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Abstract

This work is concerned with exploiting Bayesian filters for decision making under
uncertainty. The kind of decision making that is formally suitable for problems re-
quiring finding optimal (non-sensing) actions as well as optimal answers/statements.
Specifically, the focus will be on filters for spatial point processes which model na-
ture as a population of indistinguishable objects. Previous works have been limited
to translating the problem of point estimation into loss functions compatible with
object populations. Whereas the present work systematically constructs a number
of novel loss functions that give rise to a class of statistical problems beyond point
estimation, which have not been appropriately formalized yet. We obtain closed-
form solutions to those problems (expressions computing optimal statements and
corresponding minimized expected values of loss), and implement the solutions with
a variety of approximate filters: the classical PHD filter, the Panjer PHD (PPHD)
filter, and the Cardinalized PHD (CPHD) filter. We offer practical interpretations
of the introduced problems, such as the estimation of risk value attached to an
uncertain object population, and demonstrate selected implementations through
numerical simulations. Overall, this work extends the variety of problems solvable
using information from Bayesian filters, and reduces the amount of avoidable losses
in such problems when compared to conventional approaches.
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Chapter 1

Introduction

This chapters sets the context of the performed work, and introduces important

concepts. Section 1.1 introduces the procedure of decision making, and describes

that it is formally suitable to produce commands (that lead to actions) and state-

ments. Section 1.2 clarifies the connection of sensing to decision making in Bayesian

settings. Section 1.3 addresses the above procedures in the context of Bayesian

filtering. Following the background information, Section 1.4 provides a statement

of the problem and set out the objective for this work. Section 1.5 outlines the

approach followed by this work. Section 1.6 highlights the contributions.

1.1 Terminal decision making (no sensing)

This section presents basic elements and definitions that provide settings for deci-

sion making that lead to the development of decision making under uncertainty or

terminal analysis. We found it useful to present this material by tracing the origins

of statistical decision making in game theory.

Decision making, which will be in the focus of this thesis, is best introduced

along with its parent process that often gets overlooked: problem solving. Consider

the following quote [101]:

The work of managers, of scientists, of engineers, of lawyers — the work

that steers the course of society and its economic and governmental or-

ganizations — is largely work of making decisions and solving problems.

It is work of choosing issues that require attention, setting goals, finding

suitable courses of action, and evaluating and choosing among alterna-

tive actions. The first three of these activities — fixing agendas, setting

1



1.1 Terminal decision making (no sensing)

goals, and designing actions — are usually called problem solving ; the

last, evaluating and choosing, is usually called decision making.

Problem solving establishes the context in which decision making will take place.

As a consequence, decision making is commonly analysed in settings where the

problem has been already framed, the goals are set and alternative courses of action

are specified. In the scope of this thesis we will rely on well-defined formalisations

which originate from game theory, as discussed in the next section.

1.1.1 Two-player zero-sum game against nature

The origins of statistical decision theory, which is concerned with a broad class

of decisions under non-certainty discussed later in Subsection 1.1.4, are rooted in

the game theory. Specifically, it was Wald who recognised its value for systematic

interpretation of statistical procedures developed by Fisher (such as point estimation

and hypothesis testing) as zero-sum games against nature. In this case ’nature’ is

interpreted as a fictitious player having no known goal [60, 114]. For this player

the set of actions is replaced by the set of states, and it has no utility function

in the sense of Von Neumann-Morgenstern [78]. Another player is often called ‘a

statistician’ or ‘a decision maker’.

In principle, the circumstances when decision making is encountered are then

presented using two sets of variables. The first set of variables A, those under

control of the player, represent all possible acts. The second set S is outside the

control of the player, and represents possible states of nature (equivalently, world or

environment). These two sets are used to specify a loss function. This function is

one of the central elements that was introduced by Wald, which he termed ‘weight

function’, and it was his interpretation of the player’s utility.1 This function is the

key element in formulation of a decision problem, and is a gateway to communicate

the player’s preferences.

Definition 1.1.1 (State space). The set S of possible states of nature is called the

state space.

Definition 1.1.2 (Act space). The set A of available options (i.e. actions, answers,

conclusions, decisions, etc.) is called the act space. Following [83], these options

are described as terminal acts to distinguish them from sensing acts and acts of

1One of the consequences is that utility axioms of Von Neumann-Morgenstern are not strictly
followed. A ubiquitous squared error model, that will be presented later in Section 1.5, violates
one of the axioms as it is not bounded from above, as discussed by Durrant-Whyte in [27, p. 147].

2



1.1 Terminal decision making (no sensing)

s1 s2

a1 (a1, s1) (a1, s2)
a2 (a2, s1) (a2, s2)

Table 1.1: Matrix of outcomes

s1 s2

a1 L(a1, s1) L(a1, s2)
a2 L(a2, s1) L(a2, s2)

Table 1.2: Matrix of costs

experimentation, which are acts of different nature that are not considered at this

point.

Definition 1.1.3 (Loss function). Loss function is a function L : A×S → R+
0 that

attaches a value of loss to every possible outcome2 (a, s) of selecting an option a ∈ A
when the state of nature is s ∈ S.

The actual outcomes of alternative courses of action depend on the joint be-

haviour of the decision maker and nature. In the simplest case, when the sets of

actions and states of nature are represented by two points, i.e. A = {a1, a2} and

S = {s1, s2}, this function L : A × S → R+
0 is a simple 2 × 2 matrix where to

each outcome (see Table 1.1) a certain cost is prescribed (see Table 1.1). Having

introduced the loss function, we can move on to define two realms of decision making.

Next we are going to describe how the loss function is employed to formulate

decision making as an optimization problem.

1.1.2 Realms of decision making

A completely different situation is when the actual state of nature is not known.

This leads to the conditions when the outcome is non-certain. We are now at the

point of a large watershed in the theories of making decisions. Basically, there

are two different viewpoints on how this situation is to be treated. One school

of thought states that it is always possible to assign probabilities to the states of

the world. This is refers to the category of decision making which we call decision

making under uncertainty. Another school of thought state that it is never possible

to assign probabilities to the states of the world.

Let us present a classification of decision-making conditions. We are inspired

by the classification by Luce and Raiffa [66, p. 13], which, in turn, originates from

Knight [54]. We suggest that the field of (normative) decision-making can be parti-

tioned according to whether a decision among candidate options (candidate actions,

or candidate answers) is made under conditions of:

2Note a more general formulation involves explicit specification of the space of outcomes, and
an outcome function, which is absorbed here in the definition of loss function.

3



1.1 Terminal decision making (no sensing)

(a) certainty, if each option is known to lead invariably to a specific outcome;

(b) non-certainty, if either action has as its outcome a set of possible outcomes, but

where the probabilities of these outcomes are completely unknown or are not

even meaningful;

(c) uncertainty, if each option leads to one of a set of possible specific outcomes

occurring with a known probability;

(d) assumed certainty equivalence, if each option leads to one of a set of possible

specific outcomes occurring with a known probability, but the decision-maker

assumes that the outcome is known to lead invariably to a specific outcome

associated with the estimated state of nature, or with the summary of the state

such as its mean.

Schematically, this classification is illustrated on Figure 1.1. Decision making under

uncertainty and decision making under non-certainty are the most studied cases, and

are often found under alternative titles collected in Table 1.3. In this connection, it

is important to bring in the classification which can be traced to Knight [54] which

is often used in the literature. Decision making under uncertainty, as addressed by

this thesis corresponds to decision making under [Knightian] risk. This should be

remembered, as many of the results found in decision-making literature are stated

exactly in these terms.

The remainder of this section will discuss each decision-making realm with re-

spect to using a function of loss, which was defined in Subsection 1.1.1.

According to [66, p. 13], decision making under uncertainty and decision mak-

ing under non-certainty, as defined in the classification above, can be extended to

include the opportunity of processing new observations. As far as decision making

under uncertainty is concerned, consideration of this possibility will be deferred un-

til Section 1.2, and therefore the solutions produced prior to that will be denoted

with the subscript φ. As far as decision making under non-certainty is concerned,

this possibility will not be considered in this thesis, but discussions in the relevant

context can be found in [38, 73, 93], and otherwise general discussions on decision

making in such settings can be found in [9, 12, 94].

1.1.3 Decision making under certainty

Perhaps a trivial case of decision making is decision making under certainty. Clearly,

when the state of nature is known, it is possible to get a direct access to the value

4



1.1 Terminal decision making (no sensing)

DM under uncertainty DM under non-certainty
Bayesian decision theory Classical decision theory

DM under [Knightian] risk DM under [Knightian] uncertainty
DM under ambiguity

Table 1.3: Alternative titles for non-deterministic decision making (DM)

Deterministic? NOYES

Decision making 
under certainty

Probabilistic?

Summarized?

YES

Decision making under 
assumed certainty 

equivalence

YES

Decision making under 
uncertainty

NO
Decision making under 

non-certainty

NO

Description of the state of nature

Figure 1.1: The realms of decision making depending on the conditions leading to
a decision (e.g. an action or answer). The focus of this thesis is on probabilistic
decision making. Decision making under certainty will be instrumental in evaluation
of developed decision-making algorithms. Decision making under non-certainty will
only be briefly mentioned.
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1.1 Terminal decision making (no sensing)

of loss associated with an outcome for any considered action. However, in general

finding an optimal solution may involve certain difficulties if the associated optimi-

sation problem is complicated. Difficulties associated with making such decisions

are technical [12, p. 14], as opposed to conceptual difficulties associated with non-

deterministic decision making.

Proposition 1.1.4 (Minimum loss principle). When the state of nature s ∈ S is

known, a decision-maker with loss L : A× S → R+
0 , should chose an action a ∈ A

that minimizes their losses, i.e.

aUCφ = arg min
a∈A

L(a, s), (1.1)

that corresponds to the optimised loss value

ρUCφ = L(aUCφ , s). (1.2)

Various problems commonly falling under operations research belong to this

category, see [66, Sec. 2.2.] and [50, Ch. 2].

1.1.4 Decision making under non-certainty

Decision making under non-certainty (also referred to as classical decision theory,

decision-making under [Knightian] uncertainty). It can be loosely described as de-

cision theory without a prior distribution.

Proposition 1.1.5 (Minimax principle). When nature takes state in S, a decision-

maker with loss L : A × S → R+
0 , should choose an option a ∈ A that minimizes

their minimax loss, i.e.

aUNφ = arg min
a∈A

[
max
s∈S

L(a, s)

]
, (1.3)

that corresponds to the minimax loss value

ρUNφ = L(aUNφ , arg max
s∈S

L(aUNφ , s)). (1.4)

1.1.5 Decision making under uncertainty

Decision making under uncertainty (also referred to as Bayesian decision theory, or

decision-making under [Knightian] risk) will be the central subject of this thesis.

This is the situation when probabilities are known, see Figure 1.2a. We suppose

6



1.1 Terminal decision making (no sensing)

that there is a not-yet encountered state of nature described probabilistically as a

continuous random variable S, with pS being a specification of current beliefs about

the possible states (in the form of a probability density function if the state space

is continuous, and the probability mass function if the state space is discrete). If

the probability density over the various states of nature is available, the decision

problem under non-certainty is converted to one under uncertainty.

Bayesian decision theory strives for good results on average. According to the

minimum expected loss principle,3 a rational decision maker is interested in selecting

the option that minimises expected value of loss.

Proposition 1.1.6 (Minimum expected loss principle [12]). When nature is de-

scribed by a random variable S, a decision-maker with loss L : A×S → R+
0 , should

choose an option a ∈ A that minimizes their expected loss, i.e.

aUUφ = arg min
a∈A

E[L(a, S)] (1.5a)

= arg min
a∈A

∫
L(a, s)pS(s)ds (1.5b)

that corresponds to the optimised expected loss value

ρUUφ = E[L(aUUφ , S)]. (1.6)

The pair (aUUφ , ρUUφ ) forms what we call an optimal solution to decision under

uncertainty. Note that a stand alone optimal option aUU would not form a complete

solution if not accompanied by ρUU , which is an indicator of decision’s quality.

Statement (answer) vs command (non-sensing action) It is important to

recognize that the formalism of decision making under uncertainty is applicable

for both guiding actions, and producing answers or statements [12]. When deci-

sion making concerns supporting a non-sensing action, the resulting decision is a

command, e.g. a decision to take or leave an umbrella (depending on the weather

forecast representing the nature) in the umbrella problem, or a decision concern-

ing the level of stocks (depending on the demand representing the nature) in the

inventory problem. When decision making concerns producing an answer (related

to the uncertain state of nature described by pS), the outcome is a statement, e.g.

summarizing the current beliefs in a form of a point estimate.

3Alternatively, the maximum expected utility principle.
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(a) Decision making under uncertainty.
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(b) Decision making under assumed cer-
tainty equivalence.

Figure 1.2: Probabilistic decision making.
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1.1 Terminal decision making (no sensing)

1.1.6 Decision making under assumed certainty

equivalence

In this section we formalize a certain heuristic that is used for decision making when

probabilities are available. It substitutes the procedure of decision making under

uncertainty for the terminal decision (Figure 1.2a) by a cascade of two other decision

procedures (Figure 1.2b): the problem of point estimation (decision making under

uncertainty) and the actual terminal decision (decision making under certainty).

There may be various benefits to organizing decision making this way. For ex-

ample, it results into optimization procedure that is simply not as involved as that

resulting from following the minimum expected loss principle [28, p. 19] of Proposi-

tion 1.1.6. Otherwise, it is possible that the two problems will belong to two different

decision makers (thus it is possible that the specific form of terminal loss is not dis-

closed to the decision maker that solves the problem of point estimation). It is also

possible that decision are made at distinct moments of time (thus the knowledge of

terminal loss is not required when the first estimation decision is made [12, p. 14]).

From this perspective, decision making under uncertainty as described in Section

1.1.5 can be seen as excessively intrusive and restrictive.

Proposition 1.1.7 (Minimum loss principle under certainty equivalence ). When

the state of nature is described by a random variable S, a decision maker with loss

L : A × S → R+
0 should obtain a summary ŝ ∈ S of the state and then choose an

option a ∈ A that minimizes their losses with respect to the summary ŝ, i.e.

aCEφ = arg min
a∈A

L(a, ŝ), (1.7)

that corresponds to the optimized loss value

ρCEφ = L(aCEφ , ŝ). (1.8)

Unfortunately, the solution will not be Bayes-optimal in general (some cases will

be mentioned later in Section 1.3). So it is only an assumption that the solution is

equivalent to the optimal solution produced following the minimum expected loss

principle. This is known as the assumed (or forced, or heuristic) certainty equiva-

lence design technique [72, p. 241], [83, Sec. 6.2.1]. Accordingly, certain favourable

features of decision making under uncertainty, such as evaluation of decision quality

in the form of Bayes expected loss could not be recovered in such settings. As men-

tioned in [92, 100] for many problems the eventual sub-optimality is often judged

acceptable and could be in many cases tolerated.

9



1.2 Integrating sensing with decision making under uncertainty

1.2 Integrating sensing with decision making

under uncertainty

The previous section has introduced the idea of terminal decision making, and it

hasn’t addressed the possibility of collecting new observations (data) before making

a decision. In this section we are going to consider situations when it is possible

to collect new data before making the terminal decision The focus will be on deci-

sions made under uncertainty, i.e. when prior knowledge is available. In principle,

Bayesian decision theory would distinguished two radically different procedures: ter-

minal analysis (that is decision making under uncertainty for the posterior density

conditioned on new data) and preposterior analysis (that concerns choosing on a

way to collect new data).

Ultimately, these procedures can be attributed to an agent operating in an un-

known environment (nature), see Figure 1.3. The agent can acquire information

about its environment using a sensor. However, sensor measurements are noisy, and

there are usually many things that cannot be sensed directly. As a result, the agent

maintains some belief about the state of nature. The agent can make statements

about the environment and also influence the environment through its effectors.

These processes will now be described more formally.

1.2.1 Terminal analysis

Probabilistic decision making is associated with situations where probabilistic de-

scription of the state of nature is available. Let us first focus on using new observa-

tions in decision making under uncertainty in Subsection 1.1.5.

If additional information z ∈ Z (where Z is an observation space) is obtained

which is probabilistically related to s by p(z|s), then the best option a is that which

minimizes the posterior expected loss.

Definition 1.2.1 (Bayes theorem). The posterior probability density describing a

random variable S is given by

pS(s|z) =
p(z|s)p0(s)∫
p(z|s)p0(s)ds

, (1.9)

where p0(·) is the prior probability density, and p(·|·) is a measurement likelihood.

Proposition 1.2.2 (Minimum expected posterior loss principle [9]). When nature

is described by a random variable S and its posterior probability density pS(s|z), a

10
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AGENT

Sensor

Preposterior 
analysis Bayes rule

Observation
Sensing action

Posterior

Effector
Terminal 
analysis I

Command

Statement

NATURE

State

Terminal 
analysis II

Belief

Prior

Figure 1.3: Integrating sensing with decision making under uncertainty. Note that
terminal analysis, depending on the problem, can lead either to an action (via a
command), or a statement; and the sensing action is selected in a different procedure
called preposterior analysis.
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1.2 Integrating sensing with decision making under uncertainty

decision-maker with loss L : A × S → R+
0 , should choose an option a ∈ A that

minimizes their posterior expected loss, i.e.

aUU = arg min
a∈A

∫
L(a, s)pS(s|z)ds, (1.10)

that corresponds to the optimised posterior expected loss value

ρUU = min
a∈A

∫
L(a, s)pS(s|z)ds (1.11a)

=

∫
L(aUU , s)pS(s|z)ds. (1.11b)

Remark 1.2.3. In [9] the optimal action aUU is termed Bayes action, and the

optimised value of expected loss ρUU is Bayes expected loss.

One way to refer to decision making under uncertainty is terminal analysis ; the

decision maker uses the posterior probability density (1.9) to find the best option

from the set of terminal acts A. It is important to distinguish this procedure from

preposterior analysis, which is concerned with selecting the mode of sensing used to

collect the observation z, and commonly studies as ’sensor management’.

1.2.2 Preposterior analysis

This analysis is nonterminal since it will be eventually followed by the terminal

decision, like deciding on a command that triggers a non-sensing action or deciding

on a statement.

Definition 1.2.4 (Preposterior analysis). The optimal sensing action is given by

[64, Eq. 4.7], [18, Eq. 2]

u∗ = arg min
u∈U

∫
Z

min
a∈A

∫
S
L(a, s)pS(s|z, u)p(z|u)dsdz, (1.12)

where p(z|u) is a measurement likelihood conditioned on the sensor control input u.

Note that (1.11a) explicitly enters the expression (1.12) used for finding the

best possible sensing action, and this is the reason why the ability to compute the

expected loss value (and not only optimal terminal action) is essential for sensor

management.

12
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Filter integration

Terminal
analysis

Non-sensing
action

(command)

Answer
(statement)

Preposterior
analysis

Sensing
action

(command)

Figure 1.4: Informal mapping of various integration instances for a Bayesian filter.

1.3 Exploitation of Bayesian filters

Recursive Bayesian filters is a type of sensor data processing algorithms that are

aimed to provide a probabilistic description of an uncertain dynamic system using

partial sensor observations (Figure 1.5).4 An important element of such filters is the

model of system dynamics, which captures the system’s evolution over time and has

a capacity to model non-sensing actions that affect the system evolution. A variety

of ways to employ Bayesian filters is sketched on Figure 1.4, and is discussed next.

BAYESIAN FILTER (SINGLE RECURISON)

UPDATED 
DISTRIBUTION 

(STEP K|K)

OBSERVATION 
(STEP K)

PREDICTIVE 
DISTRIBUTION 
(STEP K+1|K)

Figure 1.5: A single recursion of a Bayesian filter.

1.3.1 Related to terminal analysis

When considering Bayesian filters for terminal analysis, it should be made clear that

decisions falling into this category are those which are dependent on the state of the

4Bayesian filters can be seen as special kind of signal processing algorithms, which are often
employed in algorithmic solutions with the purpose of state estimation. As mentioned by Gustafs-
son in [37], these solutions are “conceptually different (although algorithmically similar)” to those
of signal estimation and fault detection, however “the close links between these areas are clearly
under-estimated in literature.”
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1.3 Exploitation of Bayesian filters

uncertain system but do not lead to the change in our knowledge about the said

system.5 Specifically, we distinguish two groups of problems in this category:

(1) those that (potentially) lead to an impact to the dynamic system;

(2) those that result into a statement (or a report) about the system.

The first group comprises problems of stochastic optimal control where the focus

is on producing a non-sensing action, command or control law, that ensures that the

dynamic system behaves in a desirable way, e.g. in guidance and navigation. In this

case the decision’s impact is explicitly taken into account within the model of the

dynamic system, see e.g. an elementary exposition in [30]. Furthermore, there is a

closely related body of problems, which approach the decision’s impact differently

and do not account for it in the model of the dynamic system. Instead, the sought

decision directs an external effector to affect the system in the open loop (or ‘fire

and forget’) manner, such as in the cases of firing a weapon [81], dropping a package

[116, Sec. 2.3], or cueing an external sensor [55, 77].

The second group of problems is concerned with producing a statement related

to the state of the uncertain dynamic system, and does not ultimately lead to an

impact or to performing an action of any kind. In context of Bayesian filtering, the

predominant problem of this kind is focused on producing a point estimate of the

system state [44]. Filtering information is rarely used for decision making under

uncertainty that leads to a statement (as opposed to a command) beyond point

estimation, with some notable exceptions in [25, 51, 59, 119].

Overall, the textbooks on Bayesian filtering are commonly focused on a single

type of terminal decision that concerns producing a point estimate from the filtering

information. Consider the following statements:

• “distributions alone have no use in many practical applications; we need finite-

dimensional summaries (point estimates)” [93, p. 20];

• “a lot of practical and operational applications require a point estimate” [14];

• “without a Bayes-optimal estimator of the multitarget state... the information

in... [multitarget posterior density] is not available for practical use” [68].

Although the possibility of using filtering densities for terminal analysis is not

completely ruled out, it appears that terminal decision making is most commonly

5This is in contrast to preposterior analysis considered next, where produced decisions are not
only related to the state of the system, but also affect the knowledge about the system.
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1.3 Exploitation of Bayesian filters

performed based on point estimates (in place of full distributions). Using point es-

timates is also continent for human operators and decision makers. This brings us

to the following conclusion. Unless the point estimate is in the focus of terminal

decision making, Bayesian filters are primarily exploited under assumed certainty

equivalence, as discussed in Subsection 1.1.6. In other words, the produced deci-

sions do not minimise the posterior expected loss (following Proposition 1.2.2), and

generally are sub-optimal.

Remark 1.3.1 (When certainty equivalence holds). There are certain conditions

under which this isomorphism between the optimal decisions under uncertainty and

the optimal decisions in an equivalent certainty context (using a point estimate) is

valid [28, p. 19]. Specifically, certainty equivalence is Bayes-optimal for the linear-

quadratic-Gaussian6 (LQG) problems in optimal control [4], where the state of the

world is summarized by its mean value. However, once the LQG conditions are

relaxed certainty equivalence no longer applies. As far as state of the art filtering

algorithms are concerned, the LQG conditions are not valid since extracting the mean

of the distribution is not meaningful [25, 70].

1.3.2 Related to preposterior analysis (sensor

management)

The process of selecting sensing actions is commonly referred to as sensor man-

agement or, within the context of Bayesian statistics, preposterior analysis (Figure

1.4). Ultimately, such actions improve our knowledge about the uncertain dynamic

system. In context of Bayesian filtering, the problem of sensor management is often

introduced as a Partially Observable Markov Decision Process (POMDP) [39], thus

stressing a possibly sequential nature of the management process. However, Aoki

et al. [2] avoid describing the problem as POMDP because the term “does not dis-

tinguish the sensor management problem from the regular control problem” that is

focused on actions affecting the state of the controlled dynamic system.

Overall, the literature on sensor management is vast and poorly systematized.

Ultimately, the discussion on various approaches to sensor methods is focused on

the formulation of an optimization objective. According to Kreucher et al. [57],

Bayesian approaches to sensor management can be divided into information-driven

and task-driven approaches.

6Where the world dynamics are linear, the terminal loss is squared error, and the process noise
is additive Gaussian.

15



1.4 Problem formulation

One of the most popular ways to formulate a management objective is by us-

ing measures of uncertainty developed in information theory, this is the reason why

management approaches of this kind are referred to as information-driven [3, 87].

The idea behind this approach is to employ information measures in place of the

expression of Bayes expected loss in (1.12). Despite their theoretical appeal, such al-

gorithms are difficult to justify in practice as it is not clear whether the optimization

objective supports the terminal decision.

Other Bayesian approaches are commonly referred to as task-driven. Although

references like [57] attribute a considerable number of possible objectives to this

category, the common example that uses a formalization compatible with (1.12) is

focused on point estimation of the system state [2]. Such approaches are appealing

in practice, since they offer a way to take the terminal decision into account when

selecting a sensing action. Furthermore, they offer a possibility to formulate sensor

management as the problem of minimizing the sensor resources spent, see e.g. [48,

119], complementing the direct problem of maximizing efficiency of a given sensor

resource.

1.4 Problem formulation

Problem statement Bayesian filters are traditionally exploited in terminal anal-

ysis and preposterior analysis such as if terminal decision is concerned exclusively

with the problem of point estimation of the system state. However, in practice the

problems are diverse and may be distinct from that of point estimation. As a result,

Bayesian filters are exploited in those distinct terminal decision procedures under

assumed certainty equivalence. This leads to the situation where results of termi-

nal decision making are suboptimal (underinformed and of unknown quality), and

sensor management is misdirected (does not acknowledge the actual problem).

Objective To exploit Bayesian filters for terminal analysis in problems requiring

finding optimal statements (as opposed to optimal commands), which cannot be

reduced to the problem of point estimation.

Challenges Formulation of a problem such that it could be eventually approached

in the context of Bayesian filters is complicated by a number of factors:

(i) Complicated state space. The set of all possible states of nature is one of the

key elements in the formulation of a decision procedure. Bayesian decision
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1.4 Problem formulation

theory is commonly concerned with Euclidean spaces. In contrast, the new

generation of Bayesian filters is operating on state spaces required to accom-

modate realization of a point process [98], which are not metric spaces. For

such spaces, even the simple problem of point estimation could not be easily

resolved; the consequence is that most algorithms rely on heuristics to produce

point estimates.

