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Abstract—This paper proposes a new Quantum Spatial Graph
Convolutional Neural Network (QSGCNN) model that can direct-
ly learn a classification function for graphs of arbitrary sizes.
Unlike state-of-the-art Graph Convolutional Neural Network
(GCNN) models, the proposed QSGCNN model incorporates
the process of identifying transitive aligned vertices between
graphs and transforms arbitrary sized graphs into fixed-sized
aligned vertex grid structures. In order to learn representative
graph characteristics, a new quantum spatial graph convolution is
proposed and employed to extract multi-scale vertex features, in
terms of quantum information propagation between grid vertices
of each graph. Since the quantum spatial convolution preserves
the grid structures of the input vertices (i.e., the convolution
layer does not alter the original spatial position of vertices), the
proposed QSGCNN model allows to directly employ the tradi-
tional convolutional neural network architecture to further learn
from the global graph topology, providing an end-to-end deep
learning architecture that integrates the graph representation
and learning in the quantum spatial graph convolution layer
and the traditional convolutional layer for graph classifications.
We indicate the effectiveness of the proposed QSGCNN model
in relation to existing state-of-the-art methods. Experiments
on benchmark graph classification datasets demonstrate the
effectiveness of the proposed QSGCNN model.

Index Terms—Graph Neural Networks, Quantum Walks,
Quantum Graph Convolution, Quantum Propagation

I. INTRODUCTION

GRaph-based representations have been widely employed
to model and analyze data that lies on high-dimensional

non-Euclidean domains and that is naturally described in
terms of pairwise relationships between its parts [1]. Typical
instances where data can be represented using graphs include
a) classifying proteins or chemical compounds [2], b) recog-
nizing objects from digital images [3], c) visualizing social
networks [4]. A fundamental challenge arising in the analysis
of real-world data represented as graphs is the lack of a clear
and accurate way to represent discrete graph structures as
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numeric features that can be directly analyzed by standard
machine learning techniques [5]. This paper aims to develop a
new graph convolutional neural network using quantum vertex
saliency, for the purpose of graph classification. Our method
is based on identifying the transitive alignment information
between vertices of all different graphs. That is, given three
vertices v, w and x from three sample graphs, suppose v and
x are aligned, and w and x are aligned, the proposed model
can guarantee that v and w are also aligned. The alignment
procedure not only provides a way of mapping each graph
into a fixed-sized vertex grid structure, but also bridges the
gap between the graph convolution layer and the traditional
convolutional neural network layer.

A. Literature Review

There have been a large number of methods aimed at
converting graph structures into numeric representations, thus
providing a way of directly applying standard machine learn-
ing algorithm to problems of graph classification or clustering.
Generally speaking, in the last three decades, most classical
state-of-the-art approaches to the analysis of graph structures
can be divided into two classes, namely 1) graph embedding
methods and 2) graph kernels. The methods from the first class
aim to represent graphs as vectors of permutation invariant
features, so that one can directly employ standard vectorial
machine learning algorithms [6]. All of the previous approach-
es are based on the computation of explicit embeddings into
low dimensional vector spaces, which inevitably leads to the
loss of structural information. Graph kernels, on the other
hand, try to soften this limitation by (implicitly) mapping
graphs to a high dimensional Hilbert space where the structural
information is better preserved [7]. The majority of state-
of the-art graph kernels are instances of the R-convolution
kernel originally proposed by Haussler [8]. The main idea
underpinning R-convolution kernels is that of decomposing
graphs into substructures (e.g, walks, paths, subtrees, and
subgraphs) and then to measure the similarity between a
pair of input graphs in terms of the similarity between their
constituent substructures. Representative R-convolution graph
kernels include the Weisfeiler-Lehman subtree kernel [9], the
subgraph matching kernel [10], the aligned subtree kernel [11],
and the aligned subgraph kernel [12]. A common limitation
shared by both graph embedding methods and kernels is that
of ignoring information from multiple graphs. This is because
graph embedding methods usually capture structural features
of individual graphs, while graph kernels reflect structural
characteristics for pairs of graphs.
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Recently, deep learning networks have emerged as an ef-
fective way to extract highly meaningful statistical patterns in
large-scale and high-dimensional data [13]. As evidenced by
their recent successes in computer vision problems, convolu-
tional neural networks (CNNs) [14] are one of the most pop-
ular class of deep learning architectures and many researchers
have devoted their efforts to generalizing CNNs to the graph
domain [15]. Unfortunately, applying CNNs for graphs in a
straightforward way is not trivial, since these networks are
designed to operate on regular grids [1] and the associated
operations of convolution, pooling and weight-sharing cannot
be easily extended to graphs.

To address the aforementioned problems, two popular strate-
gies have been proposed and employed to extend convolutional
neural networks to graph domains, i.e., the spectral and the
spatial strategies. Specifically, approaches using the spectral s-
trategy utilise the property of the convolution operator from the
graph Fourier domain, and relate to the graph Laplacian [16].
By transforming the graph into the spectral domain through the
Laplacian matrix eigenvectors, the filter operation is performed
by multiplying the graph by a series of filter coefficients. Un-
fortunately, most spectral-based approaches demand the size
of the graph structures to be the same and cannot be performed
on graphs with different sizes and Fourier bases. As a result,
approaches based on the spectral strategy are usually applied
to vertex classification tasks. By contrast, methods based
on the spatial strategy are not restricted to the same graph
structure. These methods generalize the convolution operation
to the spatial structure of a graph by propagating features
between neighboring vertices [17]. For instance, Duvenaud et
al. [18] have proposed a Neural Graph Fingerprint Network
by propagating vertex features between their 1-layer neighbors
to simulate the traditional circular fingerprint. Atwood and
Towsley [19] have proposed a Diffusion Convolution Neural
Network by propagating vertex features between neighbors
of different layers rooted at a vertex. Although spatially
based approaches can be directly applied to real-world graph
classification problems, most existing methods have fairly poor
performance. This is because these methods tend to directly
sum up the extracted local-level vertex features from the
convolution operation as global-level graph features through
a SumPooling layer. It is then difficult to learn the topological
information residing in a graph through these global features.

To overcome the shortcoming of the graph convolutional
neural networks associated with SumPooling, unlike the works
in [18] and [19], Nieper et al. [20] have developed a different
graph convolutional neural network by constructing a fixed-
sized local neighborhood for each vertex and re-ordering the
vertices based on graph labeling methods and graph canon-
ization tools. This procedure naturally forms a fixed-sized
vertex grid structure for each graph, and the graph convolution
operation can be performed by sliding a fixed-sized filter over
spatially neighboring vertices. This operation is similar to
that performed on images with standard convolutional neural
networks. Zhang et al. [21] have developed a novel Deep
Graph Convolutional Neural Network model that can preserve
more vertex information and learn from the global graph
topology. Specifically, this model utilizes a newly developed

SortPooling layer, that can transform the extracted vertex
features of unordered vertices from spatial graph convolution
layers into a fixed-sized vertex grid structure. Then a tradi-
tional convolutional neural networks can be applied to the grid
structures to further learn the graph topological information.

Although both methods of Nieper et al. [20] and Zhang et
al. [21] outperform state-of-the-art graph convolutional neural
network models and graph kernels on graph classification
tasks, these approaches suffer from the drawback of ignoring
structural correspondence information between graphs, or rely
on simple but inaccurate heuristics to align the vertices of
the graphs, i.e., they sort the vertex orders based on the local
structure descriptor of each individual graph and ignore the
vertex correspondence information between different graphs.
As a result, both the methods cannot reflect the precise topo-
logical correspondence information for graph structures. These
approaches also lead to significant information loss. This
usually occurs when these approaches form the fixed-sized
vertex grid structure and some vertices associated with lower
ranking may be discarded. In summary, developing effective
methods to preserve the structural information residing in
graphs still remains a significant challenge.

