
                                                                    

University of Dundee

Drift of elastic floating ice sheets by waves and current, part I

Kostikov, V.; Hayatdavoodi, M.; Ertekin, R. C.

Published in:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

Publication date:
2021

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Kostikov, V., Hayatdavoodi, M., & Ertekin, R. C. (2021). Drift of elastic floating ice sheets by waves and current,
part I: single sheet. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
477(2254).

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Dec. 2021

https://discovery.dundee.ac.uk/en/publications/f31785c1-9af9-43e8-b241-5437beddd44c


Authors Accepted Manuscript;

Not Copy-edited by the Journal.

rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

applied mathematics, fluid

mechanics, oceanography, ocean

engineering, wave motion

Keywords:

wave-induced drift, wave-current

loads, hydroelasticity, nonlinear

wave-structure interaction,

deformable ice sheets, Green-Naghdi

equations

Author for correspondence:

M. Hayatdavoodi

e-mail:

m.hayatdavoodi@dundee.ac.uk

Drift of elastic floating ice
sheets by waves and current,
part I: single sheet

V. Kostikov1, M. Hayatdavoodi1,2 and

R. C. Ertekin1,3

1 College of Shipbuilding Engineering, Harbin Engineering
University, Harbin, China
2School of Science and Engineering, University of Dundee, DD1
4HN, UK
3Ocean & Resources Engineering Department, University of

Hawaii, Honolulu, HI 96822, USA

The drift motion of a freely floating deformable ice

sheet in shallow water subjected to incident nonlinear

waves and uniform current is studied by use of the

Green-Naghdi theory for the fluid motion and the

thin plate theory for an elastic sheet. The nonlinear

wave- and current-induced forces are obtained by

integrating the hydrodynamic pressure around the

body. The oscillations and translational motion of the

sheet are then determined by substituting the flow-

induced forces into the equation of motion of the body.

The resulting governing equations, boundary and

matching conditions are solved in two-dimensions

with a finite difference technique. The surge and

drift motions of the sheet are analyzed in a broad

range of body parameters and various wave-current

conditions. It is demonstrated that wavelength to

sheet length ratio plays an important role in the drift

response of the floating sheet, while the sheet mass

and rigidity have comparatively less impact. It is

also observed that while the presence of the ambient

current changes the drift speed significantly (almost

linearly), it has little to no effect on it’s oscillations.

However, under the same ambient current, the drift

speed changes remarkably by the wave period (or

wavelength).

An object floating freely on the ocean surface drifts as a

result of combined action of waves, currents and wind.

The drift motion is typically accompanied by oscillations

at the frequencies of the incident wave. To the author’s

knowledge, this is one of the first studies on nonlinear

wave- and current- induced drifting motions of floating

ice sheets, particularly in shallow waters.
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1. Introduction2

As a result of global warming, larger areas of the ocean surface in polar regions are being3

released from ice in summertime [1]. This stimulates the development of Northern sea routes and4

facilitates the mining operations there. At the interface between open waters and frozen ocean,5

there are marginal ice zones (MIZ) consisting of the ice floes of different sizes and shapes, which6

on interaction with ocean waves and currents may drift towards moving vessels or stationary7

offshore structures [2]. Ice floes in the MIZ can be extremely mobile with instantaneous drift8

speed of as large as 0.75 m/s in storm conditions [3]. The hazards of the drifting ice to offshore9

and shipping operations can be estimated by proper description of wave- and current-induced10

ice motions. This would allow prediction of the velocity of the travelling ice and the dispersal11

rates for groups of floating ice objects of different sizes. Mutual collisions and vertical stacking12

(rafting) of the ice floes are thought to be the source of both floe destruction and composite ice13

formation [4]. Ice floes increase in diameter and thickness as a result of periodical wave action,14

pushing the individual ice floes into composite ice formations [5]. Thus, in addition to melting,15

surface waves play a determining role in forming the shape of MIZ. In view of this, it is of16

interest to understand the principles of wave and current interactions with the ice sheets and17

other floating objects prior to collision.18

As it is evident from the above, there is need for developing models capable of describing19

the drift response of floating deformable objects to incident waves and currents. The process of20

transport of fluid particles by waves is known as «Stoke’s drift» [6], and in the absence of the21

floating body is quite well understood, but theoretical studies on the subject of wave and current-22

induced drift of floating objects are extremely rare. The development in this field so far is limited23

mainly to the case of small rigid bodies and linear potential flows.24

Historically, the problem of interaction between the fluid and floating rigid bodies has25

been solved theoretically by perturbation expansions methods with a small parameter [7,8], or26

numerically by the finite element method (FEM) or boundary element method (BEM) [9,10]. In a27

classic survey on motion of floating bodies by Wehausen [11] the general equations governing the28

motion of a floating rigid body in regular and irregular waves with the linear theory framework29

were presented. Apart from the linear wave force responsible for the major part of wave loading,30

there is nonlinear force components, giving rise to an actual drift of the body. Faltinsen &31

Locken [7] solved the boundary-value problem to the second order in wave amplitude and32

calculated the necessary slow drift excitation forces. Two different approaches to calculate the33

horizontal force exist, namely, the near-field and far-field methods. The near-field method is34

based on direct integration of all contributors to the second-order force over the instantaneous35

wetted surface of the floating structure. In the far-field method, the drift force is obtained from36

the linear momentum flux at infinity. Grue and Palm [12] used both near- and far-field formulas37

for calculation of the drift forces on a ship in waves with and without current. Chen [13] showed38

the equivalence of both approaches and combined them to derive the middle-field approach for39

calculation of the second-order wave loads.40

The most commonly used approach to describe the drift motion of ice floes in waves is the41

slope-sliding model. In this model, originally proposed by Rumer et al. [14] and further developed42

in subsequent works [5], [15–17], the wave is simplified as a slope along which the floe can slide43

under the action of gravity without disturbing the wave field. This model is based on modified44

Morison’s equation, valid for slender floating bodies. It suggests that, when wavelength is much45

longer than dimensions of the body, the wave diffraction is negligible. For wavelengths less than46

two floe diameters, as to Meylan et al. [16], an alternative method is required.47

In order to track the moving fluid-solid contact surface and thereby describe the motion48

of a freely floating body, adaptive moving mesh (a.k.a. dynamic mesh) methods are required.49

In adaptive schemes, the grid used in calculations does not depend on the location of the50

body relative to the surrounding fluid. Such a grid makes the computation of nonlinear51

problems with the two-way fluid moving body interaction more efficient than conventional52
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approaches. For example, in the Constrained Interpolation Profile method (CIP) the fluid-body53

interaction is treated as a multi-phase problem, which has liquid, gas and solid phases, modelled54

numerically by one set of hydrodynamic equations on a nonuniform staggered Cartesian grid55

[18]. The moving boundaries are distinguished by a density function. In Smoothed Particle56

