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Abstract 

Screw piles have been used to support a variety of structures due to their ease of installation and high 

axial capacity. Recently screw piles have been proposed as an alternative foundation solution for 

offshore renewable structures owing to their quiet or silent installation. Due to their variable geometry, 

design and prediction of installation requirements and its effect on in service capacity may be 

challenging. In this paper, the discrete element method is used to numerically recreate a series of 

onshore field tests. The aim of the paper is to investigate the ability of DEM to be used as a practical 

design tool for the design and deployment of screw piles. In this case study, the effect of the geometric 

helix pitch on the installation torque and tensile capacity of screw piles installed into sand is 

investigated. DEM results show that the geometric pitch of a screw pile appears to have little effect on 

the installation torque. The results show that DEM has the potential to be used as a practical design 

procedure for complex foundation installation where the simulation needs to capture installation effects. 

Keywords: Geotechnical engineering, Piles & piling, Computational mechanics  

Introduction 

A screw pile consists of a central steel shaft, with one or more helical plates welded to it. Screw piles 

are generally installed by the application of a vertical compressive force (“crowd force”) and torque. 

They may be considered as a “silent” or quiet pile as they do not require hammer installation as per 

driven piles (Huisman, 2019). They are able to mobilise significant axial resistance as the helix acts as 

an embedded plate and have been used for many different structures, including buildings, bridges, 

railway gantries and electricity pylons (Lutenegger, 2011a). Once the geometry for a specific 

application has been decided there is then the need to check the installation requirements and in-service 

performance. This is normally done based upon empirical approaches that do not directly consider the 

effects of installation and assume perfect or pitch matched installation where there may be little control 

of this in the field. 

The most common approach to verify the ultimate capacity of a screw pile is the empirical torque 

correlation factor (Kt). The Kt method links the installation torque (T) to the ultimate tensile capacity 

(Qt) (equation 1) and does not account for any variation in crowd or vertical force required during 

installation (Hoyt and Clemence 1989). The value of Kt is normally calculated based upon the diameter 

of the pile core and is considered to be a fixed value irrespective of pile geometry, soil, or installation 

approach (e.g. over flighting (AR < 1) or under flighting (AR > 1)).  

(1) 

𝑄𝑡 = 𝑇𝐾𝑡 
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Perko (2009) proposed an empirical relationship for Kt based upon the shaft diameter (Dc). Although a 

single value is determined from equation 2, it should be noted that considerable scatter is present in the 

original data set. 

(2) 

𝐾𝑡 = 22.285𝐷𝑐
−0.9198 

The validity of using Kt, has previously been questioned as it fails to consider many additional factors 

that contribute to the installation torque and ultimate capacity (Lutenegger, 2013; Davidson et al., 2020; 

Cerfontaine et al., 2021; Sharif et al., 2021). Using a series of field tests, Lutenegger (2013) showed 

that piles with the same shaft and helix diameters (Dh) but different geometric pitches (3, 4 and 6 inches 

or 76.2, 101.6 and 152.4 mm) result in different values of Kt. Although, the Kt method is commonly 

used, previous studies have shown that it may not be a reliable tool (some codes stating that it should 

actually not be used in design e.g. BS8004:2015).  

In this paper DEM is used to simulate insitu CPT testing and full screw pile installation and loading. 

The discrete element method (DEM), which naturally allow granular behaviour to arise through the use 

of very simple contact models, has gained much relevance in geomechanics since originally proposed 

(Cundall and Strack, 1979). To date widespread use of DEM has been limited in a commercial setting 

due to the computational time required but recent developments have reduced this time including faster 

sample preparation (Ciantia et al., 2018) coupled with lower cost higher performance computing. This 

has resulted in an increase in DEM application to analyse boundary value problems at model (Boschi 

et al., 2020; Nguyen et al., 2020; Zhang et al., 2021) and field scale (Boon et al., 2014; Previtali et al., 

2021). 

The aim of this paper is to assess whether DEM could be used as a design tool to predict real 

performance and then optimise the design of a screw pile. This involves using real CPT data to create 

a DEM soil bed to an appropriate relative density to match the soil encountered in the field. A DEM 

simulation of the insitu CPT was then used to validate the appropriateness of the soil bed created and 

the ability to replicate the “real” soil profile into which models of the real screw piles were installed 

and loaded. The process was undertaken in the form of a Class C prediction (Lambe, 1973) without the 

use of any refinement of the approach (to simulate commercial time frames). The field data includes 

screw piles with helices of different pitch (but the same diameter) which allowed additional commentary 

on assumptions with respect to Kt and the effect of pitch variation on pile performance (Lutenegger 

2013). This study highlights the practical use of DEM as a design tool for large deformation problems 

and identifies where further refinement and improvement is required. 

