
                                                                    

University of Dundee

Epigenome-wide association study of global cortical volumes in Generation Scotland

Barbu, Miruna Carmen; Harris, Mat; Shen, Xueyi; Aleks, Stolicyn; Green, Claire; Amador,
Carmen

DOI:
10.1080/15592294.2021.1997404

Publication date:
2021

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Barbu, M. C., Harris, M., Shen, X., Aleks, S., Green, C., Amador, C., Walker, R., Morris, S., Adams, M., Sandu,
A., McNeil, C., Waiter, G., Evans, K., Campbell, A., Wardlaw, J., Steele, D., Murray, A., Porteous, D., McIntosh,
A., & Whalley, H. (2021). Epigenome-wide association study of global cortical volumes in Generation Scotland:
Scottish Family Health Study. Epigenetics. https://doi.org/10.1080/15592294.2021.1997404

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Dec. 2021

https://doi.org/10.1080/15592294.2021.1997404
https://discovery.dundee.ac.uk/en/publications/af8aa6f5-a9f6-4d1b-86ac-c35156cf61c3
https://doi.org/10.1080/15592294.2021.1997404


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=kepi20

Epigenetics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/kepi20

Epigenome-wide association study of global
cortical volumes in Generation Scotland: Scottish
Family Health Study

Miruna Carmen Barbu, Mat Harris, Xueyi Shen, Stolicyn Aleks, Claire Green,
Carmen Amador, Rosie Walker, Stewart Morris, Mark Adams, Anca Sandu,
Christopher McNeil, Gordon Waiter, Kathryn Evans, Archie Campbell, Joanna
Wardlaw, Douglas Steele, Alison Murray, David Porteous, Andrew McIntosh
& Heather Whalley

To cite this article: Miruna Carmen Barbu, Mat Harris, Xueyi Shen, Stolicyn Aleks, Claire Green,
Carmen Amador, Rosie Walker, Stewart Morris, Mark Adams, Anca Sandu, Christopher McNeil,
Gordon Waiter, Kathryn Evans, Archie Campbell, Joanna Wardlaw, Douglas Steele, Alison Murray,
David Porteous, Andrew McIntosh & Heather Whalley (2021): Epigenome-wide association study
of global cortical volumes in Generation Scotland: Scottish Family Health Study, Epigenetics, DOI:
10.1080/15592294.2021.1997404

To link to this article:  https://doi.org/10.1080/15592294.2021.1997404

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

View supplementary material 

Accepted author version posted online: 05
Nov 2021.

Submit your article to this journal 

Article views: 21 View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=kepi20
https://www.tandfonline.com/loi/kepi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15592294.2021.1997404
https://doi.org/10.1080/15592294.2021.1997404
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2021.1997404
https://www.tandfonline.com/doi/suppl/10.1080/15592294.2021.1997404
https://www.tandfonline.com/action/authorSubmission?journalCode=kepi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=kepi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15592294.2021.1997404
https://www.tandfonline.com/doi/mlt/10.1080/15592294.2021.1997404
http://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2021.1997404&domain=pdf&date_stamp=2021-11-05
http://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2021.1997404&domain=pdf&date_stamp=2021-11-05


1 

Publisher: Taylor & Francis & Informa UK Limited, trading as Taylor & Francis Group 

Journal: Epigenetics 

DOI: 10.1080/15592294.2021.1997404 

Epigenome-wide association study of global cortical volumes in Generation Scotland: 

Scottish Family Health Study  

Miruna Carmen Barbu, PhD1, Mat Harris, PhD1, Xueyi Shen, PhD1, Stolicyn Aleks, PhD1, Claire 

Green,MSc1, Carmen Amador, PhD2, Rosie Walker, PhD3,4, Stewart Morris, BSc3,4, Mark 

Adams, PhD1, Anca Sandu, PhD5, Christopher McNeil,PhD5, Gordon Waiter,PhD5, Kathryn 

Evans, PhD3,4, Archie Campbell, MA2, Joanna Wardlaw, MD4, Douglas Steele, PhD7, Alison 

Murray, MD5, David Porteous, PhD2,6, * Andrew McIntosh, MD1,6, * Heather Whalley, PhD1 

  

1Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK 
2MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, The University of 

Edinburgh, UK 

3Centre for Genomic and Experimental Medicine, The Institute of Genetics and Molecular Medicine, 

The University of Edinburgh, UK 

4Centre for Clinical Brain Sciences, The University of Edinburgh, UK 
5Aberdeen Biomedical Imaging Centre, The Institute of Medical Sciences, University of Aberdeen, UK 
6Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and 

Language Sciences, The University of Edinburgh, UK 

7Imaging Science and Technology, School of Medicine, University of Dundee, UK 

 

Correspondence can be sent to: 

Miruna C Barbu, mbarbu@ed.ac.uk, 0131 537 6691 

Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF 

 

 

 

Running title: Epigenome-wide association study of global cortical volumes Keywords: DNA 

https://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2021.1997404&domain=pdf


2 

methylation, epigenome-wide association study, cortical volumes  

 

 

 

Word count (abstract) 216 
Word count (main text) 4,903 
Figures 3 
Tables 2 
Supplementary Information 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

 

 

Abstract 

A complex interplay of genetic and environmental risk factors influence global brain 

structural alterations associated with brain health and disease. Epigenome-wide association 

studies (EWAS) of global brain imaging phenotypes have the potential to reveal the 

mechanisms of brain health and disease and can lead to better predictive analytics through 

the development of risk scores. 

We perform an EWAS of global brain volumes in Generation Scotland using 

peripherally measured whole blood DNA methylation (DNAm) from two assessments, (i) at 

baseline recruitment, ~6 years prior to MRI assessment (N=672) and (ii) concurrent with MRI 

assessment (N=565). Four CpGs at baseline were associated with global cerebral white 

matter, total grey matter, and whole-brain volume (Bonferroni p≤7.41×10−8, βrange= -1.46x10-6 

to 9.59x10-7). These CpGs were annotated to genes implicated in brain-related traits, 

including psychiatric disorders, development, and ageing. We did not find significant 

associations in the meta-analysis of the EWAS of the two sets concurrent with imaging at 

the corrected level. 

