy metabolism and cardiovascular functions). If it stim-
ulates vasorelaxation by increasing cAMP and cGMP in the aorta, then it may
stimulate the production of cyclic nucleotides with beneficial biological effects in
cardiovascular physiology.

(4) Inhibit the transcription of FOXO1 to lead to the suppression of basal levels of
endothelin-1 and differentiation of adipocytes. In mitochondria, EGCG enhances
fat utilization, reducing the expression of leptin and stearyl-CoA desaturase while
increasing fat oxidation. Moreover, EGCG regulates activities of cell surface growth
factor receptors, especially receptor tyrosine kinases (RTK), including epidermal
growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR),
insulin-like growth factor receptor (IGFR), and the insulin receptor (InsR).

(5) Inhibit DNA methyltransferase, which reverses methylation-induced gene silencing.

(6) Inhibit autophagy, leading to apoptosis in macrophage cell lines.

Although the extracts of HS also change the oxidative potential of blood plasma,
increasing the glutathione intracellular, its primarily action is on the Renin—Angiotensin—
Aldosterone System (RAS) interfering with electrolytic regulation, blood pressure, and
cardiac function [73], as well as the increasing of adrenalin, catecholamines, and nora-
drenalin (by specifically angiotensin (AngllI)) [74].

Guerrero et al. [75] tested the activity of the Angiotensin Converting Enzyme inhibitor
(ACEi) of 17 different types of flavonoids, and the ACEi increased when: (1) the catechol
group was in the 3-ring (3’, 4’-dihidroxy); (2) there is a double bond between C2 and C3 of
carbon rings; and (3) there is a ketone in the C4 of the carbon ring. The absence of C4 in the
carbonyl group of EGCG reduces the ACEi ability; the DOS and COS chemical structures
have primarily ACEi potential.

Studies including in vivo cells [73] have shown that DOS and COS inhibit 43 to
50% of the ACE (COS and COS vs. control, and 30% less than captopril); furthermore,
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anthocyanins interfered in the RAS reductive process (RT-qPCR mARN of ACE and renin
were analyzed), reducing 37 to 52% of the rARN expression for renin. To test the clinical
effect of anthocyanins of HS, Nurfaradilla et al. [76] blocked the left renal artery of mice
(2KIC hypertension) and treated them with HS extracts (30 mg/200 g BW), captopril, and
captopril+HS mixtures; HS extracts reduced the systolic blood pressure 17% (average 150
vs. 88, and 80, control vs. HS, and captopril). Although captopril and HS reduced the
renin and Angll in plasma, HS reduced the ACE activity (1.5 pumol/mL/min control vs.
0.40 pmol/mL/min HS, vs. 0.30 pmol/mL/min captopril).

Other potential pharmacological properties of HS antioxidants are anti-hypercholesterolemia,
antipyretic, antibacterial, antiviral, and anthelminthic [13,77].

5. Effect of Anthocyanins on Diet Nutritive Value and Productive Behavior
in Ruminants

5.1. Effects on Ruminal Digestibility, Volatile Fatty Acids, and Methane Emission

Antioxidants might maintain their activities in a ruminal environment and reach to the
bowel without major modifications. Anthocyanins can improve the ruminal antioxidant
potential [31,32].

Although some in vitro studies show no differences among ruminal gas produc-
tion [31,32,78], some flavonoids (e.g., tannins) have effects on ruminal microbiota [17,68],
modifying the gas production kinetics and the volatile fatty acids (VFA) proportions,
sometimes improving the acetate: propionate ratio [17,41].

The chemical structure, distribution, and elimination of flavonoids affect the interac-
tion and/or synergism between them and the ruminal microbiota.

Although there are many unknown ruminal interactions among some components
of feedstuffs, microorganisms, and endogenous enzymes, anthocyanins could reduce the
protozoa and microorganisms that may influence the rumen fermentation. However,
feeding animals on residues with a high anthocyanin content as such berries seemed to
have a low effect on fermentation patterns [44]. Some doses of proanthocyanidin may
have a toxic effect (by altering the membranes’ permeability) on Ruminococcus albus and
Peptostreptococcus anaerobius; meanwhile condensed tannins have a direct inhibitory effect
on hemicellulases, endoglucanases, and proteolytic enzymes produced by Fibrobacter
succinogenes, Butyrivibrio fibrisolvens, Ruminobacter amylophilus, and Streptococcus bovis [17].
Therefore, polyphenols have been associated with the reduction of fibrolytic enzymes and
bacteria [17]. Moreover, some non-desirable antioxidant effects are the reduction of the
endogenous fibrolytic enzymes activities and thereby the potential fiber digestibility and
protein absorption [26].

