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Abstract. In this paper, we prove a global existence and blow-up of the positive
solutions to the initial-boundary value problem of the nonlinear porous medium
equation and the nonlinear pseudo-parabolic equation on the stratified Lie groups.
Our proof is based on the concavity argument and the Poincaré inequality, estab-
lished in [36] for stratified groups.

Contents

1. Introduction 1
2. Nonlinear porous medium equation 4
2.1. Blow-up solutions of the nonlinear porous medium equation 4
2.2. Global existence for the nonlinear porous medium equation 8
3. Nonlinear pseudo-parabolic equation 9
3.1. Blow-up phenomena for the pseudo-parabolic equation 9
3.2. Global solution for the pseudo-parabolic equation 13
References 15

1. Introduction

The main purpose of this paper is to study the global existence and blow-up of the
positive solutions to the initial-boundary problem of the nonlinear porous medium
equation 

ut(x, t)− Lp(um(x, t)) = f(u(x, t)), x ∈ D, t > 0,

u(x, t) = 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ D,
(1.1)
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and the nonlinear pseudo-parabolic equation
ut(x, t)−∇H · (|∇Hu(x, t)|p−2∇Hut(x, t)− Lpu(x, t) = f(u(x, t)), x ∈ D, t > 0,

u(x, t) = 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ D,
(1.2)

where m ≥ 1 and p ≥ 2, f is locally Lipschitz continuous on R, f(0) = 0, and such
that f(u) > 0 for u > 0. Furthermore, we suppose that u0 is a non-negative and
non-trivial function in C1(D) with u0(x) = 0 on the boundary ∂D for p = 2 and in

L∞(D) ∩ S̊1,p(D) for p > 2, respectively.

Definition 1.1. Let G be a stratified group. We say that an open set D ⊂ G is an
admissible domain if it is bounded and if its boundary ∂D is piecewise smooth and
simple, that is, it has no self-intersections.

Let G be a stratified group. Let D ⊂ G be an open set, then we define the
functional spaces

S1,p(D) = {u : D → R;u, |∇Hu| ∈ Lp(D)}. (1.3)

We consider the following functional

Jp(u) :=

(∫
D

|∇Hu(x)|pdx
) 1

p

.

Thus, the functional class S̊1,p(D) can be defined as the completion of C1
0(D) in the

norm generated by Jp, see e.g. [7].
A Lie group G = (Rn, ◦) is called a stratified (Lie) group if it satisfies the following

conditions:
(a) For some integer numbers N1 + N2 + ... + Nr = n, the decomposition Rn =

RN1 × . . .× RNr is valid, and for any λ > 0 the dilation

δλ(x) := (λx′, λ2x(2), . . . , λrx(r))

is an automorphism of G. Here x′ ≡ x(1) ∈ RN1 and x(k) ∈ RNk for k = 2, . . . , r.
(b) Let N1 be as in (a) and let X1, . . . , XN1 be the left-invariant vector fields on G

such that Xk(0) = ∂
∂xk
|0 for k = 1, . . . , N1. Then the Hörmander rank condition must

be satisfied, that is,

rank(Lie{X1, . . . , XN1}) = n,

for every x ∈ Rn.
Then, we say that the triple G = (Rn, ◦, δλ) is a stratified (Lie) group.
Recall that the standard Lebesgue measure dx on Rn is the Haar measure for G

(see e.g. [14], [37]). The left-invariant vector field Xj has an explicit form:

Xk =
∂

∂x′k
+

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x′, ..., x(l−1))

∂

∂x
(l)
m

, (1.4)

see e.g. [37]. The following notations are used throughout this paper:

∇H := (X1, . . . , XN1)
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for the horizontal gradient, and

Lpf := ∇H · (|∇Hf |p−2∇Hf), 1 < p <∞, (1.5)

for the p-sub-Laplacian. When p = 2, that is, the second order differential operator

L =

N1∑
k=1

X2
k , (1.6)

is called the sub-Laplacian on G. The sub-Laplacian L is a left-invariant homogeneous
hypoelliptic differential operator and it is known that L is elliptic if and only if the
step of G is equal to 1.