B. Contribution

The aim of this paper is to overcome the shortcomings of the
aforementioned methods by developing a new Quantum Spa-
tial Graph Convolutional Neural Network (QSGCNN) model.
The starting point of the new model is the identification of
the transitive vertex alignment information between graphs.
Specifically, the new model can employ the transitive align-
ment information to map different sized graphs into fixed-
sized aligned representations, i.e., it can transform different
graphs into fixed-sized aligned grid structures with consistent
vertex orders. With the aligned grid structures of graphs to
hand, a novel quantum spatial graph convolutional operation
is developed to further extract multi-scale graph features from
the grid structures. The aligned grid structure can precisely
integrate the structural correspondence information and all the
original vertex information will be mapped into the grid struc-
ture through the transitive alignment, i.e., the mapping process
does not discard any vertex. The proposed graph convolutional
operation associated with the aligned grid structures can not
only bridge the gap between the spatial graph convolution
layer and the traditional convolutional neural network layer,
but also reduce the shortcomings of information loss and
imprecise information representation arising in most state-of-
the-art graph convolutional neural networks associated with
SortPooling or SumPooling layers. The computational archi-
tecture of the proposed model is shown in Fig.1. Specifically,
the main contributions of this work are threefold.

First, we introduce a framework for transitively aligning
the vertices of a family of graphs in terms of vertex point
matching. This framework can establish reliable vertex corre-
spondence information between graphs, by gradually minimiz-
ing the inner-vertex-cluster sum of squares over the vertices
of all graphs. We show that this framework can be further
employed to map graphs of arbitrary sizes into fixed-sized
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Fig. 1. The architecture of the proposed QSGCNN model. (1) An input graph Gp(Vp, Ep) ∈ G of arbitrary size is first aligned to the prototype graph
GR(VR, ER), by identifying the structure correspondence information between the vertices of Gp and GR. Then, the vertices of Gp aligned to the same
vertex of GR will be mapped into the same aligned vertex, where each aligned vertex follows the same vertex order of the corresponding vertex of GR, i.e.,
these new aligned vertices follow the same vertex spatial positions of GR. Here, the red curved arrow on the graph GR indicates the predetermined spatial
orders of its vertices. This process in turn forms a nature fixed-sized aligned vertex grid structure (see details in III-A), where a standard CNN can be directly
performed. Since the above construction process will not discard any original vertex of Gp, the resulting aligned vertex grid structure can reduce the problem
of information loss that arises in existing graph convolutional neural network models associated with the SortPolling operation. (2) The grid structure of Gp

is passed through multiple quantum spatial graph convolution layers to extract multi-scale vertex features, where the vertex information is propagated between
specified vertices following the average mixing matrix. (3) Since the graph convolution layers preserve the original vertex orders of the input grid structure,
the concatenated vertex features through the graph convolution layers form a new vertex grid structure for Gp. This vertex grid structure is then passed to a
traditional CNN layer to learn a classification function. Note, vertex features are visualized as different colors.

aligned vertex grid structures, integrating precise structural
correspondence information and thus minimizing the loss of
structural information. The resulting grid structures can bridge
the gap between the spatial graph convolution layer and the
traditional convolutional neural network layer.

Second, with the aligned vertex grid structures and their
associated adjacency matrices to hand, we propose a novel
quantum spatial graph convolution layer to extract multi-scale
vertex features. Unlike the existing spatial graph convolution
neural network models that propagate features between spec-
ified vertices through the vertex adjacency matrix (i.e., these
models rely on the vertex visiting probability information of
classical random walks [22]), the proposed graph convolution
layer propagates the feature information between aligned grid
vertices based on the vertex visiting information of continuous-
time quantum walks [23]. In quantum information theory [24],
the continuous-time quantum walk is the natural quantum
analogue of the classical random walk [23], and has been
widely employed to develop novel quantum algorithms in
machine learning and data mining [25]. More specifically, in
this work we employ the average mixing matrix to capture
the visiting information of the quantum walks. The reasons
for using the quantum walk is that it not only reduces
the tottering effect arising in classical random walks, but it
also reflects richer graph characteristics than classical random
walks [23] (see details in Section II-A). We show that the new
convolution layer not only overcomes the aforementioned in-
formation loss problem of popular graph convolutional neural
networks associated with SortPooling or SumPooling layers,
but also reduces the notorious tottering problem of existing
graph kernels based on the Weisfeiler-Lehman algorithm [9]
(see details in Section III-D) that may result in redundant
information [26]. This in turn support the empirical evidence
collected in our experimental validation. Moreover, since the
proposed convolution layer does not alter the original spatial

position of vertices, it also allows us to directly employ
the traditional convolutional neural network to further learn
from the global graph topology, providing an end-to-end deep
learning architecture that integrates the graph representation
and learning into both the quantum spatial graph convolution
and the traditional convolutional layers for graph classification.

Third, we empirically evaluate the proposed Quantum
Spatial Graph Convolutional Neural Network (QSGCNN). Ex-
perimental results on benchmark graph classification datasets
demonstrate that our proposed QSGCNN significantly outper-
forms state-of-the-art graph kernels and deep graph convolu-
tional network models for graph classifications.

II. PRELIMINARY CONCEPTS

A. Continuous-time Quantum Walks

One main objective of this work is to develop a new
spatial graph convolution layer to extract multi-scale vertex
features by gradually propagating information for each vertex
to its neighboring vertices as well as the vertex itself. This
usually requires connection information between each vertex
and its neighboring vertices. Most existing methods employ
the vertex adjacency matrix of each graph in the formulation of
the information propagation framework [18], [19], [20], [21],
i.e., these methods rely on the vertex visiting information of
classical random walks. Recently, quantum algorithms have
been used to develop novel approaches in machine learning
and data mining [27], because of the richer structure than their
classical counterparts. For instance, Melucci [28] has devel-
oped a relevance feedback algorithm based on the quantum
probability subspace [29]. Fawaz et al. [30] have developed
a novel strategy to train binary neural networks associated
with quantum amplitude amplifications. In this work, in order
to capture richer vertex features from the proposed graph
convolutional layer, we employ the vertex information prop-
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agation process of the continuous-time quantum walk, that is
the quantum analogue of the classical random walk [23].

The main reason for relying on quantum walks is that,
unlike classical random walks, whose state is described by
a real-valued vector and where the evolution is governed by
a doubly stochastic matrix, the state vector of the quantum
walks is complex-valued and its evolution is governed by a
time-varying unitary matrix. Thus, the quantum walk evolution
is reversible, implying that it is non-ergodic and does not
possess a limiting distribution. As a result, the behaviour of
quantum walks is significantly different from their classical
counterpart and possesses a number of important properties,
e.g., it allows interference to take place. This interference,
in turn, helps to reduce the tottering problem of random
walks, as a quantum walkers backtracking on an edge does
so with reversed phase. Furthermore, since the evolution of
the quantum walk is not dominated by the low frequency
components of the Laplacian spectrum, it has better ability to
distinguish different graph structures. In Section III, we will
show that the proposed graph convolutional layer associated
with the continuous-time quantum walk can not only reduce
the tottering problem arising in some state-of-the-art graph
kernels and graph convolutional network models, but also
better discriminate between different graphs.

In this subsection, we briefly review the concept of
continuous-time quantum walks. Specifically, we use the av-
erage mixing matrix to capture the time-averaged behaviour
of the quantum walk and to measure the quantum information
being transmitted between the graph vertices. The continuous-
time quantum walk is the quantum analogue of the continuous-
time classical random walk [23], where the latter models
a Markovian diffusion process over the vertices of a graph
through the transitions between adjacent vertices. Let a sample
graph be denoted as G(V,E) with vertex set V and edge set E.
Like the classical random walk, the state space of the quantum
walk is the vertex set V . Using the Dirac notation, the basis
state of the quantum walk being at vertex u ∈ V is defined as
|u⟩, where |.⟩ corresponds to an orthonormal vector in a |V |-
dimensional complex-valued Hilbert space H. Its state |ψ(t)⟩
at time t is a complex linear combination of these orthonormal
basis states |u⟩, i.e.,

|ψ(t)⟩ =
∑

u∈V

αu(t) |u⟩ , (1)

where αu(t) ∈ C is the complex amplitude. Furthermore,
αu(t)α∗

u(t) indicates the probability of the walker visiting ver-
tex u at time t, where α∗

u(t) is the complex conjugate of αu(t),∑
u∈V αu(t)α∗

u(t) = 1, and αu(t)α∗
u(t) ∈ [0, 1] for all u ∈ V

and t ∈ R+. Unlike the classical counterpart, the continuous-
time quantum walk evolves based on the Schrödinger equation