Ruminal bacteria such as Anaerovibrio lipolytica, Butyrivibrio, Clostridium, Popioni-
vacterium, Staphlylococcus, Selenomonas, and Pseudomonas aeruginosa have lipolytic
activity, while Butyrivibrio fibrisolvens, Butyrivibrio hungatei, Clostridium strains, Pro-
pionibacterium, and Eubacterium participate in fatty acids biohydrogenation (BH) [17].
However, polyphenols could alter the ruminal microorganisms [79], altering some steps of
BH. The lipolysis of dietary triglycerides, phospholipids, and glycolipids are sources of
unsaturated fatty acids (UFA) to obtain stearic acid (C18:0) after sequential isomerization
and saturation steps that involve the production of positional and geometrical isomers
(C18:3, C18:2, C18:1 fatty acids). For example, regardless the type of polyphenol, in vitro
studies have shown their negative effects on the growth of B. fibrisolvens that seem to lead
to the accumulation of vaccenic acid and reduction of stearic acid [79]. There is not enough
evidence clarify how specific changes in microbiota affect the BH.

The antioxidant activities of anthocyanin also affect increased desaturase enzymes
activity for converting monounsaturated fatty acid (MUFA) to PUFA or inserting additional
unsaturated bonds into already existing PUFA [17,27]. Studies have suggested that PUFAs
have antimicrobial activities and are toxic to cellulolytic microorganisms by altering the
bacterial cell membranes and the various essential processes that occur within and at
the membrane; therefore, PUFAs can also reduce the microbial colonization with the fed
particles and reduce the rumen digestibility of fiber [30].
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In addition, as with other polyphenols sources, some HS components with high-lignin
contents have low DM digestibility, and therefore, depending on the ruminant species and
doses, the inclusion of by-products rich in polyphenols should not affect the DM intake
or decrease the voluntary feed intake [26]. However, some authors suggest that adding
certain antioxidants might not alter digestibility of DM, organic matter (OM), and neutral
detergent fiber (NDF) [41], or even can reduce oxidative stress and increase the NDF, acid
detergent fiber (ADF), and DM digestibility [40,41,80].

Novel molecular techniques (amplifying 165 rRNA) have shown that some flavonoids
can increase the amount of Bacteroidetes, Firmicutes, and Tenericutes, and reduce the phyla
Proteobacteria, Verrucomicrobia, and Actonobacteria [17].

The antioxidant and antimicrobial activities of HS are also related to the reduction of
methane and N-ammonia (CHs and NH3) caused by the changes of the by-products that
affect the growth of methanogenic microorganisms [68]. Although it is not confirmed, differ-
ent by-products rich in polyphenols (such as grapes, purple corn stover, Paulownia leaves,
and other antioxidants) can affect the microorganisms participating in the production of hy-
drogen such as utilizing hydrogen to produce CH, and therefore reduce it [17,40,41,44,45].
Thus, polyphenols can be associated with reductions of CH, due to: (1) flavonoids indi-
rectly reducing ruminal methanogenesis, acting as H; sinks, (2) reduction of fiber digestion
contributing to lower methane production, and (3) acting through the inhibition of the
growth and activity of methanogens and hydrogen-producing microbes [17].

5.2. Post-Ruminal Effects of Anthocyanins

Some polyphenols are hydrolyzed and transformed through endogenous enzymatic
activities and ruminal bacteria [81]; therefore, the secondary metabolites cross through the
ruminal epithelium and the non-absorbed are bio-converted in the small bowel (as it occurs
in monogastric) [81] and pass to the bloodstream [26,35,82,83] to deposit in tissues [68,82].

Anthocyanins can improve the blood plasma resistance to oxidation [33,84,85]. The
COS and DOS can be deposited in lung, cardiac, renal, and hepatic tissues [69], suggesting
that anthocyanins can improve the potential meat and milk antioxidants. However, im-
prove of ruminal fatty acids biohydrogenation is associated with increased anthocyanins in
animal products to human feed.

Although milk yield and fat have improvements related to anthocyanin addition in
ruminant diets [85], the potential clinical effects of DOS and COS of HS on RAS could
interfere in the homeostatic balance of ruminants and affect milk yield [84]. In mice,
lactation led to upregulation and downregulation of selected RAS [86].

