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One sentence summary: Single-cell ATAC sequencing maps the cell type-specific regulatory potential of 20 

transcription factors and autoimmune disease risk loci. 21 

 22 

Abstract 23 

The germinal center (GC) response is critical for both effective adaptive immunity and establishing 24 

peripheral tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective 25 

immune responses to infection or contribute to autoimmune disease. To understand the gene regulatory 26 

principles underlying the GC response, we generated a single-cell transcriptomic and epigenomic atlas of 27 

the human tonsil, a widely studied and representative lymphoid tissue. We characterize diverse immune 28 

cell subsets and build a trajectory of dynamic gene expression and transcription factor activity during B 29 

cell activation, GC formation, and plasma cell differentiation. We subsequently leverage cell type-specific 30 

transcriptomic and epigenomic maps to interpret potential regulatory impact of genetic variants implicated 31 

in autoimmunity, revealing that many exhibit their greatest regulatory potential in GC-associated cellular 32 

populations. These included gene loci linked with known roles in GC biology (IL21, IL21R, IL4R, BCL6) 33 

and transcription factors regulating B cell differentiation (POU2AF1, HHEX). Together, these analyses 34 

provide a powerful new cell type-resolved resource for the interpretation of cellular and genetic causes 35 

underpinning autoimmune disease.  36 

 37 

Introduction 38 

Autoimmune diseases result from a loss of tolerance to otherwise harmless endogenous or exogenous 39 

antigens, in part as a consequence of dysregulation in the selection, differentiation, or function of immune 40 
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cells. The propensity for such immune cell dysfunction can be potentiated by specific inherited genetic 41 

variants, as identified through genome wide association studies (GWAS). However, the majority of GWAS 42 

genetic variants reside in non-coding regions of the genome, and the identification of risk-associated 43 

genetic variants alone does not identify the cellular populations likely affected by the variant. Recent 44 

progress has been made linking autoimmune-associated genetic variants to immune cell type-specific 45 

gene regulation by examining functional epigenomic measures like chromatin accessibility, histone 46 

acetylation and/or chromatin topology, especially in activated immune cell states of immune subsets (1-47 

3). However, such analysis remains incomplete due to limited mapping of important yet transient 48 

subpopulations of cells that exist in diverse immune organ contexts.  49 

 50 

The development and commitment of different immune cell lineages occurs in primary lymphoid organs 51 

such as the bone marrow and thymus. Following lineage commitment and egress from these organs, 52 

adaptive immune cells can undergo additional maturation and differentiation in secondary lymphoid organs 53 

such as the spleen, lymph nodes and tonsils to generate T cell-mediated immunity and B cell-dependent 54 

antibody responses (4). The latter in particular is predominantly dependent on the formation of the germinal 55 

center (GC) response. This requires MHCII-dependent presentation of antigen-derived peptides by 56 

dendritic cells that can be recognized by naïve CD4+ T cells, leading to their differentiation into T follicular 57 

helper (Tfh) cells. Tfh are vital to support activated B cells to form GC reactions, undergo somatic 58 

hypermutation and affinity maturation of their antibody genes before differentiating into plasma cells or 59 

memory B cells.  60 

 61 

Mechanisms that ensure immune tolerance to self-antigen target autoreactive B cell clones during early 62 

development in the bone marrow (central tolerance) and de novo generation in GC responses in secondary 63 

lymphoid organs (peripheral tolerance). Autoantibodies are a feature of many systemic autoimmune 64 

diseases, and numerous studies have found that autoantibodies can bear somatic hypermutation and 65 

class switch recombination signatures indicative of GC-derived B cell populations (5), pointing to defects 66 

in peripheral tolerance. Because these tissues and GC-associated immune cell populations are directly 67 

involved in establishing both peripheral tolerance and forming effective adaptive immune responses, 68 

mapping the regulatory potential of autoimmune-associated genetic variants in these dynamic populations 69 

will enable the interpretation of how these variants may contribute to autoimmunity.  70 

 71 

Here we apply single-cell transcriptomics (scRNA-seq), surface-protein profiling (scADT-seq), and 72 

epigenomics (scATAC-seq) to map the cellular states and gene regulatory networks of immune cells from 73 

the human tonsil, a model secondary lymphoid organ. By integrating gene expression and chromatin 74 

accessibility across 37 immune cell populations spanning bone marrow, peripheral blood, and tonsils, we 75 
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identify putative target genes of fine-mapped autoimmune-associated genetic variants and reveal 76 

extensive GC-specific regulatory potential, including at loci of major GC regulators such as IL21, 77 

IL21R/IL4R and BCL6, as well as two genes required for MBC fate commitment, POU2AF1 and HHEX. 78 

Our integrative analyses ultimately provide original insights into the cellular and genetic etiology of 79 

autoimmune-associated genetic variants and generate a framework to functionally dissect their potential 80 

in the maintenance of peripheral tolerance and the generation of adaptive immunity. 81 

 82 

Results 83 

Single-cell transcriptomics and epigenomics of a model human secondary lymphoid organ to 84 

define immune cell states. 85 

To map the diverse immune cell states of the adaptive immune response in human secondary lymphoid 86 

organs, and the gene regulatory elements active in these different populations, we performed high 87 

throughput single-cell RNA sequencing (scRNA-seq) coupled with antibody-derived tags (scADT-seq) for 88 

twelve surface protein markers on tonsillar immune cells obtained from pediatric patients undergoing 89 

routine tonsillectomy for obstructive sleep apnea or recurrent tonsillitis (Fig1A-C, S1, Data file S1; n  = 3). 90 

In parallel, we performed single-cell assay for transposase-accessible chromatin using sequencing 91 

(scATAC-seq) (6) to profile active chromatin regulatory elements in tonsillar immune cells (Fig1A-C, S1; 92 

Fig2 for more detailed analysis; n  = 7). We first annotated 9 broad populations based on their surface 93 

protein and RNA levels of known markers (Fig1B) and observed good concurrence between RNA, surface 94 

protein expression, and chromatin accessibility of key marker genes and the frequency of different cell 95 

types (Fig1C, S1-2, Data file S1-2). We observed a relationship between patient age and the relative 96 

frequencies of B cells in our scRNA-seq datasets (FigS3A). CyTOF profiling of pediatric and adult tonsils 97 

revealed significantly fewer GC-specific B and T cell populations in older pediatric donors (>5 years old) 98 

and adults (FigS3B-D), consistent with reduced GC activity in older individuals (7). As the GC is a major 99 

site of many important cell fate decisions during adaptive immune responses, this demonstrates the need 100 

to profile pediatric and/or immunologically relevant (e.g. after vaccination or infection) lymphoid tissue, in 101 

contrast to peripheral blood-derived immune populations or lymphoid tissue from older individuals that lack 102 

these populations.  103 

 104 

We next annotated B or T lymphocyte sub-populations at a higher resolution using our scRNA-seq dataset 105 

(Fig1D-G, S4, Data file S3-4). Within the T cell lineage, we identified naïve and central memory T (Tcm) 106 

cells, cytotoxic lymphocytes (CTL), NK cells, regulatory T cells (Treg) and two populations of Tfh cells, 107 

with one population expressing high levels of CXCL13, CD200 and IL21, likely representing GC Tfh (8) 108 

(Fig1D-E). We also defined clusters with previously identified gene expression markers for many expected 109 
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B cell populations, including naïve, activated, memory, tissue-resident FCRL4+ memory, GC (light zone 110 

and dark zone) B cells, as well as plasmablasts (Fig1F-G) (9). A large population of proliferating B cells 111 

were predominantly dark zone GC B cells, as expected (FigS4C). We also found a small cluster of B cells 112 

expressing markers of type I interferon response genes such as IFI44L, XAF1, and MX1 (Fig1F-G) that 113 

are known to be up-regulated after early stages of vaccination (10) and in patients with autoimmune 114 

diseases like lupus and Sjögren’s syndrome (FigS5) (11-13). Importantly, all cellular populations, including 115 

this rare IFN-responsive state, were identified at consistent frequencies across all patient donors (FigS4D-116 

E), and these annotations broadly agreed with recent single-cell studies of lymphocytes in pediatric tonsils 117 

and adult lymph node (9, 14). 118 

 119 

Mapping chromatin accessibility and transcription factor activity in tonsillar immune subsets. 120 

Our high-resolution annotation of immune cell populations by scRNA-seq (Fig1) allowed us to more 121 

comprehensively annotate our scATAC datasets (Fig2A; see Materials and Methods for details) (15). We 122 

limited our annotations of the chromatin accessibility maps to 14 cell populations to maximize coverage 123 

and representation of cell type-specific peaks in subsequent analyses. We identified naïve, activated, 124 

memory, FCRL4+ memory and GC (light zone and dark zone) B cell subsets, as well as plasmablasts, 125 

Tfh, Treg, naïve, central memory and cytotoxic T cells, and two smaller clusters representing a 126 

combination of monocytes, macrophages and dendritic cells (Fig2A). We found a strong correspondence 127 

between cluster identities and cell type-specific markers used in both scATAC-seq and scRNA-seq 128 

annotation of our datasets (FigS1-2). Cells at different stages of the cell cycle, such as proliferating dark 129 

zone GC B cells, were difficult to distinguish based on their chromatin accessibility profiles, as we and 130 

others have observed few qualitative differences in chromatin accessibility profiles between mitotic and 131 

interphase cells (16, 17). As in our scRNA-seq analysis, most scATAC-seq clusters were identified 132 

reproducibly in all tissue donors (FigS6A-B), although we did observe higher frequencies of activated and 133 

DZ GC B cells in two recurrent tonsillitis patients compared to sleep apnea patients. However, previous 134 

studies, including scRNA-seq analysis, have found no or few differences in the cellular phenotypes of 135 

immune cells between these two patient groups (9, 18). Overall, we provide a comprehensive resource of 136 

cell type-specific gene regulatory elements across 14 tonsillar immune cell populations in this model 137 

secondary lymphoid organ (FigS7A-B, Data file S5-8), including at the immunoglobulin heavy chain locus 138 

(FigS7C-D). We also report putative  peak-to-gene linkages by correlating peak chromatin accessibility 139 

with scRNA-seq expression in our integrated analysis pipeline (see Materials and Methods for details) 140 