∂/∂t |ψt⟩ = −iH |ψt⟩ , (2)

where H represents the system Hamiltonian and accounts
for the total energy of the system. In this work, we use
the adjacency matrix as the Hamiltonian. The behaviour of
a quantum walk over the graph G(V,E) at time t can be

summarized using the mixing matrix [31]

QM (t) = U(t) ◦ U(−t) = eiHt ◦ e−iHt, (3)

where the operation symbol ◦ represents the Schur-Hadamard
product of eiHt and e−iHt. Because U is unitary, QM (t) is
a doubly stochastic matrix and each entry QM (t)uv indicates
the probability of the walk visiting vertex v at time t when
the walk initially starts from vertex u. However, QM (t) cannot
converge, because U(t) is also norm-preserving. To overcome
this problem, we can enforce convergence by taking a time
average. Specifically, we take the Cesàro mean and define the
average mixing matrix as

Q = lim
T→∞

∫ T

0

QM (t)dt, (4)

where each entry Qvivj
of the average mixing matrix Q

represents the average probability for a quantum walk to visit
vertex vj starting from vertex vi, and Q is still a doubly
stochastic matrix. Furthermore, Godsil [31] has indicated that
the entries of Q are rational numbers. We can easily compute
Q from the spectrum of the Hamiltonian. Specifically, let
the adjacency matrix A of G be the Hamiltonian H. Let
λ1, . . . ,λ|V | represent the |V | distinct eigenvalues of H and
Pj is the matrix representation of the orthogonal projection on

the eigenspace associated with the λj , i.e., H =
∑|V |

j=1 λjPj .
Then, we can re-write the average mixing matrix Q as

Q =

|V |∑

j=1

Pj ◦ Pj . (5)

B. Transitive Alignment Between Vertices of Graphs

We introduce a new transitive vertex alignment method. To
this end, we commence by identifying a family of prototype
representations that reflect the main characteristics of the vec-
torial vertex representations over a set of graphs G. Assume
there are n vertices over all graphs in G, and the associated
K-dimensional vectorial representations of these vertices are
RK = (RK

1 ,RK
2 , . . . ,RK

n ), we use k-means [33] to identify
M centroids over all representations in RK . Specifically, given
M clusters Ω = (c1, c2, . . . , cM ), the aim of k-means is to
minimize the following objective function

argmin
Ω

M∑

i=1

∑

RK
j ∈cKi

∥RK
j − µK

i ∥2, (6)

where µK
i is the mean of the vectorial vertex representations

belonging to the i-th cluster ci. Since Eq.(6) minimizes the
sum of the square Euclidean distances between the vertex
points RK

j and the centroid point of cluster cKi , the M centroid

points {µK
1 , · · · , µK

i , · · · , µK
M} can be seen as a family of

K-dimensional prototype representations that encapsulate
representative characteristics over all graphs in G.

Let G = {G1, · · · , Gp, · · · , Gq, · · · , GN} be a set of
graphs. For each graph Gp(Vp, Ep) ∈ G and each vertex vi ∈
Vp associated with its K-dimensional vectorial representation
RK

p;i, we commence by identifying the set of K-dimensional

prototype representations as PR
K = {µK

1 , . . . , µK
j , . . . , µK

M}
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Fig. 2. The procedure for computing the vertex correspondence matrix. Given a set of graphs G, for each sample graph Gp ∈ G: (1) we compute
the K-dimensional DB representation DBK

p;v rooted at each vertex (e.g., vertex v2 of Gp). We represent this as a K-dimensional vertex vector, where each

element Hs(GK
p;2) of DBK

p;v represents the Shannon entropy of the K-layer expansion subgraph rooted at v2 [32]. (2) We identify a family of K-dimensional

prototype representations PRK = {µK
1 , . . . , µK

j , . . . , µK
M} (shown in purple) by applying the k-means algorithm to the K-dimensional DB representations

of the complete set of sample graphs, i.e., we construct M mean vectorial representations of M clusters through k-menas. (3) We align the K-dimensional DB
representations to the K-dimensional prototype representations and compute a K-level correspondence matrix CK

p . The correspondence matrix CK
p records

the correspondence information, where the element CK
p (i, j) = 1 indicates a structural correspondence between the i-th vertex of Gp and the j-th vertex of

GR.

for the graph set G. To establish a set of correspondences
between the graph vertices, we align the vectorial vertex
representations of each graph Gp to the family of prototype
representations PR

K . The alignment process is similar to
that introduced in [11] for point matching in a pattern space.
Specifically, we compute a K-level affinity matrix in terms of
the Euclidean distances between the two sets of points

AK
p (i, j) = ∥RK

p;i − µK
j ∥2. (7)

where AK
p is a |Vp| ×M matrix, and each element AK

p (i, j)
represents the distance between the vectorial representation
RK

p;i of v∈Vp and the j-prototype representation µK
j ∈ PR

K .

If the value of AK
p (i, j) is the smallest in row i, we say that

RK
p;i is aligned to µK

j , i.e., the vertex vi is aligned to the j-th
prototype representation. Note that for each graph there may
be two or more vertices aligned to the same prototype rep-
resentation. We record the correspondence information using
the K-level correspondence matrix CK

p ∈ {0, 1}|Vp|×M

CK
p (i, j) =

{
1 if AK

p (i, j) is the smallest in row i
0 otherwise.

(8)

For a pair of graphs Gp and Gq , if their vertices vp and
vq are aligned to the same prototype representation PRK

j , we
say that vp and vq are also aligned. Thus, we can identify
the transitive alignment information between the vertices of
all graphs in G, by matching their vertices to a common set
of reference points, i.e., the prototype representations.

To construct reliable correspondence information for the
graphs, in this work we employ a depth-based (DB) repre-
sentation [32] as the initial vectorial vertex representations
(i.e.RK). This is because the DB representation of each vertex
is computed by measuring the entropies on a family of k-layer

expansion subgraphs rooted at the vertex, where the parameter
k varies from 1 to K. It has been shown that such a K-
dimensional DB representation can be viewed as a nested
vertex representation that encapsulates a rich nested entropy-
based information content flow from each local vertex to the
global graph structure, as a function of depth. Fig.2 illustrates
the process of computing the K-level correspondence matrix
CK

p associated with DB representations.

III. THE QUANTUM SPATIAL GRAPH CONVOLUTIONAL

NEURAL NETWORK

In this section, we develop a new Quantum Spatial Graph
Convolutional Neural Network (QSGCNN) model. The ar-
chitecture of the proposed model has been shown in Fig.1.
Specifically, the architecture is composed of three sequential
stages, i.e., 1) the grid structure construction and input layer,
2) the quantum spatial graph convolution layer, and 3) the
traditional convolutional neural network and Softmax layers.
Specifically, the grid structure construction and input layer
a) first maps graphs of arbitrary sizes into fixed-sized grid
structures with consistent vertex orders, and b) inputs the
grid structures into the proposed QSGCNN model. With the
input graph grid structures to hand, the quantum spatial graph
convolution layer further extracts multi-scale vertex features
by propagating vertex feature information between the aligned
grid vertices. Since the extracted vertex features from the
graph convolution layer preserve the original vertex orders of
the input grid structures, the traditional convolutional neural
network and Softmax layer can read the extracted vertex
features and predict the graph class.
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A. Aligned Vertex Grid Structures of Graphs

In this subsection, we show how to map graphs of dif-
ferent sizes onto fixed-sized aligned vertex grid structures
and associated corresponding fixed-sized aligned grid vertex
adjacency matrices. For the set of graphs G defined earlier,
suppose Gp(Vp, Ep, Ap) ∈ G is a sample graph, with Vp

representing the vertex set, Ep representing the edge set, and
Ap representing the vertex adjacency matrix. Suppose each
vertex vp ∈ Vp is represented as a c-dimensional feature vector.
Then the features of all the n vertices can be encoded using
the n × c matrix Xp, i.e., Xp ∈ Rn×c. Note that the row
of Xp follows the same vertex order of Ap. If the graphs
in G are vertex attributed graphs, Xp can be the one-hot
encoding matrix of the vertex labels. For unattributed graphs,
we propose to use the vertex degree as the vertex label. Based
on the transitive vertex alignment method introduced in Sec-
tion II, for each graph Gp ∈ G, we commence by computing
the K-level vertex correspondence matrix CK

p that records
the correspondence information between the K-dimensional
vectorial vertex representation of Gp and the K-dimensional
prototype representations in PR

K = {µK
1 , . . . , µK

j , . . . , µK
M}

of G. The rows and columns of CK
p are indexed by the vertices

in Vp and the prototype representations in PR
K , respectively.

