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Two dimensionless fundamental physical constants, the fine structure constant α and the proton-
to-electron mass ratio

mp

me
are attributed a particular importance from the point of view of nuclear

synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that
a combination of these two constants results in a new dimensionless constant which provides the

upper bound for the speed of sound in condensed phases, vu. We find that vu
c

= α
(

me
2mp

) 1
2
, where

c is the speed of light in vacuum. We support this result by a large set of experimental data and
first principles computations for atomic hydrogen. Our result expands current understanding of how
fundamental constants can impose new bounds on important physical properties.

INTRODUCTION

Several notable properties of condensed matter phases
are defined by fundamental physical constants. The Bohr
radius gives a characteristic scale of interatomic distance
on the order of the Angstrom, in terms of electron mass
me, charge e, and Planck constant h̄. These same fun-
damental constants enter the Rydberg energy, setting
the scale of a characteristic bonding energy in condensed
phases and chemical compounds [1].

Among the fundamental constants, those that are di-
mensionless and do not depend on the choice of units,
play a special role in physics [2]. Two important dimen-
sionless constants are the fine structure constant α and
the proton-to-electron mass ratio,

mp

me
. The finely-tuned

values of α and
mp

me
, and the balance between them, gov-

erns nuclear reactions such as proton decay and nuclear
synthesis in stars, leading to the creation of the essential
biochemical elements, including carbon. This balance
provides a narrow “habitable zone” in the (α,

mp

me
) space

where stars and planets can form and life-supporting
molecular structures can emerge [2].

We show that a simple combination of α and
mp

me
re-

sults in another dimensionless quantity which has an un-
expected and specific implication for a key property of
condensed phases, the speed at which waves travel in
solids and liquids, or the speed of sound, v. We find that

this combination provides an upper bound vu, as

vu
c

= α

(
me

2mp

) 1
2

, (1)

where c is the speed of light in vacuum.
We support this result with a large set of experimental

data for different systems, and the first principles mod-
elling of atomic hydrogen.

Identifying and understanding bounds on physical
properties is important from the point of view of funda-
mental physics, predictions for theory and experiment,
as well as searching for and rationalizing universal be-
havior (see, e.g., [3–11]). Properties for which bounds
were recently discussed include viscosity and diffusiv-
ity. The proposed lower bounds for these two proper-
ties feature in a range of areas including, for example,
strongly-interacting field theories, quark-gluon plasmas,
holographic duality, electron diffusion, transport proper-
ties in metals and superconductors, and spin transport
in Fermi gases [3–11]. Recently, two of us found a lower
bound for the kinematic viscosity of liquids set by funda-
mental physical constants [12]. Here, we propose a new,
upper, bound for the speed of sound in condensed matter
phases in terms of fundamental constants.

Apart from setting the speed of elastic interactions in
solids, v is related to elasticity, hardness and affects im-
portant low-temperature thermodynamic properties such
as energy, entropy and heat capacity [13]. As discussed
below, the upper bound of v sets the smallest possible
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entropy and heat capacity at a given temperature.
In solids, v depends on elastic properties and density.

These strongly depend on the bonding type and struc-
ture which are inter-dependent [14]. As a result, it was
not thought that v can be predicted analytically without
simulations, contrary to other properties such as energy
or heat capacity which are universal in the classical har-
monic approximation [13]. In view of this, representing
the upper bound of v in terms of fundamental constants
is notable.

RESULTS AND DISCUSSION

There are two approaches in which v can be evaluated.
The two approaches start with system elasticity and vi-
brational properties, respectively.

We begin with system elasticity. The longitudinal

speed of sound is v =
(
M
ρ

) 1
2

, where M = K + 4
3G,

K is the bulk modulus, G is the shear modulus, and ρ
is the density. It has been ascertained that elastic con-
stants are governed by the density of electromagnetic en-
ergy in condensed matter phases. In particular, a clear
relation was established between the bulk modulus K
and the bonding energy E: K = f Ea3 , where a is the
interatomic separation and f is the proportionality co-
efficient [16, 17]. This relation can be derived up to a
constant given by the second derivative of the function
representing the dependence of energy on volume. For a
majority of strongly-bonded solids, f varies in the range
1-4 [16, 17]. The same data implies the proportionality
coefficient between M and E

a3 in the range of about 1-6.