One of the important examples of the nonlinear parabolic equations is the porous
medium equation, which describes widely processes involving fluid flow, heat transfer
or diffusion, and its other applications in different fields such as mathematical biology,
lubrication, boundary layer theory, and etc. Existence and nonexistence of solutions
to problem (1.1) for the reaction term um in the case m = 1 and m > 1 have
been actively investigated by many authors, for example, [3, 4, 9, 11, 12, 15, 16,
20, 21, 22, 27, 29, 39, 40, 41], Grillo, Muratori and Punzo considered fractional
porous medium equation [17, 18], and it was also considered in the setting of Cartan-
Hadamard manifolds [19]. By using the concavity method, Schaefer [42] established
a condition on the initial data of a Dirichlet type initial-boundary value problem for
the porous medium equation with a power function reaction term when blow-up of
the solution in finite time occurs and a global existence of the solution holds. We
refer for more details to Vazquez’s book [43] which provides a systematic presentation
of the mathematical theory of the porous medium equation.

The energy for the isotropic material can be modeled by a pseudo-parabolic equa-
tion [10]. Some wave processes [6], filtration of the two-phase flow in porous me-
dia with the dynamic capillary pressure [5] are also modeled by pseudo-parabolic
equations. The global existence and finite-time blow-up for the solutions to pseudo-
parabolic equations in bounded and unbounded domains have been studied by many
researchers, for example, see [25, 26, 31, 32, 35, 45, 46, 47] and the references therein.

In [44], Veron and Pohozaev have obtained blow-up results for the following semi-
linear diffusion equation on the Heisenberg groups

∂u(x, t)

∂t
− Lu(x, t) = |u(x, t)|p, (x, t) ∈ H× (0,+∞).

Also, blow-up of the solutions to the semi-linear diffusion and pseudo-parabolic equa-
tions on the Heisenberg groups was derived in [1, 2, 13, 23, 24]. In addition, in [38]
the authors found the Fujita exponent on general unimodular Lie groups.

In some of our considerations a crucial role is played by

• The condition

αF (u) ≤ umf(u) + βupm + αγ, u > 0, (1.7)

where

F (u) =
pm

m+ 1

∫ u

0

sm−1f(s)ds, m ≥ 1,

introduced by Chung-Choi [8] for a parabolic equation. We will deal with
several variants of such condition.
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• The Poincaré inequality established by the first author and Suragan in [36]
for stratified groups:

Lemma 1.2. Let D ⊂ G be an admissible domain with N1 being the dimension
of the first stratum. Let 1 < p < ∞ with p 6= N1. For every function
u ∈ C∞0 (D\{x′ = 0}) we have∫

D

|∇Hu|pdx ≥
|N1 − p|p

(pR)p

∫
D

|u|pdx, (1.8)

where R = supx∈D |x′|.

Note that condition on nonlinearity (2.1) includes the following cases:

1. Philippin and Proytcheva [33] used the condition

(2 + ε)F (u) ≤ uf(u), u > 0, (1.9)

where ε > 0. It is a special case of an abstract condition by Levine and Payne
[30].

2. Bandle and Brunner [4] relaxed this condition as follows

(2 + ε)F (u) ≤ uf(u) + γ, u > 0, (1.10)

where ε > 0 and γ > 0.

These cases were established on the bounded domains of the Euclidean space, and it
is a new result on the stratified groups.

Also, the condition (1.7) depends on a domain D, due to the term βup where β is

related to constant |N1−p|p
(pR)p

, which can be interpreted as a measure of the size of the

domain D. Then β in (1.7) is dependent on the size of the domain D. If we choose
β as arbitrary small in (2.1), then it gets closer to condition (1.10). For small β and
γ = 0, condition (2.1) gets closer to (1.9) in the case p = 2 and m = 1. Since the case
m > 1 is equivalent to m = 1 we refer to Section 4 in [8] for more detailed discussion
to condition (2.1).

Our paper is organised so that we discuss the existence and nonexistence of positive
solutions to the nonlinear porous medium equation in Section 2 and the nonlinear
pseudo-parabolic equation in Section 3.

2. Nonlinear porous medium equation

In this section, we prove the global solutions and blow-up phenomena of the initial-
boundary value problem (1.1).