Methodology 

To recreate the stratigraphy of the soil in the field testing in DEM soil bed data was obtained from cone 

penetration testing (CPT) at the Agricultural Farm site, University of Massachusetts, Amherst 

(Lutenegger, 2011b) (Figure 1a). To recreate a simple or averaged soil profile the CPT cone resistance 

(qc) was used to determine relative density (Jamiolkowshi et al., 1985) (Figure 1b).  

Using the calculated relative density from the field CPT (Figure 1b), a simplified soil profile was 

created, consisting of three layers of sand each having a different relative density. The targeted relative 

densities were then used to calculate target voids ratios for each soil layer during the bed formation 

process. To reduce complexity, the clay layer 1 m below the required helix depth (3 m) was modelled 

as a continuation of the dense sand layer (above). The effect on the results of this assumption is thought 

to be limited, as the pile penetrates in the upper sand layers and only tensile loading was applied. A 

DEM representation of each layer was then created using parameters of a known sand which has 

previously been calibrated against laboratory triaxial tests (Table 1) (Sharif et al., 2019a). To create the 

soil layers the radius expansion method was used along with the periodic cell replication method 

(Ciantia et al., 2018). 
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The sand modelled in the simulations is based upon the properties of HST95, which is a medium to fine 

well graded sand (Al-Defae et al., 2013; Lauder et al., 2013). These parameters were not specific to the 

field study site as it was felt this may not be available in a commercial setting. In absence of this, it may 

be possible to tune the soil contact model to suit the observed CPT data but this would involve a trial 

and error process for sample formation which as shown in Table 3 can take considerable time. To model 

the geometry of the screw pile, rigid boundaries, with the interface properties previously calibrated and 

validated against centrifuge tests by Sharif et al. (2019a) were used. The geometries match the piles 

used in the field tests, the main geometric controls were kept constant, e.g. the helix and shaft diameter, 

whilst the helix pitch was varied. The final embedment depth of the piles was 3m below ground level 

(BGL) (Figure 2). The shaft of the screw piles were modelled as being artificially plugged due to the 

size of the particles in relation to the shaft diameter. This is similar to the approach adopted in small 

physical modelling where plugging cannot be adequately scaled due to particle size effects (Davidson 

et al., 2020). During the field test the screw piles had an open central core resulting in an average plug 

length ratio of 0.15 indicating that they plugged early on in the installation process and therefore 

effectively behaved as plugged piles. Thus the approach adopted in the DEM modelling is effectively 

the same as that encountered in the field. The location of the screw pile installations compared to the 

CPT can be seen in Figure 3. The screw piles were installed at a maximum distance of 6.7m from the 

location of the CPT. 

To reduce the run time of the simulations the particle refinement method (McDowell et al., 2012) was 

used in the soil bed formation (Figure 4). This process uses scaling of the particle size distribution 

(PSD) in the central region of the soil bed, and an increasingly larger PSD scaling in regions further 

away (Sharif et al., 2019b). This method allows for a smaller number of total particles to be present 

within the soil model without losing the resolution of results in the region of most interest, similar to 

mesh refinement in finite element modelling. To ensure that multiple particles are able to pass through 

the opening of the smallest helix pitch (3 inch or 76.2 mm) the scaling of the PSD in the central zone 

was limited to 120 (largest particle diameter of 25.5 mm), which typically results in an average of 30 

particles passing through the opening of the 3-inch (76.2 mm) helix pitch (Figure 4c). The properties 

of the contact model for each soil layer were the same, allowing for the total number of particles to be 

significantly reduced (Table 2). This ultimately reduces the run time, while maintaining the precision 

of particle scaling.  

Once the bed was created a 36mm diameter virtual CPT was conducted (the same diameter as the one 

used in the site investigation of the AGFarm site) in the soil bed and compared to the field data to 

validate the approach (Figure 1). The results of the DEM CPT generally match those of the field test 

although the DEM underestimates the cone resistance of the sand near the surface and the CPT 

resistance at 3m BGL. This is thought to be due to loosening of the dense soil layer, when the individual 

layers are combined during bed creation. As layers are created in isolation, the contact forces at the 

interface between layers are only formed when combined. The contact forces may become very large, 

resulting in the individual particles moving away from one another in attempt to equilibrate. This results 

in a loosening of the dense layer and densification of the medium dense layer above. This may suggest 

a need to form denser layers to offset this loosening during combination. With further refinement it 

would be possible to improve the match to the field CPT results but as this was an experiment in seeing 

how commercially applicable the approach is, this was not done here. 