Hydrodynamics method (SPH), a Lagrangian approach, the fluid medium is represented as a57

collection of separate particles interacting with each other and with the solid body [19]. These58

fluid particles transport mass, momentum and energy as they move inside the computational59

domain. In principle, the meshless character of the SPH-based methods allows to treat the free60

motions of a body inside the fluid domain in an easier way with respect to the mesh-based solvers61

and thereby are appropriate for description of simultaneous motions of constantly changing62

free surface and solid boundaries. In spite of the ability to model strongly nonlinear wave-63

body interaction problems accurately, SPH-based models are time-consuming and require high64

computational powers.65

If ocean waves have wavelength much larger than the ice thickness, as discussed by Weber [20],66

the ice can be treated as a layer of viscous Newtonian fluid. Using the Lagrangian formulation,67

Weber [20] described the displacement and pressure fields in the viscous layer in terms of68

expansions with wave amplitude as a small parameter. Under the same assumption, Law69

[21] utilized the conformal mapping for a series of progressive waves propagating under an70

inextensible thin film and produced the estimation for the drift velocity, caused by combined71

shear stresses and pressure force.72

To date, despite the development of some numerical models and laboratory investigations of73

floe response in waves, to the authors’ knowledge, no approach is developed to study interaction74

of nonlinear waves and currents with drifting elastic structures in waters of finite depth which are75

large enough to modify the flow field. The present study is the first attempt to build theoretical76

model of wave- and current-induced drift of an elastic plate of arbitrary length, elasticity and77

thickness and provide insight about the fluid and structure dynamics. In our recent work [22], we78

have considered the interaction of nonlinear waves with a set of elastic plates, restricted to the79

vertical motion. In this paper, we will study wave and current interaction with a floating elastic80

sheet, which is free to drift horizontally.81

The outline of the remaining of the paper is as follows. Firstly, the methodology, including the82

model description, governing equations, boundary conditions, determination of the horizontal83

forces, and numerical calculation method are presented. Then, the constructed model is tested84

first by comparing with the available data and then by performing the analysis with various85

elastic sheets and incoming waves and current conditions. Finally, some conclusions are made86

based on the model performance and obtained results. Analysis of any model involving multiple87

structures should start with the analysis of a single object. Therefore, the focus of the part I of this88

study will be on the single elastic sheet, and the part II shall be dedicated to the case of multiple89

sheets.90

2. Mathematical formulation91

An elastic sheet of length L, thickness δ, mass per unit width m, draft d, and flexural rigidity D is92

floating freely on the surface of an inviscid fluid of constant density ρ and depth h (figure 1). The93

sheet is initially at rest and is free to move horizontally with respect to the stationary seafloor. The94

Cartesian reference frame will be used in which the x axis is pointing to the right, y axis is directed95

upwards, and its origin is situated on the undisturbed free surface. Nonlinear incident waves of96

height H and length λ (or period T ), created by the wavemaker, propagate in the positive x–97

direction and interact with the floating sheet. Uniform current is also generated by the wavemaker98

(here wave- and current-maker) and may be faworable (in positive x direction) or adverse.99

It is assumed that the elastic sheet is directly in touch with the fluid at all times and the friction100

at the contact surface is negligible. Overwash, formation of air gaps, cracks and jets are excluded101

from the fluid-sheet interaction process. In a recent study on overwash by [23], it is found that102

the fluid spilling onto the upper surface of the sheet has an impact on responses in terms of103
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Figure 1. Schematic of the problem of waves and current interaction with a deformable surface on top, and the two fluid

regions referred to in the text.

deflection amplitudes, energy dissipation and wave transmission. The same group of authors104

reported earlier [24] that drifting plates experience less overwash than the plates with mooring.105

The depth of the fluid under the sheet at rest is h1 = h− d. The equations are formulated106

and the results are presented in dimensionless form after using ρ, h and g as a dimensionally107

independent set, where g is the acceleration due to gravity. It should be noted that the magnitudes108

of dimensionless unit mass m and dimensionless draft d are equal. Henceforth, all variables,109

unknown functions and parameters are dimensionless unless otherwise stated.110

(a) The Green-Naghdi equations111

The mathematical formulation of wave interaction with an elastic sheet is based on the nonlinear112

Level I Green-Naghdi (GN) theory. The GN theory was originally developed by Green & Naghdi113

[25,26] from the theory of directed fluid sheets for any type of incompressible medium. In the114

absence of any perturbation and scaling restrictions, the GN equations satisfy the nonlinear115

boundary conditions exactly, while the integrated mass and momentum conservation laws are116

postulated. In the Level I GN theory, utilized in this study, a linear distribution of the vertical117

velocity along the water column is assumed, which leads to horizontal velocity being invariant118

over the water column. Hence, the Level I GN equations are applicable to propagation of long119

waves in shallow water.120

Note that irrotationality of the flow is not a requirement in general, although this assumption121

can be made and would result in an special version of the equations known as the Irrotational122

Green-Naghdi Equations (IGN), see [27,28] for derivations of the IGN theory, and [29,30] for123

some applications (including comparisons of IGN results of variable levels with Level I GN124

equations utilized here). High-level GN equations, generally applicable to nonlinear, unsteady125

flow motion in any water depths, can be obtained by assuming higher order polynomials (or,126

alternatively, exponential functions) for the vertical velocity distribution over the water column.127

Further discussion on the High-level GN equations can be found in [31–34].128

In the analysis of this problem, it becomes necessary to divide the domain into regions of two129

types. On the top of Region I (RI) there is a free surface, where the fluid pressure is constant130

atmospheric pressure, and the surface tension is negligible. On the top of Region II (RII) there is131

an elastic plate, where, as opposed to Region I, the fluid pressure is variable. Regions RI and RII132

are connected through discontinuity lines going vertically from the plate edges to the bottom.133

The basic equations governing the fluid motion in RI are provided by the Level I GN theory134

for a flat and stationary seafloor and zero top pressure, written in dimensionless form as [35]:135

η,t + (1 + η)u,x + uη,x =0, (2.1)

3u̇ + 3η,x + 2η,xη̈ + (1 + η)η̈,x = 0, (2.2)

for the unknown horizontal fluid velocity u(x, t) and free surface elevation η(x, t), measured from136

the still water level. Subscripts after comma denote partial derivatives with respect to the given137

variable and upper dot specifies the total time (or material) derivative. Note that equations (2.1)138
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and (2.2) are statements of conservation of mass and linear momentum, respectively. The same139

way, the governing equations for the fluid flow under elastic sheets in RII is formulated as:140

ζ,t + (h1 + ζ)u,x + uζ,x = 0, (2.3)