(FigS7B, Data file S7-8) (15), which, when paired with cell type-specific accessibility and gene expression, 141 

can provide insights into potential gene regulatory landscapes across these different immune cell 142 

populations. 143 

 144 
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Lymphocyte activation, maturation, and differentiation are underpinned by transcriptional networks 145 

controlled by sequence-specific transcription factors (TFs). To understand the regulatory potential of 146 

different TFs in vivo we correlated the expression of TFs with the chromatin accessibility of their target 147 

motif sequences in B and T lymphocyte populations (Fig2B-D). Specifically, we sought to identify TFs 148 

whose enrichment of their motif sequences in accessible chromatin was significantly and positively 149 

correlated with expression of that TF within a given cell type (as shown for all B cells in Fig2B) as a means 150 

to predict TFs most likely to regulate gene expression in those cells. This successfully identified enrichment 151 

of TFs known to be important for gene regulation in B and T cell subset-specific states, such as PAX5, 152 

EBF1, TCF7 and BATF (Fig2C). Our analysis also revealed shared regulatory TF activities between similar 153 

cell states, such as those active in naïve, activated and memory B cells (KLF2, BCL11A, ELF2, ETV6, 154 

ELK4) or GC B cells (EBF1, REST, POU2F1, PKNOX1) (Fig2C-D). We also found highly cell type-specific 155 

activities, such as for EOMES, IRF1/2 and RUNX1/3 in cytotoxic lymphocytes, and ID3, ASCL2, NFIA and 156 

TCF12 in Tfh cells (Fig2C-D).  157 

 158 

While these analyses of defined cell types and states revealed putative transcriptional regulators specific 159 

to different populations, TFs also play major roles in shaping dynamic cell fate decisions during activation 160 

or differentiation of immune cells. B cell activation and subsequent participation in the GC reaction is 161 

essential for high quality B cell-dependent immune responses, yet the dynamics of different gene 162 

regulatory networks involved in this key process are poorly understood. We therefore performed a 163 

pseudotemporal reconstruction of a single-cell trajectory encompassing B cell activation, the GC reaction 164 

and plasmablast differentiation and identified modules of TF regulatory activity that corresponded with 165 

different stages of this trajectory (Fig2E-F, S7E). Intriguingly, the pseudotemporal ordering of activated B 166 

cells identified two distinct peaks of dynamic TF expression and chromatin accessibility at corresponding 167 

motif sequences before commitment to the GC state (Fig2E-F; Modules 2 and 3). This included early 168 

expression of NFκB family members (Module 2; REL, RELA, NFKB1, NFKB2), which was highly correlated 169 

with chromatin accessibility at their predicted binding sites genome-wide. We identified a NFκB/RELA 170 

binding site predicted to be disrupted by a rheumatoid arthritis (RA)-associated SNP (rs74405933; G→T), 171 

for which chromatin accessibility is strongly correlated with CD83 expression (Fig2G), a key gene involved 172 

in B cell activation and maturation (19). In addition to this initial activation module, we identified a 173 

secondary activation state comprising several poorly understood TFs, including BHLHE40, CEBPE/Z, 174 

ZBTB33, and ZHX1 (Module 3). We also identified dynamic expression and chromatin activity in GC B 175 

cells, including one module that decreases through GC exit and plasma cell differentiation (Module 4; 176 

HNF1B, EBF1, SMAD2, POU2F1, MEF2B) and one module that is maintained or increases during 177 

commitment to the plasma fate (Module 5; NR2F6, FOXO4, JDP2, MSC). In contrast, a transcriptional 178 

regulatory module containing master plasma cell regulators such as IRF4, PRDM1 and XBP1 (Module 6) 179 
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exhibited reduced accessibility at target sites within GC B cells compared to both naïve and plasma 180 

populations, suggesting that these sites may be actively repressed to prevent inappropriate or premature 181 

commitment to the plasma fate during affinity maturation in the GC. Unfortunately, we were not able to 182 

reconstruct a trajectory for the memory B cell fate, perhaps due to the presence of both GC-derived and 183 

extra-follicular sources of memory B cells in tonsil tissue, the proposed stochastic nature of this cell fate 184 

decision (20), or limited number of B cells within our scATAC datasets.  185 

 186 

Integration of secondary lymphoid organ datasets with bone marrow and peripheral blood single-187 

cell transcriptome and epigenome atlases. 188 

Other scRNA-seq analyses have recently demonstrated that tonsils are a transferable model tissue to 189 

study secondary lymphoid organs and adaptive immune responses more generally (9, 14, 21). In contrast 190 

to circulating or bone-marrow resident lymphocyte populations, immune cells within secondary lymphoid 191 

organs exist in a range of activation and maturation states, including GC-associated populations, that may 192 

reflect varied tissue niches, cell-cell communication and cytokine signaling. To examine the potential 193 

relevance of tissue-specific gene expression and chromatin-based regulatory activities, we integrated our 194 

tonsillar scRNA-seq and scATAC-seq datasets with those from publicly available bone marrow and 195 

peripheral blood immune cell atlases (22) to generate an overview of leukopoiesis comprising data for 196 

60,639 and 91,510 high quality cells for scRNA-seq and scATAC-seq respectively (Fig3A, S8-9, Data file 197 

S9-12). As expected, activated B cells, GC-associated lymphocytes (GC B and Tfh cells) and tissue-198 

resident macrophages were strongly enriched in secondary lymphoid organs, while progenitor populations 199 

like common lymphoid progenitors (CLP) and granulocyte-monocyte progenitors (GMP), and circulating 200 

monocytes were enriched in the bone marrow and peripheral blood respectively (Fig3B). In addition to 201 

differences in the frequency of immune cell subsets, we also examined if there might be differences 202 

between circulating or tissue resident B cells. We found significant differences in both the chromatin 203 

accessibility and gene expression of naïve and memory B cells in the tonsil compared to matched 204 

populations in the periphery (Fig3C-D, S10). In particular, chromatin accessibility profiles of tonsillar B 205 

cells were enriched with POU2F2 (also known as OCT2) motif sequences (Fig3E), a TF known to be 206 

important in the regulation of humoral B cell responses (23). These tissue-specific phenotypes likely reflect 207 

differences in cytokine exposure and microenvironment of the tonsil compared to circulating blood and 208 

highlight that it is essential to examine immune cell populations across varied tissue contexts, even for a 209 

single cell type. 210 

 211 

Finally, we examined the cell type-specific expression of nine genes recently identified to be most 212 

commonly mutated within a sporadic primary immunodeficiency cohort (Fig3F) (24). Two genes, 213 

TNFRSF13B and CTLA4 were relatively cell type-specific in their expression pattern. TNFRSF13B 214 
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(encoding TACI) was most highly expressed in memory B cells, particularly tonsillar FCRL4+ memory B 215 

cells. Patients with immunodeficiency and TNFRSF13B mutations have fewer memory B cells expressing 216 

class-switched antibodies, although the mechanisms and penetrance of different coding TNFRSF13B 217 

mutations remain unclear given the prevalence of coding variants in healthy individuals (25, 26). CTLA4 218 

expression peaked in Tfh and Treg populations as expected. In contrast, BTK, LRBA, and the TF genes 219 

STAT1, STAT3, NFKB1, NFKB2 and IZKF1 were broadly expressed across varied subsets. We used our 220 

scATAC-seq data to examine the enrichment of their motif sequences in accessible chromatin to determine 221 

which cell type might be most sensitive to altered activity of these TF genes. This revealed that tonsillar 222 

myeloid cells (labelled here primarily as macrophages) had the highest activity of these immunodeficiency-223 

associated TFs (Fig3F), although we observed enrichment of NFKB2 in activated B cells (Fig2F-G, 3F) 224 

and STAT1/STAT3 in circulating monocyte and T cells (Fig3F). 225 

 226 

Identification of fine-mapped autoimmune GWAS variants in cell type-specific chromatin. 227 

Our integrated scRNA-seq and scATAC-seq atlas of immune cell populations in bone marrow, peripheral 228 

blood and tonsils provided a unique opportunity to understand the regulatory potential and cell type-229 

specificity of autoimmune-associated genetic variants across a broad diversity of immune cell types. By 230 

examining 12,902 statistically fine-mapped SNPs, of which 9,493 were significantly associated with 231 

disorders of the immune system (1, 27), we found that our single-cell accessibility profiles of immune cells 232 

were broadly enriched in immune-related genetic variants compared to non-immune related traits and 233 

background genetic variation (Fig4A, S11A-B). We found specific enrichment of disease-specific genetic 234 

variants in different immune cell lineages or subsets (Fig4B, S11C-D). For example, we found a strong 235 

enrichment of genetic variants associated with Kawasaki disease and systemic lupus erythematosus in 236 

chromatin accessibility maps of the B cell lineage, particularly tonsillar naïve and memory B cells, as well 237 

as enrichment of genetic variants associated with alopecia, autoimmune thyroiditis, systemic sclerosis and 238 

Behçets disease in cytotoxic lymphocyte regulatory elements (Fig4B, S11C-D). In contrast, genetic 239 

variants associated with multiple sclerosis were enriched in both B and T cell-specific chromatin, perhaps 240 

reflecting the multigenic nature and complex etiology of this disease (Fig4B, S11C-D). 241 

 242 

Of the 1213 immune-related SNPs that overlapped with accessible chromatin peaks in our atlas (Data file 243 

S13), many were localized in cell type- or lineage-specific chromatin (Fig4C). Importantly, 342 (28.2%) of 244 

these SNPs fell within accessible chromatin only identified in tonsil-enriched immune subsets (Fig4D), 245 

demonstrating the value of our tonsillar immune cell atlas for interpretation of GWAS genetic variants. We 246 

next predicted the putative gene targets of these genetic variants by using our integrated scRNA-seq and 247 

scATAC-seq to identify highly correlated accessibility at chromatin regions to nearby gene expression (15, 248 

22). This enabled us to examine 358 chromatin accessible regions (containing 460 unique immune-linked 249 
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SNPs) for which we identified significant peak-to-gene linkage correlations (Fig4E). These linkages 250 

revealed cell type-specific patterns of both the chromatin accessibility at autoimmune genetic variants and 251 

correlated expression of putative gene targets, providing a powerful resource to explore the potential 252 

regulatory mechanisms of these genetic variants and their relationship to autoimmune disease. 253 