(ii) Dependent act space. Bayesian decision theory and Bayesian filtering rely on a

number of overlapping elements, including the probability density function and

the underlying state space. One element that is characteristic for a decision

procedure is the act space. It is a known fact that decision theory literature is

predominantly focused on problems characterised by loss functions that require

that the space A coincides with the state space S [89]; in turn, S is either

selected such as S ⊆ Rd with d ∈ N being the number of coordinates, or

S = {0, 1}, i.e. both A and S consist of two points. This corresponds to

the standard problems of point estimation7 and of detection (the testing of

hypothesis)8. Nevertheless, in general there is no requirement for two spaces

to be dependent [113], and statistical decision theory should be able to address

problems which in the words of Wald “have not yet been treated” [113]. And

the consequence is that it may be difficult to express considerably new decision

procedures, i.e. those where the act space is not dependent on the state space,

within the standard framework.9

(iii) Missing loss functions. Although it is claimed that statistical decision the-

ory “formally encompasses an enormous range of problems” [10], literature is

predominantly concerned with “certain standard loss functions” [9] that also

lead to the point estimation problem. As far as the current practice of deci-

sion making with Bayesian filters is concerned, it has decoupled the filtering

algorithm from the problem being solved, and effectively avoided the need to

consider, let alone design, loss functions. In addition to that, the context of

Bayesian filtering contains a number of ad hoc solutions, which could have

been presented within the general framework of Bayesian decision theory, but

instead have been formulated as detection or point estimation procedures on

7This includes functions such as squared error, zero-one error, absolute error, LINEX, BLINEX,
and others e.g. [79, 99, 103, 106, 115].

8Notably, the third standard problem of interval estimation cannot be adequately expressed in
decision-theoretic terms [32, 63].

9Note that decisions described here are strictly focused on choosing terminal actions, and do
not concern sensing actions, i.e. experiments.
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alternative state spaces, e.g. [51, 59], or as statistical inference procedures, e.g.

[25].

(iv) Limited probabilistic information. The settings of Bayesian decision theory

commonly assume that the complete information about the probability density

is available in some form, possibly via sufficient statistics. In contrast, filtering

solutions, especially coming from the new generation of filters, often rely on

propagation of statistical quantities, which may be insufficient for decision

making.

1.5 Proposed approach

In this thesis we address the challenges presented in the previous section by propos-

ing a new definition of a loss function as a function composition. We attempt to

decouple the act space from a possibly complicated state space, and introduce the

possibility of reconfiguring the loss function and formalising new problems leading

to decision making under uncertainty.

Definition 1.5.1 (Loss function). Loss function is a function L : A×S → R+
0 that

attaches a value of loss to every possible outcome of selecting an option a ∈ A when

the state of nature is s ∈ S, and is defined as a composition

L(a, s) := l(a, q(s)), (1.13)

where q : S → A is a query function attaching an ideal option ǎ to each possible

state of nature s, and l : A × A → R+
0 is a query loss function attaching losses to

each outcome (a, ǎ) of accepting option a when the ideal choice is ǎ.

The value of introducing of mapping q : S → A has been once recognized in the

domain of robotics,10 where it is simply referred to as ’a transformation’ and was used

to communicate the problem-specific information needs. Specifically, the following

transformations have been highlighted [38]: parameter reductions, reductions to

discrete spaces, continuous transformations, combinations of the above.

Overall, we found it useful to think of the mapping q : S → A as a problem-

specific or a user-defined query, or information need. For example, it could define

an externally specified feature, e.g. by taking into account contextual information

that does not belong to the model of nature. Accordingly, the problems could be

10The work in [38] was discovered during the preparation of the thesis. However, it does not
integrate the query function within the overall loss function L, as followed by this thesis.
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formalised in a new way: using function q to communicate a ‘query’, and function l

to describe losses associated with making errors in the ‘answer’ (e.g. overestimating

or underestimating). It is also easy to see that the revised formulation is equivalent

to the standard definition in Definition 1.1.3 if q is a linear function on S.

To the best of our understanding, in the context of Bayesian statistics such formu-

lations (where the same prior is used for distinct problems expressed via appropriate

terminal loss functions) have been avoided because of the difficulties associated with

formulating prior information. Specifically, a different prior might be used depend-

ing on the considered problem [11], because of the fear that the prior will dominate

the data. Fortunately, in Bayesian filtering objective prior information is always

available. As described in [35, p. 11], this may be the maximum detection range of

a sensor, or the maximum achievable speed of an object.

Subsequent design choices The developments in this work are guided by the

following overarching principles and set limitations:

(a) The state space is determined by the considered filtering algorithm, where it

is defined as the minimal set of data that is sufficient to uniquely describe the

dynamical behaviour of the system.

(b) It may not be possible to produce solutions for arbitrary act spaces, so additional

limitations will have to be introduced (e.g. consider A = R).

(c) The same form of a query function may be appropriate for more than a sin-

gle problem. Therefore, it is reasonable to introduce query functions formally,

without justifying their physical meaning.

(d) Query loss functions essentially fulfil the same role as loss function used in

standard procedures, e.g. point estimation (see Appendix A.1), and therefore

the standard models of loss can be re-used.

1.6 Thesis outline and key contributions

Chapter 1 This chapter introduces the subject of this work. Specific contributions

are:

• Section 1.1 offers the author’s perspective on various realms of decision making,

with the specific focus on the integration of the loss function, tracing the origins

to game theory:
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– Section 1.1.6 articulates the principle of decision making under assumed

certainty equivalence, a simple heuristic that is commonly used in place

of the minimum expected loss principle.

• Section 1.5 offers a revised definition of the loss function as a composition of

a query function and a matching query loss function.

Chapter 2 This chapter gives an introduction to recursive Bayesian filtering for

the classical case of a single surely present dynamic object, and demonstrates ap-

plication of filtering information in decision making under uncertainty. The novel

contributions are:

• Subsection 2.3.3 interprets ad hoc solutions to various problems, including

the problems of threat assessment and binary classification, using the new

formalization of the loss function.

Chapter 3 This chapter discusses recursive Bayesian filtering for the case of dy-

namic object populations, introduces the point process formalism, and demonstrates

application of filtering information in decision making under uncertainty. The novel

contributions are:

• Subsection 3.5.3 interprets the problem of regional cardinality estimation within

the new decision-making formalism.

Chapter 4 This chapter uses the new decision-making formalism to develop op-

timal solutions in the context of spatial point processes. The novel contributions

are:

• Section 4.1 presents an optimal solution to the class of problems expressed

with an arbitrary real-valued query function and the squared error query loss.

• Section 4.2 introduces the sum query, and obtains the corresponding solu-

tion which can be expressed via the lower-order statistical moment of a point

process.

• Section 4.3 introduces the product query, and obtains the corresponding solu-

tion which can be expressed via the probability generating functional (p.g.fl.)

of a point process.
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Chapter 5 This chapter implements the optimal solutions for a number of prac-

tical Bayesian filters, including the classical PHD filter, the Panjer PHD filter, and

the Cardinalized PHD filter. The novel contributions are:

• Section 5.2 develops expressions of certain lower-order statistical moments

and p.g.fl.s that correspond to the updated and predicted distributions in the

considered filters. Note that expressions of the first-order moment is not a

novel result.

• Section 5.3 obtains solutions corresponding to the sum query:

– Section 5.3.1 produces expressions for the updated point process.

– Section 5.3.2 produces expressions for the predictive point process.

• Section 5.4 obtains solutions corresponding to the product query:

– Section 5.4.1 produces expressions for the updated point process.

– Section 5.4.2 produces expressions for the predictive point process.

Chapter 6 This chapter is dedicated to demonstration of the developed solutions

using simulated data, with the focus on the update step of the SMC-PHD filter.

The discussion is focused on the problem of subjective decision-theoretic inference.

The novel contributions are:

• Section 6.2 contains a parallel presentation of solutions developed for three

distinct realms of decision making (and includes the pseudocode for imple-

mentation):

– Section 6.2.1 is focused on decision making under certainty, which pro-

duces ideal (clairvoyant) answers for the known ground truth.

– Section 6.2.2 is focused on conventional algorithm for decision making

under assumed certainty equivalence, which produces suboptimal answers

using heuristics for extracting the system state.

– Section 6.2.3 is focused on developed algorithms for decision making un-

der uncertainty, and implements solutions developed in Sections 5.3.1 and

5.4.1.

• Section 6.3 offers a number of practical query functions (including those based

on the developments in Appendix A.3) which give rise to three meaningful

problems of subjective decision-theoretic inference.
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• Section 6.4 provides the simulation results that, for the developed algorithms,

demonstrate the consistency of quality indicators and the capacity to outper-

form the conventional algorithm.

Chapter 7 This chapter provides a summary of the developments and offers pos-

sible directions of the future research.

Appendix A.1 This appendix presents certain query loss functions used in this

work.

Appendix A.2 This appendix presents a concept of threat function, which models

the probability that an object produces a negative impact on a threatened asset.

Appendix A.3 This appendix constructs a probabilistic model describing the

value of damage incurred by a vulnerable asset as a result of a simultaneous deto-

nation of multiple weapons. Specific contributions are:

• Section A.3.1 develops a general expression of the expected damage value,

denoted as risk.

• Section A.3.2 develops a special case of the expression in the additive form,

denoted as sigma-risk.

• Section A.3.3 develops a special case of the expression in the multiplicative

form, denoted as pi-risk.

Publications An early technical result, which corresponds to developments in

Sections 4.2.1 and 5.3.1, has been reported in the form of a conference publication:

• A. Narykov, E. Delande, D.E. Clark, P. Thomas, and Y. Petillot. Second-

Order Statistics for Threat Assessment with the PHD Filter. In 2017 Sensor

Signal Processing for Defence Conference (SSPD), pp. 1–5. IEEE, 2017.

22



Chapter 2

Recursive filtering for a single

object

One of the key challenges for decision making under uncertainty is in obtaining

the probability distribution of various states of nature. A body of algorithms that

are successfully dealing with this issue, albeit in dynamic settings, are associated

with recursive Bayesian estimation. Such algorithms, commonly called Bayesian

filters, are constructed with the aim to sequentially describe the state evolution of

an uncertain dynamic system using partial observations.

This chapter is based on a standard exposition of the Bayes filter, which origi-

nates from [40], and focuses on a system that is represented by a single surely present

dynamic object.1 It also addresses decision-making with the Bayes filter, and makes

use of the revised formulation from Definition 1.5.1. It will be used to analyse the

standard problem of point estimation, which is associated with producing a sys-

tem state summary that removing the accumulated uncertainty. Furthermore, it

will be used to synthesize a number of other problems previously not considered as

alternatives to the point estimation.

The content of this chapter is as follows. In Section 2.1 we discuss the concept of

optimality in the filtering context. In Section 2.2 we present the modelling details

that lead to a single-object Bayes filter. In Section 2.3 we move on to address

decision-making with the Bayes filter. Section 2.4 provides the summary.

1By stating that the object is ’surely present’ we explicitly exclude a significantly more advanced
Bernoulli filter [88] from the consideration. This filter is sometimes described as a ’single-object fil-
ter’ [112], but conceptually belongs to the new generation of filters for object populations described
next in Section 3.
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2.1 Optimal filtering

Recursive Bayesian estimation, with a prominent example of the Kalman filter [40,

49], is arguably one of the most successful application of Bayesian statistics. The

Bayesian filter is a recursive algorithm that generates a probabilistic description of

an uncertain dynamic system by incorporating all information that can be provided

to it. It processes all available observations, regardless of their accuracy, with the

use of [71]:

• knowledge of the models describing the object dynamics and measurement

systems in the absence of noise;

• the statistical description of the process and observation noises;

• all information that is available about initial object state.

The algorithm is called recursive, or sequential, because it is capable of construct-

ing posterior distribution from arriving observations, rather than operating on a

complete sequence.

One of the central concepts in recursive filtering is optimality. A filter is called

optimal,2 if it seeks a probability distribution that is “correctly calculated” [56,

Sec. 3.1.1], it is “exact and complete” [85, p. 6]. An optimal filter can be exploited

for producing point estimates that would be optimal in Bayes sense, i.e. a resulting

estimate minimizes the expected value of some explicitly specified loss function.3

However, in general, it is not necessary for a filtering algorithm to address the

problem of point estimation. Additionally, one can consult the following statements:

• “this conditional distribution offers a complete solution to the filtering prob-

lem” [44, p. 145-146];

• “the purpose of Bayesian filtering is to compute the marginal posterior distri-

bution or filtering distribution of the state” [93, p. 54];

• “the optimal solution to the nonlinear filtering problem requires that a com-

plete description of the conditional4 probability density is maintained” [47].

2Sometimes optimal filters are referred to as exact filters [24, 85].
3It may also happen that filter produces optimal point estimates in the process of its operation,

as it is in the Kalman filter, which is a minimum mean square error (MMSE) estimator.
4Conditioned on all available observations.
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2.2 Bayes filter for a surely present object

Let us consider the discrete-time state-space approach to the modelling of dynamical

systems. At each time step k ∈ N, the system is described by its state vector xk that

takes values in a state space X ⊆ Rnx , where nx are dimensions of the vector xk. The

system state itself is hidden, but its noisy measurement vectors zk in measurement

space Z ⊆ Rnz are available, where nz are dimensions of the vector zk.

The time evolution of the state vector is described by a stochastic model in the

form

xk = fk(xk−1, vk−1), (2.1)

where fk is a possibly nonlinear function of the state xk−1, and v1:k is an i.i.d.

process noise sequence. Another way to describe the time evolution is using a

Markov transition kernel πk(·|·).
The measurement vector is modelled using a measurement equation given by

zk = hk(xk, wk), (2.2)

where hk is a possibly nonlinear function of the state xk, and w1:k is an i.i.d. measure-

ment noise sequence. This model specifies at time k how any given state vector xk

and measurement noise wk are taken into a measurement vector zk. Another way to

describe the measurement process is by a likelihood function gk(·|·), where gk(zk|xk)
evaluates the adequacy of the state xk when guessed against the measurement zk.

Recursive filtering is concerned with sequentially describing the uncertain state

of the dynamic system from the measurement history z1:k = (z1, · · · , zk). Using the

models introduced above, the required probability density function pk(xk|z1:k) can

be recursively propagated by the Bayes filter in two stages [40]:

pXk|k−1
(xk|z1:k−1) =

∫
πk|k−1(xk|x)pXk−1

(x|z1:k−1)dx, (2.3)

pXk(xk|z1:k) =
gk(zk|xk)pXk|k−1

(xk|z1:k−1)∫
gk(zk|x)pXk|k−1

(x|z1:k−1)dx
, (2.4)

for an initial distribution pX0(x0). These Bayesian discrete-time recursive equations

constitute the foundation for optimal filtering for a single surely present dynamic

object when observed by a sensor with unity detection probability.
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2.3 Decision making under uncertainty

This chapter uses Definition 1.5.1 to explore decision-making using information from

the Bayes filter. In Subsection 2.3.1, we outline a decision-making process leveraged

by information from the Bayes filter. Subsection 2.3.2 analyses point estimation

as a special case of a decision procedure. In Subsection 2.3.3, we synthesise a

number of decision-making procedures that solve problems other than standard point

estimation.

2.3.1 Revised decision procedure

Given the posterior density pXk (or equally predictive density pXk|k−1
), it is possible

to solve any problem for a formalized decision process in Definition 1.5.1. This

requires that the act space A as well as the loss function L : A×X → R+
0 , which is a

composition of a query function q : X → A and a query loss function l : A×A → R+
0 ,

are additionally introduced, as they are not specified by the model in Section 2.2.

Proposition 2.3.1 (Posterior Bayes-optimal solution). For an uncertain system

described by a random vector Xk on X , a Bayes-optimal solution to the problem

formalized by L : A× X → R+
0 is a tuple (ak, ρk), where posterior Bayes action ak

is given by

ak = arg min
a∈A

E[L(a,Xk)] (2.5a)

= arg min
a∈A

∫
l(a, q(x))pXk(x|z1:k)dx, (2.5b)

and posterior Bayes expected loss ρk is given by

ρk = E[L(ak, Xk)] (2.6a)

=

∫
l(ak, q(x))pXk(x|z1:k)dx. (2.6b)

Proposition 2.3.2 (Predictive Bayes-optimal solution). For an uncertain system

described by a random vector Xk+1|k on X , a Bayes-optimal solution to the problem

formalized by L : A × X → R+
0 is a tuple (ak+1|k, ρk+1|k), where predictive Bayes

action ak+1|k is given by

ak+1|k = arg min
a∈A

E[L(a,Xk+1|k)] (2.7a)

= arg min
a∈A

∫
l(a, q(x))pXk+1|k(x|z1:k)dx, (2.7b)
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and predictive Bayes expected loss ρk+1|k is given by

ρk+1|k = E[L(ak+1|k, Xk+1|k)] (2.8a)

=

∫
l(ak+1|k, q(x))pXk+1|k(x|z1:k)dx. (2.8b)

2.3.2 Point estimation of the system state

Point estimation of the system state is often perceived as an inference procedure.

However, it is recognized that it also has an interpretation as a decision-making

procedure, see e.g. [12]. Accordingly, point estimation of the system state is a

singular most popular decision-making procedure in the context of Bayesian filtering

that is being solved optimally.

Bayes-optimal point estimation Bayes-optimal state estimation is a special

kind of a problem, where the act space is selected to coincide with the state space,

i.e. A = X . From the perspective of Definition 1.5.1, the problem of point estimation

of a system state is characterised by the fact that the query function is specified as

a simple identity function on the corresponding state space.

Definition 2.3.3 (Identity query). .

An identity query function qI : X → X is given by

qI(x) :=IX (x) (2.9a)

=x. (2.9b)

Proposition 2.3.4 (Posterior Bayes-optimal state estimation). For an uncertain

system described by a random vector Xk on X , a Bayes-optimal solution to the prob-

lem of point estimation is given by a tuple (x̂k, ρk), where posterior Bayes estimate

x̂k is given by

x̂k = arg min
xk∈X

E[l(xk, qI(Xk))] (2.10a)

= arg min
xk∈X

∫
l(xk, x)pXk(x|z1:k)dx, (2.10b)

and posterior Bayes expected loss ρk is given by

ρk = E[l(x̂k, Xk)] (2.11a)

=

∫
l(x̂k, x)pXk(x|z1:k)dx, (2.11b)
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for a query loss function of a kind l : X × X → R+
0 .

Note that we explicitly stated the value of posterior Bayes expected loss ρk as

a part of the solution. In much of literature this quantity is dismissed, and the

discussion is stressed on the estimate itself. This is unfortunate because expected

loss is an indicator of the estimation quality. It may be used for other kind of

decisions, such as of dismissing/accepting the estimate, or requesting additional

measurements.

A popular algorithm is the minimum mean squared error estimation given in

Example 2.3.5.

Example 2.3.5 (MMSE estimation). When the query loss function is modelled

as squared error function l2 in (A.1), a Bayes-optimal solution of the estimation

problem is a tuple (x̂MMSE
k , ρMMSE

k ) is simply the conditional mean of the distribution

given by

x̂MMSE
k = arg min

xk∈X
E[l2(xk, Xk)] (2.12a)

= arg min
xk∈X

∫
(xk − x)2pXk(x|z1:k)dx, (2.12b)

=

∫
xpXk(x|z1:k)dx (2.12c)

=E[Xk] (2.12d)

with the associated Bayes expected loss given by

ρMMSE
k =

∫
(x̂MMSE

k − x)2pk(x|z1:k)dx, (2.13a)

=

∫
x2pXk(x|z1:k)dx−

[∫
xpXk(x|z1:k)dx

]2

(2.13b)

= E[X2
k ]− E[Xk]

2 (2.13c)

= var[Xk]. (2.13d)

The expression in (2.12) is also referred to as the Expected A Posteriori (EAP)

estimator or the Minimum Variance (MV) estimator.

MAP estimation Another popular, and sometimes preferred [14, 15, 33, 91],

technique is the maximum a posteriori probability (MAP) estimator

x̂MAP
k = arg sup

x∈X
pXk(x|z1:k). (2.14)
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It is a Bayesian estimator that is not optimal in Bayes sense, i.e. it relies on the

posterior distribution but it does not minimise expected value of any loss function.

However, MAP estimator can be seen as an approximation to a Bayes estimator

under conditions described in [7].

Remark 2.3.6. It is perhaps worthwhile to highlight the close relation of MAP esti-

mation to other point estimation techniques. Provided that that the posterior density

is pXk(x|z1:k) ∝ gk(zk|x)pXk|k−1
(x|z1:k−1), it is easy to demonstrate its relation to the

maximum likelihood estimator:

x̂MAP
k = arg sup

x∈X
gk(zk|x)pXk|k−1

(x|z1:k−1), (2.15)

x̂ML
k = arg sup

x∈X
gk(zk|x). (2.16)

Note that maximum likelihood estimation is a non-Bayesian approach since it does

not rely on a prior distribution pXk(x|z1:k−1). However, it can be interpreted as MAP

estimation with a uniform prior.

2.3.3 Other problems

In this subsection we offer three distinct problems that can be solved using infor-

mation from the Bayes filter.

Definition 2.3.7 (Linear query). .

A linear query function qlin : X → X is given by

qlin(x) := Kx+ C (2.17)

for constant coefficients K and C on R.

Example 2.3.8 (Predictive linear estimation). In the decision-theoretic settings,

the problem can be defined by a composition of a linear query function qlin in (2.17)

and the squared error query loss function l2 in (A.1).

For an object described with a random variable Xk+1|k with the predictive density

pXk+1|k(x|z1:k), the Bayesian solution to the problem of predictive linear estimation

is a tuple (alin,k+1|k, ρlin,k+1|k) given by the Bayes action

alin,k+1|k = arg min
a∈R

E[l2(a, qlin(Xk+1|k))] (2.18a)

= arg min
a∈R

∫
(a− qlin(x))2pXk+1|k(x|z1:k)dx (2.18b)
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= K

∫
pXk+1|k(x|z1:k)dx+ C (2.18c)

= KE[Xk+1|k] + C (2.18d)

and the associated Bayes expected loss

ρlin,k+1|k =

∫
(alin,k+1|k − qlin(x))2pXk+1|k(x|z1:k)dxk (2.19a)

= K2var[Xk+1|k]. (2.19b)

When interest lies in queries defined on distinct target spaces, such as in the case

of threat level assessment for an individual object presented in Example 2.3.10, the

query function can be defined as follows.

Definition 2.3.9 (Object threat level query). .

A query function qτ : X → R given by

qτ (x) = τ(x, xA), (2.20)

where function τ : X × X → R returns a probability that detonation of a weapon

in state x hits the asset in state xA (such models are covered in Appendix A.2),

evaluates to the threat level of object in state x.

Example 2.3.10 (Threat estimation, inspired by [51]). In the decision-theoretic

settings, the problem of threat estimation can be defined by a composition of a query

function qτ returning an object’s threat level (2.20) and the squared error query loss

function l2 (A.1).

For an object is described with a random variable Xk with the posterior pXk(x|z1:k)

and the squared error query loss in (A.1), the Bayesian solution to the problem of

threat estimation is a tuple (aτ,k, ρτ,k) given by the Bayes action

aτ,k = arg min
a∈R

E[l2(a, qτ (Xk))] (2.21a)

= arg min
a∈R

∫
(a− qτ (x))2pXk(x|z1:k)dx (2.21b)

=

∫
τ(x, xA)pXk(x|z1:k)dx (2.21c)

= E[τ(Xk, xA)] (2.21d)
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and the associated Bayes expected loss

ρτ,k =

∫
(aτ,k − τ(x, xA))2pXk(xk|z1:k)dxk (2.22a)

= var[τ(Xk, xA)]. (2.22b)

Definition 2.3.11 (Binary classification). .

A query function qB : X → {0, 1} given by

qB(x) = 1B(x), (2.23)

where 1B : X → {0, 1} is an indicator function for an arbitrary region B ⊂ X ,

evaluates whether an object in state x belongs to class/region B.

Example 2.3.12 (Regional discrimination, inspired by [25, 59]). In the decision-

theoretic settings, the problem of regional discrimination can be specified by a com-

position of a query function qB : X → A with A = {0, 1} from (2.23), and a

suitable query loss functions. Such loss function for A = {0, 1} is lC : A × A →
{C00, C01, C10, C11} defined in (A.2) as

lC(a, ǎ) =



C00, a = 0, ǎ = 0,

C01, a = 0, ǎ = 1,

C10, a = 1, ǎ = 0,

C11, a = 1, ǎ = 1

= Ca0 + (Ca1 − Ca0)11(ǎ)

The overall loss associated with reporting an answer a ∈ {0, 1} when object is in

the state x can be written as

LC(a, x) = lC(a, qB(x)) (2.24a)

= Ca0 + (Ca1 − Ca0)11(qB(x)) (2.24b)

= Ca0 + (Ca1 − Ca0)1B(x). (2.24c)

For an object described with a random variable Xk with the posterior pXk(x|z1:k),

the Bayesian solution to the problem of regional discrimination is a tuple (aB,k, ρB,k)
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given by the Bayes action

aB,k = arg min
a∈{0,1}

E[L(a,Xk)] (2.25a)

= arg min
a∈{0,1}

∫ [
Ca0 + (Ca1 − Ca0)1B(x)

]
pXk(x|z1:k)dx (2.25b)

= arg min
a∈{0,1}

[
Ca0 + (Ca1 − Ca0)

∫
B

pXk(x|z1:k)dx

]
, (2.25c)

and the associated Bayes expected loss

ρB,k = E[LC(ā, Xk)] (2.26)

= Cā0 + (Cā1 − Cā0)

∫
B

pXk(x|z1:k)dx, (2.27)

where ā := aB,k refers to the optimal action and different notation is used for con-

venience.

Furthermore, if the costs are set to penalise the errors exclusively, C01 = C10 = 1

and C00 = C11 = 0, we arrive at a minimum probability of error detector defined by

the following expressions

E[LC(0, Xk)] =

∫
B

pXk(x|z1:k)dx, (2.28)

E[LC(1, Xk)] = 1−
∫
B

pXk(x|z1:k)dx. (2.29)

The first expression simply computes the probability of the object being in region B,

whereas the second is the probability that the object is not in the region. Accordingly,

if the probability of object being inside the region is smaller, the answer 0 must be

reported, and otherwise it is 1.