3u̇ + 3ζ,x + 3p̂,x + 2ζ,xζ̈ + (h1 + ζ)ζ̈,x =0, (2.4)

where ζ(x, t) is elastic deformation of the sheet, measured from its stationary position. The fluid141

pressure at the fluid-structure contact surface p̂(x, t) is coupled with the structural elasticity by142

the thin plate theory [36]:143

p̂−m(1 + ζ,tt)−Dζ,xxxx = 0, (2.5)

where the flexural rigidity is defined by144

D=
Eδ3

12(1− ν2)
, (2.6)

with δ, E and ν being the thickness, Young’s modulus and Poisson’s ratio of the sheet,145

respectively. Note that formula (2.5) for the elastic plate can be modified to include extra terms,146

e.g. compressive stress which is proportional to the second derivative of the plate deformation147

ζxx. Barman et al. demonstrated that in the presence of compression, the group velocity of148

hydroelastic wave under certain conditions goes to zero, i.e. wave blocking can occur under such149

conditions, see [37].150

Ertekin [38] derived the explicit relations for the vertical velocity along the water column:151

v(y) = η̇(1 + y)/(1 + η), in RI, v(y) = ζ̇(1 + y)/(h1 + ζ) in RII, (2.7)

and pressure on the bottom y =−1:152

p̄=
1

2
(1 + η)(η̈ + 2) in RI, p̄=

1

2
(h+ ζ)(ζ̈ + 2) in RII, (2.8)

which can be written both under the free surface in region RI and under the sheet in region RII .153

Pressure distribution in both regions can be obtained from Euler’s equation in the form [22]:154

p(x, y) =







1
2
(1 + η)(η̈ + 2)− (y + 1) − 1

2
(y + 1)2η̈/(1 + η), (x, y)∈RI

1
2
(hi + ζ)(ζ̈ + 2) + p̂− (y + 1)− 1

2
(y + 1)2ζ̈/(h1 + ζ), (x, y)∈RII.

(2.9)

Vertical velocity v(y) and pressure p(x, y) are not involved in constitutive equations (2.1)–(2.4)155

and therefore can be found analytically from relations (2.7)–(2.9), once the solution η, ζ and u are156

known. For detailed analysis of the fluid velocity and pressure fields under collection of elastic157

plates the reader is referred to [22].158

(b) The boundary, matching and jump conditions159

Equations (2.1)–(2.4) already include the exact nonlinear kinematic and dynamic boundary160

conditions at the free surface y = η(x, t) and fluid-structure contact surfaces y = ζ(x, t), as well161

as the impermeability condition on the bottom y =−1. For a continuous solution throughout the162

domain, it is necessary to connect the solutions obtained in each region through proper boundary163

and matching conditions at the interfaces dividing the regions. Since an ice sheet can drift under164

the action of waves and current, the horizontal coordinates of the leading and trailing edges xL165

and xT are not fixed. The edges as well as all points of the sheet undergo the same drift motion166

with velocity U(t), so that any possible deformation occurring in the sheet is limited to the vertical167

bending. At the edges of a freely floating sheet, bending moments and shear stresses should be168

zero, i.e.,169

ζ,xx = 0, ζ,xxx = 0 (x= xL, x= xT ). (2.10)

Moreover, by assumption, the sheet is always in contact with the fluid, so that no air gaps are170

allowed. Therefore, the mass continuity equation (2.3), valid throughout the domain, together171
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with condition (2.10) imply:172

3ζ,xu,xx + (hi + ζ)u,xxx = 0 (x= xL, x= xT ), (2.11)

4ζ,xu,xxx + (hi + ζ)u,xxxx + ζ,xxxx(u− U) = 0 (x= xL, x= xT ). (2.12)

The presence of elastic surface with non-zero draft causes jumps in the fluid layer thickness173

throughout the flow domain. This leads to discontinuity of fluid particle velocity u(x, t) and its174

derivatives at the interfaces between regions. Under such conditions, the theory demands for175

appropriate jump conditions to ensure continuity of mass, momentum and energy (in general)176

across the discontinuity curves, see [39–43] for derivations of the jump conditions of the GN177

equations as applied to a number of problems. See Hayatdavoodi and Ertekin [44] for a derivation178

of the jump conditions for nonlinear wave interaction with a thin plate by the Level U GN179

equations (as applied here).180

Moreover, the physics of the problem demands the continuity of mass flux across the181

discontinuity curves between the regions, formulated as follows:182

η(u− U)|xL−0 = ζ(u− U)|xL+0, ζ(u− U)|xT−0 = η(u− U)|xT+0. (2.13)

Here, xL ± 0 and xT ± 0 denote the single-sided limiting values of xL and xT , respectively. In183

equation (2.13), the instantaneous drift speed of the sheet U is subtracted from the limiting values184

of horizontal fluid velocity at the edges, to account for the moving boundaries. We also require185

continuous bottom pressure p̄ across the discontinuity curves, which is evaluated from equation186

(2.8), across the interfaces between the regions, i.e.,187

1 + η

2
(η̈ + 2)|xL−0 =

h1 + ζ

2
(ζ̈ + 2)|xL+0 + p̂|xL+0, (2.14)

h1 + ζ

2
(ζ̈ + 2)|xT−0 + p̂|xT−0 =

1 + η

2
(η̈ + 2)|xT +0. (2.15)

On the left side of the domain, a numerical wave- and current-maker generates periodic188

nonlinear waves (cnoidal waves), satisfying the GN equations (2.1)–(2.2), and uniform current,189

when required. Derivation of the periodic shallow-water wave solution of the Level I GN190

equations can be found in [45]. The combined action of wave and current of constant speed Uc is191

determined by specifying the horizontal velocity at the wavemaker as:192

uc(x− ct) =
c · η(x− ct)

1 + η(x− ct)
+ Uc, (2.16)

where η is the cnoidal wave solution at the wavemaker and c is the constant phase speed of the193

wave. On the right side of the domain, the open-boundary Orlanski’s condition is prescribed to194

reduce reflections back into the wave tank:195

η,t ± cη,x = 0, u,t ± cu,x = 0. (2.17)

Initially, the fluid is either at rest or flows with the speed of the current Uc:196

η(x, 0) = 0, u(x, 0) =







0, waves-only cases

Uc, waves & current combined.
(2.18)

Supplemented by boundary and initial conditions (2.10)–(2.18), equations (2.1)–(2.5) represent a197

set of coupled, nonlinear partial differential equations that may be solved for unknowns η(x, t),198

ζ(x, t), u(x, t) and p̂(x, t). The number of unknowns, however, is one more than the number of199

equations. The system of equations is closed by considering the equation of motion of the ice200

sheets.201
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(c) Drift motion of the sheet202

In the absence of collisions, the drift motion of floating sheets due to hydrodynamic pressure203

forces is determined by solving Newton’s second law. Hence, the translational motion of the204

center of mass of the floating sheet, including its horizontal velocity U and coordinate X , is205

determined through:206

mL
dU

dt
= F (t),

dX

dt
=U(t). (2.19)