2.1. Blow-up solutions of the nonlinear porous medium equation. We start
with the blow-up properly.

Theorem 2.1. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p <∞ with p 6= N1.

Assume that function f satisfies

αF (u) ≤ umf(u) + βupm + αγ, u > 0, (2.1)

where

F (u) =
pm

m+ 1

∫ u

0

sm−1f(s)ds, m ≥ 1,
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for some

γ > 0, 0 < β ≤ |N1 − p|p

(pR)p
(α−m− 1)

m+ 1
and α > m+ 1,

where R = supx∈D |x′| and x = (x′, x′′) with x′ being in the first stratum. Let u0 ∈
L∞(D) ∩ S̊1,p(D) satisfy the inequality

J(0) := − 1

m+ 1

∫
D

|∇Hu
m
0 (x)|pdx+

∫
D

(F (u0(x))− γ)dx > 0. (2.2)

Then any positive solution u of (1.1) blows up in finite time T ∗, i.e., there exists

0 < T ∗ ≤ M

σ
∫
D
um+1
0 (x)dx

, (2.3)

such that

lim
t→T ∗

∫ t

0

∫
D

um+1(x, τ)dxdτ = +∞, (2.4)

where M > 0 and σ =
√
pmα

m+1
− 1 > 0. In fact, in (2.3), we can take

M =
(1 + σ)(1 + 1/σ)(

∫
D
um+1
0 (x)dx)2

α(m+ 1)J0
.

Proof of Theorem 2.1. Assume that u(x, t) is a positive solution of (1.1). We use the
concavity method for showing the blow-up phenomena introduced by Levine [28]. We
introduce the functional

J(t) := − 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx, (2.5)

and by (2.2) we have

J(0) = − 1

m+ 1

∫
D

|∇Hu
m
0 (x)|pdx+

∫
D

(F (u0(x))− γ)dx > 0. (2.6)

Moreover, J(t) can be written in the following form

J(t) = J(0) +

∫ t

0

dJ(τ)

dτ
dτ, (2.7)

where∫ t

0

dJ(τ)

dτ
dτ = − 1

m+ 1

∫ t

0

∫
D

d

dτ
|∇Hu

m(x, τ)|pdxdτ +

∫ t

0

∫
D

d

dτ
(F (u(x, τ))− γ)dxdτ

= − p

m+ 1

∫ t

0

∫
D

|∇Hu
m(x, τ)|p−2∇Hu

m · ∇H(um(x, τ))τdxdτ

+

∫ t

0

∫
D

Fu(u(x, τ))uτ (x, τ)dxdτ

=
p

m+ 1

∫ t

0

∫
D

[Lp(um) + f(u)](um(x, τ))τdxdτ

=
pm

m+ 1

∫ t

0

∫
D

um−1(x, τ)u2τ (x, τ)dxdτ.
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Define

E(t) =

∫ t

0

∫
D

um+1(x, τ)dxdτ +M, t ≥ 0,

with M > 0 to be chosen later. Then the first derivative with respect t of E(t) gives

E ′(t) =

∫
D

um+1(x, t)dx = (m+ 1)

∫
D

∫ t

0

um(x, τ)uτ (x, τ)dτdx+

∫
D

um+1
0 (x)dx.

By applying (2.1), Lemma 1.2 and 0 < β ≤ |N1−p|p
(pR)p

(α−m−1)
m+1

, we estimate the second

derivative of E(t) as follows

E ′′(t) = (m+ 1)

∫
D

um(x, t)ut(x, t)dx

= −(m+ 1)

∫
D

|∇Hu
m(x, t)|pdx+ (m+ 1)

∫
D

um(x, t)f(u(x, t))dx

≥ −(m+ 1)

∫
D

|∇Hu
m(x, t)|pdx+ (m+ 1)

∫
D

[αF (u(x, t))− βupm(x, t)− αγ] dx

= α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

]
+ (α−m− 1)

∫
D

|∇Hu
m(x, t)|pdx− β(m+ 1)

∫
D

upm(x, t)dx

≥ α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

]
+

[
|N1 − p|p

(pR)p
(α−m− 1)− β(m+ 1)

] ∫
D

upm(x, t)dx

≥ α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

]
= α(m+ 1)J(t)

= α(m+ 1)J(0) + pαm

∫ t

0

∫
D

um−1(x, τ)u2τ (x, τ)dxdτ.