 254 

Chromatin regulatory activity at immune-associated genetic variants predicts importance of GC 255 

activity in autoimmunity. 256 

Many studies examining the relationship between immune-associated genetic variants and their regulatory 257 

activity with functional genomics methods such as ATAC-seq or ChIP-seq have been limited to studying 258 

peripheral immune cell populations. This limitation is likely significant, given our knowledge that many 259 

lymphocyte maturation and antibody-based selection events occur in secondary lymphoid organs, and that 260 

GC-derived autoantibody production is a feature of many autoimmune diseases. Although we found 261 

examples of genetic variants in cell type-specific chromatin across diverse immune subsets (Fig4E, S12-262 

S13; e.g. GZMB/GZMH, NKX2-3, COTL1/KLHL36, KSR1/LGALS9, TNFRSF1A/LTBR), we observed a 263 

striking enrichment of fine-mapped autoimmune variants in chromatin accessibility regions specific to GC-264 

associated B and T populations, such as GC B cells and Tfh cells (Fig4E), including the IL21, IL21R/IL4R, 265 

BCL6/LPP, CD80, PRAG1, SLC38A9, VAV3/SLC25A24, DLEU1/DLEU1/TRIM13 loci (Fig5-6, S14-S15). 266 

 267 

We identified GC-specific regulatory elements at the IL21 locus and the locus of its receptor IL21R (Fig5A-268 

B, FigS16). Cytokine signaling by IL-21, primarily secreted by Tfh cells, is essential for B cells to form and 269 

participate in normal GC reactions. B cells respond to IL-21 through the IL-21 receptor (IL-21R). We 270 

identified several fine-mapped SNPs at the IL21 locus highly correlated with both chromatin accessibility 271 

and gene expression at the IL21 promoter (Fig5A). These SNPs exhibited Tfh-specific chromatin 272 

accessibility, although one SNP, rs13140464, was also highly accessible in several progenitor populations. 273 

These fine-mapped SNPs at IL21 have been associated with alopecia (1), juvenile idiopathic arthritis or 274 

autoimmunity more generally (27), and some of these same SNPs are also significantly associated with 275 

celiac disease (rs7682241, rs6840978) (28), inflammatory bowel disease (rs7662182) (29), primary 276 

sclerosing cholangitis (rs13140464) (30) and lupus (rs13140464) (31). Conversely, we found two fine-277 

mapped SNPs in strong linkage disequilibrium (rs6498021, rs6498019) located in close proximity to IL21R 278 

in B cell-specific chromatin accessibility regions that have been linked with allergy (1) and/or asthma (32) 279 

(Fig5B, S16). As well as significant correlations with IL21R expression, the chromatin accessibility of these 280 

two SNPs were also highly correlated with the nearby IL4R gene, encoding the IL-4 receptor (IL-4R), 281 

which, similar to IL21R, was most highly expressed in GC B cells and is vital for T cell-dependent 282 

maturation of B cells.  283 

 284 
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Autoimmune risk variants within a GC-specific locus control region. 285 

Our analysis of genetic variants linked with autoimmunity identified a concentration of recently fine-mapped 286 

autoimmune-associated SNPs from the UKBB databank (27) in a GC-specific locus control region (LCR) 287 

(33) located between BCL6 and LPP (Fig5C, S16). Of the genetic variants that fell within accessible 288 

chromatin across this locus, there were associations with celiac disease (rs11709472 (34), rs7628982 289 

(UKBB), rs9834159 (35), rs4686484 (1)), allergy (rs56046601 and rs12639588 (1)), multiple sclerosis 290 

(rs4686953 (formerly rs66756607) (36, 37)), asthma (rs7640550 and rs7628982 (38)) and vitiligo 291 

(rs7628982 (39)). Many of these SNPs were present in chromatin accessible regions specific to GC B or 292 

Tfh cells, in which BCL6, LPP and the long non-coding RNA at the LCR (LINC01991) are most highly 293 

expressed (Fig5C). We report significant correlations in chromatin accessibility between many of these 294 

SNPs (and the LCR in general) with the expression of both BCL6 and LPP, consistent with chromosome 295 

conformation interactions detected in GC B cells between this LCR and the BCL6 promoter (33). 296 

Importantly, deletion of this LCR has been shown in mouse models to lead to defects in GC B cell formation 297 

(33), presumably through its transcriptional regulation of BCL6, one of the master regulatory TFs required 298 

for both GC B cells and Tfh cells. These observations suggest that association of this locus with 299 

autoimmunity is primarily driven through GC B and Tfh defects. However, some genetic variants 300 

(rs142486803, rs76288334, rs78146088) were accessible across many different immune lineages, as well 301 

as rs4686484 that was previously proposed to be located in a B cell-specific enhancer (35), revealing an 302 

additional layer of complexity to this autoimmune regulatory locus. 303 

 304 

Autoimmune risk variants at the loci of transcriptional regulators POU2AF1 and HHEX. 305 

We identified cell type-specific chromatin accessibility at autoimmune risk variants across loci for many 306 

regulatory TFs or transcriptional regulators including POU2AF1, HHEX, ETS1, STAT4, IKZF3, NKX2-3 307 

and IRF8 (Fig6, S12, S17-18), in addition to the GC master regulator BCL6 (Fig5C). Of particular interest 308 

were POU2AF1 and HHEX, which have recently been proposed to control memory B cell fate selection in 309 

the GC (40, 41). POU2AF1, also known as OCT binding factor 1 (OBF1), is a largely B cell-specific 310 

transcriptional coactivator with no intrinsic DNA binding activity that interacts with TFs POU2F1 (OCT1) 311 

and POU2F2 (OCT2). It is indispensable for formation of GCs and GC-dependent B cell maturation (42). 312 

We found two genetic variants associated with primary biliary cirrhosis/cholangitis (PBC) (rs4938541 and 313 

rs4393359 (1, 43)) within B cell-specific accessible chromatin and observed that POU2AF1 expression 314 

peaks in GC B cells  (Fig6A). Our analysis of B cell activation dynamics predicted POU2F1/POU2F2 as 315 

regulators in GC B cells (Fig2) and POU2F2 is more highly expressed in tonsillar B cells compared to 316 

those circulating in peripheral blood (Fig3), suggesting that B cells within lymphoid tissues are likely to be 317 

most sensitive to altered POU2AF1 levels.  318 

 319 
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HHEX has recently been reported to be an essential regulator of the memory B cell fate decision by GC B 320 

cells (41), although its potential mechanistic involvement in autoimmune disease is not known. Our 321 

integrated epigenomic and transcriptomic analyses identified three fine-mapped SNPs at the HHEX locus 322 

that fell within B cell specific-accessible chromatin, were implicated in the regulation of HHEX through 323 

peak-to-gene correlation analysis, and were associated with multiple sclerosis (MS) (rs11187144, 324 

rs4933736, rs10882106) (Fig6B). We also identified correlated peak-to-gene linkages between these 325 

SNPs and neighboring genes KIF11 and EXOC6 (FigS19). We note that rs4933736 falls within a predicted 326 

KLF TF binding site (Fig6B), providing a potential mechanism for disruption of HHEX expression. 327 

 328 

Discussion 329 

Here, we generated paired transcriptome and epigenome atlases of immune cell subsets in the human 330 

tonsil, a model system to study the GC reaction which is a major site for developing adaptive immunity to 331 

respond to infection and establishing peripheral tolerance to prevent autoimmunity. We defined gene 332 

expression and gene regulatory elements across dynamic immune cell states and examined the regulatory 333 

potential of transcription factors in these populations. We subsequently leveraged our single-cell resource 334 

to profile the cell type-specific chromatin accessibility at fine-mapped GWAS variants linked with 335 

autoimmune disorders to reveal that the chromatin of many such variants is most accessible in GC-336 

associated cell types and this accessibility is highly correlated with cell type-specific expression of genes 337 

required for normal cytokine signaling or transcriptional regulation in the GC response. 338 

 339 

Our single-cell transcriptomic analysis identified a rare B cell population that expresses high levels of IFN-340 

induced gene expression (Fig1). Unfortunately, we were unable to identify this rare B cell population in our 341 

scATAC profiling to explore how it may be linked to different autoimmune traits at the chromatin level. One 342 

of the genes most highly expressed by the IFN-responsive B cells was IFI44L. Splice and missense genetic 343 

variants at the IFI44L locus (rs1333973 and rs273259) have previously been linked with neutralizing 344 

antibody titers to the measles vaccine (44), and type I interferon-positive B cells have previously been 345 

implicated in the development of autoreactive B cells (45). Many of the genes uniquely expressed by this 346 

B cell state are also upregulated in the peripheral blood B cells of patients with lupus (FigS5) (13). These 347 

observations suggest this rare and poorly characterized B cell state may be involved in B cell-mediated 348 

antibody responses to vaccines and/or processes linked with autoimmunity. 349 

 350 

The joint analysis of gene expression with chromatin accessibility landscapes allowed us to predict putative 351 

TF regulators in both steady state and dynamic immune cell populations, including temporally dynamic 352 

TFs during B cell activation and their participation in the GC reaction. As part of a dominant B cell 353 
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activation, maturation and plasma cell differentiation trajectory, we identified a secondary B cell activation 354 

state, after an initial NFκB-associated activation presumably linked with strong BCR activation and/or T 355 

cell help . One particularly interesting TF identified was BHLHE40, which has previously been shown to 356 

be required for the transition from an activated state prior to entry into the GC (46, 47) and is capable of 357 

binding key regulatory elements at the immunoglobulin heavy chain locus (9). Recent spatial epigenomic 358 

mapping of the human tonsil found BHLHE40 regulatory activity outside of the GC reaction, consistent 359 

with our pseudotemporal analyses (48). How this, and other putative regulators we identify in this 360 

secondary activation state (such as CEBPE/Z, ZBTB33, and ZHX1) may contribute to the transition from 361 

the activated B cell state to a GC-associated gene expression program will be an important question for 362 

future mechanistic studies. However, as the human tonsil represents a highly polyclonal source of B cells, 363 

which may arise from many different antigen sources, sub-tissue locations or clonal expansion events, it 364 

remains challenging to resolve potentially more complex B cell fate trajectories, such as whether the 365 

chromatin accessibility and transcription factor network dynamics in antigen-naïve or –experienced 366 