2.4 Summary

In this chapter we introduced Bayesian filtering for a single surely present object.

Uncertainty in the state of such dynamic system is modelled by a random vector.

We considered the new formulation of the loss function, which is given in Definition

1.5.1, in the single-object filtering context. We were able to formulate a general class

of statistical problems which require filtering information to be solved, and managed

to produce a number of analytic solutions for instances such as threat estimation or

binary discrimination. To the best of our knowledge, these problems have not been
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appropriately treated in decision theoretic framework yet.
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Chapter 3

Recursive filtering for an object

population

Since the development of the Kalman filter in 1960 [49], the possibility of con-

structing optimal algorithms has, arguably, been reserved for systems that could be

faithfully modelled by a vector-valued random variable [24]. Although the theory

of point processes, or point fields, emerged around the same time [75], its definite

application for modelling dynamic systems has not been realised until recently [70].

This development has brought a paradigm shift of nature modelling from a single

surely present dynamic object to a time-varying population of such objects.

The new paradigm posed a wealth of new challenges to the theory of recursive

filtering. In particular, it brought into question the applicability of optimal point

estimators, such as an MMSE algorithm. As a result, when the need comes to solve

the problem of point estimation of the system state, literature often has little to

offer but heuristics for extraction of a multi-object state estimates.

This chapter culminates with a presentation of a number of filters for spatial point

processes. Eventually, the focus will be on approximate filters, including the classical

Probability Hypothesis Density (PHD) filter [68] as well as its developments, such

as the Cardinalized Probability Hypothesis Density (CPHD) filter [67] and Panjer

Probability Hypothesis Density (PPHD) filter [95].1

The content of this chapter is as follows. In Section 3.1 we discuss the concept

of optimality in the context of filters for object populations. Section 3.2 presents

probabilistic methods for modelling uncertain object populations. In Section 3.3 we

introduce the Bayes filter for an indistinguishable object population. In Section 3.5

1In this thesis the abbreviation PPHD is not to be interpreted as the Particle PHD filter, as
found in [21, 22, 110], which is another name for the Sequential Monte-Carlo (SMC) implementation
of the classical PHD filter, i.e. the SMC-PHD filter.
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we discuss decision making with the Bayes filter. Section 3.4 presents approximate

PHD filters and their current exploitation for decision making. Section 3.6 provides

the summary.

3.1 Optimal filtering

The Bayes filter, as it is introduced in Chapter 2, is fundamentally based on the

idea that the uncertain state of a dynamic system, as well as its partial observations,

can be satisfactorily modelled by random vectors. This mathematical abstraction

is well suited for describing a single object (phenomenon) of interest in the absence

of clutter, i.e. possible unwanted objects. Some authors find it necessary to stress

that this phenomenon is ’always-on’ (’surely present’ [74] or ’permanently active

or present’ [86]), as it is not experiencing birth of death. To this we wish to add

that this phenomenon is ’cooperative’ in the sense that it never fails to return a

measurement.

This abstraction is well suited for many practical problems. Due to its natural

fit, it has revolutionised the area of control systems (think of chemical plants or au-

tomotive engines) [4, 5] and facilitated navigation techniques culminating with the

Apollo’s lunar mission [97]. However, when it comes to applying it for area surveil-

lance, which is focused on by time-varying number of ’non-cooperative’ objects, its

direct application is not possible.

For a long time, a common philosophy has been to build a multi-object filtering

solutions in the ’bottom-up’ manner, essentially as a combination of separate single-

object filters. And it is only recently that ’top-down’ filters became widespread,

thanks to the new abstract framework, originating from the engineering interpre-

tation of point process theory [75, 104] called Finite Set Statistics (FISST) [70],

that replaced vector-valued random variables by what is called finite-set-valued (or,

simply, set-valued [17]) random variables.

3.1.1 Bottom-up approaches

As mentioned before, traditional algorithms designed for object populations ad-

dressed recursive filtering as a combination of separate single-object filters, with

their outputs integrated within an additional algorithm which returns a global out-

put. Overall, these algorithms are designed such as to offer the ability to distinguish

the objects and to naturally describe each of them. Such algorithms are reviewed

in [82, 110].
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Recursive filtering could include simple one-to-one association of measurements

to filters (in case of the Nearest-Neighbour (NN) algorithm, see [102, 105]), which

cannot cope well with data ambiguities. Alternatively, it is executed by maintaining

all hypotheses of possible combinations (in case of the Multiple Hypothesis Tracking

(MHT) filter, see [84]) or by selecting the most likely of those combinations (in case

of the Joint Probabilistic Data Association (JPDA) filter, see [31]). These algorithms

can become computationally involved when the number of objects is high or if there

are many ambiguities in the data.

Despite these algorithms have been successfully implemented for real-life surveil-

lance, their theoretical consistency is not as clear as that of an isolated single-object

filter. Accordingly, the question is whether these algorithms are consistent with the

Bayesian paradigm, and if so, whether they are optimal, i.e. they produce the exact

posterior distribution of the object population. In particular, this concern has been

raised in [112, p. 8-9], [70, p. 340-341]. As a response to this, there is an ongoing

effort to recover the modelling assumptions under which the algorithms (or their

variations) would be provably optimal, see e.g. [17, 117].

3.1.2 Top-down approaches

An alternative approach to recursive filtering views the population of objects as

a single entity, or meta-object, and the set of measurements as a single meta-

measurement, or observation. This constitutes the ’top-down’ approach. Accord-

ingly, the uncertain dynamic system (and its observations) is no longer described

by a random vector but by a random finite set, or point process. This approach is

introduced in terms of point process theory in [19], and in the context of FISST in

[110, 111].

This new abstraction leads to the construction of the optimal Bayes filter anal-

ogous to the single-object filter, but will require methods from point process theory

described in Section 3.2. This algorithm is very general and complex, so to be

tractable, it requires successive approximations and simplifications. There are at

least two strategies to approximate it: parametrized density approximation algo-

rithms (for the case of Bernoulli and multi-Bernoulli filters, see [88]), and moment-

approximation algorithms (see Section 3.4). Specifically, moment-approximation

algorithms avoid the combinatorial problem that arises from data association, as

they consider objects in a population as indistinguishable.
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3.2 Probabilistic methods for representing

object populations

3.2.1 Spatial point processes

In this work, the objects of interest have individual states x in some d-dimensional

state space X ⊂ Rd, typically consisting of position, velocity and class variables.

A point process Φ on X is a random variable on the process space X =
⋃∞
n=0X n,

i.e. the space of all finite sequences of points in X , whose number of elements

and element states are unknown and (possibly) time-varying. A realisation of Φ

is a sequence2 ϕ = (x1:n) ∈ X n, representing a population of n objects with states

xi ∈ X . In the context of multi-object filtering, this sequence depicts a specific

multi-object configuration.

More formally, a point process Φ on X is a measurable mapping

Φ : (Ω,F ,P)→ (X,B(X)) (3.1)

from some probability space (Ω,F ,P) to the measurable space (X,B(X)), where Ω

is a sample space; F is a σ-algebra on Ω; P is a probability measure on (Ω,F); B(X)

is the Borel σ-algebra on X [104].

Definition 3.2.1 (Spatial point process). A point process Φ on X is a random

variable on the space X of finite sequences in X . A realisation of Φ is a sequence

ϕ = (x1, · · · , xn) ∈ X n, describing a group of n objects with states xi ∈ X where

both n and all xi are random.

As for usual real-valued random variables, a point process is described by its

probability distribution PΦ on X. The probability distribution is always defined as

a symmetric function, so that the order of points in a realisation is irrelevant for

statistical purposes and the permutations of ϕ—such as (x1, x2) and (x2, x1)—are

equally probable. In addition, a point process is called simple if the probability

distribution is such that realisations are sequences of points that are pairwise distinct

almost surely, i.e. ϕ does not contain repetitions. For the rest of the thesis, all point

processes are assumed to be simple. In that case, it admits a Radon-Nikodym

derivative (w.r.t. the reference measure) denoted as pΦ, which is a probability

density of a point process Φ.

2Here (x1:n) denotes the sequence (x1, . . . , xn).
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3.2.2 Statistical moments and p.g.fl.

In this subsection we are going to present various quantities that are used to com-

municate information about a point process.

Statistical moments It rarely happens such that the complete knowledge about

the point process Φ contained in a probability density pΦ is available. What may be

available is certain limited descriptions of Φ contained in its statistical moments. It

is possible to obtain factorial and non-factorial moment densities for any order, but

their construction is rather involved as compared to regular random variables. In this

thesis, we are going to focus only on the lower-order moments that contain the most

information. Specifically, we are going to focus on two quantities: the first-order

non-factorial moment density, and the second-order factorial moment density.3

Definition 3.2.2 (First-order moment density). For a point process Φ, the first-

order statistical moment density, also called intensity function, or simply intensity,

is defined as

µΦ(x) :=

∫ (∑
xi∈ϕ

δx(xi)

)
pΦ(ϕ)dϕ (3.2a)

=
∑
n≥1

∫
Xn

( ∑
1≤i≤n

δx(xi)

)
p

(n)
Φ (x1:n)d(x1:n), (3.2b)

where the following holds
∫
δy(x)f(x)dx = f(y).

Definition 3.2.3 (Second-order factorial moment density). For a point process Φ,

the second-order factorial statistical moment density is defined as

νΦ(x, x̄) :=

∫ (∑i 6=j

xi,xj∈ϕ

δx(xi)δx̄(xj)

)
pΦ(ϕ)dϕ (3.3a)

=
∑
n≥0

∫
Xn

(∑i 6=j

1≤i,j≤n

δx(xi)δx̄(xj)

)
p

(n)
Φ (x1:n)d(x1:n), (3.3b)

where the following holds
∫
δy(x)f(x)dx = f(y).

Probability Generating Functional (p.g.fl.) One of the ways to study point

processes is by expressing them using different presentation, such as through the

3Definitions 3.2.2 and 3.2.3 exhaust the variety of densities available for the moments of first two
order. The reason is that for the first-order moments the densities coincide, whereas the density of
the second non-factorial moment is not defined as it violates the assumption of process simplicity.
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Probability Generating Functional (p.g.fl.). For example, it is possible to obtain

expressions for various statistical moments for a point process by differentiating its

p.g.fl. P.g.fl.s play a role similar to that of the Fourier transformation for signal

processing and the probability generating functions for discrete random variables.

Definition 3.2.4 (Probability generating functional). For a point process Φ, the

probability generating functional (p.g.fl.) is defined as an expectation

GΦ(h) :=E
[∏
x∈Φ

h(x)

]
(3.4)

=

∫ (∏
x∈ϕ

h(x)

)
pΦ(ϕ)dϕ (3.5)

=
∑
n≥0

∫
Xn

[ ∏
1≤i≤n

h(xi)

]
p

(n)
Φ (x1:n)d(x1:n), (3.6)

where h : X → [0, 1] a test function.

3.2.3 Some elementary spatial point processes

Three different point processes are discussed below to illustrate the formulation of

point processes on specific examples. All of them will be used later on to model

different phenomena, resulting in different population filters. Examples of point

processes that have been used in the context of multi-object filtering are given

below.

Poisson point process is the most important of the considered point processes.

Because of its convenient mathematical properties it has been often used to create

simple models of natural and man-made phenomena. Two other considered point

processes offer a possibility to build more realistic, higher fidelity models.

Definition 3.2.5 (Generalised factorial and binomial coefficient). .

Consider a real number x ∈ R and a non-negative integer n ∈ N.

(a) The Pochhammer symbol or rising factorial xn↑ is given by

(x)n↑ :=
∏

0≤i≤n−1

(x+ i), x0↑ := 1. (3.7)

(b) In the same manner, the falling factorial xn↓ is given by

(x)n↓ :=
∏

0≤i≤n−1

(x− i), x0↓ := 1. (3.8)
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(c) Using (3.8), the generalised coefficient
(
x
n

)
is defined as(

x

n

)
=
xn↓
n!

(3.9)

Definition 3.2.6 (i.i.d. cluster process). .

An independent and identically distributed (i.i.d.) cluster process with cardinality

distribution ρ on N and spatial distribution c on X describes a population of objects

whose size is described by ρ, and whose states are i.i.d. according to c.

Its p.g.fl. is of the form

Gi.i.d. =
∑
n≥0

ρ(n)

[ ∫
X
h(x)c(x)dx

]
. (3.10)

Lower-order statistics (µi.i.d., νi.i.d.) of this process are given by

µi.i.d.(x) =

(∑
n≥0

nρ(n)

)
c(x), (3.11)

νi.i.d.(x, x̄) =

(∑
n≥0

(n2 − n)ρ(n)

)
c(x)c(x̄). (3.12)

Definition 3.2.7 (Panjer process [95]). .

A Panjer process with parameters α ∈ R>0 and β ∈ R>0 (or α ∈ Z<0 and β ∈ R<0)

and spatial distribution c is an i.i.d. cluster process with spatial distribution c, whose

size is Panjer distributed with parameters α and β:

ρPanjer(n) =

(
−α
n

)(
1 +

1

β

)−α(
−1

β + 1

)n

. (3.13)

Its p.g.fl. is of the form

GPanjer =

(
1 +

1

β

∫
X
h(x)c(x)dx

)−α
. (3.14)

Lower-order statistics (µPanjer, νPanjer) of this process are given by

µPanjer(x) = αβ−1c(x), (3.15)

νPanjer(x, x̄) = (α)2β
−2c(x)c(x̄), (3.16)
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3.3 Bayes filter for an object population

where (ξ)n is a rising factorial symbol for any ξ ∈ R and n ∈ N.

Panjer point process can be completely described by its intensity function µ\

and the variance in object number varPanjer(X ) [95]. At the same time, knowing the

density νPanjer on top of that would introduce no additional information.

Definition 3.2.8 (Poisson process). .

A Poisson process with parameter λ ≥ 0 and spatial distribution s is an i.i.d. cluster

process with spatial distribution c, whose size is Poisson distributed with rate λ:

ρPoisson(n) = e−λ
λn

n!
. (3.17)

Its p.g.fl. is of the form

GPoisson = exp

(∫
X

[1− h(x)]c(x)dx

)
. (3.18)

Lower-order statistics (µPoisson, νPoisson) of this process are given by

µPoisson(x) = λc(x), (3.19)

νPoisson(x, x̄) = λ2c(x)c(x̄). (3.20)

Note that Poisson process can be sufficiently described by its intensity function

µPoisson. At the same time, the second-order moment density νPoisson carries no

additional information.

3.3 Bayes filter for an object population

The Bayes filter for spatial point processes is a natural extension of the Bayes filter

for a single surely present object in Subsection 2.2 to the case of object populations.

The resulting Bayes recursion at time step k consists of the time prediction and data

update steps given by:

pΦk|k−1
(ϕ|Z1:k−1) =

∫
Tk|k−1(ϕ|ϕ̄)pΦk−1

(ϕ̄|Z1:k−1)dϕ̄, (3.21)

pΦk(ϕ|Z1:k) =
Lk(Zk|ϕ)pΦk|k−1

(ϕ|Z1:k−1)∫
Lk(Zk|ϕ̄)pΦk|k−1

(ϕ̄|Z1:k−1)dϕ̄
, (3.22)

where pΦk(ϕ|Z1:k−1) and pΦk(ϕ|Z1:k) are probability densities, respectively, of the

predicted and updated object process Φ at step k, which are conditioned on the set
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3.4 Moment-approximation filters

of available multi-object observations; Zk is the set of measurements collected at time

k; Tk|k−1(ϕ|ϕ̄) is the multi-object transition kernel, describing the time evolution of

the population of objects and encapsulates the underlying models of object birth,

motion, spawning and death; and Lk(Zk|ϕ) is the population likelihood function,

describing the sensor observation process and encapsulates the underlying models

of object detection, object-originating measurements, and false alarms.

Equivalent expressions of the filter can be established through generating func-

tionals. Through this perspective, the p.g.fl.s of the predicted and updated processes

are [23, 25]:

GΦk|k−1
[h|Z1:k−1] =

∫ ∫ [∏
xi∈ϕ

h(xi)

]
Tk|k−1(ϕ|ϕ̄)pΦk−1

(ϕ̄|Z1:k−1)dϕdϕ̄, (3.23)

GΦk [h|Zk] =

∫ [∏
xi∈ϕ

h(xi)

]
Lk(Zk|ϕ)pΦk|k−1

(ϕ)dϕ

∫ [∏
xi∈ϕ

h(xi)

]
Lk(Zk|ϕ)pΦk|k−1

(ϕ)dϕ

∣∣∣∣
h=1

. (3.24)

3.4 Moment-approximation filters

The Bayes filter for an object population as presented in Section 3.3 is commonly

regarded as intractable in practice because of the combinatorial nature of probability

densities as well as complications associated with the curse of dimensionality [70].

In order to overcome this recognised complication, a number of principled approx-

imations have been suggested that are based on the idea of propagating a limited

number of statistical moments (such as those in Section 3.2.2). The Probability Hy-

pothesis Density (PHD) [68], the Panjer PHD (PPHD) [95] and Cardinalized PHD

(CPHD) [67] filters are such approximations that are based on first moments and

some additional information about cardinality distributions. This section presents

the filtering recursions largely following the overview in [96], with notations origi-

nally inspired by [25, 95, 109].

3.4.1 Useful notations

Let us define some specific terms which will be common to all filters described below,

up to the specific prior and predicted intensities µ•k−1 and µ•k|k−1 with • ∈ {[, ], \}
indicating the relevant filter as defined later in text. The survival term is defined as
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3.4 Moment-approximation filters

µs,k(x) = ps,k(x̄)πk|k−1(x|x̄)µ•k−1(x̄). (3.25)

The missed detection term and association terms for any z ∈ Zk are defined, respec-

tively, as

µφk(x) = (1− pd,k(x))µ•k|k−1(x), (3.26)

µzk(x) = gk(x|z)pd,k(x)µ•k|k−1(x), (3.27)

Furthermore, the following form of notation for intensity integrals is extensively

used in the presentation:

µ(X ) =

∫
X
µ(x)dx. (3.28)

3.4.2 The PHD filter

Among the filtering algorithms presented in this section, the PHD filter was intro-

duced first and is the most popular filter. It was developed by Mahler in [68] under

the assumption that the number of predicted objects, as well as the cardinality of

false alarms, is Poisson distributed. We are going to refer to this filter using the

superscript [.

Proposition 3.4.1 (PHD recursion [95]). .

(a) The predicted first-order moment density is given by

µ[k|k−1(x) = µb,k(x) + µs,k(x), (3.29)

with survival intensity (3.25), where • = [.

(b) The updated first-order moment density with Poisson distributed prediction and

false alarm models is obtained as

µ[k(x) = µφk(x) +
∑
z∈Zk

µzk(x)

µfa,k(z) + µzk(X )
(3.30)

with missed detection term (3.26) and association term (3.27), where • = [, and

µfa,k is the intensity of false alarms.
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3.4 Moment-approximation filters

In principle, the filtering recursion in the PHD filter cannot be computed ex-

actly. However, tractable implementations include Gaussian Mixture (GM) [107]

and Sequential Monte Carlo (SMC) [108] based algorithms. The GM implementa-

tion assumes that intensity is a Gaussian Mixture, and requires that every object

and associated measurement follow a linear and Gaussian model. The SMC imple-

mentation approximates the intensity function by a set of weighted particles and

does not require any assumptions regarding the dynamics of the objects.

3.4.3 The Panjer PHD filter

The Panjer PHD (also called the Second-order PHD filter) was introduced in [95] as

a development of the PHD filter that includes additional second-order information,

specifically by propagating not only the mean number of objects, but also variance

in the mean number of objects. It is based on the assumption that the number of

predicted objects, as well as the cardinality of false alarms, is Panjer distributed.

The Panjer point process generalizes the Poisson point process, as demonstrated in

[95], and, therefore, it is less restrictive. Furthermore, it avoids the computationally

expensive propagation of the complete cardinality distribution, as it is done in the

CPHD filter. The Panjer distribution is sufficiently characterized by two parameters,

and they stand in direct correspondence with the distribution’s mean and variance.

As a consequence, it is possible to propagate both the mean and variance of the

cardinality distribution in a filtering recursion. We are going to refer to this filter

using the superscript \.

Let αk|k−1, βk|k−1 and αfa,k, βfa,k be, respectively, the parameters of the predicted

object and false alarm processes at time k. Define the terms

Yu(Z) :=

|Z|∑
j=0

(αk|k−1)j+u
(βk|k−1)j+u

(αfa,k)|Z|−j
(βfa,k + 1)|Z|−j

F−j−ud ej(Z) (3.31)

for any Z ⊆ Zk, where Fd is the scalar given by

Fd :=

∫ [
1 +

pd,k(x)

βk|k−1

]
µ\k|k−1(x)dx, (3.32)

and ej is the j-th elementary symmetric function

ej(Z) :=
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X )

cfa,k(z)
, (3.33)
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3.4 Moment-approximation filters

where cfa,k denotes the spatial density of false alarms at time k, and

µzk(X ) =

∫
µzk(x)dx, (3.34)

where the association term (3.27) is defined for • = \. Furthermore, define terms

for u = {1, 2} via

l\u(φ) :=
Yu(Zk)

Y0(Zk)
and l\u(z) :=

Yu(Zk \ {z})
Y0(Zk)

. (3.35)

Variance prediction is constructed based on the second-order factorial moment

νk which generally cannot be obtained when the predicted information is limited to

µ[k|k−1 and var[k|k−1 only. However, the assumption that ps,k(x) = ps,k is uniform for

all x over the state space X leads to the following recursion.

Proposition 3.4.2 (Panjer PHD recursion [95]). .

(a) Under assumption that ps,k(x) = ps,k is constant for any x ∈ X at time k. In

the manner of (3.29) and (3.49), the predicted first-order moment density of the

Panjer PHD filter is given by

µ\k|k−1(x) = µb,k(x) + µs,k(x), (3.36)

with survival intensity (3.25), where • = \. The predicted variance in the whole

state space X is given by

var\k|k−1(X ) = varb,k(X ) + vars,k(X ), (3.37)

where varb,k is the variance of the birth process and vars,k is the variance of the

predicted process describing the surviving objects which is given by

vars,k(X ) = p2
s,kvark−1(X ) + ps,k[1− ps,k]µk−1(X ). (3.38)

(b) Obtain terms αk|k−1 and βk|k−1 using

αk|k−1 =
µ\k|k−1(X )2

var\k|k−1(X )− µ\k|k−1(X )
, (3.39)

βk|k−1 =
µ\k|k−1(X )

var\k|k−1(X )− µ\k|k−1(X )
. (3.40)
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3.4 Moment-approximation filters

Then, the updated first-order moment density with Panjer distributed prediction

and false alarm models is obtained with

µ\k(x) = µφk(x)l\1(φ) +
∑
z∈Zk

µzk(x)

cfa,k(z)
l\1(z), (3.41)

with missed detection term (3.26) and association term (3.27), where • = \.

The updated variance is given by

var\k(X ) =µ\k(X ) + µφk(X )[l\2(φ)− l\1(φ)2]

+ 2µφk(X )
∑
z∈Zk

µzk(X )

cfa,k(z)
[l\2(z)− l\1(φ)l\1(z)]

+
∑
z,z̄∈Zk

µzk(X )

cfa,k(z)

µz̄k(X )

cfa,k(z̄)
[l\,6=2 (z, z̄)− l\1(z)l\1(z̄)], (3.42)

such that l\,6=2 (z, z̄) is obtained as l\2(z, z̄) if z 6= z̄ and zero otherwise.

Closed-form Gaussian Mixture implementation of the Panjer PHD filter is pro-

posed in [95].

3.4.4 The Cardinalized PHD filter

After the need for a filter that propagates higher-order information about the number

of objects was expressed in [29], Mahler introduced the CPHD filter in [67]. In place

of taking any particular assumption on the nature of the cardinality distribution,

this algorithm estimates the distribution together with the intensity of the point

process. We are going to refer to this filter using the superscript ].

In the following ρk denotes the cardinality distribution of the object population,

and ρb and ρfa denote, respectively, the birth and false alarm cardinality distribu-

tions. Similarly to the PPHD filter, the CPHD filter update has additional terms lu

which depend on the cardinality distribution. We denote the discrete and continuous

inner product by

〈f, g〉 =

∫
f(x)g(x)dx (continuous case), (3.43)

〈f, g〉 =
∑
n≥0

f(n)g(n) (discrete case). (3.44)
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3.4 Moment-approximation filters

Using the notations of [109], we define the terms Υd[µ, Z] with

Υd[µ, Z](n) =

min(|Z|,n−u)∑
j=0

n!(|Z| − j)!
(n− (j + d))!

ρfa(|Z| − j)µ
φ
k(X )n−(j+d)

µ]k|k−1(X )n
ej(Z), (3.45)

where ej(Z) denotes the elementary symmetric functions defined by (cf. Equation

(3.33))

ej(Z) :=
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X )dx

cfa,k(z)
, (3.46)

where cfa,k denotes the spatial density of false alarms at time k, and

µzk(X ) =

∫
µzk(x)dx, (3.47)

where the association term (3.27) is defined for • = ]. This leads to the terms

l]1(φ) =
〈Υ1[µ, Z], ρk|k−1〉
〈Υ0[µ, Z], ρk|k−1〉

and l]1(z) =
〈Υ1[µ, Z \ {z}], ρk|k−1〉
〈Υ0[µ, Z], ρk|k−1〉

. (3.48)

As mentioned above, the CPHD filter propagates both the intensity function as

well as the cardinality distribution of the object process.

Proposition 3.4.3 (CPHD recursion [67]). .