Following the near-field approach, the horizontal projection of hydrodynamic pressure force F207

is calculated by integrating the fluid pressure along the fluid-sheet contact surface y= ζ(x, t),208

from the leading edge to the trailing edge, and taking the horizontal component of the resulting209

pressure force, i.e.,210

F (t) =−

xT∫

xL

p̂(x, t)ζ,xdx+ f(t). (2.20)

The term f(t) in formula (2.20) denotes the horizontal force on to the edges of the sheet. Since211

the sheet is immersed into the fluid and has non-zero draft, the pressure differential of the edges212

of the sheet contribute to the total horizontal force. In view of the shallow water conditions and213

thinness of the sheet, we assume linear distribution of hydrodynamical pressure across the edges214

of the sheets (see [22,46,47] for discussion on vertical pressure distribution under Level I GN215

equations). Hence, pressure varies from p̂ at the bottom edges of the sheet bottom surface to zero216

on the free surface. The force associated to the leading and trailing edge pressure differentials f217

is given as218

f(t) =
p̂(xL, t)

2

[

η(xL, t)− ζ(xL, t) + d
]

−
p̂(xT , t)

2

[

η(xT , t)− ζ(xT , t) + d
]

. (2.21)

There may be difference between surface elevation and plate deformation at the edges. But if to219

take the SWL as the reference, the term f(t) can be approximated by:220

f(t) =
1

2

[

p̂(xL, t)− p̂(xT , t)
]

d. (2.22)

The wave reflection occurs due to the passage from region RI to region RII , characterized by221

different thickness of the fluid layer and pressure on top. The friction forces associated with the222

disposition of the sheets relative to the fluid are assumed negligible when compared with the223

wave-induced force. Note, that integration limits xL, xT , as well as the integrand p̂(x, t) change224

with time. Hence equations (2.19)–(2.20) are coupled with the system (2.1)–(2.5) through the drift225

motion and should be solved simultaneously for the unknowns.226

(d) Numerical solution227

The computational procedure consists of the following recurring blocks. First, the free surface228

elevation η(x, t) in Regions RI and sheets deformations ζ(x, t) in Regions RII are calculated from229

equations (2.1) and equations (2.3), respectively. Then, the horizontal velocity u(x, t) is calculated230

from momentum equations (2.2) and (2.4), subjected to the boundary and matching conditions231

(2.12)–(2.15). The structure of governing equations allows to eliminate the time derivatives of η232

and ζ from momentum equations (2.2) and (2.4), so that unknown functions can be evaluated233

independently at each time step, see [38] for more details. In spatial discretization, we use the234

second-order accurate central-difference formulas for derivatives, and for marching in time we235

employ the explicit modified Euler’s method. Momentum equations (2.2) and (2.4) are finally236

reduced to a set of linear equations with a banded matrix, which is solved by the Gaussian237

Elimination algorithm. For further details about the discretization and matrix evaluation the238

reader is referred to [44], where a similar numerical scheme has been successfully applied to the239

problem of wave interaction with a submerged rigid plate.240
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Figure 2. (a,b) Time history of horizontal force on a freely floating sheet (L=3, m= 0.1, D= 1) under the action of a

cnoidal wave (λ/L=5, H =0.2) without current, obtained by use of (c) different grids.

The horizontal position X of the drifting sheet changes with time, as it depends on direction,241

duration and magnitude of the wave forcing, according to equation (2.19). The sheet is assumed242

inextensible in horizontal direction, and the unknown X can denote any point on the sheet:243

leading edge xL, trailing edge xT , or its center of mass, differing by a constant. The numerical244

integration of equations (2.19) is implemented by the two-step modified Euler’s method as245

follows:246

Un+1 =Un +
Fn

mL
∆t, Xn+1 =Xn + Un∆t, (2.23)

Un+1 =Un +
1

2

Fn + Fn+1

mL
∆t, Xn+1 =Xn +

1

2
(Un+1 + Un+1)∆t, (2.24)

where n is the time iteration index, ∆t is the time step and superscript n+ 1 indicates the results247

at the middle step. Thus, knowing the previous position Xn, instantaneous velocity Un and248

horizontal force Fn, the new position of the sheet Xn+1 can be determined.249

In our formulation, there is no gap between the fluid and the floating sheet at all times.250

Therefore, the position and length of regions RI and RII may change with horizontal motion251

of the sheet. In the present numerical scheme, the location of discontinuity curves between252

regions are updated repeatedly according to relations (2.23) and (2.24). Since we use uniform253

mesh, the change in the location of the boundaries occurs when horizontal displacement of the254

sheet X exceeds the size of the grid ∆x. Hence, we take ∆x sufficiently small to ensure that255

motions, however small, are captured; this will be revisited in the following sections. To ensure256

the continuity of surface elevation and fluid particle velocity in the open water Regions RI during257

the relocation process, the calculated solution is redistributed inside the inner nodes using the258

linear interpolation formula.259

The effect of space and time discretization, as well as their ratio, is studied by the convergence260

of the solution shown in figure 2. The results obtained through different mesh configurations are261

very close, yet with a finer space discretization, the differences between the calculated results262

tend to be even smaller, which implies the numerical convergence of the scheme. Figure 2 implies263

that even though the horizontal motion of the sheet can be of a smaller scale than the spatial grid264

size, this has a negligible effect on the final solution. In subsequent sections, we will use the grid265

G3 as the converged mesh, which is optimal for the current problem regarding the accuracy and266

calculation time.267
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Figure 3. Comparisons of deformation heights of the sheet (L= 60, m=0.05, D=28.5) under the action of regular

waves of lengths (a) λ/L=0.1 and (b) λ/L= 0.18 without current.

3. Comparisons with experiments and alternative models268

Validation of the results obtained in this study is difficult due to the lack of experimental data269

and numerical calculations in the field. Existing experimental works with unconstrained drift270

are mostly confined to studies with polyethylene plates of extremely small size [48,49]. This is271

justified by an assumption that small plates, having comparable thickness and length dimensions,272

behave as rigid bodies and thus their flexural response can be neglected. Many numerical273

calculations were also conducted with short-sized plates, because in underlying theoretical274

models small plate length to wavelength ratio was required in order to eliminate the effect of the275

floating plate on the incident wave [5,16,17]. The numerical study on the drift of long elastic sheets276

of Watanabe et al. [50] was conducted for infinite water depth condition and is not applicable to277

this study.278

Therefore, for comparison purposes, we initially examine the hydroelastic behaviour of279

various floating sheets in different wave conditions without current, restrained from moving280

horizontally, and focus on the performance of the model in determining the elastic deformations.281

Figures 3 and 4 compare the deflection amplitudes at each point of the sheet predicted by the282