(memory) B cells vary during activation and the GC response. 367 

 368 

The molecular mechanisms by which many GWAS-identified genetic polymorphisms contribute to 369 

autoimmune disease remain poorly understood. To address this, we and others have examined the 370 

relationships between non-coding SNPs and lineage- or cell type-specific expression of putative gene 371 

targets to predict the potential functional relevance of genetic variants (reviewed in 49). For immune-372 

associated GWAS variants, many resources have focused on gene expression or epigenomic profiles of 373 

cell types circulating in the peripheral blood or bone marrow (1, 50), although there is an emerging 374 

prioritization of activation or tissue-specific immune cell states (2, 3). Our analysis of chromatin 375 

accessibility and gene expression at GWAS loci in tonsillar immune cell states highlights the importance 376 

of examining cellular populations in secondary lymphoid tissues, especially of pediatric patients with highly 377 

active GC responses, to understand how regulatory activity at non-coding genetic variants in dynamic and 378 

tissue-specific populations might contribute to autoimmune disease. Specifically, we found that many 379 

autoimmune disease-associated genetic variants are localized within chromatin most accessible in GC B 380 

and T cell populations, including at the loci of genes with well-established roles in B cell activation (CD83, 381 

CD80), survival and participation in the GC (IL21, IL21R, IL4R, BCL6) and fate selection (POU2AF1, 382 

HHEX, IRF8). While our findings do not exclude dysregulation of autoimmune-associated loci in stromal 383 

cell populations which we did not profile here, or potential pleiotropic genetic effects from variants that are 384 

accessible across multiple immune cell lineages or tissues, they strongly implicate lymphocyte-intrinsic 385 

dysfunctional GC responses as a major feature in the genetic etiology of autoimmune disease.   386 

 387 
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Our integrated scRNA-seq and scATAC-seq resource maps the cell type-specific chromatin accessibility 388 

of autoimmune variant loci genome-wide and identifies highly correlated peak accessibility-gene 389 

expression relationships to identify gene targets that may be affected by those SNPs (15). Chromosome 390 

conformation capture methods such as Hi-C have also been used to predict putative gene targets of 391 

autoimmune GWAS variants in GC-associated cell populations (33, 51), but these experimental 392 

approaches can be limited in their ability to detect short range interactions (e.g. <10kb) and are challenging 393 

to perform at scale across many cell types at once or at single-cell resolution. While the inferred peak-to-394 

gene relationships we report here do not provide direct evidence of physical interactions and will require 395 

experimental follow up in future studies, our integrated approach to predict gene targets has advantages 396 

over other co-accessibility models that link distal regulatory elements to promoters without taking account 397 

changes in gene expression, and our approach has successfully linked GWAS variants with putative 398 

targets in previous studies (22, 52).  399 

 400 

To explain how individual non-coding genetic variants may contribute towards the development or 401 

pathology of autoimmune disease, it will be necessary to further understand their precise regulatory impact 402 

on gene expression. Our analyses do not predict whether specific polymorphisms might positively or 403 

negatively regulate gene expression of their putative gene targets. Expression quantitative trait loci (eQTL) 404 

analyses can be used to infer whether genetic variants are associated with loss or gain of gene expression 405 

(53). However, current eQTL databases have profiled either circulating immune cell subsets or whole 406 

tissues (e.g. spleen) from adult donors (GTEX median donor age is 50-59 years old). In both cases, these 407 

resources lack adequate representation of GC-associated gene expression to confidently dissect the 408 

directionality of many SNP-to-gene relationships we predict in our analyses. New advances in neural-409 

network derived methods may prove useful to quantitatively model effects on gene expression in cell type-410 

resolved chromatin accessibility maps (17, 54).  411 

 412 

While at some loci we identified variants that appear likely to disrupt predicted TF binding sites, the highly 413 

context-dependent activating or repressive gene regulatory functions for many TFs remain poorly 414 

understood. This therefore makes it difficult to confidently predict whether the downstream gene targets 415 

are more likely to be activated or repressed. Inferring downstream targets of TFs without cell type-specific 416 

ChIP-seq datasets is likewise challenging, making prediction of the phenotypic impact of potentially altered 417 

TF expression at several loci we predict (BCL6, HHEX, POU2AF1, ETS1, IKZF3, STAT4, IRF8) difficult. 418 

Functional genomics, single-cell multi-omics and eQTL analyses in varied healthy and diseased immune 419 

organs and model systems will be essential to provide further mechanistic insights, as studies of healthy 420 

individuals lacking specific variants may miss gain-of-function mutations that create disease-specific 421 

regulatory elements de novo (55). Although functional (epi)genomic editing of primary human immune 422 
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cells remains challenging, high throughput screening strategies are emerging as powerful new tools (56) 423 

to assign loss- or gain-of-function to GWAS variants linked with autoimmune disease. However, whichever 424 

method is employed to dissect mechanism of non-coding polymorphisms, the fact that many variants 425 

associated with disease are in linkage disequilibrium poses a significant challenge to confidently identify 426 

causal variants for any given locus.  427 

 428 

While we are unable to confidently predict whether expression of a specific gene is enhanced or disrupted 429 

by autoimmune-associated genetic variants, either defective or enhanced GC phenotypes could contribute 430 

to the development of autoimmune disease by providing an opportunity for the expansion of self-reactive 431 

B cells that are normally inhibited in the periphery of healthy individuals (57). As a model example to 432 

illustrate this principle, we discuss here how altered signaling by IL-21 through IL-21R, for which we 433 

identified several autoimmune-associated genetic variants in Tfh- or GC B cell-enriched gene regulatory 434 

elements, could lead to altered cellular and immunological phenotypes that might contribute to 435 

autoimmunity. If at these loci, any of the genetic variants we characterize result in decreased IL21 or IL21R 436 

expression, and subsequently reduced IL-21 signaling, even subtly, this could result in reduced B cell 437 

survival within the GC, and enhanced cell death would lead to high concentrations of nuclear autoantigens 438 

that might promote autoreactive B cells and loss of tolerance. Conversely, if IL21 or IL21R gene expression 439 

was enhanced by genetic variation at distal regulatory elements, elevated autocrine IL-21 signaling by Tfh 440 

cells could result in Tfh expansion and proliferation that limit competition amongst GC B cells and lead to 441 

the survival of self-reactive B cells (58, 59). Indeed, B cell-specific depletion of IL-21R in a mouse model 442 

of lupus prevents the development of autoantibodies and disease (60), demonstrating that this pathway 443 

can play a major role in autoimmunity. While many of the precise molecular and immunological pathways 444 

involved in autoimmunity remain unclear, our genetic analyses provide a powerful resource to dissect the 445 

transcriptional and epigenetic landscapes of immune cells in secondary lymphoid organs of healthy 446 

individuals. 447 

 448 

Finally, the development of transient GC-like lymphoid follicles in non-lymphoid tissue (termed ectopic 449 

GCs) has been associated with site-specific inflammation in autoimmune diseases and may contribute to 450 

loss of tolerance by promoting maturation of self-reactive B cell clones (61). Analysis of B cells from ectopic 451 

GCs in several autoimmune diseases provide evidence of site-specific clonal expansion and somatic 452 

hypermutation of antibody genes, and an absence of normal GC regulation (62-64). Single-cell analyses 453 

of “defective” and “ectopic” immune structures in different autoimmune diseases will be essential to 454 

understand how the regulatory and gene expression dysfunction we predict in the normal immune cell 455 

landscape may drive autoimmunity through altered GC response dynamics.  456 

 457 
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Materials and Methods 458 

Study design 459 

In this study we aimed to define the gene expression and accessible DNA landscapes of different immune 460 

cell populations found in the human tonsil, a model secondary lymphoid organ to study adaptive immune 461 

responses. This study used tonsil samples from pediatric patients undergoing routine tonsillectomy, 462 

numbers of samples per experiment are reported in Data file S1. We first looked at patients covering a 463 

wide range of ages and chose to focus for this study on patients ranging from age 3-7 where germinal 464 

center population were most abundant for subsequent analysis by scRNA-seq coupled with CITE-seq, and 465 

scATAC-seq, performed at Stanford University (n=3). During initial analysis, four additional tonsillar 466 

scATAC-seq datasets that had been generated with an identical protocol at Queen Mary University of 467 

London were integrated into the data analysis pipeline and used in all subsequent analyses. We used 468 

known gene expression markers to define different cell populations in the human tonsil scRNA-seq 469 

resource, before using this fine-scaled definition to annotate clusters in matched scATAC-seq datasets. 470 

Pseudotemporal ordering of single-cell chromatin accessibility profiles was performed to examine the 471 

dynamics of transcription factor activities between different B cell maturation stages. To understand cell 472 

type-specific regulatory potential of autoimmune genetic variants, we intersected published statistically 473 

fine-mapped GWAS variants with regions of cell-type-specific chromatin accessibility and examined the 474 

chromatin accessibility and gene expression of exemplar autoimmune gene loci. 475 

 476 

Human ethics, tissue collection and preparation 477 

Tonsil samples were collected from children and adults undergoing routine tonsillectomy. All participants 478 

provided written informed consent and the protocols were approved by Stanford University’s Institutional 479 

Review Board (protocol numbers 30837 and 47690). Whole tonsils were collected in saline and processed 480 

within four hours of receipt. Tissues were treated with penicillin, streptomycin, and normocin for 30 minutes 481 

on ice and heavily clotted or cauterized areas of the tissue were removed. Tonsils were then dissected 482 

into small pieces (roughly 5-8 pieces per tonsil) before mechanical dissociation through a 100 µm cell 483 

strainer using a syringe plunger. Mononuclear cells were isolated by Ficoll density gradient centrifugation 484 

(GE Healthcare) and the buffy coats were collected. Cells were cryopreserved in 90% fetal bovine serum, 485 

10% DMSO until use. Four additional cryopreserved tonsil samples at Queen Mary University of London 486 

included for scATAC-seq analyses were prepared as described previously (9) under approval from North 487 

West/Greater Manchester East Research Ethics Committee (17/NW/0664). 488 

 489 



15 
 

CyTOF staining and analysis 490 

Cryopreserved samples were thawed in pre-warmed cell culture medium (RPMI1640 with 10 % FBS, non-491 

essential amino acids, sodium pyruvate, antibiotics), washed, and rested for 1 hour at 37°C in culture 492 

medium supplemented with DNase (25 U/ml). Cells were then washed and resuspended in FACS buffer 493 