(a) In the manner of (3.29), the predicted first-order moment density is given by

µ]k|k−1(x) = µb,k(x) + µs,k(x), (3.49)

with survival intensity (3.25), where • = ]. The predicted object cardinality

distribution is obtained with

ρk|k−1(n) =
n∑
j=1

ρb(n− j)S[µ]k−1, ρk−1](j) (3.50)

for any n ∈ N with

S[µ, ρ](j) =
∞∑
i=j

(
i

j

)
〈ps,k, µ〉j 〈(1− ps,k), µ〉i−j

〈1, µ〉i
ρ(i). (3.51)

(b) The updated first-order moment density with i.i.d. cluster distributed prediction
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3.5 Decision making under uncertainty

and false alarm models is obtained as

µ]k(x) = µφk(x)l]1(φ) +
∑
z∈Zk

µzk(x)

cfa,k(z)
l]1(z), (3.52)

with missed detection term (3.26) and association term (3.27), where • = ].

The updated object cardinality distribution for any n ∈ N is given by

ρk(n) =
Υ0[µ]k|k−1, Z](n)ρk|k−1(n)

〈Υ0[µ]k|k−1, Z], ρk|k−1〉
. (3.53)

Tractable implementations of the CPHD filter with SMC methods follow as

straightforward extensions [108] as well as through GM closed form solutions in

[109].

3.5 Decision making under uncertainty

In this section we are going to consider exploitation of information from Bayesian

filters for an object population in decision making.

As far as decision making with object populations is concerned, literature has

predominantly focused on the problem of point estimation of the system state. In

the scope of this section we are going to consider the problem of producing a point

estimate, commonly referred to as a multi-object state estimate.4

To the best of our knowledge, the filtering information has not been considered

for making any other decisions consistent with the problem formulation offered by

this thesis. However, some results concerning computation of regional statistics

[25, 95] can be interpreted in this manner using the formulation for the loss function

proposed by this thesis.

3.5.1 Revised decision procedure

Proposition 3.5.1 (Posterior Bayes-optimal decision). For an uncertain system

described by a point process Φk on X , a Bayes-optimal solution to a decision problem

is given by a pair (ak, ρk), where Bayes action ak is given by

ak = arg min
a∈A

E[L(a,Φk)] (3.54)

4Engineering approaches that are commonly used to extract a system state in practical filter
implementations will be discussed in Subsection 3.5.4.
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3.5 Decision making under uncertainty

= arg min
a∈A

∫
l(a, q(ϕ))pΦk(ϕ|Z1:k)dϕ, (3.55)

and Bayes expected loss ρk is given by

ρk = E[L(ak,Φk)] (3.56)

=

∫
l(ak, q(x))pΦk(ϕ|Z1:k)dϕ. (3.57)

3.5.2 Point estimation of the system state

Proposition 3.5.2 (Posterior Bayes-optimal state estimate). For an uncertain sys-

tem described by a point process Φk on X , a Bayes-optimal solution to the problem

of point state estimation is given by a pair (ϕ̂k, ρe,k), where Bayes estimate ϕ̂k is

given by

ϕ̂k = arg min
ϕk∈X

E[L(ϕk,Φk)] (3.58)

= arg min
ϕk∈X

∫
L(ϕk, ϕ)pΦk(ϕ|Z1:k)dϕ, (3.59)

and associated Bayes expected loss ρe,k is given by

ρe,k = E[L(ϕ̂k,Φk)] (3.60)

=

∫
L(ϕ̂k, ϕ)pΦk(ϕ|Z1:k)dϕ, (3.61)

for a loss function of a kind L : X× X→ R+
0 .

Query loss functions, like (A.1), which are commonly used for state estimation,

are not applicable here. This is because such function are commonly formulated

based on the miss-distance (or error metric), and it is the case that is not defined

on the point process state space X, what is also discussed in [98].5 Inapplicability

of MMSE estimation based on (A.1) in the point process context is well recognised

[70].

Optimal MMOSPA estimation Although the population state space itself is

not equipped with a metric, there have been a considerable effort to define such

metric. One of the outcomes is the Optimal Sub-Pattern Assignment (OSPA) metric

[98], which has been a valuable tool for the cross-evaluation of filtering algorithms.6

5An alternative to defining the query loss function using error a− ǎ may be found in [13, 43].
6Without taking object labelling into account.
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This metric establish distance between two populations and relies on additional

user-defined parameters c and p that specify, respectively, sensitivity to errors in

location and cardinality.

Definition 3.5.3 (OSPA metric [98]). For sensitivity parameters 1 ≤ p ≤ ∞ and

c > 0, the Optimal SubPattern Assignment (OSPA) distance between two populations

ϕ, ϕ′ ∈ X with possibly distinct cardinality is defined as

d̄(c)
p (ϕ, ϕ′) :=

1

|ϕ′|

[
min
π∈Π|ϕ′|

|ϕ|∑
i=1

d(c)(xi, x
′
π(i))

p + cp(|ϕ′| − |ϕ|)
]

(3.62)

for |ϕ| ≤ |ϕ′|, and d̄
(c)
p (ϕ, ϕ′) := d̄

(c)
p (ϕ′, ϕ) for |ϕ| > |ϕ′|, where d(c)(x, x′) =

min(c, d(x, x′)) is a distance between two individuals in states x, x′ ∈ X with cut-off

c, and Πn is the set of permutations on {1, 2, · · · , n} for any n ∈ N.

The possibility of using this metric as an overall loss function to produce state

estimates was first proposed in the form of the Minimum Mean OSPA (MMOSPA)

estimator in [36]. Following Proposition 3.5.2, this estimate is defined as [8, Eq. 6]

ϕ̂k = arg min
ϕk∈X

E[d̄(c)
p (ϕk,Φk)

2] (3.63)

= arg min
ϕk∈X

∫
d̄(c)
p (ϕk, ϕ)2pΦk(ϕ|Z1:k)dϕ. (3.64)

Unfortunately, computation of such estimate is very challenging in real-life scenarios,

e.g. when the number of objects is not known or exceeds two. As a consequence

few practical results have been demonstrated. Furthermore, it is not clear how to

establish a relation between the problem being solved by the user and the sensitivity

parameters in a principled manner.

Generalized MAP estimation Two algorithms denoted ‘GMAP-I’ and ‘GMAP-

II’ were proposed in [34] as generalizations (or global ‘analogs’) of the regular Max-

imum A Posteriori (MAP) estimator (see Section 2.3.2). It was claimed that these

estimators are Bayes-optimal for the loss function presented in [34, p. 192]. Various

updates to these estimators were presented in [70], however, no explicit expressions

to compute the expected value of loss, as a valuable indicator of quality, have been

provided.

Overall, we find application of these algorithms problematic. First, we were

not able to find any applications of these estimators in the context of moment
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approximation filters.7 Second, since the MAP estimator itself is not a Bayes-optimal

estimator [7], it brings into question Bayes-optimality of its generalizations to non-

Euclidean spaces.

Heuristics for point estimation of the system state Numerical implementa-

tions of PHD filters can be equipped with state extraction algorithms that are not

optimal in Bayes sense:

(a) Gaussian Mixture (GM) implementations. Approximate state estimation in the

GM-PHD filter [107], (as well as in the GM-PPHD filter [95] and in the GM-

CPHD filter [109]) concerns first computing the expected number of objects in

the scene, and then using the posterior intensity to extract the corresponding

number of mixture components with the highest weights as state estimates.

(b) Sequential Monte Carlo (SMC) implementations. Approximate state estimation

in the SMC-PHD filter in [108] (which can be easily extended to the PPHD and

the CPHD cases) concerns first computing the expected number of objects in

the scene, and then using this number to partition the set of particles into a

number of clusters representing the objects. The centres of these clusters are

then used as state estimates.

3.5.3 Optimal posterior regional cardinality estimation

Strictly speaking, the material as presented next follows from the developments in

Chapter 4, where a more general result is produced. However, the same results

can be extracted from [25, 95], where they may not have been stated explicitly and

produced within a slightly different context.

Definition 3.5.4 (Regional enumeration). .

A query function qΣB : X→ R given by

qΣB(ϕ) :=
∑
x∈ϕ

1B(x), (3.65)

where 1B : X → {0, 1} is an indicator function for an arbitrary region B ⊂ X ,

evaluates to the number of objects in ϕ that belong to region B.

Theorem 3.5.5 (Posterior regional cardinality estimation [25, 95]). .

For a process Φk, the query function (3.65) and the squared error query loss (A.1),

7Some available results [6, 52] concern multi-Bernoulli filters which are point process based
filters of different nature than PHD filters.
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the Bayesian solution to the problem of regional cardinality estimation on B ⊂ X
is a tuple (aΣB ,k, ρΣB ,k) obtained from process statistics (µΦk , νΦk) with Bayes action

given by

aΣB ,k = arg min
a∈R

E[l2(a, qΣB(Φk))] (3.66a)

= arg min
a∈R

∫
(a− qΣB(ϕ))2pΦk(ϕ|Zk)dϕ (3.66b)

=

∫
B

µΦk(x)dx, (3.66c)

and Bayes expected loss given by

ρΣB ,k = E[l2(ak, qΣB(Φk))] (3.67a)

=

∫
(ak − qΣB(ϕ))2pΦk(ϕ|Zk)dϕ (3.67b)

=

∫
B

µϕ(x)dx

(
1−

∫
B

µΦk(x)dx

)
+

∫
B×B

νΦk(x, x̄)d(x, x̄). (3.67c)

Corollary 3.5.6 (Regional cardinality estimation (PHD filter) [25]). For the up-

dated PHD filter in Proposition 3.4.1 and the squared error query loss (A.1), the

Bayesian solution (a[ΣB ,k, ρ
[
ΣB ,k

) to the regional cardinality estimation problem on

B ⊂ X is given by

a[ΣB ,k = µφk(B) +
∑
z∈Zk

µzk(B)

µfa,k(z) + µzk(X )
, (3.68)

ρ[ΣB ,k = µφk(B) +
∑
z∈Zk

µzk(B)

µfa,k(z) + µzk(X )

(
1−

∑
z∈Zk

µzk(B)

µfa,k(z) + µzk(X )

)
. (3.69)

Corollary 3.5.7 (Regional cardinality estimation (PPHD filter) [95]). For the up-

dated PPHD filter in Proposition 3.4.2 and the squared error query loss (A.1), the

Bayesian solution (a\ΣB ,k, ρ
\
ΣB ,k

) to the regional cardinality estimation problem on

B ⊂ X is given by

a\ΣB ,k =µφk(B)l\1(φ) +
∑
z∈Zk

µzk(B)

µfa,k(z) + µzk(X )
l\1(z), (3.70)

ρ\ΣB ,k =µ\k(B) + µφk(B)[l\2(φ)− l\1(φ)2] + 2µφk(B)
∑
z∈Zk

µzk(B)

cfa,k(z)
[l\2(z)− l\1(φ)l\1(z)]

+
∑
z,z̄∈Zk

µzk(B)

cfa,k(z)

µz̄k(B)

cfa,k(z̄)
[l\,6=2 (z, z̄)− l\1(z)l\1(z̄)], (3.71)
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3.5 Decision making under uncertainty

where the l\ terms for time k are presented in (3.35) such that l\,6=2 (z, z̄) is obtained

as l\2(z, z̄) if z 6= z̄ and zero otherwise.

Corollary 3.5.8 (Regional cardinality estimation (CPHD filter)[25]). For the up-

dated CPHD filter in Proposition 3.4.3 and the squared error query loss (A.1), the

Bayesian solution (a]ΣB ,k, ρ
]
ΣB ,k

) to the regional cardinality estimation problem on

B ⊂ X is given by

a]ΣB ,k =µφk(B)l]1(φ) +
∑
z∈Zk

µzk(B)

µfa,k(z) + µzk(X )
l]1(z), (3.72)

ρ]ΣB ,k =µ]k(B) + µφk(B)[l]2(φ)− l]1(φ)2] + 2µφk(B)
∑
z∈Zk

µzk(B)

cfa,k(z)
[l]2(z)− l]1(φ)l]1(z)]

+
∑
z,z̄∈Zk

µzk(B)

cfa,k(z)

µz̄k(B)

cfa,k(z̄)
[l],6=2 (z, z̄)− l]1(z)l]1(z̄)], (3.73)

where the first-order l]1 terms for time k are from the original filter recursions in

(3.48), and additional second-order l]2 terms are [25]

l]2(φ) :=
〈Υ2[µ, Z], ρk|k−1〉
〈Υ0[µ, Z], ρk|k−1〉

,

l]2(z) :=
〈Υ2[µ, Z \ {z}], ρk|k−1〉
〈Υ0[µ, Z], ρk|k−1〉

,

l]2(z, z̄) :=
〈Υ2[µ, Z \ {z, z̄}], ρk|k−1〉
〈Υ0[µ, Z], ρk|k−1〉

,

(3.74)

such that l],6=2 (z, z̄) is obtained as l]2(z, z̄) if z 6= z̄ and zero otherwise.

3.5.4 Ad hoc solutions to other problems

Particular solutions can be obtained using state estimates for a definition of a query

function. This approach is closely related to decision making under assumed cer-

tainty equivalence, but it does not take a (query) loss function into account. As a

consequence, these solutions referred to as ad hoc, i.e. solutions that are designed

for specific problem.

Definition 3.5.9 (Centroid). .

A query function qcentroid : X→ X given by [20, Eq. 32]

qcentroid(ϕ) :=
1

|ϕ|
∑
x∈ϕ

x, (3.75)
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where | · | is a cardinality of the set.

Definition 3.5.10 (Regional density). .

A query function qdensity : X→ R given by

qdensity(ϕ) :=
1

B

∑
x∈ϕ

1B(x). (3.76)

3.6 Summary

In this chapter we addressed the new generation of Bayesian filters that infer prob-

abilistic description of an object population from partial data. In contrast to early

recursive filters for object populations, the new algorithms are designed based on

the explicitly stated modelling assumptions. Designing these filters have required

new methods for describing uncertain populations, which are available from point

process theory. In general, the Bayes filter for an object population is intractable,

so we have presented a number of practical moment approximation filters, including

the classical PHD filter, the Panjer PHD filter, and the Cardinalized PHD filter.

Decision making under uncertainty using such filters has been focused on the

problem of point estimation. However, this problem has not received an optimal

solution due to the nature of the point process state space. As a result, most

implementations of such algorithms rely on various heuristics to produce the state

estimate. Nevertheless, we used the new decision-theoretic framework to interpret

the problem of optimal regional cardinality estimation.
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Chapter 4

Decision making with spatial point

processes

Spatial point processes are commonly associated with their application in the context

of statistical inference. Among its goals is producing quantities characterising the

process and its probability distribution. As presented in the previous chapter, the

new generation of Bayesian filters is primarily focused on the first-order moment of

the process [68] and additional cardinality statistics [25, 67, 95].

In this chapter, we are going to exploit spatial point processes for decision mak-

ing under uncertainty. As far as first-order filtering is concerned, optimal state

estimation using point processes has been deemed a challenging problem because

of the difficulties associated with implementing the loss functions as described in

Subsection 3.5.2. As a response to this, we are going to take a principled look at

decision problems beyond the point estimation of the system state. We will show

that problems that are more specialized can have optimal solutions in closed form.

Furthermore, in certain situations they can also be expressed using a limited variety

of point process statistics, which might eventually be extracted from the Bayesian

filters.

The content of this chapter is as follows. In Section 4.1 we present a model of the

decision-making process for a real-valued query function under squared error query

loss, and develop its closed-form solution. In Section 4.2, we develop solutions for

the sum query, which are expressed using lower-order statistics of a point process.

In Section 4.3, we develop solutions for the product query, which are expressed using

p.g.fl.s of a point process. Each solution is considered for a number of elementary

point processes and for the superposition of point processes. Section 4.4 offers a

summary.
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4.1 Optimal solution for a real-valued query

4.1 Optimal solution for a real-valued query

In this section we approach decision making with a spatial point process as defined

in Section 3.2.1. The design choices outlined in Section 1.5 lead to the construction

of the following loss function.

Assumptions 4.1.1 (Squared error-in-answer loss). .

The amount of loss associated with reporting an answer a ∈ R when the true state

of nature is ϕ ∈ X is given by

Lsq(a, ϕ) :=l2(a, qR(ϕ)) (4.1a)

= (a− qR(ϕ))2 , (4.1b)

where qR : X → R is an arbitrary real-valued query function, and l2 : R × R → R+
0

is the squared error query loss function in (A.1).

For the loss function in (4.1), following the minimum expected loss principle in

Proposition 1.2.2 results into the solution presented in Theorem 4.1.2.

Theorem 4.1.2 (Optimal solution for Lsq). Optimal solution to the statistical prob-

lem characterised by the loss function Lsq in (4.1) is obtained as (asq,Φ, ρsq,Φ) for a

point process Φ on X with

asq,Φ = E[q(Φ)], (4.2)

ρsq,Φ = var[q(Φ)]. (4.3)

Proof. Let us consider a function f , such that

f(a) = E[Lsq(a,Φ)] (4.4a)

= E[(a− q(Φ))2] (4.4b)

= a2 − 2aE[q(Φ)] + E[q(Φ)2]. (4.4c)

An extremum of the function f in point a is found as f ′(a) = 0. The first

derivative is found to be

f ′(a) = 2a− 2E[q(Φ)], (4.5)

which gives us the extremum for

a = E[q(Φ)]. (4.6)
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4.2 Optimal solutions for the sum query

This point is a minimum if f ′′(a) > 0, and this is true since f ′′(a) = 2. Finally, the

minimum that is reached by this function is

f(E[q(Φ)]) = E[Lsq(E[q(Φ)],Φ)] (4.7a)

= E[(E[q(Φ)]− q(Φ))2] (4.7b)

= E[q(Φ)]2 − 2E[q(Φ)]E[q(Φ)] + E[q(Φ)2] (4.7c)

= E[q(Φ)2]− E[q(Φ)]2 (4.7d)

= var[q(Φ)]. (4.7e)

Corollary 4.1.3 (Explicit expressions). For a point process Φ on X described by its

projection density p
(n)
Φ (x1:n) for n ∈ N, the optimal solution (asq,Φ, ρsq,Φ) in Theorem

4.1.2 can be written as

asq,Φ =
∑
n≥0

∫
q(x1:n)p

(n)
Φ (x1:n)d(x1:n), (4.8)

ρsq,Φ =
∑
n≥0

∫
q(x1:n)2p

(n)
Φ (x1:n)d(x1:n)−

[∑
n≥0

∫
q(x1:n)p

(n)
Φ (x1:n)d(x1:n)

]2

. (4.9)

4.2 Optimal solutions for the sum query

In Section 4.1 we obtained the optimal solution to the problem characterised by

the squared error-in-answer loss (4.1). This loss function is originally defined for an

arbitrary real-valued query qR : X → R. In this subsection we additionally assume

that the query function is of the additive form.

Definition 4.2.1 (Sum query). .

A real-valued query is called the sum query and defined as

qΣ(ϕ) := K
∑
x∈ϕ

m(x) + C (4.10)

for a real-valued function m : X → R, and constant coefficients K and C on R.

Note that expression in (4.10) can be seen as a generalization of the query func-

tion for regional enumeration given in (3.65).

Remark 4.2.2 (Empty sum). An empty sum (nullary sum) is a summation where

the number of elements is zero. The value of any empty sum of numbers, by con-

vention, is the additive identity, i.e. zero.
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4.2 Optimal solutions for the sum query

Accordingly, we can construct a specialized loss function.

Definition 4.2.3 (Squared error-in-sum loss). The amount of loss associated with

taking an action a ∈ R when the true state of environment is ϕ ∈ X is given by

LΣ(a, ϕ) := (a− qΣ(ϕ))2 , (4.11)

where the sum query qΣ : X→ R is given in (4.10).

4.2.1 General solution

For a point process Φ described by its first-order moment density µΦ and second-

order factorial moment density νΦ, we define additional notations:

FΦ[m] :=

∫
m(x)µΦ(x)dx, (4.12)

QΦ[m] :=

∫
m(x)m(x̄)νΦ(x, x̄)d(x, x̄), (4.13)

where m : X → R is a function.

Theorem 4.2.4 (Optimal solution for LΣ [76]). .

Optimal solution to the problem characterised by the loss function LΣ in (4.11) is

obtained as (aΣ,Φ, ρΣ,Φ) for the point process Φ from its statistics (µΦ, νΦ) with

aΣ,Φ =KFΦ[m] + C, (4.14)

ρΣ,Φ =K2

[
FΦ[m2]− FΦ[m]2 +QΦ[m]

]
. (4.15)

This technical result (in a slightly more specialized form) was originally presented

in the conference publication [76], and the proof is given next.

Proof. Let us obtain the solution (aΣ,Φ, ρΣ,Φ) to the decision problem characterised

by LΣ and the object process Φ. First we focus on the optimal action aΣ,Φ. From

(4.8) and (4.10) we can write

aΣ,Φ =
∑
n≥0

∫ (
K
∑

1≤i≤n

m(xi) + C

)
p

(n)
Φ (x1:n)d(x1:n), (4.16a)

= K
∑
n≥0

∫ ( ∑
1≤i≤n

m(xi)

)
p

(n)
Φ (x1:n)d(x1:n) + C, (4.16b)
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4.2 Optimal solutions for the sum query

then using Campbell’s theorem [104, p. 103], yields the optimal action

aΣ,Φ = K

∫
m(x)µΦ(x)dx+ C. (4.16c)

Next we focus on the minimised expected loss ρΣ,Φ given in (4.7d) by

ρΣ,Φ = E[qΣ(Φ)2]− E[qΣ(Φ)]2. (4.17)

The expected value E[qΣ(Φ)2] is obtained from (4.8) and (4.10) and written as

E[qΣ(Φ)2] =
∑
n≥0

∫ [
K
∑

1≤i≤n

m(xi) + C

]2

p
(n)
Φ (x1:n)d(x1:n) (4.18a)

=K2
∑
n≥0

∫ [ ∑
1≤i≤n

m(xi)
2

]
p

(n)
Φ (x1:n)d(x1:n)

+K2
∑
n≥0

∫ [ ∑ 6=

1≤i,j≤n

m(xi)m(xj)

]
p

(n)
Φ (x1:n)d(x1:n)

+ 2K
∑
n≥0

∫ [ ∑
1≤i≤n

m(xi)

]
p

(n)
Φ (x1:n)d(x1:n) + C2 (4.18b)

=K2

∫
m(x)2µΦ(x)dx+K2

∫
m(x)m(x̄)νΦ(x, x̄)d(x, x̄)

+ 2K

∫
m(x)µΦ(x)dx+ C2, (4.18c)

where νΦ is the second-order factorial moment density of the point process Φ. At

the same time, following (4.2), the expression of E[qΣ(Φ)] is given by (4.16c).

Substituting (4.18c) and (4.16c) into (4.17) yields an expression of the expected

loss value ρΣ,Φ.

Corollary 4.2.5 (Regional statistics [25]). .

For K = 1, C = 0 and m(·) = 1B(·), where 1B is an indicator function 1B : X →
[0, 1] for an arbitrary region B ⊂ X such that 1B(x) is equal to 1 if x ∈ B and 0

otherwise, the optimal solution in Theorem 4.2.4 expresses statistics on the number

of objects for a point process Φ on X described with its statistics (µΦ, νΦ) is given

by

µ(B) =F [1B], (4.19)

var(B) =F [1B](1− F [1B]) +Q[1B]. (4.20)
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4.2 Optimal solutions for the sum query

4.2.2 Elementary point processes

We consider three different elementary point processes to illustrate decision making

for the squared error-in-sum loss LΣ in (4.11). All of the point processes have been

introduced in Subsection 3.2.3.

Corollary 4.2.6 (Solution for a Poisson point process and LΣ). For a Poisson

process with parameter λ[ and spatial distribution c[, optimal solution to the decision

problem characterised by the loss function LΣ in (4.11) is obtained as (aΣ,[, ρΣ,[) with

aΣ,[ = Kλ[

∫
m(x)c[(x)dx+ C, (4.21)

ρΣ,[ = K2λ[

∫
m(x)2c[(x)dx. (4.22)

Corollary 4.2.7 (Solution for a Panjer point process and LΣ). For a Panjer process

with parameters α\ and β\ and spatial distribution c\, optimal solution to the decision

problem characterised by the loss function LΣ in (4.11) is obtained as (aΣ,\, ρΣ,\) with

aΣ,\ = K
α\
β\

∫
m(x)c\(x)dx+ C, (4.23)

ρΣ,\ = K2

[
α\
β\

∫
m(x)2c\(x)dx+

[
α\
β2
\

∫
m(x)c\(x)dx

]2]
(4.24)

Corollary 4.2.8 (Solution for an i.i.d. cluster point process and LΣ). For an i.i.d.

cluster process with cardinality distribution ρ] and spatial distribution c], optimal

solution to the decision problem characterised by the loss function LΣ in (4.11) is

obtained as (aΣ,], ρΣ,]) with

aΣ,] = K
∑
n≥0

nρ](n)

∫
m(x)c](x)dx+ C, (4.25)

ρΣ,] = K2
∑
n≥0

nρ](n)

∫
m(x)2c](x)dx

+K2

(∑
n≥0

(n2 − n)ρ](n) +

[∑
n≥0

nρ](n)

]2)(∫
m(x)c](x)dx

)2

(4.26)
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4.3 Optimal solutions for the product query

4.2.3 Superimposed processes

Superposition occurs when one is not interested in the individual realizations of

independent point processes, but only in the union of the realizations. If we denote

by Ψ the union of point processes with known p.g.fl.s , then Ψ is also a point process.

Corollary 4.2.9 (Solution for superimposed processes and LΣ). .

For a superposition Ψ of N point processes ∪1≤i≤NΦi described by their p.g.fl.s GΦi,

a Bayesian solution (aΣ,Ψ, ρΣ,Ψ) for the loss function LΣ in (4.11) is given by

aΣ,Ψ = K
∑

1≤i≤N

FΦi [m] + C, (4.27)

ρΣ,Ψ = K2
∑

1≤i≤N

[
FΦi [m

2]− FΦi [m]2 +QΦi [m]

]
. (4.28)

4.3 Optimal solutions for the product query

In Section 4.1 we obtained the optimal solution to the decision problem characterised

by the squared error-in-action loss (4.1). This loss function is originally defined for

an arbitrary real-valued query qR : X→ R. In this subsection we additionally specify

that the query function is of a multiplicative form.

Definition 4.3.1 (Product query). .

A real-valued query is called the product query and defined as

qΠ(ϕ) := K
∏
x∈ϕ

m(x) + C (4.29)

for a function m : X → [0, 1], and constant coefficients K and C on R.