With CK
p to hand, we compute the K-level aligned vertex

feature matrix for Gp as

X̂K
p = (CK

p )TXp, (9)

where X̂K
p is a M × c matrix and each row of X̂K

p represents
the feature of a corresponding aligned vertex. Moreover, we
also compute the associated K-level aligned vertex adjacency
matrix for Gp as

ÂK
p = (CK

p )T (Ap)(C
K
p ), (10)

where ÂK
p is a M×M matrix. With the correspondence matrix

CK
p to hand, X̂K

p and ÂK
p are computed from the original

vertex feature matrix and adjacency matrix, respectively, by
mapping the original feature and adjacency information of
each vertex vp ∈ Vp to that of the new aligned vertices indexed
by the corresponding prototypes in PR

K . In other words
X̂K

p and ÂK
p encapsulate the original feature and structural

information of Gp. Note also that according to Eq. 8 each
vertex vp ∈ Vp can be aligned to more than one prototype,

and thus in general ÂK
p is a weighted adjacency matrix.

In order to construct the fixed-sized aligned grid structure
for each graph Gp ∈ G, we need to establish a consistent
order for the vertices of each graph. Since the vertices of each
graph are aligned to the same prototype representations, we
determine the vertex orders by reordering the prototype repre-
sentations. To this end, we compute a quasi graph GR(VR, ER)
with each vertex vj ∈ VR representing the prototype µK

j ∈
PR

K and each edge (vj , vk) ∈ ER representing the similarity
between µK

j ∈ PR
K and µK

k ∈ PR
K . Specifically, we

employ the well-known Gaussian kernel [1] (a widely used
way of characterising attribute vector similarity) to compute
the similarity between two vertices of GR

s(µK
j , µK

k ) = exp(−
∥µK

j − µK
k ∥2

K
). (11)

The degree of each prototype µK
j is DR(µK

j ) =∑M
k=1 s(µ

K
j , µK

k ). We sort the K-dimensional prototype rep-

resentations in PR
K according to their degree DR(µK

j ), and

rearrange X̂K
p and ÂK

p accordingly.
As we have stated in Section II-B, in this work we employ

the K-dimensional DB representations [32] as the initialized
vectorial vertex representations to compute the K-level cor-
respondence matrix (CK

p ) of each graph Gp. Specifically, the
DB representation can encapsulate rich nested structure in-
formation from each local vertex to the global graph structure
through the K-layer expansion subgraphs rooted at the vertex.
To construct reliable grid structures for graphs with rich multi-
scale structure information, we vary the parameter K from 1
to L (K ≤ L) and compute the final aligned vertex grid
structure for each graph Gp ∈ G as

X̂p =
L∑

K=1

X̂K
p

L
, (12)

and the associated aligned grid vertex adjacency matrix as

Âp =
L∑

K=1

ÂK
p

L
, . (13)

Remarks: Eq.(12) and Eq.(13) transform the original graphs
Gp ∈ G with varying number of nodes |Vp| into a new aligned
grid graph structure with the same number of vertices, where
X̂p is the corresponding aligned grid vertex feature matrix and

Âp is the corresponding aligned grid vertex adjacency matrix.

Since for any graph Gp ∈ G the rows of X̂p are consistently
indexed by the same prototype representations, the fixed-sized
vertex grid structure X̂p can be directly employed as the input
of a traditional convolutional neural network. In other words,
one can apply a fixed sized classical convolutional filter to
slide over the rows of X̂p and learn the feature for Gp ∈
G. Finally, note that X̂p and Âp accurately encapsulate the
original feature and structural information of Gp, respectively.

B. The Quantum Spatial Graph Convolution Layer

In this subsection, we propose a new quantum spatial
graph convolution layer to further extract the features of the
vertices of each graph. This is defined by quantum information
propagation between aligned grid vertices. To this end, we
employ the average mixing matrix of the continuous-time
quantum walk on the associated aligned grid vertex adjacency
matrix. For the sample graph Gp(Vp, Ep), we pass the aligned

vertex grid structure X̂p ∈ RM×c and the associated aligned

grid vertex adjacency matrix Âp ∈ RM×M of Gp as the input
of the quantum spatial graph convolution layer. The proposed
spatial graph convolution layer takes the following form

Z = Relu(QX̂pW ), (14)

where Relu is the rectified linear units function (i.e., a non-
linear activation function), Q is the average mixing matrix
of the continuous-time quantum walk on Âp of Gp defined in

Section II-A, W ∈ Rc×c
′

is the matrix of trainable parameters

of the proposed graph convolutional layer, and Z ∈ RM×c
′

is
the output activation matrix.
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The proposed quantum spatial graph convolution layer de-
fined by Eq.(14) consists of three steps. In the first step the
operation X̂pW is applied to transform the aligned grid vertex
information matrix into a new aligned grid vertex information
matrix. This in turn maps the c-dimensional features of each
aligned grid vertex into new c

′

-dimensional features, i.e.,
X̂pW maps the c feature channels to c

′

channels in the
next layer. The weights W are shared among all aligned grid
vertices. The second step computes QY , where Y := X̂pW .
This propagates the feature information of each aligned grid
vertex to the remaining vertices as well as the vertex itself,
in terms of the vertex visiting information of quantum walks.
Specifically, we note that Qij encapsulates the average prob-
ability for a continuous-time quantum walk to visit the j-th
aligned grid vertex starting from the i-th aligned grid vertex,
and (QX̂

′

p)i =
∑

j QijYj . Here, i can be equal to j, i.e., Q
includes the self-loop information for each vertex. Thus, the i-
th row of the resulting matrix of QX̂

′

p is the feature summation
of the i-th aligned grid vertex and the remaining aligned grid
vertices associated with the average visiting probability of
quantum walks from the i-th vertex to the remaining vertices
as well as the i-th vertex itself. The final step applies the
rectified linear unit function to QX̂pW and outputs the graph
convolution result.

The proposed quantum spatial graph convolution propagates
the aligned grid vertex information in terms of the vertex
visiting information associated with the continuous-time quan-
tum walk between vertices. To further extract the multi-scale
features of the aligned grid vertices, we stack multiple graph
convolution layers defined by Eq.(14) as follows

Zt+1 = Relu(QZtWt), (15)

where Z0 is the input aligned vertex grid structure X̂p, Zt ∈
RM×ct is the output of the t-th spatial graph convolution layer,
and Wt ∈ Rct×ct+1 is the trainable parameter matrix mapping
ct channels to ct+1 channels.

After each t-th graph convolutional layer, we add a layer to
horizontally concatenate the output Zt associated with the out-
puts of the previous 1 to t−1 spatial graph convolutional layers
and the original input Z0 as Z0:t, i.e., Z0:t = [Z0, Z1, . . . , Zt]
and Z0:t ∈ RM×

∑t
z=0 cz . As a result, for the concatenated

output Z0:t, each of its row can be seen as the new multi-
scale features for the corresponding grid vertex.

Remarks: Note that the proposed quantum spatial graph
convolution only extracts new features for the grid vertex and
does not change the orders of the vertices. As a result, both the
output Zt and the concatenated output Z0:t preserve the grid
structure property of the original input Z0 = X̂p, and can be
directly employed as the input of the traditional convolutional
neural network. This provides an elegant way of bridging the
gap between the proposed quantum spatial graph convolution
layer and the traditional convolutional neural network, making
an end-to-end deep learning architecture that integrates the
graph representation and learning in both the quantum spatial
graph convolution layer and the traditional convolution layer
for graph classification problems.