By employing the Hölder and Cauchy-Schwarz inequalities, we obtain the estimate
for [E ′(t)]2 as follows

[E ′(t)]2 ≤ (1 + δ)

(∫
D

∫ t

0

(um+1(x, τ))τdτdx

)2

+

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

= (m+ 1)2(1 + δ)

(∫
D

∫ t

0

um(x, τ)uτ (x, τ)dxdτ

)2

+

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

= (m+ 1)2(1 + δ)

(∫
D

∫ t

0

u(m+1)/2+(m−1)/2(x, τ)uτ (x, τ)dxdτ

)2

+

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2
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≤ (m+ 1)2(1 + δ)

(∫
D

(∫ t

0

um+1dτ

)1/2(∫ t

0

um−1u2τ (x, τ)dτ

)1/2

dx

)2

+

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

≤ (m+ 1)2(1 + δ)

(∫ t

0

∫
D

um+1dxdτ

)(∫ t

0

∫
D

um−1u2τ (x, τ)dxdτ

)
+

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

,

for arbitrary δ > 0. So we have

[E′(t)]2 ≤ (m+1)2(1+δ)

(∫ t

0

∫
D
um+1dxdτ

)(∫ t

0

∫
D
um−1u2τdxdτ

)
+

(
1 +

1

δ

)(∫
D
um+1
0 dx

)2

.

(2.8)

The previous estimates together with σ = δ =
√
pmα

m+1
− 1 > 0 where positivity comes

from α > m+ 1, imply

E ′′(t)E(t)− (1 + σ)[E ′(t)]2

≥ αM(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m
0 |pdx+

∫
D

(F (u0)− γ)dx

]
+ pmα

(∫ t

0

∫
D

um+1(x, τ)dxdτ

)(∫ t

0

∫
D

u2τ (x, τ)um−1(x, τ)dxdτ

)
− (m+ 1)2(1 + σ)(1 + δ)

(∫ t

0

∫
D

um+1dxdτ

)(∫ t

0

∫
D

um−1u2τ (x, τ)dxdτ

)
− (1 + σ)

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

≥ αM(m+ 1)J(0)− (1 + σ)

(
1 +

1

δ

)(∫
D

um+1
0 (x)dx

)2

.

By assumption J(0) > 0, thus if we select

M =
(1 + σ)

(
1 + 1

δ

) (∫
D
um+1
0 (x)dx

)2
α(m+ 1)J(0)

,

that gives

E ′′(t)E(t)− (1 + σ)(E ′(t))2 ≥ 0. (2.9)

We can see that the above expression for t ≥ 0 implies

d

dt

[
E ′(t)

Eσ+1(t)

]
≥ 0⇒

{
E ′(t) ≥

[
E′(0)

Eσ+1(0)

]
E1+σ(t),

E(0) = M.

Then for σ =
√
pmα

m+1
− 1 > 0, we arrive at

− 1

σ

[
E−σ(t)− E−σ(0)

]
≥ E ′(0)

Eσ+1(0)
t,
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and some rearrangements with E(0) = M give

E(t) ≥
(

1

Mσ
−
σ
∫
D
um+1
0 (x)dx

Mσ+1
t

)− 1
σ

.

Then the blow-up time T ∗ satisfies

0 < T ∗ ≤ M

σ
∫
D
um+1
0 dx

.

That completes the proof. �

2.2. Global existence for the nonlinear porous medium equation. We now
show that under some assumptions, if a positive solution to (1.1) exists, its norm is
globally controlled.

Theorem 2.2. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p <∞ with p 6= N1.

Assume that

αF (u) ≥ umf(u) + βupm + αγ, u > 0, (2.10)

where

F (u) =
pm

m+ 1

∫ u

0

sm−1f(s)ds, m ≥ 1,

for some

γ ≥ 0, α ≤ 0 and β ≥ |N1 − p|p

(pR)p
(α−m− 1)

m+ 1
,

where R = supx∈D |x′| and x = (x′, x′′) with x′ being in the first stratum.