These findings reveal global brain structural changes associated with DNAm measured 

~6 years previously, indicating a potential role of early DNAm modifications in brain structure. 

Although concurrent DNAm was not associated with global brain structure, the nominally 

significant findings identified here present a rationale for future investigation of associations 

between DNA methylation and structural brain phenotypes in larger population-based 

samples. 

Keywords: DNA methylation; epigenome-wide association study; cortical volumes; 

Generation Scotland 
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Introduction 1 

Global brain structure is influenced by genetic and environmental factors, and has 2 

previously been associated with health and disorder traits across the lifetime (1–3). For 3 

instance, changes in global grey and white matter have been observed in a number of 4 

psychiatric and neurological disorders, including schizophrenia (4), major depressive disorder 5 

(MDD) (3), bipolar disorder (5), Rett syndrome (6), and Alzheimer’s disease (7). Previous 6 

studies have also found age-related reductions in both grey and white matter (8,9). 7 

Such global brain structural changes in both health and disease may reflect genetic 8 

and environmental factors and their impact. While previous studies have focussed on 9 

revealing the genetic architecture of brain structure, there are now opportunities to explore 10 

genetic and environmental risk factors through epigenetics, which correlate with changes in 11 

gene expression by modulating the genome in different cell types, without altering the 12 

underlying genome sequence (10). One such process, DNA methylation (DNAm), implicates 13 

the covalent addition of a methyl group to a cytosine nucleotide followed by guanine in DNA, 14 

resulting in Cytosine-phosphate-Guanine (CpG) sites (10). 15 

DNAm is modulated by both genetic and environmental factors, and may thus aid in 16 

identifying genetic and environmental contributions to health and disease (11). Several brain- 17 

related traits and diseases are associated with variation in DNAm. MDD, a moderately 18 

heritable disorder, has been associated with differential methylation at several CpG sites, 19 

with a methylation risk score explaining 1.75% of the variance in the disorder (12). Further, in 20 

an epigenome-wide association study (EWAS) using blood, CpG sites associated with 21 

depressive symptoms were annotated to genes involved in axonal guidance (13). 22 

Schizophrenia has been associated with epigenetic variation at multiple loci that contribute 23 

to the polygenicity of the disorder (14,15). Finally, growing evidence has shown that DNAm 24 

can act as a proxy for the biological age of multiple tissues across life (16). These studies 25 

indicate that it may be possible, in future, to utilise DNAm modifications as biomarkers for 26 

brain-related healthy traits and diseases and to identify novel mechanisms contributing to 27 

these traits. 28 

In recent years, increasing efforts have been made to identify epigenetic correlates of 29 

brain phenotypes, using both blood and brain tissue (17,18). To maximise statistical 30 
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power, 31 
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previous studies have focused on candidate genes and candidate epigenetic markers in 32 

relation to specific brain regions of interest, such as subcortical volumes in the hippocampus 33 

and amygdala, as well as cortical thickness and volume in Freesurfer-derived brain regions 34 

(18), although consistency between study findings is modest. Recent advances in high- 35 

throughput array technologies that can identify DNAm levels at over 450K and 850K locations 36 

along the genome have enabled researchers to identify DNAm-brain associations using a 37 

hypothesis-free approach using EWAS (19). DNAm modifications in relation to brain 38 

phenotypes have also been identified in patients as opposed to healthy individuals, including 39 

in the frontal cortex in schizophrenia (20,21), hippocampal volume in MDD (22), in the 40 

cerebral cortex in Alzheimer’s disease (23), and in the frontal cortex in Parkinson’s disease 41 

(24). Structural brain measures may therefore function as endophenotypes that can be used 42 

to assess the association between epigenetic modifications and brain health and disease. 43 

The pathogenesis of psychiatric and neurodegenerative disorders has been associated 44 

with a multitude of cortical and subcortical brain regions with inconsistent results across 45 

studies (3,25–27), potentially indicating a role for whole-brain abnormalities in these 46 

disorders. Peripheral DNAm alterations associated with clinically relevant global brain 47 

structure may therefore further our mechanistic understanding of brain anatomy in both 48 

health and disease, may help to identify modifiable risk factors and may form a basis for the 49 

development of more accurate predictive risk scores capturing a wider array of potential 50 

influences. 51 

The majority of the studies mentioned above used whole blood as a surrogate tissue 52 

for the brain due to inaccessibility of the brain ante-mortem. Although DNAm is reported to 53 

be tissue- and cell type-specific, similarities between blood and brain DNAm have also been 54 

identified (28). In addition, whole blood has successfully been used in the past to identify 55 

meaningful epigenetic differences in brain-related traits, as shown above (18). 56 

Here, we sought to assess DNAm associations with Magnetic Resonance Imaging (MRI) 57 

global brain structural phenotypes, including cerebral white matter, total grey matter, and 58 

whole-brain volume using the Illumina Infinium MethylationEPIC array, capturing DNAm at 59 

approximately 850K CpG sites (29). Using DNAm measured ~6 years prior to MRI data 60 

collection, we examined whether CpG sites were associated with global brain structure at a 61 

later timepoint in N=672 individuals. We then investigated whether concurrently measured 62 
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DNAm was associated with global brain structure in N=565 individuals. 63 
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Methods 64 

 65 

Study population: Generation Scotland: Scottish Family Health Study (GS:SFHS) 66 

GS:SFHS is a large, family-based epidemiological study aiming to investigate the 67 

genetics of health and disease in approximately 24,000 individuals aged 18-98 years across 68 