(PBS with 0.1% w/v bovine serum albumin, 2 mM EDTA, 0.05% v/v sodium azide). Individual donor 494 

samples were barcoded using a combination of metal-tagged CD45 antibodies, combined into barcoded 495 

pools, stained for surface antibody markers (Table S1), and treated with cisplatin for viability staining as 496 

described (65). Samples were then fixed overnight with 2% paraformaldehyde diluted in PBS. The next 497 

day, cells were permeabilized using a permeabilization buffer (eBioscience), stained with a DNA 498 

intercalator for 30 minutes, and washed. Just prior to CyTOF data collection, samples were washed three 499 

times with PBS, then three times with MilliQ water. Barcoded pools were run on a CyTOF2 instrument 500 

(Fluidigm) and fcs files were exported for analysis in FlowJo software. Live intact singlets were gated and 501 

samples were manually debarcoded using combinations of CD45 channels (5-choose-2 scheme) and 502 

individual donor samples were exported as separate fcs files before dimensionality reduction analyses. 503 

 504 

Single-cell library preparation, sequencing and alignment. 505 

Tonsillar immune cells were loaded on to the 10X Genomics Chromium according to the manufacturer’s 506 

protocol using either the single-cell 3' kit (v3) or the single-cell ATAC kit (v1). Cell surface labelling for 507 

scADT-seq libraries was performed with 12 oligo-labelled TotalSeqTM antibodies (BioLegend; Table S2).  508 

Library preparation was performed according to the manufacturer’s protocol prior to sequencing on either 509 

the Illumina NovaSeq 6000 or NextSeq 500 platforms. scRNA-seq libraries were sequenced with 510 

28/10/10/90 bp cycles while scATAC-seq libraries were sequenced with 70/8/16/70 bp read configurations. 511 

BaseCall files were used to generate FASTQ files with either cellranger mkfastq (v3; 10X Genomics) or 512 

cellranger-atac (v1; 10X Genomics) prior to running cellranger count with the cellranger-GRCh38-3.0.0 513 

reference or cellranger-atac count with the cellranger-atac-GRCh38-1.1.0 reference for scRNA-seq and 514 

scATAC-seq libraries respectively. 515 

 516 

Quality control, integration and cell type annotation of tonsillar scRNA-seq 517 

Gene expression count matrices from cellranger were processed with Seurat (v3.0.2) (66, 67) for genes 518 

detected in greater than 3 cells. Cell barcodes were filtered based on the number of genes per cell 519 

(between 200-7500), percentage of mitochondrial reads per cell (0-20 %) and the number of ADTs (less 520 

than 4000). Initial data quality control was performed separately on each biological sample. Data from 521 

technical replicate libraries were combined, normalized with SCTransform (68) before highly variable gene 522 

identification and PCA dimensionality reduction. Jackstraw plots were visually assessed to determine the 523 

number of principal components (PCs) for subsequent analysis: Tonsil1 = 11, Tonsil2 = 13, Tonsil3 = 12. 524 
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Preliminary clusters were identified (FindClusters; res = 0.8) before computing UMAP dimensionality 525 

reduction and identifying putative doublets with DoubletFinder (69) (sct=TRUE, expected_doublets=3.9%). 526 

Pre-processed Seurat objects were then merged, with SCTransform normalization and PCA computation 527 

repeated using all variable features (except for IGKC, IGLC, IGLV, HLA, and IGH genes). Batch correction 528 

was performed with harmony (70). UMAP dimensionality reduction and cluster identification were 529 

performed (27 PCs, res = 0.8). Broad cell type cluster frequencies (as in Fig1B) from an independent 530 

scRNA-seq analysis of human tonsils (9) were obtained to compare cell type frequencies between patients 531 

of different ages. For higher resolution analysis of B cells and T cells, data from B or T cells only were 532 

processed separately, with repeated variable gene identification (removing IGKC, IGLC, IGLV, HLA, and 533 

IGH) before repeated PCA, batch correction with Harmony, UMAP reduction and cluster identification (30 534 

PCs, res = 0.6 for B cells; 20 PCs, res = 0.6 for T cells). Gene expression markers for clusters were 535 

identified (FindAllMarkers; log fold change > 1, adjusted p value < 0.05). Imputation of gene expression 536 

counts (for plotting only) was performed with MAGIC (71). Mean gene expression values per cell type per 537 

donor were used to calculate Spearman correlation coefficients between donors. Top 50 marker genes for 538 

the IFN_active B cell cluster were analyzed with the “Gene Set Query” function in the Autoimmune Disease 539 

Explorer (https://adex.genyo.es/) (11). 540 

 541 

scATAC-seq quality control, batch correction and integration with scRNA-seq datasets 542 

Mapped Tn5 insertion sites (fragments.tsv files) from cellranger were read into the ArchR (v0.9.4) package 543 

(15) retaining cell barcodes with at least 1000 fragments per cell and a TSS enrichment score > 4. Doublets 544 

were identified and filtered (addDoubletScores and filterDoublets, filter ratio = 1.4) before iterative LSI 545 

dimensionality reduction was computed (iterations = 2, res = 0.2, variable features = 25000, dim = 30). 546 

Sample batch correction was performed with harmony (70). Clustering was then performed on the 547 

harmony-corrected data (addClusters, res = 0.8) before UMAP dimensionality reduction (nNeighbors = 30, 548 

metric = cosine, minDist = 0.4). One cluster enriched for high doublet scores (cluster 7) was removed. A 549 

preliminary cell type annotation was performed using gene accessibility scores of known cell type markers. 550 

Tonsillar scRNA-seq gene expression and metadata were integrated with tonsillar scATAC data with 551 

ArchR as previously described (15). To improve cell type assignment of closely related cell types, we 552 

performed this step as a constrained integration, grouping GC B cell clusters, other B cell clusters and 553 

non-B cell clusters together during addGeneIntegrationMatrix. The most common predicted cell type from 554 

the integration with RNA expression in each previously identified ATAC-seq cluster was used to annotate 555 

scATAC cluster identity. The quality of mapping between the RNA and ATAC was confirmed by identifying 556 

marker gene scores in scATAC clusters using getMarkerFeatures. Additionally, cluster annotations 557 

derived from scATAC-only analysis were compared with annotations derived from scRNA-seq integration. 558 

 559 
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For high resolution clustering of B and T cell subsets (Fig2), scATAC clusters identified as B cells or T 560 

cells following scATAC/scRNA integration were subset, and use to recompute iterative LSI dimensionality 561 

reduction as described above, except 30 dimensions were used for B cell analysis. Batch correction, 562 

cluster identification and UMAP reduction were also performed as above, except that minDist = 0.1 (T 563 

cells) or 0.3 (B cells). Integration of B cell and T cell scATAC-seq datasets with gene expression and high 564 

resolution cluster annotations was performed using the T cell- or B cell-specific scRNA-seq Seurat objects 565 

as previously described with addGeneIntegrationMatrix in ArchR. Integration between assays were 566 

constrained with the following broad groups: B cell subgroups; plasmablasts, memory, naïve/activated and 567 

GC B cell clusters, T cells; CD8+/cytotoxic T cells and remaining T cell clusters. Mean peak accessibility 568 

scores per cell type per donor were used to calculate Spearman correlation coefficients between donors. 569 

 570 

Peak calling and inference of transcription factor activity in scATAC-seq datasets. 571 

Single-cell chromatin accessibility data were used to generate pseudobulk group coverages based on high 572 

resolution cluster identities of scATAC-seq datasets before peak calling with macs2 (72) using 573 

addReproduciblePeakSet in ArchR. A background peak set controlling for total accessibility and GC-574 

content was generated using addBgdPeaks and used for TF motif enrichment analyses. Chromvar (73) 575 

was run with addDeviationsMatrix using the cisbp motif set to calculate enrichment of chromatin 576 

accessibility at different TF motif sequences in single cells. To identify correlations between the gene 577 

expression and transcription factor activity, RNA-expression projected into the ATAC subspace 578 

(GeneIntegrationMatrix) and the Chromvar deviations (MotifMatix) were correlated using 579 

correlateMatrices. A correlation of greater than 0.25 was used to determine if TF expression and activity 580 

were positively correlated, and the list of correlated TFs was further subset by only including TFs that were 581 

expressed in at least 25 percent of cells in one or more cell type cluster. To analyze transcription factor 582 

activity during B cell activation, GC entry and plasma differentiation, the harmony-corrected B cell ArchR 583 

object was subjected to “addTrajectory” from ArchR using the following user-defined trajectory as a guide: 584 

Naive→Activated→LZ GC→DZ GC→Plasmablasts. Gene expression and Chromvar deviation scores 585 

were correlated throughout pseudotime using correlateTrajectories (corCutOff = 0.25, varCutOff1 = 0.25, 586 

varCutOff2 = 0.25) and visualized using plotTrajectoryHeatmap. “Peak-to-gene links” were calculated 587 

using correlations between peak accessibility and integrated scRNA-seq expression data using 588 

addPeak2GeneLinks. 589 

  590 

Integration of tonsil scATAC-seq and scRNA-seq with bone marrow and peripheral blood datasets 591 

Published bone marrow and peripheral blood scRNA-seq and scATAC-seq (22) were aligned to the hg38 592 

genome as described above. Additional hg38-aligned PBMC scATAC-seq datasets were downloaded from 593 

10X Genomics (https://support.10xgenomics.com/single-cell-atac/datasets).  594 
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 595 

scRNA-seq 596 

Cellranger gene expression matrices were used to sum and quantify mitochondrial gene expression before 597 

mitochondrial genes were removed from the gene expression matrices. Similarly, V, D and J gene counts 598 

from T cell and immunoglobulin receptors were summed and removed from matrices. Closely related IgH 599 

constant region genes were also summed and removed (IgG1-4, IgA1-2). Cell barcodes expressing >200 600 

genes and genes detected in >3 cells were then processed in Seurat (66, 67), with doublet prediction using 601 

default settings with scrublet (74) (expected doublet frequency 8x10-6 X 1000 cells). Predicted doublets 602 

were removed, and cell barcodes with <750 or >30000 UMIs, <500 or >6000 genes detected, or >20% 603 

mitochondrial gene expression were also removed. Individual datasets were then merged together, before 604 

normalization and batch correction with SCTransform (3000 variable features) and scoring of cell cycle 605 

phase with Seurat. "IGLsum", "IGKsum", "IGHG", "IGHA", "IGHM", and "IGHD" were subsequently 606 

removed from highly variable gene list so they would not contribute to downstream dimensionality 607 

reductions. PCA was then computed before UMAP reduction (n.neighbors = 20, min.dist = 0.35, dims = 608 

