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Abstract

The cache-enabling unmanned aerial vehicle (UAV) non-orthogonal multiple access (NOMA) net-

works for mixture of augmented reality (AR) and normal multimedia applications are investigated, which

is assisted by UAV base stations. The user association, power allocation of NOMA, deployment of UAVs

and caching placement of UAVs are jointly optimized to minimize the content delivery delay. A branch

and bound (BaB) based algorithm is proposed to obtain the per-slot optimization. To cope with the

dynamic content requests and mobility of users in practical scenarios, the original optimization problem

is transformed to a Stackelberg game. Specifically, the game is decomposed into a leader level user

association sub-problem and a number of power allocation, UAV deployment and caching placement

follower level sub-problems. The long-term minimization was further solved by a deep reinforcement

learning (DRL) based algorithm. Simulation result shows that the content delivery delay of the proposed

BaB based algorithm is much lower than benchmark algorithms, as the optimal solution in each time

slot is achieved. Meanwhile, the proposed DRL based algorithm achieves a relatively low long-term

content delivery delay in the dynamic environment with lower computation complexity than BaB based

algorithm.

Index terms— deep deterministic policy gradient, edge caching, non-orthogonal multiple

access, Stackelberg game, unmanned aerial vehicle
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I. INTRODUCTION

Due to the quick deployment, flexibility and stable transmission channel of unmanned aerial

vehicles (UAVs), deploying the UAVs to assist wireless communication has attracted much atten-

tion. Especially for the hotspot areas with temporarily high user density, where increasing fixed

ground nodes is cost-ineffective, UAV-assisted communications show great advantages of high

flexibility and easy deployment [2]. Caching the contents at UAVs has shown its effectiveness

of alleviating the backhaul traffic of the existing terrestrial communication systems. Because of

the ability to enhance both the access capability and spectral efficiency of networks [3], non-

orthogonal multiple access (NOMA) has been used in UAV networks with the scenarios not

limited to hotspot areas coverage.

The resource management in the UAV networks with normal multimedia service, where NO-

MA is deployed to enhance the communication ability, has received remarkable attention [4, 5].

However, for the scenario with dense mixture of augmented reality (AR) and normal multimedia

requests, the complex data flow, which is different from that in the networks with unified service,

necessitates a significant rethinking of resource allocation approaches. In the mixed scenario, the

requested contents are sent to users requesting normal multimedia application. Meanwhile, both

of the computation result package and requested contents are sent to the users requesting AR

application. The UAVs employ NOMA to send the requested content to users based on the same

wireless resource, which improves the spectrum efficiency. The conflict between complex data

flow and the request for low content delivery delay puts forward a high demand for the access

capability of wireless networks. Compared with normal access techniques, deploying NOMA is

a promising method to provide efficient access for users, as the content transmitted by the same

frequency band could be utilized to realize mixture AR and normal multimedia applications

delivery. The objective of this article is to realize the potential of the UAV NOMA networks in

the new scenario through intelligent resource allocation and UAV deployment.

A. Related Works

There have been research contributions related to cache-enabling UAV networks [6–11].

The authors in [6] jointly optimized wireless channels allocation and UAV’s activity in cloud-

enabled cellular networks with device-to-device to maximize the long-term reward. The authors

in [7] optimized caching threshold between different subsets of content files to maximize the

performance of cache-enabling UAV networks. The work in [8] was an early outstanding study on
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online UAV control and content scheduling of cache-enabling UAV networks, whcih proposed an

online UAV-assisted wireless caching design via jointly optimizing UAV trajectory, transmission

power and caching content scheduling. Different from [8], we propose a framework of UAV

NOAM networks for mixture of AR and normal multimedia applications delivery, and investigate

the joint optimization of UAV deployment, caching placement and radio resource allocation with

varying content requests and movement of users in this paper. The authors in [9] studied the

user-centric information in cache-enabling UAV-assisted cellular networks, where the trajectory

and caching placement were jointly optimized. The authors in [10] studied the joint optimization

of UAV deployment and caching placement on IoT devices to maximize throughput among IoT

devices. The authors in [11] studied the secure transmission for scalable videos in hyper-dense

networks via cache-enabling UAVs.

The works in [12–18] have studied the problems related to UAV NOMA cellular networks.

The authors in [12] proposed three study cases of UAV NOMA networks, including stochastic

geometry based UAVs and ground users position model, joint trajectory planning and power

allocation, and machine learning aided adaptive UAV placement. A single-antenna UAV was used

to serve dense users by employing NOMA in [13], where a max-min rate optimization problem

was formulated, with the constraints of power consumption, bandwidth allocation, UAV altitude,

and antenna beamwidth. The authors in [15] focused on the uplink transmission of NOMA links

in UAV-assisted cellular networks, where the information bits were offloaded to ground base

station (BS). The authors in [16] studied cooperative NOMA to avoid interference of the links

from users to UAV. The authors in [17] utilized NOMA to improve the spectrum scarcity of

UAV-assisted cellular networks and investigated the viability of NOMA UAV network operating

in realistic operating environments. The authors in [18] investigated the deployment of NOMA

in UAV-assisted cellular networks to guarantee security.

Moreover, there have been research contributions about caching in virtual reality/augmented

reality/mixed reality systems [19–21]. The authors in [19] studied the caching and transmission

joint optimization for UAV networks, where users’ reliability in virtual reality (VR) systems

was improved by deploying UAVs to capture videos and transmit to small BSs. The authors

in [20] jointly optimized caching placement and virtual viewport of video to maximize the

overall quality of the 360o videos delivered to the end-users. The authors in [21] considered

both of edge caching and edge computing in the fog radio access networks based mobile AR

delivery framework, where radio communication, caching policy and computing offloading were
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jointly optimized to maximize the tolerant latency.

B. Motivation and Contribution

In UAV networks, the movement of UAVs should be considered in real scenarios. Besides, the

real time movement and dynamic request of users are new challenges to the resource allocation

problems, including time varying parameters of the formulated problems. To fill in this gap,

this article studies a dynamic environment with ground users’ and UAV’s mobility as well as

varying requests for contents, where UAVs serve users with the AR and normal multimedia

content requesting by NOMA. Jointly considering resource allocation and UAV placement is

very promising as UAVs can be placed strategically so that NOMA can achieve the best content

delivery performance for ground users. Besides, jointly considering the resource allocation and

UAVs caching placement improves the content delivery performance through optimizing user

association, as serving users with the cache of UAV could obviously offload wireless backhaul

traffic. Driven by it, we optimize the deployment of UAVs, the caching placement of UAVs and

resource allocation, which includes user association and power allocation of NOMA. The main

contributions of this article are summarized as follows.

• We propose a cache-enabling UAV NOMA framework for AR application, where both of the

users requesting for AR application and users requesting for normal multimedia application

are served by the UAV-assisted cellular networks. We assume that the contents are required

for AR applications and normal multimedia applications. We define the long-term content

delivery delay to express the sum downlink transmission delay of users in the dynamic

environment with time varying request and moving users.