Assume also that u0 ∈ L∞(D) ∩ S̊1,p(D) satisfies inequality

J(0) :=

∫
D

(F (u0(x))− γ)dx− 1

m+ 1

∫
D

|∇Hu
m
0 (x)|pdx > 0. (2.11)

If u is a positive local solution of problem (1.1), then it is global and satisfies the
following estimate: ∫

D

um+1(x, t)dx ≤
∫
D

um+1
0 (x)dx.

Proof of Theorem 2.2. Recall from the proof of Theorem 2.1, the functional

J(t) := − 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

= J0 +
pm

m+ 1

∫ t

0

∫
D

um−1(x, τ)u2τ (x, τ)dxdτ.

Let us define

E(t) =

∫
D

um+1(x, t)dx.
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By applying (2.10), Lemma 1.2 and β ≥ |N1−p|p
(pR)p

(α−m−1)
m+1

, respectively, one finds

E ′(t) = (m+ 1)

∫
D

um(x, t)ut(x, t)dx

= (m+ 1)

[∫
D

um(x, t)∇H · (|∇Hu
m(x, t)|p−2∇Hu

m(x, t)) +

∫
D

um(x, t)f(u(x, t))dx

]
= (m+ 1)

[
−
∫
D

|∇Hu
m(x, t)|pdx+

∫
D

um(x, t)f(u(x, t))dx

]
≤ (m+ 1)

[
−
∫
D

|∇Hu
m(x, t)|pdx+

∫
D

[αF (u(x, t))− βupm(x, t)− αγ] dx

]
= α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

]
− (m+ 1− α)

∫
D

|∇Hu
m(x, t)|pdx− β(m+ 1)

∫
D

upm(x, t)dx

≤ α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

]
−
[
|N1 − p|p

(pR)p
(m+ 1− α) + β(m+ 1)

] ∫
D

upm(x, t)dx

≤ α(m+ 1)

[
− 1

m+ 1

∫
D

|∇Hu
m(x, t)|2dx+

∫
D

(F (u(x, t))− γ)dx

]
= α(m+ 1)J(t).

We can rewrite E ′(t) by using (2.7) and α ≤ 0 as follows

E ′(t) ≤ α(m+ 1)J(0) + pαm

∫ t

0

∫
D

um−1(x, τ)u2τ (x, τ)dxdτ ≤ 0. (2.12)

That gives

E(t) ≤ E(0).

This completes the proof of Theorem 2.2. �

3. Nonlinear pseudo-parabolic equation

In this section, we prove the global solutions and blow-up phenomena of the initial-
boundary value problem (1.2).

3.1. Blow-up phenomena for the pseudo-parabolic equation. We start with
conditions ensuring the blow-up of solutions in finite time.

Theorem 3.1. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p <∞ with p 6= N1.

Assume that

αF (u) ≤ uf(u) + βup + αγ, u > 0, (3.1)

where

F (u) =

∫ u

0

f(s)ds,
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for some

α > p and 0 < β ≤ |N1 − p|p

(pR)p
(α− p)

p
, (3.2)

γ > 0 and R = sup
x∈D
|x′|.

Assume also that u0 ∈ L∞(D) ∩ S̊1,p(D) satisfies

F0 := −1

p

∫
D

|∇Hu0(x)|pdx+

∫
D

(F (u0(x))− γ)dx > 0. (3.3)

Then any positive solution u of (1.2) blows up in finite time T ∗, i.e., there exists

0 < T ∗ ≤ M

σ
∫
D
u20 + 2

p
|∇Hu0|pdx

, (3.4)

such that

lim
t→T ∗

∫ t

0

∫
D

[u2 +
2

p
|∇Hu|p]dxdτ = +∞, (3.5)

where σ =
√

α
2
− 1 > 0 and

M =
(1 + σ)

(
1 + 1

σ

) (∫
D
u20 + 2

p
|∇Hu0|pdx

)2
2αF0

.

Proof of Theorem 3.1. The proof is based on a concavity method. The main idea is
to show that [E−σp (t)]′′ ≤ 0 which means that E−σp (t) is a concave function, for Ep(t)
defined below.