C. The Remaining Convolutional Neural Network Layers

After the t-th proposed quantum spatial graph convolution
layers, we get a concatenated vertex grid structure Z0:t ∈
RM×

∑t
z=0 cz , where each row of Z0:t represents the multi-

scale feature for a corresponding grid vertex. As we mentioned
above, each grid structure Z0:t can be directly employed
as the input to the traditional convolutional neural network
(CNN). Specifically, the Classical One-dimensional CNN part
of Fig.1 exhibits the architecture of the traditional CNN layers
associated with each Z0:t. Here, each concatenated vertex grid
structure Z0:t is seen as a M × 1 (in Fig.1 M = 5) vertex
grid structure and each vertex is represented by a

∑t
z=0 cz-

dimensional feature, i.e., the channel of each grid vertex is∑t
z=0 cz . Then, we add a one-dimensional convolutional layer.

The convolutional operation can be performed by sliding a
fixed-sized filter of size k×1 (in Fig.1 k = 3) over the spatially
neighboring vertices. After this, several MaxPooling layers and
remaining one-dimensional convolutional layers can be added
to learn the local patterns on the aligned grid vertex sequence.
Finally, when we vary t from 0 to T (in Fig.1 T = 2), we will
obtain T +1 extracted pattern representations. We concatenate
the extracted patterns of each Z0:t and add a fully-connected
layer followed by a Softmax layer.

D. Advantages of the Proposed QSGCNN Model

The proposed QSGCNN model is related to some existing
state-of-the-art graph convolution network models and graph
kernels. However, there are a number of significant theoretical
differences between the QSGCNN model and these existing
methods, explaining the effectiveness of the proposed model.

First, similar to the quantum spatial graph convolution
of the proposed QSGCNN model, the associated graph con-
volution of the Deep Graph Convolutional Neural Network
(DGCNN) [21] and the spectral graph convolution of the Fast
Approximate Graph Convolutional Neural Network (FAGC-
NN) [34] also propagate the features between the graph
vertices. Specifically, the graph convolutions of the DGCNN
and FAGCNN models use the graph adjacency matrix or
the normalized Laplacian matrix to determine how to pass
the information among the vertices. In contrast, our quantum
spatial graph convolution utilizes the average mixing matrix
of the continuous-time quantum walk associated with the
graph. As we mentioned in Section II-A, the quantum walk is
not dominated by the low frequency values of the Laplacian
spectrum and thus has a better ability to distinguish different
graph structures. As a result, the proposed method can extract
more discriminative vertex features.

Second, in order to maintain the scale of the vertex features
after each graph convolution layer, the graph convolution of
the DGCNN model [21] and the spectral graph convolution
of the FAGCNN model [34] need to perform a multiplication
by the inverse of the vertex degree matrix. For instance, the
graph convolution layer of the DGCNN model associated with
a graph having n vertices is

Z = f(D̃−1ÃXW ), (16)

where Ã = A + I is the adjacency matrix of the graph
with added self-loops, D̃ is the degree matrix of Ã, Xn×c
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is the vertex feature matrix with each row representing the

c-dimensional features of a vertex, W c×c
′

is the matrix of
trainable parameters, f is a nonlinear activation function (e.g.,

the Relu function), and Zn×c
′

is the output. In a manner
similar to the proposed quantum spatial graph convolution de-
fined in Eq.(14), XW maps the c-dimensional features of each
vertex into a set of new c

′

-dimensional features. Moreover,
ÃY (Y := X̂pW ) propagates the feature information of each
vertex to its neighboring vertices as well as the vertex itself.
The i-th row (ÃY )i of the resulting matrix ÃY represents the
extracted features of the i-th vertex, and corresponds to the
summation of Yi itself and Yj from the neighbor vertices of

the i-th vertex. Multiplying by the inverse of D̃ (i.e., D̃−1)
can be seen as the process of normalizing and assigning equal
weights between the i-th vertex and each of its neighbours.
In other words, the graph convolution of the DGCNN model
considers the mutual-influences between specified vertices for
the convolution operation as the same. In contrast, the quantum
spatial graph convolution of the proposed QSGCNN model
defined in Eq.(14) assigns an average quantum walk visiting
probability distribution to specified vertices with each vertex
having a different visiting probability as the weight. Therefore,
the extracted vertex feature is the weighted summation of
the specified vertex features. As a result, the quantum spatial
graph convolution of the proposed QSGCNN model not only
maintains the feature scale, but also discriminates the mutual-
influences between specified vertices in terms of the different
visiting probabilities during the convolution operation.

Third, similar to the proposed QSGCNN model, both
the PATCHY-SAN based Graph Convolution Neural Network
(PSGCNN) model [20] and the DGCNN model [21] need
to rearrange the vertex order of each graph structure and
transform each graph into the fixed-sized vertex grid structure.
Specifically, the PSGCNN model first forms the grid structures
and then performs the standard classical CNN on the grid
structures. The DGCNN model sorts the vertices through a
SortPooling associated with the extracted vertex features from
multiple spatial graph convolution layers. Unfortunately, both
the PSGCNN model and the DGCNN model sort the vertices
of each graph based on the local structural descriptor, ig-
noring consistent vertex correspondence information between
different graphs. By contrast, the proposed QSGCNN model
associates with a transitive vertex alignment procedure to
transform each graph into an aligned fixed-sized vertex grid
structure. As a result, only the proposed QSGCNN model
can integrate the precise structural correspondence information
over all graphs under investigations.

Fourth, when the PSGCNN model [20] and the DGCNN
model [21] form fixed-sized vertex grid structures, some ver-
tices with lower ranking will be discarded. Moreover, the Neu-
ral Graph Fingerprint Network (NGFN) [18] and the Diffusion
Convolution Neural Network (DCNN) [19] tend to capture
global-level graph features by summing up the extracted local-
level vertex features through a SumPooling layer, since both
the NGFN model and the DCNN model cannot directly form
vertex grid structures. This leads to significant information loss
for local-level vertex features. By contrast, the required aligned

vertex grid structures and the associated grid vertex adjacency
matrices for the proposed QSGCNN model can encapsulate
both the original vertex features and the topological structure
information of the original graphs, i.e., computing the local-
level vertex grid structures will not discard any vertex of
original graphs. As a result, the proposed QSGCNN reduces
the shortcoming of information loss arising in the mentioned
state-of-the-art graph convolutional neural network models.

Fifth, similar to the DGCNN model [21], the quantum
spatial graph convolution of the proposed QSGCNN model
is also related to the Weisfeiler-Lehman subtree kernel (WL-
SK) [9]. Specifically, the WLSK kernel employs the classical
Weisfeiler-Lehman (WL) algorithm as a canonical labeling
method to extract multi-scale vertex features corresponding
to subtrees for graph classification. The key idea of the WL
method is to concatenate a vertex label with the labels of
its neighbor vertices, and then sort the concatenated label
lexicographically to assign each vertex a new label. The
procedure repeats until a maximum iteration h, and each
vertex label at an iteration h corresponds to a subtree of
height t rooted at the vertex. If the concatenated label of two
vertices are the same, the subtree rooted at the two vertices are
isomorphic, i.e., the two vertices are seen to share the same
structural characteristics within the graph. The WLSK kernel
uses this idea to measure the similarity between two graphs.
It uses the WL method to update the vertex labels, and then
counts the number of identical vertex labels (i.e. counting the
number of the isomorphic subtrees) until the maximum of the
iteration h in order to compare two graphs at multiple scales.
To exhibit the relationship between the proposed quantum
spatial graph convolution defined in Eq.(14) and the WLSK
kernel, we decompose Eq.(14) in a row-wise manner, i.e.,

Zi = Relu(Qi,:Y ) = Relu(QiiYi +
∑

j

QijYj), (17)

where Y = X̂pW . For Eq.(17), Yi can be seen as the
continuous valued vectorial vertex label of the i-th vertex.
Moreover, if Qij > 0, the quantum walk starting from the i-th
vertex can visit the j-th vertex, and the visiting probability
is Qij . In a manner similar to the WL methods, Eq.(17)
aggregates the continuous label Yi of the i-th vertex and the
continuous labels Yj of the vertices, that can be visited by the
quantum walk starting from the i-th vertex, as a new signature
vector QiiYi +