• We formulate an optimization problem to minimize the content delivery delay by dynami-

cally optimizing the user association, power allocation of NOMA, deployment of UAVs and

caching placement of UAVs. We use a branch and bound (BaB) based algorithm to achieve

the per-slot optimization and obtain a local optimal solution, which provides a benchmark

for the proposed long-term optimization problem.

• We formulate the original proposed problem as a Stackelberg game, which consists of a

leader sub-problem and several follower sub-problems corresponding to UAVs. To achieve

the long-term optimization in large-scale dynamic scenarios, we further propose a deep

reinforcement learning (DRL) based algorithm for the formulated game. In particularly, we

add a correction mechanism in DRL to optimize the users association in leader level. To
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Fig. 1: Cache-enabling UAV NOMA networks for AR application.

mitigate the unobservable interference from the decision of other followers, we propose a

meta actor network in DRL to jointly optimize the power allocation of NOMA, deployment

of UAVs and caching placement of UAVs in follower level. The proposed DRL based

algorithm is lower-complexity alternative solution of the BaB based algorithm.

• We demonstrate the performance of the proposed resource allocation, UAV deployment

and caching placement algorithms by comparing them with the benchmark algorithms. The

proposed BaB based algorithm achieves the optimal solution in each time slot, and performs

better than benchmark algorithms. Meanwhile, the proposed DRL based algorithm obtains a

good long-term networks performance in dynamic scenario with relatively lower complexity.

C. Organization

The rest of this article is organized as follows. Section II presents the system model. In Section

III, we introduce the optimization problem for long-term content delivery delay minimization

and propose a BaB based algorithm to solve the joint optimization problem. In Section IV, we

formulate a Stackelberg game and further propose a DRL based algorithm to solve the long-term

optimization in dynamic environment. Simulation results are presented in Section V. We present

the conclusion in Section VI.

II. SYSTEM MODEL

Considering the UAV-assisted cellular network with one macro BS (MBS), K UAVs, N ground

users, as shown in Fig. 1. The UAVs connect to a macro BS (MBS) via wireless backhaul
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links, and transmit the contents to corresponding users via radio access links. In our model, a

dynamic scenario, which includes moving UAVs, users’ time varying locations and users’ real-

time requsting for M contents is considered. According to the procedure of the AR applications

described in [22], we assume that the contents are required by the AR application and the normal

multimedia application both. Several additional computation steps are needed for AR application

service, mainly including tracker, mapper and object detection, which are offloaded from users

to UAVs. Detection result (DR) packages of computing result and the requested content (RC) m,

1 ≤ m ≤M , are sent to users requesting the AR application. For the users requesting normal

multimedia application, only the RC m is transmitted. Since the users’ compressed raw image

required by AR computation is relatively small, we ignore the delivery delay in the uplinks

from the AR requesting users to the UAVs. Two users requesting the AR application and normal

multimedia application of the same content are grouped together and served by NOMA. Table.

I is the summary of the notations.

TABLE I: Notation

Notation Description Notation Description

N Number of users K Number of UAVs

M Number of contents η Zipf distribution parameter

Luavk (t) Location of UAV k in time slot t Ln (t) Location of user n in time slot t
h Height of UAV enm (t) Requesting index of AR application

ckm (t) Proactive cache of UAV k pLoSBk LoS channel probability

Dcn (t) Computing delay DBn (t) Delay of backhaul link

N0 Noise spectral density Dn (t) Sum delay of user n

C1, C2
Size of content and

result package
J

Computing resource of

each UAV

ω
Number of clock requested

per bit calculation
ψ

CPU clock frequency

of UAV

H
Size of data to be

processed for AR
rnm (t)

Requesting index of normal

multimedia application

PB , PA
Power of MBS

and UAVs
BB , BA

Bandwidth of MBS

and UAVs

DAn (t)
Delay of radio access link

of user n in time slot t
RBk (t)

Data rate of backhaul link

of UAV k in time slot t
ΓRC
kgGU (t),

ΓDR
kgGU (t),

ΓRC
kgBU (t)

SINR of three kinds of

radio access link in time slot t

RRC
kgGU (t),

RDR
kgGU (t),

RRC
kgBU (t)

Delay of three kinds of radio

access link in time slot t

qkn (t)
Indicator of user n
served by UAV k in time slot t

om (t) Content ranking in time slot t

fng1 (t)
GU indicator of user n
in group g in time slot t

fng2 (t)
BU indicator of user n
in group g in time slot t
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A. UAVs and Users Mobility Model

We define the fly period of K UAVs is divided into certain time slots with the equal length

δ to conveniently describe the movement of UAVs. The time slot index is t. We consider a

three-dimensional deployment of UAVs, where the coordinate of the k-th UAV in time slot t is

Luavk (t) = [xuavk (t) , yuavk (t)]. Referring to [23], we focus on the positions of UAVs at each

time slot. The maximum of flying speed is vmax.

The time varying locations of N users are modeled as a finite state Markov sequence [24].

The positions of MBS and user n are LB = [xB, yB] and Ln (t) = [xn (t) , yn (t)]. The distance

from UAV k to MBS in time slot t is given by

dBk (t) =

√
h2 + (xuavk (t)− xB)

2 + (yuavk (t)− yB)
2. (1)

The distance from UAV k to user n in time slot t is calculated in the same way of (1), which is

expressed as dAkn (t). Because of the time varying locations of the UAVs and users, the distances

between the UAVs and the MBS/users are time varying.

B. Caching and Computing Model

We assume the M contents are requested by users through the AR and normal multimedia

applications with the same probability. We define enm (t) = 1 to indicate that user n requests RC

m for the AR application, otherwise enm (t) = 0. The m-th RC with size C1 and DR packages

with size C2 are sent to the users requesting for AR application. We define the probability of user

n requesting RC m for the AR application follows Zipf distribution P (em (t)) = 1/om(t)η

2
∑M

j1=1 1/j1
η ,

where η is Zipf factor, om (t) is the content ranking in time slot t, which is modeled as a finite

state Markov sequence. We define rnm (t) = 1 to indicate that user n makes normal multimedia

request for RC m, with the same probability of P (em (t)). The cache capacity of each UAV is

Z1. We define ckm (t) = 1 to indicate that RC m is proactive cached by UAV k in time slot t,

otherwise ckm (t) = 0.

Considering the AR computation steps offloaded to UAVs, the requested content of user n

is processed based on tracking information of users. We assume that the computation resource

of each UAV is J . As indicated in [19], the time needed for processing one bit data is defined

as 1/J = ω/ψ, where ψ represents central processing unit (CPU) frequency, ω is CPU cycles

requirement for the computation of per bit data at the UAV. The computation resource of virtual

server k is equally allocated to computation tasks of AR application connected to UAV k. We de-
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μ
LoS/NLoS
Bk (t) =

{
30.9 + (22.25− 0.5log10h) log10dBk + 20log10fc, if LoS link

max
{
μLoS
Bk (t), 32.4 + (43.2− 7.6log10h) log10dBk + 20log10fc

}
, if NLoS link

(3)

pLoSBk (t) =

⎧⎪⎨
⎪⎩

1, if

√
dBk(t)

2 − h2 ≤ do,

do√
dBk(t)

2−h2
+ exp

{(
−
√

dBk(t)
2−h2

p1

)(
1− do√

dBk(t)
2−h2

)}
, if

√
dBk(t)

2 − h2 > do.
(4)

fine qkn (t) = 1 to indicate that user n associates with UAV k in time slot t, otherwise qkn (t) = 0.