Let us introduce some notations:

F(t) := −1

p

∫
D

|∇Hu(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx,

and

F(0) := −1

p

∫
D

|∇Hu0(x)|pdx+

∫
D

(F (u0(x))− γ)dx,

with

F (u) =

∫ u

0

f(s)ds.

We know that

F(t) = F(0) +

∫ t

0

dF(τ)

dτ
dτ, (3.6)
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where ∫ t

0

dF(τ)

dτ
dτ = −1

p

∫ t

0

∫
D

d

dτ
|∇Hu|pdxdτ +

∫ t

0

∫
D

d

dτ
(F (u)− γ)dxdτ

= −
∫ t

0

∫
D

|∇Hu|p−2∇u · ∇Huτdxdτ +

∫ t

0

∫
D

Fu(u)uτdxdτ

=

∫ t

0

∫
D

[Lpu+ f(u)]uτdxdτ

=

∫ t

0

∫
D

u2τ − uτ∇H · (|∇Hu|p−2∇Huτ )dxdτ

=

∫ t

0

∫
D

u2τ + |∇Hu|p−2|∇Huτ |2dxdτ.

Let us define

Ep(t) :=

∫ t

0

∫
D

[u2 +
2

p
|∇Hu|p]dxdτ +M, t ≥ 0,

with a positive constant M > 0 to be chosen later. Then

E ′p(t) =

∫
D

[u2 +
2

p
|∇Hu|p]dx =

∫ t

0

d

dτ

∫
D

[u2 +
2

p
|∇Hu|p]dxdτ +

∫
D

u20 +
2

p
|∇Hu0|pdx.

(3.7)

Now we estimate E ′′p (t) by using assumption (3.1) and integration by parts, that gives

E ′′p (t) = 2

∫
D

uutdx+
2

p

∫
D

(|∇Hu|p)tdx

= 2

∫
D

[uLpu+ u∇H · (|∇Hu|p−2∇Hut) + uf(u)]dx+
2

p

∫
D

(|∇Hu|p)tdx

= −2

∫
D

[|∇Hu|p + |∇Hu|p−2∇Hu · ∇Hut]dx+ 2

∫
D

uf(u)dx+
2

p

∫
D

(|∇Hu|p)tdx

≥ −2

∫
D

|∇Hu|pdx+ 2

∫
D

[αF (u)− βup − αγ] dx

= 2α

[
−1

p

∫
D

|∇Hu|pdx+

∫
D

(F (u)− γ)dx

]
+

2(α− p)
p

∫
D

|∇Hu|pdx− 2β

∫
D

updx.

Next we apply Lemma 1.2, which gives

≥ 2α

[
−1

p

∫
D

|∇Hu|pdx+

∫
D

(F (u)− γ)dx

]
+ 2

[
|N1 − p|p

(pR)p
(α− p)

p
− β

] ∫
D

updx

≥ 2α

[
−1

p

∫
D

|∇Hu|pdx+

∫
D

(F (u)− γ)dx

]
= 2αF(t),
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with F(t) as in (3.6), then E ′′p (t) can be rewritten in the following form

E ′′p (t) ≥ 2αF(0) + 2α

∫ t

0

∫
D

[u2τ + |∇Hu|p−2|∇Huτ |2]dxdτ. (3.8)

Also we have for arbitrary δ > 0, in view of (3.7),

[E ′p(t)]
2 ≤ (1 + δ)

(∫ t

0

d

dτ

∫
D

[u2 +
2

p
|∇Hu|p]dxdτ

)2

+

(
1 +

1

δ

)(∫
D

[u20 +
2

p
|∇Hu0|p]dx

)2

.