Note the difference in the definition of m in Definitions 4.2.1 and 4.3.1.

Remark 4.3.2 (Empty product). An empty product (nullary product) is the out-

come of multiplying no factors. The value of any empty product, by convention, is

equal to the multiplicative identity 1.

Accordingly, we can construct a specialized loss function.

Definition 4.3.3 (Squared error-in-product loss). The amount of loss associated

with taking an action a ∈ R when the true state of environment is ϕ ∈ X is given by

LΠ(a, ϕ) := (a− qΠ(ϕ))2 , (4.30)

where the product query qΠ : X→ R is given in (4.29).
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4.3.1 General solution

Recall the definition of the probability generating functional (p.g.fl.) GΦ for a point

process Φ given in (3.6).

Theorem 4.3.4 (Optimal solution for LΠ). .

Optimal solution to the problem characterised by the loss function LΠ in (4.30) is

obtained as (aΠ,Φ, ρΠ,Φ) for the point process Φ from its p.g.fl. GΦ with

aΠ,Φ = KGΦ(m) + C, (4.31)

ρΠ,Φ = K2
(
GΦ(m2)− GΦ(m)2

)
. (4.32)

Proof. Let us obtain the solution (aΠ,Φ, ρΠ,Φ) to the decision problem characterised

by LΠ and the object process Φ. First we focus on the optimal action aΠ,Φ. From

(4.8) and (4.10), we can write

aΠ,Φ =
∑
n≥0

∫ [
K
∏

1≤i≤n

m(xi) + C

]
p

(n)
Φ (x1:n)d(x1:n) (4.33)

=K
∑
n≥0

∫ [ ∏
1≤i≤n

m(xi)

]
p

(n)
Φ (x1:n)d(x1:n) + C. (4.34)

An expression for the optimal action aΠ,Φ is obtained from (4.34) using the definition

of the p.g.fl. in (3.6) when considering that m : X → [0, 1].

Next we focus on the minimised expected loss ρΣ,Φ given in (4.9) by

ρΠ,Φ =
∑
n≥0

∫
qΠ(x1:n)2pΦ(x1:n)d(x1:n)−

[∑
n≥0

∫
qΠ(x1:n)p

(n)
Φ (x1:n)d(x1:n)

]2

(4.35)

=
∑
n≥0

∫ [
K
∏

1≤i≤n

m(xi) + C

]2

p
(n)
Φ (x1:n)d(x1:n)

−

[∑
n≥0

∫ [
K
∏

1≤i≤n

m(xi) + C

]
p

(n)
Φ (x1:n)d(x1:n)

]2

(4.36)

=K2
∑
n≥0

∫ [ ∏
1≤i≤n

m(xi)
2

]
p

(n)
Φ (x1:n)d(x1:n)

−K2

[∑
n≥0

∫ [ ∏
1≤i≤n

m(xi)

]
p

(n)
Φ (x1:n)d(x1:n)

]2

(4.37)
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An expression for the minimized expected loss ρΠ,Φ is obtained from (4.37) using

the definition of p.g.fl. in (3.6).

4.3.2 Elementary point processes

We consider three different point processes to illustrate decision making for the

squared error-in-product loss. All of the point processes have been introduced in

Subsection 3.2.3.

Corollary 4.3.5 (Solution for a Poisson point process and LΠ). For a Poisson

process with parameter λ[ and spatial distribution c[, optimal solution to the decision

problem characterised by the loss function LΠ in (4.30) is obtained as (aΠ,[, ρΠ,[) with

aΠ,[ = K exp

(
λ[

∫
[m(x)− 1]c[(x)dx

)
+ C, (4.38)

ρΠ,[ = K2

[
exp

(
λ[

∫
[m(x)2 − 1]c[(x)dx

)
− exp

(
2λ[

∫
[m(x)− 1]c[(x)dx

)]
.

(4.39)

Corollary 4.3.6 (Solution for a Panjer point process and LΠ). For a Panjer process

with parameters α\ and β\ and spatial distribution c\, optimal solution to the decision

problem characterised by the loss function LΠ in (4.30) is obtained as (aΠ,\, ρΠ,\) with

aΠ,\ = K

[
1 +

1

β\

∫
[1−m(x)]c\(x)dx

]−α\
+ C, (4.40)

ρΠ,\ = K2

[[
1 +

1

β\

∫
[1−m(x)2]c\(x)dx

]−α\
−
[
1 +

1

β\

∫
[1−m(x)]c\(x)dx

]−2α\
]
.

(4.41)

Corollary 4.3.7 (Solution for an i.i.d. cluster point process and LΠ). For an i.i.d.

cluster process with cardinality distribution ρ] and spatial distribution c], optimal

solution to the decision problem characterised by the loss function LΠ in (4.30) is

obtained as (aΠ,], ρΠ,]) with

aΠ,] = K
∑
n≥0

ρ](n)

[∫
m(x)c](x)dx

]n
+ C, (4.42)
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ρΠ,] = K2

[∑
n≥0

ρ](n)

[∫
m(x)2c](x)dx

]n
−

[∑
n≥0

ρ](n)

[∫
m(x)2c](x)dx

]n]2]
.

(4.43)

4.3.3 Superimposed processes

Corollary 4.3.8 (Solution for superimposed processes and LΠ). .

Optimal solution to the decision problem characterised by the loss function LΠ in

(4.30) is obtained as (aΠ,Ψ, ρΠ,Ψ) for a superposition Ψ of N point processes ∪1≤i≤NΦi

described by their p.g.fl.’s GΦi with

aΠ,Ψ = K
∏

1≤i≤N

GΦi(m) + C, (4.44)

ρΠ,Ψ = K2

[ ∏
1≤i≤N

GΦi(m
2)−

∏
1≤i≤N

GΦi(m)2

]
. (4.45)

Proof. The solution is obtained from Theorem 4.3.4 using the property that p.g.fl.

of a superposition is simply GΨ(h) =
∏

1≤i≤N GΦi(h).

4.4 Summary

In this chapter we aimed to employ point processes for decision making under un-

certainty. In order to address problems beyond basic point estimation, we had to

formulate novel loss functions. As a consequence, we were able to formulate a special

class of problems of subjective decision-theoretic inference.

It was found that it is indeed possible to obtain the corresponding optimal solu-

tion.We focused on certain specific forms of the query function compatible with the

point process state space: the sum query and the product query. We were able to

derive optimal solutions that are expressed in closed form through quantities com-

monly used in characterising a point process: densities of first- and second-order

factorial moments and p.g.fl.s.

To be useful in practice, these solutions need to be integrated with Bayesian

filters. Specifically, the challenge is to extract the necessary statistical quantities

from the practical first-order filters, which is the subject of the next chapter.

64



Chapter 5

Optimal solutions with moment

approximation filters

In the previous chapter we formulated a class of problems involving decision making

under uncertainty when the unknown state of the world is described by a point

process. For a number of problems, we were able to produce optimal Bayesian

solutions which are expressed through a limited number of quantities commonly

used to describe a point process.

In this chapter we are going to implement these solutions using information

from recursive Bayesian filtering algorithms. Such implementation would offer an

opportunity to incorporate available evidence about the world state before a decision

is made, or to postpone the moment at which the decision is made. For this, the

quantities of interest will have to be obtained from the considered filters. However,

this is associated with a number of difficulties if practical filters for spatial point

processes are used due to the approximate nature of the algorithms. Nevertheless,

we overcome this obstacle using the developments from the point process theory, and

obtain solutions for a number of filters, namely, the classical Probability Hypothesis

Density (PHD) filter, the Panjer PHD (PPHD) filter, and the Cardinalized PHD

(CPHD) filter.

The content of this chapter is as follows. We begin by restating the assumptions

underlying the moment approximation filters and introduce additional notations in

Section 5.1. In Section 5.2 we obtain the required quantities. Finally, we implement

the Bayesian solutions for the considered PHD filters: in Section 5.3 for the squared

error-in-sum loss, and in Section 5.4 for the squared error-in-product loss. Section

5.5 summarises the findings.
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5.1 Prerequisites

5.1 Prerequisites

We shall first revisit assumptions involved in filter derivations and introduce useful

notations.

5.1.1 Filtering assumptions

Operation of a Bayesian filter involves the data update step, when new data are

integrated into the probabilistic description maintained by the filter on a dynamic

system, and the time update (or prediction) step when this probabilistic description

is propagated in time.

In the data update step, a point process described by Φk|k−1, which is predicted

from time step k−1, is updated to Φk (sometimes denoted Φk|k) using the observation

Zk collected by some sensor at current time k. This step relies on the following

assumptions.

Assumptions 5.1.1 (Data update step). .

(a) The predicted object process Φk|k−1 is Poisson with rate λ[k and spatial distribu-

tion c[k in the PHD filter, Panjer with parameters α\k|k−1 and β\k|k−1 and spatial

distribution c\k in the PPHD filter, or i.i.d. cluster with cardinality distribu-

tion ρ]k|k−1 and spatial distribution c]k in the CPHD filter. The intensity of the

predicted process is denoted by µk|k−1.

(b) The measurements originating from object detections are generated indepen-

dently from each other.

(c) An object with state x ∈ X is detected with probability pd,k(x); if so, it produces

a measurement whose state is distributed according to a likelihood gk(·|x).

(d) At time k, the process describing false alarms produced by the sensor is Pois-

son with rate λ[fa,k and spatial distribution c[fa,k in the PHD filter, Panjer with

parameters α\fa,k and β\fa,k and spatial distribution c\fa,k in the PPHD filter, or

i.i.d. cluster with cardinality distribution ρ]fa,k and spatial distribution c]fa,k in

the CPHD filter.

The predicted object process Φk+1|k is obtained from the posterior process Φk

using knowledge on the dynamical behaviour of the objects. The assumptions of the

time update step are as follows.

Assumptions 5.1.2 (Time update step). .
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(a) The objects evolve independently from each other.

(b) An object with state x ∈ X at time k survived to the current time k + 1 with

probability ps,k+1(x) or simply ps(x); if it did so, its state evolved according to a

Markov transition kernel πk+1|k(·|x) or π(·|x). In the PPHD filter, the probability

of survival is uniform over the state space, i.e. ps(x) := ps for any x ∈ X .

(c) New objects entered the scene between time k and k + 1 independently of the

existing objects and described by a birth process Φb
k+1 with statistics (µb

k+1, ν
b
k+1)

and the p.g.fl. Gb
k+1, which is a Poisson process in the PHD filter, a Panjer

process in the PPHD filter and an i.i.d. cluster process in the CPHD filter.1

5.1.2 Additional notations

Now we introduce a number of additional notations that will be useful in presentation

of the extracted process information and implemented Bayesian solutions.

Recall missed detection term µφk and association terms µzk for any z ∈ Zk which

are expressed using predicted intensity µk|k−1 as

µφk(x) = (1− pd,k(x))µk|k−1(x), (5.1)

µzk(x) = gk(x|z)pd,k(x)µk|k−1(x). (5.2)

We introduce following notations using the above quantities, including the pre-

dicted intensity, so that

Fk[m] :=

∫
m(x)µk|k−1(x)dx, (5.3)

F φ
k [m] :=

∫
m(x)µφk(x)dx, (5.4)

F z
k [m] :=

∫
m(x)µzk(x)dx, (5.5)

for a function m : X → R, as well as using birth process statistics (µb
k+1, ν

b
k+1) so

that

F b
k+1[m] :=

∫
m(x)µb

k+1(x)dx, (5.6)

Qb
k+1[m] :=

∫
m(x)m(x̄)νb

k+1(x)d(x, x̄). (5.7)

1Expressions of various statistical information on these elementary point processes was obtained
in Chapter 3.
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The survival process for an object with state x′ at the previous time step can be

described with a Bernoulli point process with parameter ps(x
′) and spatial distribu-

tion π(·|x′) that is [95]

Gs(m|x′) = 1− ps(x
′) + ps(x

′)

∫
m(x)π(x|x′)dx. (5.8)

Additionally to (5.8), we define G1
s (m|·) as

G1
s (m|x′) := ps(x

′)

∫
m(x)π(x|x′)dx. (5.9)

The above notations are applicable to every considered filter. Next, we shall

introduce certain filter-specific terms.

In the course of development we noticed similarities in the expressions of imple-

mented Bayesian solutions, and in order to promote this fact we developed the new

`-notations, similar to those first introduced in [25] and [95], though including the

dependence on m. For this we first recall the rising factorial and the falling factorial

in Definition 3.2.5.

Next, inspired by notations found in [25] and [95], we define the following in-

termediate Y -terms. In these definitions, the time subscripts on the Y terms are

omitted for the sake of simplicity.

Definition 5.1.3 (Y -term for the PHD filter). .

For the PHD filter at time k, a supporting term Yu of order u ∈ {0, 1, 2} is defined

for a function m : X → R as

Y [
u [m](Z) =eF

φ
k [m]

∏
z∈Z

(F z
k [m] + λfa,kc

[
fa,k(z)). (5.10)

Definition 5.1.4 (Y -term for the PPHD filter). .

For the PPHD filter at time k, a supporting term Yu of order u ∈ {0, 1, 2} is defined

for a function m : X → R as

Y \
u [m](Z) =

∏
z∈Z

c\fa,k(z)

|Z|∑
j=0

(α\k|k−1)(j+u)↑

(α\k|k−1 + Fk[1]− F φ
k [m])α

\
k|k−1

+j+u

(α\fa,k)|Z|−j

(β\fa,k + 1)|Z|−j

·
∑
I⊆Z
|I|=j

∏
z∈I

F z
k [m]

c\fa,k(z)
. (5.11)

Definition 5.1.5 (Y -term for the CPHD filter). .
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For the CPHD filter at time k, a supporting term Yu of order u ∈ {0, 1, 2} is defined

for a function m : X → R as

Y ]
u [m](Z) :=

∏
z∈Z

c]fa,k(z)
∑
n≥0

ρ]k|k−1(n)

min(|Z|,n−u)∑
j=0

n!(|Z| − (j + u))!

(n− (j + u))!
ρ]fa,k(|Z| − j)

· F
φ
k [m]n−(j+u)

Fk[1]n

∑
I⊆Z
|I|=j

∏
z∈I

F z
k [m]

c]fa,k(z)
. (5.12)

Finally, we use the above Y -terms to define the ` terms.

Definition 5.1.6 (`-terms). .

For u ∈ N and any z ∈ Zk, the `-terms are given by

`φu[m] :=
Y •u [m](Zk)

Y •0 [1](Zk)
, `zu[m] :=

Y •u [m](Zk \ {z})
Y •0 [1](Zk)

, (5.13)

where • ∈ {], \, [} indicates the filtering solution involved in producing of the Y -

terms, respectively, the CPHD filter of (5.12), the PPHD of (5.11), or the PHD of

(5.10).

5.2 Point process information from PHD filters

We found that Bayesian solutions obtained in Chapter 4 explicitly rely on a number

of quantities commonly used to describe a point process. Expressions of these quan-

tities, such as densities of the lower-order statistical moments of an object process

Φk and its p.g.fl., can naturally be obtained from the multi-object Bayes’ filter using

their definitions. However, in most real life scenarios its filtering recursion is not

computationally tractable, so instead approximate solutions that propagate incom-

plete information are used. The classical Probability Hypothesis Density (PHD) [68]

filter is perhaps the most popular approximation to the multi-object Bayes’ filter,

whereas the Panjer PHD (PPHD) and the Cardinalized PHD (CPHD) filters are its

extensions constructed to propagate more information about the number of objects.

These filters approximate the predicted object process Φk|k−1 by one of the ele-

mentary point processes presented in Chapter 3, either by a Poisson process (PHD

filter), a Panjer process (PPHD filter), or an i.i.d. cluster process (CPHD filter).

A Poisson process would be completely described by its intensity function µΦ, and

this is the statistic propagated by the PHD filter [68]. A Panjer process is described

by µΦ and variance in the object number varΦ(X ), both propagated by the PPHD

69



5.2 Point process information from PHD filters

filter [95]. Analogously, a i.i.d. cluster process is described by µΦ and cardinality

distribution ρ, both propagated by the CPHD filter [67].

In this section we are going to obtain the required quantities for both the updated

and predicted processes. In particular, these are the first moment density, the second

factorial moment density and the p.g.fl. of the point process.

5.2.1 Updated point process

The updated process Φk is not, in the general case, Poisson (respectively Panjer,

i.i.d. cluster), even if the predicted process Φk|k−1 is; that is, the updated probability

distribution PΦk is not completely described by the output of the PHD (respectively

PPHD, CPHD) filter. Subsequently, it would not be possible, in general, to retrieve

the second-order moment density νk from intensity µk (respectively intensity µk and

variance vark(X ), intensity µk and cardinality distribution ρk) using the expression

in Definition 3.2.8 (respectively Definition 3.2.7, Definition 3.2.6). Instead, one

could obtain additional expressions for computing this density from intermediate

quantities available from a filter’s update step [25].

Proposition 5.2.1 (Intensity update [67, 68, 95]). .

Under Assumptions 5.1.1, a probability hypothesis density function µk describing the

updated object process Φk is given by

µk(x) =µφk(x)`φ1 [1] +
∑
z∈Zk

µzk(x)`z1[1], (5.14)

where the ` terms for time k are defined in (5.13).

A general expression (5.14) of the updated intensity µk is developed for the PHD

filter in [68], for the PPHD filter in [95], and for the CPHD filter in [67].

Proposition 5.2.2 (Second factorial moment density update). .

Under Assumptions 5.1.1, a second-order factorial moment density νk describing the

updated object process Φk is given by

νk(x, x̄) =µφk(x)µφk(x̄)`φ2 [1] + µφk(x)
∑
z∈Zk

µzk(x̄)`z2[1]

+ µφk(x̄)
∑
z∈Zk

µzk(x)`z2[1] +
∑
z,z̄∈Zk

µzk(x)µz̄k(x̄)`6=,z,z̄2 [1], (5.15)

where the `-terms at time k are defined in (5.13), and `6=,z,z̄2 is obtained as `
{z,z̄}
2 if

z 6= z̄ and zero otherwise.
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The proof of results related to extracting the second-order factorial moment

(5.15) from the respective filters is given next.

Proof. Let us obtain the second-order factorial moment density describing the up-

dated object process. Considering [104, Eq. 4.3.4], the second-order factorial moment

can be obtained from the second-order non-factorial moment, should a suitable ex-

pression for the updated process be available. Specific expressions for the factorial

moment density are dependent on the employed filter and given for the PHD filter

in [25, Eq. 31], for the PPHD filter in [95, Eq. 79], and for the CPHD filter in [25,

Eq. 29]. Substituting corresponding equations into [104, Eq. 4.3.4] leads to the

desired result.

Proposition 5.2.3 (PGFL update). .

Under Assumptions 5.1.1, a p.g.fl. Gk of the updated object process Φk is given by

Gk(h|Zk) = `φ0 [h] (5.16)

for a test function h : X → [0, 1], where the ` term for time k is defined in (5.13).

Proof. We wish to obtain PGFLs describing the updated point process in the clas-

sical PHD, the PPHD and the CPHD filters, where for the general multi-object

Bayes’ filter the p.g.fl. is given in (3.24). for a test function h : X → [0, 1], where

pΦk|k−1
is the probability density of the predicted process Φk|k−1, and Lk is the multi-

measurement/multi-object likelihood.

Let us begin with obtaining the p.g.fl. G]k[h|Zk] for the CPHD filter. This

result can be produced by defining the terms Lk and pΦk|k−1
, closely following the

developments in [25]. As presented in Assumptions 5.1.1, in the CPHD filter the

predicted process Φk|k−1 is assumed to be an i.i.d. cluster described by intensity

µ]k|k−1 and full cardinality ρ]k|k−1, whereas the false alarm process is also an i.i.d.

cluster process with spatial density c]fa,k and cardinality ρ]fa,k. The cardinality ρ]k|k−1

is linked to the term Fk[1] through

Fk[1] =
∑
n≥1

nρ]k|k−1(n). (5.17)

The intensity µ]k|k−1 and the cardinality distribution ρ]k|k−1 also completely de-

termine the predicted process

∀x1:n ∈ X n, p
(n)
Φk|k−1

(x1:n) = ρ]k|k−1(n)
n∏
i=1

µ]k|k−1(xi)

Fk[1]
. (5.18)
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For the CPHD filter a multi-measurement/multi-object likelihood Lk in (3.24)

is given by [25]

L]k(Zk|x1:n) =
∑

π∈Π|Zk|,n

πφ!ρ]fa,k(πφ)
∏
zi∈Zk
(i,φ)∈π

c]fa,k(zi)
∏

(i,j)∈π

P (zi|xj)
∏

(φ,j)∈π

P (φ|xj),

(5.19)

where P are the single-measurement/single-target observation kernels, Π|Zk|,n is the

set of all the partitions of indexes {i1, · · · , i|Zk|, j1, · · · , ..., jn} solely composed of

tuples of the form (ia, jb) (target xjb is detected and produces measurement zia),

(φ, jb) (target xjb is not detected), or (ia, φ) (measurement zia is a false alarm), and

πφ = ]{i|(i, φ) ∈ π} is the number of clutter measurements given by partition π.

Having described the necessary terms, we can simplify the expression of the

numerator in (3.24) for the CPHD filter as

∑
n≥0

∫ [ n∏
i=1

h(xi)

]
L]k(Zk|x1:n)p

(n)
Φk|k−1

(x1:n)dx1:n (5.20a)

=
∑
n≥0

ρ]k|k−1(n)

∫ [ n∏
i=1

h(xi)

]
L]k(Zk|x1:n)

n∏
i=1

µ]k|k−1(xi)dxi

Fk[1]
(5.20b)

=
∑
n≥0

ρ]k|k−1(n)

∫
L]k(Zk|x1:n)

n∏
i=1

h(xi)µ
]
k|k−1(xi)dxi

Fk[1]
(5.20c)

=
∑
n≥0

ρ]k|k−1(n)
∑

π∈Π|Zk|,n

πφ!ρ]fa,k(πφ)
∏

(i,φ)∈π

c]fa,k(zi)
∏

(i,j)∈π

F zi
k|k−1[h]

Fk[1]
·
∏

(φ,j)∈π

F φ
k [h]

Fk[1]

(5.20d)

=
∏
z∈Zk

c]fa,k(z)
∑
n≥0

ρ]k|k−1(n)

min(|Zk|,n)∑
j=0

n!(|Zk| − j)!
(n− j)!

ρ]fa,k(|Zk| − j)
F φ
k [h]n−j

Fk[1]n

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c]fa,k(z)
. (5.20e)

After substituting (5.20e) into (3.24) and cancelling the multiplying constant∏
z∈Zk c

]
fa,k(z), we can write

G]Φk [h|Zk] =
Y ]

0 [h](Zk)

Y ]
0 [1](Zk)

, (5.21)
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with Y ]
0 defined in (5.12) for the CPHD filter.

Following from this, we need to obtain an expression of G\Φk [h|Zk] for the PPHD

filter. Since a Panjer process is a specific case of an i.i.d. cluster process, we

start from the CPHD result in (5.20e) with the additional assumptions presented

in Assumptions 5.1.1 stating that Φk|k−1 is a Panjer process described by intensity

µ\k|k−1 and parameters α\k|k−1 and β\k|k−1, the cardinality pmf is obtained with

ρ\k|k−1(n) =

(
−α\k|k−1

n

)(
1 +

1

β\k|k−1

)−α\
k|k−1

(
−1

β\k|k−1 + 1

)n

, (5.22)

and the false alarm process is also Panjer with spatial density c\fa,k and parameters

α\fa,k and β\fa,k.

The multiplying constant
∏

z∈Zk c
\
fa,k(z)

(
1 + (β\k|k−1)−1

)−α\
k|k−1 will be absorbed

by the sign of proportion after we expand ρ\k|k−1 in

∏
z∈Zk

c\fa,k(z)
∑
n
0

ρ\k|k−1(n)

min(|Zk|,n)∑
j=0

n!(|Zk| − j)!
(n− j)!

ρ\fa,k(|Zk| − j)
F φ
k [h]n−j

Fk[1]n

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)

∝
∑
n
0

min(|Zk|,n)∑
j=0

(
−α\k|k−1

n

)(
−1

1 + β\k|k−1

)n
n!(|Zk| − j)!

(n− j)!
F φ
k [h]n−j

Fk[1]n
ρ\fa,k(|Zk| − j)

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
, (5.23a)

next we expand the binomial coefficient using the identity of a falling factorial so

that n! cancel out in

=
∑
n
0

min(|Zk|,n)∑
j=0

(
−1

1 + β\k|k−1

)n
(−α\k|k−1)n↓

(n− j)!
F φ
k [h]n−j

Fk[1]n
(|Zk| − j)!ρ\fa,k(|Zk| − j)

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
, (5.23b)

73



5.2 Point process information from PHD filters

now we are going to eliminate the dependency on n by using
∑

n
0

(
m
n

)
xn = (1+x)m

and recognizing that (−α\k|k−1)n↓ = (−α\k|k−1 − j)(n−j)↓
(
(−α\k|k−1 − j)−j↓

)−1
which

yields

=

|Zk|∑
j=0

(
1 +

−F φ
k [h]

Fk[1](1 + β\k|k−1)

)−α\
k|k−1

−j
1

(−α\k|k−1 − j)−j↓

(
−1

Fk[1](1 + β\k|k−1)

)j

· (|Zk| − j)!ρ\fa,k(|Zk| − j)
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
(5.23c)

=

|Zk|∑
j=0

(α\k|k−1 + Fk[1]− F φ
k [h])−α

\
k|k−1

−j

(Fk[1](1 + β\k|k−1))−α
\
k|k−1

(−1)j

(−α− j)−j↓
(|Zk| − j)!ρ\fa,k(|Zk| − j)

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
, (5.23d)

next the proportion sign absorbs the constant (Fk[1](1 + β\k|k−1))α
\
k|k−1 , and we rely

on identities (x)−n↑ = 1
(x−n)n↑

and (x)n↑ = (−1)n(−x)n↓ to write

∝
|Zk|∑
j=0

(α\k|k−1)j↑

(α\k|k−1 + Fk[1]− F φ
k [h])α

\
k|k−1

+j
(|Zk| − j)!ρ\fa,k(|Zk| − j)

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
,

(5.23e)

now we finally expand ρ\fa,k to immediately absorb
(
1 + (β\fa,k)

−1
)−α\fa,k in the pro-

portion sign and expand the binomial coefficient what immediately cancels the term

(|Zk| − j)! and using the identity (x)−n↑ = 1
(x−n)n↑

we write

∝
|Zk|∑
j=0

(α\k|k−1)j↑

(α\k|k−1 + Fk[1]− F φ
k [h])α

\
k|k−1

+j

(α\fa,k)|Zk|−j

(β\fa,k + 1)|Zk|−j

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c\fa,k(z)
. (5.23f)

After substituting (5.23f) into (3.24), we cancel the multiplying constants ab-

sorbed in the development leading to (5.23f) which yields

G\Φk [h|Zk] =
Y \

0 [h](Zk)

Y \
0 [1](Zk)

, (5.24)

with Y \
0 defined in (5.11) for the PPHD filter.