We define qc =
∑N

n=1

(
qkn (t)

∑M
m=1 enm (t)

)
to express the number of tasks connected to UAV

k. The computation delay of user n in time slot t is given by

DCn (t) =
∑K

k=1
qkn (t)Hq

c/J, (2)

where H is size of the data to be processed for AR application.

C. Channel Model

We model the path loss of wireless backhaul link and radio access link according to 3GPP

specifications [25], where we consider quasi-static channels. This means that the channel condi-

tion remains constant within a time slot. We assume that different frequency bands are allocated

to the wireless backhaul links and radio access links.

Considering the transmission of the wireless backhaul links, the path loss between UAV k and

the MBS is stochastically determined by line-of-sight (LoS) and non-line-of-sight (NLoS) link s-

tates in (3), where fc represents the carrier frequency. The LoS/NLoS link states are stochastically

determined by the LoS probability defined in (4), where do = max [294.05log10h− 432.94, 18],

and p1 = 233.98log10h− 0.95, and the NLoS probability, which is pNLoS
Bk = 1− pLoSBk . The

channel gain is given by

gBk (t) =
[
pLoSBk 10μ

LoS
Bk /10 + pNLoS

Bk 10μ
NLoS
Bk /10

]−1

. (5)

The transmission rate from the MBS to UAV k in time slot t is

RBk (t) =
BB

K
log2

(
1 +

PBgBk (t)

BBN0

)
, (6)
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where PB represents the power of the MBS, N0 is noise spectral density, and BB represents

available backhaul bandwidth of the MBS.

We define rUkm (t) =
∑N

n=1 qkn (t) (rnm (t) + enm (t)) as the request for RC m served by

UAV k, and wkm (t) = (1− ckm (t− 1))min [ckm (t) + rUkm, 1] = 1 to indicate that RC m is

transmitted from the MBS to UAV k when UAV k serves the users requesting RC m but does

not cache RC m. The backhaul link transmission delay of user n in time slot t is given by

DBn (t) =
∑K

k=1
qkn (t)

C1

∑M
m=1wkm (t)

RBk (t)
. (7)

Considering the radio access links, two users that request for the AR application and normal

multimedia application of the same content are grouped for NOMA transmission. The user

requesting AR application is recognized as the good user (GU), and the user requesting normal

application is recognized as the bad user (BU). The data of RC are transmitted to GU and BU

by multicast, while the data of DR packages are transmitted to GU by unicast. As modeled

in [26], the superposition signal of RC and DR packages are transmitted to the users based on

superposition coding, then the GU could get the content of the AR application with RC and DR

packages. The channel gain of NOMA links in time slot t are μkgGU (t) and μkgBU (t), which

are calculated in the similar way of (3). The power allocation coefficient among the RC and DR

signals in group g served by UAV k in time slot t is
[
hRC
kg (t) , hDR

kg (t)
]
.

For the radio access link from UAV k to the GU of group g based on NOMA in time

slot t, the interference from other UAVs is IkgGU (t) =
∑K

i=1,i�=k PAμigGU (t), where PA is to-

tal power of UAV. The interference from DR signal to RC signal at the GU of group g is

IDR
kgGU (t) = PAh

DR
kg (t)μkgGU (t). The SINR for RC signal from UAV k to the GU of group g in

time slot t is

ΓRC
kgGU (t) =

PAh
RC
kg (t)μkgGU (t)

IDR
kgGU (t) + IkgGU (t) + BAN0

, (8)

where BA is total bandwidth of UAV, which is allocated to the user groups equally. Based on serial

interference cancelation (SIC), the GU first removes the signal of RC and then decodes the signal

of DR. As we assume that the SIC deployed in this article has a certain probability of failure,

the interference of RC signal received by GU is defined as IRC
kgGU (t) = PAh

RC
kg (t)μkgGU (t). The
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SINR for DR signal from UAV k to the GU of group g in time slot t is

ΓDR
kgGU (t) =

PAh
DR
kg (t)μkgGU (t)

αIRC
kgGU (t) + IkgGU (t) + BAN0

, (9)

where α represents the imperfect SIC factor ranged from 0 to 1, i.e., 0 ≤ α ≤ 1 [27].

Remark 1. It is observed that the SINR of radio access link is influenced by SIC success

probability. As a result, we know that the content delivery delay in this network is related to the

imperfect SIC factor α.

Considering the BU of group g, the interference from the DR signal to the RC signal at

the BU of group g is IDR
kgBU (t) = PAh

DR
kg (t)μkgBU (t), the interference from other UAVs is

IkgBU (t) =
∑K

i=1,i�=k PAμigBU (t). The SINR for RC signal from UAV k to the BU of group

g in time slot t is

ΓRC
kgBU (t) =

PAh
RC
kg (t)μkgBU (t)

IDR
kgBU (t) + BAN0 + IkgBU (t)

. (10)

The transmission rate from UAV k to the GU of group g for RC in time slot t is expressed as

RRC
kgGU (t) =

2BA∑N
n=1 qkn (t)

log2
(
1 + ΓRC

kgGU (t)
)
, (11)

where 2 means that the same frequency band is shared among the GU and the BU in the same

group. The transmission rate from UAV k to the GU of group g for DR RDR
kgGU (t) and the BU

of group g for RC RRC
kgBU (t) are calculated in the similar way of (11).

For the convenience of expression, we utilize Boolean variable to express the request condition

for AR application and normal multimedia application. The radio access link transmission delay

of user n in time slot t is expressed with a single symbol, which is given by

DAn (t) = fng1 (t)
(

C1

RRC
kgGU(t)

+ C2

RDR
kgGU(t)

)
+ fng2 (t)

C1

RRC
kgBU(t)

, (12)

where fng1 (t) = 1 indicates that user n is the GU of group g in time slot t, fng2 (t) = 1 indicates

that user n is the BU of group g in time slot t, and fng1 (t) + fng2 (t) = 1.

Remark 2. In the considered scenario, the users requesting for AR and normal multimedia

application of the same content are served by NOMA. For the radio access link with limit radio

resource, the deployment of NOMA improves the spectrum efficiency.
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III. PROBLEM FORMULATION AND PER-SLOT OPTIMIZATION

In this section, we jointly optimize the user association, power allocation of NOMA, deploy-

ment of UAVs and caching placement of UAVs to minimize the long-term content delivery delay.

A. Problem Formulation

Considering the backhaul link transmission delay, the radio access link transmission delay and

the computation delay, the content delivery delay of user n in time slot t is

Dn (t) = DBn (t) +DAn (t) +DCn (t). (13)

The computation delay DCn (t) = 0 when user n requests for the normal multimedia application.