Scotland. Data collected between 2006 and 2011 consists of genetic, DNA methylation, and 69 

environmental variables (30,31). GS:SFHS received ethical approval from NHS Tayside 70 

Research Ethics Committee (REC reference number 05/S1401/89) and has Research Tissue 71 

Bank Status (reference: 20/ES/0021). Written informed consent was obtained from all 72 

participants. 73 

A total of N=9,618 participants from GS responded when re-contacted at a later 74 

timepoint, and further data on mental health, specifically depression, was obtained. N=1,188 75 

were recruited for brain scanning, and approximately N=700 with both DNAm and 76 

neuroimaging data were available at the time of the current study. Details of recruitment and 77 

study information have been reported previously (32,33). The study was supported by the 78 

Wellcome Trust through a Strategic Award (reference 104036/Z/14/Z). Written consent at 79 

each stage of the study was obtained from all participants. 80 

Two timepoints were used for the current study: blood samples were collected at 81 

baseline measurement (2006-2011), and concurrently with neuroimaging data (2015-2019).  82 

 83 

Phenotypes 84 

 85 

Global brain volumes 86 

T1 images were processed using standard ENIGMA protocols (34) with FreeSurfer 5.3 87 

and all output was visually quality checked. Manual edits were applied as required to 88 

correct for inclusion of skull tissue, exclusion of brain tissue or for errors in parcellation. 89 

Global measures were extracted from the final output following all edits. Manual editing, 90 

although necessary, did introduce a degree of subjective bias, therefore 'editing' was 91 

included as a binary covariate (values: yes/no). Further, as the complete set of T1s was 92 

processed, quality checked and edited in two parts, 'batch' was also included as a covariate. 93 
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We used 3 global volume measures in the current study. Total cerebral white matter 94 

includes hyperintensities and excludes anything that is not white matter. Total grey matter is 95 

rendered by the sum of the cortex within the left and right hemispheres, as well as subcortical 96 

and cerebellar grey matter. Finally, whole-brain volume includes both grey and white matter, 97 

and corresponds to brain volume without the brain stem, ventricles, cerebrospinal fluid, and 98 

choroid plexus. 99 

 100 

Baseline lifestyle factors and MDD status 101 

Body mass index (BMI) was calculated using height (m) and weight (kg) as measured 102 

by clinical staff at baseline recruitment. Participants were asked to report the number of units 103 

of alcohol consumed during the past week and their smoking status (never, former, current); 104 

pack years was used to measure heaviness of smoking in current smokers by multiplying the 105 

number of cigarette packs (20 cigarettes/pack) smoked per day by the number of years a 106 

person has smoked (35). MDD status was assessed at baseline using the Structured Clinical 107 

Interview of the Diagnostic and Statistical Manual, version IV (SCID) (36). Participants with no 108 

MDD were defined as those individuals who did not fulfil criteria for a current or previous 109 

MDD diagnosis following the SCID interview. 110 

 111 

Concurrent lifestyle factors and MDD status 112 

At the follow-up assessment, participants were sent study packages that included 113 

questionnaires. Here, BMI was calculated using height (m) and weight (kg). Participants also 114 

recorded the number of units consumed during the past week, whether they were current, 115 

former, or non-smokers, and (if they smoked) the number of cigarettes smoked in an average 116 

week. Finally, MDD status was ascertained through the Composite International Diagnostic 117 

Interview-Short Form (CIDI-SF) (37), and participants with no MDD were those individuals 118 

who did not fulfil criteria for current or previous MDD diagnoses based on responses. 119 

 120 

DNA methylation 121 

Baseline DNAm data was pre-processed and quality-checked for all individuals by 122 

Amador et al. in 2019 (38). At the concurrent timepoint, samples were placed on the array 123 



10 

at two different time points and were therefore processed separately. The main difference 124 

between processing and analysis pipelines related to how key covariates were adjusted for. 125 

At baseline these were regressed out during pre-processing, whereas for the concurrent 126 

batches they were included as covariates in downstream analyses. However, across all 127 

batches, standard quality check (QC) and pre-processing steps with regards to sample and 128 

probe exclusions were identical (see below). We note however that differences in the 129 

processing resulted in different numbers of final CpG sites included for analysis. 130 

Cross-reactive (N=42,558) and polymorphic (N=10,971) CpGs, obtained from 131 

McCartney et al. (2016) were removed from both the baseline and concurrent DNAm datasets 132 

(39) . 133 

Baseline DNA methylation 134 

Genome-wide DNAm data profiled from whole blood samples was available for 135 

9,873 individuals in GS:SFHS using the Illumina Human-MethylationEPIC BeadChip (29). 136 

Samples were obtained and DNA was extracted between 2006-2011. DNAm profiling using 137 

the Illumina Human-MethylationEPIC BeadChip (29) was performed in two sets (in 2016, set 138 

AN=5101; in 2019, set BN=4,450) and pre-processing and QC was conducted once the second 139 

set was released, as detailed in Amador et al. (38,40,41). Participants were removed due to 140 

a number of reasons, including sex mismatch (Nremoved=24), having more than 1% CpG sites 141 

with a detection p-value>0.05 (Nremoved=52), being an outlier for bisulphite conversion 142 

control probes (Nremoved=1), having a median methylated signal intensity more than 3 143 

standard deviations lower than expected (Nremoved=74), and other technical and dataset-144 

specific issues (Nremoved=602, see Supplementary Materials). A total of 10,495 CpG sites were 145 

removed due to low beadcount, poor detection p-value, and sub-optimal binding. 146 

R package “minfi” was used to read in the IDAT files, compute M and beta values, and 147 

remove probes with large detection p-values, and to compute principal components (PC) of 148 

control probes. Correction was then applied for (1) technical variation, where M values were 149 

included as outcome variables in a mixed linear model adjusting for appointment date and 150 

Sentrix ID (random effects), jointly with Sentrix position, batch, clinic, year, weekday, and 10 151 

