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The rapid pace of innovation in biological imaging and the 
diversity of its applications have prevented the establishment 
of a community-agreed standardized data format. We pro-
pose that complementing established open formats such as 
OME-TIFF and HDF5 with a next-generation file format such 
as Zarr will satisfy the majority of use cases in bioimaging. 
Critically, a common metadata format used in all these vessels 
can deliver truly findable, accessible, interoperable and reus-
able bioimaging data.

Biological imaging is one of the most innovative fields in the 
modern biological sciences. New imaging modalities, probes and 
analysis tools appear every few months and often prove decisive 
for enabling new directions in scientific discovery. One feature of 
this dynamic field is the need to capture new types of data and data 
structures. While there is a strong drive to make scientific data find-
able, accessible, interoperable and reusable (FAIR1), the rapid rate 
of innovation in imaging has resulted in the creation of hundreds 
of proprietary file formats (PFFs) and has prevented the unification 
and adoption of standardized data formats. Despite this, opportuni-
ties for sharing and integrating bioimaging data and, in particular, 
linking these data to other ‘omics’ datasets have never been greater. 
Therefore, to every extent possible, increasing ‘FAIRness’ of bioim-
aging data is critical for maximizing scientific value, as well as for 
promoting openness and integrity2.

When working with a large number of PFFs, interoperability and 
accessibility are achieved using translation and conversion provided 
by open-source, community-maintained libraries that produce an 
open, common data representation. On-the-fly translation produces 
a transient representation of bioimage metadata and binary data in 
an open format but must be repeated on each use. In contrast, con-
version produces a permanent copy of the data, again in an open 
format, bypassing bottlenecks in repeated data access. As workflows 
and data resources emerge that handle terabytes (TB) to petabytes 
(PB) of data, the costs of on-the-fly translation have become bottle-
necks to scientific analysis and the sharing of results. Open formats 
like OME-TIFF3 and HDF5 (ref. 4) are often used for permanent 
conversion, but both have limitations that make them ill-suited for 
use cases that depend on very high and frequent levels of access, 
such as training of artificial intelligence models and publication 
of reference bioimage datasets in cloud-based resources. For these 
situations, the community is missing a multidimensional, multi-
resolution binary container that provides parallel read-and-write 
capability that is natively accessible from the cloud (without server 
infrastructure) and that has a flexible, comprehensive metadata 
structure (Supplementary Note).

To this end, we have begun building OME’s next-generation file 
format (OME-NGFF) as a complement to OME-TIFF and HDF5. 

Together these formats provide a flexible set of choices for bioimag-
ing data storage and access at scale over the next decade and, poten-
tially, a common, FAIR solution for all members of the biological 
imaging community (academic and industrial researchers, imaging 
scientists, and academic and commercial technology developers).

Next-generation file formats
We use the term next-generation file formats (NGFFs) to denote 
file formats that can be hosted natively in an object (or cloud) stor-
age for direct access by a large number of users. Our current work, 
which we refer to as OME-NGFF, is built upon the Zarr format5 
but heavily informed and connected to both TIFF and HDF5. We 
have compared the characteristics of these three open formats in 
Supplementary Table 1.

To date, the development of OME-NGFF has focused on pixel 
data and metadata specifications for multidimensional, multiscale 
images, high-content screening datasets and derived labeled images. 
These specifications include support for ‘chunking’ or storage of 
parts of the binary pixel data in smaller files that support rapid access 
to the data from orthogonal views or different resolution levels (also 
known as pyramidal data). Labeled images, such as segmentation 
or classification masks can now remain in a common data structure 
with the original pixel data and metadata, providing a single mecha-
nism for tracking the provenance of original and derived data allow-
ing programmatic rather than manual management.

We have also built multiple implementations of these specifica-
tions, demonstrating the usability and performance of these for-
mats. bioformats2raw can be used for writing OME-NGFF from 
standalone Java applications and omero-cli-zarr is available for 
exporting from OMERO6. Reading is implemented in ome-zarr-py, 
which has been integrated into the napari viewer7, in Fiji via the 
MoBIE plugin8 and finally via Viv-based vizarr for access in the 
browser9. Permissively licensed example datasets from the Image 
Data Resource (IDR)10 have been converted into Zarr and stored in 
an S3-object storage bucket for public consumption (Extended Data 
Fig. 1). Though OME-NGFF is still in development, each of these 
implementations is an example of how data access and application 
is simplified by having a universal data-storage pattern. Current and 
future specifications are published under https://ngff.openmicros-
copy.org/latest/.