To model installation of each screw pile, the advancement ratio (AR) (Sharif et al., 2021), defined as 

the displacement for a single rotation divided by the geometric pitch of the screw pile, measured in the 

field tests was replicated (Figure 5). From the study of Sharif et al (2021) it is known that the 

advancement ratio of the pile has a significant effect on the axial capacity of the screw pile. Thus, the 

advancement ratio from the field tests were replicated in the DEM simulations. Once the pile reached 

the required depth, the pile was unloaded, and an uplift (tensile) test conducted. 
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To assess the practicality of using DEM commercially the time taken for each operation is shown in 

Table 3. All simulations were conducted using an Intel Xeon E5-2630v3 with 32Gb of RAM and 

PFC3D 5.0.39 (Itasca Consulting Group, 2016) 

Results and discussion 

The installation torque, uplift capacity and Kt values for each pile field test and comparative DEM 

simulation can be seen in Figure 6 to Figure 8. Compressive installation force (crowd force) are not 

typically recorded in practice and were not recorded during field test installation and therefore cannot 

be compared with the results of the DEM simulations. 

The comparison of the installation torque between the DEM results and those of the field tests are 

generally consistent (Figure 6). The DEM results for the 4-inch and 6-inch helices are very close to the 

field tests, while the numerical prediction overestimates the torque for the 3-inch geometry. The 

difference between the DEM and field results could be explained by the heterogeneity of the soil profile 

in the field, and the average representation of the soil layers in DEM, that can be seen in Figure 6. This 

could be addressed by further evolution of the soil bed (i.e. accounting for the loosening during sample 

formation mentioned previously), but it highlights that DEM could be used to predict installation 

requirements for piles of different geometry. Comparison between the uplift capacity from DEM and 

field tests shows a similar trend (Figure 7). The stiffness is very consistent, although the ultimate 

capacity is under predicted (typically a 12 % decrease at z/Dh = 0.1) although a very similar trend with 

increasing helix pitch is seen. This is thought to be due to the differences in the field between the CPT 

and pile locations and how well the DEM soil bed matched reality. The latter may have a stronger effect 

as the pile helices are installed where the DEM CPT simulation results in the greatest “averaging” 

compared to that measured in the field (Figure 1a at a depth of 2.5 m to 3.2m). In uplift this would seem 

to be one of the more important regions for careful replication in DEM and with hindsight could have 

been split into sub layers in the DEM bed. 

When assessing the effect of the helix pitch on the installation torque, it appears insensitive to the helix 

pitch (within the range tested) with only some limited variation observed in the field study. A potential 

reason for this variation could be the difference in advancement ratio (AR) (Figure 5) and how well this 

was controlled during field installation. Field testing undertaken by Richards et al., (2019) also showed 

limited effects of helix pitch on installation torque for two Dh/Dc (helix diameter to shaft diameter) 

ratios. In their study the pitch was varied from 100-200mm (approx. 4” to 8”). Further investigation 

would be required using a single AR to clearly identify the effect of the helix pitch and AR 

independently. 

The ultimate capacity Qt, defined at z/Dh = 0.1 was used to back calculate the value of Kt for each of the 

piles (Figure 7). Figure 8 shows the values of Kt for both the DEM and field tests where the values vary 

considerably. Kt ranges between 24 and 15 for the field tests and 20 and 25 for the DEM results. 

Variation in the Kt is a result of the difference in pile tensile capacity with the 6-inch (152.4 mm) helix 

pitch having an 8% increase in capacity compared to the 3-inch (75.2 mm) pile and no increase in 

installation torque. This is contrary to the assumption that the torque correlation factor should be 

constant with the shaft diameter and not change with helix pitch or soil conditions. The value of Kt 

calculated using equation 2 results in a value of 25.3, which is greater than all but one of those found 

herein and would result in over prediction of pile capacity by up to 18%. 

Conclusion 

This study uses DEM simulation to hindcast field behaviour to see if CPT data can be used to create an 

appropriate DEM soil model and then use this to predict field screw pile behaviour. Using CPT tests 

conducted at a field site, a layered soil bed was created using DEM to match the relative density 

encountered. This was done without any refinement or evolution of the DEM model to simulate the 

time pressures of a commercial environment. The numerical simulations were generally able to 

reproduce the installation torque and uplift capacity recorded from field pile tests. Variations between 
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the field study and the DEM simulations occurred due to the idealised soil profiles and heterogeneity 

within the field site, although with more time a more realistic DEM soil bed could be prepared. 