PCs (fixed effects); and (2) biological variation by fitting residuals of (1) as outcome variables 152 

in a second mixed linear model adjusting for genetic and common family shared 153 
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environmental contributions (random effects classed as G: common genetic; K: kinship; F: 154 

nuclear family; C: couple; and S: sibling) and sex, age, and estimated cell type proportions 155 

(CD8T, CD4T, NK, Bcell, Mono, Gran) (fixed effects) (42). The final number of CpG sites that 156 

converged for these analyses was 674,246 across the 22 autosomes. 157 

 158 

Concurrent DNA methylation 159 

Genome-wide DNAm data profiled from whole blood samples was available for a total 160 

of 710 individuals using the Illumina Human-MethylationEPIC BeadChip (29). Pre-processing 161 

was carried out in two separate sets (Nset 1=404; Nset 2=306) intended as discovery and 162 

replication datasets, by Walker et al. (43,44). Meffil (45) was use to remove samples if: there 163 

was a mismatch between self-reported and methylation-predicted sex and if >0.5% of probes 164 

failed the detection p- value threshold (>0.01); probes were removed if >1% samples failed 165 

the detection p- value >0.01 and if >5% of samples failed the beadcount threshold (N=3). In 166 

addition, samples were removed if they showed evidence of dye bias and they were outliers 167 

for the bisulphite conversion control probes. ShinyMethyl (46) was then used to plot the log 168 

median intensity of methylated and unmethylated signals per array and inspect the output 169 

from the control probes; outlying samples detected by visual inspection were excluded. 170 

Meffil (45) was then used again to remove any additional samples who had a sex mismatch. 171 

PC plots were made using the first two methylation principal components and any additional 172 

outlying samples on the basis of these plots were removed. Finally, data were normalised 173 

using the dasen method in wateRmelon, and M-values were generated using the beta2m 174 

function in lumi (47). The final number of CpG sites after pre-processing was N=768,068 (set 175 

1) and N=765,695 (set 2) across the 22 autosomes. 176 

 177 

Statistical methods 178 

 179 

Epigenome-wide association 180 

We used the “limma” package (48) in R to run linear regression models for both 181 

baseline and concurrent DNAm data, where each CpG was included as an outcome variable. 182 

Brain cortical volumes, specifically cerebral white matter, total grey matter, and whole brain 183 

volume were included as predictor variables in separate EWAS at each DNAm timepoint. 184 
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The R code for these analyses is available in the Supplementary Materials. 185 

Covariates for each model using baseline DNAm were MRI site (to account for 186 

different data collection sites; see Supplementary Materials), age, age2, sex, intracranial 187 

volume, and set (to account for different DNAm data pre-processing sets). Due to the impact 188 

of lifestyle factors on DNAm (49–52), BMI, alcohol units, smoking status, and pack years 189 

were also included as covariates. Lastly, due to the increased prevalence of MDD in the 190 

dataset, MDD status was included as a covariate in all models. Technical (batch, 191 

appointment date) and biological (relatedness, cell type estimations, methylation principal 192 

components) variables were regressed out during pre-processing and were not included as 193 

covariates in downstream analyses. After QC, there were 674,246 CpGs and epigenome-194 

wide significance was determined by a Bonferroni correction (0.05/674,246, p≤7.41×10−8). 195 

For both sets at the concurrent DNAm timepoint, covariates for each model were 196 

DNAm batch, 5 cell type proportion estimations (granulocytes, natural killer cells, B- 197 

lymphocytes, CD4+ T-lymphocytes and CD8+ T-lymphocytes), MRI site, age, age2, sex, 198 

intercranial volume, BMI, smoking status, number of cigarettes smoked/week, alcohol units, 199 

MDD status, and 20 methylation PCs. Bonferroni correction was applied based on the number 200 

of CpGs remaining in each set after QC (set 1: 0.05/768,068 CpGs, p≤6.51x10-8; set 2: 201 

0.05/765,695 CpGs, p≤6.52x10-8). 202 

The Blood Brain DNA Methylation Comparison Tool (53) 203 

(http://epigenetics.essex.ac.uk/bloodbrain/) investigates the correlation between DNAm 204 

from whole blood and four brain regions (prefrontal cortex, entorhinal cortex, superior 205 

temporal gyrus, and cerebellum) for all probes on the Illumina 450K array (54). We used this 206 

resource to investigate the strength of correlation between the two tissues for CpGs identified 207 

here. 208 

 209 

Meta-analysis using METAL – concurrent timepoint 210 

At the concurrent timepoint, in set 1, N=331 individuals were available with global 211 

volume and methylation data after QC and N=234 were available in set 2. Meta-analysis of 212 

these two datasets was performed in METAL (55) using p-value based analysis (N=565). The 213 

meta-analysis was based on N=769,263 CpGs across both sets and a Bonferroni correction 214 
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(0.05/769,263) was used to define epigenome-wide significance (p≤6.49x10-8). 215 

Pathway analysis 216 

We annotated CpG sites to genes through the Infinium MethylationEPIC BeadChip 217 

database (29). The database provides information about genes, chromosome location, start 218 

and end sites, and other features. 219 

We used missMethyl (56), accessed via methylGSA (57), to assess pathway enrichment 220 

for differentially-methylated CpG sites. The package allows correction for biases in the 221 

representation of genes on the Infinium BeadChip. Gene Ontology (GO) terms were accessed 222 

using the msigdbr package (58). Pathways included in the analysis were all GO pathways of 223 

size 1-250 genes inclusive. CpG sites included in the analysis were those significant at a 224 

threshold of p<1x10-5, as used in previous studies (59). Information on GO pathways can be 225 

accessed via www.geneontology.org using Gene Ontology identifiers, comprised of “GO” 226 

followed by a string of numbers (e.g. GO:0000000). 227 

 228 

Power analysis – concurrent timepoint 229 

Since the concurrent data was formed by two smaller samples of pre-processed 230 

data, we additionally conducted power analysis to determine whether our concurrent 231 