Then by taking σ = δ =
√

α
2
− 1 > 0, we arrive at

E ′′p (t)Ep(t)− (1 + σ)[E ′p(t)]
2

≥ 2αMF(0) + 2α

(∫ t

0

∫
D

[u2τ + |∇Hu|p−2|∇Huτ |2]dxdτ
)(∫ t

0

∫
D

[u2 +
2

p
|∇Hu|pdx]dτ

)
− (1 + σ)(1 + δ)

(∫ t

0

d

dτ

∫
D

[u2 +
2

p
|∇Hu|p]dxdτ

)2

− (1 + σ)

(
1 +

1

δ

)(∫
D

[u20 +
2

p
|∇Hu0|p]dx

)2

= 2αMF(0)− (1 + σ)

(
1 +

1

δ

)(∫
D

[u20 +
2

p
|∇Hu0|p]dx

)2

+ 2α

[(∫ t

0

∫
D

[u2τ + |∇Hu|p−2|∇Huτ |2]dxdτ
)(∫ t

0

∫
D

[u2 +
2

p
|∇Hu|pdx]dτ

)
−
(∫ t

0

∫
D

[uuτ + |∇Hu|p−2∇Hu · ∇Huτ ]dxdτ

)2
]

≥ 2αMF(0)− (1 + σ)

(
1 +

1

δ

)(∫
D

u20 +
2

p
|∇Hu0|pdx

)2

.

Note that in the last line we have used the following inequality(∫ t

0

∫
D

[u2 + |∇Hu|p]dxdτ
)(∫ t

0

∫
D

[u2τ + |∇Hu|p−2|∇Huτ |2]dxdτ
)

−
(∫ t

0

∫
D

[uuτ + |∇Hu|p−2∇Hu · ∇Huτ ]dxdτ

)2

≥

[(∫
D

∫ t

0

u2dτdx

) 1
2
(∫

D

∫ t

0

|∇Hu|p−2|∇Huτ |2dτdx
) 1

2

−
(∫

D

∫ t

0

|∇Hu|pdτdx
) 1

2
(∫

D

∫ t

0

u2τdτdx

) 1
2

]2
≥ 0,
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where making use of the Hölder inequality and Cauchy-Schawrz inequality we have(∫ t

0

∫
D

[uuτ + |∇Hu|p−2∇Hu · ∇Huτ ]dxdτ

)2

≤

(∫
D

(∫ t

0

u2dτ

) 1
2
(∫ t

0

u2τdτ

) 1
2

dx+

∫
D

(∫ t

0

|∇Hu|pdτ
) 1

2
(∫ t

0

|∇Hu|p−2|∇Huτ |2dτ
) 1

2

dx

)2

=

(∫
D

(∫ t

0

u2dτ

) 1
2
(∫ t

0

u2τdτ

) 1
2

dx

)2

+

(∫
D

(∫ t

0

|∇Hu|pdτ
) 1

2
(∫ t

0

|∇Hu|p−2|∇Huτ |2dτ
) 1

2

dx

)2

+2

(∫
D

(∫ t

0

u2dτ

) 1
2
(∫ t

0

u2τdτ

) 1
2

dx

)(∫
D

(∫ t

0

|∇Hu|pdτ
) 1

2
(∫ t

0

|∇Hu|p−2|∇Huτ |2dτ
) 1

2

dx

)

≤
(∫

D

∫ t

0

u2dτdx

)(∫
D

∫ t

0

u2τdτdx

)
+

(∫
D

∫ t

0

|∇Hu|pdτdx
)(∫

D

∫ t

0

|∇Hu|p−2|∇Huτ |2dτdx
)

+2

[(∫
D

∫ t

0

u2dτdx

)(∫
D

∫ t

0

u2τdτdx

)(∫
D

∫ t

0

|∇Hu|pdτdx
)(∫

D

∫ t

0

|∇Hu|p−2|∇Huτ |2dτdx
)] 1

2

.

By assumption F(0) > 0, thus we can select

M =
(1 + σ)

(
1 + 1

δ

) (∫
D
u20 + 2

p
|∇Hu0|pdx

)2
2αF(0)

,

that gives
E ′′p (t)Ep(t)− (1 + σ)[E ′p(t)]

2 ≥ 0. (3.9)

We can see that the above expression for t ≥ 0 implies

d

dt

[
E ′p(t)

Eσ+1
p (t)

]
≥ 0⇒

{
E ′p(t) ≥

[
E′p(0)

Eσ+1
p (0)

]
E1+σ
p (t),

Ep(0) = M.

Then for σ =
√

α
2
− 1 > 0, we arrive at

Ep(t) ≥

(
1

Mσ
−
σ
∫
D

[u20 + 2
p
|∇Hu0|p]dx

Mσ+1
t

)− 1
σ

.