Combining v =
(
M
ρ

) 1
2

and M = f Ea3 gives v = f
1
2

(
E
m

) 1
2 ,

where m is the mass of the atom or molecule, and we used
m = ρa3. The factor f

1
2 is about 1-2 and can be dropped

in an approximate evaluation of v. Then,

v =

(
E

m

) 1
2

. (2)

We now recall that the bonding energy in condensed
phases is given by the Rydberg energy on the order of
several eV [1] as

ER =
mee

4

32π2ε20h̄
2 , (3)

where e and me are electron charge and mass.
ER is used for order-of-magnitude estimations of the

bonding energy E [1]. Using E = ER from (3) in (2)
gives

v = α
(me

2m

) 1
2

c, (4)

where α = 1
4πε0

e2

h̄c is the fine structure constant.
A result similar to (4) can be obtained in the second

approach that starts with the consideration of the vibra-
tional properties of the system. The longitudinal speed
of sound, v, can be evaluated as the phase velocity from
the longitudinal dispersion curve ω = ω(k) in the Debye
approximation: v = ωD

kD
, where ωD and kD are Debye

frequency and wavevector, respectively. Using kD = π
a ,

where a is the interatomic (inter-molecule) separation,
gives

v =
1

π
ωDa. (5)

We recall that the characteristic scale of interatomic
separation is given by the Bohr radius aB on the order of
the Angstrom as

aB =
4πε0h̄

2

mee2
. (6)

We now use the known ratio between the phonon en-
ergy, h̄ωD, and E. The phonon energy h̄ωD can be ap-

proximated as h̄
(
E
ma2

) 1
2 , where m is the mass of the

atom. Taking the ratio h̄ωD

E and using a = aB from (6)

and E = ER from (3) gives h̄ωD

E , up to a constant factor
close to unity, as

h̄ωD

E
=

(me

m

) 1
2

. (7)

Using (7) in (5) gives

v =
Ea

πh̄

(me

m

) 1
2

. (8)

v in (4), up to a constant factor, can now be obtained
by using a = aB from (6) and E = ER from (3) in (8). Al-
ternatively, the same result can be found by (a) recalling
that the bonding energy, or the characteristic energy of

electromagnetic interaction, is E = h̄2

2mea2
and (b) using

this E and a = aB (6) in (8).
As compared to the first approach, the second ap-

proach to evaluating v involves additional approxima-
tions, including evaluating v from the dispersion relation
in the Debye model, using a = aB in (6), and the ra-
tio between the phonon and bonding energies (7). We
therefore focus on the result from the first approach, Eq.
(4).

We now discuss Eq. (4) and its implications. me char-
acterises electrons, which are responsible for the inter-
actions between atoms. The electronic contribution is
further reflected in the factor αc (αc ∝ e2

h̄ ), which is the
electron velocity in the Bohr model.

We note that αc and v do not depend on c. The reason
for writing v in terms of αc in Eq. (4) and the ratio vu

c
in terms of α in Eq. (1) is two-fold. First, it is conve-
nient and informative to represent the bound in terms of
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the ratio vu
c , similarly to the ratio of the Fermi velocity

and the speed of light vF
c commonly used. Second, it is

α (together with
mp

me
) that is given fundamental impor-

tance and is finely tuned to result in proton stability and
to enable the synthesis of heavy elements [2] and, there-
fore, the existence of solids and liquids where sound can
propagate to begin with.
m in (4) characterises atoms involved in sound propa-

gation. Its scale is set by the proton mass mp: m = Amp,
where A is the atomic mass. Recall that aB in (6) and ER

in (3) are characteristic values derived for the H atom.
We similarly set A = 1 and m = mp in (4) to arrive at
the upper bound of v in (4), vu, as

vu = α

(
me

2mp

) 1
2

c ≈ 36, 100
m

s
, (9)

and observe that vu depends on fundamental physical
constants only, including the dimensionless fine structure
constant α and the proton-to-electron mass ratio.

Equation (9) is the extension of (4) to atomic hydro-
gen. We will calculate v in atomic H later in the paper.