samples had sufficient power to detect a significant effect. This was conducted using effect 232 

sizes from the baseline data to inform the power calculations. We used the “pwr.f2.test” 233 

function in package “pwr” in R and the set parameters were as follows: 234 

1. Regression coefficients: DNAm batch, 5 cell type estimations (granulocytes, 235 

natural killer cells, B-lymphocytes, CD4+ T-lymphocytes and CD8+ T-lymphocytes), MRI site, 236 

age, age2, sex, intercranial volume, BMI, smoking status, number of cigarettes 237 

smoked/week, alcohol units, MDD status, 20 methylation principal components. 238 

2. Effect size: we input the largest effect size identified in EWAS at baseline (N=672) 239 

for each global volume. 240 

3. Significance level: to adjust for multiple testing correction (FDR), the p-value for a 241 

single potential test was set based on the number of CpG sites in each dataset (set 1: 242 

0.05/768,068=6.51x10-8; set 2: 0.05/765,695=6.53x10-8). 243 
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4. Power: to observe different power percentages, we input 60%, 80%, 90%, 95% 244 

and 99% power. 245 
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Results 246 

 247 

Demographic characteristics 248 

There were N=672 individuals in the baseline EWAS, N=331 in the set 1 concurrent 249 

EWAS, and N=234 in the set 2 concurrent EWAS. Demographic characteristics for all 250 

individuals are presented in Table 1. Further descriptive characteristics regarding global 251 

volumes are presented in Supplementary Table 1. 252 

Demographic 
characteristics Baseline (N=672) Concurrent set 1 

(N=331)
Concurrent set 2 

(N=234) 
Age – Mean (SD), range 52.29 (9.93), 18-75 60.45 (8.42), 28-78 59.61 (10.21), 28-81
Sex    

Female 406 193 132 
Male 266 138 102 

Set    
1 621 - - 
2 51 - - 

BMI – Mean (SD), range 27.13 (4.96), 15.96- 
56.60 

27.48 (5.18), 16.42- 
51.75 

28.23 (5.31), 19-20- 
52.81 

Alcohol units – Mean 
(SD), range 10.53 (16.44), 0-326 7.12 (8.91), 0-60 7.39 (9.67), 0-60 

Smoking status    
Current smoker 83 16 12 

Former smokers (quit < 
1 year ago) 10  

124 
 

92 
Former smokers (quit > 

1 year ago) 208   

Never smoked tobacco 371 191 130 
Pack years – Mean (SD), 
range 7.59 (14.56), 0-111 - - 

Cigarettes 
smoked/week    

1-10 cigarettes - 10 6 
11-20 cigarettes - 10 9 

MDD status    
Cases 121 83 83 

Controls 551 248 151 
Table 1. Demographic characteristics for individuals with global volume data, including 253 
lifestyle variables and MDD. “-“ indicates that there was no data of the sort for the 254 
respective dataset. Former smokers at the baseline measurement were split into those who 255 
quit less than a year ago and those who quit more than a year ago; at the concurrent 256 
timepoint, this division is not made. 257 

 258 

 259 
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Baseline EWAS 260 

Baseline EWAS identified 1, 3, and 2 CpG sites that were associated with cerebral 261 

white matter, total grey matter, and whole-brain volume, respectively (p≤7.41x10-8). Both 262 

CpGs associated with whole brain volume were also associated with total grey matter and 263 

were significantly hypermethylated. One CpG site associated with cerebral white matter and 264 

one associated with total grey matter were hypomethylated. As shown in Figure 1A-C, CpG 265 

associations with grey matter were stronger than with white matter. Information about each 266 

CpG site is shown in Table 2. 267 

 268 

 
Phenotype 

 
CpG site 

 
Gene 

 
C 

 
β 

 
P-value 

 
P-corr 

CpG –
previously 
associated 

traits 

 
Gene – previously associated 

traits 

Total grey 
matter 

cg07585845 
(EPIC) - 3 9.59x10-7 1.02x10-9 0.000

7 
- - Whole- 

brain 
volume 

cg07585845 
(EPIC) 

 
- 

 
3 

 
4.47x10-7 

 
1.38x10-8 

 
0.009 

 
 
 
 

Total grey 
matter 

 
 
 

cg02325951 
(450K) 

 
 
 
 

FOXN3 

 
 
 
 

14 

 
 
 
 

6.53x10-7 

 
 
 
 

1.31x10-9 

 
 
 

0.000
9 

 
 
 
 
 
 

Sex (p=2x10-

54; 1.8x10-42; 
(54)) 

Acute myeloid leukemia
(p=8x10-21 p=3x10-14; (60)) 
Heel bone mineral density 

(p=2x10-12; (61)) 
Intelligence (p=1x10-11; (62)) 

Self-reported educational 
attainment (p=8x10-11; (63)) 

Cognitive function 
measurement (p=2x10-9; (63)) 

Mathematical ability (p=3x10- 9; 
(63)) 

Smoking status measurement 
(p=7x10-9; (64)) 

Risk-taking behaviour (p=8x10- 
9; (65)) 

 
 

Whole- 
brain 

volume 

 
 
 

cg02325951 
(450K) 

 
 
 

FOXN3 

 
 
 

14 

 
 
 

3.26x10-7 

 
 
 

1.45x10-9 

 
 
 

0.001 

Cerebral 
white 

matter 

 
cg10297662 

(EPIC) 

 
PNKP 

 
19 

 
-1.46x10-

6 

 
4.92x10-8 

 
0.03 

 
- 

Involved in DNA repair;
mutations at locus associated 
with microcephaly, seizures, 

and developmental delay (66) 

 
 

Total grey 
matter 

 
 

cg04190002 
(450K) 

 
 

SHANK
3 

 
 

22 

 
 

-3.75x10-

7 

 
 