GN equations and calculated by eigen-expansion method [8,10]. Comparisons are normalized283

with respect to the wave height H , and the horizontal coordinate is normalized with respect to284

the sheet length L. Figures 3 and 4 illustrate that the deformation increases significantly near285

the edges of the sheet and varies oscillatory in the middle part. The frequency and amplitude286

of the pattern depends not only on the wavelength/period, but also on the length, mass and287

rigidity of the structure. The longer the wave is, the longer are the deformations experienced by288

the sheet. Shown in figures 3 and 4, both the GN solution and linear solutions, obtained by eigen-289

expansion method, exhibit the same behaviour and are in a nearly perfect agreement. In addition,290

figure 4 complements the comparisons with theoretical results of the linear theory by providing291

the vertical displacement amplitudes measured through the laboratory experiments of Kohout et292

al. [8]. Overall, the GN results are in close agreement with the laboratory measurements and the293

theoretical results. The agreement is better for longer-wave periods. For more comparisons and294

discussion of wave interaction with single and multiple deformable sheets of various properties295

and in various wave conditions, the reader is referred to [22].296

Ren et al. [19] investigated the wave-induced drift motion of a small rigid box by use of297

the SPH method and through laboratory experiments. This study is used here for comparison298

purposes. Figure 5 shows the horizontal trajectory of the elastic sheet, under the effect of waves299

of different height (H = 0.1 and H = 0.25), predicted by the present approach, and compares300

it with the results of Ren et al [19] for the rigid plate of the same dimensions. It should be301
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Figure 4. Comparisons of deformation heights of the sheet (L= 13.3, m=0.02, D= 0.37) under the action of regular

waves of periods (a) T = 4.8 and (b) T = 5.7 without current.
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Figure 5. Comparisons of time series of horizontal trajectories of a freely floating sheet (L= 0.75, m= 0.25,D= 1)

under the action of regular waves of period T = 6 and heights (a) H = 0.1 and (b) H = 0.25 without current.

noted here that a small elastic sheet in waves behaves as a rigid plate. Furthermore, as it will302

be shown below, the rigidity parameter has little to no effect on the drift response of the sheet if303

the wavelength is much longer that the length of the sheet. Figure 5 demonstrates that GN model304

captures properly the horizontal motion of the floating sheet: for relatively low-amplitude waves305

(H = 0.1), surge and drift motions of the plate predicted by both GN and SPH models are in good306

agreement with the laboratory measurements; for relatively larger amplitude waves (H = 0.25),307

the GN model slightly underestimates the surge amplitude compared to the results of Ren et308

al. [19], though predicts the same net drift speed. Some small differences between results is to309

be expected for larger waves, given the box-shape of the object considered in the study of [19],310

and its small size when compared to the wavelength. Consideration of such a small object in our311

model requires extremely small ratio between the grid and time steps, namely in this particular312

case ∆x= 0.15, ∆t= 0.001 were chosen.313

When the relative size of a freely floating body is very small compared to the wavelength, the314

drift motion of the body may be approximated by the motion of the fluid particles, located at315

the free surface. For plane progressive waves in a fluid of finite depth, the position of the fluid316
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particles can be defined in Lagrangian coordinates as, see e.g. [51],317

x(t) = x0 −
H

2

cosh k(y0 + 1)

sinh k
sin(kx0 − ωt) +

H2

4

cosh 2k(y0 + 1)

sinh k
+O(H3), (3.1)

y(t) = y0 +
H

2

sinh k(y0 + 1)

sinh k
cos(kx0 − ωt) +O(H3), (3.2)

where (x0, y0) is the initial position of the fluid particles and O() refers to the order of the318

remaining terms. Wave frequency ω is related to the wavenumber k through the linear dispersive319

relation ω2 = k tanh k. Note, that equations (3.1)–(3.2) and dispersive relation are presented here320

in dimensionless form by use of the water depth h as the length scale. In linear theory, the321

individual fluid particles on the water surface (y0 = 0) rotate clockwise along elliptical orbits322

with semi-axes H coth(k)/2 and H/2. The nonlinear feature of the plane progressive waves is323

the mean drift of fluid particles in direction of wave propagation, as was pointed out by Stokes324

[6], and is accounted for by the second-order term in equation (3.1). Stokes’ expression for the325

mass-transport velocity of fluid particles on the water surface is written in dimensionless form as:326

Us =
H2

4

(

ωk cosh 2k

2 sinh2 k
−

ω

2
coth k

)

. (3.3)

The first term in equation (3.3) is the classical Stokes’ drift [6], whereas the second term is the327

return flow that ensures a net zero depth integrated mean flow [52]. Formula (3.3) is commonly328

used to estimate qualitatively the drift motion of freely floating small objects in waves, see e.g.329

[49,53].330

In the next section, the time-averaged horizontal velocities of the sheets, predicted by the GN331

model will be compared with Stokes drift speed given by formula (3.3). The comparisons will332

show (shown in figures 13 and 14 below, which will be discussed in greater details) that the333

velocities, calculated by both approaches, exhibit a similar trend. The agreement is good for long334

waves, which means that the sheet interacting with the long waves, drifts with about the same335

speed as the fluid particles at the contact surface would move without the body. The agreement336

is better for lighter and less rigid sheets, which is in line with the assumptions made in obtaining337

equation (3.3). The differences in the drift speeds predicted by the GN model and Stokes’ formula338

are attributed to the short wave region where Stokes’ drift speed increases exponentially, but the339

floating sheet on the contrary reduces its drift speed due to intensified wave reflection. We will340

revisit this in the next section.341

4. Wave-sheet interaction342

As a result of wave- and current-induced loads, a deformable ice sheet floating freely on the343

water surface moves with a time-averaged drift speed in the direction of wave propagation. This344

is confirmed by numerous computational simulations, based on slope-sliding model [5,16], SPH345

method [19] or linear potential theory [49], as well as by experimental observations [17,53,54].346

Thereby, the process of wave and current interaction with floating elastic sheet include both elastic347

bending and translational motion. The former response in the wave-current-structure interaction348

problem has been discussed in the literature, while the latter (drift motion) remains unexplored.349

In this analysis, we study the wave- and current-induced deformation and drift motion of elastic350

sheets and estimate the contribution of the free drift on the dynamic responses. We will consider351

here two types of floating sheets: (i) fixed sheet, is a deformable sheet which can undergo vertical352

deflections, but is restrained from moving horizontally; (ii) free sheet, is a deformable sheet which353

differs from the fixed sheet by its ability to move freely in horizontal direction, i.e., to drift. In this354

section, the interaction of cnoidal waves with different elastic sheets without current (Uc = 0) will355

be investigated by a parametric study. The combined action of wave and uniform current on the356

floating elastic sheet will be considered in the next section.357

Figure 6 shows a free sheet in interaction with the incident wave at three successive time358

moments. Velocity field (u, v) and pressure distribution p(x, y) in the flow domain are also359
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Figure 6. Snapshots of cnoidal wave (H =0.2, λ/L= 3, Uc = 0) interaction with a free sheet (L=3, m= 0.1,D= 1)

at three different time moments. Left column: vectors and dimensionless magnitude of fluid particle velocity; right column:

dimensionless fluid pressure. Vertical dashed line indicates the initial position of sheet’s leading edge.