As modeled above, the form of radio access link transmission delay DAn (t) of user n is different

between AR application request and normal multimedia request. For the AR application, the

radio access link latency corresponds to that of GU, and the radio access link latency of normal

multimedia application corresponds to that of BU.

We minimize the long-term average content delivery delay by jointly optimizing the user

association, power allocation of NOMA, deployment of UAVs and caching placement of UAVs.

The long-term optimization problem is

min
q,hRC,Luav,c

1

T

∑T

t=1

∑N

n=1
Dn (t) (14a)

s.t. qkn (t) ∈ {0, 1} , ∀k, n, t, (14b)

ckm (t) ∈ {0, 1} , ∀k,m, t, (14c)

thL ≤ hRC
kg (t) ≤ thH , ∀g, t, (14d)∑K

k=1
qkn (t) = 1, ∀n, t, (14e)∑M

m=1
ckm (t) ≤ Z1, ∀k, t, (14f)√

(Luavk (t+ 1)− Luavk (t))
2 ≤ δvmax, ∀k, t, (14g)

where q = {qkn|1 ≤ k ≤ K, 1 ≤ n ≤ N} represents the association indicator between users

and UAVs, hRC =
{
hRC
kg |1 ≤ k ≤ K, 1 ≤ g ≤ G

}
represents the power allocation coefficient

of NOMA users, Luav = {Luavk|1 ≤ k ≤ K} represents the deployment of UAVs, and c =

{ckm|1 ≤ k ≤ K, 1 ≤ m ≤M} represents the caching placement. Constraint (14b) shows that
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the user association between UAV k and user n, qkn (t), should be 0 or 1. In constraint (14c),

the caching placement for RC m in UAV k, ckm (t), should be 0 or 1. Constraint (14d) shows

that power allocation coefficient hRC
kg (t) is set between thL and thH , thL + thH = 1. As shown

in constraint (14e), user n should associate to one UAV at each time slot. In constraint (14f), the

sum of caching placement index of each time slot should be no more than cache capacity of each

UAV Z1. The index of hover horizontal coordinate is given by Luavk (t) = [ixuavk (t) , i
y
uavk (t)]. In

constraint (14g), the movement of UAV during each time slot should not exceed its maximum

speed. It is shown that the formulated problem has three features: nonlinear mixed integer,

dynamic objective function and long-term optimization.

B. Solution based on Branch and Bound

As the dimension of the variables in the long-term optimization problem (14) is relatively

large, it is hard to be solved efficiently. Therefore, the long-term problem is decomposed into

sub-problems focusing on per-slot optimization. Since the sub-problem in each time slot is a

nonlinear mixed-integer programming, which can be solved by branch and bound method [28].

We propose a BaB based resource allocation, UAV deployment and caching placement algorithm

to solve the formulated problem (14), which achieves the per-slot optimization and obtain a local

optimal solution. There exist four basic components: objective result function, nodes, lower bound

and historically best solution. In the following, we define SU =
(
q, hRC, Luav, c

)
as the solution

of per-slot optimization sub-problem in a given time slot t for simplicity.

Utility Function: As the dimension of the variables in the long-term optimization problem

is too huge to be solved with the variable-wise recursive algorithm, we decompose the long-

term problem into subproblems focusing on per-slot optimization [29], and then measure the

instantaneous content delivery delay of the networks in a given time slot t as the cost of solution

SU =
(
q, hRC, Luav, c

)
, which is given by

R (SU) =
∑N

n=1
Dn (t). (15)

Nodes: A certain number of nodes represent the corresponding solutions and integer con-

straints. The root node represents the initial solution SU0 without considering the integer con-

straints. In particular, two son nodes are generated by replacing the first non-integer variable

SUnon−in in the corresponding solution with the floor integer and ceil integer of that variable.

These integer solutions are achieved by adding the corresponding linear integer constraints
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SUnon−in ≥ vcSUnon−in
and SUnon−in ≤ vfSUnon−in

, where vcSUnon−in
represents the ceil integer

of the variable value and vfSUnon−in
represents the floor integer of the variable value.

Lower Bound: As the aim of optimization is to minimize the content delivery delay, we

define the lower bound as the optimization utility value of the nonlinear programming with

only the constraint of current node. As it is more likely to get the better solution with less

constraints, which has lower content delivery delay, we define the optimization utility value as

‘Lower Bound’.

Historically Best Solution: We define the integer solution with the lowest utility value until

current iteration as the historically best solution SU∗
H. Moreover, we express the historically best

utility value as R (SU∗
H).

For the nodes storage stage, each node forms two son nodes with the corresponding constraints.

The solutions and constraints are stored in a first in last out (FILO) queue, as we want a

depth-first-search. During the branch reduction stage, a node is took out from the FILO queue.

First, the nonlinear programming is solved by function ‘fmincon’ in MATLAB with only the

corresponding constraints of that node, where we express the solution as SUcandi. Then we get

the lower bound R (SUcandi). When comparing the lower bound with the historically best utility

value R (SU∗
H), if R (SU∗

H) ≤ R (SUcandi), this branch would be cut. Then we consider the

update of the historically best solution. If the candidate solution SUcandi happens to meet all

the constraints of the sub-problem and the candidate utility value is lower than the historically

best utility value, we update the historically best solution SU∗
H and historically best utility value

R (SU∗
H) with the candidate solution SUcandi and candidate utility value R (SUcandi). We make

the historically best solution as the optimal solution of the per-slot optimization when the queue

is empty.

According to the above components definition, we propose a BaB based algorithm, which is

summarized in Algorithm 1.

Remark 3. In the formulated problem (14), the constraint (14g) shows that the potential

deployment of UAVs in current time slot is related to the positions of UAVs. Therefore, the

long-term optimal solution may be unavailable, because the optimization of UAV deployment

in each time slot does not consider the long-term influence of UAV deployment to next time

slot. The proposed BaB based algorithm can be seen as a heuristic algorithm for the long-term

optimization problem and provides a benchmark for performance comparison.
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Algorithm 1 BaB based resource allocation, UAV deployment and caching placement algorithm

Initialization:
1: Set total time slot.

Main Loop:
2: for each time slot do
3: Update users’ locations and users’ preference

4: Get an initial solution SU0 without integer constraints for the sub-problem in time slot t
5: Set initial historically best solutions of all players randomly and historically best utility value of all players

as positive infinity

6: while Leader queue is not empty do
7: Get a node from the queue according to FILO

8: if R (SU0
∗
H) ≤ R (SU0candi) then

9: Cut this branch and continue

10: else
11: if SUcandi satisfies all the integer constraints then
12: Update historically best solution SU∗H with the candidate solution SUcandi

13: Update the historically best utility value R (SU∗H) with the candidate value R (SUcandi)
14: else
15: Generate two son nodes by adding integer constraints and store them in the queue according to

FILO

16: end if
17: end if
18: end while
19: Get the solution of the sub-problem SU∗H in current time slot t
20: end for

IV. STACKELBERG GAME AND LONG-TERM OPTIMIZATION

Since the proposed Algorithm 1 does not consider the long-term optimization, we proposed

a DRL based algorithm in this section to solve long-term optimization problem (14). We firstly

present the formulation of a Stackelberg game with one leader and multiple followers, where

the leader optimizes the user association and followers optimize power allocation of NOMA,

deployment of UAVs and caching placement of UAVs. Such a game model is suitable for

distributed implementation as the algorithm efficiency would be improved by the distributed

optimization of variables. Then, the formulated game is solved by the proposed DRL based

algorithm.