Reports about the potential effects of HS anthocyanins on fertility parameters are
not consistent; however, other sources of polyphenols such as coffee can improve the
semen quality [87] and reduce the fertilization rates even when progesterone, estradiol, and
follicle-stimulating hormone remain constant [60]. In contrast, other types of antioxidants
such as selenium and a-tocopherol might increase some reproductive parameters in dairy
cattle [28]. Therefore, further studies could be focused on the effect of HS anthocyanins on
estrous as well as milk and meat production.

Substituting 75% of total CP with HS seeds might not negatively affect animal perfor-
mance in beef cattle [47]. Previously, the inclusion of <25% of the total DM of sheep diets
with HS seeds increased the final body weight and carcass proportion [88]; however, in
other studies, adding 10-20% of HS seeds improved the organoleptic and quality fatty acid
properties of sheep meat [52].

6. Antioxidants Effect on Milk and Meat Quality as Well as Shelf-Life
6.1. Anthocyanins and Polyphenols in Milk and Meat Fatty Acids Composition

Besides the positive effects of increasing the meat and milk antioxidants on human
welfare, anthocyanins could increase the shelf-life of animal products [42,89,90]. Overall,
polyphenols avoid lipid and protein oxidation (hyper-peroxides, aldehydes, and ketones),
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autolysis, and microbial pollution [29,91-93]. Increasing the long-chain fatty acids (n-3, n-6,
and n-9) in ruminant diets improved the fatty acids composition of milk and meat [94-96].

Although there are not enough studies that analyze the effect of HS on milk fatty
acids, among the literature, consistently including other products rich in polyphenols
and anthocyanins increased the total PUFA, MUFA, and overall improved the milk fat
C18:1, C18:2, cis-9, trans-11, n-3, n6, and concentrations of LA and conjugated linoleic acid
(CLA) [26,41,44,45,79].

The antioxidant activity of milk and dairy products can be enhanced by phytochem-
icals rich in antioxidants [97]. Including by-products rich in polyphenols in dairy cows’
diets can increase the PUFA, lactose, and lactoglobulin in milk and its derived products,
which have been associated with anticarcinogenic effects, and CLA and LA, which are
associated with the reduction of atherogenic and thrombogenic indices [33].

In beef, by-products rich in polyphenols can alter the composition of fatty acids
in meat through the effects of antioxidants on ruminal bacteria and the mechanism of
absorption and transportation of these fatty acids from small intestine to muscle. However,
some levels of antioxidants, primarily polyphenols and anthocyanins in ruminant diets, are
associated with increases in the proportions of n-3 and n-6 PUFA [27]. Indeed, improving
the contents of n-3 and n-6 PUFA in ruminant products have positive effects on human
health, i.e., rumenic acid and LA isomers (cis-9, trans-11), which have demonstrated effects
such as antiatherosclerosis, anticarcinogenic, antidiabetic, and anti-inflammatory activities
in laboratory animals, and anticholesterolemic and anti-atherosclerosis effects in humans.

6.2. Anthocyanins and Polyphenols in Milk and Meat Shelf-Life

Antioxidants change the oxidative balance in dairy products and derivatives. Lipid ox-
idation is the main reason for the chemical spoilage of food and dairy products, decreasing
their nutritional value, flavor, and texture.

Although milk proteins such as 3 and k caseins have shown antioxidant activity,
supplementation with different antioxidants such as vitamin C, tocopherol, vitamin E, zinc,
and selenium can enhance the antioxidant activity of milk [97]. Recent reviews have been
discussing the potential of using by-products of HS comparing their potential effects with
other by-products rich in polyphenols and sources of anthocyanins (such as berries, grapes,
grape pomace, etc.), to improve milk quality and fatty acids composition [26,33,41,44,45,79].
However, antioxidant compounds can also contribute to extending the shelf-life of dairy
products and derivatives, reducing oxidative reactions that contribute to the deterioration
of foods characterized by highly unsaturated lipids, which are extremely susceptible to
oxidation [26], and reducing oxidized flavors in milk [98].