Bioimage latency benchmark
To demonstrate how NGFFs complement available, open formats, 
we have built and published a bioimage latency benchmark that 
compares random, serial-access speeds to uncompressed TIFF, 
HDF5 and Zarr files. These measurements provide an upper bound 
on the overhead that a user would experience accessing the formats 
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using common libraries, tifffile, h5py and Zarr-Python, respectively. 
Though future extensions to the benchmark are intended, we have 
focused on a single, serverless Python environment because one 
library (fsspec) can be used to access all three data formats across 
multiple storage mechanisms without the need for any additional 
infrastructure.

The benchmark includes instructions for running on Docker 
or AWS EC2 and contains all necessary code to regenerate rep-
resentative samples for two established imaging modalities: large 
multi-channel two-dimensional (2D) images such as the ones 
produced by cyclic immunofluorescence (CycIF)11 and time-lapse 
isotropic volumes typically generated by light-sheet microscopy 
(LSM)12. Each synthetic HDF5, TIFF and Zarr dataset was gen-
erated by first invoking the ImarisWriter, then converting the 
HDF5-based Imaris files into Zarr with bioformats2raw and finally 
converting the Zarr to TIFF with raw2ometiff. All three datasets 
along with a 1byte dummy file for measuring overhead were placed 
in three types of storage: local disk, a remote server and object stor-
age. We measured the reading time of individual chunks for all four 
file types across the three storage systems. Figure 1 shows that as 
the latency of access grows, access times for monolithic formats 
such as TIFF and HDF5 increase because libraries must seek the 
appropriate data chunk, whereas NGFF formats such as Zarr pro-
vide direct access to individual chunks. In the three-dimensional 
(3D) case, the TIFF data were too large to fit into local memory and 
the benchmark errored.

On local storage, access speeds for NGFF files were similar to 
HDF5 and both substantially outperformed TIFF. This matches pre-
vious results showing that a number of factors must be taken into 

account to determine the relative performance of HDF5 and Zarr13. 
Together these results partially explain HDF5’s popularity for desk-
top analysis and visualization of LSM datasets.

However, on cloud storage, access speeds for NGFF files are 
at least an order of magnitude faster than HDF5. Parallel reads14, 
supporting streaming of image data files from remote http-based 
or cloud-based servers give performance similar to local disk 
access. Data streaming obviates the need for wholesale data down-
load and is especially important for providing performant access 
to multi-TB datasets.

We note that our benchmark measures direct access to under-
lying storage. Additional applications, such as HSDS for HDF5 or 
OMERO for TIFF, may improve the performance of specific use 
cases, but add complexity to any deployment and make direct com-
parisons between the different data-access regimes in Fig. 1 dif-
ficult. Additionally, a key parameter in overall access times is the 
size of individual chunks. As chunk sizes decrease, the number of 
individual chunk files increases rapidly (Extended Data Fig. 2). In 
this benchmark, we have chosen a compromise between chunk size 
and number of individual files. This illustrates a primary downside 
of NGFF formats; as the number of files increases, the time required 
for copying data between locations increases. Users will need to 
understand and balance these trade-offs when choosing between 
open, bioimaging file formats.

Outlook: community adoption
We assert that together low-latency, cloud-capable NGFF, TIFF and 
HDF5 can provide a balanced set of options that the community 
can converge upon and slow the development of ever more file  
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Fig. 1 | Chunk retrieval time is less sensitive to data location with next-generation file formats. a,b, random sampling of 100 chunks from synthetically 
generated, five-dimensional images measures access times for three different formats on the same file system (green), over HTTP using the nginx web 
server (orange) and using Amazon’s proprietary S3 object storage protocol (blue) under two scenarios: a whole-slide cycIF imaging dataset with many 
large planes of data (x = 64,000, y = 64,000, c = 8) and chunks of 256 × 256 pixels (128 KB) (a); and a time-lapse LSM dataset with isotropic dimensions 
(x = 1,024, y = 1,024, z = 1,024, t = 100) and chunks of 32 × 32 × 32 pixels (64 KB) (b) (Methods).
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formats. To this end, OME is committed to building an interoper-
able metadata representation across all three file formats to ensure 
ease of adoption and data exchange (Supplementary Note).

When data are frequently accessed, for example, as a pub-
lic resource or a training dataset, upfront conversion will lead to 
overall time savings. In situations where object storage is man-
dated, as in large-scale public repositories, we encourage the use 
of OME-NGFF today. Alternatively, users needing to transfer their 
images may choose to store their data in a large single file such as 
HDF5. OME-TIFF remains a safe option for those who rely on pro-
prietary software for visualization and analysis, especially in digital 
pathology and other whole-slide image applications, as many have 
been extended to both read and write this open standard. Each 
choice comes with benefits and costs and individual scientists, 
institutions, global collaborations and public data resources need 
the flexibility to decide which approach is suitable. We encourage 
the community to choose from the most appropriate of the formats 
described above, secure in the knowledge that conversion is pos-
sible if it becomes necessary.