1:50), nearest neighbor identification (FindNeighbours; dims = 1:50) and cluster identification 609 

(FindClusters; res = 1.75). Some additional subclustering was performed to better match cell type 610 

annotations from previous tonsil analysis (this study) and peripheral blood/bone marrow analysis (22). In 611 

general, previous annotations were closely adhered to and confirmed by examination of known cell type-612 

specific gene expression markers. Differential gene expression between clusters was performed with 613 

FindAllMarkers or FindMarkers, with padj < 0.05 and avg_logFC > 0.5. Imputation of gene expression 614 

counts (for plotting only) was performed with MAGIC (71). 615 

 616 

scATAC-seq 617 

Cellranger-derived fragments.tsv files of tonsil, peripheral blood and bone marrow samples were 618 

processed with ArchR (15) (createArrowFiles; filterTSS = 6, filterFrags = 1000, minFrags = 500, maxFrags 619 

= 1e+05). Doublets were identified (addDoubletScores; k=10) and removed with a filterRatio = 1.4, before 620 

additional filtering of cell barcodes to remove those with TSSEnrichment < 6, < 103.25 or > 105 fragments 621 

per barcode, nucleosome ratio of > 2.5, ReadsInBlacklist > 800, or BlacklistRatio > 0.009. Preliminary LSI 622 

reduction was performed with addIterativeLSI (corCutOff = 0.25, varFeatures = 30000, dimsToUse = 1:40, 623 

selectionMethod = "var", LSIMethod = 1, iterations = 6, filterBias = FALSE, clusterParams = list(resolution 624 

= c(0.1,0.2,0.4,0.6,0.8,1), sampleCells = 10000, n.start = 10). To account for differences in sequencing 625 

coverage, Harmony batch correction (corCutOff = 0.25, lambda = 0.75, sigma = 0.2) was performed using 626 

library ID for tonsil samples, public 10X Genomics PBMC datasets and sample BMMC_D6T1, while 627 

remaining samples from Granja et al were treated as a single batch. Preliminary identification of clusters 628 

(addClusters; res = 1.5) identified two poor quality clusters enriched with doublets (C38, C7). These were 629 
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removed from subsequent analysis. Quality controlled datasets were then subjected to new LSI 630 

dimensionality reduction and Harmony batch correction with the same settings, before computing UMAP 631 

(RunUMAP; nNeighbors = 80, minDist = 0.45, seed = 1) and identifying cell type clusters with at least 80 632 

cells (addClusters (method = “Seurat”, res = 1.1 or 1.5, nOutlier = 80). Broad lineages were first annotated 633 

to help with integration and transfer of scRNA expression. Normalized, non-corrected scRNA expression 634 

counts and annotated cell types were transferred to nearest neighbor scATAC cells using 635 

addGeneIntegrationMatrix (sampleCellsATAC = 10000, nGenes (RNA) = 4000, sampleCellsRNA = 636 

10000) with a constrained integration to the following groups: CD4T_cells, CD8T_cells, GC_PB, 637 

MBC_B_cells, Myeloid_cells, NaiveAct_B_cells, NK, Peripheral_B_cells, Progenitors. Accessibility gene 638 

scores and transferred RNA expression counts were imputed with addImputeWeights(corCutOff = 0.25). 639 

Cell type clusters were carefully annotated with a combination of pre-existing annotations from Granja et 640 

al. (22) and tonsil immune cell scATAC data (this study), transferred cell annotations from scRNA-seq and 641 

examination of known subset markers. 642 

 643 

Pseudobulk group coverages of cell type clusters were calculated with addGroupCoverages and used for 644 

peak calling using macs2 (addReproduciblePeakSet in ArchR). A background peak set controlling for total 645 

accessibility and GC-content was generated using addBgdPeaks for TF enrichment analyses. Cell type-646 

specific marker peaks were identified with getMarkerFeatures with the wilcoxon test and controlled for 647 

TSSEnrichment and fragment count. Peak accessibility was deemed significantly different between 648 

clusters if FDR < 0.05 and log2fc > 0.56. “Peak-to-gene links” were calculated using correlations between 649 

peak accessibility and integrated scRNA-seq expression data using addPeak2GeneLinks. Motif 650 

annotations and enrichment were calculated as described above with addMotifAnnotations and 651 

addDeviationsMatrix.  652 

 653 

Analysis of fine-mapped GWAS variants 654 

The results of two independent GWAS statistical fine-mapping studies (1, 27) 655 

(https://www.finucanelab.org/data) were combined. PICS SNPs from both immune and non-immune traits 656 

were included in analyses (1), while only SNPs from the study mapping the UK BioBank resource that 657 

were associated with a combined autoimmune disease trait (AID; labelled as AID_UKBB) were included 658 

(27). This provided a total of 12,902 non-redundant SNPs, of which 9,493 were significantly associated 659 

with disorders of the immune system. Fisher’s exact test was used to calculate enrichment of immune trait-660 

associated SNPs and non-immune trait-associated SNPs, against a background of common genetic 661 

variants (Common dbSnp153), in cell type-resolved peak sets or control background genomic intervals 662 

(either matched for GC content or distance to nearest TSS). Trait-specific enrichment analysis was 663 

performed using cell type-specific marker peaks (FDR < 0.05, log2FC > 0.25), with a background SNP set 664 
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comprising all fine-mapped SNPs across all traits. Cell type- and tissue- specificity of accessibility at SNPs 665 

was determined by presence or absence of a scATAC peak in each cell type, with cell type clusters 666 

regrouped based on enrichment in tonsils, peripheral blood or bone marrow. Of the immune-related SNPs 667 

that overlapped with accessible chromatin peaks (1213, 12.8%), we subsequently identified 460 unique 668 

immune-linked SNPs that fell within 358 chromatin accessible regions for which a significant Peak2Gene 669 

link had been identified to at least one gene (P2G_Correlation > 0.4; FDR < 0.01). Mean normalized 670 

chromatin accessibility counts (scATAC) and RNA expression counts for linked genes (scRNA) for each 671 

cell type cluster were calculated and used for heatmap visualization while pyGenomeTracks was used to 672 

visualize grouped scATAC pseudobulk tracks (75). Linkage disequilibrium scores of top candidate SNPs 673 

were calculated using LDlink across all populations (76). 674 

 675 
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Figure Legends 1053 
 1054 
Figure 1. Single-cell mapping of immune cell subsets in human tonsils. 1055 
A) Experimental strategy for single-cell transcriptomics, surface marker expression, and chromatin accessibility of immune cells 1056 

from pediatric tonsils. 1057 
B) UMAP of tonsillar immune scRNA-seq data (left; 3 donors) and scATAC-seq data (right; 7 donors). 1058 
C) Heatmap comparing gene expression, surface protein, and chromatin accessibility across immune cell types. 1059 
D) UMAP of T cell sub-populations in the tonsillar immune scRNA-seq data in B). NK = natural killer, CTL = cytotoxic lymphocyte, 1060 

Treg = regulatory T cell, TfH = T follicular helper cell, Tcm = T central memory. 1061 
E) Mean expression of key marker genes for T cell sub-populations by scRNA-seq. Frequency of cells for which each gene is 1062 

detected is denoted by size of the dots. 1063 
F) UMAP of B cell sub-populations in the tonsillar immune scRNA-seq data in B). MBC = memory B cell, LZ GC = light zone 1064 

germinal center, DZ GC = dark zone germinal center; IFN = interferon. 1065 
G) Mean expression of key marker genes for B cell sub-populations by scRNA-seq. Frequency of cells for which each gene is 1066 

detected is denoted by size of the dots. 1067 
 1068 

Figure 2. Tonsillar immune cell type-specific transcription factor regulatory activity.  1069 
A) UMAP of tonsillar immune scATAC-seq with high resolution annotation of immune cell types. 1070 
B) Correlation of TF motif deviation (enrichment) scores with TF expression (x axis) compared to TF motif deviation scores (y 1071 

axis) to predict positive TF regulators across B cell populations. 1072 
C) Motif deviation scores (top panels) and RNA expression (bottom) for exemplar TFs.  1073 
D) Motif deviation scores for transcription factors (expressed in >25% cells in at least one cell type cluster). Mean gene 1074 

expression is depicted by dot size. 1075 
E) Pseudotemporal reconstruction of B cell activation, GC entry and plasmablast differentiation using scATAC-seq. Dotted lines 1076 

highlight major transition points between cell types. Top; TF motif deviations. Bottom; TF gene expression. 1077 
F) Grouped patterns of TF motif deviations (left) and TF gene expression (right) through B cell pseudotemporal reconstruction 1078 

shown in (e). Colored line represents mean of all TFs per group (listed on right). 1079 
G) Genomic snapshot of tonsillar immune cell scATAC-seq tracks at CD83 locus, highlighting rheumatoid arthritis-associated 1080 

SNPs rs74405933 and rs12529514 and correlated peak2gene linkages. rs74405933 falls within an NFKB2 predicted binding 1081 
site (G→T). scRNA-seq expression of CD83 and NFKB2 are shown to the right. 1082 

 1083 
Figure 3. Integrated single-cell transcriptomics and epigenomics of human bone marrow, peripheral blood 1084 
and tonsillar immune cell states. 1085 
A) UMAP of integrated scATAC-seq and scRNA-seq for human bone marrow, peripheral blood and tonsils. CLP: common 1086 

lymphoid progenitors. GMP: granulocyte-monocyte progenitors. CM: central memory. EM: effector memory. CTL: cytotoxic 1087 
lymphocyte. 1088 

B) Relative frequency of cell type clusters in A) across different tissues. 1089 
C) Differential scATAC-seq peak analysis of tonsillar compared to peripheral blood/bone marrow-enriched naïve and memory 1090 