A. Stackelberg Game Formulation

The optimization problem is formulated as a Stackelberg game. Among the variables in the

proposed optimization objective function, user association q is suitable to be optimized centrally

to avoid the conflict between agents. More specifically, distributed optimization for that variable

set can not avoid the condition that more than one UAV provides service to the same user
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group. Variables c, Luav and hRC are suitable for distributed optimization of K players to split

the dimensions of variables, where hRC of UAV k only decides the power allocation of NOMA

user groups connected to this UAV. As shown in (14a), the joint optimization of c, Luav and

hRC is closely related to the user association q of the current time slot, which directly decides

the division of those three high dimensional variables.

Leader level: For the leader level, user association q of users is optimized with the aim of

minimizing the long-term average content delivery delay in the networks, which is given by

UL (t) =
1

T

∑T

t=1

∑N

n=1
Dn (t) (16)

Then, the leader level optimization problem is given by

min
q

UL (t) , (17a)

s.t. qkn (t) ∈ {0, 1} , ∀k, n, t, (17b)∑K

k=1
qkn (t) = 1, ∀n, t, (17c)

where q = {qkn|1 ≤ k ≤ K, 1 ≤ n ≤ N} represents user association. The UAVs deployment,

caching placement and power allocation of NOMA follow the followers’ decision of the previous

iteration, which are expressed as c′, Luav
′, and hRC′

. In constraint (17b), qkn (t) = 1 implies that

user n is served by UAV k, otherwise qkn (t) = 0. Constraint (17c) shows one user should connect

to only one UAV in the same time slot. It is obvious that the problem (17) is an nonlinear integer

programming, which is also not convex. As a result, it is hard to get the optimal solution.

Follower level: For the follower level, there are K selfish players aiming to minimize their

own content delivery delay, which means the sum content delivery delay for the users connected

to the corresponding UAVs. The long-term average delay is given by

UF (t) =
1

T

∑T

t=1

∑N

n=1
qkn (t)Dn (t). (18)

With the user association message from the leader agent, each follower agent jointly optimize

power allocation of NOMA user groups connected to the corresponding UAV, UAV deployment

Page 15 of 46 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

and caching placement. The follower level problem is formulated as:

min
hRC
k ,Luavk,ck

UF (t), (19a)

s.t. ckm (t) ∈ {0, 1} , ∀k,m, t, (19b)∑M

m=1
ckm (t) ≤ Z1, ∀k, t, (19c)

thL ≤ hRC
kg (t) ≤ thH , ∀g, t, (19d)√

(Luavk (t+ 1)− Luavk (t))
2 ≤ δvmax, ∀k, t, (19e)

where hRC
k is power allocation coefficient for user groups connected to UAV k. Luavk is deploy-

ment of UAV k. ck is caching placement of UAV k. The user association q follows the leader

level decision. In constraint (19b), ckm (t) = 1 implies that UAV k proactively caches RC m,

otherwise ckm (t) = 0. Constraint (19c) limits the cache capacity of UAV k. The range of power

allocation is in (19d). Constraint (19e) limits movement of UAVs during each time slot. It is

obvious that optimization problem (19) is a nonlinear mixed integer programming.

Next, an optimal solution of the Stackelberg game is described by Nash equilibrium [30],

which is a collection of solutions. For the leader player and follower players, each player gets

the optimal solution of its corresponding sub-problem, which is the best response to the solution

of other players. We define q∗ and
{
c∗k, L

∗
uavk, h

RC
k

∗}
to respectively express the optimal solution

for the leader level sub-problem and the follower level sun-problems. That is if a solution{
q∗, c∗1, L

∗
uav1, h

RC
1

∗
, · · · , c∗K , L∗

uavK , h
RC
K

∗}
is a Nash equilibrium, then for the leader player, the

optimal sub-problem solution satisfies

UL

(
q∗, c∗k, L

∗
uavk, h

RC
k

∗|1 ≤ k ≤ K
) ≤ UL

(
q, c∗k, L

∗
uavk, h

RC
k

∗|1 ≤ k ≤ K
)
. (20)

Meanwhile, for the follower player k, the optimal sub-problem solution satisfies

UF

(
q∗, c∗k, L

∗
uavk, h

RC∗) ≤ UF

(
q, ck, Luavk, h

RC, c∗−k, L
∗
uav−k, h−kRC∗)

, (21)

where −k represents the follower players other than k.

Although it is hard for the algorithms with pure strategies to get the mixed-strategy equilibrium,

the algorithms try to approximate them. Each agent alternately updates its action selection policy

according to the current stable policies of other agents. Until the current learning agent no longer

changes its own action selection policy, then the subsequent agents have no motivation to change
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their own action selection policy, the entire algorithm converges.

B. Solution based on DRL

In the proposed BaB based algorithm, the number of branches increases sharply as the scale

of the networks, which causes a low efficiency of the algorithm in the large-scale scenario.

In this subsection, we propose a DRL based algorithm to solve the proposed game for large-

scale networks in practical scenarios. The framework of the proposed DRL based algorithm

is given in Fig. 2. In the proposed DRL based algorithm, there exists no direct interaction

between leader agent and follower agents. These agents select actions according to the observed

state of environment, where the actions of other agents are also considered as the variables in

environment. For example, the user association, which is decided by the action of leader agent,

is a part of the followers’ state.
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Fig. 2: Framework of the proposed DRL based algorithm.

For the leader sub-problem, we applied deep deterministic policy gradient (DDPG) algorithm

to solve the formulated problem (17). There exist four basic elements in the DDPG algorithm for

leader agent, including leader state, leader action, leader reward and correction mechanism. We

define leader state to describe the observed variables in the environment. The leader action

is the user association. In the process of DDPG for leader agent, the decision of follower

agents in current episode is still unknown. To release the instability caused by that, we add

a correction mechanism to assist DDPG, which is inspired by QMix [31]. In the proposed DRL

based algorithm for leader sub-problem, the leader agent observes the leader state of environment
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and selects leader action according to the output of the target actor network. Then the mini-batch

sampled from memory space is used to train the actor network, and critic network. Besides, the

correction network is also trained based on the bias stored in the memory space. Specificially,

the output of correction network is utilized to train the actor network. Then, the target actor

network and target critic network are trained through soft replace. finally, the state of current

slot, action, reward and state of next slot are stored in the memory space.