Combining Eqs. (4), (9), and m = Amp gives

v =
vu

A
1
2

. (10)

Before discussing the experimental data in relation to
Eq. (4) and its consequences, Eqs. (9)-(10), we note
that the speed of sound is governed by the elastic mod-
uli and density which substantially vary with bonding
type: from strong covalent, ionic, or metallic bonding,
typically giving a large bonding energy to intermediate
hydrogen-bonding, and weak dipole and van der Waals
interactions. Elastic moduli and density also vary with
the particular structure that a system adopts. Further-
more, the bonding type and structure are themselves
inter-dependent: covalent and ionic bonding result in
open and close-packed structures, respectively [14]. As
a result, the speed of sound for a particular system can
not be predicted analytically and without the explicit
knowledge of structure and interactions [15], similarly to
other system-dependent properties such as viscosity or
thermal conductivity (but differently to other properties
such as the classical energy and specific heat which are
universal in the harmonic approximation [13]). Never-
theless, the dependence of v on m or A can be stud-
ied in a family of elemental solids. Elemental solids do
not have confounding features existing in compounds due
to mixed bonding between different atomic species (in-
cluding mixed covalent-ionic bonding between the same
atomic pairs as well as different bonding types between
different pairs).

To compare Eq. (10) to experiments, we plot the avail-
able data of v as a function of A for 36 elemental solids
[18–20] in Fig. 1, including semiconductors and metals

1 1 0 1 0 0
1 0 3

1 0 4

A  ( a t o m i c  m a s s )

v ( m / s )

FIG. 1: Experimental longitudinal speed of sound [18–20] in
36 elemental solids (blue bullets) as a function of atomic mass.
The solid line is the plot of Eq. (10): v = vu

A
1
2

. The red

diamond shows the upper bound of the speed of sound (9).
The dashed line is the fit to the experimental data points. In
order of increasing mass, the solids are: Li, Be, B, C, Na, Mg,
Al, Si, S, K, Ti, Mn, Fe, Ni, Co, Cu, Zn, Ge, Y, Nb, Mo, Pd,
Ag, Cd, In, Sn, Sb, Ta, W, Pt, Au, Tl, Pb, Bi, Th and U.

with large bonding energies. The data are depicted in
a log-log plot. Equation (10) is the straight line in Fig.
1 ending in its upper theoretical bound (9) for A = 1.
The linear Pearson correlation coefficient calculated for
the experimental set (log A, log v) is −0.71. Its abso-
lute value is slightly above the boundary notionally sep-
arating moderate and strong correlations [21]. The ratio
of calculated and experimental v is in the range 0.6-2.4,
consistent with the range of f

1
2 approximated by 1 in the

derivation of Eq. (2).
We also show the fit of the experimental data points to

the inverse square root function predicted by Eq. (10) as
the dashed line in Fig. 1 and observe that it lies close to
Eq. (10). The fitted curve gives the intercept at 37,350
m
s , in about 3% agreement with vu in (9). This indicates

that the numerical coefficient in Eq. (4), which is subject
to an approximation as mentioned earlier, and discussed
below in more detail, gives good agreement with the ex-
perimental trend.

The agreement of Eq. (10) with experimental data
supports Eq. (4) and its consequence, the upper limit vu
in Eq. (9). We now show that vu agrees with a wider
experimental set. In Fig. 2, we show experimental v [18–
20] in 133 systems, including compounds together with
the elemental solids in Fig. 1. We observe that exper-
imental v are smaller than the upper theoretical bound
vu in (9). vu is about twice as large as v in diamond, the
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FIG. 2: Experimental longitudinal speed of sound [18–20] in
124 solids (circles) and 9 liquids [18] (diamonds) at ambi-
ent conditions as a function of the system number. Solids
are: Al, Be, Brass, Cu, Duralumin, Au, Fe, Pb, Mg, Dia-
mond, Ni, Pt, Ag, Steel, Sn, Ti, W, Zn, Fused silica, Pyrex
glass, Lucite, Polyethylene, Polyesterene, WC, B, Mo, NaCl,
RbCl, RbI, Tl, Li, Na, Si, S, K, Mn, Co, Ge, Y, Nb, Mo,
Pd, Cd, In, Sb, Ta, Bi, Th, U, LiF, LiCl, BeO, NH4H2PO4,
NH4Cl, NH4Br, NaNO3, NaClO3, NaF, NaBr, NaBrO3, NaI,
Mg2SiO4, α-Al2O8, AlPO4, AlSb, KH2PO4, KAl(SO4)2, KCl,
KBr, KI, CaBaTiO3, CaF2, ZnO, α-ZnS, GaAs, GaSb, RbF,
RbBr, Sr(NO3)2, SrSO4, SrTiO3, AgCl, AgBr, CdS, InSb,
CsCl, CsBr, CsI, CsF, Ba(NO3)2, BaF2, BaSO4, BaTiO3,
TlCl, Pb(NO3)2, PbS, Apatite, Aragonite, Barite, Beryl, Bi-
otite, Galena, Hematite, Garnet, Diopside, Calcite, Cancri-
nite, Alpha-quartz, Corundum, Labradorite, Magnetite, Mi-
crocline, Muscovite, Nepheline, Pyrite, Rutile, Staurolite,
Tourmaline, Phlogopite, Chromite, Celestine, Zircon, Spinel
and Aegirite. Liquids are: Mercury, Water, Acetone, Ethanol,
Ethylene, Benzene, Nitrobenzene, Butane and Glycerol. See
Refs. [18–20] for system specifications, including density and
symmetry groups.