B cell (MBC) clusters. FCRL4+ MBC cluster was compared to peripheral blood-enriched MBC cluster. 1091 
D) Differential gene expression analysis of tonsillar compared to peripheral blood/bone marrow-enriched naïve and MBC 1092 

clusters in integrated scRNA-seq dataset. Selected genes are annotated.  1093 
E) Ranking of TF motif deviation enrichment within tissue-enriched (red, upper) or tissue-depleted (blue, lower) peaks naïve 1094 

and MBCs. 1095 
F) Expression of top genes identified to be mutated by whole genome sequencing in a sporadic immunodeficiency cohort (24). 1096 

For TFs, motif deviation scores are also provided. 1097 
 1098 

Figure 4. Autoimmune-associated genetic variants enriched in immune cell chromatin accessibility maps. 1099 
A) Fisher enrichment test of immune-associated fine mapped genetic variants, compared to common genetic variants, for 1100 

chromatin accessibility scATAC peaks across 37 immune cell populations. Results for non-immune traits and background 1101 
control peaks are shown. Dot size conveys significance (-log10(p value)). 1102 

B) Fisher enrichment test for trait-specific SNPs, compared to the complete fine-mapped SNP set, within cell type-specific 1103 
chromatin accessibility peaks. Dot size conveys enrichment (odds ratio) and color denotes significance of enrichment. 1104 

C) Frequency histogram of immune-associated SNPs that fall within chromatin accessibility peaks across 37 immune cell types. 1105 
D) Tissue-specificity of chromatin accessibility peaks overlapping autoimmune SNPs.  1106 
E) Chromatin accessibility of peaks containing >1 immune-associated SNP (scATAC; left) for which at least one significant 1107 

peak2gene correlation is identified. Expression of linked genes (scRNA; right) is also plotted. Accessibility or expression 1108 
counts are scaled by peak or gene respectively.  1109 
 1110 

Figure 5. Chromatin regulatory landscapes of GC-specific autoimmune risk variants. 1111 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants that localize to accessible chromatin in the 1112 

integrated human bone marrow, peripheral blood and tonsil scATAC-seq atlas. High resolution of individual SNP loci and 1113 
larger view of the IL21 locus are shown, with significantly correlated peak2gene linkages colored in red and significant links 1114 
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between SNPs and gene promoters (SNP2gene) in blue and bold. Significant associations between individual SNPs and 1115 
autoimmune diseases are shown in black boxes and gene expression is shown as violin plots for matched populations in the 1116 
scATAC tracks. AID: autoimmune disease. IBD: inflammatory bowel disease. Juv Idio Arthritis: Juvenile idiopathic arthritis. 1117 
Scl cholangitis: Primary sclerosing cholangitis. 1118 

B) Same as A), at the IL4R/IL21R locus. 1119 
C) Same as A), at the BCL6/LPP locus. A germinal center (GC)-specific locus control region (LCR) is highlighted in green. MS: 1120 

multiple sclerosis. 1121 
 1122 

Figure 6. Autoimmune risk variants at transcription regulator genes POU2AF1 and HHEX. 1123 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the POU2AF1 locus that localize to accessible 1124 

chromatin in the integrated human bone marrow, peripheral blood and tonsil scATAC-seq atlas. Significantly correlated 1125 
peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue and bold. 1126 
Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene expression 1127 
is shown as violin plots for matched populations in scATAC tracks. PBC: primary biliary cirrhosis. 1128 

B) Same as A), at the HHEX locus. MS: multiple sclerosis.  1129 
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Figure 3 1135 
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Figure 6 1141 
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 1143 
Figure S1. Single-cell library metadata, integration, batch correction and quality control. 1144 
A) Metadata of tonsillectomy patients analyzed by single-cell genomics in this study, including age, sex, reason for 1145 

tonsillectomy (RT; recurrent tonsillitis, OSA; obstructive sleep apnea) and site of study. 1146 
B) Correlation of relative cluster frequencies for scRNA-seq and scATAC-seq within each donor.  1147 
C) Confusion matrix depicting overlap between transferred scRNA-seq cluster identities to scATAC-seq clusters. 1148 
D) UMAP visualization of major cell type clusters, site of study, donor and clinical indication for tonsillectomy for scRNA-seq 1149 

and scATAC-seq datasets 1150 
E) Quality control metrics for scRNA-seq datasets by donor, including unique molecular identifier (UMI) counts per cell 1151 

barcode, number of genes detected per cell barcode, percentage mitochondrial gene expression and cell surface ADT UMI 1152 
counts. 1153 

F) Quality control metrics for scATAC-seq datasets by donor, including number of unique fragments per cell barcode, ratio of 1154 
nucleosomal to non-nucleosomal fragment sizes, transcription start site enrichment score, and ratio of fragments in 1155 
genomic blacklist regions (see ArchR for details).  1156 
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 1157 
Figure S2. Comparison of RNA expression, cell surface protein expression and chromatin accessibility of 1158 
key marker genes. 1159 
scRNA-seq gene expression (top rows), CITE-seq surface protein expression (middle rows) and chromatin accessibility gene 1160 
scores (bottom rows) for key marker genes. Gene expression and surface protein expression are visualized on the scRNA-seq 1161 
UMAP manifold and chromatin accessibility scores are visualized on the scATAC-seq UMAP manifold (see Figure 1b). 1162 
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 1163 
Figure S3. Age-related changes in tonsillar immune cell populations by scRNA-seq and CyTOF. 1164 
A) Relative scRNA-seq cluster frequencies of different donors ordered by patient age. Additional tonsillar immune cell samples 1165 

from King et al. (2021) are included (see red labels). 1166 
B) Schematic of CyTOF analyses for age-related differences in tonsillar immune cell populations. 1167 
C) UMAP visualization of CyTOF analysis of tonsillar immune cells with major immune cell populations (n=24). 1168 
D) Quantitation of relative frequencies of immune cell subsets separated by patient age. p values denote results from 1169 

Student’s t test.  1170 
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 1171 
Figure S4. Tonsil scRNA-seq marker gene heatmaps, annotation of GC B cells and reproducibility of cell 1172 
types across donors. 1173 
A) scRNA-seq heatmap of top 100 most differentially expressed genes for high resolution B cell clusters (as in Fig1F-G). 1174 
B) scRNA-seq heatmap of top 100 most differentially expressed genes for high resolution T cell clusters (as in Fig1D-E). 1175 
C) Gene signature scores for DZ-specific and LZ-specific marker genes in LZ GC, DZ GC and cycling B cell clusters.  1176 
D) Relative frequency of high resolution scRNA-seq cell type clusters across the three patient donors. 1177 
E) Spearman correlation coefficients of mean gene expression per cell type cluster between patient donors. 1178 
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 1179 
Figure S5. Differential expression in autoimmune disease of top scRNA-seq marker genes for the 1180 
IFN_active B cell cluster. 1181 
A) Differential expression of top 50 marker genes for IFN-active B cell cluster (as in Fig1F-G) between control and 1182 

autoimmune patient gene expression studies, generated from ADEx: Autoimmune Diseases Explorer 1183 
(https://adex.genyo.es/; (11)). SLE; systemic lupus erythematosus. SSc; systemic sclerosis. RA; rheumatoid arthritis. T1D; 1184 
type I diabetes. SjS; Sjögren’s syndrome. 1185 

B) Expression of IFI44L, MX1, XAF1 and STAT1 in peripheral blood-derived B cells healthy and systemic lupus erythematosus 1186 
(SLE) patients (12).  1187 



41 
 

 1188 
Figure S6. Reproducibility of scATAC-seq cluster frequencies and correlation of peak accessibilities 1189 
between donors. 1190 
A) Relative frequency of high resolution scATAC-seq cell type clusters across patient donors. 1191 
B) Spearman correlation coefficients of mean peak accessibility per cell type cluster between patient donors. 1192 
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 1193 
Figure S7. Differential peak analysis of scATAC-seq clusters, peak-to-gene predictions and alternative 1194 
pseudotime analysis. 1195 
A) Differential peak analysis of B (top) and T (bottom) cell subsets comparing number of up-regulated and down-regulated 1196 

chromatin accessibility regions. 1197 
B) Single-cell heatmaps of marker peak accessibility (scATAC) and gene expression (scRNA) for integrative peak2gene 1198 

predictions in tonsil immune cell type clusters (as in Fig2A). 1199 
C) Example genome snapshot of XBP1 regulatory landscape. B cell-, plasmablast- and T cell-specific regulatory elements are 1200 

highlighted. 1201 
D) Genome snapshot of immunoglobulin heavy chain locus, including closer resolution of regulatory element downstream of 1202 

IGHD and IGHM that is lost during class switch recombination (i.e. through deletional recombination). 1203 
E) Correlation between two independent pseudotemporal ordering methods (ArchR and Monocle) for naïve, activated, GC and 1204 

plasmablast B cell lineage. Correlation coefficient and p value denotes result from Pearson correlation. 1205 
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 1206 
Figure S8. Batch correction and quality control of integrated bone marrow, blood and tonsil immune 1207 
scRNA-seq and scATAC-seq. 1208 
A) UMAP visualization of batch and tissue for tonsil, peripheral blood and bone marrow scRNA-seq and scATAC-seq datasets. 1209 
B) Quality control metrics for scRNA-seq datasets by donor, including unique molecular identifier (UMI) counts per cell 1210 

barcode, number of genes detected per cell barcode, and percentage of mitochondrial gene expression. 1211 
C) Quality control metrics for scATAC-seq datasets by donor, including number of unique fragments per cell barcode, ratio of 1212 

nucleosomal to non-nucleosomal fragment sizes, transcription start site enrichment score, and ratio of fragments in 1213 
genomic blacklist regions (see ArchR for details). 1214 

D) Confusion matrix depicting overlap between transferred scRNA-seq cluster identities to scATAC-seq clusters. 1215 
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 1216 
Figure S9. Integrated bone marrow, blood and tonsil scRNA-seq and scATAC-seq markers. 1217 
A) Expression of top marker genes for scRNA-seq clusters of integrated bone marrow, blood and tonsil dataset. 1218 
B) Chromatin accessibility at cluster-specific peaks for scATAC-seq clusters of integrated bone marrow, blood and tonsil 1219 

dataset. 1220 
C) Peak accessibility (scATAC) and gene expression (scRNA) for integrative peak2gene predictions in tonsil, peripheral blood 1221 

and bone marrow immune cell type clusters (as in Fig3A). 1222 
  1223 
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 1224 
Figure S10. Tonsil B cell-enriched gene expression markers compared to peripheral blood B cells. 1225 
A) Expression of genes significantly differentially expressed between tonsil-specific naïve or memory B cell clusters compared 1226 

to peripheral blood naïve or memory B cell clusters.  1227 
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 1228 
Figure S11. Enrichment of fine-mapped autoimmune variants in immune cell subsets. 1229 
A) Number of fine-mapped SNPs per autoimmune trait that overlap with a chromatin accessibility peak in the integrated 1230 

human bone marrow, peripheral blood and tonsil scATAC-seq atlas. AID_UKBB represents variants identified from fine-1231 
mapping a combination of datasets from diverse autoimmune traits. AID; autoimmune disease. MS; multiple sclerosis. SLE; 1232 
systemic lupus erythematosus. PBC; primary biliary cirrhosis. 1233 