Following from this, we need to obtain an expression of G[Φk [h|Zk] for the PHD
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filter. Since a Poisson process is a limit case of a Panjer process, we could start

from the PPHD result in (5.23f) and follow the development in [95]. However, we

shall use the fact that a Poisson process is a specific case of an i.i.d. cluster process,

and use the CPHD result in (5.20e) with the additional assumptions presented in

Assumptions 5.1.1 stating that Φk|k−1 is a Poisson process described by intensity

µ[k|k−1, so the cardinality pmf is obtained with

ρ[k|k−1(n) = e−µ
[
k|k−1

(X )
µ[k|k−1(X )n

n!
, (5.25)

and the false alarm process is also Poisson with spatial density c[fa,k and parameter

λ[fa,k.

∏
z∈Zk

c[fa,k(z)
∑
n
0

ρ[k|k−1(n)

min(|Zk|,n)∑
j=0

n!(|Zk| − j)!
(n− j)!

ρ[fa,k(|Zk| − j)
F φ
k [h]n−j

Fk[1]n

·
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c[fa,k(z)
(5.26a)

=
∏
z∈Zk

c[fa,k(z)
∑
n
0

min(|Zk|,n)∑
j=0

1

(n− j)!
(λ[fa,k)

|Zk|−jF φ
k [h]n−j ·

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c[fa,k(z)
(5.26b)

=
∏
z∈Zk

c[fa,k(z)

|Zk|∑
j=0

(∑
n
j

F φ
k [h]n−j

(n− j)!

)
(λ[fa,k)

|Zk|−j
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c[fa,k(z)
(5.26c)

=eF
φ
k [h]

∏
z∈Zk

c[fa,k(z)
∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

c[fa,k(z)

∏
z /∈Zk

λ[fa,kc
[
fa,k(z)

c[fa,k(z)
(5.26d)

=eF
φ
k [h]

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F z
k [h]

∏
z /∈Z

λ[fa,kc
[
fa,k(z) (5.26e)

=eF
φ
k [h]

∏
z∈Zk

(F z
k [h] + λ[fa,kc

[
fa,k(z)) (5.26f)

Substituting (5.26f) into (3.24) yields

G[Φk [h|Zk] =
Y [

0 [h](Zk)

Y [
0 [1](Zk)

, (5.27)

with Y [
0 defined in (5.10) for the PHD filter.
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5.2 Point process information from PHD filters

Finally, the similarity of (5.21), (5.24) and (5.27) leads to the desired result

when definitions in (5.13) are used for • ∈ {], \, [} corresponding, respectively, to

the CPHD filter, the PPHD filter, or the PHD filter.

5.2.2 Predictive point process

Next we obtain information describing the predicted process Φk+1|k in the considered

PHD filters.

Proposition 5.2.4 (Intensity prediction [67, 68, 95]). .

Under Assumptions 5.1.2, a probability hypothesis density function µk+1|k describing

the updated object process Φk+1|k is given by

µk+1|k(x) =µb
k+1(x) + µs

k+1(x) (5.28)

where µs
k+1 is the intensity of the process describing the surviving objects

µs
k+1(x) :=

∫
ps(x

′)π(x|x′)µk(x′)dx′, (5.29)

and µb
k+1 is the intensity of the newborn process Φb

k+1.

The general expression (5.28) of the predicted intensity µk+1|k is developed for

the PHD filter in [68], and adopted in the PPHD filter [95] and the CPHD filter

[67, 95].

Considering that information contained in νk of (5.15) is not maintained by the

filters (i.e. it is discarded and not propagated to next time step), its expression for

the predicted moment νk+1|k should be obtained additionally to usual µk+1|k.

Proposition 5.2.5 (Second factorial moment density prediction). .

Under Assumptions 5.1.1 and 5.1.2, a second-order factorial moment density νk+1|k

describing the updated object process Φk+1|k is given by

νk+1|k(x, x̄) =µb
k+1(x)µs

k+1(x̄) + µb
k+1(x̄)µs

k+1(x) + νb
k+1(x, x̄) + νs

k+1(x, x̄), (5.30)

where νs
k+1 is the second-order factorial moment of the process describing the sur-

viving objects

νs
k+1(x, x̄) :=`φ2 [1]

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µφk(x′)µφk(x̄′)d(x′, x̄′)

+ 2
∑
z∈Zk

`z2[1]

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µφk(x′)µzk(x̄

′)d(x′, x̄′)
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5.2 Point process information from PHD filters

+
∑
z,z̄∈Zk

`6=,z,z̄2 [1]

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µzk(x′)µz̄k(x̄′)d(x′, x̄′),

(5.31)

where the ` terms for time k are presented in Definition 5.1.6 such that `6=,z,z̄2 is

obtained as `
{z,z̄}
2 if z 6= z̄ and zero otherwise, and νb

k+1 is the second-order factorial

moment describing the newborn objects.

The proof related to the densities of the second-order factorial moment (5.30) is

given next.

Proof. Let us develop an expression of the second-order factorial moment density of

the predicted object process. According to [104, Eq. 4.3.4], the second-order factorial

moment can be obtained from the second-order non-factorial moment. The second-

order non-factorial moment of the predicted process can be obtained from [95] by

substituting [95, Eq. 58] and [95, Eq. 61] in [95, Eq. 53d]. Substituting this result

into [104, Eq. 4.3.4] leads to (5.30), where the density of the second-order moment

νs
k+1 describing the persisting objects in (5.30) is found to be2

νs
k+1(x, x̄) =

∫
π(x|x′)π(x̄|x̄′)νk(x′, x̄′)d(x′, x̄′), (5.32)

where νk is the density of the updated process. An explicit expression of density

νk simultaneously for the PHD, the PPHD and the CPHD filters in (5.15) when

substituted to (5.32) results into

νs
k+1(x, x̄) =

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µφk(x′)µφk(x̄′)`φ2 [1]d(x′, x̄′)

+

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µφk(x′)

∑
z∈Zk

µzk(x̄
′)`z2[1]d(x′, x̄′)

+

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)µφk(x̄′)

∑
z∈Zk

µzk(x
′)`z2[1]d(x′, x̄′)

+

∫
ps(x

′)ps(x̄
′)π(x|x′)π(x̄|x̄′)

∑
z,z̄∈Zk

µzk(x
′)µz̄k(x̄

′)`6=,z,z̄2 [1]d(x′, x̄′).

(5.33)

After bringing the sums outside of the respective integrals in (5.33), the resulting

expression can is used in (5.30) which yields the desired result.

2This possibility was first outlined in [75].

77



5.3 Optimal solutions for the sum query

Proposition 5.2.6 (P.g.fl. prediction [25, 67, 95]). .

Under Assumptions 5.1.1 and 5.1.2, a p.g.fl. Gk+1|k of the predicted object process

Φk+1|k is given by

Gk+1|k(h|Zk) = Gb
k+1(h)`φ0 [Gs(h)], (5.34)

for a test function h : X → [0, 1], where the `-term for time k is defined in (5.13),

and Gb
k+1 is the p.g.fl. of the newborn process Φb

k+1.

Proof. As described in [95], the p.g.fl. of the predicted object process is expressed

in the form

Gk+1|k(h) = Gb
k+1(h)Gk(Gs(h|·)), (5.35)

where the multiplicative structure is due to independence of the newborn objects and

those surviving from the previous time step; and the composition appears because

the survival process applies to each preexisting object described by the updated

object process Φk from the previous time step. Substituting the p.g.fl. of the birth

process as defined in Assumptions 5.1.2 and the p.g.fl of the updated process (5.16)

to (5.35) yields the desired result.

5.3 Optimal solutions for the sum query

The rest of the chapter is concerned with constructing Bayesian solutions to a num-

ber of problems using point process information obtained from various moment-

approximation filters. At arbitrary time k > 0 for a compatible loss function, a

Bayesian solution is given by a tuple (ak, ρk) of the Bayes action ak (which is the

optimal decision) and the Bayes expected loss ρk (which is the optimised value of

quality associated with the optimal decision). We are going to develop expressions of

(ak, ρk) using process information inferred using PHD filters: for an updated process

Φk and for a predicted process Φk+1|k.

5.3.1 Updated point process

Now we obtain the Bayesian solution of a decision problem associated with loss

function LΣ for an updated (posterior) process Φk.
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5.3 Optimal solutions for the sum query

Theorem 5.3.1 (Posterior Bayesian solution for LΣ). .

For an updated process Φk obtained from a filter under Assumptions 5.1.1 and the

loss function LΣ in (4.11), the Bayesian solution (aΣ,k, ρΣ,k) is given by

aΣ,k =K(F φ
k [m]`φ1 [1] +

∑
z∈Zk

F z
k [m]`z1[1]) + C, (5.36)

ρΣ,k =K2

(
F φ
k [m2]`φ1 [1] +

∑
z∈Zk

F z
k [m2]`z1[1] + F φ

k [m]2
[
`φ2 [1]− `φ1 [1]2

]
+ 2F φ

k [m]
∑
z∈Zk

F z
k [m]

[
`z2[1]− `φ1 [1]`z1[1]

]
+
∑
z,z̄∈Zk

F z
k [m]F z̄

k [m]
[
`6=,z,z̄2 [1]− `z1[1]`z̄1[1]

])
, (5.37)

where the ` terms for time k are presented in Definition 5.1.6 such that `6=,z,z̄2 is

obtained as `
{z,z̄}
2 if z 6= z̄ and zero otherwise.

For the classic PHD filter, expression analogous to (5.36) was first presented

in [69], and expression analogous to (5.37) was first presented in [76]. Expressions

(5.36) and (5.37) are novel results when considered for the PPHD and the CPHD

filters. The proof is given next.

Proof. Let us obtain expressions of the Bayesian solution (aΣ,k, ρΣ,k) for the updated

object process Φk and loss LΣ. This is done by substituting the process statistics

(µk, νk) exposed in Propositions 5.2.1 and 5.2.2 to the Bayesian solution given in

Theorem 4.2.4.

We now obtain an expression for the Bayes action aΣ,k. Substituting (5.14) to

(4.14) gives

aΣ,k =K

(∫
m(x)µφk(x)`φ1 [1]dx+

∫
m(x)

∑
z∈Zk

µzk(x)`z1[1]dx

)
+ C, (5.38)

this, after bringing the sum outside of the integral, yields the desired result in (5.36)

when notations F φ and F z given respectively in (5.4) and (5.5) are used.

Next we focus on the Bayes expected loss ρΣ,k for the updated process Φk and

loss LΣ. Substituting (5.14) and (5.15) to (4.15) yields

ρΣ,k =K2

(∫
m(x)2µφk(x)`φ1 [1X ]dx+

∫
m(x)2

∑
z∈Zk

µzk(x)`z1[1]dx

+

∫
m(x)m(x̄)µφk(x)µφk(x̄)`φ2 [1]d(x, x̄)
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5.3 Optimal solutions for the sum query

+ 2

∫
m(x)m(x̄)µφk(x)

∑
z∈Zk

µzk(x̄)`z2[1]d(x, x̄)

+

∫
m(x)m(x̄)

∑
z,z̄∈Zk

µzk(x)µz̄k(x̄)`6=,z,z̄2 [1]d(x, x̄)

−
∫
m(x)m(x̄)µφk(x)µφk(x̄)`φ1 [1]2d(x, x̄)

− 2

∫
m(x)m(x̄)µφk(x)`φ1 [1]

∑
z∈Zk

µzk(x̄)`z1[1]d(x, x̄)

−
∫
m(x)m(x̄)

∑
z,z̄∈Zk

µzk(x)`z1[1]µz̄k(x̄)`z̄1[1]d(x, x̄)

)
. (5.39)

Substituting (5.4) and (5.5) into (5.39) yields the desired result in (5.37).

5.3.2 Predictive point process

The Bayesian solution of a decision problem associated with loss function LΣ for a

predicted process Φk+1|k is presented next.

Corollary 5.3.2 (Predictive Bayesian solution for LΣ). .

For a predicted process Φk+1|k obtained from a filter under Assumptions 5.1.1 and

5.1.2 and the loss function LΣ in (4.11), the Bayesian solution (aΣ,k+1|k, ρΣ,k+1|k) is

given by

aΣ,k+1|k =as
Σ,k+1 + ab

Σ,k+1 − C, (5.40)

ρΣ,k+1|k =ρs
Σ,k+1 + ρb

Σ,k+1, (5.41)

where (as
Σ,k+1, ρ

s
Σ,k+1) is a solution corresponding to the persisting objects that is

obtained from the updated process Φk using G1
s in (5.9) so that

as
Σ,k+1 =K

(
F φ
k [G1

s (m)]`φ1 [1] +
∑
z∈Zk

F z
k [G1

s (m)]`z1[1]

)
+ C, (5.42)

ρs
Σ,k+1 =K2

(
F φ
k [G1

s (m)2]`φ1 [1] +
∑
z∈Zk

F z
k [G1

s (m)2]`z1[1] + F φ
k [G1

s (m)]2
[
`φ2 [1]− `φ1 [1]2

]
+ 2F φ

k [G1
s (m)]

∑
z∈Zk

F z
k [G1

s (m)]
[
`z2[1]− `φ1 [1]`z1[1]

]
+
∑
z,z̄∈Zk

F z
k [G1

s (m)]F z̄[G1
s (m)]

[
` 6=,z,z̄2 [1]− `z1[1]`z̄1[1]

])
, (5.43)

where the ` terms for time k are presented in Definition 5.1.6 such that `6=,z,z̄2 is
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5.4 Optimal solutions for the product query

obtained as `
{z,z̄}
2 if z 6= z̄ and zero otherwise, and (ab

Σ,k+1, ρ
b
Σ,k+1) is a solution

corresponding to the newborn objects

ab
Σ,k+1 = KF b

k+1[m] + C; (5.44)

ρb
Σ,k+1 = K2

(
F b
k+1[m2]− F b

k+1[m]2 +Qb
k+1[m]

)
, (5.45)

where for time k + 1 the F -term is defined in (5.6), and the Q-term is defined in

(5.7).

Proof. The proof is analogous to the one of Theorem 5.3.1 and obtained by substi-

tuting process statistics (µk+1|k, νk+1|k) presented in (5.28) and (5.30), respectively,

to (4.14) to obtain the Bayes action and to (4.15) to obtain the Bayes expected loss.

The terms corresponding to the birth process in (5.28) and (5.30) are then simply

expressed using (5.6) and (5.7).

5.4 Optimal solutions for the product query

5.4.1 Updated point process

Now we obtain the Bayesian solution of a decision problem associated with loss

function LΠ for an updated (posterior) process Φk.

Theorem 5.4.1 (Posterior Bayesian solution for LΠ). .

For an updated process Φk obtained from a filter under Assumptions 5.1.1 and the

loss function LΠ in (4.30), the Bayesian solution (aΠ,k, ρΠ,k) is given by

aΠ,k = K`φ0 [m] + C, (5.46)

ρΠ,k = K2
(
`φ0 [m2]− `φ0 [m]2

)
, (5.47)

where the ` terms for time k are presented in Definition 5.1.6.

Proof. Definition of a p.g.fl. in (5.16) when substituted to (4.31) yields an expression

of the Bayes action, and when substituted to (4.32) yields an expression of the Bayes

expected loss.

5.4.2 Predictive point process

The Bayesian solution of a decision problem associated with loss function LΠ for a

predicted process Φk+1|k is presented next.
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5.5 Summary

Corollary 5.4.2 (Predictive Bayesian solution for LΠ). .

For a predicted process Φk+1|k obtained from a filter under Assumptions 5.1.1 and

5.1.2 and the loss function LΠ in in (4.30), the Bayesian solution (aΠ,k+1|k, ρΠ,k+1|k)

is given by

aΠ,k+1|k =KGb
k+1(m)`φ0 [Gs(m)] + C, (5.48)

ρΠ,k+1|k =K2
(
Gb
k+1(m2)`φ0 [Gs(m)2]− Gb

k+1(m)2`φ0 [Gs(m)]2
)
, (5.49)

where the ` terms for time k are presented in Definition 5.1.6.

Proof. The proof simply follows from Proposition 4.3.8 that presents the solution

for superimposed point processes.

5.5 Summary

In this chapter we aimed to implement certain optimal Bayesian solutions developed

in Chapter 4 using information from filters for spatial point processes, namely, the

classical Probability Hypothesis Density (PHD) filter, the Panjer PHD (PPHD) fil-

ter, and the Cardinalized PHD (CPHD) filter. However, we found that these filters

are not sufficiently ’informative’ in their standard implementation to construct the

sought expressions directly. Nevertheless, it was shown that the missing quantities

describing the object process in a considered filter can be extracted from the data

update step using tools of the point process theory. We were able to extract quan-

tities describing updated and predicted object processes; specifically, the densities

of lower-order moments and p.g.fl.s. Ultimately, due to the recursive nature of the

algorithms we produced two sets of solutions: one for the moment of time right after

the available evidence has been incorporated, and another for the predicted moment

of time, before any new evidence becomes available.
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Chapter 6

Simulated decision making with

the SMC-PHD filter

T
his chapter simulates probabilistic decision making with Probability Hypothe-

sis Density (PHD) filters. We are going to implement the approach developed

in Chapter 5 and compare its performance to that of conventional approach. It will

be shown that the developed algorithms, on top of their theoretical soundness, equip

optimal decisions with indicators of their quality and have a capacity to provide im-

provements in performance. The demonstration will be primarily focused on the the

classical PHD filter, and results for the CPHD filter will be provided for comparison.

The content of this chapter as follows. In Section 6.1 we present the Sequential

Monte Carlo (SMC) PHD filter as a mean to describe uncertainty in the environ-

ment.1. In Section 6.2 we present in parallel various decision making approaches: the

one operating under certainty in Subsection 6.2.1; and two probabilistic algorithms:

one operating under assumed certainty equivalence in Subsection 6.2.2 and one op-

erating under uncertainty in Subsection 6.2.3. Section 6.3 assembles three practical

query functions, including models of risk developed in Appendix A.3. Finally, in

Section 6.4 we perform simulations to evaluate the performance of the algorithms.

Section 6.5 provides summary.

1This means that as of now we are not going to address filter implementations using Gaussian
Mixtures [107]. Furthermore, we leave out decision implementation of the PPHD and the CPHD
filters despite being obtained in Chapter 5, and despite selected results obtained with the CPHD
are presented in this chapter.
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6.1 State uncertainty with the SMC-PHD filter

6.1 State uncertainty with the SMC-PHD filter

In practice the state of environment, or world, is often unknown. Instead, the

decision-maker maintains a belief about uncertain aspects of environment inferred

from collected observations. A possibility is that the belief is maintained and recur-

sively updated by a Bayesian filter.

In this thesis chapter we are focused on the PHD filter, and its Sequential Monte

Carlo (SMC) implementation presented below. SMC implementation is particularly

suitable for handling non-linear phenomena, which comes at considerable compu-

tational costs. We offer a revised presentation from [108], which omits the step of

’state extraction’ (it is interpreted as an integral part of the conventional decision

making algorithm described in Subsection 6.2.2).

The filter operates in the circumstances where the number of objects is unknown

and time-varying. Recursive equations of the PHD filter are given in Proposition

3.4.1 and restated here for convenience

µk|k−1(x) = µbk(x) +

∫
ps(x

′)π(x|x′)µk|k−1(x′)dx′, (6.1)

µk(x) = µφk|k−1(x) +
∑
z∈Zk

µzk|k−1(x)∫
µzk|k−1(x)dx+ κfa,k(z)

. (6.2)

The objects are described on the population state space X =
⋃
n>0X n with

individual states on X . Here X ⊂ Rdx denotes the dx-dimensional state space

describing the state of an individual object. Specifically, the state of an object is

represented by a vector

x = [x, ẋ, y, ẏ]T , (6.3)

where position of the object is denoted by [x, y]T and velocity is [ẋ, ẏ]T . Movement

of an individual object is modelled by a nearly constant velocity (CV) model

π(x|x′) = N (x;Fx′ + µw,Σw), (6.4)

with additive zero-mean white Gaussian process noise described by its mean and

covariance matrix

µw = O4×1, Σw = I2 ⊗

[
∆t3/3 ∆t2/2

∆t2/2 ∆t

]
σ2
w, (6.5)

where σw is the standard deviation of velocity increments. The transition matrix F

84



6.1 State uncertainty with the SMC-PHD filter

is given by

F = I2 ⊗

[
1 ∆t

0 1

]
, (6.6)

where I2 is an identity matrix with dimensions 2 × 2, ⊗ is the Kronecker product,

and ∆t is the sampling interval.

The objects arrive spontaneously according to a Poisson point process with rate

λb and intensity µb given by

µb(x) = λbN (x;xb,Σb), (6.7)

with Gaussian spatial density described by its mean xb and covariance Σb:

xb =


xb

ẋb

yb

ẏb

 , Σb =


σxbxb

0 0 0

0 σẋbẋb
0 0

0 0 σybyb
0

0 0 0 σẏbẏb

 , (6.8)

The probability of survival of an individual object is given by ps.

Information about objects is collected by a single radar-like sensor in state

xs = [xs, ẋs, ys, ẏs]
T (6.9)

which measures range and bearing of individual objects. The measurement likeli-

hood is given by

g(z|x) = N (z;h(x) + µv,Σv), (6.10)

with measurement vector

h(x) =

[
r(x, xs)

b(x, xs)

]
, (6.11)

where range and bearing measurements for an object in state x are modelled as

r(x, xs) =
√

(x− xs)2 + (y − ys)2, (6.12)

b(x, xs) = atan2

(
x− xs
y − ys

)
, (6.13)

with additive zero-mean white Gaussian noise described by its mean µv the covari-
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ance matrix Σv:

µν = O2×1, Σv =

[
σ2
r σrσb

σbσr σ2
b

]
, (6.14)

where σr and σb are standard deviations in range and bearing, respectively. These

measurements are immersed in false alarms described with intensity κfa(z) = λfacfa(z).

SMC-PHD implementation of the time update step of Equation (6.1) is presented

in Algorithm 6.1, and of the data update step in (6.2) is presented in Algorithm

6.2. Implementation is focused on the propagation of a limited number of particles

describing the filtering intensity, where at time step k, Nb,k is the number of birth

particles, and Nk−1 is the number of particles used to describe the intensity of the

posterior process. In the simulation, the number of birth particles will be set to

1000 per expected target (and overall no less than 1000); the number of particles to

describe the posterior intensity is set to 1000 per target.

Algorithm 6.1: Prediction step (time update)

Input:

Posterior intensity: {w(i)
k−1, x

(i)
k−1}

Nk−1

i=1

Newborn intensity: {w(i)
b,k, x

(i)
b,k}

Nb,k
i=1

1 Survival process

2 for 1 6 i 6 Nk−1 do

3 w
(i)
k|k−1 ← ps(x

(i)
k−1)w

(i)
k−1 // Update particle weights

v
(i)
k−1 ← N (µw,Σw)

x
(i)
k|k−1 ← Fx

(i)
k−1 + v

(i)
k−1 // Propagate particles

4 end

5 Newborn process

6 for 1 6 j 6 Nb,k do

7 x
(j)
b,k ← N (xb,Σb)

8 w
(j)
b,k = λb/Nb,k

9 {w(Nk−1+j)

k|k−1 , x
(Nk−1+j)

k|k−1 } ← {w(j)
b,k, x

(j)
b,k} // Append birth particle

10 end

11 Nk|k−1 ← Nk−1 +Nb,k

Output:

Predicted intensity: {w(i)
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1
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Algorithm 6.2: Update step (data update) with extra outputs

Input:

Predicted intensity: {w(i)
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1

Current measurements: Zk

1 Missed detection and measurement components

2 for 1 6 i 6 Nk|k−1 do

3 w
(i),φ
k|k−1 ← (1− pd,k(x

(i)
k|k−1))w

(i)
k|k−1 // Missed detection components

4 for z ∈ Zk do

5 w
(i),z
k|k−1 ← g(z|x(i)

k|k−1)pd,k(x
(i)
k|k−1)w

(i)
k|k−1 // Measurement components

6 end

7 end

8 Data update

9 for 1 6 i 6 Nk|k−1 do

10 for z ∈ Zk do

11 w̄
(i),z
k|k−1 ←

w
(i),z
k|k−1∑

1≤i′≤Nk|k−1
w

(i′),z
k|k−1

+κfa,k(z)
// Normalize contributions

12 end

13 w
(i)
k ← w

(i),φ
k|k−1 +

∑
z∈Z w̄

(i),z
k|k−1 // Update particle weights

14 x
(i)
k ← x

(i)
k|k−1

15 Nk ← Nk|k−1

16 end

Output:

Updated intensity: {w(i)
k , x

(i)
k }

Nk
i=1

Missed detection component: {w(i),φ
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1

Measurements components: {{w(i),z
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1 }z∈Zk

6.2 Algorithmic implementations

In this section we are going to expose specific decision-making algorithms that will

be later used for simulations. Conceptually, these algorithms correspond to three

different decision making strategies first outlined in Section 1.1:

• decision making under uncertainty (UC);

• decision making under assumed certainty equivalence (CE);

• decision making under certainty (UU).
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The idea behind is that decisions produced under certainty are required to es-

tablish how good are the decisions produced by the algorithms operating in non-

deterministic conditions. At the same time, decisions produced under assumed

certainty equivalence (which is the state of the art strategy), are required in order

to establish in what way decision making under uncertainty advances the state of

the art.