Then the blow-up time T ∗ satisfies

0 < T ∗ ≤ M

σ
∫
D

[u20 + 2
p
|∇Hu0|p]dx

.

This completes the proof. �

3.2. Global solution for the pseudo-parabolic equation. We now show that
positive solutions, when they exist for some nonlinearities, can be controlled.

Theorem 3.2. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p <∞.

Assume that function f satisfies

αF (u) ≥ uf(u) + βup + αγ, u > 0, (3.10)
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where

F (u) =

∫ u

0

f(s)ds,

for some

β ≥ (p− α)

2
and α ≤ 0, γ ≥ 0. (3.11)

Let u0 ∈ L∞(D) ∩ S̊1,p(D) satisfy

F0 := −1

p

∫
D

|∇Hu0(x)|pdx+

∫
D

(F (u0(x))− γ)dx > 0. (3.12)

If u is a positive local solution of problem (1.2), then it is global and satisfies the
following estimate:∫

D

[u2 +
2

p
|∇Hu|p]dx ≤ exp(−(p− α)t)

∫
D

[u20 +
2

p
|∇Hu0|p]dx.

Proof of Theorem 3.2. Define

E(t) :=

∫
D

[u2 +
2

p
|∇Hu|p]dx.

Now we estimate E ′(t) by using assumption (3.10), that gives

E ′(t) = 2

∫
D

uutdx+
2

p

∫
D

(|∇Hu|p)tdx

= 2

∫
D

[uLpu+ u∇H · (|∇Hu|p−2∇Hut) + uf(u)]dx+
2

p

∫
D

(|∇Hu|p)tdx

= −2

∫
D

[|∇Hu|p + |∇Hu|p−2∇Hu · ∇Hut]dx+ 2

∫
D

uf(u)dx+
2

p

∫
D

(|∇Hu|p)tdx

≤ 2α

[
−1

p

∫
D

|∇Hu|pdx+

∫
D

(F (u)− γ)dx

]
− 2(p− α)

p

∫
D

|∇Hu|pdx− 2β

∫
D

updx

≤ 2α

[
−1

p

∫
D

|∇Hu|pdx+

∫
D

(F (u)− γ)dx

]
− (p− α)[Ep(t)−

∫
D

u2dx]dx− 2β

∫
D

u2dx,

= 2αF(t)− (p− α)E(t) + [p− α− 2β]

∫
D

u2dx,

with

F(t) := −1

p

∫
D

|∇Hu(x, t)|pdx+

∫
D

(F (u(x, t))− γ)dx

= F0 +

∫ t

0

∫
D

u2τ + |∇Hu|p−2|∇Huτ |2dxdτ.

Since β ≥ p−α
2

we arrive at

E ′(t) + (p− α)E(t) ≤ 2α

[
F0 +

∫ t

0

∫
D

u2τ + |∇Hu|p−2|∇Huτ |2dxdτ
]
≤ 0.
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This implies,

E(t) ≤ exp(−(p− α)t)E(0),

finishing the proof. �
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Vol. 327, Birkhäuser, 588 pp, 2019. (open access book)

[38] Ruzhansky M., Yessirkegenov N.: Existence and non-existence of global solutions for semi-
linear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent
on unimodular Lie groups. arXiv:1812.01933, (2019)

[39] Sabitbek B., Torebek B.: Global existence and blow-up of solutions to the nonlinear
porous medium equation. arXiv:2104.06896, (2021)

[40] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P.: Blow-Up in
Quasilinear Parabolic Equations. in: De Gruyter Expositions in Mathematics, vol. 19,
Walter de Gruyter Co., Berlin, 1995.



GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS 17

[41] Souplet P.: Morrey spaces and classification of global solutions for a supercritical semi-
linear heat equation in Rn. J. Funct. Anal., 272, 2005–2037 (2017)

[42] Schaefer P. W.: Blow-up phenomena in some porous medium problems. Dyn. Sys. and
Appl., 18, 103-110 (2009)

[43] Vazquez J. L.: The Porous Medium Equation: Mathematical Theory. Oxford University
Press, 2006.
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