B) Number of peaks identified in each scATAC-seq cell type cluster (left) and the percentage of those peaks that overlap with 1234 
an autoimmune-associated SNP. 1235 

C) Fisher enrichment test results for variants specific to selected traits in cell type-specific chromatin. Individual points 1236 
represent single cell type clusters, separated into five broad lineages. Dot size reflects level of significance of enrichment. 1237 

D) Fisher enrichment test results for trait-specific variants in cell type-specific chromatin across all traits in fine-mapped 1238 
resources analyzed. Dot size conveys enrichment (odds ratio) and color denotes significance of enrichment. 1239 
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 1240 
Figure S12. Genome snapshots of fine-mapped autoimmune variants at GZMB/GZMH, NKX2-3 and 1241 
COTL1/KHLH36 loci. 1242 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the GZMB/GZMH locus. Significantly 1243 

correlated peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue 1244 
and bold. Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene 1245 
expression is shown as violin plots for matched populations in scATAC tracks. 1246 

B) Same as A), at the NKX2-3 locus. UC; ulcerative colitis. 1247 
C) Same as A), at the COTL1/KLHL36 locus. AID; autoimmune disease. 1248 
D) Linkage disequilibrium heatmaps for SNPs at loci depicted in A-C. D′ denotes normalized linkage disequilibrium; R2 denotes 1249 

Pearson coefficient of correlation.  1250 
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 1251 
Figure S13. Genome snapshots of fine-mapped autoimmune variants at KSR1/LGALS9 and 1252 
TNFRSF1A/LTBR loci. 1253 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the KSR1/LGALS9 locus. Significantly 1254 

correlated peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue 1255 
and bold. Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene 1256 
expression is shown as violin plots for matched populations in scATAC tracks. 1257 

B) Same as A), at the TNFRSF1A/LTBR locus. PBC; primary biliary cirrhosis. MS; multiple sclerosis. JIA; juvenile idiopathic 1258 
arthritis. 1259 

C) Linkage disequilibrium heatmaps for SNPs at loci depicted in A and B. D′ denotes normalized linkage disequilibrium; R2 1260 
denotes Pearson coefficient of correlation. 1261 

  1262 
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 1263 
Figure S14. Genome snapshots of germinal center-associated cell type-specific regulatory activity at fine-1264 
mapped autoimmune variants at CD80, PRAG1 and SLC38A9/DDX4 loci. 1265 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the CD80 locus. Significantly correlated 1266 

peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue and bold. 1267 
Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene expression 1268 
is shown as violin plots for matched populations in scATAC tracks. PBC; primary biliary cirrhosis. MS; multiple sclerosis. JIA; 1269 
juvenile idiopathic arthritis. SLE; systemic lupus erythematosus.  1270 

B) Same as A), at the PRAG1 locus. AID; autoimmune disease. 1271 
C) Same as A), at the SLC38A9/DDX4 locus. 1272 
D) Linkage disequilibrium heatmaps for SNPs at loci depicted in A and B. D′ denotes normalized linkage disequilibrium; R2 1273 

denotes Pearson coefficient of correlation.  1274 
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 1275 
Figure S15. Genome snapshots of germinal center-associated cell type-specific regulatory activity at fine-1276 
mapped autoimmune variants at VAV3 and DLEU2 loci. 1277 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the VAV3 locus. Significantly correlated 1278 

peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue and bold. 1279 
Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene expression 1280 
is shown as violin plots for matched populations in scATAC tracks. Linkage disequilibrium heatmaps are also shown 1281 
separately. D′ denotes normalized linkage disequilibrium; R2 denotes Pearson coefficient of correlation. AID; autoimmune 1282 
disease. 1283 

B) Same as A), at the DLEU2 locus. MS; multiple sclerosis.  1284 
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 1285 
Figure S16. Linkage disequilibrium scores for variants at IL21, IL21R and BCL6 loci. 1286 
A) Linkage disequilibrium heatmaps for SNPs at IL21, IL21R and BCL6/LPP loci depicted in Fig5. D′ denotes normalized linkage 1287 

disequilibrium; R2 denotes Pearson coefficient of correlation.  1288 
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 1289 
Figure S17. Genome snapshots of fine-mapped autoimmune variants at ETS1 and IKZF3 loci. 1290 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the ETS1 locus. Significantly correlated 1291 

peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue and bold. 1292 
Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene expression 1293 
is shown as violin plots for matched populations in scATAC tracks. Linkage disequilibrium heatmap is also shown. D′ denotes 1294 
normalized linkage disequilibrium; R2 denotes Pearson coefficient of correlation. SLE; systemic lupus erythematosus.  1295 

B) Same as A), at the IKZF3 locus. PBC; primary biliary cirrhosis. UC; ulcerative colitis. 1296 
C) Linkage disequilibrium heatmaps for SNPs at POU2AF1 and HHEX loci depicted in Fig6. D′ denotes normalized linkage 1297 

disequilibrium; R2 denotes Pearson coefficient of correlation.  1298 
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 1299 
Figure S18. Genome snapshots of fine-mapped autoimmune variants at STAT4 and IRF8 loci. 1300 
A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants at the STAT4 locus. Significantly correlated 1301 

peak2gene linkages colored in red and significant links between SNPs and gene promoters (SNP2gene) in blue and bold. 1302 
Significant associations between individual SNPs and autoimmune diseases are shown in black boxes and gene expression 1303 
is shown as violin plots for matched populations in scATAC tracks. Linkage disequilibrium heatmap is also shown. D′ denotes 1304 
normalized linkage disequilibrium; R2 denotes Pearson coefficient of correlation. AID; autoimmune disease. MS; multiple 1305 
sclerosis. 1306 

B) Same as A), at the IRF8 locus. PBC; primary biliary cirrhosis. RA; rheumatoid arthritis.  1307 
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 1308 
Figure S19. Genomic landscape at HHEX and expression of KLF family transcription factors. 1309 
A) Broader view of the HHEX locus (see Fig6b), showing significantly correlated peak2gene links and gene expression of 1310 

neighboring genes KIF11 and EXOC6.  1311 
B) Mean expression of all KLF family transcription factors detected in scRNA-seq dataset. Dot size denotes percent of cluster 1312 

in which gene is detected. 1313 
C) Single-cell expression of KLF2, KLF8, KLF12 and KLF13, with highest expression in B cell subsets. 1314 
  1315 
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Table S1. CyTOF phenotyping antibody panel. 1316 

metal marker clone name clone source 

Y CD45(1) HI30 DVS 

Pd CD45(2) HI30 Biolegend 

Pd CD45(3) HI30 Biolegend 

Pd CD45(4) HI30 Biolegend 

In CD45(5) HI30 Biolegend 

In CD57 HCD57 Biolegend 

La CD16 3G8 Biolegend 

Pr       

Nd CD45RO UCHL1 Biolegend 

Nd       

Nd       

Nd CD33 WM53 Biolegend 

Nd CD14 M5E2 Biolegend 

Nd       

Sm CD20 2H7 Biolegend 

Nd       

Sm CD25 2A3 Fluidigm 

Nd CD138 DL-101 Fluidigm 

Eu       

Sm CD103 B-Ly7 eBioscience 

Eu       

Sm CD27 LG.7F9 eBioscience 

Gd CD56 NCAM16.2 BD 

Gd CD3 UCHT1 Biolegend 

Gd CD19 HIB19 Biolegend 

Gd CD45RA HI100 Biolegend 

Tb CXCR5 RF8B2 BD 

Gd CD28 CD28.2 Biolegend 

Dy CD38 HIT2 Biolegend 

Dy CD8 RPA-T8 Fluidigm 

Dy       

Dy       

Ho CD40 5C3 Fluidigm 

Er       

Er int b7 FIB504 Biolegend 

Er CCR7 G043H7 Biolegend 

Tm IgD IA6-2 Biolegend 

Er IgA G18-1 BD 

Yb HLA-DR L243 Biolegend 

Yb IgM MHM-88 Fluidigm 

Yb TCRgd 5A6.E9 in-house 

Yb CD4 SK3 Fluidigm 

Lu PD-1 EH12.2H7 Fluidigm 

Yb CD127 A019D5 Biolegend 

Ir DNA1 - Fluidigm 

Ir DNA2 - Fluidigm 

Pt cisplatin l/d - Fluidigm 

 1317 
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Table S2. CITE-seq antibody details. 1318 

Target Antibody Clone Catalog# 

CD3 TotalSeq™-A0034 anti-human CD3 Antibody UCHT1 300475 

CD4 TotalSeq™-A0072 anti-human CD4 Antibody RPA-T4 300563 

CD8a TotalSeq™-A0080 anti-human CD8a Antibody RPA-T8 301067 

CD20 TotalSeq™-A0100 anti-human CD20 Antibody 2H7  302359 

CD27 TotalSeq™-A0154 anti-human CD27 Antibody O323 302847 

CD38 TotalSeq™-A0389 anti-human CD38 Antibody HIT2 303541 

CD10 TotalSeq™-A0062 anti-human CD10 Antibody HI10a  312231 

CXCR4 TotalSeq™-A0366 anti-human CD184 (CXCR4) 
Antibody 12G5  306531 

CXCR5 TotalSeq™-A0144 anti-human CD185 (CXCR5) 
Antibody J252D4 356937 

CD44 TotalSeq™-A0125 anti-human CD44 Antibody BJ18 338825 

IgD TotalSeq™-A0384 anti-human IgD Antibody IA6-2  348243 

IgM TotalSeq™-A0136 anti-human IgM Antibody MHM-88 314541 
 1319 