Leader State: SL (t) is the environment state of the leader agent in time slot t, which is

characterized by the SINR matrix ΓRC
kgGU (t), ΓDR

kgGU (t), ΓRC
kgBU (t) between UAVs and users, and

satisfaction matrix of users to the cache of UAVs Ws (t). The elements of the satisfaction matrix

is calculated by wskn (t) = qkn (t)
∑M

m=1 (enm (t) + rnm (t)) ckm (t− 1). wskn (t) = 1 means that

the content request of user n is in the cache of UAV k in time slot t. The state vector of the

leader agent is SL (t) =
{
ΓRC
kgGD (t) ,ΓDR

kgGD (t) ,ΓRC
kgBD (t) ,Ws (t)

}
, where UAVs’ positions and

power allocation coefficient follow the follower actions of the previous time slot.

Leader Action: AL (t) is the action of the leader agent in time slot t. As the action space

is too large to process if we directly use the matrix of user association, [qkn (t)], we consider

a continuous action space AL (t) = [aL1 (t) , · · · , aLG (t)], where the approximate discrete value

of aLg (t) represents the UAV serving the user group g.

Leader Reward: The instantaneous cost is given by

RL (SL (t) , AL (t)) =
∑N

n=1
Dn (t). (22)

Since c, Luav, and hRC are decided by the actions of the follower agents in the previous time

slot, which causes instability to the training of the critic network. So the leader reward is

only used to train the critic network, rather than evaluate the proposed algorithm. We define

RG (SL (t) , AL (t) , SF (t) , AF (t)) to express global reward, where SF (t) is the state set of

follower agents, AF (t) is the action set of follower agents.

Correction Mechanism: It is undesirable for the leader agent to forecast the follower agents’

actions in this algorithm, since the complex state increases the difficulty of neural network fitting.

We add a correction mechanism to approximate the global reward with leader reward. The bias

between global reward and leader reward is defined as rc (t) = RG (SL (t) , AL (t) , SF (t) , AF (t))−
RL (SL (t) , AL (t)). To release the instability caused by SF (t) and AF (t), the expected value
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of reward bias is given by

re (t) = ESF ,AF
(rc (t)), (23)

which is approximated by a two hidden layers fully connected neural networks. rc (t) is supervisor

and the input value is {SL (t) , AL (t)}.

The actor network is used to obtain the optimal action, with state SL (t) as input value. A noise

with variance varL is added to the selected action for exploration. The critic network is used to ob-

tain the Q value, with {SL (t) , AL (t)} as input value. Memory reply is deployed to train the net-

works, where each item contains the information of {SL (t) , AL (t) , RL (t) , SL (t+ 1) , rc (t)}.

The size of leader memory space MBL is δMS , from which a mini-batch is sampled. Soft

replace with factor ς is used to train the target networks. The actor network is trained by policy

gradient [32]. The critic network is trained by minimizing the corrected temporal difference (TD)

error, which is

EMBL

[
RL (t) + γ1re (t)− Q

(
s, a

∣∣θQ )∣∣
s=SL(t),a=AL(t)

+γQT
(
s, a

∣∣∣θQT
)∣∣∣

s=SL(t+1),a=πT (SL(t+1))

]2
,

(24)

where EMBL
represents the expected value among MBL, γ1 is the soft correction factor, γ is the

discount factor, re (t) is the expected reward bias, QT is the output of the target critic, θQ is the

critic parameter, πT is the output of the target actor, and θQ
T

is the target critic parameter.

For the follower sub-problem, we employ the multi-agent DDPG to optimize power allocation

of NOMA, deployment of UAVs and caching placement of UAVs. In the proposed DRL based

algorithm for follower agents, the basic structure is similar to that of the leader agent. However,

to cope with the dynamic interference between UAVs, we proposed a meta actor network, that

is, each follower agent observes the action selection of other agents and store the data in the

local memory space. During the training process, the mini-batch sampled from memory space

is used to train the meta actor network. Therefore, generalized training result makes the meta

actor network suitable for the complex interference environment.

Follower State: We define SFk (t) to denote the environment state of the follower agent k

in time slot t. SFk (t) is characterized by the leader action AL (t), cache condition of UAV

k, Ck (t− 1) = [ck1 (t− 1) , · · · , ckM (t− 1)], and the distance from UAV k to all the users

DAk (t) = [dAk1 (t) , · · · , dAkN (t)].
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Follower Action: AFk (t) denotes the action of follower agent k in time slot t, which is

characterized by power allocation hRC
k (t) =

[
hRC
k1 (t) , · · · , hRC

kG (t)
]
, proactive caching index

C (t) = [ck1 (t) , · · · , ckM (t)], and index of hover horizontal coordinate [ixuavk (t) , iyuavk (t)],

where we randomly sample ten hover points at dimensions x and y in the given UAV deployment

area. We assume that the height of UAVs h is a constant. We denote Lp power allocation levels

as hRC
kg (t) ∈ {

h1, · · · , hLp
}

.

Follower Reward: The instantaneous cost is given by

RFk (SFk (t) , AFk (t)) =
∑N

n=1
qkn (t)Dn (t), (25)

where the user association qkn (t) follows the leader action. With action of the leader agent and

K follower agents, the global reward RG (t) is calculated in the way of (22).

Meta Actor: Considering the interference from other follower agents, we describe the action

selection in different interference condition as different tasks. We add the gradients of other

follower agents to the gradient of follower agent k1. The gradients of follower agent k2 cirtic

network to the actor of k1 is

∇θπk1
J
(
s, θQk2

)
= ∇θπk1

π (s| θπk1)|s=SL(t)
× ∇aQ

(
s, a| θQk2

)∣∣∣
s=SL(t),a=π(SL(t))

, (26)

where θπk1 represents the actor parameter of follower agent k1, θQk2 represents the critic parameter

of follower agent k2. We trained the actor network of follower agent k1 with the composite

gradient of

∇θπk1
JMe
k1 = EMBF

[
∇θπk1

J
(
s, θQk1

)
+ κ

∑K

k2 �=k1
∇θπk1

J
(
s, θQk2

)]
, (27)

where EMBF
represents the expected value among MBF, κ is the meta factor representing the

influence from the gradients of other follower agents to the training of the meta actor network

of follower agent k1.

Remark 4. We are able to choose meta factor κ for getting the trade off between the adaptability

of the follower agent k1 actor network to its influenced occasion and other follower agents.

For the algorithm with κ = 0, the trained actor network is unstable because of the varying

interference condition.

The gradients of other follower agent are provided through memory reply. The item in the
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Algorithm 2 DRL based resource allocation, UAV deployment and caching placement algorithm

Initialization:
1: Set total time slot, meta factor κ. Initialize parameters of all the networks.