presented in the figure. The fluid particles move faster under the wave crests and slower under360

the wave troughs, the pressure is linearly distributed from the free surface down to the bottom.361

As seen from figure 6, the sheet bends elastically and drifts with the wave train at the same time,362

causing the disturbance to the surrounding fluid and breaking the regular character of the fluid363

velocity distribution.364

Figure 7 (a) shows the horizontal trajectories of the drift motion of the free sheet for two365

incident wave heights. The plots demonstrate the oscillatory motion of the sheet with gradual366

displacement to the right. The trajectory curve can be decomposed into the sum of translational367

motion (drift) and periodic oscillations (surge), i.e., X(t) =Xd(t) +Xs(t). Here Xd is the best-368

fitting trend line of the trajectory curve and Xs is the residual oscillatory signal, see figure 7. The369

net drift speed Ud and surge oscillation height Hs are then defined as the slope of the trend line370

Xd and oscillation height of the periodic signal Xs, respectively.371

In subsequent analysis, we will be studying the interplay between the drift motion indicators,372

such as surge oscillation height Hs and net drift speed Ud, and input parameters of the problem,373

including the wavelength λ, wave height H , sheet length L, unit mass m and rigidity D. In linear374

theory, the surge amplitude of the freely floating small plate under the action of comparatively375

long wave of amplitude A tends to the value A/ tanh kh, where h is the depth of the fluid [17].376

This value corresponds to semi-axis of the elliptic trajectory of fluid particles on the water surface,377

discussed in the previous section. Therefore, in what follows, the surge oscillation height Hs and378

net drift speed Ud will be presented in normalized form using H/ tanh(k) and Hω/ tanh(k) as379

dimensionless reference values, respectively. In this study, wave condition parameters are selected380

to cover a range from linear (H = 0.05, λ=30) and nonlinear wave conditions (H = 0.15, λ= 3)381

with the wave steepness Ak varying from 0.005 to 0.2, respectively. We choose two distinctive382

sheet sizes, namely L= 3 and L= 30, in order to investigate the drift problem in a wide range of383

plate length to wavelength ratio λ/L, both below and above unity.384
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Figure 7. Time series of (a) horizontal trajectory with the best fitting trend lines and (b) pure surge oscillation of a free

sheet (L= 3, m=0.1, D=1) under the action of cnoidal waves (λ/L= 3) of different heights H without current.

(a) Effects of wave conditions385

Figure 8 demonstrates how the drift motion changes the wave field around the elastic sheet.386

The figure shows surface elevation time series at a gauge located one wavelength upwave of387

the floating sheets, considering both fixed and free sheets for two wavelength conditions. For388

the fixed sheet case, the wave field retains the regular profile of the incident wave. Compared to389

its fixed counterpart, the free sheet causes the surface elevation modulation by slowly-varying390

envelope. This is in line with the observations of Nelli et al. [24], who performed laboratory391

experiments on moored and freely floating plastic plates under the action of short waves in deep392

water. As discussed by Nelli et al. as well, the modulations are because the reflection source moves393

away from the gauge, i.e. the effect of drift. Shown in figure 8, the length of the envelope grows394

with increase in the incident wavelength.395
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Figure 8. Time series of surface elevation at the gauge located one wavelength upwave of the (a,c) fixed and (b,d)

free sheet (L= 3, m= 0.1, D= 1). Cnoidal wave conditions without current: (a,b) λ/L= 3, H = 0.2; (c,d) λ/L= 4,

H =0.2.

Figure 9 shows time series of the horizontal trajectory of a freely floating sheet, its horizontal396

velocity and wave-induced horizontal force for two cnoidal wave lengths. As it may be expected,397

the oscillation periods of trajectory, velocity and force correspond to the period of the incoming398

wave. Comparing the two wave cases in figure 9, we observe that the shorter wave causes larger399

drift per cycle, accelerates it to a larger speed, but induces smaller surge oscillations. The short400

and long wave cases differ not only in magnitude of positive and negative velocities and forces,401

but what is more crucial, in their duration, and this results in different drift behaviour. Surge402

motion of the sheet under the long wave is characterized by an abrupt displacement on the wave403

crest and more gradual recurrence motion on the trough. In the long wave regime, the horizontal404
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positive and negative forces are in balance so that the sheet undergoes extensive surge with little405

horizontal displacement, i.e., there is little drift for longer waves.406
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Figure 9. Time series of (a) horizontal trajectory, (b) horizontal velocity, and (c) horizontal force for a free sheet (L= 3,

m= 0.1, D=1) under the action of cnoidal waves (H = 0.2) of different lengths λ without current.

In figure 10, the normalized surge oscillation height Hs tanh(k)/H and net drift speed407

Ud tanh(k)/Hω as functions of wavelength to sheet length ratio λ/L are given for cnoidal waves408

of different heights H . From figure 10, and other figures that will follow, it is observed that sheet’s409

drift motion is strongly affected by the incident wave length. Figure 10 (a) demonstrates that410

surge response exhibits the growing trend with sharp increase in the short wave region. And in411

the long wave limit the normalized surge oscillation height approaches the asymptotic value close412

to unity. The same growth of surge amplitude with incident wavelength has been observed for413

floating rigid and elastic plates both in linear theory and experiments, see [16,17,49].414

The effect of wave nonlinearity can be seen in figure 10 (a). When wavelength is comparable415

to the size of the sheet, the dimensionless surge plots are insensitive to the change in wave height416

parameter, indicating that surge oscillation depends linearly on the wave height. Nevertheless,417

the long wave limiting trends of surge plots corresponding to larger waves start to deviate from418

the value H/ tanh(k), specific to the linear theory. The second-order character of the drift motion419

is also illustrated by the plots of the net drift speed in figure 10 (b). The net drift speed, normalized420

by the incoming wave height, increases with larger wave heights. It is concluded that superfluous421

part of the wave energy carried by high-amplitude waves results in accelerating the floating sheet422

to a greater speeds. Hence, in contrast to linear waves, nonlinear waves result in smaller surge423

and larger drift.424

Figure 10 (b) shows that, on the short-wave side to the left of point λ/L≈ 2.5, the net425

drift speed increases continuously with wavelength, reaches a maximum at λ/L≈ 2.5 and then426

decreases monotonically to zero for longer waves. This corresponds qualitatively to the drift427

behaviour, predicted by the empirical formula of Harms [54] given for a rectangular-slab ice floe428

model. According to Harms, the point of maximum net drift speed is where the sheet experiences429

the transition from short-wave to long-wave drift behaviour. As seen in figure 10 (a), at this430

transition point the surge oscillation height approaches the maximum and reduces its slope.431



Authors Accepted Manuscript; 

Not Copy-edited by the Journal.

15

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

.................................................... ......