∑
j QijYj for the i-th vertex. The Relu

function maps QiiYi+
∑

j QijYj to a new continuous vectorial
label. As a result, the quantum spatial graph convolution of
the proposed QSGCNN model can be seen as a quantum
version of the WL algorithm, in terms of the quantum
vertex information propagation formulated by the quantum
walk. As we mentioned in Section II-A, the quantum walk
can significantly reduce the effect of the tottering problem.
On the other hand, the classical WL method also suffers
from tottering problem [11]. As a result, the quantum spatial
graph convolution can address the tottering problem arising
in the classical WL method, and the graph convolution of the
DGCNN model is similar to the clasical WL method. In other
words, the quantum spatial graph convolution of the proposed
QSGCNN model can learn better vertex features of graphs.
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Finally, note that the proposed QSGCNN model for each
graph is invariant with respect to the permutation of the
vertices, indicating that the activations of a pair of isomorphic
graphs will be the same. As we mentioned, the proposed
QSGCNN model consists of three stages, i.e., a) the grid
structure construction and input layer, b) the quantum spatial
graph convolution layer, and c) the traditional CNN layer.
For the first layer, the construction of grid structures relies
on the vertex features and adjacency matrix, and is invariant
to vertex permutations. As a result, the grid structures for
a pair of isomorphic graphs are the same. For the second
layer, the input grid structures of different graphs share the
same parameter weights, thus the quantum spatial graph con-
volutions will produce the same extracted vertex features for
a pair of isomorphic graphs associated with the same grid
structures. Consequently, the subsequent classical CNN layer
will correctly identify the isomorphic graphs. As a result,
the proposed QSGCNN model can correctly identify pairs of
isomorphic graphs.

IV. EXPERIMENTS

In this section, we empirically compare the performance of
the proposed QSGCNN model to state-of-the-art approaches.
Specifically, we utilize nine benchmark graph datasets from
bioinformatics [35], [36], [37], [38] and social networks [39]
to evaluate the graph classification performance of the pro-
posed QSGCNN model. These benchmark datasets include
MUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-
B, IMDB-M and RED-B, and are all available on the website
https://chrsmrrs.github.io/datasets. A selection of statistics of
these datasets are shown in Table I. Note that, all the bench-
mark social network datasets (i.e., the COLLAB, IMDB-B,
IMDB-M and RED-B datasets) used in this work consist of
multiple graphs, and have been widely employed to evaluate
the classification performance of existing graph convolutional
neural network models and graph kernels.

A. Comparisons with Graph Kernels

Experimental Setup: We evaluate the performance of the
proposed QSGCNN model on graph classification problems
against eight alternative state-of-the-art graph kernels. These
graph kernels include 1) Jensen-Tsallis q-difference kernel
(JTQK) with q = 2 [25], 2) the Weisfeiler-Lehman subtree
kernel (WLSK) [9], 3) the Weisfeiler-Lehman kernel based
on core variants (CORE WL) [40], 4) the shortest path graph
kernel (SPGK) [41], 5) the shortest path kernel based on core
variants (CORE SP) [40], 6) the random walk graph kernel
(RWGK) [42], 7) the graphlet count kernel (GK) [43], and 8)
the propagated information graph kernel (PIGK) [44].

For the evaluation, the proposed QSGCNN model uses
the same network structure on all graph datasets. We
commence by setting the number of prototype representations
to M = 64, since we observe that about 60% to 70% of the
graphs have less than 64 vertices in our experiments. This
can guarantee that the proposed QSGCNN model not only
preserves all original vertices, but also retains the independent
edge connections between vertices as much as possible. In

other words, most edge connections between vertices will not
be merged into one edge during the process of transforming
each arbitrary sized graph into the fixed-sized grid structure.
Moreover, we set the number of the quantum spatial graph
convolution layers as 5 (note that, including the original input
grid structures, the spatial graph convolution produces 6 con-
catenated outputs), and the channels of each quantum spatial
graph convolution as 32. Following each of the concatenated
outputs after the quantum graph convolution layers, we add
a traditional CNN layer with the architecture as C64-P2-C64-
P2-C64-F64 to learn the extracted patterns, where Ck denotes
a traditional convolutional layer with k channels, Pk denotes
a classical MaxPooling layer of size and stride k, and Fk
denotes a fully-connected layer consisting of k hidden units.
The filter size and stride of each Ck are all 5 and 1. With
the six sets of extracted patterns after the CNN layers to
hand, we concatenate them and add a new fully-connected
layer followed by a Softmax layer with a dropout rate of 0.5.
We use the rectified linear units (ReLU) in either the graph
convolution or the traditional convolution layer. The learning
rate of the QSGCNN model is 0.0005 for all datasets. The only
hyperparameter we optimized is the number of epochs and
the batch size for the mini-batch gradient descent algorithm.
To optimize the QSGCNN model, we use the Stochastic
Gradient Descent with the Adam updating rules. Finally, note
that, the QSGCNN model needs to construct the prototype
representations to identify the transitive vertex alignment in-
formation over all graphs. The prototype representations can
be computed from the training graphs or both the training
and testing graphs. We observe that the QSGCNN model
associated with the two variants does not influence the final
performance. Thus, in our evaluation we proposed to compute
the prototype representations from both the training and testing
graphs. In this sense, our model can be seen as an instance
of transductive learning [45], where all the graphs are used
to compute the prototype representations, and the class labels
of the test graphs are not observed during the training phase.
For the QSGCNN model, we perform 10-fold cross-validation
to compute the classification accuracies, with nine folds for
training and one folds for testing. For each dataset, we repeat
the experiment 10 times and report the average classification
accuracies and standard errors in Table II.

We set the parameters controlling the maximum height of
the subtrees for the Weisfeiler-Lehman isomorphism test (WL-
SK kernel) and for the tree-index method (JTQK kernel) to 10.
This is based on the previous empirical studies of Shervashidze
et al. [9] and Bai et al. [25]. For each graph kernel, we perform
10-fold cross-validation using the LIBSVM implementation
of C-Support Vector Machines (C-SVM) and we compute the
classification accuracies. We perform cross-validation on the
training data to select the optimal parameters for each kernel
and fold. We repeat the experiment 10 times for each kernel
and dataset and report the average classification accuracies
in Table II. Note that for some kernels we directly report
the best results from the original corresponding papers, since
the evaluation of these kernels followed the same setting of
ours. Note that, the symbol − in Table II indicates that some
approaches were not evaluated on the corresponding datasets
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TABLE I
INFORMATION OF THE GRAPH DATASETS

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

Max # vertices 28 111 620 5748 109 492 136 89 3783

Mean # vertices 17.93 29.87 39.06 284.30 25.60 74.49 19.77 13.00 429.61

Mean # edges 19.79 32.30 72.82 715.65 14.69 4914.99 193.06 131.87 497.80

# graphs 188 4110 1113 1178 344 5000 1000 1500 2000

# vertex labels 7 37 61 82 19 − − − −

# classes 2 2 2 2 2 3 2 3 2

Description Chemical Chemical Chemical Chemical Chemical Social Social Social Social

by the original authors, and this symbol has the same meaning
in the following Table III and Table IV

Experimental Results and Discussion: Table II shows that
the proposed QSGCNN model significantly outperforms the
alternative state-of-the-art graph kernels in this study. Al-
though, the proposed model cannot achieve the best classi-
fication accuracy on the NCI1 and COLLAB datasets, the
proposed model is still competitive and the accuracy on the
COLLAB dataset is only a little lower than the WL-OA kernel.
On the other hand, the accuracy of the proposed model on the
NCI1 dataset is still higher than the SPGK, CORE SP, GK and
RWGK kernels. The reasons for the effectiveness are twofold.
First, the state-of-the-art graph kernels for comparisons are
typical examples of R-convolution kernels. Specifically, these
kernels are based on the isomorphism measure between any
pair of substructures, ignoring the structure correspondence
information between the substructures. By contrast, the asso-
ciated aligned vertex grid structure for the proposed QSGCNN
model incorporates the transitive alignment information be-
tween vertices over all graphs. Thus, the proposed model can
better reflect the precise characteristics of graphs. Second, the
C-SVM classifier associated with graph kernels can only be
seen as a shallow learning framework [46]. By contrast, the
proposed QSGCNN model can provide an end-to-end deep
learning architecture for graph classification, and can better
learn the graph characteristics. The experiments demonstrate
the advantages of the proposed QSGCNN model, compared
to the shallow learning framework. Third, some alternative
kernels are related to the Weisfeiler-Lehman method. As
we have stated in Section III-D, the kernels based on the
Weisfeiler-Lehman method may suffer from the tottering prob-
lem. By contrast, the proposed model based on quantum walk
can significantly reduce the effect of tottering walks. The
experiments also demonstrate the effectiveness.