Main Loop:
2: for each step do
3: Update users’ locations and users’ preference

4: Observe leader state SL (t)
5: Select AL (t) and update user access arrangement

6: Get leader reward RL (SL (t) , AL (t))
7: for k = 1 to K do
8: Observe follower state SFk (t)
9: Select follower action AFk (t) and update deployment of UAV, caching placement of UAV and power

allocation of NOMA

10: Get follower reward RFk (SFk (t) , AFk (t))
11: Calculate the gradient with other agents’ follower states and actor parameters

12: Store {SFk (t) , AFk (t) , RFk (t) , SFk (t+ 1) ,
∇θπ

k
Js

}
in the memory space of follower agent k

13: Train the DRL networks of follower agent k with (27), policy gradient, supervised learning and soft

replace

14: end for
15: Get global reward RG, and bias rc (t)
16: Store {SL (t) , AL (t) , RL (t) , SL (t+ 1) , rc (t)} in the memory space of leader agent

17: Train the DRL networks of leader agent with (24), policy gradient, and soft replace

18: end for

memory space of follower agent k is
{
SFk (t) , AFk (t) , RFk (t) , SFk (t+ 1) ,∇θπk

Js
}

, where

∇θπk
Js is the sum of the gradients of other follower agents to k. A mini-batch MBFk is sampled

from the memory space of follower agent k with δMS items. A noise with variance varF is

added to the selected action for exploration. We train the critic network by minimizing the TD

error [32]. Soft replace factor of follower agents is ς , which is used to train the follower and

target critic networks.

The DRL based resource allocation, UAV deployment and caching placement algorithm is

given in Algorithm 2. The proposed DRL based algorithm is implemented in the Macro BS

serving multiple UAVs and users in the networks. The control information, such as the location

of users, is reported from users to MBS via the control channel in the cellular networks, e.g.,

the physical uplink control channel (PUCCH) defined in 5G new radio (NR) by 3GPP.

Compared with the BaB based algorithm, the DRL based algorithm focuses on the long-term

optimization. To solve the instability and dynamic interference in the formulated problem, we

employ a correction network and a meta actor network in the DRL based algorithm, which

provides insightful method for solving such kind of problem.
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C. Analysis of the proposed algorithm

1. Complexity: First we analyze the temporal computational complexity of the proposed BaB

based algorithm and the proposed DRL based algorithm. As mentioned in the system model,

the number of UAVs is K, the number of users is N , and the number of contents is M . The

BaB based algorithm has the temporal computational complexity of O
(
KN2M+N/2+2

)
. As the

number of variables optimized by follower agent is much higher than that of leader agent, the

tree structure of the follower agent has much more branches, which are related to computational

complexity. Therefore, we focus on the complexity of follower agent when analyzing the tem-

poral computational complexity of the proposed DRL based algorithm,which includes the actor

network, critic network and correction network. We define δMB as the size of mini-batch and T1

as the upper bound of training step. The temporal computational complexity of actor network in

training process is O
(
γa = δMBT1

(
ZA0ZAl +

∑L1−2
l=1 ZAlZAl+1 + ZAlZAL1

))
, whereL1 is the

number of laryers of actor network, the size of input layer is ZA0 =M +N + 6K, and the size

of out layer is ZAL1 = 6 +M + 2. The temporal computational complexity of critic network in

training process is O
(
γb = δMBT1

(
ZC0ZCl +

∑L2−2
l=1 ZClZCl+1 + ZClZCL2

))
, whereL2 is the

number of laryers of critic network, the size of input layer is ZC0 = 6 +N + 2M + 6K + 2,

and the size of out layer is ZCL2 = 1. The training process of the correction network has the

same computational complexity funciton as that of critic network, which is denoted as O (γc)

with L3 laryers. The temporal computational complexity of the proposed DRL based algorithm

is O (max (γa, γb, γc)).

2. Convergence: Then we discuss convergence of the proposed DRL based algorithm in this

section. During the interaction process of the proposed algorithm, the leader agent makes the

best response about user association according to the current policies of follower agents, which

will influence the action selection of follower agents in the subsequent phases. Besides, the

power allocation of NOMA, deployment of UAVs and caching placement of UAVs decided by

each follower agent also influence the policies of other follower agents. All agents alternately

promote updates to their policies by cooperating to perceive each other’s action selection. We

assume that during the learning process, each agent sequentially updates policies according to

the proposed DRL based algorithm. As the learning process progresses, the best action value of

the action selection policy is a non-decreasing Cauchy sequence [33].

Page 22 of 46IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed BaB based algorithm and DRL based algorithm.

There are one MBS, K UAVs and N users in the system. We define the size of M unified contents

as C1 = 16 MB. The size of DR packages for AR application is C2 = 4 MB. The content ranking

and the mobility of users are modeled as two finite state Markov sequences. The number of states

of each sequence is 5, where the transition probability is Pr (sx+1 (t+ 1) |sx (t)) = 0.7, and the

probabilities to other states are equal. Moreover, fc = 1 GHz, ω = 10 Hz, ψ = 1000 MHz,

H = 0.2 MB, η= 0.9. Considering the fairness of power allocation among users, we set the

power allocation coefficient thL to 0.1 and thH to 0.9, rather than 0 and 1. The length of time

slot is assumed as δ = 0.5s. The maximum flying speed of UAVs is given by vmax = 40m/s.

The main settings are summarized in Table. II.

The DRL networks have the same structure of 2 fully connected hidden layers, containing

50 neurons in each layer. The activation functions of hidden layers and output layer are Relu

and Sigmoid [34]. We deploy batch normalization before the mini-batches are used to train the

networks. The learning rate of leader agent and follower agents are 0.0001 and 0.0001 [35]. We

set ς = 0.2, γ = 0.7,γ1 = 0.25, varL = 3, varF = 0.3, and δMS = 5000. The size of mini-batch

δMB is 32. The training of TD error and policy gradient is based on the Adam optimization

algorithm [31].

Firstly, we verify the convergence of the proposed DRL based resource allocation, UAV

deployment and caching placement algorithm, named as RUCDRL for short. We use multi-

agent deep deterministic policy gradient (MADDPG) based algorithm as a benchmark, in

which, the agents select the optimal actions by conventional MADDPG. In this simulation, we

TABLE II: Simulation Settings

Parameter Value
Power of MBS pma 46 dBm

Power of UAV puav 30 dBm

Bandwidth of backhaul link BB 20 MHz

Bandwidth of radio access link BA 20 MHz

Noise power N0 −174 dBm/Hz

UAV flight altitude h 100 m

UAV deployment area side length 200 m

Long-term period T 100 s
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Fig. 3: Convergence of content delivery delay.

set M = 6, N = 16, and Z1 = 2. As shown in Fig. 3, the content delivery delay decreases as

the training continues, which demonstrates the effectiveness of RUCDR. Since the bigger meta

actor coefficient κ corresponds to larger influence of the meta actor networks from other agents,

the proposed RUCDRL with κ=0.5 achieves the worst performance. This provides a proof

for Remark 4. However, RUCDRL with κ=0 performs better than MADDPG, which proves

the effectiveness of employing the correction mechanism in the leader gent of the proposed

RUCDRL. Because RUCDRL with κ=0.25 achieves a tradeoff between the attention to the

environment of other agents and the attention to the environment of the target agent, this

algorithm performs better than RUCDRL with κ=0 and κ=0.5. So we use κ = 0.25 in the

following simulations.