0 2 4 6 8 10
0

0.5

1

1.5
(a)

0 2 4 6 8 10
0

0.1

0.2

0.3
(b)

Figure 10. (a) Surge oscillation height and (b) net drift speed of a freely floating sheet (L= 3,m=0.1, D= 1) under

the action of cnoidal waves of different heights H without current.
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Figure 11. (a) Surge oscillation height of a freely floating sheet (L= 30, m= 0.1, D= 1) under the action of cnoidal

waves of different heights H without current. (b) Time series of horizontal trajectories of the same sheet under the action

of cnoidal waves (H = 0.1) of different lengths without current.

When the sheet is long compared to the incoming wavelength, it experiences little net drift,432

such that the horizontal motion is limited mainly to surge oscillations. For very small ratios of433

λ/L, surge oscillation height, apart from the growing trend, has local minimums at the points434

λ/L≈ 1/2, 1/3, 1/4, when integer number of waves can be located under the sheet surface, see435

figure 11. These minimums can be characterized as stagnation zones, where the sheet experiences436

both little drift and small surge. The peaks between these stagnation points correspond to437

the resonance regimes, when surge oscillation is comparatively large. Figure 11 illustrates the438

difference in drift responses of the long sheet to the waves from different regimes. With increase439

in sheet length new stagnation and resonance regimes occur.440

(b) Effects of sheet properties441

The effects of sheet’s rigidity and mass (draft) parameters on the wave-induced surge and drift442

are studied here. Figure 12 shows time series of the horizontal trajectories and horizontal forces443

acting on the elastic sheets of different unit masses m (or draft d, given that volume and density of444

the sheet are constant). According to figure 12 (a), for the given wavelength, the sheet with larger445
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Figure 12. Time series of the (a) horizontal trajectory of freely floating sheets and (b, c) horizontal force on freely floating

and fixed sheets (L= 3, D= 1) of different unit mass m under the action of a cnoidal wave (λ/L=3, H =0.2) without

current.

unit mass drifts faster. The heavier sheet exhibits larger surge response with elongated period of446

oscillation, but with almost the same oscillation height. Compared to the force exerted on the fixed447

elastic sheet, the force on the freely floating sheet has constantly growing period of oscillations,448

shown in figure 12 (b,c), which is due to the horizontal motion of the sheet relative to the wave449

train. The difference in the periods of the wave forcing grows faster with increase in the mass450

parameter m. In fact, heavier sheet has larger contact surface with the fluid and consequently451

interacts with the surrounding flow more intensely.452

Figures 13 and 14 present the normalized surge oscillation height Hs and net drift speed453

Ud against the wavelength to plate length ratio λ/L for the freely floating sheet of various unit454

masses m and rigidities D. Figure 13 shows that with increase in the mass parameter m the drift455

response of the sheet increases proportionally: both in surge and net drift. Still, in the short wave456

region, neither surge motion nor drift movement of the sheet are not influenced by the mass457

parameter m. The net drift speed depends on the mass of the sheet in such a way that heavier sheet458

reaches maximum drift speed at a greater wavelength. From figure 14 it follows that the rigidity459

parameter D has little to no effect on surge motion of the sheet, but has significant influence on the460

net drift speed. Sheet with larger rigidity drifts faster and the point of maximum drift speed shifts461

to the left (to the shorter waves) with an increase in the rigidity parameter. In the long wave limit,462

rigidity plays no role in the drift response of the floating body. Thus, under long-wave conditions,463

floating elastic sheet and rigid plate of the same mass and dimensions should exhibit similar drift464

behaviour. This observation justifies the comparisons with rigid plate case in section 3.465

When wavelength to sheet length ratio λ/L is small (the sheet is long), increase in the mass466

parameter m leads to increase in surge response of the sheet. Seen in figure 15, for larger467

mass parameter the surge oscillation plots are slightly compressed with subsequent shift in the468

extremum points. The rigidity parameter appears to have little to no effect on the surge response469

of the sheet regardless of the incoming wavelength.470

Figure 16 presents the plots of the normalized net drift speed Ud against sheet unit mass m and471

rigidity D for three representative wave regimes, λ/L=2, 3, 4, around the point of the maximum472

drift speed, previously observed in figures 10, 13 and 14. Figure 16 (a) demonstrates that the473

net drift speed grows almost linearly with an increase in the mass parameter with coefficient474

of proportionality dependent on the incoming wavelength. As regards to rigidity, the net drift475

speed reveals asymptotic dependence. Figure 16 (b) shows that the net drift speed grows rapidly476

at small rigidities, approaching the maximum, determined by the incoming wavelength and477

mass parameter of the sheet, asymptotically. In other words, for a given sheet mass parameters478

and wave conditions, there is a critical value of the drift speed that cannot be exceeded by the479
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Figure 13. (a) Surge oscillation height and (b) net drift speed of a freely floating sheet (L= 3,D= 1) of different unit

mass m under the action of cnoidal waves of height H =0.1 without current. Dotted line indicates Stokes’ drift speed.
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Figure 14. (a) Surge oscillation height and (b) net drift speed of a freely floating sheet (L= 3,m= 0.1) of different

rigidity D under the action of cnoidal waves of height H = 0.1 without current. Dotted line indicates Stokes’ drift speed.

freely floating sheet. Indeed, starting from the value D= 0.5, increase in rigidity parameter has480

little to no effect on drift movement of the sheet. The effect of rigidity is less remarkable when481

wavelength increases. Hence, under the long wave conditions, the drift response of an elastic482

sheet is approximately equal to the drift response of a rigid plate, regardless of the difference in483

rigidity. In this case, the rigidity effect is mostly in vertical direction and in the elastic bending of484

the sheets, and has relatively less influence on the horizontal motion. Further details on the effect485

of rigidity on the interaction of waves with fixed elastic sheets are discussed in [22].486

5. Wave-current-sheet interaction487

In real marine conditions, waves usually travel on a current, which could affect the wave488

propagation speed as well as the wavelength. The phenomenon of wave-current interaction489

without a floating body has been studied extensively: various theoretical solutions for waves490

on currents of sheared profiles with non-zero vorticity has been developed and tested in the491

experiments, see e.g. [55–57]. When the current is uniformly distributed over the water depth,492

the wave-current interaction may be described by a Doppler shift [58]. Das et al. [59] studied the493
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Figure 15. Surge oscillation height of a freely floating sheet of length L= 30 with (a) different unit mass m (rigidity

D= 1) and (b) different rigidity D and (mass m= 0.1), under the action of cnoidal waves of height H = 0.1 without

current.
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Figure 16. Net drift speed of a free sheet of length L=3 and various mass m and rigidity D under action of a cnoidal

wave (λ/L=2, H =0.1) without current against its (a) unit mass m for different rigidity D and (b) rigidity D for different

unit mass m.

effect of current on wave propagation in the elastic sheet with compressive force and observed494

the shifting of the blocking points, where the group velocity of the elastic wave goes to zero. In495

this study, we investigate the combined action of waves and uniform currents on a freely floating496

elastic sheet located in shallow waters without compressive force. Our goal here is to determine497

the effect of current on the drift motion of the sheet in the presence of waves.498