B. Comparisons with Deep Learning Methods

Experimental Setup: We evaluate the performance of the
proposed QSGCNN model on graph classification problems
against eleven alternative state-of-the-art deep learning meth-
ods for graphs. These methods include 1) the deep graph
convolutional neural network (DGCNN) [21], 2) the PATCHY-
SAN based convolutional neural network for graphs (PS-
GCNN) [20], 3) the diffusion convolutional neural network
(DCNN) [19], 4) the edge-conditioned convolutional networks
(ECC) [47], 5) the deep graphlet kernel (DGK) [48], 6) the
graph capsule convolutional neural network (GCCNN) [49],
7) the anonymous walk embeddings based on feature driven
(AWE) [50], 8) the graph convolution network based on Dif-
ferentiable Pooling (DiffPool) [51], 9) the graph convolution
network based on Self-Attention Pooling (SAGPool) [52], 10)
the graph convolutional network with EigenPooling (Eigen-

TABLE IV
CLASSIFICATION ACCURACY FOR COMPARISONS WITH DEEP LEARNING

METHODS ON BIOINFORMATICS DATASETS.
Datasets MUTAG NCI1 PROTEINS D&D PTC

QSGCNN 91.32 77.50 75.90 81.70 63.37

DiffPool 82.66 76.00 76.25 80.64 −

SAGPool − 74.06 71.86 76.45 −

EigenPool 79.50 77.00 78.60 76.60 −

DEMO-Net 81.40 − − 70.80 57.20

Pool) [52], and 11) the degree-specific graph neural networks
(DEMO-Net) [53]. For the proposed QSGCNN model, we use
the same experimental setups when we compare the proposed
model to graph kernels. For the PSGCNN, ECC, and DGK
model, we report the best results from the original papers [20],
[47], [48]. Note that, these methods follow the same setting
with the proposed QSGCNN model. For the DCNN model,
we report the best results from the work of Zhang et al. [21],
following the same setting of our network. For the AWE
model, we report the classification accuracies of the feature-
driven AWE, since the authors have stated that this kind of
AWE model can achieve competitive performance on label
dataset. Moreover, the PSCN and ECC models can leverage
additional edge features. Since most graph datasets and all the
alternative methods used for comparisons do not leverage edge
features, in this work we do not report the results associated
with edge features. Finally, since the SAGPool, EigenPool,
DEMO-Net models have not been evaluated on the social
network datasets by the original authors, and ECC and the
DiffPool models are only evaluated on one social network
dataset (i.e., the COLLAB dataset) by the original author
where the accuracies (67.79 and 75.48) are obviously lower
than ours. For fair comparisons, we only report the accuracies
of these models on the bioinformatics datasets in Table.IV.

Finally, note that, in order to further demonstrate the ad-
vantage of the proposed QSGCNN model associated with
quantum walks, we perform the proposed spatial convo-
lutional operation associated with classical random walks.
More specifically, for the proposed QSGCNN model and
its associated spatial graph convolutional operation function
Z = Relu(QX̂pW ) defined by Eq.14, we replace the quantum

average mixing matrix Q by D̂−1
p Âp, where Âp is the aligned

vertex adjacency matrix, D̂−1
p is inverse of the degree matrix

for Âp, P = D̂−1
p Âp is the transition matrix of the classical

random walk, and P (i, j) represents the probability of a
random walk starting from vertex vi to vertex vj . As a result,

the revised convolutional operation Z = Relu(D̂−1
p ÂpX̂pW )

will propagate the feature information between aligned grid
vertices based on the vertex visiting information of classical
random walks. We report the results of the neural network
model based on classical random walks (CSGCNN) following
the same network architecture and experimental setup as for
the proposed QSGCNN model.

All the classification accuracies and standard errors for each
deep learning method are shown in Table.III.
Experimental Results and Discussion: Table III indicates
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TABLE II
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH GRAPH KERNELS.

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

QSGCNN 91.32±0.91 77.50±0.91 75.90±0.79 81.70±0.92 63.37±1.15 78.80±0.89 73.62±1.12 51.60±1.15 91.50±0.24

JTQK 85.50±0.55 85.32±0.14 72.86±0.41 79.89±0.32 58.50±0.39 76.85±0.40 72.45±0.81 50.33±0.49 77.60±0.35

WLSK 82.88±0.57 84.77±0.13 73.52±0.43 79.78±0.36 58.26±0.47 77.39±0.35 71.88±0.77 49.50±0.49 76.56±0.30

CORE WL 87.47±1.08 85.01±0.19 − 79.24±0.34 59.43±1.20 − 74.02±0.42 51.35±0.48 78.02±0.23

SPGK 83.38±0.81 74.21±0.30 75.10±0.50 78.45±0.26 55.52±0.46 58.80±0.2 71.26±1.04 51.33±0.57 84.20±0.70

CORE SP 88.29±1.55 73.46±0.32 − 77.30±0.80 59.06±0.93 − 72.62±0.59 49.43±0.42 90.84±0.14

PIGK 76.00±2.69 82.54±0.47 73.68±0.69 78.25±0.51 59.50±2.44 − − − −

GK 81.66±2.11 62.28±0.29 71.67±0.55 78.45±0.26 52.26±1.41 72.83±0.28 65.87±0.98 45.42±0.87 77.34±0.18

RWGK 80.77±0.72 63.34±0.27 74.20±0.40 71.70±0.47 55.91±0.37 − 67.94±0.77 46.72±0.30 −

TABLE III
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH GRAPH CONVOLUTIONAL NEURAL NETWORKS.

Datasets MUTAG NCI1 PROTEINS D&D PTC(MR) COLLAB IMDB-B IMDB-M RED-B

QSGCNN 91.32±0.91 77.50±0.91 75.90±0.79 81.70±0.92 63.37±1.15 78.80±0.89 73.62±1.12 51.60±1.15 91.50±0.24

DGCNN 85.83±1.66 74.44±0.47 75.54±0.94 79.37±0.94 58.59±2.47 73.76±0.49 70.03±0.86 47.83±0.85 76.02±1.73

PSGCNN 88.95±4.37 76.34±1.68 75.00±2.51 76.27±2.64 62.29±5.68 72.60±2.15 71.00±2.29 45.23±2.84 86.30±1.58

DCNN 66.98 56.61±1.04 61.29±1.60 58.09±0.53 56.60 52.11±0.71 49.06±1.37 33.49±1.42 −

ECC 76.11 76.82 72.65 74.10 − 67.79 − − −

GCCNN − 82.72±2.38 76.40±4.71 77.62±4.99 66.01±5.91 77.71±2.51 71.69±3.40 48.50±4.10 87.61±2.51

DGK 82.66±1.45 62.48±0.25 71.68±0.50 78.50±0.22 57.32±1.13 73.09±0.25 66.96±0.56 44.55±0.52 78.30±0.30

AWE 87.87±9.76 − − 71.51±4.02 − 70.99±1.49 73.13±3.28 51.58±4.66 82.97±2.86

CSGCNN 88.65±0.76 75.51±0.25 73.24±0.50 78.68±0.47 62.58±0.90 77.96±0.90 72.50±0.55 50.00±0.95 89.15±0.24

that the proposed QSGCNN model significantly outperforms
state-of-the-art deep learning methods for graph classifications,
on the MUTAG, D&D, COLLAB, IBDM-B, IBDM-M and
RET-B datasets. On the other hand, only the accuracy of the
GCCNN model on the NCI1 and PTC datasets and that of the
DGCNN model on the PROTEINS dataset are a higher than
the proposed QSGCNN model. But the proposed QSGCNN is
still competitive and outperform the remaining methods on the
three datasets. The reasons of the effectiveness are fivefold.