highest speed of sound measured at ambient conditions
(the in-plane speed of sound in graphite is slightly above
v in diamond [10]).

Eq. (10) can be used to roughly predict the average, or

characteristic speed of sound v. A
1
2 which, according to

(10) is relevant for the speed of sound, varies across the
periodic table in the range of about 1-15, with an average
value of 8. According to (10), the corresponding v is
v ≈ 4, 513m

s . This is in 16% agreement with 5,392 m
s , the

average over all elemental solids and in 14% agreement
with 5,267 m

s , the average over all solids in Fig. 2.
We have included the experimental speed of sound of

room-temperature liquids in Fig. 2, with typical v in the
range 1,000-2,000 m

s . v in high-temperature liquid metals
such as Al, Fe, Mg, and Ni extends to higher values in the

range 4,000-5,000 m
s [22]. Similarly to solids, v in liquids

satisfy the bound vu. We note that our evaluation of v
and vu applies to liquids with cohesive states [23], where
molecular dynamics includes solid-like oscillatory compo-
nents [24] and where v is set by the elastic moduli as in
solids, albeit taken at their high-frequency (short-time)
values [24, 25]. On the other hand, at high temperature
and/or low density, cohesive states are lost and Eq. (3)
and Eq. (6) and our derivation of v do not apply. In this
regime, the moduli are related to the kinetic energy of
molecules rather than interactions and bonding energy,
and v starts to increase with temperature and loses its
universality. Above the Frenkel line [23, 26, 27], formal-
ising the qualitative change of molecular dynamics from
combined oscillatory and diffusive to purely diffusive, v
is equal to the thermal speed of molecules as in a gas.

With regard to liquids, we note that an expression sim-
ilar to (2) was earlier obtained by evaluating the elastic
modulus using the liquid state theory and applied to liq-
uid metals [28]. The speed of sound can also be evalu-
ated in the theory of metals using the ionic plasma fre-
quency and subsequently accounting for the conduction
electrons screening. This results in the Bohm-Staver re-

lation v ∝
(
me

m

) 1
2 vF, where vF is the Fermi velocity [1],

and hence v ∝ 1

A
1
2

as in Eq. (10) (the factor
(
me

m

) 1
2 also

appears in the ratio of sound to melting velocity [11]).
These and other relations derived for the liquid state give
a fairly good account of the experimental sound velocity
in liquid metals [22, 28].

We make three further remarks about the calculated
v and its bound. First, this derivation involves approxi-
mations as mentioned earlier. The approximations may
affect the numerical factor in Eqs. (4) and (9). At the
same time, the characteristic scale of v in (4) and its
upper bound (9) is set by fundamental constants. Sec-
ond, Eq. (3) as well as Eqs. (6)-(7) used in the sec-
ond derivation of v assume valence electrons directly in-
volved in bonding and hence strongly-bonded systems,
including metallic, covalent and ionic solids. Although
bonding in weakly-bonded solids such as noble, molecu-
lar and hydrogen-bonded solids is also electromagnetic in
origin, weak dipole and van der Waals interactions result
in smaller E [29] and smaller v as a result. Therefore,
the upper bound vu applies to weakly-bonded systems
too. We note here that our evaluation does not directly
distinguish between bonding types and hence does not
consider the trend of v to increase along the rows of the
periodic table, from soft metals to hard covalent mate-
rials in Fig. 1. This trend can be accounted for by (a)

noting that v in (8) and E = h̄2

2mea2
imply v ∝ 1

a and
(b) introducing an extra parameter into the equation for
v related to density (we are grateful to K. Behnia for
pointing this out). Third, our evaluation of v does not
account for the effect of pressure on E and a and applies
when the enthalpic term is relatively small.
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Our upper bound in Eq. (9) corresponds to solid
hydrogen with strong metallic bonding. Although this
phase only exists at megabar pressures [30, 31] and is
dynamically unstable at ambient pressure where molec-
ular formation occurs, it is interesting to calculate v in
atomic hydrogen in order to check the validity of our up-
per bound. In addition, there has been strong interest in
the properties of atomic hydrogen at high pressure (see,
e.g., Refs. [30–32]), although the speed of sound in these
phases was not discussed and remains unknown.