Then we demonstrate the performance of the proposed BaB based algorithm and RUCDRL

in Fig. 4, Fig. 5, and Fig. 6. We further consider two benchmarks:

• single-agent deep deterministic policy gradient (SADDPG) based algorithm, in which,

the UAV selects the optimal actions by a single agent.

• Fixed algorithm, in which, each UAV caches the most popular contents, the user groups

are associated with the nearest UAV, the UAV have the fixed trajectories with random center

and radius of 50 m, and the NOMA power coefficient of RC signal is 0.7.

We show the performance of these algorithms with Zipf distribution parameters η= {0.9, 1.4}.

Fig. 4 shows that the content delivery delay increases with the increasing of the user numbers in

the network, where M = 6 and Z1 = 2. Since Fig. 4 shows the content delivery delay of users in
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Fig. 4: Average content delivery delay versus the number of users.
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Fig. 5: Average content delivery delay versus the number of contents.

the whole network rather than single user, the average content delivery delay for each user is not

quite high. Although the quality of AR application would be influenced, there exists no influence

for the achievement of AR application. Although the training step of the proposed RUCDRL

shows a high content delivery delay, the algorithm achieves a relative low content delivery delay

after it converges. As shown in Fig. 5, the content delivery delay of BaB and RUCDRL also

increases with the numbers of contents. As we observe from Fig. 4 and Fig. 5, the performance

of BaB based algorithm is not the best. This is because that the proposed BaB based algorithm

focuses on the optimization of per slot delay rather than long-term content delivery delay, which

proves the importance of considering the long-term optimization in a dynamic networks, as

stated in Remark. 3. In Fig. 4 and Fig. 5, SADDPG in small networks with N = 16 or M = 6
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Fig. 6: Average content delivery delay versus the cache capacity.

performs much worse than RUCDRL and MADDPG as the numbers of users and contents

increase. This is because that the considerable amount of users and contents causes the shortage

of radio resource and leads to large action space and state space. Fig. 4 and Fig. 5 show that,

the Fixed algorithm achieves the highest average content delivery delay compared with others

algorithm, which means that our proposed algorithms chould improve the network performance

by the joint optimiziation of the user association, power allocation of NOMA, deployment of

UAVs and caching placement of UAVs.

We demonstrate the content delivery delay of the proposed algorithms and benchmark algo-

rithms with varying cache capacity in Fig. 6. We set N = 32 and M = 24. The performance

of these algorithms with different Zipf parameters η= {0.9, 1.4} is shown. From Fig. 6, we

can see that the content delivery delay of these algorithms decreases with the number of cache

capacity. This is due to the fact that the large cache capacity increases the probability of cache

hits. However, the tendency of the decreasing is not monotonous and there is slight increase

from Z1 = 4 to Z1 = 8. This is because that although the dynamic proactive cache releases the

backhaul traffic for the latter several time slots. As we observe from Fig. 6, the algorithms with

η = 1.4 achieve lower content delivery delay compared to those with η = 0.9. This is because

that a concentrated distribution of users’ interests is conducive to increase the profit of proactive

cache, as the cached content may be used to serve the requests from more than one user group.

Moreover, the performance of the BaB based algorithm is affected more significantly than that

of RUCDRL.
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Fig. 7: Average content delivery delay versus the number of users with imperfect SIC.

Fig. 7 shows the influence of imperfect SIC by comparing the performance of RUCDRL with

different imperfect SIC factors α = {0.3, 0.5, 0.7, 0.9}, which influences the NOMA transmission

capacity. As we can observe from Fig. 7, the algorithm with a smaller imperfect SIC factor

performs better than the algorithm with a bigger factor. In particularly, the algorithm with perfect

SIC, which can be considered as a special condition of imperfect SIC with α = 0, achieves the

lowest content delivery delay among these algorithms. This is because that the deployment of

SIC improves the transmission capacity of the radio access links with NOMA. Moreover, the

influence of the imperfect SIC factor to content delivery delay increases with the number of

users. As the content delivery delay of each user group is related to the SIC quality, the effect

of the imperfect SIC factor to content delivery delay of the whole network also increases with

the number of users. This provides a proof for Remark. 1.

In Fig. 8, we verify the influence of AR application and normal multimedia application by com-

paring the performance of RUCDRL with different request repetition rate Φ= {0.3, 0.5, 0.7, 1},

which represents the rate that two users request for the AR and normal multimedia application

of the same content. We set κ = 0.25. As we can observe from Fig. 8, the performance of the

algorithm with larger request repetition rate is better than that of the algorithm with a smaller

rate, which means that the algorithm with larger request repetition rate has more NOMA user

groups requesting for the AR and normal multimedia application of the same content. Therefore,

the effectiveness of deploying NOMA to serve users requesting for the different applications of

the same content is proved.
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Fig. 8: Average content delivery delay versus the number of users in the scenario with different
request repetition rate.
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Fig. 10: The trajectories of UAVs among 50
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We demonstrate the trajectories of the optimized UAV deployment of the proposed RUCDRL

with optimization objective of content delivery delay and cache hit ratio in Fig. 9 and Fig. 10,

respectively. As we can see from Fig. 9, the UAV hovers over a specific area to serve the same

group of users for the content delivery delay minimization, since the UAV trends to cache the

contents that requested by the users in specific areas according to the proposed RUCDRL. For

comparison, the UAV hovers over more scattered areas for cache hit ratio maximization as shown

in Fig. 10. The reason is that UAVs focus on their cache without considering their radio access
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Fig. 11: Average content delivery delay comparison against system parameters and setups.

links with users. Fig. 9 and Fig. 10 demonstrate that the UAVs move around to serve the users

with dynamic locations. Meanwhile, because of the limited flight speed, the UAV may not arrive

at the optimal locations.

Fig. 11 shows the robustness of the proposed RUCDRL against different UAV number and

channel models. The content delivery delay of the proposed RUCDRL increases with the number

of users, since the growth of the number of users increases the probability of cache hit failure,

which leads to the wireless backhaul delay increasing consequentially. Besides, the limited radio

access resource makes the radio access delay increase with the number of users. As we can

observe from Fig. 11, the proposed RUCDRL in the LoS/NLoS scenario achieves a lower

content delivery delay than that in Free path loss scenario. This proves the superiority of the

transmission channel from UAV to ground, since LoS/NLoS is a typical channel model for UAV

communications.

VI. CONCLUSION

The cache-enabling mobile UAVs served the mixed AR and normal multimedia applications

based on NOMA, cached limited contents to provide traffic offloading for backhaul links, and

provided computation resource to users. The long-term problem was decomposed to subproblems

in each time slot, which were solved by BaB based algorithm to achieve the optimization in

each time slot. We transformed the original problem to a Stackelberg game and proposed DRL

based algorithm to solve the game. We demonstrated that the considerable gains are achieved by
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the proposed algorithms. We believe that the problem of energy consumption in the considered

UAV-assisted networks needs to be further explored. The AR application has a high demand

for energy consumption, which can be jointly considered with energy consumption of UAV in

our future work. For algorithm, we could consider the deployment of federated learning in the

reinforcement learning to further enhance the performance in solving the distributed problem.
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