We foresee this being a critical strategy where data generated in 
advanced bioimaging applications is converted into an optimized 
format for downstream processing, analysis, visualization and shar-
ing. All subsequent data access occurs via open data formats without 
the need for repeated, on-the-fly translation. We have begun imple-
menting this workflow in the IDR (Extended Data Fig. 1), alleviat-
ing the need for time-consuming downloads and cross-referencing 
metadata and resulting in substantially more accessible and interop-
erable data. We look forward to working with other resources to 
further develop this policy. Further, as adoption of public image 
data resources increases, commercial vendors will hopefully engage 
with these efforts to support their customers, who are increasingly 
required to publish datasets as supplementary material. Moreover, 
some commercial imaging companies are themselves building 
cloud-based data handling and analysis solutions (for example, 
https://www.apeer.com), thus broadening the community of users 
who need cloud-competent file formats.

Ultimately, we hope to see digital imaging systems producing 
open, transparent (in other words FAIR), data without the need 
for further conversion. Until that time, we are committed to pro-
viding the data conversion needs of the community. Following the 
same pattern established by bioformats2raw and raw2ometiff, we 
propose to meet this challenge via a set of migration tools allowing 
efficient data transformations between all data formats contained 
in this suite of interoperable formats. Additionally, as the speci-
fication evolves based on community feedback, the same migra-
tion tools will allow upgrading the scientific data generated by the 
bioimaging community to prevent the need for long-term main-
tenance of older data. Upcoming specifications include geometric 
descriptions of regions of interest, meshes and transformations for 
correlative microscopy.

To provide the best chance of wide adoption and engagement, 
we are developing the formats in the open, with frequent pub-
lic announcements of progress and releases of reference software 
and examples (https://forum.image.sc/tag/ome-ngff) and regular 
community meetings where we present work, source feedback and 
encourage community members, including vendors, to participate 

in the specification and implementation. The community process is 
being developed and we welcome contributions from all interested 
parties on https://github.com/ome/ngff.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-021-01326-w.
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Methods
Bioimage latency benchmark: synthetic data generation. Imaging modality 
and dataset sizes. Synthetic datasets were generated for two established imaging 
modalities: a large multi-channel two-dimensional image typical of CycIF11 of xyzct 
dimensions 64,000 × 64,000 × 1 × 8 × 1 and a time-lapse isotropic volume typical of 
LSM12 of xyzct dimensions 1,024 × 1,024 × 1,024 × 1 × 100.

For each modality, the chunk size of the benchmark dataset was chosen as a 
compromise between the size of individual chunks and the total number of chunks 
in the Zarr dataset. To make this decision, the individual chunk size was computed 
against the total number of chunks for typical sizes ranging from 16 up to 1,024 
(chunks.py15 and Extended Data Fig. 2). Based on this, we chose a 2D chunk size 
of 256 × 256 for the CycIF-like dataset and a 3D chunk size of 32 × 32 × 32 for the 
LSM-like dataset. Note that owing to the planar limitation of TIFF, the LSM dataset 
was stored as 2D TIFF tiles of size 32 × 32 but the benchmark loaded 32 tiles to 
measure the total access time. All data was stored uncompressed to keep chunk 
sizes consistent for the random generated data. Note that with the default aws s3 cp 
command, data upload decreased from over 100 MiB s−1 for the single HDF5 file to 
under 20 MiB s−1 for the Zarr dataset.

Dataset generation. The HDF5 version of each synthetic dataset was first 
generated by using the ImarisWriter library16 (v.2021-04-07) with a version of the 
ImarisWriterTest example16,17 modified to allow setting the desired chunk size and 
generate gradient images rather than random data. This HDF5-based Imaris file 
was converted into Zarr using a modified version of bioformats2raw v.0.2.6 with 
support for chunks using a / dimension separator18. Finally, the Zarr was converted 
into TIFF with a modified version of raw2ometiff v.0.2.6, allowing it to consume 
Zarr filesets with a / dimension separator19. Both modifications have been released 
since in bioformats2raw v.0.3.0 and raw2ometiff v.0.3.0.