7.31x10-9 

 
 

0.04 

 
Sex 

(p=5.4x10- 19; 
(62)) 

Self-reported educational
attainment (p=2x10-20; (63)) 

Mathematical ability (p=1x10- 
17; (63)) 

Cognitive function 
measurement (p=3x10-12; (63)) 
Schizophrenia (p=3x10-12; (67)) 

 269 

Table 2. CpG sites significantly associated with cerebral white matter, total grey matter, and 270 
whole-brain volume (N=672), along with gene annotations (Gene), chromosome (C), 271 
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standardised effect size (β), nominal (P-value) and multiple comparison-corrected p-values 272 
(P-corr). Traits previously associated with each CpG site were extracted from EWAS 273 
catalogues (http://www.ewascatalog.org/, association between traits and CpGs on Illumina 274 
450K array at p≤1.0x10-4; and http://www.bioapp.org/ewasdb/, (68)), association between 275 
traits and CpGs on Illumina 450K and EPIC arrays at p≤1.0x10-3). Gene information was 276 
extracted from the GWAS catalogue (https://www.ebi.ac.uk/gwas/; associations between 277 
traits and SNPs at p < 1.0x10- 5). All associations included in the table from these two 278 
catalogues are genome-wide significant.279 
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 280 

 281 

Figure 1A, 1B, 1C. Manhattan plots showing the results from EWASs of cerebral white matter 282 
(1A), total grey matter (1B), and whole-brain volume (1C), using baseline DNAm data (N=672). 283 
The black line defines the threshold for epigenome-wide significance (p≤7.41x10-8) and the 284 
dotted line defines CpG sites at p≤1x10-5. Epigenome-wide significant hits for each phenotype 285 
are labelled on the graph. 286 
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Correlation between whole blood DNAm and four brain regions 287 

We used the Blood Brain DNA Methylation Comparison Tool (53) to investigate the 288 

correlation between blood and brain methylation measurements for two of the CpGs 289 

identified here, located on the 450K array, and four brain regions. cg04190002 was strongly 290 

correlated with prefrontal cortex (r=0.579, p=6.55x10-8), entorhinal cortex (r=0.564, 291 

p=2.94x10-7), superior temporal gyrus (r=0.598, p=1.5x10-8), and cerebellum (r=0.663, 292 

p=3.02x10-10), while cg02325951 was strongly correlated with prefrontal cortex (r=0.858, 293 

p=1.73x10-22), entorhinal cortex (r=0.868, p=1.19x10-22), and superior temporal gyrus 294 

(r=0.871, p=3.32x10-24). 295 

 296 

Baseline Pathway Analysis 297 

Enrichment of differentially methylated regions in biological pathways was analysed 298 

using missMethyl (56), where an over-representation analysis of GO pathways was performed 299 

for sets of genes annotated to CpG sites differentially expressed at p<1x10-5 (Ncerebral white matter: 300 

19, Ntotal grey matter: 22, Nwhole-brain volume: 21). 301 

There were no over-represented pathways after multiple correction. A number of 302 

brain-related biological processes, molecular functions, and cellular components were 303 

included in the top 10 significant pathways (Supplementary Table 2). For instance, guanylate 304 

kinase-associated protein clustering, which facilitates assembly of post-synaptic density of 305 

neurons (GO:0097117), was found to be over-represented for all three imaging phenotypes 306 

(cerebral white matter nominal p-value=0.0007; total grey matter nominal p-value=0.001; 307 

whole-brain volume nominal p-value=0.0009). Positive regulation of synapse structural 308 

plasticity (GO:0051835) was over-represented in both cerebral white matter (nominal p-309 

value=0.002) and total grey matter (nominal p-value=0.002). Finally, forebrain generation of 310 

neurons (GO:0021872; nominal p-value=0.001) was over-represented for cerebral white 311 

matter. 312 

 313 

Concurrent EWAS 314 

Meta-analysis of EWAS across the two concurrent sets did not reveal any Bonferroni-315 

corrected CpG sites associated with any of the global volumes (Figure 2A-C). A list of the top 316 
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10 CpGs associated with cerebral white matter (EWASset 1 βrange=4.71x10-6- 6.53x10-6; 317 

EWASset 2 βrange=1.02x10-5-8.75x10-6) total grey matter (EWASset 1 βrange=6.71x10-6-8.03x10-6; 318 

EWASset 2   βrange=1.03x10-5-8.84x10-6), and whole-brain volume (EWASset 1 βrange=2.69x10-319 
6-4.05x10-6; EWASset 2 βrange=6.23x10-6-6.69x10-6), is presented in Supplementary Tables 3-5. 320 

Genes annotated to these top 10 CpGs have previously been implicated in brain-related 321 

phenotypes, including psychiatric disorders (MDD (69–72), schizophrenia (73)), 322 

neurodegenerative disorders (neurofibrillary tangles and PHF-tau measurement in 323 

Alzheimer’s Disease (74)), and cognitive traits (mathematical ability, self- reported 324 

educational attainment (75)). Results reported here are nominal and should be supported 325 

by further large-scale cohorts.326 
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 327 

Figure 2A, 2B, 2C. Manhattan plots showing meta-analysis of EWAS of cerebral white matter 328 
(2A), total grey matter (2B), and whole-brain volume (2C), across the 2 concurrent sets (Nset 329 
1=331; Nset 2=234; Ntotal=565). The black line defines the threshold for epigenome-wide 330 
significance (p≤6.5x10-8) and the dotted line defines p≤1x10-5. CpGs that met a significance of 331 
p≤1x10-5 are labelled on the graph. 332 
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Concurrent Pathway Analysis 333 

As above, enrichment of differentially methylated regions in specific pathways was 334 

assessed using missMethyl (50) for sets of genes annotated to CpG sites differentially 335 

expressed at p<1x10-5 (Ncerebral white matter: 10, Ntotal grey matter: 10, Nwhole-brain volume: 9). There were 336 

no over-represented pathways following FDR adjustment for multiple comparisons. The top 337 