We have calculated the speed of sound in atomic hydro-
gen for the I41/amd structure [33, 34], which is currently
the best candidate structure for solid atomic metallic hy-
drogen. This structure is calculated to become thermo-
dynamically stable in the pressure range 400–500 GPa
[35, 36], below which solid hydrogen is a molecular solid.
However, we find that I41/amd is dynamically stable at
pressures above about 250 GPa, and therefore we per-
form calculations in the pressure range 250–1000 GPa.
The speed of sound as a function of pressure and den-
sity reported in Fig. 3 corresponds to the highest energy
acoustic branch and is averaged over stochastically gen-
erated directions in q-space.

Our upper bound (9) does not account for the enthalpic
contribution to the system energy as mentioned earlier;
including the pressure effect would increase vu consider-
ably at pressures in Fig. 3. Despite this, the calculated v
remains below vu in a wide pressure range and starts in-
creasing above vu only above very high pressure of about
600 GPa. In this regard, we note that hydrogen is a
unique element with no core electrons. This results in
the absence of strong repulsive contributions to the in-
teratomic interaction as compared with heavier elements
and, consequently, weaker pressure dependence of elastic
moduli and the speed of sound [37]. We also note that
sharper change of v at lower pressure in Fig. 3 is re-
lated to approaching the limit of dynamical stability of
the I41/amd structure around 250 GPa.

We make three remarks related to previous work. It
was noted that thermal diffusivity of insulators does not
fall below a threshold value given by the product of v2

and the Planckian time [8]. Later work linked the up-
per bound on the speed of sound to the melting velocity
related to melting temperature and Lindemann criterion
[11]. Finally, the upper bound of the speed of sound
for hadronic matter was conjectured as c√

3
and discussed

(see, e.g., Ref. [38]) for review). Comparing this bound
with (1), we see that our bound is smaller due to small
coupling constant α and the electron-to-proton mass ra-
tio. In hadronic matter with strong coupling and par-
ticles with the same or similar masses, these factors be-
come on the order of 1, in which case our vu

c in Eq. (1)
becomes closer to the conjectured limit [38].

As discussed above, v features in several thermo-
dynamic properties of solids. For example, the low-
temperature entropy and heat capacity per volume are

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

P r e s s u r e  ( G P a )

v  ( m / s )

v  ( m / s )

D e n s i t y  ( g / c m 3 )

FIG. 3: Calculated speed of sound in atomic hydrogen as a
function of pressure (top) and density (bottom). The dashed
line shows the upper bound vu in (9).

S
V = 2π2

15(h̄u)3T
3 and C

V = 2π2

5(h̄u)3T
3, where u is the aver-

age speed of sound and kB = 1 [13]. Hence, the upper
bound for u gives the smallest possible entropy and heat
capacity at a given temperature.

MATERIALS AND METHODS

We have performed density functional theory calcula-
tions using the castep package [39], with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional
[40], an energy cutoff of 1200 eV and a k-point grid of
spacing 2π×0.025 Å−1 to sample the electronic Brillouin
zone. We have relaxed the cell parameters and internal
coordinates to obtain a pressure to within 10−4 GPa of
the target pressure and forces smaller than 10−5 eV/Å.
We have then calculated the phonon spectrum using the
finite difference method [41] in conjunction with nondi-
agonal supercells [42] with a 4×4×4 coarse q-point grid
to sample the vibrational Brillouin zone. We have used
Fourier interpolation to calculate the phonon frequencies
at q-vectors close to the Γ-point and then used finite dif-
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ferences to calculate the corresponding speed of sound.

CONCLUSIONS

We conclude by returning to dimensionless fundamen-
tal physical constants. Rewriting (9) as

vu
c

= α

(
me

2mp

) 1
2

, (11)

we observe that the combination of two important dimen-
sionless fundamental constants, the fine structure con-
stant α and the electron-to-proton mass ratio, interest-
ingly gives the new dimensionless ratio, vu

c .
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