First, similar to the state-of-the-art graph kernels, all the
alternative deep learning methods (i.e., the DGCNN, PSGC-
NN, DCNN, GCCNN, DGK, AWE, HO-GCN, ECC, SAG-
Pool, EigenPool and DEMO-Net models) for comparisons
also cannot integrate the correspondence information between
graphs into the learning architecture. Especially, the PSGCNN,
DGCNN and ECC models need to reorder the vertices, but
these methods rely on simple but inaccurate heuristics to align
the vertices of the graphs, i.e., they sort the vertex orders
based on the local structure descriptor of each individual graph
and ignore the vertex correspondence information between
different graphs. Thus, only the QSDCNN model can reflect
the graph characteristics through the layer-wise learning.

Second, the PSGCNN and DGCNN models need to form
a fixed-sized vertex grid structure for each graph. Since the
vertex numbers of different graphs are different, forming such
fixed-sized grid structures means some vertices of each graph
may be discarded, leading to information loss. By contrast, as
we have mentioned in Section II and Section III, the associated
aligned vertex grid structures can completely preserve the
information of original graphs. As a result, only the proposed
QSGCNN model can completely integrate the original graph
characteristics into the learning process.

Third, the DCNN model needs to sum up the extracted
local-level vertex features from the convolution operation as
global-level graph features through a SumPooling layer. By
contrast, the QSGCNN model can learn the graph topological
information through the local vertex features.

Forth, unlike the DGCNN, PSGCNN, DCNN, GCCN-
N, DGK, AWE, HO-GCN, ECC, SAGPool, EigenPool and
DEMO-Net models that are based on the original vertex
adjacency matrix to formulate vertex connection information
of the graph convolution operation, the graph convolution
operation of the proposed QSGCNN model formulates the

vertex connection information in terms of the average mixing
matrix of continuous-time quantum walk. As we have stated
in Section II, the quantum walk is not dominated by the low
frequency of the Laplacian spectrum and can better distinguish
different graph structures. Thus, the proposed model has better
ability to identify the difference between different graphs.

Fifth, similar to the DGCNN, PSGCNN, DCNN, HO-
GCN, DEMO-Net and DGK models, the proposed QSGCNN
model is also related to the classical Weisfeiler-Lehman (WL)
method. Since the classical WL method suffers from tottering
problem, the related DGCNN, PSGCNN and DGK models
also possess the same drawback. By contrast, the graph
convolution operation of the proposed QSGCNN model can
be seen as the quantum version of the classical WL algorithm.
Since the quantum walk can reduce the tottering problem,
the proposed QSGCNN model overcomes the shortcoming of
tottering problem arising in the DGCNN, PSGCNN and DGK
models. Moreover, the AWE model is based on the classical
random walk. By contrast, the proposed QSGCNN model is
based on the quantum random walk, that has been proven
powerful to better distinguish different graph structures. The
evaluation demonstrates the advantages of the QSGCNN mod-
el, compared to the state-of-the-art deep learning methods.

Finally, we observe that the proposed QSGCNN model
significantly outperforms the CSGCNN model, that is based on
the proposed spatial graph convolutional operation associated
with classical random walks. This indicates that the proposed
QSGCNN model associated with quantum walks can better
discriminate different graph structures than the CSGCNN
model associated with classical random walks, demonstrating
the advantage of utilizing quantum walks in our framework.
On the other hand, excluding the QSGCNN model, we observe
that the CSGCNN model can outperform most of the alterna-
tive methods. This is because the CSGCNN model follows the
same architecture and experimental setup with the QSGCNN
model, i.e., the CSGCNN model also employs the fixed-sized
grid structures of graphs as inputs. Similar to the proposed
QSGCNN model, the CSGCNN model can also reduce the
problem of information loss and overcome the shortcoming of
lacking structure correspondence information, demonstrating
the advantage of the proposed fixed-sized grid structures.
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16 24 32 40 48 56 64

The values of the parameter M

765

770

775

780

785

790

795

800

R
u
n
tim

e
 in

 S
e
co

n
d
s

QSGCNN on the RED-B dataset

(d) Training runtime vs parameter M

Fig. 3. Plots of accuracy and runtime vs parameter M, as well as accuracy and training loss vs epoch.

C. Computational Efficiency of the Proposed Model

In this subsection, we empirically evaluate the computation-
al efficiency of QSGCNN, and compare it with the fast WLSK
kernel [9] on the RED-B benchmark dataset. We choose this
dataset because the graphs it contains have the largest average
size among the available datasets used in our experimental
evaluation. The WLSK kernel takes 2, 170 seconds to compute
the kernel matrix, and another 837 seconds to train the C-
SVM associated with the kernel matrix for one round of
10-fold cross validation. For the proposed QSGCNN model,
computing the fixed-sized grid structures takes 3, 980 seconds,
and another 457 seconds to train the QSGCNN model for
one round of 10-fold cross validation. Note that, the training
time of the proposed QSGCNN model depends on the number
of epochs selected. Here we set the number of epochs to be
100. QSGCNN can significantly outperform the WLSK kernel
under in this setting, i.e., the accuracies of QSGCNN and
the WLSK kernel are 77.30 versus 76.56. As a result, the
overall runtimes for QSGCNN and the WLSK kernel are 4437
seconds versus 3, 007 seconds. In other words, although the
runtime of the proposed QSGCNN model is slightly higher,
this is still a competitive advantage when compared with
that of the WLSK kernel. More importantly, the proposed
QSGCNN model can significantly outperform the WLSK
kernel in terms of graph classification accuracy, i.e., QSGCNN
provides a better trade-off between classification accuracy and
computational efficiency.

D. Additional Performance Evaluation of the Proposed Model

In this subsection, we first evaluate how the selection of
the parameter M influences the classification performance of
the proposed model. Specifically, we vary the parameter M
from 16 to 64 (with steps of size 8). Figure 3(a) shows how
the classification accuracy of the proposed QSGCNN model
varies with increasing values of M on the COLLAB, PTC
and RED-B datasets. We select these three datasets due to
their representativeness in terms of different graph size and
graph sample size. We observe that the classification accuracy
gradually increases as the value of M increases, reaching a
more stable value when M is greater than 48. Moreover, we
evaluate how the training loss and the classification accuracies
vary as we increase the number of epochs. Specifically, we
vary the epoch number from 50 to 1000 (with steps of size 50).
We show the results in Figure 3(b) and Figure 3(c). Finally, we
investigate how the runtime varies with the above increasing
values of M when set the epoch as 1000. We show the results

in Figure 3(d). Note that although the above three evaluations
are only performed on the RED-B dataset, we observe similar
results on the remaining datasets. As the number of epochs in-
creases, the classification accuracy gradually increases and the
training loss gradually decreases, until they both converge to
stable values. Moreover, the runtime increases approximately
linearly with increasing values of M .

V. CONCLUSION

In this paper we have developed a new quantum graph
convolutional neural network, QSGCNN, that can directly
learn an end-to-end deep learning architecture for classifying
graphs of arbitrary sizes. The key idea is to present a novel
quantum spatial graph convolution operation on a fixed-sized
vertex grid structure for the original graphs. This transforma-
tion is achieved through transitive alignments between graphs.
We demonstrate that the proposed QSGCNN model not only
preserves the original graph characteristics, but also bridges
the gap between the spatial graph convolution layer and
the traditional convolutional neural network layer. Moreover,
QSGCNN can better distinguish different structures, and the
experiments demonstrate its effectiveness on graph classifica-
tion problems.

In previous work [54], [55] we have shown how to charac-
terize edge information in the original graphs through directed
line graphs, where each vertex of the line graph represents
an edge of the original graph. We have also illustrated the
relationship between discrete-time quantum walks and the
directed line graphs. It would be interesting to develop a novel
quantum edge-based convolutional network associated with
discrete-time quantum walks using the directed line graph.
Finally, Xu et al. [56] indicate that the convolutional operation
underpinning most graph convolutional networks based on an
adjacency matrix representation can be interpreted as directly
implementing a 1-layer perceptron followed by a non-linear
activation function. Moreover, they develop a new graph
isomorphism network model based on a vertex information
aggregation layer followed by multi-layer perceptrons, and
demonstrate a significant performance improvement. This can
inform our future work, and we will further extend QSGCNN
to develop a new quantum isomorphism dectection network.
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