The fatty acid profiles of cheese have been shown to have the same variations as
evidenced in milk. The quality of animal-derived foods is strongly associated with the
characteristics of their lipid fractions [26]. Ianni et al. [33] monitored the extent of the
oxidative damage in fresh and ripened cheeses through the evaluation thiobarbituric acid-
reactive substances (TBARS), using malondialdehyde (MDA) as oxidative marker, and
found that cheese from the milk of cows fed grape pomace did not increase MDA values
30 d after the ripening began, despite their greater contents of PUFAS vs. control (cows
that did not feed on grape pomace) which went through oxidation. Grape pomace also
reduced the concentrations of butanoic and hexanoic acids, associated with flavor changes
and rancidity in both fresh and ripened cheeses. In addition, grape pomace increased
aminobutyric acid (GABA) in cheese at the end of the ripening period that potentially can
reduce the blood pressure, protect against chronic diseases, and improve immunity in
consumers, but is also associated with specific fermentative bacteria (Lactobacillus acidophilus
and Lactobacillus hilgardii) responsible for catalyzing the decarboxylation of I-glutamate
to GABA.

Meat color, flavor, and odor are affected by oxidation which is shown as the conversion
of red color muscle pigment myoglobin to brown metmyoglobin and the development of
rancid odors and flavors [27].
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In addition to the negative impact on meat pigments, odors, and flavors, lipid per-
oxidation causes toxic compounds implicated in several human pathologies, including
aging processes, atherosclerosis, inflammation, and cancer [27]. Lipid oxidation in meat
increases after 4 to 7 days of storage, and shelf-life and quality can be improved by natural
antioxidants in meat by adding antioxidants in animal diets [98].

Protein-carbonyl determines protein oxidation in meat, and it increases during chilled
storage. However, antioxidant and anthocyanin supplementation can slow increases in
protein carbonyl during storage [27]. The HS by-products could have effects on meat lipid
and protein oxidation comparable to other sources of by-products rich in anthocyanins, as
previously studied [27,98-100].

In dairy cows, animals fed antioxidants improve the CLA and cis-9, trans-11 CLA,
associated with the level of fatness. Feeding antioxidants in some stages of meat production
can reduce the microbial growth and lipid oxidation during storage, increasing the shelf-life
and meat quality [99]. Cattle fed other sources of antioxidants such as anthocyanins had
a higher proportion of n-3 PUFA and show greater color stability and lower oxidation of
lipid, protein, and myoglobin than meat from cattle fed with high oxidant diets (such as
a high proportion of grains) [27].

Specifically, cattle fed antioxidants (primarily cyaniding-3-glucoside) had shown a
more stable color depending on the dose of inclusion in diets. Maggiolino et al. [100] fed
Merino lambs with lemon and red oranges rich in anthocyanins, finding that rheological,
colorimetric, and oxidative parameters of Longissimus lumborum muscle sampled for 7 days
were negatively affected by the time, but positively by the dose of anthocyanins supple-
mented. In this study, TBARS and hydroperoxides were also reduced, enhancing meat
oxidative stability and improving the color in meet from lambs fed anthocyanins along the
sampled period.

7. Limitations and Perspectives

The potential relationship among the antioxidant activities of calyxes, seeds, and
stalks anthocyanins of HS with the ruminal microbiota and fibrolytic enzymes remain
unknown. In comparison to the studies included in the present review that evaluated
other polyphenols in the ruminal environment, hypothetically the positive effects of HS
anthocyanins would be the potential reduction of CH, and the fatty acids biohydrogenation
process, but also it could reduce the potential fiber degradability [26,68,101-103].

Since antioxidants have a potential reduction of AOPP which is related with milk yield
improvement, the available information about biochemical and RAS changes promoted by
DOS and COS of HS [75,86] could be considered in further in vivo studies to find inclusion
doses that would improve the composition of the antioxidant and fatty acids as well as
improve milk yield. However, optimal inclusion should avoid potential negative effects on
animal performance and reproductive parameters.

8. Conclusions

Including HS by-products might reduce the environmental and economic cost of
livestock and potentially improve the quality of ruminant’s products. The excess of ROS
unbalances the oxide-reductive potential primarily in ruminants fed. The HS contain
flavonoids primarily classified as anthocyanins (mainly COS and DOS) that show spe-
cific actions on RAS regulation, increasing the ACEi action and reducing the expression
of renin genes that could affect the animal productive behavior. As with other antioxi-
dants, anthocyanins can reduce ruminal methanogens microorganisms and interact with
substrates, fibrolytic microbiota, and enzymes affecting the fiber degradability and the
biohydrogenation of lipids, improving the quality of milk and meat fatty acids composition;
reducing the oxidation; improving the color, flavor, and odor stability; and extending the
shelf-life of products. Changes in fatty acids composition can be beneficial for human
consumers’ health.
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