The results of the DEM simulations suggest that the installation torque is insensitive to helix pitch, 

however, the uplift capacity may be affected. No definitive trend of how the helix pitch affects ultimate 

capacity was observed although it appeared to increase for the greatest pitch. As the advancement ratio 

(AR) varies for each of the piles it is difficult to separate out the effects of the helix pitch and AR. The 

results do however suggest that there is no single value of Kt for screw piles that have the same shaft 

diameter but other geometry variations. Further work is required to understand which properties of the 

screw pile, the soil (e.g. layered soils) and the installation method (e.g. variable AR during installation) 

effect the installation and in-service behaviour. This work shows that DEM is a powerful simulation 

technique in the study of large deformation installation and loading processes and that with further 

refinement could see greater use as a commercially viable design tool. 
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Table captions 

Table 1: HST95 sand physical and numerical properties (Sharif et al. 2019a) 

Table 2: Soil bed or bed properties 

Table 3: Time required to run each phase of the DEM simulations. 

Figure captions 

Figure 1: a) Comparison of CPT cone resistance with depth for field tests and the DEM simulations b) 

Comparison of calculated relative density with depth for field tests and the DEM simulations 

Figure 1: Schematic diagram of screw piles used in the DEM simulations; all screw piles are 3m in 

length (as was the case in the field study) 

Figure 2: Schematic plan of pile load test locations in relation to CPT shown in Figure 1 

Figure 4: Image of soil DEM bed created using the particle refinement method, a) plan view of 

Particle scaling in concentric zones b) Partially installed screw pile with 3 inch (76.2 mm) helix pitch. 

(colour of particles indicates the regions of different particle scale, density layering not shown for 

clarity) c) Close up of particles surrounding the 3 inch (76.2 mm) helix 

Figure 5: Advancement ratio with depth from field measurements, replicated during the installation 

in DEM of each pile 

Figure 6: Installation torque with depth for screw piles of various helix pitches from DEM and field 

tests 

Figure 7: Uplift capacity against normalised displacement for screw piles of various helix pitches 

from DEM and field tests 

Figure 8: Back calculated empirical torque correlation factor of screw piles used in this paper. 
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Notation list 

BGL Below ground level 

CPT Cone penetration test 

DEM Discrete element method 

AR Advancement ratio 

D30 soil particle diameter at which 30% of the mass of a soil specimen is finer 

D60 soil particle diameter at which 60% of the mass of a soil specimen is finer 

Dc core diameter 

Dh Helix diameter 

DR Relative density 

G Shear Modulus 

Kt Torque correlation factor 

qc CPT cone resistance 

Qt Tensile capacity 

T Installation torque 

γ Sand unit weight 

γmax Maximum dry density 

γmin Minimum dry density 

δ Interface friction angle 

μ Friction coefficient 

μpile Interface friction coefficient 

ν Poissons ratio 

φ Critical state frictional angle 
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Figure 1b.tif Figure RVT Review Copy Only 14



Auto-generated PDF by ReView Géotechnique Letters
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Figure 6.tif Figure RVT Review Copy Only 19



Auto-generated PDF by ReView Géotechnique Letters
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Table 1: HST95 sand physical and numerical properties (Sharif et al. 2019a) 

HST95 silica sand property Value 

Physical properties  

Sand unit weight γ (kN/m3) 16.75 

Minimum dry density γmax (kN/m3) 14.59 

Maximum dry density γmin (kN/m3) 17.58 

Critical state friction angle, φ (degrees) 32 

Interface friction angle, δ (degrees) 18 

D30 (mm) 0.12 

D60 (mm) 0.14 

DEM Parameters  

Shear modulus, G (GPa) 9 

Friction coefficient, µ (-) 0.264 

Poisson’s ratio, ν (-) 0.3 

Interface friction coefficient [pile], µpile (-) 0.16 

Note : No local nor global damping used in any of the simulations 
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Table 1.docx Table RVT Review Copy Only 22



Table 1: Soil bed or bed properties 

Soil Bed property Value 

Total Height 6m 

Diameter 3m 

Layer 1 depth  0-1m 

Layer 2 depth 1-2.3m 

Layer 3 depth 2.3m-5m 

Central zone PSD scaling 120 

Total number of particles  850,000 
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Table 1: Time required to run each phase of the DEM simulations 

Phases of the simulation Time (h) 

Layer 1 formation 12 

Layer 2 formation 6 

Layer 3 formation 11 

Combining of layers 8 

Installation of Pile 120 

Uplift capacity test 5 
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