For the CycIF-like dataset, this conversion generated a single 86 GB TIFF file, 
a single 86 GB HDF5 file and a Zarr dataset composed of 700,000 files of 86 GB in 
total. For the LSM-like dataset, the conversion generated a single 300 GB TIFF file, 
a single 229 GB HDF5 file and a Zarr dataset of 4.3 million files of 264 GB in total.

Bioimage latency benchmark: measurements and results. Measurements. 
All three datasets along with a 1 byte dummy file for measuring overhead were 
placed in three types of storage: local disk, a remote server and object storage. We 
measured the reading time of individual chunks for all four file types across the 
three storage systems.

A random sequence of 100 chunk locations was chosen for the benchmark. 
All 100 chunks were loaded from each file in the same order. The time taken to 
retrieve the chunk, independent of the time taken to open a file or prepare the 
remote connection, was recorded.

Raincloud plots. Raincloud plots20 combine three representations (split-half violin 
plots, box plots, raw data points) so that the true distribution and the statistical 
parameters can be compared. Split-half violin plots show a smoothed version of a 
histogram with a kernel density estimate. This type of plot is useful to determine, 
at a glance, if the mean is lower or higher than the median depending on the 
skewness of the curve. Box plots show the median and the boundaries of quartiles 
on either side of the median of the distribution to determine statistical differences 
at a glance. Below each box plot, the raw data points are additionally plotted with 
slight vertical jittering to avoid overlaps.

All code for reproducing the plots and the runs both locally with Docker or 
Amazon EC2 instances are available under a BSD-2 license on Zenodo15.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The synthetic data generated for the benchmark are 1.05 TB. All code necessary 
to regenerate the data, including at different sizes, is available on Zenodo under 
a BSD-2 license15. The SARS-CoV-2 EM dataset from Extended Data Fig. 1, 
originally from Lamers et al.21 and published in IDR22, was converted into 
OME-NGFF and is available at Zenodo23 under a CC-BY 4.0 license.

Code availability
Data generation and analysis code for file format benchmarking is available on 
Zenodo under a BSD-2 license15.
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Extended Data Fig. 1 | Maximizing re-use by allowing popular tools to access bioimaging data in the cloud. An example of using NGFFs for promoting the 
distribution of public image datasets. Selection of current tools streaming different portions of the same SArS-coV-2 virus image at various resolutions 
directly from S3 storage at the European Bioinformatics Institute (EBI). Original data from Lamers et al. is available in IDr while the converted data is available 
on Zenodo.21–23.
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Extended Data Fig. 2 | Effect of Chunk Size on Chunk Number. For each modality, the chunk size of the benchmark dataset was chosen as a compromise 
between the size of individual chunks and the total number of chunks in the Zarr dataset. The plots above show typical power of 2 chunk sizes: between 
32 and 1024 for the 2D data and between 16 and 128 for the 3D data. We chose a 2D chunk size of 256×256 for the cyIF-like dataset and a 3D chunk size 
of 32x32x32 for the LSM-like dataset. Note that due to the planar limitation of TIFF, the LSM dataset was stored as 2D TIFF tiles of size 32×32 but the 
benchmark looped over 32 tiles to measure the access time of the same chunk size.
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Extended Data Fig. 3 | Conversion tools provide an alternative to continual, on-the-fly translation of PFFs. Figure shows workflows for file format 
access. (a) The classical approach to access images produced by an acquisition system is to use a library like Bio-Formats to translate the proprietary file 
format (PFF) and produce an in-memory copy of the imaging data on-the-fly. This translation needs to be repeated on every use. (b) With the existence 
of open, community-supported formats, converting PFFs becomes the most cost-efficient method for long-term storage and sharing of microscopy data. 
bioformats2raw and raw2ometiff (Supplementary Note) parallelize the creation of an open format, OME-TIFF, by using an intermediate NGFF format 
consisting of many, individual files each with one chunk of the original image data.
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Extended Data Fig. 4 | unification of metadata specifications will allow interoperability between TIFF, hDF5, and Zarr. Each proposed container (TIFF, 
Zarr, HDF5) can be used interchangeably to store pixel data, but trade-offs described in this manuscript can be used to determine what is the best target. 
TIFF is ideal for interoperability in digital pathology and other 2-dimensional domains since the format is widely accessible by established open source and 
proprietary software. In higher-dimensional domains, HDF5 and Zarr are better suited. HDF5 will likely be preferred for local access. If data is intended for 
sharing in the cloud, Zarr will likely be preferred. High throughput image analysis will benefit from the lower-latency access to data in HDF5 and Zarr. If 
original image data is paired with derived representations like pixel or object classification, a shared structure in HDF5 or Zarr is likely the best choice.
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