In the following we will demonstrate how these strategies are to be implemented

for the update step of the SMC-PHD filter.

6.2.1 Decision making under certainty (UC)

Decision making under certainty is characterised by the fact the state of environment

is directly accessible by the decision-maker and that each action “is known to lead

invariably to a specific outcome” [66, p. 13]. Such conditions are covered by the

minimum loss principle stated in Proposition 1.1.4. Accordingly, this is simply an

optimisation problem for the considered overall loss function.

Although eventually we are going to be focused on specific loss functions defined

in Chapter 4, the loss considered in this subsection is the square error-in-answer loss

(4.1), which permits any arbitrary real-valued query (beyond the sum (4.10) and

the product (4.29) query functions). As a consequence, the solution is unnecessarily

more general, but the presentation is more compact.

Theorem 6.2.1 (UC solution for an arbitrary real-valued query). When in envi-

ronment ϕk ∈ X, a decision-maker with squared error-in-answer loss (4.1) following

the ML principle in Proposition 1.1.4 reports (aUCR,k , ρ
UC
R,k) where answer is

aUCR,k = qR(ϕk), (6.15)

that corresponds to the optimised loss value

ρUCR,k = Lsq(aUCR,k , ϕk) (6.16)

= 0. (6.17)

Proof. Let us consider a function f coinciding with the loss (4.1) and given by

f(a) = Lsq(a, ϕk) (6.18a)

= (a− qR(ϕk))
2. (6.18b)

An extremum of the function f in point a is found as f ′(a) = 0. The first
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derivative is found to be

f ′(a) = 2(a− qR(ϕk)), (6.19)

which gives us the extremum for

a = qR(ϕk). (6.20)

This point is a minimum if f ′′(a) > 0, and this is true since f ′′(a) = 2.

The clairvoyant answers (aUCR,k , 0) can be obtained at each time step using Algo-

rithm 6.3 thanks to the ground truth state available in the simulation.

Algorithm 6.3: UC solution for an arbitrary real-valued query function

Input:
Ground truth state: ϕk

1 Compute the proposed answer
2 aUCR,k ← qR(ϕk) // Query function

3 ρUCR,k ← 0 // Overall loss

Output:
Proposed answer: aUCR,k // Clairvoyant answer

Quality indicator: ρUCR,k = 0 // Actual loss

Finally, it could be argued that there was no need to address the optimisation

problem, and one could instead simply use a query function to generate ideal an-

swers. However, this approach would not take any additional information that might

be present in the query loss function into account. For example, the query loss func-

tion carries information about the minimum attainable loss, which may differ from

the commonly set value of 0 for an arbitrary query loss. Furthermore, such presen-

tation reinforces the fact that the same overall loss function is used across different

decision making strategies.

6.2.2 Decision making under assumed certainty

equivalence (CE)

Decision making under assumed certainty equivalence is a sub-optimal that aims

to replicate the simplicity of decision making under certainty, while operating in

the conditions of uncertainty. Effectively, it is a combination of two algorithm: an

algorithm that produces a summary of the uncertain state of the world, and an
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algorithm for decision making under certainty as in Proposition (1.1.4). Note that

this is a conventional strategy in the context of Bayesian filtering.

How does one produces a state summary with the SMC-PHD filter? As discussed

in Chapter 3, there exists no tractable procedure to produce an optimal state esti-

mate. Instead, heuristics, such as k-means, and expectation-maximization (EM) are

employed to extract the state from the updated intensity. In this implementation we

use the k-means algorithm, as it appears to provide more accurate estimates when

used for state extraction in the PHD filter [22]. A variation of k-means clustering

algorithm is presented in Algorithm 6.4, whereas the final implementation is after

[108].

Theorem 6.2.2 (CE solution for an arbitrary real-valued query). In uncertain

environment described in the PHD filter by the point process Φk, a decision-maker

with the loss function Lsq (4.1) following Proposition 1.1.7, summarizes Φk by ϕ̃k

(Algorithm 6.4) and reports the answer (aCER,k , ρ
CE
R,k) as prescribed by UC solution

(6.15) with

aCER,k = qR(ϕ̃k), (6.21)

that corresponds to the optimized loss value

ρCER,k = Lsq(aCER,k , ϕ̃k) (6.22a)

= 0. (6.22b)

Note that the answers produced by this algorithm are associated with loss values

0, which is only true when the certainty equivalence holds.

A pseudocode for the solution in Theorem 6.2.2 is given in Algorithm 6.5.
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Algorithm 6.4: k-means clustering (adapted from [22])

Input:

Approximate objects number: k

Particle states: {x(i)
k }

Nk
i=1

1 Step 0. (Initialisation)

2 j ← 1

3 for 1 6 n 6 k do

4 q ← U{1, Nk} // Draw a random number

5 m
(j)
k,n ← x

(q)
k

6 end

7 ∆ = ε

8 while ∆ > ε do

9 j ← j + 1

10 for 1 6 n 6 k do

11 Step 1. (Partition)

12 P
(j)
k,n = {x ∈ {x(i)

k }
Nk
i=1 :

∥∥∥x−m(j−1)
k,n

∥∥∥2

6
∥∥∥x−m(j−1)

k,n′

∥∥∥2

∀n′, 1 6 n′ 6 k}

13 Step 2. (Recalculate centres)

14 m
(j)
k,n = 1∣∣∣P (j)

k,n

∣∣∣
∑

x∈P (j)
k,n
x

15 end

16 ∆←
∣∣∣∑Nk

i=1

∑k
n=1

∥∥∥x(i)
k −m

(j)
k,n

∥∥∥−∑Nk
i=1

∑k
n=1

∥∥∥x(i)
k −m

(j−1)
k,n

∥∥∥∣∣∣
17 end

18 Step 3. (Calculate covariances of partitions)

19 for 1 6 n 6 k do

20 Sk,n ← cov(P
(j)
k,n)

21 end

22 ϕ̃k ← {m(j)
k,n}kn=1

Output:

Means and covariances: {(m(j)
k,n, Sk,n)}kn=1

State summary: ϕ̃k

6.2.3 Decision making under uncertainty (UU)

Decision making under uncertainty is a Bayes-optimal approach that faithfully im-

plements the principle of minimum expected loss in Proposition 1.2.2. Its usual

complexity is partially alleviated in solutions obtained in Chapters 4 and 5 due to

the favourable properties of the employed squared error query loss, and just a limited
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set of real-valued query functions.

To simplify the presentation of solutions corresponding to the PHD filter, we

restate the F -terms introduced in Subsection 5.1.2 defined for any z ∈ Zk as

F z
k [m] =

∫
m(x)µzk|k−1(x)dx, (6.23)

F φ
k [m] =

∫
m(x)µφk|k−1(x)dx. (6.24)

Theorem 6.2.3 (UU solution for the sum query). In uncertain environment de-

scribed by the PHD filter with point process Φk, a decision-maker with the loss func-

tion Lsq (4.1) and the sum query qΣ (4.10) reports (aUUΣ,k, ρ
UU
Σ,k) answer

aUUΣ,k =K

[
F φ
k [mk] +

∑
z∈Zk

F z
k [mk]

F z
k [1] + κfa,k(z)

]
+ C, (6.25)

that corresponds to the optimized expected loss value

ρUUΣ,k =K2

[
F φ
k [m2

k] +
∑
z∈Zk

[
F z
k [m2

k]

F z
k [1] + κfa,k(z)

−
(

F z
k [mk]

F z
k [1] + κfa,k(z)

)2
]]
. (6.26)

Proof. The result follows from Theorem 5.3.1 under Assumptions 5.1.1 for the PHD

filter.

Theorem 6.2.4 (UU solution for the product query). In uncertain environment

described by the PHD filter with point process Φk, a decision-maker with the loss

function Lsq (4.1) and the product query qΠ (4.29) reports (aUUΠ,k, ρ
UU
Π,k) answer

aUUΠ,k =K
eF

φ
k [mk]

eF
φ
k [1]

∏
z∈Zk

F z
k [mk] + κfa,k(z)

F z
k [1] + κfa,k(z)

+ C, (6.27)

that corresponds to the optimized expected loss value

ρUUΠ,k =K2

[
eF

φ
k [m2

k]

eF
φ
k [1]

∏
z∈Zk

F z
k [m2

k] + κfa,k(z)

F z
k [1] + κfa,k(z)

−
(
eF

φ
k [mk]

eF
φ
k [1]

∏
z∈Zk

F z
k [mk] + κfa,k(z)

F z
k [1] + κfa,k(z)

)2
]
.

(6.28)

Proof. The result follows from Theorem 5.4.1 under Assumptions 5.1.1 for the PHD

filter.

Pseudocode implementing solutions in Theorems 6.2.3 and 6.2.4 are given re-
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spectively in Algorithms 6.6 and 6.7. Note that implementations do not rely on the

updated intensity in the filter (as in k-means clustering of the assumed certainty

equivalent approach), but on the extra terms extracted from the update step in

Algorithm 6.2.

6.3 Practical query functions: total cardinality,

sigma-risk, and pi-risk

Algorithmic solutions outlined in Section 6.2 offer a possibility of using the SMC-

PHD filter in probabilistic decision making for specific real-valued query functions.

When the query loss is modelled by a square error function, the optimal answer is

given by the mean value of the query answer, and the value of associated expected

loss is the variance around this mean. To be truly useful, these query functions

should communicate specific practical queries that are found in the operation of

real-life systems observing object populations.

The first query function is related to counting the total number of objects in the

whole region. In principle, this is equivalent to setting B = X in Definition 3.5.4.

It is a straightforward function, and presented here for the sake of completeness.

Definition 6.3.1 (Total cardinality). Total cardinality is a degenerate case of the

sum query qΣ in (4.10) with C = 0, K = 1, and m(·) = 1X (·), and is written as

qΣX (ϕ) :=
∑
x∈ϕ

1X (x) (6.29)

where 1X : X → {0, 1} is an indicator function defined over a single object state

space X .

Other considered query functions emerge from the defence context and are fo-

cused on a model of operational risk. Specifically, in Appendix A.3 we develop

custom models of risk as perceived by an asset in state xA from a group of threat-

ening objects. The object states ϕ are pulled into the model as detonation points

for some weapons capable of producing impact on a distance. For each object, the

probability that the object will damage the asset is modelled by a threat function

τ : X ×X → [0, 1]. Specifically, we are going to focus on the Gaussian functions, as

presented in Appendix A.2. Furthermore, assumed is the worst-case situation when

weapons detonate simultaneously.

The risk model is constructed such that each weapon is ascribed with a damaging

capacity of subtracting a certain fixed value d > 0 from the asset’s total value
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Algorithm 6.5: CE solution for an arbitrary real-valued query

Input:
Updated intensity: {w(i)

k , x
(i)
k }

Nk
i=1

1 Obtain approximate object number

2 k =
⌊∑

16i6Nk
w

(i)
k

⌋
3 Extract the state summary ϕ̃k from k and {x(i)

k }
Nk
i=1 with k-means

clustering in Algorithm 6.4
4 Compute the proposed answer
5 aCER,k ← qR(ϕ̃k) // Query function

6 ρCER,k ← 0 // Overall loss

Output:
Proposed answer: aCER,k // Sub-optimal

Quality indicator: ρCER,k = 0 // Assumed loss

Algorithm 6.6: UU solution for the sum query

Input:

Missed detection components: {w(i),φ
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1

Measurement components: {{w(i),z
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1 }z∈Zk
1 F-terms for missed detections and measurements

2 F φ
k [mk]←

∑
16i6Nk|k−1

mk(x
(i)
k|k−1)w

(i),φ
k|k−1

3 F φ
k [m2

k]←
∑

16i6Nk|k−1
mk(x

(i)
k|k−1)2w

(i),φ
k|k−1

4 for z ∈ Zk do

5 F z
k [1]←

∑
16i6Nk|k−1

w
(i),z
k|k−1

6 F z
k [mk]←

∑
16i6Nk|k−1

mk(x
(i)
k|k−1)w

(i),z
k|k−1

7 F z
k [m2

k]←
∑

16i6Nk|k−1
mk(x

(i)
k|k−1)2w

(i),z
k|k−1

8 end
9 Compute optimal Bayesian solution

10 aUUΣ,k ← K
[
F φ
k [mk] +

∑
z∈Zk

F zk [mk]

F zk [1]+κfa,k(z)

]
+ C

11 ρUUΣ,k ← K2
[
F φ
k [m2

k] +
∑

z∈Zk

[
F zk [m2

k]

F zk [1]+κfa,k(z)
−
(

F zk [mk]

F zk [1]+κfa,k(z)

)2]]
Output:
Proposed answer: aUUΣ,k // Bayes-optimal

Quality indicator: ρUUΣ,k // Bayes expected loss
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Algorithm 6.7: UU solution for the product query

Input:

Missed detection components: {w(i),φ
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1

Measurement components: {{w(i),z
k|k−1, x

(i)
k|k−1}

Nk|k−1

i=1 }z∈Zk
1 F-terms for missed detections and measurements

2 F φ
k [1]←

∑
16i6Nk|k−1

w
(i),φ
k|k−1

3 F φ
k [mk]←

∑
16i6Nk|k−1

mk(x
(i)
k|k−1)w

(i),φ
k|k−1

4 F φ
k [m2

k]←
∑

16i6Nk|k−1
mk(x

(i)
k|k−1)2w

(i),φ
k|k−1

5 for z ∈ Zk do

6 F z
k [1]←

∑
16i6Nk|k−1

w
(i),z
k|k−1

7 F z
k [mk]←

∑
16i6Nk|k−1

mk(x
(i)
k|k−1)w

(i),z
k|k−1

8 F z
k [m2

k]←
∑

16i6Nk|k−1
mk(x

(i)
k|k−1)2w

(i),z
k|k−1

9 end
10 Compute optimal Bayesian solution

11 aUUΠ,k ← K e
F
φ
k

[mk]

e
F
φ
k

[1]

∏
z∈Zk

F zk [mk]+κfa,k(z)

F zk [1]+κfa,k(z)
+ C

12 ρUUΠ,k ← K2

[
e
F
φ
k

[m2
k]

e
F
φ
k

[1]

∏
z∈Zk

F zk [m2
k]+κfa,k(z)

F zk [1]+κfa,k(z)
−
(
e
F
φ
k

[mk]

e
F
φ
k

[1]

∏
z∈Zk

F zk [mk]+κfa,k(z)

F zk [1]+κfa,k(z)

)2]
Output:
Proposed answer: aUUΠ,k // Bayes-optimal

Expected loss: ρUUΠ,k // Bayes expected loss
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VA > 0. The total expected damage induced by a group of weapons in state ϕ is

the manifestation of risk, as described in Appendix A.3. Unfortunately, a general

expression (A.11d) of risk for arbitrary values of VA and d cannot be implemented

using neither the sum nor the product queries. However, under certain relation

between VA and d, the general expression can be reduced to forms compatible with

the query functions.

The first risk-focused query implements the risk model in (A.13) corresponding

to condition VA ≥ n · d for any n ∈ N, where it is assumed that the produced

damage can never exhaust the diminishing asset value. The second risk-focused

query implements the risk model in (A.15) corresponding to condition VA < d,

where it is assumed that a single successful hit is sufficient to completely eliminate

the asset value.

Definition 6.3.2 (Sigma-risk). Sigma-risk is a query function which is obtained

from the sum query in (4.10) by setting C = 0, K = d, and m(·) = τ(·, xA), and is

written as

qrΣ(ϕ) := d
∑
x∈ϕ

τ(x, xA) (6.30)

where d is the damaging capacity of a weapon.

Definition 6.3.3 (Pi-risk). Pi-risk is a query function which is obtained from the

product query in (4.29) by setting C = VA, K = −VA, m(·) = 1 − τ(·, xA), and is

written as

qrΠ(ϕ) := VA

[
1−

∏
x∈ϕ

[
1− τ(x, xA)

]]
(6.31)

where VA is the diminishing asset value.

6.4 Simulated problems

In this section we analyse performance of the probabilistic algorithms using sim-

ulated data. We are interested to contrast performance of the proposed optimal

approach (for decision making under uncertainty) to that of the conventional sub-

optimal approach (for decision making under certainty equivalence). Primarily, the

focus will be on the application of the PHD filter for data processing, but some

results will be presented for the CPHD filter. Note, however, that implementation

details for the SMC-CPHD filter are omitted from this thesis.
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All analysis is based on the same underlying ground truth scenario presented in

in Section 6.4.1, which involves a time-varying number of dynamic objects. This

ground truth is initially used to determine clairvoyant answers for the problems

introduced in Section 6.3. Then, in Section 6.4.3, it is used to simulate sensor data

and perform Monte Carlo analysis.

6.4.1 Ground truth scenario

At the core of the simulation is the scenario, which is a recorded sequence of states

occupied by an evolving object population over a specified number of time steps.

The scenario lasts for T = 50 time steps with the sampling interval ∆t = 1 s. In the

ground truth, objects arrive at time step [10, 20, 30, 40] with states sampled from a

Gaussian distribution described with

xb =


500

0

500

0

 , Σb =


5× 104 0 0 0

0 0 0 0

0 0 5× 104 0

0 0 0 0

 , (6.32)

and velocity vectors are then corrected to be oriented towards the mean location,

with absolute values of 10m s−1. In the filter they are described as arriving according

to a Poisson point process (6.7) with rate λb = 0.1. Each object moves according

to the linear dynamics (6.4) and (slight) additive Gaussian zero mean process noise

σw = 0.5. Position ground truth over 50 time steps is displayed in Figure 6.1. Figure

6.2 plots the individual x and y components of each object against time.

The ground truth will enter the simulations in two distinct ways. Firstly, it will

be used to generate ideal, or clairvoyant, answers by the algorithm operating under

certainty that is given in Algorithm 6.3. Secondly, it will be used to generate noisy

sensor observations, which are processed by the update step of the SMC-PHD filter

given in Algorithm 6.2.
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Figure 6.1: Ground truth: position plots of 5 object tracks superimposed over 50
time steps. The asset xA is located in [500, 500]T , and the sensor xs is located at
the origin.
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Figure 6.2: Ground truth: plots of position components, x and y, of the 4 true
object tracks against time, showing the different start times.

6.4.2 Deterministic decision making (UC)

Let us now focus on the generation of the clairvoyant (ideal) decisions. These are

obtained as results of decision making under certainty with Algorithm 6.3, when the

ground truth is generated as described above and is directly accessible.

In the simulation we are using three distinct query functions introduced in Sec-

tion 6.3. The context parameters used to specify the risk-related queries are pre-

sented in Table 6.1. Note that these query functions are constructed using the

definition of a threat function, which in turn is a function of the object-to-asset ge-

ometry. Figure 6.3 demonstrates the intermediate quantities produced in response

to the ground truth. Those include the values of threat that, for an individual

object, grows after its appearance and drops once the object turns away from the

asset. The values of threat will be further aggregated by the risk-related queries:

additively in the sigma-risk model (6.30), and multiplicatively in the pi-risk model

(6.31).

The produced clairvoyant decisions are presented in Figure 6.4. Note that al-

though the ground truth is the same across the decision problems, the behaviour of
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the clairvoyant answers differs significantly. Let us next elaborate on the behaviour

of each query over the course of the scenario.

Table 6.1: Parameters in the risk-based queries

Contextual parameter Sigma-risk Pi-risk

Sensitivity coefficient, brange (m) 86.6 86.6

Sensitivity coefficient, bangle (rad) 0.5 0.5

Asset position, (m) [500, 500]T [500, 500]T

Asset value, VA > 100n 1000

Hit value, d 100 > 1000

Behaviour of the total cardinality query qΣX is presented in Figure 6.4(a). Nat-

urally, it simply indicates the change in the number of objects at certain moments

(specifically, the arrival of objects as they do not disappear). Since the query is

evaluated over the whole state space X , the cardinality value is not sensitive to the

object locations, as opposed to regional cardinality [25].

The sigma-risk query qrΣ is presented in Figure 6.4(b). Despite this query is

of the same nature as the total cardinality (i.e. a sum query), its behaviour is

significantly different. It also displays slight variation between steps 10 and 20

when object cardinality doesn’t change but the threat level does. And significantly

drops when the threat level drops. This highlights that the risk value is sensitive to

the evolving spatial configuration of the object population, and not simply to the

number of objects.

Finally, the pi-risk query qrΠ is presented in Figure 6.4(c). This query is also

sensitive to the configuration of object population, but in addition we can observe

that risk value saturates to the value of asset VA on steps 20 to 24.

Recall that these are ideal decision for a decision-maker, which incur no avoidable

losses at each time step. In practice, the ground truth will not be directly accessible

by a decision maker, and so the answers will have to be produced using the filtering

information. This will result in certain amount of (squared error) losses each time

the ground truth is encountered, a situation that is studied next.

100



6.4 Simulated problems

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

R
a
n
g
e
 [
m

]

Origin 1

Origin 2

Origin 3

Origin 4

Trajectories

(b) Object-to-asset proximity

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

A
n
g
le

 [
d
e
g
]

Origin 1

Origin 2

Origin 3

Origin 4

Trajectories

(b) Object-to-asset orientation

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.2

0.4

0.6

0.8

1

T
h
re

a
t 
le

v
e
l

Origin 1

Origin 2

Origin 3

Origin 4

Trajectories

(c) Object-to-asset threat level

Figure 6.3: External object attributes (proximity, orientation, threat level) com-
puted using the ground truth trajectories and the asset state: (a) proximity to the
asset, which indicates an object’s capability to damage the asset; (b) orientation to
the asset, which indicates an object’s intent to damage the asset; (c) threat level (a
function of proximity and orientation), which models the probability that an object
hits the asset at a current time step.
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Figure 6.4: Clairvoyant (or ideal) decisions, i.e. decisions produced under certainty.
Depending on the employed query function, different decisions are made in response
to the same underlying ground truth scenario. Decisions concerning the estimation
risk are presented next to the reference values: a weapon hit value d in (b), and the
asset value VA in (c).
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6.4.3 Probabilistic decision making (UU and CE)

In the previous section we demonstrated decision making under certainty (UC), in

circumstances when direct access to the ground truth is available. For the considered

problems, the produced ideal (or clairvoyant) decisions are guaranteed to result into

no avoidable losses.

In this section we consider the circumstances when the ground truth is not di-

rectly accessible, and so that decision making is approached probabilistically, using

information extracted from sensed data. This inevitably results into some amount

of loss associated with implementing the decision; the loss which otherwise could be

avoided if the state of dynamic system was known with certainty.

We consider two approaches that permit decision making in probabilistic settings:

• Decision making under assumed certainty equivalence (CE), a conventional

approach that focuses on removing uncertainty from the state of the dynamic

system as essential step for decision making. Once the system’s state is esti-

mated (possibly, in Bayes-optimal sense), the subsequent procedure is equiva-

lent to that of decision making under certainty. The output of the algorithm

is an answer which is not guaranteed to be optimal in any sense.

• Decision making under uncertainty (UU), a proposed approach that focuses

on future losses associated with implementing a decision, and weighs the alter-

native decisions to find that which minimizes the expected value of loss. This

approach preserves uncertainty in the state of the dynamic system, and uses

all available information to make a decision. The output of the algorithm is

the optimal decision that is accompanied by an indicator of its quality, which

describes the amount of loss expected from implementing the decision.

A preliminary comparison of the approaches reveals that the output of the pro-

posed approach is richer than that of the conventional approach, in a sense that the

produced decision is additionally equipped by the indicator of its quality. In general,

it may be difficult to adequately visualize such output, but it is fairly straightforward

in this study. Specifically, since the query loss function is modelled by the squared

error function, the pair of quantities at the output (the decision and its quality) di-

rectly correspond, respectively, to the mean and variance of a random variable that

is constructed using a query function to map from the point process state space to

the real line. Subsequently, since the quality coincides with the variance, it can be

easily presented next to the optimal decision (the mean) as a ±1 standard deviation

(or square root of the variance) from the mean value.
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The results are averaged over M Monte Carlo runs, i.e. the scenario is executed

M times and for each run a new sequence of measurement is produced. For example,

for a query q on time step k ∈ {1, · · · , T} and run i ∈ {1, · · · ,M}, the decision

produced by the conventional algorithm is given by a
CE,(i)
q,k , and decision produced

by the proposed algorithm is given by a
UU,(i)
q,k and equipped with an expected loss

value ρ
UU,(i)
q,k . The mean decision values over M samples can be produced using

µaCEq,k =
1

M

M∑
i=1

a
CE,(i)
q,k or µaUUq,k =

1

M

M∑
i=1

a
UU,(i)
q,k , (6.33)

depending on the used approach. Provided that the query loss is modelled by the

squared error loss, the expected loss value ρ
UU,(i)
q,k can be interpreted as the variance

of a random variable, and thus can be used to compute its standard deviation:

σ
UU,(i)
q,k =

√
ρ
UU,(i)
q,k . (6.34)

Accordingly, in the proposed approach for decision making under uncertainty, using

M samples, it is possible to obtain the mean variance

µρUUq,k =
1

M

M∑
i=1

ρ
UU,(i)
q,k , (6.35)

as well as the mean standard deviation

µσUUq,k =
1

M

M∑
i=1

σ
UU,(i)
q,k (6.36a)

=
1

M

M∑
i=1

√
ρ
UU,(i)
q,k (6.36b)

Once again, the latter two sample means are only available when decision making

under uncertainty is performed, and is not available from the conventional approach.