10 most significant pathways for each phenotype indicated a pattern of phenotype-specific 338 

biological processes, molecular functions, and cellular components (Supplementary Table 6). 339 

For instance, over-represented pathways in cerebral white matter included myelination 340 

(GO:0042552; nominal p-value=0.002), ensheathment of neurons (GO:0007272; nominal p-341 

value=0.002), axon ensheathment (GO:0008366; nominal p-value=0.001), glial cell 342 

development (GO:0021782; nominal p-value=0.001) and glial cell differentiation 343 

(GO:0010001; nominal p-value=0.004). Total grey matter over-represented pathways 344 

included glutamate catabolic process to aspartate (GO:0019550; nominal p-value=0.0009) 345 

and to 2-oxoglutarate (GO:0019551; nominal p-value=0.0009). Finally, over-represented 346 

pathways in whole-brain volume included several MHC-related biological processes, including 347 

regulation (GO:0002586; nominal p-value=0.001) and negative regulation (GO:0002587; 348 

nominal p-value=0.0009) of antigen processing and presentation of peptide antigen via MHC 349 

class II, negative regulation of antigen processing and presentation of peptide or 350 

polysaccharide antigen via MHC class II (GO:0002581; nominal p-value=0.001), as well as N- 351 

acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase (GO:0008532, molecular 352 

function, nominal p-value=0.001), an enzyme encoded by the gene B3GNT2, which is highly 353 

expressed in whole-brain, hippocampus, amygdala, cerebellum, and caudate nucleus 354 

(https://www.uniprot.org/uniprot/Q9Z222). 355 

 356 

Power curves for concurrent data 357 

Power curves for the three imaging phenotypes are presented in Figure 3. Further 358 

details, including effect size for each phenotype, are included in Supplementary Tables 7 and 359 

8. These indicate that approximately 1,000-6,000 individuals (depending on phenotype) 360 

would be needed to detect an effect after multiple correction. 361 
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 362 

 363 

 364 

Figure 3. Power curves for cerebral white matter, total grey matter, and whole-brain volume 365 
calculated separately for set 1 and set 2. The x-axis indicates how many participants would 366 
be needed to detect an effect with 60%, 80%, 90%, 95% or 99% power at p<6.51x10-8 (set 1 367 
(W1)) and p<6.53x10-8 (set 2 (W2)) with 36 regression coefficients included in the linear 368 
model. Effect sizes were calculated based on the largest effect size obtained in EWAS for each 369 
phenotype at baseline. 370 
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Discussion 371 

We report a number of significant associations between DNAm measured ~6 years 372 

prior to MRI data collection and cerebral white matter (Nsignificant CpGs=1), total grey matter 373 

(Nsignificant CpGs=3), and whole-brain volume (Nsignificant CpGs=2) (N=672), annotated to genes 374 

involved in brain-related traits. There were no significant associations between DNAm 375 

collected concurrently with MRI data (N=565). In addition, pathway analysis did not uncover 376 

any significant findings for either the baseline or concurrent analyses. Power analysis of the 377 

concurrent data using baseline data for effect size confirmed that approximately 1,000-378 

6,000 individuals (depending on phenotype) would be needed to detect a statistically 379 

significant effect. 380 

For the analysis of associations between DNAm measured at baseline and cortical 381 

volumes ~6 years later, one CpG associated with cerebral white matter, cg10297662, was 382 

annotated to PNKP. This CpG site has not previously been associated with any other traits, to 383 

the best of our knowledge. PNKP is involved in DNA repair following ionizing radiation or 384 

oxidative damage (76) and is expressed in a number of tissues, including the brain. 385 

Mutations in this gene have been associated with a number of neural conditions, including 386 

microcephaly, developmental delay, seizures, and cerebellar ataxia (66,77). These mutations 387 

have been shown to lead to white matter defects, which is the phenotype investigated here 388 

(78). Previous evidence also indicates that loss of PNKP strongly impacts oligodendrocytes, 389 

leading to white matter abnormalities (79). Efforts should be made to identify whether the 390 

relationship between PNKP mutations and defects in white matter is mediated by 391 

differential DNAm at specific sites. 392 

Two CpGs, cg07585845 and cg02325951, were associated with both total grey matter 393 

and whole-brain volume. cg07585845 has not been previously associated with any traits nor 394 

annotated to any genes. cg02325951 was previously associated with sex in a study 395 

investigating methylation trajectories across human foetal brain development (p=2x10-54; 396 

(80)). The gene to which cg02325951 is annotated, FOXN3, is involved in several physiological 397 

processes, such as development, ageing, obesity, and cancer and is expressed in multiple 398 

tissues, including the forebrain and midbrain. Further, animal studies show that mutations 399 

within the gene have been associated with craniofacial defects (81). In addition, FOXN3 has 400 

previously been associated with several brain-related phenotypes in previous GWAS, 401 
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including intelligence (p=1x10-11; (62)), self-reported educational attainment (p=8x10-11), 402 

cognitive function measurement (p=2x10-9), and mathematical ability (p=3x10-9) (63). These 403 

cognition-related phenotypes have previously been associated with whole brain volume, 404 

where higher cognition was associated with a larger brain size (76). Future studies should 405 

investigate whether DNAm localized to FOXN3 plays a role in cognition development 406 

through modifications in whole-brain volume. 407 

Finally, in addition to the two CpGs above, total grey matter was also associated with 408 

cg04190002, a CpG previously associated with sex in newborns (p=5.4x10-19; (82)). The CpG is 409 

annotated to SHANK3, which encodes multidomain scaffold proteins of the postsynaptic 410 

density connecting neurotransmitter receptors, among other membrane proteins and is 411 

expressed in the cerebral cortex and the cerebellum. The gene has previously been 412 

associated with a host of brain disorders and traits, including self- reported educational 413 

attainment (p=2x10-20), mathematical ability (p=1x10-17), cognitive function measurement 414 