Initially, two current conditions are considered, equal in speed and opposite in directions. By499

definition, the wavemaker generates waves travelling with the favourable (or adverse) current,500

when Uc > 0 (or Uc < 0) in equation (2.16). The current speed Uc is chosen small relative to the501

speed of the incident wave (Uc/c≪ 1), but similar in magnitude to the orbital motion of fluid502

particles, see e.g. [56]. This corresponds to real sea conditions, where forcing from tidal currents503

has been measured and estimated to be negligible when compared to the wave-induced loads504

[4]. The weak current conditions result in that wave-current-sheet interaction process to occur505

without wave blocking.506
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Figure 17 shows wave profiles generated by superposition of a cnoidal wave and uniform507

current without a floating body, and recorded by a gauge located one wavelength downwave508

of the wavemaker. According to figure 17, the favourable and adverse currents lead to increase509

and decrease of the wave elevation, respectively, due to additional fluid mass transferred by the510

current. Snapshots of surface elevation in figure 17(b) show the variations in the wavelength511

resulting from the interaction of waves with the current. The influence of a favourable current512

is found to increase the wavelength, while the opposite occurs in the case of an adverse current.513

5 6 7 8
-0.1

0

0.1

0.2
(a)

1 2 3 4
-0.1

0

0.1

0.2
(b)

Figure 17. Surface elevation of a cnoidal wave (λ=15, H =0.2) with and without current: (a) time series at the gauge

located one wavelength downwave of the wavemaker; (b) snapshots at the time moment t/T =9.5.

In figure 18, the drift motion of the floating sheet subject to the combined wave-current loads514

is presented. The trajectory plots in figure 18 (a) show that the favourable current causes the sheet515

to move faster when compared to the sheet floating in waves without current, while the adverse516

current works just the opposite. This is partially due to the effect of the current on the incoming517

wave height, as it was shown in figure 17, which affects the wave forcing on the floating sheet. It is518

observed that the segments of the forward drift motion are inclined at the same angle regardless519

of the current conditions. At the same time, the segments of the backward drift motion go steeper520

for adverse current, and more flat if the current is favourable. In other words, in the presence of521

current, the minimum drift speed changes with current direction, but the maximum drift speed522

remains invariant. Figures 18 (b-d) demonstrate the effect of current on the velocity field around523

the free sheet. Compared to the pure wave case, the fluid particles around the sheet floating in524

waves and current move faster or slower depending on the current direction. It can be seen that525

the favourable current supress the backward flow and stimulates the flow of fluid particles in the526

wave direction. The opposite is true for the adverse current. Since the current has influence on the527

wavelength the distance between the wave packages changes correspondingly.528

Figure 19 illustrates the effect of current on drift movement of the floating sheet in a range529

of wavelengths to sheet length ratios λ/L. As seen in figure 19 (a), the surge oscillations of the530

sheet is invariant with the presence of current, regardless of its direction and speed. Figure 19 (b)531

shows that combined action of wave and current results in increase or decrease of the net drift532

speed, depending on the current direction, in all possible wave regimes. It is observed that while533

the magnitude of the drift motion increases or decreases with favourable or adverse current,534

respectively, the behaviour of the responses is invariant for all wavelengths. The same behaviour535

is observed for waves with different heights (results not presented here for brevity).536

Figure 20 shows the variation of the net drift speed of the sheet Ud with the ambient current537

speed Uc. It is observed that the drift speed grows linearly with increase in the current speed at the538

same rate regardless of the incoming wavelength. Small deviations from the linear relationship539

for the largest current speeds is observed and this is attributed to the current speed suppressing540

the wave-induced motion of water particles (in favourable or adverse direction, depending on the541

current direction) at such extreme conditions, which results in change of behaviour of the velocity542

and pressure fields.543
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Figure 18. Interaction of a free sheet (L=3, m= 0.1, D=1) with a cnoidal wave (λ/L= 5, H = 0.2) with and without

current: (a) time series of horizontal trajectory of the sheet; (b,c,d) vectors and dimensionless magnitude of fluid particles

velocity at the moment of time t/T = 9.5. Vertical dashed line indicates the initial position of sheet’s leading edge.
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Figure 19. (a) Surge oscillation height and (b) net drift speed of a freely floating sheet (L= 3, m= 0.1, D= 1) under

the action of cnoidal waves (H =0.1) with and without current.

6. Conclusions544

In this paper, the nonlinear two-dimensional model of interaction of waves and current with a545

freely floating deformable sheet without overwash is presented. The model is developed based on546

the coupled Level I GN equations and thin plate theory, and the calculations are performed by use547

of a finite difference technique. We proposed here an effective analytical and numerical algorithm548

without moving or nonuniform spatial grids, which accounts for the two-way interaction between549

the fluid and the structure, including both elastic deformation of the body and flow-induced550

drift motions. The model shows close agreement with available laboratory measurements and551

numerical data for elastic deformation and drift movement of floating plates. We estimate the552
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Figure 20. Net drift speed against current speed Uc for a free sheet (L=3, m=0.1, D= 1) under combined action of

current and cnoidal waves (H = 0.1) of different lengths λ/L.

indicators of drift movement by a comprehensive study with various sheet properties, wave553

parameters and current speeds.554

Some of the conclusions are summarized as follows: (i) the ratio of wavelength to the sheet555

length is an important factor governing the wave-induced drift of the floating sheet: in particular,556

for wavelength roughly equal to 2.5 sheet lengths, the sheet drifts with maximum speed; (ii)557

under the action of very long waves, the sheet drifts with a minimum speed and oscillates558

around the equilibrium position with the maximum amplitude, equal to the amplitude of fluid559

particle oscillation on the free surface; (iii) the fixed sheet experiences greater impact from the560

incoming wave than the freely floating sheet, which means that by applying different fixations561

on the floating sheet, its damping features can be manipulated; (iv) more rigid and heavier sheets562

drift faster than less rigid and lighter sheets, and the drift speed depends linearly on mass and563

nonlinearly on rigidity; (v) the current has stimulating and suppressing effects on the drift of564

floating sheets depending on the current direction.565

The results obtained in this study provide an insight to predicting the ice formation in polar566

regions, their motion and effect on the flow field, safe marine operations and dynamic positioning567

of solitary and multiple floating offshore structures. Information on kinematic response of the568

floating object in waves is important for design of the mooring systems. Mechanisms of the569

wave-absorbing devices can be improved by taking advantage of both vertical and horizontal570

oscillations of its floating elastic components. And thus more effective collection of the wave571

energy can be achieved.572

In nature, multiple floating sheets, like collection of ice floes, are more likely to occur. The573

presence of multiple objects impose more complicated fluid-structure interaction conditions,574

and energy reflection and transition, which opens new possibilities for analysis and interesting575

physical effects. This will be the subject of the part II paper.576
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