Figure 6.5 offers a simple presentation of the outputs for two approaches to

decision making. Together with the ideal decisions (black lines with markers) that

were first demonstrated in Figure 6.4, it presents decisions computed using the

conventional approach (blue lines with markers), and decisions computed using the

proposed approach (red lines with markers) along with confidence intervals (red

lines without markers) defined by the value of standard deviation in (6.36). Initial

comparison of the produced decisions to the ideal values reveals that both algorithms

perform fairly well. The confidence interval provided by the proposed approach
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Figure 6.5: Operation of the probabilistic decision making algorithms based on
the SMC-PHD filter and a sensor model with parameters given under ‘Sensor 1’
in Table 6.2. Decisions concerning the risk estimation are presented next to the
reference values: a weapon hit value d in (b), and the asset value VA in (c). The
results are averaged over 500 Monte Carlo runs.
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Figure 6.6: Expected values of squared error loss (i.e. the variance) associated with
optimal decisions. The values are produced using the proposed approach for decision
making under uncertainty using two filters (SMC-PHD and SMC-CPHD) and three
sensors in Table 6.2. Note that the values of standard deviation used to plot the
confidence intervals in Figure 6.5 for the sensor with pd = 0.95 correspond to the
solid blue line with markers. Results are averaged over 500 Monte Carlo runs.
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appears be a valuable addition, as it tend to include the ideal decision. It is worth

noting that the decision making results obtained using the proposed approach in

Figure 6.5(a), which are related to the total cardinality query, are analogous to the

cardinality estimation results presented in [25, Fig. 4] and [95, Fig. 4].

Table 6.2: Sensor parameters used in simulations

Sensor 1 Sensor 2 Sensor 3

Probability of detection, pd 0.95 0.90 0.85

Standard deviation in range, σr 5 m 5 m 5 m

Standard deviation in bearing, σb 1◦ 1◦ 1◦

Figure 6.6 offers a study of the output in the proposed algorithm for decision

making under uncertainty. Specifically, it presents the expected loss values for three

sensor models (see Table 6.2): pd = 0.95 (red lines), pd = 0.90 (green lines), and

pd = 0.85 (blue lines). Note that results are obtained following (6.35). It appears

that the value of expected loss decreases as the probability of detection grows, this

can be explained by the fact that uncertainty decreases as detection quality improves.

For the sake of comparison, additionally to the values produced with the SMC-PHD

filter (solid lines), the figure presents the values obtained with the SMC-CPHD filter

(dotted lines). The expected loss values obtained using the CPHD filter are overall

smaller, this is due to the underlying modelling assumptions in the filter (i.i.d.

cluster point process) that allow for a more refined representation of uncertainty (as

compared to Poisson process). As far as the total cardinality query is concerned,

the observed behaviour of the variance is consistent with that observed in [25].

Although both approaches to decision making exhibit a fairly good performance,

we need to perform a quantitative analysis of the resulting loss next. This is to

establish whether the proposed approach offers reduction in this resulting loss, and

whether the values of expected loss can be used to predict the actual resulting loss.

6.4.4 Analysis of the resulting loss

In this section we focus on the resulting loss that emerge from implementing decisions

made using the proposed decision making approach instead of implementing ideal

decisions. For a query q at time step k ∈ {1, · · · , T} on the run i ∈ {1, · · · ,M},
the loss associated with implementing the decision a

UU,(i)
q,k made under uncertainty

is given by

Lq(a
UU,(i)
q,k , ϕk) = (a

UU,(i)
q,k − q(ϕk))2, (6.37)
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where ϕk is the known ground truth, and the overall loss function Lq is a composition

of the squared error query loss and a real-valued query q, and the loss associated

with implementing the ideal decision aUCq,k = q(ϕk) is

Lq(a
UC
q,k , ϕk) = 0. (6.38)

Subsequently, the resulting loss from not implementing the ideal action is given by

∆L
UU,(i)
q,k = Lq(a

UU,(i)
q,k , ϕk)− Lq(aUCq,k , ϕk) (6.39a)

= (a
UU,(i)
q,k − q(ϕk))2. (6.39b)

For M samples obtained in the Monte Carlo runs, we can obtain the sample

mean of the resulting loss

µ∆LUUq,k
=

1

M

M∑
i=1

∆L
UU,(i)
q,k (6.40a)

=
1

M

M∑
i=1

(a
UU,(i)
q,k − q(ϕk))2. (6.40b)

In the following, we study the loss value (6.40) in three different contexts to

establish the utility of the proposed decision making approach (UU).

Loss reduction due to switching from the CE to the UU approach First,

we compare the proposed (UU) and conventional (CE) approaches to establish

whether the proposed approach offers the reduction in resulting loss, for both the

PHD and CPHD filters. Similarly to (6.40), on time step k the mean sample value

of the resulting loss in the conventional algorithm is obtained with

µ∆LCEq,k
=

1

M

M∑
i=1

(a
CE,(i)
q,k − q(ϕk))2. (6.41)

Figure 6.7 presents the mean values of the resulting loss for both approaches

using the SMC-PHD filter. In both approaches, the observed results are consistent

with the fact that lower probability of detection results into higher uncertainty in the

dynamic system, and thus leads to the higher values of resulting loss. An analogous

result for the SMC-CPHD filter is not included here.

Overall, the proposed approach appears to outperform the conventional algo-

rithm, as the values of resulting loss are smaller during the most of scenario. No-
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tably, the conventional algorithm may offer superior performance at times when the

ideal decisions fall into the extreme values, e.g. in the absence of objects or when

the damage value in pi-risk gets saturated. This behaviour of the resulting loss in

the conventional algorithm is due to the fact that it relies on the hard decision of

extracting the system state to make a decision, and so is likely to point precisely at

the extreme situation, e.g. the absence of objects.

As far as the total resulting loss over the whole length T of scenario is concerned,

the proposed algorithm offers a reduction in loss that can be quantified by the ratio

ηPHD
q =

[
1−

∑T
k=1 µ

PHD
∆LUUq,k∑T

k=1 µ
PHD
∆LCEq,k

]
× 100% or ηCPHD

q =

[
1−

∑T
k=1 µ

CPHD
∆LUUq,k∑T

k=1 µ
CPHD
∆LCEq,k

]
× 100%,

(6.42)

depending on the used filter.

Figure 6.8(a) demonstrates the loss reduction due to application of the proposed

approach for both the SMC-PHD and SMC-CPHD filters. For the PHD filter the

proposed approach offers a 15-30 percent loss reduction, whereas for the CPHD filter

the reduction is up to nearly 35 percent. The higher loss reduction is achieved for

the risk-based queries (as opposed to the total cardinality), and for all queries this

reduction gradually decreases with improving sensor’s probability of detection.

Loss reduction due to switching from the PHD to the CPHD filter Next,

we evaluate the proposed (UU) and conventional (CE) approaches to establish

whether moving from the PHD filter to the CPHD filter offers the reduction in

resulting loss.

Figure 6.9 presents the mean values of resulting loss for the proposed approach

using the SMC-PHD and the SMC-CPHD filter. For both algorithms, the observed

results are consistent with the fact that lower probability of detection results into

higher uncertainty in the dynamic system, and thus leads to the higher values of

resulting loss. An analogous result for the conventional approach is not included

here.

Overall, implementing the proposed approach using the CPHD filter appears

to outperform the PHD implementation, as the values of resulting loss are smaller

during the most of scenario. Notably, the PHD implementation may offer superior

performance at times when there is a change in the number of objects. This is due

to a known conservativeness of cardinality estimation in the CPHD filter.

As far as the total resulting loss over the whole length T of scenario is concerned,
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Figure 6.7: The values of resulting loss obtained using two approaches to decision
making (CE and UU), for the SMC-PHD filter and three sensors in Table 6.2. The
results are averaged over 500 Monte Carlo runs.
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Figure 6.8: Analysis of the total resulting loss over the whole length T of scenario:
(a) percentage reduction due to switching from the conventional (CE) to the pro-
posed (UU) approach to decision making; (b) percentage reduction due to switching
from the PHD to the CPHD filter.

the loss reduction due to moving from the PHD filter to the CPHD filter can be

quantified by the ratio

ηCEq =

[
1−

∑T
k=1 µ

CPHD
∆LCEq,k∑T

k=1 µ
PHD
∆LCEq,k

]
× 100% or ηUUq =

[
1−

∑T
k=1 µ

CPHD
∆LUUq,k∑T

k=1 µ
PHD
∆LUUq,k

]
× 100%,

(6.43)

depending on the used decision making approach.

Figure 6.8(b) demonstrates the loss reduction due to the application of the SMC-

CPHD filter instead of the SMC-PHD filter. For either of the decision making

approaches, it appears beneficial to use the CPHD filter; however, the reduction is

higher for the proposed approach.

Specifically, the proposed approach offers the loss reduction for up to 45 percent,

and the reduction is no less than 15 percent in both approaches. The higher loss

reduction is achieved for the total cardinality query (a result that is consistent with

the fact that the CPHD filter is designed to improve the cardinality estimates), and

for all queries this reduction slightly decreases with the growing sensor’s probability

of detection.

Loss prediction using the expected loss values in the proposed algorithm

Finally, we use the SMC-PHD filter to establish whether the expected loss values

available from the proposed (UU) approach predict the resulting values of loss. An
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Figure 6.9: The values of resulting loss obtained using the proposed approach to
decision making (UU), for the SMC-PHD and SMC-CPHD filters and three sensors
in Table 6.2. Note that the values obtained for the PHD filter are equivalent to
those obtained using the proposed approach in Figure 6.7. The results are averaged
over 500 Monte Carlo runs.
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analogous result for the SMC-CPHD filter is not included here.

For each time step k, we establish an interval of values over M samples (Monte

Carlo runs) that are characteristic of the expected loss values. The interval is spec-

ified using the sample mean expected loss value µρUUq,k in (6.35), and the sample

standard deviation of the expected loss given by

σρUUq,k =

√√√√ 1

M

M∑
i=1

(
ρ
UU,(i)
q,k − µρUUq,k

)2

. (6.44)

Figure 6.10 presents the above interval of the expected loss values (±1 standard

deviation spread around the mean) for the duration of scenario, as well as the

resulting loss values (6.40). It appears that for the most of the scenario the values

of resulting loss are within the interval, which indicates that the values of expected

loss are useful for predicting the resulting loss values. Nevertheless, the interval fails

to includes the values of resulting loss at the very beginning of the scenario, when

the influence of the prior knowledge used for filter initialization is the strongest, and,

possibly, on time steps when the number of objects changes.

6.5 Summary

We have implemented two approaches to decision making in probabilistic settings:

the conventional approach (which explicitly relies on an extracted state summary)

and the proposed algorithm (which makes decisions in the face of uncertainty in the

system state). The implementation was primarily focused on the SMC-PHD filter

and its update step. The same set of overall loss functions was used, which guar-

antees that the same decision problem has been addressed across the algorithms.

Specifically, in the context of this chapter we were focused on three practical query

functions: the total cardinality, the sigma-risk (Appendix A.3.2) and the pi-risk

(Appendix A.3.3). The use of Monte Carlo simulations have revealed that decision

making using the proposed approach can improve the result offered by the conven-

tional approach for both the SMC-PHD and the SMC-CPHD filters. This is in

addition to the unique capacity of the developed approach to equip produced de-

cisions with indicators of their quality: the values of expected loss available when

using the approach are indicatory of the resulting loss values.
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Figure 6.10: Resulting loss values presented over the intervals characterising the
values of expected loss, using ±1 standard deviation around the mean values. Note
that the resulting loss values are equivalent to those obtained using the SMC-PHD
filter with proposed approach in Figures 6.7 and 6.9. The results are obtained over
500 Monte Carlo runs.
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Chapter 7

Conclusions and future work

This work revolved around decision making with Bayesian filters. The convention is

to use filtering information indirectly: to summarize the filtering distribution in the

form of a point estimate before it could be used to produce a decision. Despite it is

an efficient and seemingly versatile heuristic, the resulting decisions are of unknown

quality and per definition underinformed. Therefore, the objective was set to develop

a scheme that uses filtering distribution directly—in the spirit of Bayesian decision

theory,—and produces a decision (based on all available information) which is also

equipped by an uncertainty-sensitive indicator of decision quality. In the context

of this thesis the two schemes were respectively denoted as decision making under

assumed certainty equivalence and decision making under uncertainty.

A decision-making procedure is essentially constructed around the loss function

which is defined over the product of act and state spaces. Provided that the state

space is firmly determined by the filtering algorithm, the problem that gave rise to

the decision circumstances would have to be expressed through selection of the act

space and definition of a compatible loss function.

Specifically, this work was focused on the class of problems that could be in-

terpreted as the problems of subjective statistical inference. While finding a way

to accommodate this possibility, we found it reasonable to model the loss function

as a composition of a query function and a query loss function. This generalizes

the problem of point estimation, which is conventionally seen as a fairly objective

procedure and correspond to the query that maps the state space on itself. In con-

trast, we were focused on queries that are mappings from the state space onto the

subset of the real line. Throughout the thesis, the query loss was predominantly

implemented by the ubiquitous squared error function, which is commonly used in

the problems of inference.
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As first attempt, the developed decision-theoretic formalism was used to address

various statistical procedures previously developed in the context of Bayesian filter-

ing. Along with the standard Bayesian point estimation, we interpreted the problems

of threat assessment and object discrimination in the context of Kalman-like filters,

and the problem of regional cardinality estimation in the context of PHD filters. An

important finding was that the problem of point estimation does not have a tractable

solution in the context of PHD filters (because of the complexity of the underlying

state space); nevertheless, such solution is available for a rather subjective problem

of regional cardinality estimation.

Based on these promising results, we moved on to synthesize more intricate infer-

ence procedures in the context of PHD filters. It might not possible to address every

query function that maps on the subset of the real line, but already two consider-

ably distinct functions would be sufficient to expose the need for and the value of

the developed decision-theoretic formalism. Therefore, we limited ourselves to the

following functions: the sum aggregation, which generalizes the query of regional

enumeration, and the product aggregation, which is a completely novel proposal.

Note that at this point the query functions were purely formal and corresponding

to no underlying physical models.

Although Bayesian decision theory is commonly concerned with processing of

new observations, in general, the decision procedure can be formulated without any

reference to the observation. As a consequence, we were able to formulate the fol-

lowing strategy for developing solutions to the problem of subjective inference in the

context of Bayesian filtering. First, we had to develop solutions for an abstract ran-

dom element, which is a point process describing the state of an uncertain dynamic

system. Second, we had to implement the solutions using information available from

Bayesian filters. For the two considered query functions, we were able to produce

optimal solutions that are expressed through quantities commonly used to charac-

terise a point process: its lower-order statistical moments and p.g.fl. The possibility

to obtain these solutions is largely due to the favourable properties of the squared

error query loss.

Next, we used the formalism of point process theory to extract the necessary

quantities from the update step of practical Bayesian filters: the classic PHD filter,

the Panjer PHD filter, and the Cardinalized PHD filter. Some of the required

quantities are not commonly maintained by the filters, so we had to propagate them

additionally to produce quantities for the prediction step. Ultimately, we were able

to produce two sets of solutions, corresponding both to the update step as well as

to the prediction step.
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Finally, we decided to demonstrate the developed results using simulated data.

We abandoned the abstract nature of the query functions, and offered their phys-

ically meaningful interpretations. In addition to the function of total cardinality,

we developed a model that evaluates to the value of risk (or expected damage to a

vulnerable asset) attached to a population of objects. Specifically, we offered two

approximations to this function which are well compatible with the sum and product

aggregations. As expected, the simulation results have exposed that the developed

approach has a novel ability of equipping the produced decisions with indicators of

their quality. Variations in the level of decision quality have been consistent with the

variations of sensor quality (used probability of detection). We also used those query

functions along with the squared error query loss to compose overall loss functions,

which are suitable to model decision making under assumed certainty equivalence for

filters equipped with a state extraction algorithm. Overall, the developed approach

to decision making has demonstrated its capacity to outperform the conventional

approach.

Let us now highlight some shortcomings of this work, and suggest a number

of ways for further developments. Admittedly, this work was focused on the very

limited set of query functions that capture the essence of the problem that gives

rise to the decision circumstances. Implementing other functions, such as those

found in Section 3.5.4, is an exciting avenue for future research. Furthermore, the

solutions have been produced for the squared error query loss, which is appropriate

for estimation problems, but has to be replaced by other physically meaningful

functions if practical problems are to be addressed (e.g. by zero-one error). Finally,

this work has not addressed the possibility of improving decision quality via sensor

management, which is a natural development stemming from this work.
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Appendix A

A.1 Query loss functions

Let us briefly visit two standard query loss functions that are suitable for decisions

making situations when A ⊆ R and A = {0, 1}. The squared error function in

Definition A.1.1 is one of the most commonly used functions in decision-theoretic

context. Originally proposed by Gauss in 1810, who has explicitly acknowledged

its arbitrary nature and was defending it on grounds of simplicity [89]. The same

reasoning has been used by Wiener, as reported in [5]. The second query loss function

is a cost matrix in Definition A.1.2 (cf. Table 1.2), which correspond to numerous

problems that lead to conclusions, such as detection (or hypothesis testing) [53],

and in other practical problems that lead to actions such as in the classical umbrella

problem.

Definition A.1.1 (Squared error query loss). The amount of loss associated with

reporting an answer a ∈ A when the correct (or ideal) answer is ǎ ∈ A, and A ⊆ R,

is given by

l2(a, ǎ) := (a− ǎ)2. (A.1)

Definition A.1.2 (Cost matrix query loss). .

The amount of loss associated with accepting an answer a ∈ A when the correct (or

ideal) answer is ǎ ∈ A, and A = {0, 1}, is given by

lC(a, ǎ) =



C00, a = 0, ǎ = 0,

C01, a = 0, ǎ = 1,

C10, a = 1, ǎ = 0,

C11, a = 1, ǎ = 1

(A.2a)

= Ca010(ǎ) + Ca111(ǎ) (A.2b)
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A.2 Threat functions

= Ca0 + (Ca1 − Ca0)11(ǎ) (A.2c)

where 10 : {0, 1} → {0, 1} and 11 : {0, 1} → {0, 1} are indicator functions evaluat-

ing, respectively, whether a value from {0, 1} is equal to 0 or to 1.

A.2 Threat functions

Consider a surveillance area X that contains a vulnerable asset in state xA. From

the asset’s perspective, the presence of any other object x in the area may lead

to the asset’s damage. The probability of an object-asset interaction that leads to

non-negligible negative consequences is given by the function τ : X × X → [0, 1],

which we call a threat function.

A simple way to model the threat function is to define it as a product of subjective

object attributes:

τ(x, xA) := c(x, xA) · i(x, xA), (A.3)

where c : X ×X → [0, 1] models the object’s capability to damage the asset, and i :

X×X → [0, 1] models the object’s intent to damage the asset. Accordingly, an object

which have no capability or intent to damage the asset, or lacks either attribute,

will exhibit low level of threat. In contrast, an object that can be attributed high

values of capability and intent, will produce a considerable level of threat.

For the sake of demonstration, it is convenient to construct a threat function

using basic relational parameters, which can be produced from the kinematic states

of the considered entities. It is then possible to express capability based on the

range between the object and the vulnerable asset (Section A.2.1), and express

intent based on the angle between the object’s heading and bearing to the asset

(Section A.2.2).

A.2.1 Capability factor

A simple instance of a threatening object is an explosive device. It is commonly

assumed that impact projected by the weapon is omnidirectional, and so the ca-

pability to produce damage depends exclusively on the distance from the impact

point. Provided that the impact point coincides with the object’s state x, it be-

comes possible to model the probability of damaging the asset in the known state

xA. Next we present a selection of functions (introduced as damage functions in

119



A.2 Threat functions

[65]), which can be used to model this probability. More formally, a capability func-

tion c : X ×X → [0, 1] evaluates the probability that a single weapon detonation in

point x damages a threatened asset in state xA.

Definition A.2.1 (Cookie-cutter function). The cookie-cutter function is given by

c(x, xA) =

1, r(x, xA) ≤ r0,

0, r(x, xA) > r0,
(A.4)

where r : X ×X → R evaluates range between the impact point x and the asset xA,

and r0 > 0 is called the lethal range.

Definition A.2.2 (Gaussian function). The Gaussian (or normal) function is given

by

c(x, xA) = exp

(
− r(x, xA)2

2b2

)
(A.5)

where r : X ×X → R evaluates range between the impact point x and the asset xA,

and b is a parameter.

Definition A.2.3 (Exponential function). The exponential function is given by

c(x, xA) = exp

(
− r(x, xA)

b

)
(A.6)

where r : X ×X → R evaluates range between the impact point x and the asset xA,

and b is a parameter.

Definition A.2.4 (Lognormal function). The lognormal function is given by

c(x, xA) =
1

2

(
1− erf

[
ln
( r(x,xA)

α

)
√

2β

])
, (A.7)

where r : X ×X → R evaluates range between the impact point x and the asset xA,

erf(·) is the error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (A.8)

and α and β are parameters.
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A.3 Risk functions

A.2.2 Intent factor

The model of an object’s intent comprises various aspects, including those specifying

interaction with the object’s point of interest [1, 62], as well as those quantifying

the degree of object’s hostility with respect to that point [45, 61]. Provided that

the point of interest is represented by the vulnerable asset, a simple model of hostile

intent can be constructed based on the angle that measures deviation between the

object’s heading and the bearing to the asset. This deviation is among most basic

indicators revealing hostile intent [80]. Eventually, the object’s intent function i :

X ×X → [0, 1] can be modelled using functions similar to those presented in Section

A.2.1, or using [26, Eq. 16].

A.3 Risk functions

We have developed a model that computes the value of expected damage anticipated

by a vulnerable asset when a group of weapons in a known state detonates in its

proximity. It is constructed using basic tools of probability theory and a threat

function in Appendix A.2 modelling the probability that a detonation will impact

the asset.In addition, it models the value of the asset itself VA and the fixed value d

potentially removed by a weapon. In general, such expression may be rather difficult

to deal with, but by limiting ourselves to specific relations among those values we

are able to produce two compact expressions in additive and multiplicative forms.

Overall, these expressions represent useful and physically meaningful models of cer-

tain real-life phenomena which can be modelled as a mapping from the population

state space X to the real line R.

A.3.1 Risk model

Consider a set of impact points modelled by a sequence ϕ = (x1, · · · , xn) ∈ X. A

random variable Di describing the amount of damage projected from the i-th impact

point xi to the asset in xA is defined as

Di = d · Hi, (A.9)

where d is a constant describing the damaging capacity of a weapon, and Hi is a

Bernoulli random variable describing the boolean-valued outcome whether the hit

was successful or not. The random variable Hi takes the value 1 with probability

τ(xi, xA) and the value 0 with probability 1− τ(xi, xA), where τ : X ×X → [0, 1] is
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A.3 Risk functions

a threat function from Appendix A.2.

For an asset of value VA > 0, a random variable describing the total damage

anticipated from a set of impact points ϕ ∈ X is given by

Dϕ = min

(
VA,

∑
1≤i≤n

Di

)
, (A.10)

where {Di} are independent.

Describing damage probabilistically is common in literature on risk assessment,

see e.g. [46, Fig. 1] and [58, Fig. 1a]. Although it is commonly studied using

statistics that describe the tail of the distribution (quantiles), we shall focus on the

mean value of damage. The expected value of damage r, which we call risk, is given

by

r(ϕ) = E[Dϕ] (A.11a)

= E

[
min

(
VA,

∑
1≤i≤n

Di

)]
(A.11b)

= E

[
min

(
VA, d

∑
1≤i≤n

Hi

)]
(A.11c)

=
∑

0≤k≤|ϕ|

min(VA, k · d) · pK(k), (A.11d)

where pK is a probability mass function of a Poisson binomial distribution describing

the number of detonations that have hit the asset and given by

pK(k) =
∑
S∈Fk

∏
i∈S

τ(xi, xA)
∏
j∈Sc

(1− τ(xj, xA)), (A.12)

where Fk is the set of all subsets of k integers that can be selected from the set

{1, · · · , n}, and Sc is the complement of S. This expression may difficult to compute

in general, therefore certain assumptions will be made.

A.3.2 Sigma-risk of the robust asset

Assumptions A.3.1 (Robust asset). VA ≥ n · d, n ∈ N.

Proposition A.3.2 (Sigma-risk). Under Assumptions A.3.1 of robust asset, the
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A.3 Risk functions

risk associated with a group of weapons in state ϕ is given by

rΣ(ϕ) = d
∑
x∈ϕ

τ(x, xA), (A.13)

and is called sigma-risk.

Proof. Consider expression of the expected damage in (A.11b). Provided that the

sum
∑

1≤i≤n Di can never exceed the value of VA (due to Assumption A.3.1), the

expression reduces to

E[Dϕ] = E

[ ∑
1≤i≤n

Di

]
(A.14a)

=
∑

1≤i≤n

E[Di] (A.14b)

=
∑

1≤i≤n

(d · τ(xi, xA) + 0 · (1− τ(xi, xA))) (A.14c)

= d
∑

1≤i≤n

τ(xi, xA) (A.14d)

The model in (A.13) is a novel development, which is not paralleled in literature,

and to the best of our understanding can serve as a physically meaningful alternative

to the hypothetical concept of population threat which is defined to be additive

across the objects [42, 69, 76, 118].

A.3.3 Pi-risk of the fragile asset

Assumptions A.3.3 (Fragile asset). VA < d.

Proposition A.3.4 (Pi-risk). Under Assumptions A.3.3 of fragile asset, the risk

associated with a group of weapons in state ϕ is given by

rΠ(ϕ) = VA

[
1−

∏
x∈ϕ

[
1− τ(x, xA)

]]
, (A.15)

and is called pi-risk.

Proof. Consider expression of the expected damage in (A.11d) under Assumption
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A.3 Risk functions

A.3.3:

E[Dϕ] =
∑

0≤k≤|ϕ|

min(VA, k · d) · pK(k) (A.16a)

= min(VA, 0) · pK(0) +
∑

1≤k≤|ϕ|

min(VA, k · d) · pK(k) (A.16b)

= VA
∑

1≤k≤|ϕ|

pK(k) (A.16c)

= VA(1− pK(0)). (A.16d)

From (A.12) we can determine the probability of 0 successful hits

pK(0) =
∏

j∈{1,··· ,n}

[
1− τ(xj, xA)

]
. (A.17)

Substituting (A.17) into (A.16d) yields the desired result.

The model (A.15) of pi-risk is a fundamental result, as one can recognize its

close relation to the expressions of ‘risk’ in [16, Eq. 1] and ‘vulnerability’ in [41, Eq.

18]. Furthermore, in case VA = 1, expression in (A.15) reduces to the ‘probability

of kill’, the probability that the asset is destroyed after weapon detonation, which

is a quantity of importance in the algorithms for threat evaluation and impact

assessment [90], and can be seen as an extension of a threat function of Appendix

A.2 to the case of multiple threatening objects.
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