(p=3x10-12) (63) and schizophrenia (p=3x10-9; (67)), and mutations have previously been 415 

associated with autism spectrum disorder (83). These disorders in turn have been 416 

associated with changes in grey matter (84), and future studies should investigate whether 417 

these psychiatric disorders are also associated with differential DNAm at cg04190002, and 418 

other probes localized to SHANK3, as well as explore whether associations are mediated by 419 

global brain phenotypes. 420 

Blood and brain methylation measures for both cg02325951 and cg04190002 (both 421 

CpGs on the 450K array) were strongly correlated, indicating that whole blood is a suitable 422 

proxy tissue for investigating associations with brain phenotypes, at least for these probes. 423 

Future studies exploring DNAm in relation to global brain phenotypes and associated traits 424 

may therefore benefit from whole blood DNAm measurements. 425 

DNAm profiled at a different timepoint to phenotype measurement has previously 426 

yielded interesting results. Barbu et al. (2020) found that a methylation risk score calculated 427 

from DNAm profiled 4-11 years prior to MDD diagnosis was significantly associated with 428 

incident cases who were well at DNAm measurement but went on to develop MDD (12). Clark 429 

et al. (2020) similarly associated DNAm profiled in MDD patients at baseline with MDD status 430 

6 years later (85). These previous findings indicate that DNAm measured prior to phenotype 431 

measurement may provide meaningful insight into phenotype development and change 432 
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across time. The findings above relating DNAm measured previously to MRI scans may 433 

therefore aid in the investigation of epigenetic differences in brain-related disease and health 434 

at a later timepoint, although further longitudinal replication is needed to verify these 435 

associations. 436 

Associations between DNAm measured concurrently to MRI scans did not yield any 437 

significant findings. Power calculations using the baseline data to derive effect size showed 438 

that approximately 1,000-6,000 participants (depending on phenotype) would be needed to 439 

uncover a significant effect at epigenome-wide level. This number is supported by previous 440 

studies, such as Jia et al. (2019), who analysed 3,337 individuals across 11 cohorts as part of 441 

ENIGMA to find 2 CpGs significantly associated with hippocampal volume (19). This may 442 

indicate that null findings were due to lack of power at the concurrent timepoint. Null 443 

findings here should serve as a stimulus for larger collaborations and meta-analyses in 444 

future. 445 

Further, effect sizes for both timepoints were much smaller than those identified in 446 

previous studies that analysed larger sample sizes in specific brain regions (19) (largest 447 

baseline effect size: 1.46x10-6; largest concurrent effect size: 1.06x10-6), which suggests that 448 

findings here should be interpreted with caution. The results here indicate that global 449 

associations with DNAm may be weaker than those at a regional level. Future studies may 450 

therefore benefit from focussing on lobe- and region-specific correlates of DNAm. 451 

At the concurrent timepoint, DNAm data was pre-processed and quality-checked in 2 452 

sets, resulting in a different number of final CpGs (NCpG set 1=768,068; NCpG set 2=765,695). 453 

Pearson’s correlations between the EWAS betas from set 1 and set 2 across all CpGs were 454 

r=0.02 (95% C.I.=0-0.102), r=0.04 (95% C.I.=0-122), and r=0.03 (95% C.I.=0-0.112) for 455 

cerebral white matter, total grey matter, and whole brain volume, respectively. When 456 

restricting CpGs to those with a nominal p-value (≤0.05), the beta correlations were slightly 457 

higher, although not strong: r=0.17 (95% C.I.=0.089-0.249), r=0.18 (95% C.I.=0.099-0.259), 458 

and r=0.22 (95% C.I.=0.14-0.297) for cerebral white matter, total grey matter, and whole-459 

brain volume, respectively. The low effect size correlations may be a further reflection of the 460 

small sample investigated here. 461 

There are limitations to the current study. Firstly, we report DNAm changes in whole 462 
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blood, which may not be representative of brain phenotypes. However, two of the CpGs 463 

identified here, located on the 450K array, were strongly correlated with DNAm in four brain 464 

regions (53). Although previous studies have shown that there is considerable agreement 465 

between blood and brain (28), future studies should explore DNAm changes in the brain in 466 

post-mortem samples where possible to uncover biological mechanisms underpinning brain 467 

structure within the same tissue. Further, findings at baseline may indicate that some DNAm 468 

changes lie upstream of brain structural changes, although effect sizes for each CpG were 469 

small compared to previous concurrent EWAS of brain regions (18,19). In addition, we 470 

cannot test the direction of association between brain structural changes and DNAm. In 471 

future, studies may apply Mendelian Randomization to investigate whether DNAm may be 472 

on the causal path to brain structure alterations in brain health and disease. Finally, in the 473 

current study we focussed on global brain phenotypes to explore whether global brain-474 

related changes, previously associated with psychiatric and neurological disorders, are 475 

associated with DNAm alterations. Previous evidence includes DNAm associations at both 476 

global and regional level (18), and it may be that DNAm may provide more insight into 477 

region-specific alterations in relation to brain health and disease.  478 

In conclusion, we report an EWAS of global cortical brain volumes using DNAm data 479 

collected ~6 years prior to MRI data collection in 672 individuals and an EWAS meta-analysis 480 

of cortical brain volumes using DNAm measured concurrently to MRI data in 565 individuals, 481 

both part of a large, population-based cohort. Using baseline DNAm data, we find four CpGs 482 

significantly associated with cortical brain volumes ~6 years later, all of which are annotated 483 

to genes implicated in brain-related phenotypes. We did not find significant associations at 484 

the concurrent timepoint. Findings here should be interpreted with caution, and future 485 

studies should aim to determine further links between DNAm changes and brain structure 486 

and function, to highlight our understanding of this relationship in health and disease.487 
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